05.07.2015 Views

The Stieltjes convolution and a functional calculus for non-negative ...

The Stieltjes convolution and a functional calculus for non-negative ...

The Stieltjes convolution and a functional calculus for non-negative ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

5 <strong>Stieltjes</strong> Trans<strong>for</strong>mation<br />

Definition 5 <strong>The</strong> <strong>Stieltjes</strong> trans<strong>for</strong>m of a distribution S ∈ D S (R + ) ′<br />

n = 1) or S ∈ D S ∗(R n +) ′ (<strong>for</strong> ∀n ∈ N) is defined by<br />

S(S)(⃗a) :=S(ϕ ⃗a )<br />

= ∑ ∫<br />

⃗ k!<br />

| ⃗ R n +<br />

k|≤K<br />

(⃗x +⃗a) −⃗ k−1 dµ ⃗k (⃗x)<br />

(<strong>for</strong><br />

<strong>for</strong> all (⃗a ∈ R n +). <strong>The</strong> second expression holds <strong>for</strong> any representation (8) or<br />

(15) of S.<br />

<strong>The</strong>orem 3 (Uniqueness theorem) If S ∈ D S (R + ) ′ or S ∈ D S ∗(R n +) ′ <strong>and</strong><br />

S(S)(⃗a) = 0 <strong>for</strong> ∀⃗a ∈ R n +, then S is the zero-distribution.<br />

Proof: We show the case S ∈ D S ∗(R n +) ′ . <strong>The</strong>orem 1 shows that S is a<br />

tempered distribution, <strong>and</strong> its Laplace-trans<strong>for</strong>m is<br />

L(S)(⃗s) = S(e −⃗s·) = ∑ ∫<br />

⃗s ⃗ k<br />

e −⃗s⃗x dµ ⃗k (⃗x) (⃗s ∈ R n +).<br />

| ⃗ k|≤K<br />

This function is again Laplace-trans<strong>for</strong>mable in the classical sense with<br />

L(L(S))(⃗a) = ∑<br />

∫<br />

| ⃗ R n +<br />

k|≤K<br />

= ∑ ∫<br />

| ⃗ k|≤K<br />

= ∑<br />

| ⃗ k|≤K<br />

R n +<br />

⃗ k!<br />

∫<br />

R n +<br />

∫<br />

d⃗s e −⃗a⃗s ⃗s ⃗ k<br />

∫<br />

dµ ⃗k (⃗x)<br />

R n +<br />

= S(S)(⃗a) = 0<br />

R n +<br />

R n +<br />

dµ ⃗k (⃗x)e −⃗s⃗x<br />

d⃗s⃗s ⃗k e −(⃗x+⃗a)⃗s<br />

dµ ⃗k (⃗x)(⃗x +⃗a) −⃗ k−1<br />

<strong>for</strong> ∀⃗a ∈ R n +. <strong>The</strong> uniqueness theorem <strong>for</strong> the Laplace-trans<strong>for</strong>mation applied<br />

twice now first says that L(S) ≡ 0 <strong>and</strong> then that S = 0. <strong>The</strong> case S ∈ D S (R + ) ′<br />

is proven analogously. ✷<br />

Corollary 2 Every S ∈ D S (R + ) ′ <strong>and</strong> every S ∈ D S ∗(R n +) ′ is a tempered<br />

distribution that is twice Laplace-trans<strong>for</strong>mable with S(S) = L(L(S)).<br />

6 <strong>Stieltjes</strong> Convolution<br />

For the definition of the <strong>convolution</strong> we need the operators ∆ n that will be<br />

defined now.<br />

13

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!