05.07.2015 Views

The Stieltjes convolution and a functional calculus for non-negative ...

The Stieltjes convolution and a functional calculus for non-negative ...

The Stieltjes convolution and a functional calculus for non-negative ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

This shows that lim m→∞ sup ⃗x∈Im |⃗x ⃗ k+1 D ⃗k ϕ(⃗x)| = 0. Since this is true <strong>for</strong> every<br />

⃗ k, we proved that ϕ ∈ Ḣ(R n +).<br />

For the inclusion ⊇ let ϕ ∈ Ḣ(Rn +), <strong>and</strong> we have to find a sequence (ϕ m ) m in<br />

D(R n +) with lim m→∞ ||ϕ m − ϕ|| ⃗k = 0 <strong>for</strong> all ⃗ k ∈ N n 0. To define the sequence<br />

(ϕ m ) m , let ψ ∈ D(R + ) be an arbitrary test function with 0 ≤ ψ ≤ 1 that has<br />

the value 1 in a neighborhood of x = 1 <strong>and</strong> whose support is contained in<br />

(0, 2). Now, <strong>for</strong> all m ∈ N we define ψ m ∈ D(R + ) by<br />

⎧<br />

ψ(mλ), 0 < λ < 1 , m<br />

⎪⎨ 1<br />

1,<br />

ψ m (λ) :=<br />

≤ λ ≤ m,<br />

m<br />

ψ( 1 λ), m < λ,<br />

( m )<br />

⎪⎩ 0, 2m < λ<br />

⎧<br />

m j ψ (j) (mλ), 0 < λ < 1 , m<br />

⎪⎨<br />

1<br />

ψ m (j) 0,<br />

(λ) =<br />

≤ λ ≤ m,<br />

m<br />

m −j ψ (j) ( 1 λ), m < λ,<br />

( m )<br />

⎪⎩ 0, 2m < λ<br />

<strong>for</strong> ∀j ∈ N. We find that <strong>for</strong> every j ∈ N 0 λ j ψ (j)<br />

m (λ) is bounded uni<strong>for</strong>mly with<br />

respect to λ <strong>and</strong> m:<br />

∀j ∈ N 0 ∀m ∈ N :<br />

sup |λ j ψ m (j) (λ)| ≤ (2m) j 1 ||ψ (j) ||<br />

λ>m −1 m j ∞ ,<br />

similarly <strong>for</strong> 0 < λ < 1 m . <strong>The</strong>re<strong>for</strong>e, if we define ϕ m(⃗x) := ϕ(⃗x) · ∏n<br />

i=1 ψ m (x i ) ∈<br />

D(R n +) <strong>and</strong> apply Leibniz’s rule, we have <strong>for</strong> ∀⃗x ∈ R n + ∀ ⃗ k ∈ N n 0 <strong>and</strong> some<br />

constants c ⃗ j, ⃗ k<br />

|⃗x ⃗k+1 D ⃗k (ϕ m − ϕ)(⃗x)| = ∣ ⃗<br />

∣⃗x<br />

k+1<br />

D ⃗ ( k<br />

ϕ(⃗x) · ( ∏ n ψ m (x i ) − 1 ))∣ ∣ = ∣ ∣ ∣<br />

∑<br />

0≤⃗j≤ ⃗ k<br />

= ∣ ( ∏ n<br />

∣<br />

i=1<br />

+ ∑<br />

0≠⃗j≤ ⃗ k<br />

≤ const ·<br />

c ⃗ j, ⃗ k ⃗x⃗ j ( D ⃗j (<br />

i=1<br />

n∏<br />

i=1<br />

ψ m (x i ) − 1 ) ⃗x ⃗ k+1 D ⃗k ϕ(⃗x)<br />

c ⃗ j, ⃗ k<br />

∑<br />

0≤⃗j≤ ⃗ k<br />

( n ∏<br />

i=1<br />

ψ m (x i ) − 1) ) ⃗x (⃗ k−⃗j)+1 D ⃗ k−⃗j ϕ(⃗x) ∣ ∣ ∣<br />

x j i<br />

i ψ (j i)<br />

m (x i ) ) ⃗x (⃗ k−⃗j)+1 D ⃗ k−⃗j ϕ(⃗x) ∣ ∣ ∣<br />

|⃗x (⃗ k−⃗j)+1 D ⃗ k−⃗j ϕ(⃗x)|. (7)<br />

Since ϕ m (⃗x) − ϕ(⃗x) = 0 <strong>for</strong> ∀⃗x ∈ [ 1 m ,m]n , we can now conclude<br />

with m → ∞.<br />

||ϕ m − ϕ|| ⃗k ≤ const ·<br />

∑<br />

0≤⃗j≤ ⃗ k<br />

sup |⃗x (⃗k−⃗j)+1 D ⃗k−⃗j ϕ(⃗x)| → 0<br />

⃗x∈I m<br />

7

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!