06.07.2015 Views

MHR • Advanced Functions 12 Solutions 660

MHR • Advanced Functions 12 Solutions 660

MHR • Advanced Functions 12 Solutions 660

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Chapter 7 Tools and Strategies for Solving Exponential and Logarithmic Equations<br />

Chapter 7 Prerequisite Skills<br />

Chapter 7 Prerequisite Skills Question 1 Page 362<br />

Using the product law:<br />

a) x 2 + 3 + 4 = x 9 b) 6a 5 b 4 c) x 4 y 5 d) 6r 2 s<br />

e) 5q 2 r f) v 3 w 4 g) 4ab 4<br />

Chapter 7 Prerequisite Skills Question 2 Page 362<br />

Using the quotient law:<br />

a) k 6 – 2 = k 4 b) –6n c) 6x 3 y d) 2ab 2<br />

Using the product law then the quotient law:<br />

e)<br />

5q 2 r<br />

10r 2 = q2<br />

2r<br />

f)<br />

v 3 w 4<br />

vw 2 = v2 w 2 g)<br />

4ab 4<br />

4a<br />

= b4<br />

Chapter 7 Prerequisite Skills Question 3 Page 362<br />

Using the power law:<br />

a) w 2 × 4 = w 8 b) 4u 2 v 6 c) a 6 b 3 d) x 6 y 6<br />

e) 8w 6 f) a 2 b 8 g) rs 6<br />

Chapter 7 Prerequisite Skills Question 4 Page 362<br />

a)<br />

4a 3<br />

2ab = 2a2 , product and quotient laws<br />

b<br />

b) (–27k 3 m 9 )(4k 6 m 4 ) = –108k 9 m 13 , product and power laws<br />

c)<br />

d)<br />

(2x 3 y)(64x 2 y 4 )<br />

= 32y 5 , product, quotient, and power laws<br />

4x 5<br />

(a 6 )a 3 b 6<br />

= a 4 b , product, quotient, and power laws<br />

a 5 b 5<br />

<strong>MHR</strong> <strong>•</strong> <strong>Advanced</strong> <strong>Functions</strong> <strong>12</strong> <strong>Solutions</strong> <strong>660</strong>


Chapter 7 Prerequisite Skills Question 5 Page 362<br />

a) (x + 6)(x ! 4) = 0<br />

x = !6 or x = 4<br />

b) 2m 2 ! 9m +10 = 0 c) (2a !1)(2a + 7) = 0<br />

(2m ! 5)(m ! 2) = 0<br />

m = 5 a = 1<br />

2 or m = 2 2 or a = ! 7 2<br />

d) q 2 ! q ! 20 = 0<br />

(q ! 5)(q + 4) = 0<br />

q = 5 or q = !4<br />

e) 9b 2 !1 = 0<br />

(3b !1)(3b +1) = 0<br />

b = 1 3 or b = ! 1 3<br />

f) (2y +1)(4y +1) = 0<br />

y = ! 1 2 or y = ! 1 4<br />

g) x 2 ! x ! 2 = 0<br />

(x ! 2)(x +1) = 0<br />

x = 2 or x = !1<br />

h) 2r 2 + 5r ! 3 = 0 i) (q + 4)(q +1) = 0<br />

(2r !1)(r + 3) = 0<br />

q = !4 or q = !1<br />

r = 1 2 or r = !3<br />

Chapter 7 Prerequisite Skills Question 6 Page 362<br />

a) y = !6 ± 62 ! 4(1)(!5)<br />

2(1)<br />

y =<br />

y =<br />

y =<br />

!6 ± 56<br />

2<br />

!6 ± 14 " 4<br />

2<br />

!6 ± 2 14<br />

2<br />

y = !3± 14<br />

b) 4q 2 ! 2q !10 = 0<br />

q = !(!2) ± (!2)2 ! 4(4)(!10)<br />

2(4)<br />

q = 2 ± 164<br />

8<br />

q = 2 ± 41" 4<br />

8<br />

q = 2 ± 2 41<br />

8<br />

q =<br />

1± 41<br />

4<br />

<strong>MHR</strong> <strong>•</strong> <strong>Advanced</strong> <strong>Functions</strong> <strong>12</strong> <strong>Solutions</strong> 661


c) x 2 + x !1 = 0<br />

x = !1± <strong>12</strong> ! 4(1)(–1)<br />

2(1)<br />

x = !1± 5<br />

2<br />

e) x 2 ! x ! 7 = 0<br />

x = !(!1) ± (!1)2 ! 4(1)(!7)<br />

2(1)<br />

x =<br />

1± 29<br />

2<br />

d) a = !2 ± 22 ! 4(2)(!10)<br />

2(2)<br />

a =<br />

a =<br />

a =<br />

a =<br />

!2 ± 84<br />

4<br />

!2 ± 21" 4<br />

4<br />

!2 ± 2 21<br />

4<br />

!1± 21<br />

2<br />

f) r 2 ! 5r + 3 = 0<br />

r = !(!5) ± (!5)2 ! 4(1)(3)<br />

2(1)<br />

r = 5 ± 13<br />

2<br />

g) m = !6 ± 62 ! 4(2)(3)<br />

2(2)<br />

m =<br />

!6 ± <strong>12</strong><br />

4<br />

m = !6 ± 4 " 3<br />

4<br />

m = !6 ± 2 3<br />

4<br />

m = !3± 3<br />

2<br />

h) 3a 2 ! 3a ! 4 = 0<br />

a = !(!3) ± (!3)2 ! 4(3)(!4)<br />

2(3)<br />

a =<br />

3± 57<br />

6<br />

<strong>MHR</strong> <strong>•</strong> <strong>Advanced</strong> <strong>Functions</strong> <strong>12</strong> <strong>Solutions</strong> 662


Chapter 7 Prerequisite Skills Question 7 Page 363<br />

a) 4 ! 2 = 2 2 b) 2 4 ! 5 = 2 ! 2 5<br />

= 4 5<br />

c) 9 ! 2 = 3 2<br />

d) 3 9 ! 2 = 3! 3 2<br />

= 9 2<br />

e) 25! 3 = 5 3<br />

f)<br />

4 + 16 ! 3<br />

2<br />

= 4 + 4 3<br />

2<br />

= 2 + 2 3<br />

( )<br />

= 2 3 +1<br />

g)<br />

2 ± 4 ! 6<br />

2<br />

= 2 ± 2 6<br />

2<br />

= 1± 6<br />

Chapter 7 Prerequisite Skills Question 8 Page 363<br />

a) log 4<br />

(4 2 ) 3 = log 4<br />

4 6<br />

= 6<br />

1<br />

b) log 2<br />

(2 5 ) 4<br />

= log 2<br />

2<br />

= 5 4<br />

5<br />

4<br />

c) log 3<br />

(3 3 ) 2 = log 3<br />

3 6<br />

= 6<br />

d) log 5<br />

(5 2 ) 2 = log 5<br />

5 4<br />

= 4<br />

g) log 4<br />

(4 2 ) 2 = log 4<br />

4 4<br />

= 4<br />

e) log 2<br />

(2 5 ) 2 = log 2<br />

2 10<br />

= 10<br />

1<br />

h) log 2<br />

4 = log ! 1 $<br />

2<br />

"<br />

#<br />

%<br />

&<br />

2 2<br />

= log 2<br />

2 '2<br />

= '2<br />

f) log 3<br />

3 4 = 4<br />

Chapter 7 Prerequisite Skills Question 9 Page 363<br />

a)<br />

log10<br />

log3 &= 2.096 b) log 1 5<br />

log 1 2<br />

&= 2.322 c)<br />

log15<br />

log 2<br />

&= 3.907<br />

d)<br />

g)<br />

log17<br />

log 4 &= 2.044 e) log3<br />

log 2 &= 1.585 f) log8<br />

&= 1.893<br />

log3<br />

log 20<br />

log 4 &= 2.161 h) log19<br />

log 2<br />

&= 4.248<br />

<strong>MHR</strong> <strong>•</strong> <strong>Advanced</strong> <strong>Functions</strong> <strong>12</strong> <strong>Solutions</strong> 663


Chapter 7 Prerequisite Skills Question 10 Page 363<br />

a) t log5 = log 4<br />

t = log 4<br />

log5<br />

t &= 0.86<br />

b) 2t log1.2 = log1.6<br />

t = log1.6<br />

2log1.2<br />

t &= 1.29<br />

c) t log7 = log 2<br />

t = log 2<br />

log7<br />

t &= 0.36<br />

d) 3t log 1 4 = log 2<br />

t = log 2<br />

3log 1 4<br />

t &= !0.17<br />

g) t log 2 = log9<br />

t = log9<br />

log 2<br />

t &= 3.17<br />

e) t log3 = log 2<br />

t = log 2<br />

log3<br />

t &= 0.63<br />

h) 3t log 2 = log15<br />

t = log15<br />

3log 2<br />

t &= 1.30<br />

f) t log8 = log3<br />

t = log3<br />

log8<br />

t &= 0.53<br />

Chapter 7 Prerequisite Skills Question 11 Page 363<br />

y = b x<br />

log y = log b x<br />

log y = x log b<br />

x = log y<br />

log b<br />

<strong>MHR</strong> <strong>•</strong> <strong>Advanced</strong> <strong>Functions</strong> <strong>12</strong> <strong>Solutions</strong> 664


Chapter 7 Section 1<br />

Equivalent Forms of Exponential Equations<br />

Chapter 7 Section 1 Question 1 Page 368<br />

a) (2 2 ) 6 = 2 <strong>12</strong> b) (2 3 ) 3 = 2 9<br />

c)<br />

! 1 $<br />

"<br />

#<br />

%<br />

&<br />

2 3<br />

2<br />

= ( 2 ) '3 2<br />

= 2 '6 log 2 k = log14<br />

k log 2 = log14<br />

d) 2 k = 14<br />

k = log14<br />

log 2<br />

log14<br />

log 2<br />

14 = 2<br />

Chapter 7 Section 1 Question 2 Page 368<br />

a) (3 3 ) 2 = 3 6 b) (3 –1 ) 4 = 3 –4<br />

c) 3 k = 10<br />

log3 k = log10<br />

k log3 = log10<br />

k = 1<br />

log3<br />

10 = 3<br />

1<br />

log 3<br />

d) 3 k = 1 2<br />

log3 k = log 1 2<br />

k log3 = log 1 2<br />

k =<br />

log 1 2<br />

log3<br />

log 1 2<br />

1<br />

2 = 3 log 3<br />

Chapter 7 Section 1 Question 3 Page 368<br />

a) Answers may vary. A sample solution is 4 4 .<br />

b) Answers may vary. A sample solution is 16 2 .<br />

c)<br />

<strong>MHR</strong> <strong>•</strong> <strong>Advanced</strong> <strong>Functions</strong> <strong>12</strong> <strong>Solutions</strong> 665


Chapter 7 Section 1 Question 4 Page 368<br />

a) 4 3 b) 4 2<br />

( ) 1 2<br />

3<br />

= 4<br />

3<br />

c) 4 3<br />

( ) 1 "<br />

2<br />

! $ 4<br />

#<br />

7<br />

2<br />

%<br />

'<br />

&<br />

3<br />

4<br />

3<br />

= 4<br />

2<br />

! 4<br />

<strong>12</strong><br />

= 4<br />

8 + 21<br />

8<br />

33<br />

= 4<br />

8<br />

21<br />

8<br />

!<br />

1<br />

$<br />

d) 2<br />

2<br />

# &<br />

" %<br />

8<br />

!<br />

1<br />

$<br />

' 23<br />

# &<br />

" %<br />

4<br />

4<br />

= 2 4 ' 2<br />

3<br />

<strong>12</strong><br />

= 2<br />

3 + 4 3<br />

16<br />

= 2<br />

3<br />

!<br />

1<br />

$<br />

= 4<br />

2<br />

# &<br />

" %<br />

8<br />

= 43<br />

16<br />

3<br />

Chapter 7 Section 1 Question 5 Page 368<br />

a) 2 4x = ( 2 ) 2 x+3<br />

2 4x = 2 2x+6<br />

4x = 2x + 6<br />

2x = 6<br />

x = 3<br />

b) ( 5 ) 2 x!1 = 5 3x<br />

5 2x!2 = 5 3x<br />

2x ! 2 = 3x<br />

!2 = 3x ! 2x<br />

x = !2<br />

c) 3 w+1 = ( 3 ) 2 w!1<br />

3 w+1 = 3 2w!2<br />

w +1 = 2w ! 2<br />

1+ 2 = 2w ! w<br />

w = 3<br />

d) ( 6 ) 2 3m!1 = 6 2m+5<br />

6 6m!2 = 6 2m+5<br />

6m ! 2 = 2m + 5<br />

6m ! 2m = 5+ 2<br />

4m = 7<br />

m = 7 4<br />

Check:<br />

a)<br />

<strong>MHR</strong> <strong>•</strong> <strong>Advanced</strong> <strong>Functions</strong> <strong>12</strong> <strong>Solutions</strong> 666


)<br />

c)<br />

d)<br />

Chapter 7 Section 1 Question 6 Page 368<br />

a) ( 2 ) 2 3x = ( 2 ) 3 x!3<br />

b) ( 3 ) 3 x = ( 3 ) 2 2x!3<br />

c) ( 5 ) 3 2 y!1 = ( 5 ) 2 y+4<br />

d) ( 2 ) 4 2k !3 = ( 2 ) 5 k +3<br />

2 6x = 2 3x!9<br />

3 3x = 3 4x!6<br />

5 6 y!3 = 5 2 y+8<br />

2 8k !<strong>12</strong> 5k +15<br />

= 2<br />

6x = 3x ! 9<br />

3x = 4x ! 6<br />

6y ! 3 = 2y + 8<br />

8k !<strong>12</strong> = 5k +15<br />

3x = !9<br />

4x ! 3x = 6<br />

4y = 11<br />

8k ! 5k = 15+<strong>12</strong><br />

Check:<br />

a)<br />

x = !3<br />

x = 6<br />

y = 11<br />

4<br />

3k = 27<br />

k = 9<br />

<strong>MHR</strong> <strong>•</strong> <strong>Advanced</strong> <strong>Functions</strong> <strong>12</strong> <strong>Solutions</strong> 667


)<br />

c)<br />

d)<br />

Chapter 7 Section 1 Question 7 Page 368<br />

a) 10 2x = ( 10 ) 2 2x!5<br />

10 2x = 10 4x!10<br />

2x = 4x !10<br />

4x ! 2x = 10<br />

2x = 10<br />

x = 5<br />

b) log10 2x = log100 2x!5<br />

2x log10 = (2x ! 5)log100<br />

2x(1) = (2x ! 5)(2)<br />

2x = 4x !10<br />

4x ! 2x = 10<br />

2x = 10<br />

x = 5<br />

c) Answers may vary. A sample solution is shown.<br />

I like using logarithms because I do not need to find a common base.<br />

<strong>MHR</strong> <strong>•</strong> <strong>Advanced</strong> <strong>Functions</strong> <strong>12</strong> <strong>Solutions</strong> 668


Chapter 7 Section 1 Question 8 Page 368<br />

a) Answers may vary. A sample solution is shown.<br />

n = 0 1 2<br />

b) Answers may vary. A sample solution is shown.<br />

n = 0 1 2<br />

c) Answers may vary. A sample solution is shown.<br />

Both models are the same, so they illustrate that (2 3 ) n = 8 n .<br />

d) L.S. = (2 3 ) n<br />

= 2 3n<br />

R.S. = 8 n<br />

= (2 3 ) n<br />

= 2 3n<br />

Since L.S. = R.S., f(n) = g(n), n ∈ R.<br />

Chapter 7 Section 1 Question 9 Page 368<br />

a) Answers may vary. A sample solution is shown.<br />

f(n) = (3 2 ) n and g(n) = 9 n<br />

b) Answers may vary. A sample solution is shown.<br />

n = 0 1 2<br />

c) L.S. = ( 3 ) 2 n<br />

= 9 n<br />

R.S. = 9 n<br />

Since L.S. = R.S., f(n) = g(n), n ∈ R.<br />

<strong>MHR</strong> <strong>•</strong> <strong>Advanced</strong> <strong>Functions</strong> <strong>12</strong> <strong>Solutions</strong> 669


Chapter 7 Section 1 Question 10 Page 368<br />

!<br />

a) 2 3<br />

"<br />

#<br />

( ) 1 2<br />

$<br />

%<br />

&<br />

x<br />

= 2 x'2<br />

3<br />

2<br />

2 x = 2 x'2<br />

3<br />

2 x = x ' 2<br />

3<br />

2 x ' x = '2<br />

Check:<br />

1<br />

2 x = '2<br />

x = '4<br />

b) 3 2<br />

"<br />

( ) k !1 = ( 3 3<br />

) 1 $ 2<br />

$<br />

#<br />

3 2k !2 = 3 3k<br />

2k ! 2 = 3k<br />

3k ! 2k = !2<br />

k = !2<br />

Check:<br />

%<br />

'<br />

&<br />

2k<br />

<strong>MHR</strong> <strong>•</strong> <strong>Advanced</strong> <strong>Functions</strong> <strong>12</strong> <strong>Solutions</strong> 670


Chapter 7 Section 1 Question 11 Page 368<br />

a) log10 = log 2 x<br />

1 = x log 2<br />

x = 1<br />

log 2<br />

b) 10 = 2 x<br />

log10 = log 2 x<br />

1 = x log 2<br />

x = 1<br />

log 2<br />

Therefore 10 = 2<br />

1<br />

log 2<br />

c) 10 = 3 x<br />

log10 = log3 x<br />

1 = x log3<br />

x = 1<br />

log3<br />

Therefore 10 = 3<br />

1<br />

log 3<br />

Chapter 7 Section 1 Question <strong>12</strong> Page 368<br />

10 = b x<br />

log10 = log b x<br />

1 = x log b<br />

x = 1<br />

log b<br />

log<br />

Therefore 10 = b<br />

b , b > 0<br />

1<br />

Chapter 7 Section 1 Question 13 Page 368<br />

log a<br />

log b<br />

a = b<br />

log a = log b<br />

log a<br />

log b<br />

log a = log a<br />

log b log b<br />

log a = log a<br />

log a<br />

log<br />

Since both sides are equal, a = b<br />

b for any a, b > 0.<br />

Chapter 7 Section 1 Question 14 Page 369<br />

<strong>Solutions</strong> to Achievement Check questions are provided in the Teacher’s Resource.<br />

<strong>MHR</strong> <strong>•</strong> <strong>Advanced</strong> <strong>Functions</strong> <strong>12</strong> <strong>Solutions</strong> 671


Chapter 7 Section 1 Question 15 Page 369<br />

a) i) 2 3x > ( 2 ) 2 x+1<br />

2 3x > 2 2x+2<br />

3x > 2x + 2<br />

3x ! 2x > 2<br />

x > 2<br />

ii) ( 3 ) 4 x!2 < ( 3 ) 3 2x+1<br />

3 4x!8 < 3 6x+3<br />

4x ! 8 < 6x + 3<br />

!8 ! 3 < 6x ! 4x<br />

!11 < 2x<br />

x > ! 11 2<br />

b) Answers may vary. A sample solution is shown.<br />

Graph each side of the inequality as a separate function. Find their point of intersection. Test<br />

a point other than the point of intersection to ensure that the inequality is true.<br />

Check a) i):<br />

181.02 > <strong>12</strong>8<br />

<strong>MHR</strong> <strong>•</strong> <strong>Advanced</strong> <strong>Functions</strong> <strong>12</strong> <strong>Solutions</strong> 672


Check a) ii):<br />

5.4 × 10 –16 < 1.8 × 10 –16<br />

c) Answers may vary. A sample solution is shown.<br />

8 x > 2 x + 1<br />

x > 1 2<br />

<strong>MHR</strong> <strong>•</strong> <strong>Advanced</strong> <strong>Functions</strong> <strong>12</strong> <strong>Solutions</strong> 673


Chapter 7 Section 1 Question 16 Page 369<br />

a) i)<br />

2 x > x 3 for 0 < x < 1.37; 2 x < x 3 for x > 1.37 (correct to 2 decimal places)<br />

ii)<br />

2 x > x 3 for x > 9.94 (correct to 2 decimal places)<br />

1.1 x > x 10 for –0.99 < x < 1.01 (correct to 2 decimal places)<br />

<strong>MHR</strong> <strong>•</strong> <strong>Advanced</strong> <strong>Functions</strong> <strong>12</strong> <strong>Solutions</strong> 674


)<br />

3 x > x 4 for –0.80 < x < 1.52 (correct to 2 decimal places)<br />

<strong>MHR</strong> <strong>•</strong> <strong>Advanced</strong> <strong>Functions</strong> <strong>12</strong> <strong>Solutions</strong> 675


Chapter 7 Section 2<br />

Techniques for Solving Exponential<br />

Equations<br />

Chapter 7 Section 2 Question 1 Page 375<br />

Substitute x = 4 into all the equations to find a point.<br />

Match the graphs to the equations using the point found.<br />

!<br />

i) y = 100 1 $<br />

"<br />

# 2%<br />

&<br />

= 100<br />

16<br />

= 6.25<br />

4<br />

!<br />

ii) y = 50 1 $<br />

"<br />

# 2%<br />

&<br />

= 25<br />

4<br />

4<br />

!<br />

iii) y = 50 1 $<br />

"<br />

# 2%<br />

&<br />

= 50<br />

16<br />

= 3.<strong>12</strong>5<br />

4<br />

!<br />

iv) y = 100 1 $<br />

"<br />

# 2%<br />

&<br />

= 50<br />

4<br />

4<br />

a) iii) b) i) c) ii) d) iv)<br />

Chapter 7 Section 2 Question 2 Page 375<br />

a) log 2 = log1.07 t<br />

log 2 = t log1.07<br />

t = log 2<br />

log1.07<br />

t &= 10.24<br />

b) log3 = log1.1 t<br />

log3 = t log1.1<br />

t = log3<br />

log1.1<br />

t &= 11.53<br />

c)<br />

100<br />

10 = 1.04t<br />

10 = 1.04 t<br />

log10 = log1.04 t<br />

1 = t log1.04<br />

t =<br />

1<br />

log1.04<br />

t &= 58.71<br />

d) log5 = log1.08 t +2<br />

log5 = (t + 2)log1.08<br />

t + 2 =<br />

t =<br />

log5<br />

log1.08<br />

log5<br />

log1.08 ! 2<br />

t &= 18.91<br />

e) log0.5 = log1.2 t !1<br />

log0.5 = (t !1)log1.2<br />

t !1 = log0.5<br />

log1.2<br />

t = log0.5<br />

log1.2 +1<br />

t &= !2.80<br />

<strong>MHR</strong> <strong>•</strong> <strong>Advanced</strong> <strong>Functions</strong> <strong>12</strong> <strong>Solutions</strong> 676


!<br />

f) log10 = log 1 $<br />

"<br />

# 4%<br />

&<br />

3t<br />

!<br />

g) log15 = log 1 $<br />

"<br />

# 2%<br />

&<br />

t<br />

4<br />

h)<br />

100<br />

25 = ! 1 $<br />

"<br />

# 2%<br />

&<br />

6<br />

t<br />

1 = 3t log 1 4<br />

1<br />

3t =<br />

log 1 4<br />

t =<br />

1<br />

log15 = t 4 log 1 2<br />

t<br />

4 = log15<br />

log 1 2<br />

t = 4log15<br />

!<br />

4 = 1 $<br />

"<br />

# 2%<br />

&<br />

6<br />

t<br />

2 2 = ( 2 ) 6<br />

'1 t<br />

2 2 = 2 ' 6 t<br />

3log 1 4<br />

t &= '0.55<br />

log 1 2<br />

t &= '15.63<br />

2 = ' 6 t<br />

t = ' 6 2<br />

t = '3<br />

Chapter 7 Section 2 Question 3 Page 375<br />

a)<br />

90 s<br />

= 1.5 min<br />

60 s<br />

1.5<br />

3.1<br />

!<br />

A( 1.5) = 50 1 $<br />

# &<br />

" 2 %<br />

&= 35.75<br />

Approximately 35.75 mg of a 50 mg polomium-218 sample will remain after 90 s.<br />

!<br />

b) 5 = 50 1 $<br />

"<br />

# 2%<br />

&<br />

!<br />

0.1 = 1 $<br />

"<br />

# 2%<br />

&<br />

t<br />

3.1<br />

!<br />

log0.1 = log 1 $<br />

"<br />

# 2%<br />

&<br />

t<br />

3.1<br />

t<br />

3.1<br />

log0.1 = t<br />

3.1 log 1 2<br />

t<br />

3.1 = log0.1<br />

log 1 2<br />

t = 3.1log0.1<br />

log 1 2<br />

t &= 10.30<br />

It will take approximately 10.3 min for the sample to decay to 10% of its initial amount.<br />

<strong>MHR</strong> <strong>•</strong> <strong>Advanced</strong> <strong>Functions</strong> <strong>12</strong> <strong>Solutions</strong> 677


c) Answers may vary. A sample solution is shown.<br />

The answer to part b) would be the same for any initial sample, since 10% (0.1) is the ratio of<br />

A(t) to A 0 . So A(t)<br />

A 0<br />

= 0.1.<br />

Chapter 7 Section 2 Question 4 Page 375<br />

a) log 2 x = log3 x!1<br />

x log 2 = (x !1)log3<br />

x log 2 = x log3! log3<br />

x log 2 ! x log3 = ! log3<br />

x(log 2 ! log3) = ! log3<br />

x =<br />

c) log8 x+1 = log3 x!1<br />

log3<br />

log3! log 2<br />

(x +1)log8 = (x !1)log3<br />

x log8 + log8 = x log3! log3<br />

log8 + log3 = x log3! x log8<br />

log8 + log3 = x(log3! log8)<br />

x =<br />

log8 + log3<br />

log3! log8<br />

b) log5 x!2 = log 4 x<br />

(x ! 2)log5 = x log 4<br />

x log5! 2log5 = x log 4<br />

x log5! x log 4 = 2log5<br />

x(log5! log 4) = 2log5<br />

x =<br />

2log5<br />

log5! log 4<br />

d) log7 2x+1 = log 4 x!2<br />

(2x +1)log7 = (x ! 2)log 4<br />

2x log7 + log7 = x log 4 ! 2log 4<br />

log7 + 2log 4 = x log 4 ! 2x log7<br />

log7 + 2log 4 = x(log 4 ! 2log7)<br />

x =<br />

log7 + 2log 4<br />

log 4 ! 2log7<br />

Chapter 7 Section 2 Question 5 Page 375<br />

a) 2.710 b) 14.425 c) –3.240 d) –1.883<br />

Chapter 7 Section 2 Question 6 Page 375<br />

a) ( 2 ) x 2 + 2 x ! 6 = 0<br />

a = 1, b = 1, c = !6<br />

b) 2 x = !1± <strong>12</strong> ! 4(1)(!6)<br />

2(1)<br />

2 x !1± 25<br />

=<br />

2<br />

2 x = !1± 5<br />

2<br />

2 x = 2 " x = 1<br />

or<br />

2 x = !3, not true<br />

c) 2 x = –3<br />

<strong>MHR</strong> <strong>•</strong> <strong>Advanced</strong> <strong>Functions</strong> <strong>12</strong> <strong>Solutions</strong> 678


Chapter 7 Section 2 Question 7 Page 375<br />

a) (8 x ) 2 ! 2(8 x ) ! 5 = 0<br />

a = 1, b = !2, c = !5<br />

b) 8 x = !(!2) ± (!2)2 ! 4(1)(!5)<br />

2(1)<br />

8 x = 2 ± 24<br />

2<br />

8 x = 2 ± 4 " 6<br />

2<br />

8 x = 2 ± 2 6<br />

2<br />

8 x = 1± 6<br />

8 x = 1+ 6<br />

log8 x = log(1+ 6)<br />

x log8 = log(1+ 6)<br />

x =<br />

or<br />

log(1+ 6)<br />

log8<br />

8 x = 1! 6, not true<br />

c) 8 x = 1! 6<br />

<strong>MHR</strong> <strong>•</strong> <strong>Advanced</strong> <strong>Functions</strong> <strong>12</strong> <strong>Solutions</strong> 679


Chapter 7 Section 2 Question 8 Page 376<br />

! 1$<br />

a) A(t) = A 0<br />

"<br />

# 2%<br />

&<br />

!<br />

17 = 20 1 $<br />

"<br />

# 2%<br />

&<br />

17<br />

20 = ! 1 $<br />

"<br />

# 2%<br />

&<br />

5<br />

h<br />

t<br />

h<br />

5<br />

h<br />

!<br />

log0.85 = log 1 $<br />

"<br />

# 2%<br />

&<br />

5<br />

h<br />

log0.85 = 5 h log 1 2<br />

5<br />

h = log0.85<br />

log 1 2<br />

h =<br />

5log 1 2<br />

log0.85<br />

h &= 21.3<br />

The half-life of thorium-233 is approximately 21.3 min.<br />

!<br />

b) 1 = 20 1 $<br />

"<br />

# 2%<br />

&<br />

1<br />

20 = ! 1 $<br />

"<br />

# 2%<br />

&<br />

t<br />

21.3<br />

!<br />

log0.05 = log 1 $<br />

"<br />

# 2%<br />

&<br />

t<br />

21.3<br />

t<br />

21.3<br />

log0.05 =<br />

t<br />

21.3 log 1 2<br />

t<br />

21.3 = log0.05<br />

log 1 2<br />

t = 21.3log0.05<br />

log 1 2<br />

t &= 92.06<br />

It will take approximately 92.06 min for the sample to decay to 1 mg (92.17 min using the<br />

exact half-life).<br />

<strong>MHR</strong> <strong>•</strong> <strong>Advanced</strong> <strong>Functions</strong> <strong>12</strong> <strong>Solutions</strong> 680


Chapter 7 Section 2 Question 9 Page 379<br />

! 1$<br />

a) A(t) = A 0<br />

"<br />

# 2%<br />

&<br />

!<br />

9 = 10 1 $<br />

"<br />

# 2%<br />

&<br />

!<br />

0.9 = 1 $<br />

"<br />

# 2%<br />

&<br />

3<br />

h<br />

t<br />

h<br />

3<br />

h<br />

!<br />

log0.9 = log 1 $<br />

"<br />

# 2%<br />

&<br />

3<br />

h<br />

log0.9 = 3 h log 1 2<br />

3<br />

h = log0.9<br />

log 1 2<br />

b)<br />

h =<br />

3log 1 2<br />

log0.9<br />

h &= 19.7<br />

The half-life of bismuth-214 is approximately 19.7 min.<br />

c) i) A shorter half-life means less time for the substance to decay.<br />

The graph would decrease faster since it takes less time for the sample to decay.<br />

ii) A longer half-life means more time for the substance to decay.<br />

The graph would decrease at a slower rate since it takes more time for the sample to<br />

decay.<br />

d) i) A greater sample size means more substance to decay in the same amount of time.<br />

The graph would have a steeper slope (negative).<br />

ii) A smaller sample size means less substance to decay in the same amount of time.<br />

The graph would have a slope that isn’t as steep.<br />

<strong>MHR</strong> <strong>•</strong> <strong>Advanced</strong> <strong>Functions</strong> <strong>12</strong> <strong>Solutions</strong> 681


Chapter 7 Section 2 Question 10 Page 376<br />

(4 x ) 2 + 2(4 x ) + 3 = 0<br />

a = 1, b = 2, c = 3<br />

4 x = !2 ± 22 ! 4(1)(3)<br />

2(1)<br />

4 x !2 ± !8<br />

=<br />

2<br />

There are no real roots.<br />

Chapter 7 Section 2 Question 11 Page 376<br />

a) (3 x ) 2 – 7(3 x ) + <strong>12</strong> = 0<br />

a = 1, b = –7, c = <strong>12</strong><br />

3 x = !(!7) ± (!7)2 ! 4(1)(<strong>12</strong>)<br />

2(1)<br />

3 x = 7 ± 1<br />

2<br />

3 x = 7 ±1<br />

2<br />

3 x = 8 2<br />

or 3 x = 6 2<br />

3 x = 4 3 x = 3<br />

x log3 = log 4 x = 1<br />

x = log 4<br />

log3<br />

x &= 1.26<br />

<strong>MHR</strong> <strong>•</strong> <strong>Advanced</strong> <strong>Functions</strong> <strong>12</strong> <strong>Solutions</strong> 682


) (5 x ) 2 + (5 x ) – 3 = 0<br />

a = 1, b = 1, c = –3<br />

5 x = !1± <strong>12</strong> ! 4(1)(!3)<br />

2(1)<br />

5 x =<br />

!1± 13<br />

2<br />

5 x !1+ 13<br />

=<br />

2<br />

" !1+ 13 %<br />

x log5 = log $ '<br />

# 2 &<br />

" !1+ 13 %<br />

log $ '<br />

# 2 &<br />

x =<br />

log5<br />

x &= 0.16<br />

5 x =<br />

or<br />

c) ( 3) 2x+3 = 24<br />

8<br />

3 2x+3 = 3 1<br />

2x + 3 = 1<br />

2x = !2<br />

x = !1<br />

!1! 13<br />

2<br />

< 0, extraneous root<br />

d)<br />

18<br />

2 = 92x!1<br />

9 1 = 9 2x!1<br />

1 = 2x !1<br />

2x = 2<br />

x = 1<br />

e) 3 x +1+ 56(3 ! x ) = 0<br />

(3 x )(3 x ) + 3 x + 56(3 ! x )(3 x ) = 0(3 x ) multiply each term by 3 x<br />

( 3 ) x 2 + 3 x + 56 = 0<br />

a = 1,b = 1,c = 56<br />

3 x = !1± <strong>12</strong> ! 4(1)(56)<br />

2(1)<br />

3 x =<br />

!1± !223<br />

, no real roots<br />

2<br />

<strong>MHR</strong> <strong>•</strong> <strong>Advanced</strong> <strong>Functions</strong> <strong>12</strong> <strong>Solutions</strong> 683


f) 4 x ! 3!18(4 ! x ) = 0<br />

(4 x ) 2 ! 3(4 x ) !18 = 0 multiply both sides by 4 x<br />

a = 1, b = !3, c = !18<br />

4 x = !(!3) ± (!3)2 ! 4(1)(!18)<br />

2(1)<br />

4 x =<br />

3± 81<br />

2<br />

4 x = 3+ 9<br />

2<br />

or 4 x = 3! 9<br />

2<br />

4 x = 6 4 x = !3 < 0, extraneous root<br />

x log 4 = log6<br />

x = log6<br />

log 4<br />

x &= 1.29<br />

Chapter 7 Section 2 Question <strong>12</strong> Page 376<br />

a)<br />

<strong>MHR</strong> <strong>•</strong> <strong>Advanced</strong> <strong>Functions</strong> <strong>12</strong> <strong>Solutions</strong> 684


)<br />

c)<br />

<strong>MHR</strong> <strong>•</strong> <strong>Advanced</strong> <strong>Functions</strong> <strong>12</strong> <strong>Solutions</strong> 685


d)<br />

e)<br />

There is no zero so there is no solution.<br />

f)<br />

<strong>MHR</strong> <strong>•</strong> <strong>Advanced</strong> <strong>Functions</strong> <strong>12</strong> <strong>Solutions</strong> 686


Chapter 7 Section 2 Question 13 Page 376<br />

! 1$<br />

a) A(t) = A 0<br />

"<br />

# 2%<br />

&<br />

!<br />

0.1 = 1 $<br />

"<br />

# 2%<br />

&<br />

t<br />

20<br />

t<br />

h<br />

!<br />

log0.1 = log 1 $<br />

"<br />

# 2%<br />

&<br />

t<br />

20<br />

log0.1 = t<br />

20 log 1 2<br />

t<br />

20 = log0.1<br />

log 1 2<br />

t = 20log0.1<br />

log 1 2<br />

t &= 66.4<br />

It would take approximately 66.4 h for 90% of platinum-197 to turn into gold.<br />

b) Answers may vary. A sample solution is shown.<br />

This is not a “get-rich quick” scheme since the cost of the nuclear process exceeds the price<br />

of the gold.<br />

Chapter 7 Section 2 Question 14 Page 376<br />

1! 2 !0.05n > 0.2<br />

!2 !0.05n > 0.2 !1<br />

!2 !0.05n > !0.8<br />

2 !0.05n < 0.8<br />

log 2 !0.05n < log0.8<br />

!0.05nlog 2 < log0.8<br />

!0.05n < log0.8<br />

log 2<br />

n ><br />

log0.8<br />

!0.05log 2<br />

n > 6.44<br />

After approximately 6.44 days the probability is greater than 20%.<br />

<strong>MHR</strong> <strong>•</strong> <strong>Advanced</strong> <strong>Functions</strong> <strong>12</strong> <strong>Solutions</strong> 687


Chapter 7 Section 2 Question 15 Page 376<br />

!<br />

a) V (t) = 24 000 1 $<br />

"<br />

# 2%<br />

&<br />

!<br />

0.25 = 1 $<br />

"<br />

# 2%<br />

&<br />

t<br />

3<br />

t<br />

3<br />

log0.25 = t 3 log 1 2<br />

t<br />

3 = log0.25<br />

log 1 2<br />

t = 3log0.25<br />

log 1 2<br />

t = 6<br />

It would take 6 years for the minivan to depreciate to one quarter of its initial value.<br />

!<br />

b) 0.1 = 1 $<br />

"<br />

# 2%<br />

&<br />

t<br />

3<br />

log0.1 = t 3 log 1 2<br />

t<br />

3 = log0.1<br />

log 1 2<br />

t = 3log0.1<br />

log 1 2<br />

t &= 10<br />

It would take approximately 10 years for the minivan to depreciate to 10% of its initial value.<br />

<strong>MHR</strong> <strong>•</strong> <strong>Advanced</strong> <strong>Functions</strong> <strong>12</strong> <strong>Solutions</strong> 688


Chapter 7 Section 2 Question 16 Page 376<br />

!<br />

a) i) 0.5 = 1 $<br />

"<br />

# 2%<br />

&<br />

t<br />

<strong>12</strong><br />

log0.5 = t<br />

<strong>12</strong> log 1 2<br />

t<br />

<strong>12</strong> = log0.5<br />

log 1 2<br />

t<br />

<strong>12</strong> = 1<br />

t = <strong>12</strong><br />

It will take <strong>12</strong> s for the note to decay to half of its initial value.<br />

!<br />

ii) 0.1 = 1 $<br />

"<br />

# 2%<br />

&<br />

t<br />

<strong>12</strong><br />

log0.1 = t<br />

<strong>12</strong> log 1 2<br />

t<br />

<strong>12</strong> = log0.1<br />

log 1 2<br />

t = <strong>12</strong>log0.1<br />

log 1 2<br />

t &= 40<br />

It will take approximately 40 s for the note to decay to 10% of its initial value.<br />

b) When I 0 = 1:<br />

c) i) Answers may vary. A sample solution is shown.<br />

The half-life would be longer, so the <strong>12</strong> in the exponent would increase.<br />

ii) Answers may vary. A sample solution is shown.<br />

The graph would not be as steep. It would decrease at a slower rate.<br />

<strong>MHR</strong> <strong>•</strong> <strong>Advanced</strong> <strong>Functions</strong> <strong>12</strong> <strong>Solutions</strong> 689


Chapter 7 Section 2 Question 17 Page 377<br />

<strong>Solutions</strong> to Achievement Check questions are provided in the Teacher’s Resource.<br />

Chapter 7 Section 2 Question 18 Page 377<br />

" 1%<br />

a) If A 0 is the initial amount, y = A 0<br />

! A 0<br />

#<br />

$ 2&<br />

'<br />

t<br />

20<br />

b) Time starts at 0 s and continues forever. The amount starts at 0 g and continues until all the<br />

platinum-197 is gold-197.<br />

Domain: {t ∈ R, t ≥ 0}; Range: {y ∈ R, 0 < y ≤ A 0 }<br />

Chapter 7 Section 2 Question 19 Page 377<br />

Answers may vary. A sample solution is shown.<br />

a) The carbon fusion cycle takes place in very hot stars. During the cycle, the addition of four<br />

hydrogen atoms changes a carbon atom into other elements before returning it back to carbon<br />

and releasing a helium atom and two positrons. At each of the six stages of the process,<br />

energy is released.<br />

Every time a carbon cycle takes place, two of the four protons are destroyed.<br />

b) Call the protons in hydrogen and helium atoms available protons. If there are 5 × 10 13<br />

available protons in a star, how many will there be after three complete carbon cycles?<br />

Solution: 5 × 10 13 (0.5) 3 = 6.25 × 10 <strong>12</strong><br />

After how many carbon cycles will there be fewer than 10% of the original available protons?<br />

Solution: Find when 0.5 x is less than 0.1: (0.5) 3 = 0.<strong>12</strong>5 and (0.5) 4 = 0.0625<br />

After four complete carbon cycles.<br />

<strong>MHR</strong> <strong>•</strong> <strong>Advanced</strong> <strong>Functions</strong> <strong>12</strong> <strong>Solutions</strong> 690


Chapter 7 Section 2 Question 20 Page 377<br />

D;<br />

4 x ! 4 x!1 = 24<br />

4 x!1 (4 !1) = 24<br />

4 x!1 (3) = 24<br />

4 x!1 = 24 3<br />

4 x!1 = 8<br />

( 2 ) 2 x!1 = 2 3<br />

2 2x!2 = 2 3<br />

2x ! 2 = 3<br />

2x = 5<br />

x = 5 2<br />

( 2x) x " "<br />

= 2 5 % %<br />

$<br />

#<br />

$ 2&<br />

' '<br />

# &<br />

5<br />

= 52<br />

= 5 5<br />

= 5 4 ( 5<br />

= 25 5<br />

5<br />

2<br />

<strong>MHR</strong> <strong>•</strong> <strong>Advanced</strong> <strong>Functions</strong> <strong>12</strong> <strong>Solutions</strong> 691


Chapter 7 Section 2 Question 21 Page 377<br />

C;<br />

2 a = 5 2 b = 3<br />

a log 2 = log5<br />

log 3<br />

(5! 2) =<br />

=<br />

=<br />

=<br />

log(5! 2)<br />

log3<br />

log5+ log 2<br />

log3<br />

a log 2 + log 2<br />

blog 2<br />

log 2(a +1)<br />

blog 2<br />

= a +1<br />

b<br />

blog 2 = log3<br />

product law<br />

Chapter 7 Section 2 Question 22 Page 377<br />

h(2x +1) = 2h(x) +1<br />

h(2(0) +1) = 2h(0) +1<br />

h(1) = 2(2) +1<br />

h(1) = 5<br />

h(2(1) +1) = 2h(1) +1<br />

h(3) = 2(5) +1<br />

h(3) = 11<br />

<strong>MHR</strong> <strong>•</strong> <strong>Advanced</strong> <strong>Functions</strong> <strong>12</strong> <strong>Solutions</strong> 692


Chapter 7 Section 3<br />

Product and Quotient Laws of Logarithms<br />

Chapter 7 Section 3 Question 1 Page 384<br />

!<br />

a) log(9 × 6) = log 54 b) log 48 $<br />

"<br />

# 6 %<br />

& = log 8<br />

! 36$<br />

c) log 3 (7 × 3) = log 3 21 d) log 5<br />

"<br />

# 18 %<br />

& = log 2 5<br />

Chapter 7 Section 3 Question 2 Page 384<br />

screen shot for part c):<br />

a) 1.732 b) 0.903 c) 2.771 d) 0.431<br />

Chapter 7 Section 3 Question 3 Page 384<br />

a) log(2xyz), x > 0, y > 0, z > 0<br />

! 3ab$<br />

b) log 2<br />

"<br />

# 2c %<br />

& ,a > 0, b > 0, c > 0<br />

c)<br />

"<br />

log m 2 + log n 3 ! log y 4 = log m2 n 3 %<br />

$<br />

# y 4 ' , m > 0, n > 0, y > 0<br />

&<br />

d) logu 2 + log v + log w = log( u 2 v w), u > 0, v > 0, w > 0<br />

Chapter 7 Section 3 Question 4 Page 384<br />

a) log 6<br />

(18 ! 2) = log 6<br />

36<br />

= 2<br />

c) log <strong>12</strong><br />

(8 ! 2 ! 9) = log <strong>12</strong><br />

144<br />

= 2<br />

b) log(40 ! 2.5) = log100<br />

= 2<br />

d) log(5! 40 ! 5) = log1000<br />

= 3<br />

<strong>MHR</strong> <strong>•</strong> <strong>Advanced</strong> <strong>Functions</strong> <strong>12</strong> <strong>Solutions</strong> 693


Chapter 7 Section 3 Question 5 Page 384<br />

! 54$<br />

a) log 3<br />

"<br />

# 2 %<br />

& = log 27 3<br />

= 3<br />

! 320$<br />

c) log 4<br />

"<br />

# 5 %<br />

& = log 64 4<br />

= 3<br />

!<br />

b) log<br />

"<br />

#<br />

50 000<br />

5<br />

$<br />

%<br />

& = log10 000<br />

= 4<br />

! 2 $<br />

d) log<br />

"<br />

# 200%<br />

& = log0.01<br />

= '2<br />

Chapter 7 Section 3 Question 6 Page 384<br />

a) log 16<br />

2 3 + log 16<br />

8 2 ! log 16<br />

2 = log 16<br />

8 + log 16<br />

64 ! log 16<br />

2<br />

# 8 " 64&<br />

= log 16<br />

$<br />

% 2 '<br />

(<br />

= log 16<br />

256<br />

= 2<br />

1<br />

b) log 20 + log 2 + log<strong>12</strong>5 3<br />

= log 20 + log 2 + log5<br />

= log(20 ! 2 ! 5)<br />

= log 200<br />

&= 2.301<br />

Chapter 7 Section 3 Question 7 Page 385<br />

a) log 7 c + log 7 d b) log 3 m – log 3 n<br />

1<br />

c) logu + log v 3 = logu + 3log v d) log a + log b 2<br />

! log c 2 = log a + 1 log b ! 2log c<br />

2<br />

e) log 2<br />

(5! 2) = log 2<br />

5+ log 2<br />

2<br />

= log 2<br />

5+1<br />

f) log 5<br />

(25! 2) = log 5<br />

25+ log 5<br />

2<br />

= 2 + log 5<br />

2<br />

Chapter 7 Section 3 Question 8 Page 385<br />

Answers may vary. A sample solution is shown.<br />

log 5<br />

(5!10) = log 5<br />

5+ log 5<br />

10<br />

= 1+ log 5<br />

10<br />

Since log 5 10 can be simplified again using 10 = 5 × 2, the original solution is the simplest result.<br />

<strong>MHR</strong> <strong>•</strong> <strong>Advanced</strong> <strong>Functions</strong> <strong>12</strong> <strong>Solutions</strong> 694


Chapter 7 Section 3 Question 9 Page 385<br />

!<br />

a) log x2 $<br />

# &<br />

" x %<br />

= log x2 ' log x<br />

1<br />

2<br />

= 2log x ' 1 2 log x<br />

= 4 2 log x ' 1 2 log x<br />

= 3 log x, x > 0<br />

2<br />

!<br />

b) log#<br />

"<br />

!<br />

1<br />

m $<br />

m 3 & + log( m) 7 = log m $<br />

2<br />

# &<br />

!<br />

1<br />

$<br />

#<br />

%<br />

m 3 &<br />

+ log m2<br />

# &<br />

"<br />

#<br />

%<br />

& " %<br />

1<br />

= log m2 '3 + log m<br />

7<br />

2<br />

1<br />

= log m2 ' 6 2<br />

+ 7 2 log m<br />

7<br />

c) log k + log( k ) 3 + log k 2<br />

= log m ' 5 2<br />

+ 7 2 log m<br />

= ' 5 2 log m + 7 2 log m<br />

= log m,m > 0<br />

1<br />

3<br />

= log k<br />

!<br />

2<br />

+ log#<br />

k<br />

"<br />

1<br />

2<br />

$<br />

&<br />

%<br />

3<br />

+ log( k ) 1<br />

2 3<br />

= 1 2 log k + 3 2 log k + 2 3 log k<br />

= 3 6 log k + 9 6 log k + 4 6 log k<br />

= 16 6 log k<br />

= 8 log k, k > 0<br />

3<br />

<strong>MHR</strong> <strong>•</strong> <strong>Advanced</strong> <strong>Functions</strong> <strong>12</strong> <strong>Solutions</strong> 695


d) 2log w + 3log w + 1 2 log !<br />

1<br />

$<br />

w2 = 2log w + 3log w2<br />

# & + 1<br />

" % 2 (2)log w<br />

= 2log w + 3 log w + log w<br />

2<br />

= 4 2 log+ 3 2 log w + 2 2 log w<br />

= 9 log w, w > 0<br />

2<br />

Chapter 7 Section 3 Question 10 Page 385<br />

"<br />

a) log x2 ! 4%<br />

" (x ! 2)(x + 2) %<br />

$<br />

# x ! 2<br />

' = log<br />

& #<br />

$ x ! 2 &<br />

'<br />

= log( x + 2), x > 2<br />

!<br />

b) log x2 + 7x +<strong>12</strong>$<br />

! (x + 4)(x + 3) $<br />

#<br />

" x + 3<br />

& = log<br />

% "<br />

# x + 3 %<br />

&<br />

= log( x + 4), x > '3<br />

"<br />

c) log x2 ! x ! 6%<br />

" (x ! 3)(x + 2) % "<br />

$<br />

# 2x ! 6<br />

' = log<br />

& #<br />

$ 2(x ! 3) &<br />

' d) log x2 + 7x +<strong>12</strong>%<br />

" (x + 4)(x + 3) %<br />

$<br />

x 2 ' = log<br />

# ! 9 & #<br />

$ (x ! 3)(x + 3) &<br />

'<br />

"<br />

= log x + 2 %<br />

#<br />

$ 2 &<br />

' , x > 3 "<br />

= log x + 4 %<br />

#<br />

$ x ! 3&<br />

' , x > 3<br />

Chapter 7 Section 3 Question 11 Page 385<br />

!<br />

a) V o<br />

= log V $<br />

2<br />

# &<br />

" %<br />

V 1<br />

!<br />

b) i) V o<br />

= log 10V $<br />

1<br />

# &<br />

" %<br />

= log10<br />

= 1<br />

V 1<br />

!<br />

ii) V o<br />

= log 100V $<br />

1<br />

# &<br />

" %<br />

= log100<br />

= 2<br />

V 1<br />

!<br />

iii) V o<br />

= log V $<br />

1<br />

# &<br />

" %<br />

= log1<br />

= 0<br />

V 1<br />

Chapter 7 Section 3 Question <strong>12</strong> Page 385<br />

a) log(10nx) = log10 + log n + log x<br />

= 1+ log n + log x<br />

translate y = log x up (1 + log n) units, n > 0<br />

<strong>MHR</strong> <strong>•</strong> <strong>Advanced</strong> <strong>Functions</strong> <strong>12</strong> <strong>Solutions</strong> 696


) Answers may vary. A sample solution is shown.<br />

log 20x = log(10 ! 2 ! x)<br />

= 1+ log 2 + log x<br />

( ) = log$<br />

10 ! 1 2 ! x<br />

log 5x<br />

"<br />

#<br />

%<br />

'<br />

&<br />

= log10 + log 1 2 + log x<br />

= 1+ log 1 2 + log x<br />

<strong>MHR</strong> <strong>•</strong> <strong>Advanced</strong> <strong>Functions</strong> <strong>12</strong> <strong>Solutions</strong> 697


Chapter 7 Section 3 Question 13 Page 385<br />

This process cannot be applied when n is an integer since you cannot have a logarithm of a<br />

negative number. You can have positive integers only.<br />

Chapter 7 Section 3 Question 14 Page 385<br />

a)<br />

b)<br />

c)<br />

d) p(x) = g(x) ; this demonstrates the power law.<br />

Chapter 7 Section 3 Question 15 Page 386<br />

a) q(x) = f (x) + g(x)<br />

= 2log x + 4log x<br />

= 6log x<br />

= log x 6<br />

<strong>MHR</strong> <strong>•</strong> <strong>Advanced</strong> <strong>Functions</strong> <strong>12</strong> <strong>Solutions</strong> 698


)<br />

c) Answers may vary. A sample solution is shown.<br />

The graph has values for x < 0 and x > 0 because x 6 is an even power: the graph has a<br />

discontinuity at x = 0.<br />

Chapter 7 Section 3 Question 16 Page 386<br />

Answers may vary. A sample solution is shown.<br />

Y 1 is the difference of two functions f(x) and g(x). Y 2 is the simplified form once the quotient law<br />

is used.<br />

log(20x 2 ) ! log 2x<br />

f (x) = log(20x 2 ) and g(x) = log(2x)<br />

"<br />

$<br />

#<br />

( ) = log 20x2<br />

2x<br />

= log(10x)<br />

%<br />

'<br />

&<br />

<strong>MHR</strong> <strong>•</strong> <strong>Advanced</strong> <strong>Functions</strong> <strong>12</strong> <strong>Solutions</strong> 699


Chapter 7 Section 3 Question 17 Page 386<br />

Using the product law:<br />

log10 2 = log(10 !10)<br />

= log10 + log10<br />

= 1+1<br />

= 2<br />

Using the power law:<br />

log10 2 = 2log10<br />

= 2(1)<br />

= 2<br />

Chapter 7 Section 3 Question 18 Page 386<br />

a) A(t) = 40 000 + 2000t<br />

B(t) = 38 500(1.05) t<br />

b) i)<br />

It will take approximately 6.7 years for Renata to earn the same amount at either firm.<br />

Renata will earn more at firm B after 10 years.<br />

<strong>MHR</strong> <strong>•</strong> <strong>Advanced</strong> <strong>Functions</strong> <strong>12</strong> <strong>Solutions</strong> 700


ii)<br />

Renata will earn more at firm B after 20 years.<br />

c) Answers may vary. A sample solution is shown.<br />

Does Renata plan to stay at the job for more than 6.7 years? If not, she would get more<br />

money taking Firm A’s offer. She should also consider the benefits and experiences the jobs<br />

offer.<br />

Chapter 7 Section 3 Question 19 Page 386<br />

<strong>Solutions</strong> to Achievement Check questions are provided in the Teacher’s Resource.<br />

Chapter 7 Section 3 Question 20 Page 386<br />

"<br />

log b<br />

#<br />

$<br />

Let x = log b<br />

m and y = log b<br />

n<br />

b x = m and b y = n<br />

m<br />

n = bx<br />

b y<br />

m<br />

n = bx! y<br />

m%<br />

n &<br />

' = x ! y<br />

" m%<br />

log b<br />

#<br />

$ n &<br />

' = log m ! log n<br />

b b<br />

product law of exponents<br />

logarithm to base b of both sides<br />

Chapter 7 Section 3 Question 21 Page 386<br />

a) Let x = log b<br />

m and y = log b<br />

n<br />

b x = m and b y = n<br />

log b<br />

mn = log b<br />

m + log b<br />

n product law of logarithms<br />

log b<br />

mn = x + y<br />

mn = b x+ y<br />

b x b y = b x+ y<br />

<strong>MHR</strong> <strong>•</strong> <strong>Advanced</strong> <strong>Functions</strong> <strong>12</strong> <strong>Solutions</strong> 701


) Let x = log b<br />

m and y = log b<br />

n<br />

b x = m and b y = n<br />

! m$<br />

log b<br />

"<br />

# n %<br />

& = log m ' log n quotient law of logarithms<br />

b b<br />

! m$<br />

log b<br />

"<br />

# n %<br />

& = x ' y<br />

m<br />

n = bx' y<br />

b x<br />

b y = bx' y<br />

<strong>MHR</strong> <strong>•</strong> <strong>Advanced</strong> <strong>Functions</strong> <strong>12</strong> <strong>Solutions</strong> 702


Chapter 7 Section 3 Question 22 Page 386<br />

This will occur when the line y = –x + c is tangent to the circle x 2 + y 2 = 1 and has a y-intercept<br />

above the x-axis.<br />

c = 1.41<br />

f( x) = - x+ c<br />

AB: x2+ y2 = <strong>12</strong><br />

5<br />

4<br />

3<br />

2<br />

1<br />

-8 -6 -4 -2 A B 2 4 6 8<br />

-1<br />

y = –x + c intersects x 2 + y 2 = 1 at point P(x, y).<br />

The distance to P(x, y) is the radius of the circle r = 1 and<br />

x = y<br />

1 = x 2 + x 2<br />

1 = 2x 2<br />

1<br />

2 = x2<br />

-2<br />

x = 1 2 and y = 1 2<br />

y = !x + c<br />

1<br />

2 = ! 1 2 + c<br />

c = 1 2 + 1 2<br />

c = 2 2<br />

c = 2<br />

<strong>MHR</strong> <strong>•</strong> <strong>Advanced</strong> <strong>Functions</strong> <strong>12</strong> <strong>Solutions</strong> 703


Chapter 7 Section 3 Question 23 Page 386<br />

k = -1<br />

f( x) = x2 +k<br />

2<br />

1<br />

-6 -4 -2 2 4 6<br />

-1<br />

-2<br />

k = –1<br />

<strong>MHR</strong> <strong>•</strong> <strong>Advanced</strong> <strong>Functions</strong> <strong>12</strong> <strong>Solutions</strong> 704


Chapter 7 Section 3 Question 24 Page 386<br />

B;<br />

equation of a line with slope ! 2<br />

b = !2a + d<br />

!3 = !2r + d substitute the point (r,!3)<br />

d = !3+ 2r<br />

( )<br />

b = !2a + 2r ! 3 1<br />

equation of a line with slope 1 2<br />

(perpendicular to ! 2)<br />

b = 1 2 a + c<br />

r = 1 (6) + c substitute the point ( 6,r)<br />

2<br />

c = r ! 3<br />

b = 1 2 a + r ! 3 ( 2 )<br />

1<br />

a + r ! 3 = !2a + 2r ! 3<br />

2<br />

1<br />

a + 2a ! 3+ 3 = 2r ! r<br />

2<br />

1<br />

2 a + 4 2 a = r<br />

r = 5 2 a<br />

a = 2 5 r<br />

Chapter 7 Section 3 Question 25 Page 386<br />

Pounds of coffee per k sacks = c k<br />

pounds of coffee per (k + n) sacks =<br />

The sacks hold c k !<br />

c<br />

k + n<br />

c<br />

k + n<br />

fewer pounds.<br />

<strong>MHR</strong> <strong>•</strong> <strong>Advanced</strong> <strong>Functions</strong> <strong>12</strong> <strong>Solutions</strong> 705


Chapter 7 Section 4<br />

Techniques for Solving Logarithmic<br />

Equations<br />

Chapter 7 Section 4 Question 1 Page 391<br />

a) log(x ! 2) = 1<br />

x ! 2 = 10 1<br />

x = 10 + 2<br />

x = <strong>12</strong><br />

d) 1! log(w ! 7) = 0<br />

1 = log(w ! 7)<br />

10 = w ! 7<br />

10 + 7 = w<br />

w = 17<br />

b) 2 = log(x + 25)<br />

10 2 = x + 25<br />

100 ! 25 = x<br />

x = 75<br />

e) log(k ! 8) = 2<br />

k ! 8 = 10 2<br />

k = 100 + 8<br />

k = 108<br />

c) 4 = 2log( p + 62)<br />

2 = log( p + 62)<br />

10 2 = p + 62<br />

100 ! 62 = p<br />

p = 38<br />

f) 6 ! 3log 2n = 0<br />

6 = 3log 2n<br />

2 = log 2n<br />

10 2 = 2n<br />

100<br />

2 = n<br />

n = 50<br />

Check:<br />

a) log(<strong>12</strong> – 2) = 1 b) 2 = log(75 + 25) c) 4 = 2log(38 + 62)<br />

d) 1 – log (17 – 7) e) log(108 – 8) = 2 f) 6 – 3log 2(50) = 0<br />

<strong>MHR</strong> <strong>•</strong> <strong>Advanced</strong> <strong>Functions</strong> <strong>12</strong> <strong>Solutions</strong> 706


Chapter 7 Section 4 Question 2 Page 391<br />

a) log 3<br />

(x + 4) = 2<br />

log 3<br />

(x + 4) = log 3<br />

9<br />

x + 4 = 9<br />

x = 9 ! 4<br />

x = 5<br />

c) 2 = log 4<br />

(k !11)<br />

log 4<br />

16 = log 4<br />

(k !11)<br />

16 = k !11<br />

k = 16 +11<br />

k = 27<br />

e) log 8<br />

(t !1) = !1<br />

log 8<br />

(t !1) = log 8<br />

1<br />

8<br />

t !1 = 1 8<br />

t = 1 8 + 8 8<br />

t = 9 8<br />

b) 5 = log 2<br />

(2x !10)<br />

log 2<br />

32 = log 2<br />

(2x !10)<br />

32 = 2x !10<br />

2x = 32 +10<br />

2x = 42<br />

x = 21<br />

d) 9 = log 5<br />

(x +100) + 6<br />

9 ! 6 = log 5<br />

(x +100)<br />

3 = log 5<br />

(x +100)<br />

log 5<br />

<strong>12</strong>5 = log 5<br />

(x +100)<br />

<strong>12</strong>5 = x +100<br />

x = <strong>12</strong>5!100<br />

x = 25<br />

f) log 3<br />

(n 2 ! 3n + 5) = 2<br />

log 3<br />

(n 2 ! 3n + 5) = log 3<br />

9<br />

n 2 ! 3n + 5 = 9<br />

n 2 ! 3n + 5! 9 = 0<br />

n 2 ! 3n ! 4 = 0<br />

(n ! 4)(n +1) = 0<br />

n = 4 or n = !1<br />

<strong>MHR</strong> <strong>•</strong> <strong>Advanced</strong> <strong>Functions</strong> <strong>12</strong> <strong>Solutions</strong> 707


Chapter 7 Section 4 Question 3 Page 391<br />

a) log x + log(x ! 4) = 1<br />

Check:<br />

log "<br />

# x(x ! 4) $<br />

% = log10<br />

x 2 ! 4x = 10<br />

x 2 ! 4x !10 = 0<br />

x = !(!4) ± (!4)2 ! 4(1)(!10)<br />

2(1)<br />

x = 4 ± 56<br />

2<br />

x = 4 ± 2 14<br />

2<br />

x = 2 ± 14<br />

x = 2 + 14<br />

2 ! 14 is an extraneous root since both log x and log(x ! 4)<br />

are undefined for this value.<br />

<strong>MHR</strong> <strong>•</strong> <strong>Advanced</strong> <strong>Functions</strong> <strong>12</strong> <strong>Solutions</strong> 708


) log x 3 ! log 2 ! log(2x 2 ) = 0<br />

Check:<br />

" x 3 %<br />

log$<br />

# 2(2x 2 '<br />

)&<br />

= 0<br />

"<br />

log x %<br />

#<br />

$ 4&<br />

' = 0<br />

x<br />

4 = 100<br />

x<br />

4 = 1<br />

x = 4<br />

c) log(v !1) ! log(v !16) = 2<br />

" v !1 %<br />

log<br />

#<br />

$ v !16&<br />

' = 2<br />

v !1<br />

v !16 = 102<br />

v !1 = 100v !1600<br />

100v ! v = 1600 !1<br />

99v = 1599<br />

v = 1599<br />

99<br />

v = 533<br />

33<br />

<strong>MHR</strong> <strong>•</strong> <strong>Advanced</strong> <strong>Functions</strong> <strong>12</strong> <strong>Solutions</strong> 709


Check:<br />

d) 1 = log( y + 9) ! log y<br />

"<br />

1 = log y + 9 %<br />

#<br />

$ y &<br />

'<br />

10 1 = y + 9<br />

y<br />

10y = y + 9<br />

9y = 9<br />

y = 1<br />

Check:<br />

<strong>MHR</strong> <strong>•</strong> <strong>Advanced</strong> <strong>Functions</strong> <strong>12</strong> <strong>Solutions</strong> 710


e) log "<br />

#(k + 2)(k !1) $<br />

% = 1<br />

Check:<br />

k 2 + k ! 2 = 10 1<br />

k 2 + k !<strong>12</strong> = 0<br />

(k + 4)(k ! 3) = 0<br />

k = 3<br />

k = !4 is an extraneous root since both log(k + 2) and log(k !1)<br />

are undefined for this value.<br />

<strong>MHR</strong> <strong>•</strong> <strong>Advanced</strong> <strong>Functions</strong> <strong>12</strong> <strong>Solutions</strong> 711


!<br />

f) log p + 5 $<br />

"<br />

# p +1%<br />

& = 3<br />

p + 5<br />

p +1 = 103<br />

p + 5 = 1000 p +1000<br />

1000 p ' p = 5'1000<br />

Check:<br />

999 p = '995<br />

p = ' 995<br />

999<br />

Chapter 7 Section 4 Question 4 Page 391<br />

Graph both sides of the equation and find the points of intersection.<br />

<strong>MHR</strong> <strong>•</strong> <strong>Advanced</strong> <strong>Functions</strong> <strong>12</strong> <strong>Solutions</strong> 7<strong>12</strong>


Chapter 7 Section 4 Question 5 Page 392<br />

1<br />

a) log(x 2 ! 3x) 2<br />

= 1 2<br />

1<br />

2 log(x2 ! 3x) = 1 2<br />

log(x 2 ! 3x) = 1<br />

x 2 ! 3x = 10 1<br />

x 2 ! 3x !10 = 0<br />

(x ! 5)(x + 2) = 0<br />

x = 5 or x = !2<br />

Check:<br />

1<br />

a) log(5 2 ! 3" 5) 2<br />

= log10<br />

= 1 2<br />

1<br />

log((!2) 2 ! 3" (!2)) 2<br />

= log10<br />

1<br />

2<br />

1<br />

2<br />

1<br />

b) log(x 2 + 48x) 2<br />

= 1<br />

( ) = 1<br />

1<br />

2 log x2 + 48x<br />

log(x 2 + 48x) = 2<br />

x 2 + 48x = 10 2<br />

x 2 + 48x !100 = 0<br />

(x + 50)(x ! 2) = 0<br />

x = !50 or x = 2<br />

1<br />

b) log((!50) 2 + 48 " (!50)) 2<br />

= log100<br />

= 1<br />

1<br />

log((2) 2 + 48 " 2) 2<br />

= log100<br />

= 1<br />

1<br />

2<br />

1<br />

2<br />

= 1 2<br />

Chapter 7 Section 4 Question 6 Page 392<br />

! x + 5$<br />

a) log 2<br />

"<br />

# 2x %<br />

& = log 256 2<br />

x + 5<br />

2x = 256<br />

x + 5 = 5<strong>12</strong>x<br />

511x = 5<br />

x = 5<br />

511<br />

b) log(2k + 4) ! log k = 1<br />

"<br />

log 2k + 4 %<br />

#<br />

$ k &<br />

' = log10<br />

2k + 4<br />

= 10<br />

k<br />

2k + 4 = 10k<br />

10k ! 2k = 4<br />

8k = 4<br />

k = 1 2<br />

<strong>MHR</strong> <strong>•</strong> <strong>Advanced</strong> <strong>Functions</strong> <strong>12</strong> <strong>Solutions</strong> 713


Chapter 7 Section 4 Question 7 Page 392<br />

a)<br />

b)<br />

x &= 9.05<br />

x &= 2.16<br />

Chapter 7 Section 4 Question 8 Page 392<br />

# 0.9 &<br />

a) L = 10log<br />

$<br />

%<br />

1.0 !10 "<strong>12</strong> '<br />

(<br />

&= 119.54<br />

The concert is approximately 119.54 dB.<br />

<strong>MHR</strong> <strong>•</strong> <strong>Advanced</strong> <strong>Functions</strong> <strong>12</strong> <strong>Solutions</strong> 714


# I &<br />

b) 20 = 10 log<br />

$<br />

%<br />

1.0 !10 "<strong>12</strong> '<br />

(<br />

( ) = I<br />

100 1.0 !10 "<strong>12</strong><br />

# I &<br />

2 = log<br />

$<br />

%<br />

1.0 !10 "<strong>12</strong> '<br />

(<br />

10 2 I<br />

=<br />

1.0 !10 "<strong>12</strong><br />

I = 1!10 "10<br />

The whisper’s intensity is 1 × 10 –10 W/m 2 .<br />

# I &<br />

c) <strong>12</strong>0 = 10 log<br />

$<br />

%<br />

1.0 !10 "<strong>12</strong> '<br />

(<br />

10 <strong>12</strong> 1.0 !10 "<strong>12</strong><br />

# I &<br />

<strong>12</strong> = log<br />

$<br />

%<br />

1.0 !10 "<strong>12</strong> '<br />

(<br />

10 <strong>12</strong> I<br />

=<br />

1.0 !10 "<strong>12</strong><br />

( ) = I<br />

I = 1<br />

The car stereo’s intensity is 1 W/m 2 .<br />

Chapter 7 Section 4 Question 9 Page 392<br />

a) No, the statement is not true since log (–3) and log (–4) are undefined.<br />

b) Yes.<br />

L.S. = ! log3! log 4<br />

= !(log3+ log 4)<br />

= ! #<br />

$ log(3" 4) %<br />

&<br />

= ! log<strong>12</strong><br />

R.S. = ! log<strong>12</strong><br />

Since L.S. = R.S., –log 3 – log 4 = –log <strong>12</strong>.<br />

<strong>MHR</strong> <strong>•</strong> <strong>Advanced</strong> <strong>Functions</strong> <strong>12</strong> <strong>Solutions</strong> 715


Chapter 7 Section 4 Question 10 Page 392<br />

! $<br />

# 1 &<br />

a) n = log 2 # &<br />

#<br />

1<br />

&<br />

" 4 %<br />

n = log 2<br />

4<br />

n = 2<br />

! 1 $<br />

b) 4 = log 2<br />

"<br />

# p %<br />

&<br />

! 1 $<br />

log 2<br />

16 = log 2<br />

"<br />

# p %<br />

&<br />

16 = 1 p<br />

p = 1<br />

16<br />

Chapter 7 Section 4 Question 11 Page 392<br />

a)<br />

w 2 !10w !100 = 0<br />

2<br />

3 = log 3<br />

w2 !10w<br />

( ) 1 3<br />

2<br />

3 = log w2 !10w<br />

2<br />

3 = 1 3 log ( w2 !10w)<br />

( )<br />

2 = log w 2 !10w<br />

10 2 = w 2 !10w<br />

w = !(!10) ± (!10)2 ! 4(1)(!100)<br />

2(1)<br />

w =<br />

w =<br />

10 ± 500<br />

2<br />

10 ±10 5<br />

2<br />

w = 5 ± 5 5<br />

<strong>MHR</strong> <strong>•</strong> <strong>Advanced</strong> <strong>Functions</strong> <strong>12</strong> <strong>Solutions</strong> 716


)<br />

Chapter 7 Section 4 Question <strong>12</strong> Page 392<br />

Answers may vary. A sample answer is shown.<br />

Graph each side of the equation as a function and find the point of intersection.<br />

x = –1<br />

<strong>MHR</strong> <strong>•</strong> <strong>Advanced</strong> <strong>Functions</strong> <strong>12</strong> <strong>Solutions</strong> 717


Chapter 7 Section 4 Question 13 Page 392<br />

log b<br />

a = c and log y<br />

b = c<br />

b c = a and y c = b<br />

( y ) c c = a substitute y c = b<br />

y c2<br />

= a<br />

log a<br />

y c2<br />

= log a<br />

a logarithm of base a of both sides<br />

c 2 log a<br />

y = 1 power law of logarithms<br />

log a<br />

y = 1 c 2<br />

log a<br />

y = c !2<br />

Chapter 7 Section 4 Question 14 Page 392<br />

1 × 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 = 44<br />

<strong>MHR</strong> <strong>•</strong> <strong>Advanced</strong> <strong>Functions</strong> <strong>12</strong> <strong>Solutions</strong> 718


Chapter 7 Section 4 Question 15 Page 392<br />

3 = m + 1 m<br />

3 m = m +1<br />

m 2 ! 7m +1 = 0<br />

9m = m 2 + 2m +1<br />

square both sides<br />

m = !(!7) ± (!7)2 ! 4(1)(1)<br />

2(1)<br />

m = 7 ± 45<br />

2<br />

m = 7 ± 3 5<br />

2<br />

substitute m = 7 + 3 5<br />

2<br />

m ! 1 m = 7 + 3 5<br />

2<br />

2<br />

!<br />

7 + 3 5<br />

(7 + 3 5)(7 + 3 5) 4<br />

= !<br />

2(7 + 3 5) 2(7 + 3 5)<br />

49 + 42 5 + 45! 4<br />

=<br />

2(7 + 3 5)<br />

90 + 42 5<br />

=<br />

2(7 + 3 5)<br />

45+ 21 5<br />

=<br />

7 + 3 5<br />

=<br />

=<br />

45+ 21 5<br />

7 + 3 5 " 7 ! 3 5<br />

7 ! 3 5<br />

315!135 5 +147 5 ! 315<br />

49 ! 45<br />

= <strong>12</strong> 5<br />

4<br />

= 3 5<br />

substitute m = 7 ! 3 5<br />

2<br />

m ! 1 m = 7 ! 3 5<br />

2<br />

2<br />

!<br />

7 ! 3 5<br />

(7 ! 3 5)(7 ! 3 5) ! 2(2)<br />

=<br />

2(7 ! 3 5)<br />

49 ! 42 5 + 45! 4<br />

=<br />

2(7 ! 3 5)<br />

90 ! 42 5<br />

=<br />

2(7 ! 3 5)<br />

=<br />

=<br />

45! 21 5<br />

7 ! 3 5 " 7 + 3 5<br />

7 + 3 5<br />

315!<strong>12</strong> 5 ! 315<br />

49 ! 45<br />

= !<strong>12</strong> 5<br />

4<br />

= !3 5<br />

m ! 1 m = ±3 5<br />

<strong>MHR</strong> <strong>•</strong> <strong>Advanced</strong> <strong>Functions</strong> <strong>12</strong> <strong>Solutions</strong> 719


Chapter 7 Section 4 Question 16 Page 392<br />

D;<br />

"<br />

#<br />

$<br />

10 ! v<br />

1+ v<br />

u + uv + v = 10<br />

u(1+ v) = 10 ! v<br />

%<br />

&<br />

'<br />

2<br />

u = 10 ! v<br />

1+ v<br />

+ v 2 = 40<br />

" 100 ! 20v + v 2 %<br />

$<br />

# 1+ 2v + v 2 ' = 40 ! v2<br />

&<br />

100 ! 20v + v 2 = 40 ! v 2<br />

v 4 + 2v 3 + v 2 ! 39v 2 ! 20v ! 80v +100 ! 40 = 0<br />

( )( 1+ 2v + v )<br />

2<br />

100 ! 20v + v 2 = 40 + 80v + 40v 2 ! v 2 ! 2v 3 ! v 4<br />

v 4 + 2v 3 ! 38v 2 !100v + 60 = 0<br />

v &= 0.5 or v &= 6.3 since it is a positive real number.<br />

Case 1: v &= 0.5<br />

u =<br />

10 ! (0.5)<br />

1+ (0.5)<br />

&= 6.3<br />

Case 2: v &= 6.3<br />

u =<br />

10 ! (6.3)<br />

1+ (6.3)<br />

&= 0.5<br />

u + v &= 6.3 + 0.5<br />

&= 6.8<br />

The closest integer value is 7.<br />

<strong>MHR</strong> <strong>•</strong> <strong>Advanced</strong> <strong>Functions</strong> <strong>12</strong> <strong>Solutions</strong> 720


Chapter 7 Section 5<br />

Making Connections: Mathematical<br />

Modelling With Exponential and Logarithmic<br />

Equations<br />

Chapter 7 Section 5 Question 1 Page 404<br />

P = 1006(1.016) t<br />

6500 = 1006(1.016) t<br />

6500<br />

1006 = 1.016t<br />

!<br />

log 6500 $<br />

"<br />

# 1006 %<br />

& = t log1.016<br />

!<br />

log 6500 $<br />

"<br />

# 1006 %<br />

&<br />

t =<br />

log1.016<br />

t &= 117.5<br />

1920 + 117.5 = 2037.5<br />

The off-ramp should be built in approximately June of 2037.<br />

Chapter 7 Section 5 Question 2 Page 404<br />

1920 – 145.4 &= 1774.6<br />

In approximately the year 1774 the town’s population was only 100.<br />

<strong>MHR</strong> <strong>•</strong> <strong>Advanced</strong> <strong>Functions</strong> <strong>12</strong> <strong>Solutions</strong> 721


Chapter 7 Section 5 Question 3 Page 404<br />

a) i) P = 1006(1.016) t<br />

P = 1006(1.016) 100<br />

&= 4920<br />

The town’s population will be approximately 4920 in 100 years from 1920.<br />

P = 1000 ! 2<br />

t<br />

43.5<br />

100<br />

P = 1000 ! 2<br />

43.5<br />

&= 4921<br />

The town’s population will be approximately 4921 in 100 years from 1920.<br />

ii)<br />

P = 1006(1.016) t<br />

20 000 = 1006(1.016) t<br />

20 000<br />

1006 = 1.016t<br />

! 20 000$<br />

log<br />

"<br />

# 1006 %<br />

& = t log1.016<br />

! 20 000$<br />

log<br />

"<br />

# 1006 %<br />

&<br />

t =<br />

log1.016<br />

t &= 188.4<br />

It will take approximately 188.4 years for the town’s population to reach 20 000.<br />

P = 1000 ! 2<br />

20 000 = 1000 ! 2<br />

20 = 2<br />

t<br />

43.5<br />

log 20 = log 2<br />

t<br />

43.5<br />

t<br />

43.5<br />

t<br />

43.5<br />

log 20 =<br />

t<br />

43.5 log 2<br />

t log 20<br />

=<br />

43.5 log 2<br />

t =<br />

43.5log 20<br />

log 2<br />

t &= 188<br />

It will take approximately 188 years for the town’s population to reach 20 000.<br />

b) Answers may vary. A sample solution is shown.<br />

Quite close. The differences are due to rounding in each method.<br />

<strong>MHR</strong> <strong>•</strong> <strong>Advanced</strong> <strong>Functions</strong> <strong>12</strong> <strong>Solutions</strong> 722


Chapter 7 Section 5 Question 4 Page 404<br />

Answers may vary. A sample solution is shown.<br />

The town may decide that the Lakeland Savings Bond account is now more favourable since<br />

Northern Equity will not be as flexible and the principle will mature to $80 000 slightly faster.<br />

Chapter 7 Section 5 Question 5 Page 404<br />

Answers may vary. A sample solution is shown.<br />

A = 50 000(1.0325) 2t<br />

80 000 = 50 000(1.0325) 2t<br />

8<br />

5 = 1.03252t<br />

log 8 = 2t log1.0325<br />

5<br />

2t =<br />

t =<br />

log 8 5<br />

log1.0325<br />

log 8 5<br />

2log1.0325<br />

A = 50 000(1.005) <strong>12</strong>t<br />

80 000 = 50 000(1.005) <strong>12</strong>t ! 0.01(50 000)<br />

805<br />

500 = (1.005)<strong>12</strong>t<br />

log 805 = <strong>12</strong>t log1.005<br />

500<br />

log 805<br />

<strong>12</strong>t = 500<br />

log1.005<br />

t &= 7.35<br />

t &= 7.96<br />

Rural Ontario Investment Group takes a little less time to make $80 000 (7.35 years) so it could<br />

be considered. Muskoka Guaranteed Certificate takes approximately the same amount of time as<br />

the other options, so it doesn’t need to be considered.<br />

t =<br />

log 805<br />

500<br />

<strong>12</strong>log1.005<br />

Chapter 7 Section 5 Question 6 Page 405<br />

a) Answers may vary. A sample solution is shown.<br />

increasing in a curved pattern<br />

<strong>MHR</strong> <strong>•</strong> <strong>Advanced</strong> <strong>Functions</strong> <strong>12</strong> <strong>Solutions</strong> 723


) i)<br />

y &= 4.21x – 3.07<br />

ii)<br />

y &= 0.86x 2 – 0.93x + 1.2<br />

iii)<br />

y &= 1.37(1.65) x<br />

c) Answers may vary. A sample solution is shown.<br />

Quadratic, since the circle is increasing in two dimensions.<br />

d) Answers may vary. A sample solution is shown.<br />

i) y &= 1.37(1.65) 10<br />

&= 207.8<br />

The oil spill is approximately 207.8 m 2 after 10 min.<br />

<strong>MHR</strong> <strong>•</strong> <strong>Advanced</strong> <strong>Functions</strong> <strong>12</strong> <strong>Solutions</strong> 724


ii) A = !r 2<br />

"<br />

= ! 30 %<br />

#<br />

$ 2 &<br />

'<br />

&= 706.9<br />

2<br />

y &= 1.37(1.65) t<br />

706.9 &= 1.37(1.65) t<br />

706.9<br />

&= 1.65t<br />

1.37<br />

!<br />

log 706.9 $<br />

"<br />

# 1.37 %<br />

& &= t log1.65<br />

!<br />

log 706.9 $<br />

"<br />

# 1.37 %<br />

&<br />

t &=<br />

log1.65<br />

t &= <strong>12</strong>.44<br />

The spill will take approximately <strong>12</strong>.44 min to reach a diameter of 30 m.<br />

e) Answers may vary. A sample solution is shown.<br />

The spill is in the shape of a circle since it is spreading equally in all directions.<br />

Chapter 7 Section 5 Question 7 Page 405<br />

a) A = P(1+ i) n<br />

P = 1000<br />

i = 0.08 ÷ 4<br />

= 0.02<br />

n = 4t<br />

A = 1000(1.02) 4t<br />

b) A = 1000(1.02) 16<br />

&= 1372.79<br />

The value of the investment will be approximately $1372.79 in 4 years.<br />

c) 2 = (1.02) 4t<br />

log 2 = 4t log1.02<br />

4t = log 2<br />

log1.02<br />

t =<br />

log 2<br />

4log1.02<br />

t &= 8.75<br />

The value of the investment will take approximately 8.75 years to double.<br />

<strong>MHR</strong> <strong>•</strong> <strong>Advanced</strong> <strong>Functions</strong> <strong>12</strong> <strong>Solutions</strong> 725


Chapter 7 Section 5 Question 8 Page 405<br />

a) A = 1000(1.02) 4t !1000(0.05)<br />

A = 1000(1.02) 4t ! 50,for t < 4<br />

b) Translates the graph down 50 units.<br />

Chapter 7 Section 5 Question 9 Page 405<br />

Answers may vary. A sample solution is shown.<br />

a, b)<br />

Time (min) Temperature (°C)<br />

0 100<br />

2 90<br />

4 85<br />

6 81<br />

8 78<br />

10 74<br />

<strong>12</strong> 71<br />

14 68<br />

16 66<br />

18 64<br />

20 62<br />

c)<br />

d)<br />

e) I would use the exponential model because the quadratic model may work well with these<br />

data, but it will eventually start increasing, which the data will not.<br />

<strong>MHR</strong> <strong>•</strong> <strong>Advanced</strong> <strong>Functions</strong> <strong>12</strong> <strong>Solutions</strong> 726


f) 40 = 94.54(0.978) t<br />

log 40<br />

94.54 = log(0.978)t<br />

log 40 = t log 0.978<br />

94.54<br />

log 40<br />

t =<br />

94.54<br />

log 0.978<br />

t &= 38.7<br />

30 = 94.54(0.978) t<br />

log 30<br />

94.54 = log(0.978)t<br />

log 30 = t log 0.978<br />

94.54<br />

log 30<br />

t =<br />

94.54<br />

log 0.978<br />

t &= 51.6<br />

0 = 94.54(0.978) t<br />

0<br />

log<br />

94.54 = log(0.978)t<br />

0<br />

log = t log 0.978<br />

94.54<br />

0<br />

log<br />

t =<br />

94.54<br />

log 0.978<br />

t!is!undefined<br />

This makes sense because the water cannot cool less than room temperature.<br />

Chapter 7 Section 5 Question 10 Page 406<br />

"<br />

a) 150 !<strong>12</strong>0 = 10log I %<br />

2<br />

$ '<br />

# &<br />

I 1<br />

"<br />

30 = 10log I %<br />

2<br />

$ '<br />

# &<br />

I 1<br />

"<br />

3 = log I %<br />

2<br />

$ '<br />

# &<br />

10 3 = I 2<br />

I 1<br />

I 1<br />

1000 = I 2<br />

I 1<br />

The ratio of the intensities is 1000. Rocco’s signal needs to be boosted to match Biff’s sound<br />

level.<br />

1<br />

b) 1000 ÷ = 1000 !10 000<br />

10 000<br />

= 10 000 000<br />

= 10 7<br />

The sound crew should reduce the drums by a factor of 10 7 .<br />

Chapter 7 Section 5 Question 11 Page 406<br />

<strong>Solutions</strong> to Achievement Check questions are provided in the Teacher’s Resource.<br />

<strong>MHR</strong> <strong>•</strong> <strong>Advanced</strong> <strong>Functions</strong> <strong>12</strong> <strong>Solutions</strong> 727


Chapter 7 Section 5 Question <strong>12</strong> Page 407<br />

Answers may vary. A sample solution is shown.<br />

a), b)<br />

Data on carbon-dating that gives the approximate age of piece of organic material, and<br />

the ratio of the current amount of carbon-14 to the expected original amount.<br />

Age (years) Carbon-14 Ratio<br />

750 0.91<br />

1000 0.88<br />

2400 0.74<br />

2850 0.70<br />

4000 0.61<br />

7500 0.39<br />

8200 0.36<br />

c)<br />

d) Knowing that carbon dating involves a half-life, the exponential regression is the best.<br />

<strong>MHR</strong> <strong>•</strong> <strong>Advanced</strong> <strong>Functions</strong> <strong>12</strong> <strong>Solutions</strong> 728


e) How old is bone that contains 10% of its original carbon-14?<br />

Solution:<br />

0.1 = 0.999!<strong>12</strong>2(0.999!875) t<br />

0.1<br />

log = log 0.999!875t<br />

0.999!<strong>12</strong>2<br />

0.1<br />

log = t log 0.999!875<br />

0.999!<strong>12</strong>2<br />

0.1<br />

log<br />

t =<br />

0.999!<strong>12</strong>2<br />

log 0.999!875<br />

t &= 18!4<strong>12</strong>.5<br />

The bone is about 5545 years old.<br />

Using the formula from the exponential regression, determine the half-life of carbon-14.<br />

Solution:<br />

t<br />

! 1$<br />

h<br />

"<br />

#<br />

2%<br />

& = 0.999!875<br />

t<br />

t<br />

!<br />

log 1 $ h<br />

"<br />

#<br />

2%<br />

& = log 0.999!875<br />

t<br />

t<br />

h log ! 1 $<br />

"<br />

#<br />

2%<br />

& = t log 0.999!875<br />

!<br />

t log 1 $<br />

"<br />

#<br />

2%<br />

&<br />

h =<br />

t log 0.999!875<br />

!<br />

log 1 $<br />

"<br />

#<br />

2%<br />

&<br />

h =<br />

log 0.999!875<br />

h &= 5545<br />

The half-life is about 5545 years.<br />

<strong>MHR</strong> <strong>•</strong> <strong>Advanced</strong> <strong>Functions</strong> <strong>12</strong> <strong>Solutions</strong> 729


Chapter 7 Section 5 Question 13 Page 407<br />

Answers may vary. A sample solution is shown.<br />

a), b)<br />

Data on bacteria in a petri dish over several days.<br />

Day<br />

Bacteria (thousands)<br />

1 2.8<br />

2 7.2<br />

3 17.6<br />

4 40.0<br />

5 78.6<br />

6 <strong>12</strong>5.2<br />

7 162.8<br />

8 183.8<br />

9 193.4<br />

10 197.4<br />

c)<br />

d) The logistic curve models the data almost perfectly.<br />

<strong>MHR</strong> <strong>•</strong> <strong>Advanced</strong> <strong>Functions</strong> <strong>12</strong> <strong>Solutions</strong> 730


e) How many bacteria will there be after two weeks?<br />

Solution:<br />

200<br />

y =<br />

1+181e !0.953x<br />

200<br />

y =<br />

1+181e !0.953(14)<br />

y &= 199.9<br />

There will be about 199 900 bacteria.<br />

After how many days did the bacteria population reach 100 000?<br />

Solution:<br />

200<br />

100 =<br />

1+181e !0.953x<br />

1+181e !0.953x = 200<br />

100<br />

e !0.953x = 2 !1<br />

181<br />

log e !0.953x = log 1<br />

181<br />

!0.953x log e = log 1<br />

181<br />

log 1<br />

x = !<br />

181<br />

0.953log e<br />

x &= 5.45<br />

The population reached 100 000 just before 5.5 days.<br />

Chapter 7 Section 5 Question 14 Page 407<br />

Answers may vary. A sample solution is shown.<br />

The data is constantly curving, so a piecewise linear would not be the best option.<br />

If there were more data about the end behaviour, it might be possible to approximate the data<br />

using two almost horizontal function (especially since the data is levelling off towards y = 200),<br />

with a steep linear function in the middle.<br />

<strong>MHR</strong> <strong>•</strong> <strong>Advanced</strong> <strong>Functions</strong> <strong>12</strong> <strong>Solutions</strong> 731


Chapter 7 Section 5 Question 15 Page 407<br />

downhill rate = x uphill = 1<br />

16 h level = 1 24 h downhill = 1 x h average = 1 24 h<br />

! 1<br />

16 + 1 24 + 1 $<br />

"<br />

# x %<br />

& ÷ 3 = 1 average<br />

24<br />

1<br />

48 + 1<br />

72 + 1 3x = 1 24<br />

1<br />

3x = 6<br />

144 ' 3<br />

144 ' 2<br />

144<br />

1<br />

3x = 1<br />

144<br />

3x = 144<br />

x = 48<br />

She would have to travel 48 km/h downhill in order for her average to be 24 km/h for the entire<br />

route.<br />

Chapter 7 Section 5 Question 16 Page 407<br />

(–1, 1)<br />

(1, 1)<br />

A = 1 (<br />

2 r2 ! " sin! )<br />

A = 1 2<br />

2<br />

( ) 2 * $ # '<br />

&<br />

% 2 (<br />

)" sin $<br />

&<br />

# '-<br />

,<br />

% 2 )/<br />

+<br />

(.<br />

A = 1 (<br />

2 2<br />

*<br />

),<br />

# + 2 "1<br />

-<br />

/<br />

.<br />

A = # 2 "1<br />

<strong>MHR</strong> <strong>•</strong> <strong>Advanced</strong> <strong>Functions</strong> <strong>12</strong> <strong>Solutions</strong> 732


Chapter 7 Section 5 Question 17 Page 407<br />

xy = z 4<br />

z = 4xy<br />

increase x by 50% (1 + 0.5)<br />

decrease y by 25% (1 – 0.25)<br />

z = 4(1.5x)(0.75y)<br />

z = 4(1.<strong>12</strong>5xy)<br />

z is increased by <strong>12</strong>.5%.<br />

<strong>MHR</strong> <strong>•</strong> <strong>Advanced</strong> <strong>Functions</strong> <strong>12</strong> <strong>Solutions</strong> 733


Chapter 7 Review<br />

Chapter 7 Review Question 1 Page 408<br />

a) 4 3 b) 4 1 c)<br />

1<br />

4 = !<br />

1<br />

$<br />

2 4!2 d) (2) 5 = 4<br />

2<br />

# &<br />

" %<br />

5<br />

= 4<br />

2<br />

5<br />

Chapter 7 Review Question 2 Page 408<br />

a) 5 x = 20<br />

x log5 = log 20<br />

x =<br />

log 20<br />

log<br />

5<br />

5 = 20<br />

log 20<br />

log5<br />

b) 5 x = 0.8<br />

x log5 = log0.8<br />

x = log0.8<br />

log5<br />

log 0.8<br />

log<br />

5<br />

5 = 0.8<br />

Chapter 7 Review Question 3 Page 408<br />

a) 3 5x = ( 3 ) 3 x!1<br />

3 5x = 3 3x!3<br />

5x = 3x ! 3<br />

2x = !3<br />

b) ( 2 ) 3 2x+1 = ( 2 ) 5 x!3<br />

2 6x+3 = 2 5x!15<br />

6x + 3 = 5x !15<br />

x = !18<br />

x = ! 3 2<br />

Check a):<br />

<strong>MHR</strong> <strong>•</strong> <strong>Advanced</strong> <strong>Functions</strong> <strong>12</strong> <strong>Solutions</strong> 734


Check b):<br />

Chapter 7 Review Question 4 Page 408<br />

!<br />

a) 40 = 50 1 $<br />

"<br />

# 2%<br />

&<br />

4<br />

5 = ! 1 $<br />

"<br />

# 2%<br />

&<br />

1.6<br />

h<br />

1.6<br />

h<br />

log 4 5 = 1.6<br />

h log 1 2<br />

1.6<br />

h = log 4 5<br />

log 1 2<br />

1.6log 1<br />

h = 2<br />

log 4 5<br />

h &= 5<br />

The half-life of cobalt-60 is approximately 5 min.<br />

<strong>MHR</strong> <strong>•</strong> <strong>Advanced</strong> <strong>Functions</strong> <strong>12</strong> <strong>Solutions</strong> 735


!<br />

b) 0.05 = 1 $<br />

"<br />

# 2%<br />

&<br />

t<br />

5<br />

log0.05 = t 5 log 1 2<br />

t<br />

5 = log0.05<br />

log 1 2<br />

t = 5log0.05<br />

log 1 2<br />

t &= 21.6<br />

It takes approximately 21.6 min for the sample to decay to 5% of its initial amount.<br />

Chapter 7 Review Question 5 Page 408<br />

a) log3 x!2 = log5 x<br />

(x ! 2)log3 = x log5<br />

x log3! 2log3 = x log5<br />

x log3! x log5 = 2log3<br />

x(log3! log5) = 2log3<br />

x =<br />

2log3<br />

log3! log5<br />

b) log 2 k !2 = log3 k +1<br />

(k ! 2)log 2 = (k +1)log3<br />

k log 2 ! 2log 2 = k log3+ log3<br />

k log 2 ! k log3 = 2log 2 + log3<br />

k(log 2 ! log3) = 2log 2 + log3<br />

k =<br />

2log 2 + log3<br />

log 2 ! log3<br />

<strong>MHR</strong> <strong>•</strong> <strong>Advanced</strong> <strong>Functions</strong> <strong>12</strong> <strong>Solutions</strong> 736


Chapter 7 Review Question 6 Page 408<br />

a) x &= –4.301 k &= –6.<strong>12</strong>9<br />

b) 3 x – 2 = 5 x<br />

2 k – 2 = 5 k + 1<br />

<strong>MHR</strong> <strong>•</strong> <strong>Advanced</strong> <strong>Functions</strong> <strong>12</strong> <strong>Solutions</strong> 737


Chapter 7 Review Question 7 Page 408<br />

a) (4 x ) 2 – 4 x – 20 = 0<br />

a = 1, b = –1, c = –20<br />

4 x = !(!1) ± (!1)2 ! 4(1)(!20)<br />

2(1)<br />

4 x =<br />

1± 81<br />

2<br />

4 x = 1± 9<br />

2<br />

4 x = 5 or 4 x = !4 extraneous root since the base is negative<br />

x log 4 = log5<br />

x = log5<br />

log 4<br />

b) 2 x (2 x ) +<strong>12</strong>(2 ! x )(2 x ) ! 7(2 x ) = 0<br />

( 2 ) x 2 ! 7 2 x<br />

( ) +<strong>12</strong> = 0<br />

(2 x ! 4)(2 x ! 3) = 0<br />

2 x = 4 or 2 x = 3<br />

2 x = 2 2 x log 2 = log3<br />

x = 2<br />

x = log3<br />

log 2<br />

Chapter 7 Review Question 8 Page 408<br />

!<br />

a) 1516 = 2000 1 $<br />

"<br />

# 2%<br />

&<br />

0.758 = 1 2<br />

1<br />

h<br />

log0.758 = 1 h log 1 2<br />

1<br />

h = log0.758<br />

log 1 2<br />

h =<br />

log 1 2<br />

log0.758<br />

h &= 2.5<br />

The half-life is approximately 2.5 years.<br />

1<br />

h<br />

t<br />

2.5<br />

b) 0.10 &= 1 2<br />

log0.10 &=<br />

t<br />

2.5 log 1 2<br />

t log0.10<br />

&=<br />

2.5<br />

log 1 2<br />

t &= 2.5log0.10<br />

t &= 8.3<br />

log 1 2<br />

It will take approximately 8.3 years to<br />

depreciate to 10% of its purchase price.<br />

<strong>MHR</strong> <strong>•</strong> <strong>Advanced</strong> <strong>Functions</strong> <strong>12</strong> <strong>Solutions</strong> 738


Chapter 7 Review Question 9 Page 408<br />

a) log 6<br />

(8 ! 27) = log 6<br />

216<br />

= 3<br />

c) log 2 2 + log5 2 = log 4 + log 25<br />

= log(4 ! 25)<br />

= log100<br />

= 2<br />

! <strong>12</strong>8$<br />

b) log 4<br />

"<br />

# 8 %<br />

& = log 16 4<br />

= 2<br />

d) log3 2 + log<strong>12</strong>.5 = log9 + log<strong>12</strong>.5<br />

= log(9 !<strong>12</strong>.5)<br />

= log1<strong>12</strong>.5<br />

&= 2.05<br />

Chapter 7 Review Question 10 Page 408<br />

" 8 ! 4%<br />

a) log 7<br />

#<br />

$ 16 &<br />

' = log 2 7<br />

!<br />

b) log a 2 + log(3b) – log c = log 3a2 b$<br />

# & , a > 0, b > 0, c > 0<br />

" c %<br />

Chapter 7 Review Question 11 Page 408<br />

a) log a 2 + log b + log c = 2 log a + log b + log c, a > 0, b > 0, c > 0<br />

1<br />

b) log k ! log m = log k ! log m2<br />

= log k ! 1 log m, k > 0, m > 0<br />

2<br />

Chapter 7 Review Question <strong>12</strong> Page 408<br />

"<br />

a) log 2m + 6 %<br />

#<br />

$<br />

m 2 ! 9 &<br />

' = log " 2(m + 3) %<br />

#<br />

$ (m ! 3)(m + 3) &<br />

'<br />

" 2 %<br />

= log<br />

#<br />

$ m ! 3&<br />

' ,m > 3<br />

"<br />

b) log x2 + 2x !15%<br />

" (x + 5)(x ! 3) %<br />

$<br />

# x 2 ' = log<br />

! 7x +<strong>12</strong>&<br />

#<br />

$ (x ! 4)(x ! 3) &<br />

'<br />

"<br />

= log x + 5 %<br />

#<br />

$ x ! 4&<br />

' , x > 4 or x < !5<br />

<strong>MHR</strong> <strong>•</strong> <strong>Advanced</strong> <strong>Functions</strong> <strong>12</strong> <strong>Solutions</strong> 739


Chapter 7 Review Question 13 Page 408<br />

a) log(2x +10) = 2<br />

2x +10 = 10 2<br />

2x = 100 !10<br />

2x = 90<br />

x = 45<br />

b) 1! log(2x) = 0<br />

1 = log(2x)<br />

10 1 = 2x<br />

x = 5<br />

Chapter 7 Review Question 14 Page 408<br />

log 2<br />

!<br />

" x(x + 2) #<br />

$ = log 8 2<br />

x 2 + 2x = 8<br />

x 2 + 2x % 8 = 0<br />

(x + 4)(x % 2) = 0<br />

x = 2<br />

x = %4 is an extraneous root since it would<br />

make log 2<br />

x and log 2<br />

(x + 2) undefined.<br />

Chapter 7 Review Question 15 Page 408<br />

<strong>MHR</strong> <strong>•</strong> <strong>Advanced</strong> <strong>Functions</strong> <strong>12</strong> <strong>Solutions</strong> 740


Chapter 7 Review Question 16 Page 408<br />

!<br />

a) t = 5 log0.2 $<br />

"<br />

# log0.5%<br />

&<br />

&= 11.6<br />

It takes approximately 11.6 h for the caffeine to drop to 20%.<br />

!<br />

b) 3 = 5 log P $<br />

"<br />

# log0.5%<br />

&<br />

3<br />

5 = log P<br />

log0.5<br />

3<br />

log0.5 = log P<br />

5<br />

3<br />

log0.5 5<br />

= log P<br />

3<br />

P = 0.55<br />

P &= 0.66<br />

Approximately 66% of the caffeine will remain in the body at noon.<br />

Chapter 7 Review Question 17 Page 409<br />

a) P = 500, i = 0.066 , n = 2t<br />

2<br />

= 0.033<br />

A = P(1 + i) n<br />

= 500(1+ 0.033) 2t<br />

= 500(1.033) 2t<br />

b) A = 500(1.033) 10<br />

&= 691.79<br />

The investment is worth $691.79 after 5 years.<br />

c) 2 = (1.033) 2t<br />

log 2 = 2t log1.033<br />

2t =<br />

t =<br />

log 2<br />

log1.033<br />

log 2<br />

2log1.033<br />

t &= 10.67<br />

It will take approximately 10.67 years for the investment to double.<br />

<strong>MHR</strong> <strong>•</strong> <strong>Advanced</strong> <strong>Functions</strong> <strong>12</strong> <strong>Solutions</strong> 741


d) i) A = 500(1.033) 2t + 500(0.01)<br />

A = 500(1.033) 2t + 5, t > 3<br />

The graph would be the same shape translated up 5 units.<br />

ii) A = 1000(1.033) 2t<br />

The graph would be above the original function and increasing at a faster rate.<br />

Chapter 7 Chapter Problem Wrap-Up<br />

<strong>Solutions</strong> to the Chapter Problem Wrap-Up are provided in the Teacher’s Resource.<br />

<strong>MHR</strong> <strong>•</strong> <strong>Advanced</strong> <strong>Functions</strong> <strong>12</strong> <strong>Solutions</strong> 742


Chapter 7 Practice Test<br />

Chapter 7 Practice Test Question 1 Page 410<br />

The correct solution is C.<br />

( 2 ) 1 3<br />

3 2<br />

= 2<br />

2<br />

Chapter 7 Practice Test Question 2 Page 410<br />

The correct solution is A.<br />

2 x+1 = ( 2 ) 2 x<br />

2 x+1 = 2 2x<br />

x +1 = 2x<br />

x = 1<br />

Chapter 7 Practice Test Question 3 Page 410<br />

The correct solution is D.<br />

The sum of the logarithms equals the logarithm of the product.<br />

Chapter 7 Practice Test Question 4 Page 410<br />

The correct solution is C.<br />

" 5!10%<br />

log 2<br />

#<br />

$ 25 &<br />

' = log 2 2<br />

= 1<br />

Chapter 7 Practice Test Question 5 Page 410<br />

" %<br />

$ 6 ! 4'<br />

"<br />

log 3 $ ' = log<br />

$<br />

8<br />

3<br />

24 ! 3 %<br />

' #<br />

$ 8&<br />

'<br />

# 3 &<br />

= log 3<br />

9<br />

= 2<br />

<strong>MHR</strong> <strong>•</strong> <strong>Advanced</strong> <strong>Functions</strong> <strong>12</strong> <strong>Solutions</strong> 743


Chapter 7 Practice Test Question 6 Page 410<br />

a) ( 2 ) 3 x+2 = ( 2 ) 2 2x!1<br />

2 3x+6 = 2 4x!2<br />

3x + 6 = 4x ! 2<br />

4x ! 3x = 6 + 2<br />

x = 8<br />

b) 3 x = ( 3 ) 4 x!4<br />

3 x = 3 4x!16<br />

x = 4x !16<br />

4x ! x = 16<br />

3x = 16<br />

x = 16 3<br />

c) 1 = log(x + 5) ! log 2<br />

"<br />

log10 = log x + 5 %<br />

#<br />

$ 2 &<br />

'<br />

10 = x + 5<br />

2<br />

20 = x + 5<br />

x = 15<br />

d) log8 ! log(x ! 2) = 1<br />

" 8 %<br />

log<br />

#<br />

$ x ! 2&<br />

' = log10<br />

8<br />

x ! 2 = 10<br />

8 = 10x ! 20<br />

10x = 28<br />

x = 2.8<br />

Chapter 7 Practice Test Question 7 Page 410<br />

a)<br />

<strong>MHR</strong> <strong>•</strong> <strong>Advanced</strong> <strong>Functions</strong> <strong>12</strong> <strong>Solutions</strong> 744


)<br />

c)<br />

<strong>MHR</strong> <strong>•</strong> <strong>Advanced</strong> <strong>Functions</strong> <strong>12</strong> <strong>Solutions</strong> 745


d)<br />

Chapter 7 Practice Test Question 8 Page 410<br />

a) log (x + 1) = 5 log x – 2<br />

b) x &= 3.37, from the graph<br />

c) log(x +1) = 5log x ! 2<br />

2 = 5log x ! log(x +1)<br />

log100 = log x 5 ! log(x +1)<br />

" x 5 %<br />

log100 = log$<br />

# x +1<br />

'<br />

&<br />

100 = x5<br />

x +1<br />

100x +100 = x 5<br />

x 5 !100x !100 = 0<br />

Since x &= 3.37 is the only value where log (x + 1) and log x are defined, it is the solution.<br />

The other values are extraneous roots.<br />

<strong>MHR</strong> <strong>•</strong> <strong>Advanced</strong> <strong>Functions</strong> <strong>12</strong> <strong>Solutions</strong> 746


Chapter 7 Practice Test Question 9 Page 410<br />

!<br />

a) 41 = 50 1 $<br />

"<br />

# 2%<br />

&<br />

0.82 = 1 2<br />

10<br />

h<br />

10<br />

h<br />

log0.82 = 10 h log 1 2<br />

10<br />

h = log0.82<br />

log 1 2<br />

h =<br />

h &= 35<br />

10log 1 2<br />

log0.82<br />

The half-life is approximately 35 min.<br />

!<br />

b) 0.01 = 1 $<br />

"<br />

# 2%<br />

&<br />

t<br />

35<br />

log0.01 = t<br />

35 log 1 2<br />

t<br />

35 = log0.01<br />

log 1 2<br />

t = 35log0.01<br />

log 1 2<br />

t &= 232.5<br />

It will take approximately 232.5 min (approximately 3 h, 52 min, and 30 s) for the material to<br />

decay to 1% of its initial amount.<br />

<strong>MHR</strong> <strong>•</strong> <strong>Advanced</strong> <strong>Functions</strong> <strong>12</strong> <strong>Solutions</strong> 747


Chapter 7 Practice Test Question 10 Page 410<br />

!<br />

0.10 = 1 $<br />

"<br />

# 2%<br />

&<br />

33<br />

h<br />

log0.10 = 33<br />

h log 1 2<br />

33<br />

h = log0.10<br />

log 1 2<br />

h =<br />

h &= 9.9<br />

33log 1 2<br />

log0.10<br />

The half-life is approximately 9.9 min.<br />

Chapter 7 Practice Test Question 11 Page 411<br />

a) log(x !1) 2 = log(x +1)<br />

b)<br />

(x !1) 2 = x +1<br />

x 2 ! 2x +1! x !1 = 0<br />

x 2 ! 3x = 0<br />

x(x ! 3) = 0<br />

x = 3<br />

x = 0 is an extraneous root since log(x !1)<br />

would be undefined<br />

<strong>MHR</strong> <strong>•</strong> <strong>Advanced</strong> <strong>Functions</strong> <strong>12</strong> <strong>Solutions</strong> 748


Chapter 7 Practice Test Question <strong>12</strong> Page 411<br />

a) Answers may vary. A sample solution is shown.<br />

Yes, a quadratic curve of best fit could be drawn through the points since the points are<br />

nearly the shape of a quadratic.<br />

b) Answers may vary. A sample solution is shown.<br />

Yes, an exponential curve of best fit could be drawn through the points since they follow the<br />

shape of an exponential equation.<br />

c) Answers may vary. A sample solution is shown.<br />

i) population of a bacteria culture over time<br />

ii) surface area affected by an oil spill over time<br />

Chapter 7 Practice Test Question 13 Page 411<br />

a)<br />

b)<br />

c)<br />

y &= 0.17x 2 – 5.34x + 97.93<br />

y &= 95.67(0.96) x<br />

d) Answers may vary. A sample solution is shown.<br />

The exponential model is better for predicting values for x > 15.74. The quadratic model<br />

gives increasing values, which is not realistic.<br />

<strong>MHR</strong> <strong>•</strong> <strong>Advanced</strong> <strong>Functions</strong> <strong>12</strong> <strong>Solutions</strong> 749


e) i) y &= 95.67(0.96) 15<br />

y &= 49.6<br />

The tea is approximately 49.6°C after 15 min.<br />

ii) 38 &= 95.67( 0.96) x<br />

0.40 &= 0.96 x<br />

log0.40 &= x log0.96<br />

x &= log0.40<br />

log0.96<br />

x &= 21.1<br />

It would take approximately 21.1 min for the tea to reach 38°C.<br />

f) Answers may vary. A sample solution is shown.<br />

The temperature of the room was constant.<br />

<strong>MHR</strong> <strong>•</strong> <strong>Advanced</strong> <strong>Functions</strong> <strong>12</strong> <strong>Solutions</strong> 750

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!