09.07.2015 Views

Literature review of the current status in the sprite observations

Literature review of the current status in the sprite observations

Literature review of the current status in the sprite observations

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

1. Properties <strong>of</strong> <strong>sprite</strong>s2. The morphology <strong>of</strong> <strong>sprite</strong>s3. Temporal evolutions <strong>of</strong> <strong>sprite</strong>s4. The spectroscopy and photometry <strong>of</strong><strong>sprite</strong>s5.Conclud<strong>in</strong>g remarksSDR / 9 June 2000 Science Team 2


1. properties <strong>of</strong> <strong>sprite</strong>s (1)• Sprites are lum<strong>in</strong>ous events at altitude <strong>of</strong> 30-90kmabove large thunderstorm systems [Sentman et al.,1995; W<strong>in</strong>ckler, 1995; Lyons, 1996; Suszcynsky, etal., 1998, Wesscott, et al., 1998].• Sprites are <strong>of</strong>ten described as an electric dischargeor breakdown at mesospheric attitudes occurr<strong>in</strong>gabove large positive cloud to ground (+CG) lightn<strong>in</strong>g.• But, not all <strong>sprite</strong>s closely follow such discharge, orany recorded discharge at all.• Two evidences <strong>of</strong> <strong>sprite</strong>s are closely associated withnegative cloud-to-ground (-CG) lightn<strong>in</strong>g strokes[Barr<strong>in</strong>gton-Leigh, et al., 1999].SDR / 9 June 2000 Science Team 3


First recorded <strong>sprite</strong> image :At 22:14 CST on July 6, 1989, Franz, Nemzek and W<strong>in</strong>kler recorded a tw<strong>in</strong>flash orig<strong>in</strong>at<strong>in</strong>g <strong>in</strong> a storm top cloud and discharg<strong>in</strong>g <strong>in</strong>to <strong>the</strong> stratosphere.[Franz, et al.,1990]SDR / 9 June 2000 Science Team 4


First color image <strong>of</strong> a <strong>sprite</strong> :<strong>the</strong> first color television picture <strong>of</strong> a Red Sprite, obta<strong>in</strong>ed <strong>in</strong> <strong>the</strong>summer <strong>of</strong> 1994 by <strong>the</strong> University <strong>of</strong> Alaska <strong>sprite</strong>s research teamfrom aboard a NASA research jet aircraft.[ Sentman et al., 1995]SDR / 9 June 2000 Science Team 5


Perez, R. and J. Michalsky, (1991): Characterization <strong>of</strong> a Direct UV Irradiance Sensor for <strong>the</strong> Evaluation<strong>of</strong> Solar Detoxification Feasibility. Report to Sandia National Labs. #788804. SNLA, Albuquerque, NM.Bailey, B., R. Stewart, J. Doty, R. Perez and W. Huse, (1991): Photovoltaic Demand-Offset System.Soltech 91, San Francisco, CA.Bailey, B., R. Stewart, J. Doty, R. Perez and W. Huse, (1991): Utility Investigation <strong>of</strong> a Grid-ConnectedPV System as a Peak Load Reduction Option. Proc. <strong>of</strong> 26th Intersociety Energy Conversion Eng<strong>in</strong>eer<strong>in</strong>gConference.Fontoynont, M., P. Barral and R. Perez, (1991): Indoor Daylight<strong>in</strong>g Frequencies Computed as a Function<strong>of</strong> Outdoor Solar Radiation Data. Proc. <strong>of</strong> 22nd International Illum<strong>in</strong>ation Commission (CIE) Conference,Melbourne, Australia.Michalsky, J.J., R. Perez, L. Harrison and B.A. LeBaron, (1991): Spectral and Temperature Correction <strong>of</strong>Silicon Photovoltaic Solar Radiation Detectors. Solar Energy 47, pp. 299-306.Vazquez, M.V. Ruiz and R. Perez, (1991): The roles <strong>of</strong> scatter<strong>in</strong>g, absorption and air mass on <strong>the</strong> diffuseto-globalcorrelations. Solar Energy 47, pp. 181-188.Perez, R. and M. Fontoynont, (1991): Future Directions <strong>in</strong> Daylight<strong>in</strong>g Research. Australia-New ZealandArchitectural Science Assoc. Meet<strong>in</strong>g, July 17-19, Roseworthy, South Australia.Published <strong>in</strong> 1992Perez, R., J. Michalsky and R. Seals, (1992): Model<strong>in</strong>g Lum<strong>in</strong>ance Distribution for Real Skies; evaluation<strong>of</strong> exist<strong>in</strong>g algorithms. Illum. Eng. Soc. Journal, Vol. 21, 2, pp. 84-92.Perez, R., P. Ineichen, E. Maxwell, R. Seals and A. Zelenka, (1992): Dynamic Global-to-Direct IrradianceConversion Models. ASHRAE Transactions-Research Series, pp. 354-369.Perez, R., R. Seals and J. Michalsky, (1992): Model<strong>in</strong>g Skylight Angular Distribution from Rout<strong>in</strong>eIrradiance Measurements. Proc. IES Annual Conference, San Diego, CA.Perez, R., R. Seals and R. Stewart, (1992): Evaluation <strong>of</strong> Satellite-Based Solar Resource Assessment forInvestigat<strong>in</strong>g Utility Load Match<strong>in</strong>g, 11th PV AR&D Review Meet<strong>in</strong>g, Denver, CO.Wenger, H., T. H<strong>of</strong>f and R. Perez (1992): Photovoltaics as a Demand Side Management Option: Benefits<strong>of</strong> a Utility-Customer Partnership. Proc. <strong>of</strong> World Energy Eng<strong>in</strong>eer<strong>in</strong>g Congress, Atlanta, GA (10/92).Zelenka A., G. Czeplak, V. D'Agost<strong>in</strong>o, W. Josefsson, E. Maxwell and R. Perez (1992): Techniques forSupplement<strong>in</strong>g Solar Radiation Network Data, F<strong>in</strong>al Report <strong>of</strong> International Energy Agency Solar Heat<strong>in</strong>gand Cool<strong>in</strong>g Program, Task 9 subtask 9D. Report IEA-SHCP-9D-1, available from Swiss MeteorologicalInstitute, Zurich, Switzerland.Published <strong>in</strong> 1993Perez, R., R. Seals and J. Michalsky, (1993): An All-Wea<strong>the</strong>r Model for Sky Lum<strong>in</strong>ance Distribution -- APrelim<strong>in</strong>ary Configuration and Validation. Solar Energy 50, 3, pp. 235-245.Perez, R., R. Seals, J. Michalsky and P. Ineichen, (1993): Geostatistical Properties and Model<strong>in</strong>g <strong>of</strong>Random Cloud Patterns for Real Skies. Solar Energy 51, 1, pp. 7-18.


2. <strong>the</strong> morphology <strong>of</strong> <strong>sprite</strong>s(1)• A “carrot” <strong>sprite</strong> has a bright head region, wispy hairsextend<strong>in</strong>g above <strong>the</strong> head and bluish tendrils below.• An “angel” <strong>sprite</strong> also has tendrils, but <strong>the</strong> head iscapped by a diffuse glow.• “Columniform” <strong>sprite</strong>s (c-<strong>sprite</strong>s) has long verticalcolumn streamer about 10 km long, less than 100m<strong>in</strong> diameter [W<strong>in</strong>ckler, et al., 1998; Inan, et al.,1998],and show virtually no variation <strong>in</strong> brightness alonglength.• A “wishbone” <strong>sprite</strong> has a “Y” type curved streamer.Beside different from c-<strong>sprite</strong> <strong>in</strong> shape, <strong>the</strong> brightness<strong>of</strong> wishbone <strong>sprite</strong>s varies along length.SDR / 9 June 2000 Science Team 7


SDR / 9 June 2000 Science Team 8


SDR / 9 June 2000 Science Team 9


SDR / 9 June 2000 Science Team 10


SDR / 9 June 2000 Science Team 11


2. <strong>the</strong> morphology <strong>of</strong> <strong>sprite</strong>s(2)• Sprites may appear <strong>in</strong> a group.• Telephoto images <strong>in</strong>dicate that <strong>the</strong> carrot<strong>sprite</strong>s or angel <strong>sprite</strong>s are groups <strong>of</strong> c-<strong>sprite</strong>sand wishbone <strong>sprite</strong>s [Inan, et al., 1998,Mende, et al., 1999].• F<strong>in</strong>e structure <strong>of</strong> <strong>sprite</strong>s.• Elve with <strong>sprite</strong>s.SDR / 9 June 2000 Science Team 12


Sprite fireworks- Group <strong>of</strong> <strong>sprite</strong>sSDR / 9 June 2000 Science Team 13


F<strong>in</strong>e structure <strong>of</strong> <strong>sprite</strong>sA beady structure <strong>in</strong> <strong>the</strong> lower half <strong>of</strong> <strong>the</strong> lum<strong>in</strong>ous columns andwhich also is a very common feature <strong>of</strong> our recorded <strong>sprite</strong> eventsSDR / 9 June 2000 Science Team 14


Elve with Carrot Sprite(near center)SDR / 9 June 2000 Science Team 15


Elve with C-Sprite(<strong>of</strong>f center)SDR / 9 June 2000 Science Team 16


3. Temporal evolutions <strong>of</strong><strong>sprite</strong>s• Danc<strong>in</strong>g <strong>sprite</strong>s: a series <strong>of</strong> successive<strong>sprite</strong>s that appeared to "dance" acrosshundreds <strong>of</strong> kilometers region with<strong>in</strong>hundreds <strong>of</strong> milliseconds.• Re-brighten<strong>in</strong>g• High-speed video <strong>of</strong> <strong>sprite</strong>s show that <strong>the</strong>yare typically <strong>in</strong>itiated at an altitude <strong>of</strong> about 75km and usually develop simultaneouslyupward and downward from <strong>the</strong> po<strong>in</strong>t <strong>of</strong> orig<strong>in</strong>with an <strong>in</strong>itial columniform.SDR / 9 June 2000 Science Team 17


Danc<strong>in</strong>g <strong>sprite</strong>sSDR / 9 June 2000 Science Team 18


Re-brighten<strong>in</strong>gSDR / 9 June 2000 Science Team 19


A carrot <strong>sprite</strong> <strong>in</strong>itiated at an altitude <strong>of</strong>about 75 km and developsimultaneously upward and downward.SDR / 9 June 2000 Science Team 20


The columns and tendrils propagateddownward <strong>in</strong> a cluster <strong>of</strong> angel andcolumniform <strong>sprite</strong>sSDR / 9 June 2000 Science Team 21


4. The spectroscopy andphotometry <strong>of</strong> <strong>sprite</strong>s (1)• Identify <strong>the</strong> red component as nitrogen firstpositive (N 2 1P) emission [Mende, et al.,1995;Hampton, et al., 1996].• Blue photometric measurements <strong>of</strong> <strong>the</strong>nitrogen second positive (N 2 2P) 399.8 nmand <strong>the</strong> first negative (N 2+ 1N) 427.8 nmemission from <strong>sprite</strong>s are obta<strong>in</strong>ed[Armstrong, et al. 1998; Suszcynsky, etal.1998] — <strong>the</strong> significant ionization occursdur<strong>in</strong>g <strong>sprite</strong> generation.SDR / 9 June 2000 Science Team 22


Identify <strong>the</strong> red component as nitrogenfirst positive (N 2 1P) emission[Mende, et al.,1995] [Hampton, et al., 1996].SDR / 9 June 2000 Science Team 23


Blue photometric measurements <strong>of</strong>N 2+ 1N (427.8 nm) emission from <strong>sprite</strong>s.SDR / 9 June 2000 Science Team 24


4. The spectroscopy andphotometry <strong>of</strong> <strong>sprite</strong>s (2)• The brightest blue images show a susta<strong>in</strong>edtendril geometry and a nearly constant<strong>in</strong>tensity <strong>of</strong> emission over <strong>the</strong> entire verticalextent <strong>of</strong> <strong>the</strong> <strong>sprite</strong> [Suszcynsky, et al.1998].• The ratio <strong>of</strong> <strong>in</strong>tensity <strong>of</strong> <strong>the</strong> 399.8 nmemission to that <strong>of</strong> 427.8 nm emission can beused to discrim<strong>in</strong>ate among <strong>sprite</strong>, elves andlightn<strong>in</strong>g.• Spectrum <strong>of</strong> tendrilSDR / 9 June 2000 Science Team 25


The brightest blue images show a susta<strong>in</strong>edtendril geometry and a nearly constant <strong>in</strong>tensity<strong>of</strong> emission over <strong>the</strong> entire vertical extent <strong>of</strong><strong>the</strong> <strong>sprite</strong>.SDR / 9 June 2000 Science Team 26


The ratio <strong>of</strong> <strong>in</strong>tensity <strong>of</strong> <strong>the</strong> 399.8 nmemission to that <strong>of</strong> 427.8 nm emission<strong>of</strong> a <strong>sprite</strong>.SDR / 9 June 2000 Science Team 27


The ratio <strong>of</strong> <strong>in</strong>tensity <strong>of</strong> <strong>the</strong> 399.8 nmemission to that <strong>of</strong> 427.8 nm emission<strong>of</strong> an elve.SDR / 9 June 2000 Science Team 28


The ratio <strong>of</strong> <strong>in</strong>tensity <strong>of</strong> <strong>the</strong> 399.8 nmemission to that <strong>of</strong> 427.8 nm emission<strong>of</strong> a normal lightn<strong>in</strong>g.SDR / 9 June 2000 Science Team 29


Spectrum <strong>of</strong> tendrilSDR / 9 June 2000 Science Team 30


5. Conclud<strong>in</strong>g Remarks (1)• A Successful <strong>the</strong>oretical model <strong>of</strong> <strong>sprite</strong>generation needs to account for <strong>the</strong>follow<strong>in</strong>g properties <strong>of</strong> <strong>the</strong>se <strong>sprite</strong>s:1. Spatial properties: <strong>the</strong> richness <strong>of</strong>morphology, <strong>the</strong> f<strong>in</strong>e structures <strong>of</strong> <strong>sprite</strong>s2. Temporal properties: danc<strong>in</strong>g, rebrighten<strong>in</strong>g,propagation <strong>of</strong> <strong>the</strong> streamers.3. Results <strong>of</strong> spectroscopic and photometricmeasurements.SDR / 9 June 2000 Science Team 31


5. Conclud<strong>in</strong>g Remarks (2):The dynamics and <strong>the</strong> morphology<strong>of</strong> <strong>sprite</strong>sLightn<strong>in</strong>glight up<strong>the</strong>streamersourceDownwardstreamerUpwardstreamerC-<strong>sprite</strong>Diffus<strong>in</strong>g glowat higher altitude.Branch<strong>in</strong>g andbeady structureat lower altitude.AngelSpriteCarrot<strong>sprite</strong>Huge<strong>sprite</strong>s :Clusters<strong>of</strong>c-<strong>sprite</strong>s,angel<strong>sprite</strong>s,orcarrot<strong>sprite</strong>.Wishbone<strong>sprite</strong>SDR / 9 June 2000 Science Team 32

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!