09.07.2015 Views

Report 10 Hydrogeology of Deep Aquifers in the Western Desert ...

Report 10 Hydrogeology of Deep Aquifers in the Western Desert ...

Report 10 Hydrogeology of Deep Aquifers in the Western Desert ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

M<strong>in</strong>istry <strong>of</strong> Public Works and Water ResourcesUS Agency for International DevelopmentAgricultural Policy Reform ProgramEnvironmental Policy and Institutional Streng<strong>the</strong>n<strong>in</strong>g Indef<strong>in</strong>ite Quantity ContractAPRP – Water Policy Reform ActivityContract PCE-I-00-96-00002-00Task Order 807HYDROGEOLOGY OF DEEP AQUIFERS IN THEWESTERN DESERT AND SINAI<strong>Report</strong> No. <strong>10</strong>August 1998Water Policy Reform ProgramInternational Resources Group W<strong>in</strong>rock International Nile Consultants


ACKNOWLEDGEMENTThis report was prepared by <strong>the</strong> <strong>Deep</strong> Groundwater Work<strong>in</strong>g Group <strong>of</strong> <strong>the</strong> EPIQ WaterPolicy Team. The Team <strong>in</strong>cluded Eng. Saleh Nour (Task leader) and Dr. Ahmed FakhryKhattab.The contributions and suggestions <strong>of</strong> Dr. Jack Keller and Dr. Jeffrey Fredericks areacknowledged. Thanks to Dr. Tom Ley and to Mrs. Carol J. Fredericks for edit<strong>in</strong>g <strong>the</strong>work<strong>in</strong>g draft <strong>of</strong> this report. Thanks are also extended to Miss Amira Serry for typ<strong>in</strong>g <strong>of</strong> <strong>the</strong>manuscript. The figures and maps <strong>in</strong>cluded <strong>in</strong> this report were prepared by Mr. ShakerYoussef.The EPIQ Water Policy Reform Program (WPRP) is a jo<strong>in</strong>t activity <strong>of</strong> <strong>the</strong> M<strong>in</strong>istry <strong>of</strong> PublicWorks and Water Resources and <strong>the</strong> US agency for International Development. It is carriedout under <strong>the</strong> auspices <strong>of</strong> <strong>the</strong> Agricultural Policy Reform Program. Program implementationis <strong>the</strong> responsibility <strong>of</strong> W<strong>in</strong>rock International, International Resources Group and NileConsultants.Special thanks to Eng. Gamil Mahmoud, Chairman <strong>of</strong> <strong>the</strong> MPWWR WPRP Steer<strong>in</strong>gCommittee and <strong>the</strong> MPWWR Water Policy Advisory Unit; Dr. Jeffrey Fredericks, EPIQWPRP Team Leader; Dr. Mohamed Allam, Former Act<strong>in</strong>g Team Leader; and Dr. CraigAnderson, USAID Project Technical Officer, for <strong>the</strong>ir leadership and support.<strong>Hydrogeology</strong> <strong>of</strong> <strong>Deep</strong> <strong>Aquifers</strong>iEPIQ Water Policy Reform Program


TABLE OF CONTENTSACKNOWLEDGEMENT…………………………………………………………….iEXECUTIVE SUMMARY…………………………………………………………… E-11. INTRODUCTIONOverview …………...……………...………………………………………… 1-1Objectives <strong>of</strong> <strong>the</strong> Study……………………………………………………… 1-2Approach and Methodology ………………………………………………… 1-3Description <strong>of</strong> <strong>the</strong> <strong>Report</strong>…………………………………………...…….…. 1-32. HYDROGEOLOGY OF DEEP AQUIFER SYSTEMS IN THE WESTERNDESERT2.1 Previous Investigations……………………………………………………… 2-12.2 Physiographic Prov<strong>in</strong>ces <strong>of</strong> <strong>the</strong> <strong>Western</strong> <strong>Desert</strong>……………………………. 2-12.2.1 The Sou<strong>the</strong>rn Plateau …………………………………………… 2-22.2.2 The Central Plateau …………………………………………….. 2-22.2.3 The Nor<strong>the</strong>rn Plateau …………………………………………… 2-22.3 Regional Geological Sett<strong>in</strong>g………………………………………………… 2-32.3.1 Stratigraphy……………………………………………………... 2-32.3.1.1 The Basement Complex ………………………………… 2-32.3.1.2 The Nubia Sandstone Sequences ……………………….. 2-42.3.1.3 Upper Cretaceous ……………………………………….. 2-42.3.1.4 Tertiary Deposits ……………………………………….. 2-52.3.1.5 Quaternary – Recent Deposits ………………………….. 2-62.3.2 Structural Framework……………………………………………. 2-62.3.2.1 The Nor<strong>the</strong>rn Up-thrown Block ………………………… 2-62.3.2.2 The Middle Down-thrown Block ……………………….. 2-62.3.2.3 The Sou<strong>the</strong>rn Up-thrown Block ………………………… 2-72.4 <strong>Deep</strong> Aquifer Systems <strong>in</strong> <strong>the</strong> <strong>Western</strong> <strong>Desert</strong>……………….………………. 2-82.4.1 The Moghra Aquifer System…………………………………….. 2-82.4.2 The Fissured Carbonate Aquifer Complex System….…………. 2-92.4.3 The Nubia Sandstone Aquifer System…..……………………… 2-112.5 Hydrogeologic Characteristics <strong>of</strong> <strong>the</strong> Nubia Sandstone Aquifer System…… 2-<strong>Hydrogeology</strong> <strong>of</strong> <strong>Deep</strong> <strong>Aquifers</strong>iiEPIQ Water Policy Reform Program


112.5.1 Def<strong>in</strong>ition <strong>of</strong> <strong>the</strong> Aquifer System……………………………….. 2-122.5.2 Aquifer Geometry and Boundaries…………………………...… 2-122.5.3 Aquifer Hydraulic Parameters……………..…………………… 2-132.5.4 Aquifer Potentiometry and Groundwater Flow Pattern………… 2-162.5.5 Orig<strong>in</strong> <strong>of</strong> <strong>the</strong> Nubia Groundwater …………………...…………. 2-172.5.6 Groundwater Quality……………………………………………. 2-192.5.7 Groundwater Resources Evaluation…………………………….. 2-202.5.7.1 Groundwater Model <strong>of</strong> <strong>the</strong> New Valley Region…..……. 2-202.5.7.2 East Owe<strong>in</strong>at Model ...…………………………………. 2-222.5.7.3 South Qattara Model …...………………………………. 2-242.5.7.4 Nubia Bas<strong>in</strong> Model …………………………………….. 2-252.5.7.5 Nubia Sandstone Aquifer Regional Model …………..… 2-262.5.8 Susta<strong>in</strong>able Groundwater Potentials …………………………… 2-262.6 Present Status <strong>of</strong> Groundwater Development <strong>in</strong> <strong>the</strong> <strong>Western</strong> <strong>Desert</strong> ……… 2-272.6.1 Basic Criteria…………………………………………………… 2-272.6.2 Design <strong>of</strong> Well and Well-Field ………………………………. 2-292.6.3 Groundwater Exploitation Practices <strong>in</strong> <strong>the</strong> <strong>Western</strong> <strong>Desert</strong>. ….. 2-302.6.3.1 Historical Background …………………………………. 2-302.6.3.2 Groundwater Conditions and Utilization <strong>in</strong> <strong>the</strong> <strong>Western</strong><strong>Desert</strong> Development Areas …………………………...… 2-312.6.3.2.1 El-Kharga Oasis …………………………...….. 2-332.6.3.2.2 El-Dakhla Oasis …………………………….…. 2-362.6.3.2.3 El-Farafra Oasis …………….…………………. 2-39<strong>Hydrogeology</strong> <strong>of</strong> <strong>Deep</strong> <strong>Aquifers</strong>iiiEPIQ Water Policy Reform Program


424348502.6.3.2.4 El-Bahariya Oasis …………………………….. 2-2.6.3.2.5 Siwa Oasis ……………………………………. 2-2.6.3.2.6 East Owe<strong>in</strong>at Area ………...…………………. 2-2.6.3.2.7 West Nasser Lake Area ………………………. 2-2.7 Long-term <strong>Deep</strong> Groundwater Development Plans <strong>in</strong> <strong>the</strong> <strong>Western</strong> <strong>Desert</strong> … 2-512.7.1 Status <strong>of</strong> Groundwater Development……………………………… 2-512.7.2 Future Groundwater Development Plans ……………………….. 2-522.7.2.1 El-Kharga Oasis ……………...…………………………. 2-532.7.2.2 El-Zayat – Abu Tartur Area …………………...……….. 2-532.7.2.3 El-Dakhla Oasis - Mawhub West Area ….…………….. 2-532.7.2.4 El-Farafra Oasis – Abu M<strong>in</strong>qar Area ………...………… 2-532.7.2.5 El-Bahariya Oasis ……………………………………… 2-552.7.2.6 Siwa Oasis ……………………………………………… 2-552.7.2.7 South Valley Area ……………………………………… 2-562.7.2.7.1 The East Owe<strong>in</strong>at Area …………….………… 2-562.7.2.7.2 Darb El-Arba<strong>in</strong> Road Area ………………...… 2-562.7.2.7.3 Aswan – Abu Simbel Road Area……………… 2-573. HYDROGEOLOGY OF DEEP AQUIFER SYSTEMS IN SINAI3.1 Previous Investigations ……………………………………………………… 3-13.2 Physiographic Feature <strong>of</strong> S<strong>in</strong>ai Pen<strong>in</strong>sula …………………………………… 3-43.3 Regional Geological Sett<strong>in</strong>g ………………………………………………… 3-53.3.1 Stratigraphy …………………………………………………….. 3-53.3.1.1 Pre-Cambrian Basement Complex ………………………. 3-63.3.1.2 Pleozoic Rock Units …………………………………….. 3-63.3.1.3 Mesozoic Rock Units …………………………………… 3-6<strong>Hydrogeology</strong> <strong>of</strong> <strong>Deep</strong> <strong>Aquifers</strong>ivEPIQ Water Policy Reform Program


3.3.1.3.1 Triassic Rock Units ……..…………………….. 3-63.3.1.3.2 Jurassic Rock Units ……….…………………. 3-63.3.1.3.3 Cretaceous Rock Units ………………………. 3-73.3.1.4 Tertiary Rock Units …………………………………….. 3-83.3.1.4.1 Paleocene Rock Units ………………………… 3-83.3.1.4.2 Eocene Rock Units …………………………… 3-83.3.1.4.3 Oligocene Rock Units ………….…………….. 3-93.3.1.4.4 Miocene Rock Units ………………………….. 3-93.3.1.4.5 Pliocene Rock Units …………………………. 3-93.3.1.5 Quaternary Rock Units …………………………………. 3-<strong>10</strong>3.3.2 Major Structural Elements ………………………………...…… 3-<strong>10</strong>3.4 <strong>Deep</strong> Aquifer Systems <strong>in</strong> S<strong>in</strong>ai……………….………………..…………… 3-113.4.1 The Miocene Aquifer System ………………………………..… 3-193.4.2 The Eocene Aquifer System ……………...…………………… 3-193.4.3 The Upper Cretaceous Aquifer System ………………...……… 3-203.4.3.1 Occurrence and Extent ………………………………… 3-203.4.3.2 Aquifer Potentiometry ………………………………… 3-213.4.3.3 Aquifer Hydraulic Parameters ………………….……… 3-213.4.3.4 Aquifer Recharge ……………………………………… 3-223.4.3.5 Groundwater Quality …………………………………… 3-223.4.4 The Lower Cretaceous Aquifer System ……………………...… 3-223.4.4.1 Occurrence and Extent ………………………………… 3-223.4.4.2 Aquifer Potentiometry ………………………………... 3-233.4.4.3 Aquifer Hydraulic Parameters …………………………. 3-243.4.4.4 Groundwater Quality …………………………………… 3-253.4.4.5 Aquifer Storage Capacity and Groundwater Inflow – OutflowPattern …………………………………………………… 3-263.4.4.5.1 Aquifer Storage Capacity ……………..……… 3-<strong>Hydrogeology</strong> <strong>of</strong> <strong>Deep</strong> <strong>Aquifers</strong>vEPIQ Water Policy Reform Program


263.4.4.5.2 Aquifer Inflow-Outflow ……………………… 3-263.4.5 The Pre-lower Cretaceous Aquifer Systems …………………… 3-273.5 <strong>Deep</strong> Groundwater Resources Evaluation …………………………………. 3-283.6 <strong>Deep</strong> Groundwater Development <strong>in</strong> S<strong>in</strong>ai …………………………………. 3-283.6.1 Background …………………………………………………… 3-283.6.2 Exist<strong>in</strong>g Groundwater Extraction and Utilization ……………… 3-293.6.3 <strong>Deep</strong> Groundwater Development Priority Areas <strong>in</strong> S<strong>in</strong>ai ……… 3-313.6.3.1 The Upper Cretaceous Carbonate Aquifer ……………... 3-313.6.3.2 The Lower Cretaceous Sandstone Aquifer ………………. 3-313.6.4 Water Well Design …………………………………………...… 3-334. ADDITIONAL HYDROGEOLOGICAL INVESTIGATIONS PLANS IN THEWESTERN DESERT AND SINAI4.1 The <strong>Western</strong> <strong>Desert</strong> ………………………………………………....……… 4-14.1.1 The Moghra Aquifer System …………………………………… 4-14.1.1.1 Objecives <strong>of</strong> <strong>the</strong> Additional Investigation ……………… 4-14.1.1.2 Investigation Work Plan …………...……………………. 4-24.1.2 The Eocene – Miocene Carbonate Aquifer System ……………. 4-34.1.2.1 Investigation Objectives ………………………………… 4-44.1.2.2 Investigation Work plan …………………………………. 4-44.1.3 The Nubia Sandstone Aquifer System ………………………… 4-54.1.3.1 Regional Hydrogeologic Investigations ………………… 4-64.1.3.1.1 Test Wells ………….…………………………. 4-64.1.3.1.2 Groundwater Monitor<strong>in</strong>g ……………………... 4-74.1.3.2 Detailed Groundwater Evaluation Studies ..……………. 4-74.1.3.2.1 Siwa Oasis ……….…………………………… 4-74.1.3.2.2 A<strong>in</strong> Dalla Area ………….…………………….. 4-84.1.3.2.3 South Valley Region ………….……………… 4-84.2 S<strong>in</strong>ai ……………………………………………………………………...…4-114.2.1 Evaluation <strong>of</strong> Lower Cretaceous Groundwater ………………… 4-114.2.1.1 The Model Conception ………………………………… 4-<strong>Hydrogeology</strong> <strong>of</strong> <strong>Deep</strong> <strong>Aquifers</strong>viEPIQ Water Policy Reform Program


114.2.1.2 Model Input Data ……………………………………… 4-124.2.1.3 Model Output …………………………………………… 4-134.2.2 Monitor<strong>in</strong>g <strong>of</strong> <strong>Deep</strong> Groundwater ……………………………… 4-135. SUMMARY, CONCLUSIONS AND RECOMMENDATIONS5.1 Summary …………………………………………………………………… 5-15.2 Conclusions ………………………………………………………………… 5-15.2.1 The <strong>Western</strong> <strong>Desert</strong> ……………………………………………. 5-15.2.2 S<strong>in</strong>ai ……………………………………………………………. 5-55.2.3 Recommended Additional Hydrogeologic Investigation Plans … 5-75.3 Recommendations …………………………………………………………… 5-96. REFERENCESAPPENDIX (A) - FIGURESLIST OF FIGURES<strong>Hydrogeology</strong> <strong>of</strong> <strong>Deep</strong> <strong>Aquifers</strong>viiEPIQ Water Policy Reform Program


FigurePage1. Location Map <strong>of</strong> <strong>the</strong> Study Areas A12. Physiographic Prov<strong>in</strong>ces <strong>of</strong> <strong>the</strong> <strong>Western</strong> <strong>Desert</strong> A23. Schematic Geological Map <strong>of</strong> Egypt A34. Stratigraphic and Lithologic Type Section <strong>of</strong> <strong>the</strong> Nor<strong>the</strong>rn <strong>Western</strong> <strong>Desert</strong> A45. Stratigraphic and Lithologic Type Section <strong>of</strong> <strong>the</strong> Sou<strong>the</strong>rn <strong>Western</strong> <strong>Desert</strong> A56. Basement Relief Map, <strong>Western</strong> <strong>Desert</strong> A67. Major Structure Axes <strong>of</strong> Basement A78. Ma<strong>in</strong> Tectonic Features <strong>of</strong> <strong>the</strong> <strong>Western</strong> <strong>Desert</strong> A89. Surface Distribution <strong>of</strong> Ma<strong>in</strong> Aquifer Systems <strong>in</strong> Egypt A9<strong>10</strong>. Boundaries <strong>of</strong> <strong>the</strong> Nubia Sandstone Aquifer System A-<strong>10</strong>11. Elevation <strong>of</strong> <strong>the</strong> Nubia Freshwater Aquifer Base A-1112. Structure Contour Map on Top <strong>of</strong> <strong>the</strong> Nubia Aquifer System, <strong>Western</strong> <strong>Desert</strong> A-1213. Isopach Map <strong>of</strong> <strong>the</strong> Freshwater Nubia Sandstone Aquifer, <strong>Western</strong> <strong>Desert</strong> A-1314. Map <strong>of</strong> Specific Storativity <strong>of</strong> <strong>the</strong> Nubia Sandstone Aquifer, <strong>Western</strong> <strong>Desert</strong> A-1415. Location Map <strong>of</strong> <strong>the</strong> Observation Wells <strong>in</strong> <strong>the</strong> <strong>Western</strong> <strong>Desert</strong> A-1516. Groundwater Sett<strong>in</strong>g, Nubia Sandstone Formation. A-1617. Iso-Sal<strong>in</strong>ity Contour Map <strong>of</strong> <strong>the</strong> Sandstone Aquifer System, <strong>Western</strong> <strong>Desert</strong> A-1718. Boundaries <strong>of</strong> Regional Groundwater Models <strong>of</strong> <strong>the</strong> Nubia Aquifer System A-1819. New Valley Groundwater Model Nodal Network A-1920. Simulated Future Water Levels after Development <strong>in</strong> <strong>the</strong> New Valley Areas A-2021. Groundwater Model, East Owe<strong>in</strong>at Area A-2122. Hydrodynamic Response <strong>of</strong> Nubia Sandstone Aquifer to Extraction Plan <strong>of</strong>4.74 MCM/Day <strong>in</strong> East Owe<strong>in</strong>at Area A-2223. Priority Areas for Groundwater Development, East Owe<strong>in</strong>at A-2324. Groundwater Model, South Qattara Nodal Network A-2425. Groundwater Model <strong>of</strong> Lake Nasser Area A-2526. F<strong>in</strong>ite – Element Network <strong>of</strong> <strong>the</strong> Nubian Bas<strong>in</strong> Model A-2627. Proposed Future Groundwater Extraction <strong>in</strong> Libya and Egypt A-2728. Drawdown <strong>in</strong> <strong>the</strong> Nubia Aquifer System, 1960-2070 A-2829. Groundwater Potentials <strong>of</strong> <strong>the</strong> Nubia Sandstone Aquifer <strong>in</strong> <strong>the</strong> <strong>Western</strong> <strong>Desert</strong> A-2930. Total Groundwater Extraction <strong>in</strong> <strong>the</strong> <strong>Western</strong> <strong>Desert</strong> (1960 – 1997) A-3031. North – South Hydrogeologic Section, El-Kharga Oasis A-3132. Groundwater Extraction <strong>in</strong> El-Kharga Oasis (1960 – 1997) A-3233. Hydrogeologic Section <strong>in</strong> El-Dakhla – El-Kharga Oases A-3334. Groundwater Extraction <strong>in</strong> El-Dakhla Oasis (1960 – 1997) A-3435. Hydrogeologic Cross Section, <strong>in</strong> Sheikh Marzuk Area, El-Farafra Oasis A-3536. Groundwater Extraction <strong>in</strong> El-Farafra Oasis (1960 – 1997) A-3637. Hydrogeologic Section, El-Bahariya Oasis (1963 – 1997) A-3738. Groundwater Extraction <strong>in</strong> El-Bahariya Oasis (1960 – 1997) A-3839. Hydrogeologic Section through Siwa Oasis A-3940. Groundwater Extraction <strong>in</strong> Siwa Oasis (1960 – 1997) A-4041. Depth to Water and Saturated Thickness Contour Map, East Owe<strong>in</strong>at Area A-4142. Groundwater Extraction <strong>in</strong> East Owe<strong>in</strong>at Area (1990 – 1997) A-4243. Location Map <strong>of</strong> Planned Land Reclamation Projects <strong>in</strong> <strong>the</strong> South Valley Region A-43<strong>Hydrogeology</strong> <strong>of</strong> <strong>Deep</strong> <strong>Aquifers</strong>viiiEPIQ Water Policy Reform Program


44. Land Reclamation Plan <strong>in</strong> East Owe<strong>in</strong>at Area A-4445. Location Map <strong>of</strong> S<strong>in</strong>ai A-4546. Geomorphological Units <strong>in</strong> S<strong>in</strong>ai A-4647. Geological Map <strong>of</strong> S<strong>in</strong>ai A-4748. Location Map <strong>of</strong> <strong>Deep</strong> Wells <strong>in</strong> S<strong>in</strong>ai A-4849. Schematic Representation <strong>of</strong> <strong>the</strong> Lithostratigraphic Rock Units for Nor<strong>the</strong>rnand Sou<strong>the</strong>rn S<strong>in</strong>ai A-4950. Paleographic Map Show<strong>in</strong>g <strong>the</strong> Variation <strong>of</strong> Lower Cretaceous Deposits <strong>in</strong>Nor<strong>the</strong>rn S<strong>in</strong>ai A-5051. Isopach Map <strong>of</strong> <strong>the</strong> Lower Cretaceous Malhah Sandstone Formation <strong>in</strong> S<strong>in</strong>ai A-5152. Depth to Top <strong>of</strong> <strong>the</strong> Lower Cretaceous Malhah Formation <strong>in</strong> S<strong>in</strong>ai A-5253. Tectonic Map <strong>of</strong> North and Central S<strong>in</strong>ai A-5354. Location Map <strong>of</strong> Hydrogeologic Sections A-5455. North-South Hydrogeologic Section A-A / Between Um Shihan, Arif El-Nagaand Shaira A-5556. East-West Hydrogeologic Section B-B / Along Naqb, El-Thamad, Nakhl andSudr El-Heitan A-5657. North-South Hydrogeologic Section C-C / Show<strong>in</strong>g Lower Cretaceous AquiferSett<strong>in</strong>g A-5758. North-South Hydrogeologic Section D-D / Along Nakhl, El-Bruk, El-M<strong>in</strong>sherah,El-Hasana and Baghded A-5859. Potentiometric Surface Map <strong>of</strong> <strong>the</strong> Upper Cretaceous Aquifer System <strong>in</strong> S<strong>in</strong>ai A-5960. Iso-Sal<strong>in</strong>ity Contour Map <strong>of</strong> Upper Cretaceous Aquifer System <strong>in</strong> S<strong>in</strong>ai A-6061. Depth to Groundwater <strong>in</strong> <strong>the</strong> Lower Cretaceous Aquifer <strong>in</strong> S<strong>in</strong>ai A-6162. Potentiometric Surface Map <strong>of</strong> <strong>the</strong> Lower Cretaceous Aquifer <strong>in</strong> S<strong>in</strong>ai A-6263. Iso-Sal<strong>in</strong>ity Contour Map <strong>of</strong> <strong>the</strong> Lower Cretaceous Aquifer <strong>in</strong> S<strong>in</strong>ai A-6364. Map <strong>of</strong> Development Priority Areas <strong>of</strong> Lower Cretaceous Aquifer <strong>in</strong> S<strong>in</strong>ai A-6465. Location Map <strong>of</strong> <strong>the</strong> Proposed Study Area <strong>of</strong> Carbonate Aquifer System <strong>in</strong><strong>the</strong> <strong>Western</strong> <strong>Desert</strong> A-6566. Location <strong>of</strong> Proposed Test Wells <strong>in</strong> <strong>the</strong> <strong>Western</strong> <strong>Desert</strong> A-6667. Location Map <strong>of</strong> <strong>the</strong> Proposed Model Study Area, South Valley Region A-6768. Plann<strong>in</strong>g Procedure for Development <strong>of</strong> Groundwater Resources <strong>in</strong> <strong>the</strong>South Valley Region A-6869. Conceptual Model <strong>of</strong> <strong>the</strong> Lower Cretaceous Aquifer System <strong>in</strong> S<strong>in</strong>ai A-69LIST OF TABLES<strong>Hydrogeology</strong> <strong>of</strong> <strong>Deep</strong> <strong>Aquifers</strong>ixEPIQ Water Policy Reform Program


TablePage1. Local Transmissivity <strong>of</strong> <strong>the</strong> Nubia Sandstone Aquifer, <strong>Western</strong> <strong>Desert</strong> …..…… 2-142. Hydraulic Conductivity <strong>of</strong> <strong>the</strong> Nubia Sandstone Aquifer, <strong>Western</strong> <strong>Desert</strong> ………….2-143. Regional Transmissivity <strong>of</strong> <strong>the</strong> Nubia Sandstone Aquifer, <strong>Western</strong> <strong>Desert</strong> ………..2-154. Change <strong>in</strong> Piezometric Levels <strong>of</strong> <strong>the</strong> Observation Wells <strong>in</strong> <strong>the</strong> <strong>Western</strong> <strong>Desert</strong> …….2-185. Summary <strong>of</strong> Regional Models Calibration for Initial Condition <strong>of</strong> <strong>the</strong> NubiaSandstone Aquifer <strong>in</strong> <strong>the</strong> <strong>Western</strong> <strong>Desert</strong> …………………………………… 2-216. Results <strong>of</strong> Forecast System Response to Groundwater Economic Extraction Plan <strong>in</strong><strong>the</strong> New Valley, <strong>Western</strong> <strong>Desert</strong> ....………………………………………………....2-237. Groundwater Development Priority Areas, East Owe<strong>in</strong>at ……………………………2-248. Predicted Drawdowns Aga<strong>in</strong>st Groundwater Development <strong>in</strong> South Qattara Area ….2-259. Available Groundwater and Present Extraction from <strong>the</strong> Nubia Sandstone AquiferSystem at Different Development Areas, <strong>Western</strong> <strong>Desert</strong> ……………………………2-28<strong>10</strong>. Groundwater Historical Extraction from <strong>the</strong> Nubia Sandstone Aquifer <strong>in</strong> <strong>the</strong><strong>Western</strong> <strong>Desert</strong> dur<strong>in</strong>g <strong>the</strong> Period 1960-1977 ……………...…………………………2-3211. Hydrogeological Characteristics <strong>of</strong> <strong>the</strong> Nubia Sandstone Aquifer Horizons <strong>in</strong>El-Kharga Oasis ……..…….…………………………………………………………2-3312. <strong>Deep</strong> Groundwater Exploitation <strong>in</strong> <strong>the</strong> New Valley Development Areas (1997) ……2-3513. Current Well Design <strong>in</strong> El-Kharga Oasis ……………………………………………2-3614. Hydrogeologic Characteristics <strong>of</strong> <strong>the</strong> Nubia Sandstone Aquifer Horizons <strong>in</strong>El-Dakhla Oasis ………………………………………………………………..………2-3715. Current Well Design <strong>in</strong> El-Dakhla Oasis ……………………………………………..2-3816. Hydrogeologic Characteristics <strong>of</strong> <strong>the</strong> Nubia Sandstone Aquifer Horizons <strong>in</strong>El-Farafra Oasis ………………………………………………………………………2-4017. Hydrogeologic Characteristics <strong>of</strong> <strong>the</strong> Nubia Sandstone Aquifer Horizons <strong>in</strong>El-Bahariya Oasis ……………………………………………………………………2-4218. Features <strong>of</strong> Well Design <strong>in</strong> Siwa Oasis ………………………………………………..2-4819. Possible Future Land Reclamation Plan Utiliz<strong>in</strong>g Nubian Groundwater <strong>in</strong> <strong>the</strong><strong>Western</strong> <strong>Desert</strong> ……..……...………………………………………………………….2-5420. Technical and Hydrogeological Data <strong>of</strong> Wells Tapp<strong>in</strong>g <strong>Deep</strong> <strong>Aquifers</strong> <strong>in</strong> S<strong>in</strong>ai ……..3-1221. Priority Areas for Lower Cretaceous Groundwater Development <strong>in</strong> S<strong>in</strong>ai …………3-32<strong>Hydrogeology</strong> <strong>of</strong> <strong>Deep</strong> <strong>Aquifers</strong>xEPIQ Water Policy Reform Program


LIST OF ABBREVIATIONSDRTPCEECEGSMAF.A.O.GARPADGOEIWACOJICAMALRMPWWRNVDANVIDREGWARIGWWRRIDevelopment Research and Technological Plann<strong>in</strong>g Center, Cairo Univ.European Economic CommunityEgyptian Geological Survey and M<strong>in</strong><strong>in</strong>g AuthorityFood and Agriculture OrganizationGeneral Authority for Rehabilitation Projects and Agricultural DevelopmentGovernment Of EgyptConsultants for Water and EnvironmentJapanese International Cooperation AgencyM<strong>in</strong>istry <strong>of</strong> Agricultural and Land ReclamationM<strong>in</strong>istry <strong>of</strong> Public Works and Water ResourcesNew Valley Development AuthorityNew Valley Irrigation DepartmentGeneral Company for Research and GroundwaterResearch Institute for GroundwaterWater Resources Research Institute<strong>Hydrogeology</strong> <strong>of</strong> <strong>Deep</strong> <strong>Aquifers</strong>xiEPIQ Water Policy Reform Program


EXECUTIVE SUMMARYThis study report was prepared with<strong>in</strong> <strong>the</strong> framework <strong>of</strong> <strong>the</strong> Water Policy Reform ProjectImplementation Plan under <strong>the</strong> Water Supply Augmentation Activity-<strong>Deep</strong> Groundwatercomponent, to address <strong>the</strong> hydrogeological sett<strong>in</strong>g <strong>of</strong> <strong>the</strong> deep aquifer systems <strong>in</strong> <strong>the</strong> <strong>Western</strong><strong>Desert</strong> and S<strong>in</strong>ai, <strong>the</strong>ir groundwater resources potential, <strong>the</strong> historical and current practices <strong>of</strong>deep groundwater development, exploitation and utilization as well as <strong>the</strong>ir availability forfuture development plans. This assessment provides <strong>the</strong> basic foundation for develop<strong>in</strong>g anational strategy for achiev<strong>in</strong>g <strong>the</strong> optimal use <strong>of</strong> deep groundwater, over time. The reportalso <strong>in</strong>cludes <strong>the</strong> plans for additional hydrogeologic <strong>in</strong>vestigations required to better describe<strong>the</strong> deep aquifer systems and to support <strong>the</strong> evaluation <strong>of</strong> susta<strong>in</strong>able and economic deepgroundwater resources potential <strong>in</strong> <strong>the</strong> <strong>Western</strong> <strong>Desert</strong> and S<strong>in</strong>ai.1 The <strong>Western</strong> <strong>Desert</strong>The hydrogeological framework <strong>of</strong> <strong>the</strong> <strong>Western</strong> <strong>Desert</strong> encompasses three pr<strong>in</strong>cipal deepaquifer systems: <strong>the</strong> lower Miocene Moghra sandy aquifer, <strong>the</strong> Tertiary / Upper Cretaceousfissured carbonate aquifer; and <strong>the</strong> Mesozoic / Paleozoic Nubia Sandstone aquifer.The deep groundwater <strong>in</strong> <strong>the</strong>se aquifer systems is considered a non-renewable resourceexcept <strong>the</strong> part <strong>of</strong> <strong>the</strong> Moghra aquifer at <strong>the</strong> <strong>Desert</strong> fr<strong>in</strong>ges <strong>of</strong> <strong>the</strong> Delta region which receivesrecharge from <strong>the</strong> adjacent Nile Delta aquifer.The Nubia Sandstone aquifer <strong>in</strong> <strong>the</strong> <strong>Western</strong> <strong>Desert</strong> is considered to have <strong>the</strong> greatestresource development potential. It conta<strong>in</strong>s large volumes <strong>of</strong> fresh groundwater (


The results <strong>of</strong> <strong>the</strong> Nubia groundwater resource evaluation <strong>in</strong> <strong>the</strong> <strong>Western</strong> <strong>Desert</strong> <strong>in</strong>dicate <strong>the</strong>availability <strong>of</strong> susta<strong>in</strong>able and economic groundwater for <strong>10</strong>0 years <strong>in</strong> <strong>the</strong> New Valley Oases<strong>of</strong>: El-Kharga, El-Dakhla, El-Farafra, and El-Bahariya at an extraction rate <strong>of</strong> 1.045bcm/year.In <strong>the</strong> East Owe<strong>in</strong>at and Siwa Oasis, groundwater model studies showed that groundwatercan be exploited from <strong>the</strong> Nubia Sandstone aquifer at an annual rate <strong>of</strong> 1.2 bcm and 0.14 bcmrespectively, over <strong>10</strong>0 years, although <strong>the</strong> economic evaluation <strong>of</strong> <strong>the</strong> groundwater use <strong>in</strong><strong>the</strong>se two areas has not yet been assessed.The total groundwater extraction <strong>in</strong> <strong>the</strong> <strong>Western</strong> <strong>Desert</strong> <strong>in</strong> 1997 was 0.679 bcm from <strong>the</strong>Nubia Sandstone aquifer and 0.272 bcm from <strong>the</strong> Upper Cretaceous/Tertiary carbonateaquifer systems <strong>in</strong> El-Farafra and Siwa Oasis. It is estimated that 92 percent <strong>of</strong> this totalgroundwater extraction is used for agriculture. The present total reclaimed area underirrigation us<strong>in</strong>g <strong>the</strong> Nubian groundwater is <strong>10</strong>5,000 feddan, while that on <strong>the</strong> Post-Nubiaaquifers is about <strong>10</strong>,000 feddan.Based on <strong>the</strong> groundwater resources potential <strong>of</strong> <strong>the</strong> Nubia Sandstone aquifer, <strong>the</strong> availableadditional groundwater for future developments <strong>in</strong> <strong>the</strong> <strong>Western</strong> <strong>Desert</strong> priority areas are: 220mcm/year <strong>in</strong> El-Farafra Oasis, 83 mcm/year <strong>in</strong> El-Dakhla Oasis, 58 mcm/year <strong>in</strong> El-Bahariya(Figure 2).In <strong>the</strong> areas <strong>of</strong> Dakhla, Farafra and Siwa Oases, naturally flow<strong>in</strong>g groundwater conditionsoccur. Because <strong>of</strong> problems with collaps<strong>in</strong>g wells due to high back pressures dur<strong>in</strong>g rapidclosure, wells are not shut-<strong>of</strong>f daily. This results <strong>in</strong> uncontrolled and cont<strong>in</strong>uous flow<strong>in</strong>gwells caus<strong>in</strong>g water wastage, water logg<strong>in</strong>g and soil sal<strong>in</strong>ization.The GOE has identified a number <strong>of</strong> groundwater development plans for irrigated agricultureprojects <strong>in</strong> <strong>the</strong> South Valley region (East Owe<strong>in</strong>at, Darb El-Arba<strong>in</strong>, Aswan-Abu Simbel roadarea) as well as proposed reclamation plans <strong>in</strong> A<strong>in</strong> El-Dalla and Wadi El-Qubaniya areas.Groundwater conditions at <strong>the</strong>se locations should be <strong>in</strong>vestigated and evaluated, before <strong>the</strong>start <strong>of</strong> <strong>the</strong>ir implementation.To better understand <strong>the</strong> regional hydrogeology <strong>of</strong> <strong>the</strong> Nubia Sandstone aquifer deep testwells should be drilled at Gilf El-Kebir, north East Owe<strong>in</strong>at, El-Kharga-Armant road, A<strong>in</strong> El-Dalla (El-Farafra Oasis), Bahariya-Siwa road, Wadi El-Qubaniya. The present groundwatermonitor<strong>in</strong>g program <strong>in</strong> <strong>the</strong> <strong>Western</strong> <strong>Desert</strong> Oases needs to be streng<strong>the</strong>ned. Measures shouldbe put <strong>in</strong> place to ensure proper and regular well monitor<strong>in</strong>g is carried out.Detailed hydrogeologic studies are recommended for <strong>the</strong> Moghra aquifer, <strong>the</strong> fracturedcarbonate aquifer <strong>in</strong> El-Diffa plateaux, <strong>the</strong> Nubia Sandstone aquifer <strong>in</strong> <strong>the</strong> South Valleyregion, to assess and evaluate <strong>the</strong> economic and susta<strong>in</strong>able groundwater resources potentialfor <strong>the</strong> planned irrigated agriculture <strong>in</strong> <strong>the</strong>se areas. The recommended studies <strong>in</strong>clude detailedgeological and geophysical surveys, drill<strong>in</strong>g <strong>of</strong> test wells, pump<strong>in</strong>g tests and groundwatermodel<strong>in</strong>g.The costs <strong>of</strong> well replacement, ma<strong>in</strong>tenance and operation <strong>in</strong> <strong>the</strong> old reclaimed areas <strong>in</strong> El-Kharga, El-Dakhla, El-Farafra and El-Bahariya Oases are still <strong>the</strong> responsibility <strong>of</strong> <strong>the</strong>MPWWR, while <strong>the</strong> GOE has recently allocated new areas for horizontal expansion projects<strong>Hydrogeology</strong> <strong>of</strong> <strong>Deep</strong> <strong>Aquifers</strong> E - 2 EPIQ Water Policy Reform Program


us<strong>in</strong>g deep groundwater to <strong>the</strong> private sector which will be fully responsible for project<strong>in</strong>frastructure.As <strong>the</strong> Nubia aquifer system groundwater is a non-renewable resource, its development plansshould be based on a gradual process and its extraction and utilization should be rational,economic and susta<strong>in</strong>able. Moreover, it should be realised that <strong>the</strong> <strong>in</strong>itial free-flow<strong>in</strong>ggroundwater condition <strong>in</strong> <strong>the</strong> <strong>Western</strong> <strong>Desert</strong> is temporary and pump<strong>in</strong>g will eventually berequired as <strong>the</strong> groundwater pressures and discharges decrease over time.Techno-economic evaluation studies should be carried out for <strong>the</strong> two groundwaterdevelopment options <strong>of</strong> collective large scale groundwater extraction and widely spaced,small-scale groundwater extraction centers.Corrective measures should be immediately taken for efficient utilization and propermanagement <strong>of</strong> free-flow<strong>in</strong>g groundwater <strong>in</strong> <strong>the</strong> <strong>Western</strong> <strong>Desert</strong> areas <strong>of</strong> El-Dakhla, El-Farafra and Siwa Oases to m<strong>in</strong>imize <strong>the</strong> environmental adverse effects (water wastage, waterlogg<strong>in</strong>g, soil sal<strong>in</strong>ization) currently occurr<strong>in</strong>g <strong>in</strong> <strong>the</strong>se areas.For proper development <strong>of</strong> <strong>the</strong> deep groundwater resources <strong>in</strong> <strong>the</strong> <strong>Western</strong> <strong>Desert</strong> and toprolong <strong>the</strong> Nubia sandstone aquifer utilization period, it is recommended that groundwaterextraction be distributed among <strong>the</strong> different aquifer horizons.It is recommended to promote <strong>the</strong> establishment <strong>of</strong> groundwater user associations <strong>in</strong> <strong>the</strong><strong>Western</strong> <strong>Desert</strong> reclaimed areas. These organizations would be responsible for groundwaterdevelopment, operation, ma<strong>in</strong>tenance, with full technical coord<strong>in</strong>ation and support from <strong>the</strong>MPWWR.2 S<strong>in</strong>aiSix deep aquifer systems have been identified <strong>in</strong> S<strong>in</strong>ai: <strong>the</strong> Miocene sands, <strong>the</strong> Eocenelimestones, <strong>the</strong> Upper Cretaceous carbonates, <strong>the</strong> lower Cretaceous sandstones, <strong>the</strong> Jurassicsedimentary rocks and <strong>the</strong> Paleozoic sandstones.The Lower Cretaceous is considered to be <strong>the</strong> aquifer with <strong>the</strong> greatest development potentialamong <strong>the</strong> o<strong>the</strong>r aquifer systems <strong>in</strong> S<strong>in</strong>ai due to <strong>the</strong>ir limited extent, poor productivity and/orwater quality.The lower Cretaceous Sandstones formation (El-Malhah formation) extends from its sou<strong>the</strong>rnoutcrops along El-Egma and El-Hazim plateau and northwards to <strong>the</strong> north <strong>of</strong> Gebels El-Maghara – El-Halal and to <strong>the</strong> east to <strong>the</strong> Dead Sea-Gulf <strong>of</strong> Aqaba Rift Valley <strong>in</strong> sou<strong>the</strong>rnIsrael, and westward to <strong>the</strong> Gulf <strong>of</strong> Suez Rift Valley.The Lower Cretaceous aquifer is unconf<strong>in</strong>ed north <strong>of</strong> its sou<strong>the</strong>rn outcrops, and conf<strong>in</strong>ed <strong>in</strong>central and north S<strong>in</strong>ai where it is covered by a thick limestone/shale cover. The aquifertransmissivity ranges between 11 m 2 /d and 400 m 2 /d. However it atta<strong>in</strong>s m<strong>in</strong>imum values <strong>of</strong>


<strong>the</strong> Dead Sea-Wadi Arava <strong>in</strong> south Israel and west toward Ayun Musa area on <strong>the</strong> Gulf <strong>of</strong>Suez, with <strong>the</strong>se two areas represent<strong>in</strong>g <strong>the</strong> aquifer natural discharge zones.The lower Cretaceous aquifer groundwater sal<strong>in</strong>ity ranges between 500 ppm-1500 ppm <strong>in</strong>sou<strong>the</strong>rn S<strong>in</strong>ai plateau areas, to 1600 ppm-3000 ppm <strong>in</strong> central S<strong>in</strong>ai. In <strong>the</strong> nor<strong>the</strong>rnforeshore zone and western coastal zone <strong>of</strong> S<strong>in</strong>ai, <strong>the</strong> sal<strong>in</strong>ity sharply <strong>in</strong>creases to reach227,000 ppm except <strong>in</strong> <strong>the</strong> area <strong>of</strong> Ayun Musa where it ranges between 2500-3000 ppm.The Lower Cretaceous aquifer storage capacity is estimated to be 1<strong>10</strong>0 bcm, while that withgroundwater sal<strong>in</strong>ity <strong>of</strong> ≤2000 ppm is 980 bcm. The aquifer water balance estimation<strong>in</strong>dicates that <strong>the</strong> total annual subsurface <strong>in</strong>flow <strong>in</strong> <strong>the</strong> aquifer toward central S<strong>in</strong>ai is 21.4mcm, and <strong>the</strong> aquifer annual outflows toward <strong>the</strong> Dead Sea-Wadi Arava <strong>in</strong> South Israel is 15mcm, and to Ayun Musa area is 6 mcm. The susta<strong>in</strong>able and economic groundwaterextraction plans from <strong>the</strong> Lower Cretaceous aquifer <strong>in</strong> S<strong>in</strong>ai for different use sectors has notyet been evaluated.At present, <strong>the</strong> total annual groundwater extraction from <strong>the</strong> different deep aquifer systems <strong>in</strong>S<strong>in</strong>ai is 3.199 mcm <strong>of</strong> which 1.89 mcm is used for agriculture and 1.309 mcm for domesticuse. Additional groundwater <strong>of</strong> 1.36 mcm/year can be utilized when putt<strong>in</strong>g <strong>the</strong> exist<strong>in</strong>gunused wells <strong>in</strong>to operation. These wells were drilled and equipped with pump<strong>in</strong>g equipment,but <strong>the</strong>ir use not allocated to <strong>the</strong> various sectors.Based on <strong>the</strong> aquifer productivity, depth to water, and water quality, first priority areas for <strong>the</strong>development <strong>of</strong> <strong>the</strong> Lower Cretaceous groundwater <strong>in</strong> S<strong>in</strong>ai were identified to be at <strong>the</strong> downstreams <strong>of</strong> Wadi Feiran and Wadi Gharandal <strong>in</strong> <strong>Western</strong> S<strong>in</strong>ai followed by <strong>the</strong> area betweenEl-M<strong>in</strong>sherah, Nakhl and El-Bruk <strong>in</strong> central S<strong>in</strong>ai, and Wadi Watir <strong>in</strong> south S<strong>in</strong>ai.At present, <strong>the</strong> drill<strong>in</strong>g <strong>of</strong> wells, supply <strong>of</strong> well pump<strong>in</strong>g equipment, water storage reservoirs,well operation and ma<strong>in</strong>tenance are <strong>the</strong> responsibility <strong>of</strong> <strong>the</strong> MPWWR, while <strong>the</strong> water usersare only responsible for <strong>the</strong> supply and ma<strong>in</strong>tenance <strong>of</strong> <strong>the</strong> drip irrigation systems.The results <strong>of</strong> <strong>the</strong> recently drilled deep test wells <strong>in</strong> <strong>the</strong> sou<strong>the</strong>rn plateau areas <strong>of</strong> S<strong>in</strong>ai to test<strong>the</strong> lower Cretaceous aquifer, toge<strong>the</strong>r with <strong>the</strong> available aquifer hydrogeologic data <strong>in</strong> <strong>the</strong>rest <strong>of</strong> S<strong>in</strong>ai, can adequately establish <strong>the</strong> data-base required for <strong>the</strong> recommended simulationmodel <strong>of</strong> <strong>the</strong> lower Cretaceous sandstone aquifer <strong>in</strong> S<strong>in</strong>ai. The simulations model would beused to evaluate and assess <strong>the</strong> economic and susta<strong>in</strong>able groundwater potential <strong>of</strong> <strong>the</strong> LowerCretaceous Sandstone aquifer for different use sectors, over time.It is recommended to allocate <strong>the</strong> deep well use sector before <strong>the</strong> implement<strong>in</strong>g stage, to get<strong>the</strong> full use <strong>of</strong> it.The absence <strong>of</strong> groundwater monitor<strong>in</strong>g system necessitates <strong>the</strong> establishment <strong>of</strong> monitor<strong>in</strong>gwell network <strong>in</strong> <strong>the</strong> areas <strong>of</strong> exist<strong>in</strong>g and future well fields to observe <strong>the</strong> deep aquiferresponse to groundwater extraction (water level and quality). A telemetry system isrecommended centrally to receive cont<strong>in</strong>uous and regular well monitor<strong>in</strong>g records fromremote wells networks.Encouragement and <strong>in</strong>centives for greater private sector participation <strong>in</strong> well operation andma<strong>in</strong>tenance <strong>in</strong> S<strong>in</strong>ai is recommended.<strong>Hydrogeology</strong> <strong>of</strong> <strong>Deep</strong> <strong>Aquifers</strong> E - 4 EPIQ Water Policy Reform Program


1 INTRODUCTION1.1 OverviewEgypt’s Nile River water resources is under <strong>in</strong>creas<strong>in</strong>g stress due to <strong>in</strong>creas<strong>in</strong>gcompetition for available water. Irrigation needs are expand<strong>in</strong>g, as are domestic and<strong>in</strong>dustrial water needs due to population and <strong>in</strong>dustrial growth. An <strong>in</strong>creas<strong>in</strong>g load <strong>of</strong>pollutants is threaten<strong>in</strong>g Egypt’s water quality, environment and <strong>the</strong> health <strong>of</strong> itscitizens. The M<strong>in</strong>istry <strong>of</strong> Public Works and Water Resources (MPWWR) is <strong>the</strong>primary Egyptian governmental agency charged with <strong>the</strong> management <strong>of</strong> waterresources. Keenly aware <strong>of</strong> <strong>the</strong> need to improve <strong>the</strong> utilization efficiency,productivity, and protection <strong>of</strong> water resources <strong>in</strong> Egypt, <strong>the</strong> MPWWR and <strong>the</strong> USAgency fpr Internaitonal Development (USAID) <strong>in</strong> 1996-97 developed a “waterresources results package” based upon years <strong>of</strong> earlier jo<strong>in</strong>t experience <strong>in</strong> waterresources management projects.The package had four major results: 1) improved irrigation policy assessment andplann<strong>in</strong>g process, 2) improved irrigation system management, 3) improved privatesector participation <strong>in</strong> policy change, and 4) improved capacity to manage <strong>the</strong> policyprocess. The MPWWR and USAID designed <strong>the</strong> water resources results packageaimed at policy analyses and adjuctments lead<strong>in</strong>g to improved water use efficiencyand productivity. Specific objectives are:1. To <strong>in</strong>crease MPWWR knowledge and capabilities to analyze and formulate strategies,policies and plans related to <strong>in</strong>tegrated water supply augmentation, conservation andutilization, and to <strong>the</strong> protection <strong>of</strong> <strong>the</strong> Nile water quality.2. To improve water allocation and distribution management policies for conservation <strong>of</strong>water while ma<strong>in</strong>ta<strong>in</strong><strong>in</strong>g farm <strong>in</strong>come.3. To recover <strong>the</strong> capital cost <strong>of</strong> mesqa improvement, and to establish a policy for <strong>the</strong>recovery <strong>of</strong> operation and ma<strong>in</strong>tenance costs <strong>of</strong> <strong>the</strong> ma<strong>in</strong> system.4. To <strong>in</strong>crease users’ <strong>in</strong>volvement <strong>in</strong> system operation and management.5. To <strong>in</strong>troduce a decentralized plann<strong>in</strong>g and decision mak<strong>in</strong>g process at <strong>the</strong> irrigationdistrict level.In early 1997, <strong>the</strong> water reources results package was folded <strong>in</strong>to <strong>the</strong> USAIDMission’s Agricultural Policy Re<strong>of</strong>orm Program (APRP). APRP is a broad-basedpolicy reform program <strong>in</strong>volv<strong>in</strong>g five Egyptian M<strong>in</strong>istries (M<strong>in</strong>istry <strong>of</strong> Agricultureand Land Reclamation (MALR), MPWWR, M<strong>in</strong>istry <strong>of</strong> Trade and Supply (MOTS),M<strong>in</strong>stry <strong>of</strong> Public Enterprise (MPE) and M<strong>in</strong>istry <strong>of</strong> International Cooperation).APRP has <strong>the</strong> goal <strong>of</strong> develop<strong>in</strong>g and implement<strong>in</strong>g policy reform recommendations<strong>in</strong> support <strong>of</strong> private enterprise <strong>in</strong> agriculture and agribus<strong>in</strong>ess.USAID supports <strong>the</strong> MPWWR <strong>in</strong> five progam activities under APRP. These fiveactivities are: 1) water policy analyses, 2) water policy advisory unit, 3) watereducation and communication, 4) ma<strong>in</strong> systems management, and 5) Nile Rivermonitor<strong>in</strong>g, forecast<strong>in</strong>g and simulation. USAID supports <strong>the</strong> M<strong>in</strong>istry’s effortsthrough cash transfers (tranches) based on performance <strong>in</strong> achiev<strong>in</strong>g identified andagreed upon policy reform benchmarks and technical assistance.Technical assistance for <strong>the</strong> water policy analysis activity is provided through a taskorder (Contract PCE-I-00-96-00002-00, Task Order 807) under <strong>the</strong> umbrella <strong>of</strong> <strong>the</strong><strong>Hydrogeology</strong> <strong>of</strong> <strong>Deep</strong> <strong>Aquifers</strong> 1 - 1 EPIQ Water Policy Reform Program


Environmental Policy and Institutional Streng<strong>the</strong>n<strong>in</strong>g Indef<strong>in</strong>ite Quantity Contract(EPIQ) between USAID and a consortium headed by <strong>the</strong> International ResourcesGroup (IRG) and W<strong>in</strong>rock International. Local Technical Assistance andadm<strong>in</strong>istrative support is provided through a subcontract with Nile Consultants.This report is concerned with <strong>the</strong> hydrogeologic sett<strong>in</strong>g and <strong>the</strong> potential resources <strong>of</strong><strong>the</strong> deep aquifer systems <strong>in</strong> <strong>the</strong> <strong>Western</strong> <strong>Desert</strong> and S<strong>in</strong>ai, with special emphasis on<strong>the</strong> Nubia Sandstone aquifer <strong>in</strong> <strong>the</strong> <strong>Western</strong> <strong>Desert</strong> and Cretaceous aquifers <strong>in</strong> S<strong>in</strong>ai.1.2 Objectives <strong>of</strong> <strong>the</strong> StudyThe specific objectives <strong>of</strong> this study can be summarized as follows:1. Review previous <strong>in</strong>vestigations to assess <strong>the</strong> hydrogeologic characteristics <strong>of</strong> <strong>the</strong> deepgroundwater aquifers <strong>in</strong> <strong>the</strong> <strong>Western</strong> <strong>Desert</strong> and S<strong>in</strong>ai, <strong>in</strong>clud<strong>in</strong>g aquiferslithostratigraphic units, geometry, hydrogeologic boundaries, aquifer hydraulicparameters, potentiometery, regional groundwater flow, groundwater quality and <strong>the</strong>susta<strong>in</strong>able and economic deep groundwater resources which can be best utilized foragriculture and o<strong>the</strong>r use sectors.2. Identify priority areas for deep groundwater development and uses based on aquifercharacteristics and potential.Identify areas with <strong>in</strong>adequate hydrogeologic <strong>in</strong>formation <strong>of</strong> deep groundwateraquifers <strong>in</strong> <strong>the</strong> <strong>Western</strong> <strong>Desert</strong> and S<strong>in</strong>ai <strong>in</strong> order to design a plan, which will provide<strong>the</strong> <strong>in</strong>formation necessary to assess potential resources.1.3 Approach and MethodologyThis assessment is based on <strong>in</strong>formation obta<strong>in</strong>ed from <strong>the</strong> follow<strong>in</strong>g sources:(i) Review <strong>of</strong> documents, reports, and previous studies.(ii) Hydrogeologic data <strong>of</strong> <strong>the</strong> deep oil exploration wells and deep water testwells previously drilled <strong>in</strong> <strong>the</strong> <strong>Western</strong> <strong>Desert</strong> and S<strong>in</strong>ai (Unfortunately, <strong>the</strong>results <strong>of</strong> recent deep test drill<strong>in</strong>g <strong>in</strong> north and south S<strong>in</strong>ai were not madeavailable).(iii) Data collected from <strong>the</strong> Irrigation Directorates dur<strong>in</strong>g team field visits toseveral deep groundwater development sites <strong>in</strong> <strong>the</strong> <strong>Western</strong> <strong>Desert</strong> Oases andS<strong>in</strong>ai.1.4 Description <strong>of</strong> <strong>the</strong> <strong>Report</strong>This report is a status report made up <strong>of</strong> six chapters. Chapter 1 is an<strong>in</strong>troduction highlight<strong>in</strong>g <strong>the</strong> background and objectives <strong>of</strong> <strong>the</strong> study. Chapter2 describes <strong>the</strong> hydrogeologic characteristics <strong>of</strong> <strong>the</strong> deep aquifer systems <strong>in</strong><strong>the</strong> <strong>Western</strong> <strong>Desert</strong> with special emphasis on <strong>the</strong> Nubia Sandstone aquifersystem. The evaluation <strong>of</strong> deep groundwater resources is presented anddevelopment priority areas are identified. The hydrogeology <strong>of</strong> <strong>the</strong> deepaquifer systems <strong>in</strong> S<strong>in</strong>ai is presented <strong>in</strong> Chapter 3, focus<strong>in</strong>g on <strong>the</strong> Cretaceousaquifers and <strong>the</strong>ir resource potential as well as <strong>the</strong> identification <strong>of</strong> areas <strong>of</strong>highest priority for deep groundwater development and exploitation. Chapter 4addresses <strong>the</strong> areas with <strong>in</strong>adequate hydrogeologic <strong>in</strong>formation <strong>in</strong> <strong>the</strong> <strong>Western</strong><strong>Hydrogeology</strong> <strong>of</strong> <strong>Deep</strong> <strong>Aquifers</strong> 1 - 2 EPIQ Water Policy Reform Program


<strong>Desert</strong> and S<strong>in</strong>ai and states plans for additional <strong>in</strong>vestigations to evaluate <strong>the</strong>regional sett<strong>in</strong>g <strong>of</strong> <strong>the</strong> deep aquifer systems and <strong>the</strong>ir groundwater resources.Conclusions and recommendations are summarized <strong>in</strong> Chapter 5, and Chapter6 conta<strong>in</strong>s a list <strong>of</strong> <strong>the</strong> references that have been used <strong>in</strong> <strong>the</strong> preparation <strong>of</strong> thisreport.<strong>Hydrogeology</strong> <strong>of</strong> <strong>Deep</strong> <strong>Aquifers</strong> 1 - 3 EPIQ Water Policy Reform Program


2. HYDROGEOLOGY OF DEEP AQUIFER SYSTEMS IN THEWESTERN DESERT2.1 Previous InvestigationsThe groundwater resources <strong>of</strong> <strong>the</strong> deep aquifer systems <strong>in</strong> <strong>the</strong> <strong>Western</strong> <strong>Desert</strong><strong>of</strong> Egypt have attracted <strong>the</strong> attention <strong>of</strong> <strong>in</strong>vestigators s<strong>in</strong>ce <strong>the</strong> late 1920’s.Many authors have discussed <strong>the</strong> regional hydrogeologic conditions <strong>of</strong> <strong>the</strong><strong>Western</strong> <strong>Desert</strong> and <strong>the</strong> areas <strong>of</strong> El-Kharga, El-Dakhla, El-Farafra, El-Bahariya, Siwa, East Owe<strong>in</strong>at and South Kharga-Toshka bas<strong>in</strong>.Important contributions to <strong>the</strong> understand<strong>in</strong>g <strong>of</strong> <strong>the</strong> regional hydrogeologicconditions <strong>in</strong> <strong>the</strong> <strong>Western</strong> <strong>Desert</strong> were made <strong>in</strong> <strong>in</strong>vestigations by Ball (1927),Hellestrom (1940), Shata (1953), Ezzat (1959), Burdon and Pavlov (1959),Parsons (1963), Ezzat et al. (1962), Jacob (1964), Hemida (1968), Borelli andKaranjac (1968), Ezzat and Abu El-Atta (1974), Nour et al. (1979), Jo<strong>in</strong>tventureQattara (1979), General Petroleum Company (1985), Thorwei (1987),Nour (1987), Talkhan (1988) and Shousha et al. (1995), and <strong>the</strong> controlledhydrogeologic data from deep oil exploration wells, ma<strong>in</strong>ly located to <strong>the</strong>north <strong>of</strong> lat. 28 o N and about 400 deep groundwater wells drilled <strong>in</strong> <strong>the</strong><strong>Western</strong> <strong>Desert</strong> development areas <strong>of</strong> El-Kharga, El-Dakhla, El-Farafra, El-Bahariya, Siwa, East Owe<strong>in</strong>at, South Kharga, and Toshka bas<strong>in</strong> with depthsrang<strong>in</strong>g from 500 m to 1200 m.2.2 Physiographic Prov<strong>in</strong>ces <strong>of</strong> <strong>the</strong> <strong>Western</strong> <strong>Desert</strong>The <strong>Western</strong> <strong>Desert</strong> is a plateau area (680,000 km 2 ) <strong>of</strong> roll<strong>in</strong>g surfaces andrugged upland surfaces, cut by dry wadis. The plateau is <strong>in</strong>terrupted by naturaldepressions formed by erosion, wea<strong>the</strong>r<strong>in</strong>g, fault<strong>in</strong>g and fold<strong>in</strong>g. Some partsare covered by rock rubble, or by bed rocks that crop out. Great swaths <strong>of</strong> S-SE trend<strong>in</strong>g sand dunes also make up some <strong>of</strong> <strong>the</strong> plateau surface. Theregional slope <strong>of</strong> <strong>the</strong> plateau is eastward and its general altitude ranges from200 to 400 meters above mean sea level (m.a.m.s.l.).The <strong>Western</strong> <strong>Desert</strong> may be divided <strong>in</strong>to three pr<strong>in</strong>cipal physiographicprov<strong>in</strong>ces, as follows: (Figure 2)The Sou<strong>the</strong>rn PlateauThe sou<strong>the</strong>rn plateau extends over an area <strong>of</strong> 284,000 km 2 , from <strong>the</strong> Nile Valley <strong>in</strong> <strong>the</strong> east to<strong>the</strong> Tebesti and Ennedi highlands (Chad) <strong>in</strong> <strong>the</strong> west; and from <strong>the</strong> highlands <strong>of</strong> Kordfan(Sudan) <strong>in</strong> <strong>the</strong> south to <strong>the</strong> Eocene-Cretaceous escarpment <strong>in</strong> <strong>the</strong> north. The surface <strong>of</strong> thisplateau is covered ma<strong>in</strong>ly by <strong>the</strong> known Nubia Sandstone sequences and islands <strong>of</strong> basementrocks developed mostly <strong>in</strong> <strong>the</strong> south. Mov<strong>in</strong>g northward, <strong>the</strong> ground surface falls steadilyfrom Gilf El-Kebir (average elevation : 500 m.a.m.s.l.) to <strong>the</strong> Kharga-Dakhla Oases (averageelevation < 200 m.a.m.s.l.) and towards <strong>the</strong> Nile Valley until it dips under <strong>the</strong> Eocene-Cretaceous escarpment.The areas <strong>of</strong> south Kharga-Toshka, East Owe<strong>in</strong>at, El-Kharga and El-Dakhla Oases arelocated with<strong>in</strong> <strong>the</strong> sou<strong>the</strong>rn plateau.<strong>Hydrogeology</strong> <strong>of</strong> <strong>Deep</strong> <strong>Aquifers</strong> 2 - 1 EPIQ Water Policy Reform Program


The Central PlateauThe central plateau covers an area <strong>of</strong> 253,000 km 2 west <strong>of</strong> <strong>the</strong> Nile, and consist ma<strong>in</strong>ly <strong>of</strong>compact Eocene and Cretaceous limestones underla<strong>in</strong> by <strong>the</strong> s<strong>of</strong>ter clastics <strong>of</strong> <strong>the</strong> Mesozoic-Paleozoic age (Nubia Sandstones). In <strong>the</strong> south, it is well def<strong>in</strong>ed by <strong>the</strong> bold escarpmentoverlook<strong>in</strong>g <strong>the</strong> sandstone low lands that form <strong>the</strong> floor <strong>of</strong> El-Dakhla and El-Kharga Oases.In <strong>the</strong> east, it is <strong>in</strong>terrupted by <strong>the</strong> Nile Valley where it forms tower<strong>in</strong>g cliffs. The nor<strong>the</strong>rnboundary is <strong>the</strong> steep scarp on <strong>the</strong> north side <strong>of</strong> Siwa and Qattara depressions and on <strong>the</strong>west, it is overla<strong>in</strong> by <strong>the</strong> Great Sand Sea.The plateau is broad and atta<strong>in</strong>s a maximum height <strong>in</strong> <strong>the</strong> extreme south <strong>of</strong> over 500m.a.m.s.l. From <strong>the</strong>re it slopes gently northward, where it is <strong>in</strong>terrupted by <strong>the</strong> large naturaldepressions <strong>of</strong> Siwa, Qattara, El-Natrun, El-Fareigh, El-Fayum, El-Rayan, El-Bahariya andEl-Farafra and prom<strong>in</strong>ent siefs <strong>in</strong> <strong>the</strong> south, as <strong>the</strong> Abu Muharriq dune belt.The Nor<strong>the</strong>rn PlateauThe nor<strong>the</strong>rn plateau extends from <strong>the</strong> bold escarpment at Siwa and <strong>the</strong> Qattara Depressionsnorthward to <strong>the</strong> Mediterranean, and from <strong>the</strong> Nile Delta westward to <strong>the</strong> Libyan border,cover<strong>in</strong>g an area <strong>of</strong> 122,000 km 2 . The underly<strong>in</strong>g rocks <strong>of</strong> this plateau are limestones andsandstones <strong>of</strong> Miocene age.2.3 Regional Geological Sett<strong>in</strong>g2.3.1 StratigraphyBased on <strong>the</strong> results <strong>of</strong> surface geological mapp<strong>in</strong>g and deep test drill<strong>in</strong>g <strong>in</strong> <strong>the</strong><strong>Western</strong> <strong>Desert</strong>, <strong>the</strong> regional geological succession could be identified.A schematic geological map show<strong>in</strong>g <strong>the</strong> distribution <strong>of</strong> <strong>the</strong> lithostratigraphicunits is shown <strong>in</strong> Figure (3), while Figures (4) and (5) represent <strong>the</strong>stratigraphic type sections <strong>in</strong> <strong>the</strong> nor<strong>the</strong>rn and sou<strong>the</strong>rn parts <strong>of</strong> <strong>the</strong> <strong>Western</strong><strong>Desert</strong>, respectively. Descriptions <strong>of</strong> <strong>the</strong> different lithostratigraphic units <strong>in</strong> <strong>the</strong><strong>Western</strong> <strong>Desert</strong>, which are <strong>of</strong> hydrogeologic importance are here<strong>in</strong>after givenfrom older to younger.2.3.1.1 The Basement ComplexThe basement complex is exposed prom<strong>in</strong>ently to <strong>the</strong> southwest <strong>in</strong> <strong>the</strong> Gebel El-Owe<strong>in</strong>at area, while small exposures occur <strong>in</strong> <strong>the</strong> areas between Owe<strong>in</strong>at andAswan near Bir Tarfawi, Bir Nakhlai, Bir Dungul, Aswan and <strong>in</strong> <strong>the</strong> vic<strong>in</strong>ity <strong>of</strong>Abu Bayan to <strong>the</strong> south <strong>of</strong> Kharga Oasis. The basement is overla<strong>in</strong> by <strong>the</strong> NubiaSandstone sequences and <strong>the</strong>ir contact surfaces are marked ei<strong>the</strong>r by unconformityor by faults.The basement rocks consist ma<strong>in</strong>ly <strong>of</strong> granites and granodiorites. Figure (6) is abasement relief map which was compiled based on <strong>the</strong> results <strong>of</strong> geophysicalsurveys with depth control from oil exploratory and water test wells. The map<strong>in</strong>dicates that <strong>the</strong> basement surface elevations range from +<strong>10</strong>0 m near its<strong>Hydrogeology</strong> <strong>of</strong> <strong>Deep</strong> <strong>Aquifers</strong> 2 - 2 EPIQ Water Policy Reform Program


outcropp<strong>in</strong>g areas <strong>in</strong> <strong>the</strong> sou<strong>the</strong>rn part <strong>of</strong> <strong>the</strong> <strong>Western</strong> <strong>Desert</strong> to – 4500 m south <strong>of</strong>Siwa Oasis. The map also shows several structural trends which may affectgroundwater flow, as shown <strong>in</strong> Figure (7):• Bir Dessouki-South Qattara Depression low• Farafra – Bahariya – Abu Roash high• North Gilf El-Kebir-Dakhla-Assiout low• Bir Tarfawi-Abu Bayan high• Bir Kerim-S<strong>in</strong> El-Kaddab low• Bir Nakhlai-Aswan high2.3.1.2 The Nubia Sandstone SequencesThe Nubia Sandstone sequence rests unconformably on <strong>the</strong> rugged surface <strong>of</strong> <strong>the</strong>basement complex, and comprises all clastic sediments from <strong>the</strong> top <strong>of</strong> <strong>the</strong> LowerCenomanian (Upper Cretaceous) to <strong>the</strong> Pre-Cambrian Basement. The generalgeological map (Figure 3), shows <strong>the</strong> area distribution <strong>of</strong> <strong>the</strong>se deposits on <strong>the</strong>surface. The deposits cover <strong>the</strong> floors <strong>of</strong> El-Kharga, El-Dakhla, El-Bahariya Oasesand extend outcropp<strong>in</strong>g <strong>in</strong> western and sou<strong>the</strong>rn directions towards <strong>the</strong> El-Gilf El-Kebir- Nasser Lake bas<strong>in</strong> area, while disappear<strong>in</strong>g under a thick blanket <strong>of</strong> claysand carbonates north <strong>of</strong> lat. 25 o N. The Nubia sandstones consist <strong>of</strong> alternat<strong>in</strong>g beds<strong>of</strong> sandstone, shale and clay. The average sand/shale ratio is about 70 percent. Theshale and clay beds are laterally discont<strong>in</strong>uous and <strong>of</strong> vary<strong>in</strong>g thickness with m<strong>in</strong>orlateral extent <strong>in</strong> <strong>the</strong> sou<strong>the</strong>rn part <strong>of</strong> <strong>the</strong> <strong>Western</strong> <strong>Desert</strong> and an <strong>in</strong>crease northwardand westward.The Nubia Sandstone <strong>in</strong>creases <strong>in</strong> thickness from 200 m to 700 m <strong>in</strong> East Owe<strong>in</strong>atarea, 300 m to 900 m <strong>in</strong> El-Kharga Oasis, 1,500 m <strong>in</strong> El-Dakhla Oasis, 2,200 m <strong>in</strong>El-Farafra Oasis, 1,800 m <strong>in</strong> El-Bahariya Oasis and 3,500 m west <strong>of</strong> El-FarafraOasis.In <strong>the</strong> vic<strong>in</strong>ities <strong>of</strong> <strong>the</strong> basement outcrops, <strong>the</strong> thickness <strong>of</strong> <strong>the</strong> Nubia Sandstone isreduced to less than 50 m.2.3.1.3 Upper CretaceousFrom El-Kharga and El-Dakhla Oases northward, shale and carbonate rocks <strong>of</strong> <strong>the</strong>Upper Cretaceous age overlie <strong>the</strong> Nubia Sandstone sequence, form<strong>in</strong>g animpervious cap.With<strong>in</strong> El-Kharga and El-Dakhla Oases areas, <strong>the</strong> variegated shales and <strong>the</strong>overly<strong>in</strong>g Dakhla shales, <strong>of</strong> <strong>the</strong> Campanion and Maestrichtian ages respectively,form <strong>the</strong> conf<strong>in</strong><strong>in</strong>g formation to <strong>the</strong> Nubia Sandstone. The thickness <strong>of</strong> <strong>the</strong>variegated shales varies between 126 m <strong>in</strong> El-Dakhla and 265 m <strong>in</strong> El-Kharga.Northward, <strong>the</strong> variegated shales change <strong>in</strong>to more sandy facies. The Dakhlashales <strong>in</strong>crease gradually from 130 m <strong>in</strong> south Kharga to 300 m <strong>in</strong> <strong>the</strong> sou<strong>the</strong>rn part<strong>of</strong> El-Farafra, where it passes laterally northward <strong>in</strong>to chalk form<strong>in</strong>g an imperviousfloor <strong>in</strong> El-Farafra.<strong>Hydrogeology</strong> <strong>of</strong> <strong>Deep</strong> <strong>Aquifers</strong> 2 - 3 EPIQ Water Policy Reform Program


South <strong>of</strong> El-Kharga, and El-Dakhla Oases, <strong>the</strong> Upper Cretaceous complex ismiss<strong>in</strong>g and <strong>the</strong> Nubia Sandstone is exposed on <strong>the</strong> surface.2.3.1.4 Tertiary DepositsThe plateau area surround<strong>in</strong>g <strong>the</strong> depressions <strong>of</strong> south-Kharga, El-Kharga, El-Dakhla, El-Farafra, El-Bahariya, Siwa and Qattara is covered by Tertiary carbonaterocks <strong>of</strong> Eocene age. Their thicknesses range between 500 m and 600 m aroundEl-Dakhla-El-Kharga scarp and 150 m around El-Farafra Oasis.The Dabaa shale formation <strong>of</strong> Eocene-Oligocene age occurs underly<strong>in</strong>g <strong>the</strong> QattaraDepression and extends northward to <strong>the</strong> northwestern coast and eastward to <strong>the</strong>Nile Delta, while p<strong>in</strong>ch<strong>in</strong>g out to <strong>the</strong> west and <strong>the</strong> south <strong>of</strong> <strong>the</strong> depression. Thethickness <strong>of</strong> <strong>the</strong> Dabaa shales ranges between 150 m and 200 m.Basalt <strong>in</strong>trusions <strong>of</strong> <strong>the</strong> Oligocene age occur <strong>in</strong> several localities <strong>in</strong> El-BahariyaOasis, Gebel Qatarani, north <strong>of</strong> Fayoum and <strong>in</strong> <strong>the</strong> south Kharga area north <strong>of</strong>Gebel El-Asr.The lower Miocene Moghra formation is composed <strong>of</strong> sand and sandstone withclay and siltstone <strong>in</strong>tercalations. It overlies <strong>the</strong> Dabaa shales and extends from <strong>the</strong>western fr<strong>in</strong>ges <strong>of</strong> <strong>the</strong> Nile Delta to <strong>the</strong> Qattara Depression and southward to El-Fayoum. It is facially changed <strong>in</strong>to limestones and shales to <strong>the</strong> west <strong>of</strong> <strong>the</strong> QattaraDepression.The entire nor<strong>the</strong>rn scarp <strong>of</strong> Siwa Oasis and <strong>the</strong> plateau north <strong>of</strong> <strong>the</strong> QattaraDepression is covered by <strong>the</strong> Middle Miocene Marmarica limestone formation (orGiaghboub formation) with a reported thickness <strong>of</strong> 80 m at Siwa Oasis.2.3.1.5 Quaternary – Recent DepositsLacustr<strong>in</strong>e deposits are known to exist <strong>in</strong> El-Kharga Oasis, while sabkhas and saltmarshes exist <strong>in</strong> <strong>the</strong> small depressions located at <strong>the</strong> western and southwesternedges <strong>of</strong> <strong>the</strong> Qattara Depressions (Qara and Tibaghbagh) and its floor.Sand sheets and sand dunes cover <strong>the</strong> surface at several locations, mostconspicuously at <strong>the</strong> Great Sand Sea along <strong>the</strong> <strong>Western</strong> border between Siwa Oasisand El-Gilf El-Kebir, and Ghard Abu Muharriq between west El-Bahariya and El-Kharga Oases.2.3.2 Structural FrameworkBased on <strong>the</strong> available geophysical data supported by geological evidence, <strong>the</strong><strong>Western</strong> <strong>Desert</strong> has been subjected to several tectonic movements which resulted <strong>in</strong><strong>the</strong> development <strong>of</strong> <strong>the</strong> follow<strong>in</strong>g major structural blocks, shown <strong>in</strong> Figure (8),(Ge<strong>of</strong>izika, 1966-Borelli; 1968 and Ezzat, 1974).<strong>Hydrogeology</strong> <strong>of</strong> <strong>Deep</strong> <strong>Aquifers</strong> 2 - 4 EPIQ Water Policy Reform Program


2.3.2.1 The Nor<strong>the</strong>rn Up-Thrown BlockThe east-west oriented Siwa Oasis is located <strong>in</strong> this block which is separated from<strong>the</strong> rest <strong>of</strong> <strong>the</strong> <strong>Western</strong> <strong>Desert</strong> blocks by <strong>the</strong> east-west fault runn<strong>in</strong>g south <strong>of</strong> <strong>the</strong>Siwa Oasis and extend<strong>in</strong>g <strong>in</strong>to Libya.2.3.2.2 The Middle Down-Thrown BlockThe A<strong>in</strong> El-Dalla Oasis, situated west <strong>of</strong> El-Farafra Oasis, is located with<strong>in</strong> <strong>the</strong> A<strong>in</strong>El-Dalla bas<strong>in</strong>, oriented <strong>in</strong> a NE-SW direction. The Kufra bas<strong>in</strong> <strong>in</strong> sou<strong>the</strong>ast Libyais oriented <strong>in</strong> <strong>the</strong> same direction. The A<strong>in</strong> El-Dalla bas<strong>in</strong> is situated along <strong>the</strong> axis<strong>of</strong> maximum development <strong>of</strong> <strong>the</strong> Nubia-type sandstones <strong>in</strong> <strong>the</strong> <strong>Western</strong> <strong>Desert</strong>.The El-Farafra – El-Bahariya uplift forms <strong>the</strong> eastern boundary <strong>of</strong> <strong>the</strong> middledown-thrown block, while its western boundary is formed by <strong>the</strong> jabal Dalma(Libya)-Bahariya-Abu Roash uplift.2.3.2.3 The Sou<strong>the</strong>rn Up-Thrown BlockThe sou<strong>the</strong>rn up-thrown block occupies most <strong>of</strong> <strong>the</strong> area <strong>of</strong> <strong>the</strong> <strong>Western</strong> <strong>Desert</strong>,and conta<strong>in</strong>s <strong>the</strong> depressions <strong>of</strong> El-Bahariya, El-Farafra, El-Dakhla, El-Kharga,south Kharga and East Owe<strong>in</strong>at. It is bounded <strong>in</strong> <strong>the</strong> northwest by <strong>the</strong> middledown-thrown block and <strong>in</strong> <strong>the</strong> sou<strong>the</strong>ast by <strong>the</strong> Nakhlai-Aswan swell. Thefollow<strong>in</strong>g nor<strong>the</strong>ast structural elements were identified with<strong>in</strong> this block:• Farafra-Bahariya UpliftThis uplifted zone is believed to be situated <strong>in</strong> a high permeability zone due tosuccessive uplift<strong>in</strong>g s<strong>in</strong>ce it began dur<strong>in</strong>g <strong>the</strong> Devonian structural stage.• Abu Tartur UpliftLocated between El-Kharga and El-Dakhla depressions, this zone was formed dur<strong>in</strong>g<strong>the</strong> Paleocene and rejuvenated dur<strong>in</strong>g lower <strong>the</strong> Eocene time. It is a nor<strong>the</strong>ast uplift, <strong>in</strong>a high permeability zone <strong>in</strong> El-Zayat area, midway between El-Kharga and El-DakhlaOases.• Tarfawi – Abu Bayan UpliftThis is a nor<strong>the</strong>ast oriented uplift, extend<strong>in</strong>g between Bir Tarfawi and Abu Bayanbasement outcrop, form<strong>in</strong>g <strong>the</strong> eastern boundary <strong>of</strong> El-Kharga-El-Dakhla Oasis.• Nakhlai – Aswan UpliftThis structural uplift extends between <strong>the</strong> basement outcrops <strong>in</strong> Bir Nakhlai – BarqEl-Sahab - Aswan. This is a nor<strong>the</strong>ast uplift and forms <strong>the</strong> sou<strong>the</strong>astern boundaryseparat<strong>in</strong>g <strong>the</strong> Dakhla bas<strong>in</strong> from <strong>the</strong> Nasser Lake bas<strong>in</strong>.• North El-Gilf – Dakhla – Assiout Bas<strong>in</strong>This bas<strong>in</strong> lies <strong>in</strong> <strong>the</strong> middle part <strong>of</strong> <strong>the</strong> sou<strong>the</strong>rn block, between north El-Gilf El-Kebir and Assiout, pass<strong>in</strong>g by El-Dakhla Oasis.<strong>Hydrogeology</strong> <strong>of</strong> <strong>Deep</strong> <strong>Aquifers</strong> 2 - 5 EPIQ Water Policy Reform Program


• Pottery Hill Bas<strong>in</strong>Pottery Hill bas<strong>in</strong> is located between Abu Tartur and Tarfawi – Abu Bayan uplifts.• Kurayim Bas<strong>in</strong>This is a small bas<strong>in</strong> bounded to <strong>the</strong> west by Tarfawi – Abu Bayan uplift and to <strong>the</strong>east by <strong>the</strong> Nakhlai – Aswan uplift and <strong>in</strong>cludes <strong>the</strong> Darb El-Arba<strong>in</strong> area.• Nasser Lake Bas<strong>in</strong>Nasser Lake bas<strong>in</strong> is located to <strong>the</strong> west <strong>of</strong> Nasser Lake and bounded on <strong>the</strong> west by<strong>the</strong> Nakhlai – Aswan uplift. The surface is occupied by <strong>the</strong> Nubia Sandstonesequences with some basement and basaltic outcrops. The bas<strong>in</strong> is dissected by E-Wand N-S fault systems.2.4 <strong>Deep</strong> Aquifer Systems <strong>in</strong> <strong>the</strong> <strong>Western</strong> <strong>Desert</strong>The lithology <strong>of</strong> <strong>the</strong> different stratigraphical units, <strong>the</strong>ir regional extent andgeneral tectonic sett<strong>in</strong>g led to <strong>the</strong> development <strong>of</strong> several aquifer systems <strong>in</strong><strong>the</strong> <strong>Western</strong> <strong>Desert</strong>. These are as follows from younger to older (Figure 9).2.4.1 The Moghra Aquifer SystemThe Moghra aquifer covers a wide tract <strong>of</strong> <strong>the</strong> <strong>Western</strong> <strong>Desert</strong> between <strong>the</strong>Nile Depression <strong>in</strong> <strong>the</strong> west, <strong>the</strong> Mediterranean coast <strong>in</strong> <strong>the</strong> north and <strong>the</strong>Bahariya-Abu Roash uplift <strong>in</strong> <strong>the</strong> south (50,000 km 2 ). The Moghra formationis composed <strong>of</strong> sand, sandstone with clay and siltstone <strong>in</strong>tercalations. The base<strong>of</strong> <strong>the</strong> aquifer is formed by <strong>the</strong> Oligocene Dabaa shales/ basalt, and <strong>the</strong> top is<strong>the</strong> water table surface.The Moghra formation thickness varies between 200 m <strong>in</strong> <strong>the</strong> east (Wadi El-Fareigh) and 800 m <strong>in</strong> Abu Gharadiq bas<strong>in</strong> east <strong>of</strong> <strong>the</strong> Qattara Depression,which gradually decreases to <strong>the</strong> north and west until it <strong>in</strong>terf<strong>in</strong>gers with <strong>the</strong>Miocene Marmarica carbonates and <strong>the</strong> <strong>Western</strong> Plateau carbonate/shalecomplex respectively. Southward it disappears at <strong>the</strong> nor<strong>the</strong>rn flank <strong>of</strong> El-Bahariya-Abu Roash uplift. The aquifer saturated thickness ranges from 75 m<strong>in</strong> <strong>the</strong> east to 700 m <strong>in</strong> <strong>the</strong> west (RIGW, 1990).The Moghra aquifer exists under phreatic conditions south <strong>of</strong> lat. 30 0 N but isconf<strong>in</strong>ed by Pliocene deposits <strong>in</strong> <strong>the</strong> north. The groundwater table rangesbetween <strong>10</strong> m.b.m.s.l.. at contact with <strong>the</strong> Nile Delta aquifer <strong>in</strong> <strong>the</strong> east toabout 50 m.b.m.s.l.. at <strong>the</strong> Qattara Depression <strong>in</strong> <strong>the</strong> west and 48 m.b.m.s.l.. atMiswag well to <strong>the</strong> south <strong>of</strong> Qattara (Jo<strong>in</strong>t-Venture Qattara, 1979).The results <strong>of</strong> pump<strong>in</strong>g tests <strong>in</strong>dicates that <strong>the</strong> average hydraulic conductivity<strong>of</strong> <strong>the</strong> Moghra aquifer ranges between 0.1-0.3 m/day <strong>in</strong> <strong>the</strong> Qattarasurround<strong>in</strong>gs and <strong>10</strong>-25 m/day <strong>in</strong> <strong>the</strong> Wadi El-Fareigh (located at <strong>the</strong> desertfr<strong>in</strong>ges <strong>of</strong> <strong>the</strong> West Delta area), while <strong>the</strong> transmissivity ranges between 500and 5,000 m 2 /day.<strong>Hydrogeology</strong> <strong>of</strong> <strong>Deep</strong> <strong>Aquifers</strong> 2 - 6 EPIQ Water Policy Reform Program


The sal<strong>in</strong>ity <strong>of</strong> groundwater <strong>in</strong> <strong>the</strong> Moghra aquifer changes from < 500 ppm <strong>in</strong><strong>the</strong> area close to <strong>the</strong> West Delta region (Wadi El-Fareigh) and <strong>in</strong>creaseswestwards to reach <strong>10</strong>,000 ppm at El-Moghra Oasis <strong>in</strong> <strong>the</strong> eastern rim <strong>of</strong> <strong>the</strong>Qattara Depression.The aquifer groundwater is a mixture <strong>of</strong> paleo and renewable water. It isreported that <strong>the</strong> lateral groundwater flow from <strong>the</strong> Nile Delta aquifer passes<strong>the</strong> Moghra aquifer with a low gradient <strong>of</strong> <strong>10</strong> -4 - 2x<strong>10</strong> -4 <strong>of</strong> which part is<strong>in</strong>tercepted at Wadi El-Natrun depression where it is lost by evaporation. Theannual lateral seepage from <strong>the</strong> Nile Delta aquifer to <strong>the</strong> Moghra aquifer isestimated to range between 50-<strong>10</strong>0 x <strong>10</strong> 6 m 3 (RIGW – IWACO, 1992).The Moghra groundwater resources evaluation was only assessed <strong>in</strong> <strong>the</strong> WadiEl-Fareigh project area, where a groundwater model study <strong>in</strong>dicates <strong>the</strong>possibility <strong>of</strong> long term groundwater extraction at a rate <strong>of</strong> 120 mcm/year toirrigate an area <strong>of</strong> about 35,000 feddan. At present, <strong>the</strong> groundwater extraction<strong>in</strong> Wadi El-Fareigh is 57.2 mcm/year to irrigate 12,700 feddan.2.4.2 The Fissured Carbonate Aquifer Complex SystemRegionally, this aquifer system comprises <strong>the</strong> calcareous water-bear<strong>in</strong>gformations <strong>of</strong> Upper Cretaceous to Eocene deposits (UCE), <strong>in</strong> <strong>the</strong> central andnor<strong>the</strong>rn parts <strong>of</strong> <strong>the</strong> <strong>Western</strong> <strong>Desert</strong> and <strong>the</strong> Lower to Middle Miocene <strong>in</strong> <strong>the</strong>western part <strong>of</strong> <strong>the</strong> nor<strong>the</strong>rn plateau area (El-Diffa Plateau). It consists <strong>of</strong>limestones, dolomites, marls, chalk and shales.The surface outcrop area <strong>of</strong> <strong>the</strong> UCE aquifer is bordered to <strong>the</strong> south by NubiaSandstone along <strong>the</strong> Oases <strong>of</strong> El-Dakhla and El-Kharga, and separated from<strong>the</strong> underly<strong>in</strong>g Nubia Sandstones by <strong>the</strong> Upper Cenomanian – Lower Senonianlow premeability shale-limestone complex. In <strong>the</strong> nor<strong>the</strong>astern part <strong>of</strong> <strong>the</strong><strong>Western</strong> <strong>Desert</strong>, <strong>the</strong> aquifer is topped by <strong>the</strong> Oligocene Dabaa shales andplunges northward to more than 500 m.b.m.s.l.. The Miocene calcareousaquifer known as Jahgboub formation occurs outcropp<strong>in</strong>g <strong>in</strong> <strong>the</strong> northwesternpart <strong>of</strong> <strong>the</strong> <strong>Western</strong> <strong>Desert</strong> overly<strong>in</strong>g <strong>the</strong> UCE aquifer system. The thickness <strong>of</strong><strong>the</strong> UCE ranges from 150-200 m <strong>in</strong> El-Farafra Oasis to 500-<strong>10</strong>,000 m <strong>in</strong> <strong>the</strong>Siwa – Qattara area. The Miocene aquifer atta<strong>in</strong>s a thickness <strong>of</strong> <strong>10</strong>0-400 m <strong>in</strong>El-Diffa plateau.Few wells have tapped <strong>the</strong> UCE aquifer <strong>in</strong> <strong>the</strong> central part <strong>of</strong> <strong>the</strong> <strong>Western</strong><strong>Desert</strong>, where water levels are only known to be 80 m.a.m.s.l. <strong>in</strong> El-FarafraOasis, 62 m.a.m.s.l. at Gebel Augilla and 48 m.a.m.s.l. at Diyur well. (Jo<strong>in</strong>t –Venture Qattara, 1979). The potentiometric levels <strong>of</strong> <strong>the</strong> Miocene Carbonateaquifer range between 1-<strong>10</strong> m.b.m.s.l.. <strong>in</strong> Siwa Oasis and 60-180 m.a.m.s.l. <strong>in</strong>El-Diffa Plateau (RIGW, 1997).It was reported that <strong>the</strong> upward leakage <strong>of</strong> groundwater from <strong>the</strong> underly<strong>in</strong>gNubia Sandstone aquifer through faults, fissures and deep fractures obviouslyis <strong>the</strong> source <strong>of</strong> recharge to <strong>the</strong> UCE aquifer, (El-Ramly 1967, il Nouvo-<strong>Hydrogeology</strong> <strong>of</strong> <strong>Deep</strong> <strong>Aquifers</strong> 2 - 7 EPIQ Water Policy Reform Program


Castoro-1985), while <strong>the</strong> Miocene aquifer is believed to be recharged by <strong>the</strong>groundwater <strong>in</strong>flow from Gebel Al-Akhdar <strong>in</strong> Libya.The UCE aquifer productivity is low reach<strong>in</strong>g 120 m 3 /day, while wells tapp<strong>in</strong>g<strong>the</strong> Miocene aquifer <strong>in</strong> Siwa Oasis are discharg<strong>in</strong>g water at a rate rang<strong>in</strong>g from120 m 3 /day to 7,200 m 3 /day. (RIGW,1997).Groundwater quality <strong>of</strong> <strong>the</strong> UCE aquifer has a very wide range. In El-FarafraOasis it is relatively fresh, with sal<strong>in</strong>ity less than 1,000 ppm, while <strong>in</strong> <strong>the</strong>sou<strong>the</strong>rn part <strong>of</strong> <strong>the</strong> nor<strong>the</strong>rn plateau sal<strong>in</strong>ity ranges between 2,000-5,000 ppm,and <strong>in</strong> <strong>the</strong> nor<strong>the</strong>astern part <strong>of</strong> <strong>the</strong> <strong>Western</strong> <strong>Desert</strong> where <strong>the</strong> aquifer is cappedby <strong>the</strong> thick Dabaa shales, <strong>the</strong> sal<strong>in</strong>ity rises up to <strong>10</strong>,000 ppm (Jo<strong>in</strong>t VentureQattara, 1979). The groundwater sal<strong>in</strong>ity <strong>of</strong> <strong>the</strong> Miocene aquifer rangesbetween 1,600 to 5,000 ppm <strong>in</strong> Siwa Oasis and from 3,000 ppm to 5,000 ppm<strong>in</strong> <strong>the</strong> sou<strong>the</strong>rn part <strong>of</strong> El-Diffa Plateau, and <strong>in</strong>creases northward to reach<strong>10</strong>,000 ppm.RIGW has recently completed a reconnaissance study on <strong>the</strong> “RegionalProspective <strong>of</strong> <strong>the</strong> Fissured Carbonate Aquifer System <strong>in</strong> Egypt”. Aprelim<strong>in</strong>ary attempt for estimat<strong>in</strong>g <strong>the</strong> carbonate aquifer potential was madeus<strong>in</strong>g a numerical model based on <strong>the</strong> double porosity approach, but due tolack <strong>of</strong> data, <strong>the</strong> model did not succeed <strong>in</strong> estimat<strong>in</strong>g <strong>the</strong> long-termgroundwater potential <strong>of</strong> <strong>the</strong> carbonate aquifer system (RIGW, 1997). Thef<strong>in</strong>al report <strong>of</strong> <strong>the</strong> study (RIGW,1997) del<strong>in</strong>eated areas with potential forgroundwater resources development <strong>in</strong> <strong>the</strong> carbonate aquifer system whichhave to be <strong>in</strong>vestigated to better describe <strong>the</strong> aquifer hydrogeologiccharacteristics and to support <strong>the</strong> evaluation <strong>of</strong> <strong>the</strong>se resources. Of <strong>the</strong>se areas,El-Diffa plateau area is recommended for future detailed hydrogeologic<strong>in</strong>vestigations to assess <strong>the</strong> groundwater resources <strong>of</strong> <strong>the</strong> carbonate aquiferwhich can be best used <strong>in</strong> development sectors, over time.2.4.3 The Nubia Sandstone Aquifer SystemThe hydrogeological sett<strong>in</strong>g <strong>of</strong> <strong>the</strong> Moghra and <strong>the</strong> Carbonate aquifers <strong>in</strong> <strong>the</strong><strong>Western</strong> <strong>Desert</strong> described above, <strong>in</strong>dicates that <strong>the</strong>se aquifers are <strong>of</strong>comparatively limited extension and have not yet been adequately <strong>in</strong>vestigatedfor <strong>the</strong>ir groundwater potentials. On <strong>the</strong> o<strong>the</strong>r hand, <strong>the</strong> Nubia Sandstoneaquifer, although it is a non-renewable aquifer, holds large volumes <strong>of</strong>freshwater <strong>in</strong> storage, estimated to be <strong>of</strong> 2x<strong>10</strong> 14 m 3 (Ezzat, 1974), which canprovide groundwater resources for susta<strong>in</strong>able development <strong>in</strong> <strong>the</strong> <strong>Western</strong><strong>Desert</strong>. Therefore, <strong>in</strong> <strong>the</strong> follow<strong>in</strong>g text, detailed hydrogeologic characteristics<strong>of</strong> <strong>the</strong> Nubia Sandstone aquifer <strong>in</strong> <strong>the</strong> <strong>Western</strong> <strong>Desert</strong> will be reviewed.2.5 Hydrogeologic Characteristics <strong>of</strong> <strong>the</strong> Nubia Sandstone Aquifer SystemThe Nubia Sandstones form a huge groundwater bas<strong>in</strong> which covers <strong>the</strong><strong>Western</strong> <strong>Desert</strong> and extends <strong>in</strong>to sou<strong>the</strong>ast Libya, northwest Sudan andnor<strong>the</strong>ast Chad, and occupies an area <strong>of</strong> about 2,000,000 km 2 (Figure <strong>10</strong>). InEgypt, <strong>the</strong> Nubia sandstones cover an area <strong>of</strong> 850,000 km 2 , represent<strong>in</strong>g 43percent <strong>of</strong> <strong>the</strong> total bas<strong>in</strong> area.<strong>Hydrogeology</strong> <strong>of</strong> <strong>Deep</strong> <strong>Aquifers</strong> 2 - 8 EPIQ Water Policy Reform Program


The Nubia Sandstone aquifer system has been subjected to numerousgeological, geophysical and hydrogeological surveys, while detailed surveyand test drill<strong>in</strong>gs were conducted <strong>in</strong> <strong>the</strong> depression areas <strong>of</strong> El-Bahariya, El-Farafra, El-Dakhla, El-Kharga, South Kharga-Toshka (designated as <strong>the</strong> NewValley). The results <strong>of</strong> <strong>the</strong>se <strong>in</strong>vestigations toge<strong>the</strong>r with <strong>the</strong> <strong>in</strong>tensive oilexploration works <strong>in</strong> <strong>the</strong> nor<strong>the</strong>rn part <strong>of</strong> <strong>the</strong> <strong>Western</strong> <strong>Desert</strong> made it possibleto assess to a great extent, <strong>the</strong> regional hydrogeologic sett<strong>in</strong>g <strong>of</strong> <strong>the</strong> NubiaSandstone aquifer system.2.5.1 Def<strong>in</strong>ition <strong>of</strong> <strong>the</strong> Aquifer SystemThe Nubia Sandstone aquifer consists <strong>of</strong> <strong>the</strong> thick clastic sediment <strong>of</strong>sandstone, sandy clay <strong>in</strong>tercalated with shale and clay beds, rang<strong>in</strong>g fromCambrian to Upper Cretaceous <strong>in</strong> age.The Nubia Sandstone bas<strong>in</strong> is tectonically affected by regional faultedstructures (see Section 2.3) and is separated <strong>in</strong>to different sub-bas<strong>in</strong>s orhydrogeologic blocks <strong>of</strong> which <strong>the</strong> Dakhla bas<strong>in</strong> <strong>in</strong> <strong>the</strong> <strong>Western</strong> <strong>Desert</strong> hashydraulic cont<strong>in</strong>uity with <strong>the</strong> Kurfa bas<strong>in</strong> <strong>in</strong> Libya and Sudan.The Nubia aquifer system behaves locally as a multi-layered artesian aquifer(designated as horizons A, B, C and D by Ezzat, 1974) but regionally itbehaves as one aquifer system.2.5.2 Aquifer Geometry and BoundariesThe eastern, sou<strong>the</strong>rn and western boundaries <strong>of</strong> <strong>the</strong> Nubia sandstone aquiferlie outside <strong>the</strong> <strong>Western</strong> <strong>Desert</strong>. The eastern boundary is <strong>the</strong> natural boundaryformed by <strong>the</strong> impervious Pre-Cambrian basement complex <strong>of</strong> <strong>the</strong> Red Seamounta<strong>in</strong> ranges. The aquifer stretches far south <strong>in</strong>to Sudan to <strong>the</strong> high lands<strong>of</strong> Kordfan, east <strong>in</strong>to sou<strong>the</strong>ast Libya and to <strong>the</strong> Tebesti-Ennedi mounta<strong>in</strong>s <strong>in</strong>Chad. Thus <strong>the</strong> <strong>Western</strong> <strong>Desert</strong> comprises only <strong>the</strong> nor<strong>the</strong>astern corner <strong>of</strong> <strong>the</strong>huge Nubia Sandstone bas<strong>in</strong>.Oil exploration drill<strong>in</strong>g revealed that <strong>the</strong> Nubia fresh water aquifer north <strong>of</strong> El-Bahariya Oasis (lat. 29 0 N) is underla<strong>in</strong> by sal<strong>in</strong>e water which sharply<strong>in</strong>creases <strong>in</strong> thickness northward to <strong>the</strong> fresh/salt water <strong>in</strong>terface, whichfollows a fault l<strong>in</strong>e located north <strong>of</strong> Siwa Oasis, crosses <strong>the</strong> QattaraDepression and <strong>the</strong>n sw<strong>in</strong>gs <strong>in</strong> a sou<strong>the</strong>ast direction south <strong>of</strong> Wadi El-Rayan.The fresh/salt water <strong>in</strong>terface represents <strong>the</strong> nor<strong>the</strong>rn boundary <strong>of</strong> <strong>the</strong> Nubiafresh water aquifer system (Figure <strong>10</strong>).Although <strong>the</strong> Nubia Sandstone aquifer system is bottomed by imperviousbasement rocks, <strong>the</strong> base <strong>of</strong> <strong>the</strong> freshwater aquifer is formed <strong>in</strong> <strong>the</strong> <strong>Western</strong><strong>Desert</strong> by two layers <strong>of</strong> a completely different nature:<strong>the</strong> surface <strong>of</strong> <strong>the</strong> basement complex <strong>in</strong> <strong>the</strong> sou<strong>the</strong>rn and central parts <strong>of</strong> <strong>the</strong><strong>Western</strong> <strong>Desert</strong>; and<strong>Hydrogeology</strong> <strong>of</strong> <strong>Deep</strong> <strong>Aquifers</strong> 2 - 9 EPIQ Water Policy Reform Program


<strong>the</strong> <strong>in</strong>terface surface between <strong>the</strong> fresh and salty groundwater with<strong>in</strong> <strong>the</strong> NubiaSandstone aquifer <strong>in</strong> <strong>the</strong> nor<strong>the</strong>rn section <strong>of</strong> <strong>the</strong> <strong>Western</strong> <strong>Desert</strong> (north <strong>of</strong> lat.29 0 N)Figure (11) shows <strong>the</strong> elevations <strong>of</strong> <strong>the</strong> fresh water aquifer base.The upper boundary <strong>of</strong> <strong>the</strong> Nubia Sandstone aquifer is exposed at <strong>the</strong> groundsurface south <strong>of</strong> <strong>the</strong> sou<strong>the</strong>rn plateau, where <strong>the</strong> aquifer is unconf<strong>in</strong>ed. To <strong>the</strong>north, it disappears under a thick cover <strong>of</strong> <strong>the</strong> Upper Cretaceous-Eocenecomplex <strong>of</strong> shale-carbonate rocks, where <strong>the</strong> aquifer is conf<strong>in</strong>ed. Figure (12) isa contour map represent<strong>in</strong>g <strong>the</strong> top <strong>of</strong> <strong>the</strong> Nubia aquifer, <strong>in</strong>dicat<strong>in</strong>g that itranges between 200 to 1,000 m.a.m.s.l. <strong>in</strong> <strong>the</strong> area <strong>of</strong> East Owe<strong>in</strong>at - El-GilfEl-Kebir. To <strong>the</strong> north and west <strong>of</strong> El-Dakhla – El-Kharga Oases, <strong>the</strong> depth totop <strong>of</strong> <strong>the</strong> Nubia aquifer <strong>in</strong>creases form<strong>in</strong>g a bas<strong>in</strong> <strong>of</strong> more than 1,000 m deep.It comes close to sea level on a ridge runn<strong>in</strong>g along El-Farafra - Bahariya and<strong>the</strong>n it dips aga<strong>in</strong> to <strong>the</strong> north and east <strong>of</strong> Bahariya Oasis reach<strong>in</strong>g a depth <strong>of</strong>more than 700 m.b.m.s.l.Figure (13) shows <strong>the</strong> isopacheous map <strong>of</strong> <strong>the</strong> Nubia Sandstone fresh wateraquifer which varies between <strong>10</strong>0 to 600 m <strong>in</strong> Nasser Lake - South Kharga -East Owe<strong>in</strong>at area, 200-800 m <strong>in</strong> El-Kharga Oasis, 1,300 m <strong>in</strong> El-DakhlaOasis, 2,200 m <strong>in</strong> El-Farafra Oasis, 1,800 m <strong>in</strong> El-Bahariya Oasis and reachesits maximum thickness <strong>of</strong> 3,000 m <strong>in</strong> Desouky bas<strong>in</strong> south <strong>of</strong> Siwa Oasis. Theaquifer fresh water thickness decreases sharply north <strong>of</strong> lat. 29 0 N until itp<strong>in</strong>ches out at <strong>the</strong> fresh/salt water <strong>in</strong>terface.2.5.3 Aquifer Hydraulic ParametersTo assess <strong>the</strong> hydraulic parameters <strong>of</strong> <strong>the</strong> Nubia Sandstone aquifer <strong>in</strong> <strong>the</strong><strong>Western</strong> <strong>Desert</strong>, pump<strong>in</strong>g tests have been conducted: dur<strong>in</strong>g <strong>the</strong>e period 1960-1995 by different agencies which <strong>in</strong>clude: 64 tests <strong>in</strong> Kharga Oasis; 32 tests <strong>in</strong>Dakhla Oasis; 20 tests <strong>in</strong> Farafra Oasis; <strong>10</strong> tests <strong>in</strong> Bahariya Oasis; 5 tests <strong>in</strong>Siwa Oasis; 64 tests <strong>in</strong> East Owe<strong>in</strong>at; and 6 tests <strong>in</strong> Aswan – Nasser Lakeareas. Table 1 shows <strong>the</strong> local transmissivities <strong>of</strong> <strong>the</strong> aquifer zones be<strong>in</strong>gtested <strong>in</strong> <strong>the</strong> different <strong>Western</strong> <strong>Desert</strong> areas.Table (1) – Local Transmissivity <strong>of</strong> <strong>the</strong> Nubia Sandstone Aquifer, <strong>Western</strong> <strong>Desert</strong>AreaTransmissivity (m 2 /d)M<strong>in</strong>imum Maximum AverageKharga Oasis 60 3050 1380Dakhla Oasis 380 3753 2437Farafra Oasis <strong>10</strong>80 2830 2200Bahariya Oasis 238 3840 1600Siwa Oasis 3300 4000 3500East Owe<strong>in</strong>at 975 2750 21<strong>10</strong><strong>Hydrogeology</strong> <strong>of</strong> <strong>Deep</strong> <strong>Aquifers</strong> 2 - <strong>10</strong> EPIQ Water Policy Reform Program


Aswan 120 520 316The hydraulic conductivity <strong>of</strong> <strong>the</strong> Nubia Sandstone aquifer has only been determ<strong>in</strong>ed frompump<strong>in</strong>g and recovery tests on deep wells. Borelli et al. (1968), Ezzat (1974), and FAO(1976) collected and assessed <strong>the</strong> hydraulic conductivity <strong>of</strong> <strong>the</strong> Nubia Sandstone aquifer <strong>in</strong>El-Kharga and El-Dakhla Oases. Gad et al. (1971) determ<strong>in</strong>ed <strong>the</strong> hydraulic conductivityvalues on <strong>the</strong> basis <strong>of</strong> <strong>the</strong> results <strong>of</strong> recovery tests carried out on <strong>10</strong> deep wells <strong>in</strong> El-BahariyaOasis. In El-Farafra, it was estimated from <strong>the</strong> analyses <strong>of</strong> aquifer tests (il Nouvo Castoro,1985; GARPAD, 1994). The hydraulic conductivity <strong>of</strong> <strong>the</strong> aquifer has been determ<strong>in</strong>ed by<strong>the</strong> analyses <strong>of</strong> long duration pump<strong>in</strong>g tests conducted by <strong>the</strong> General Petroleum Company(1985) <strong>in</strong> <strong>the</strong> East Owe<strong>in</strong>at area. Table (2) <strong>in</strong>dicates <strong>the</strong> aquifer hydraulic conductivity <strong>in</strong> <strong>the</strong>tested areas <strong>in</strong> <strong>the</strong> <strong>Western</strong> <strong>Desert</strong>.Table (2) Hydraulic Conductivity <strong>of</strong> <strong>the</strong> Nubia Sandstone Aquifer, <strong>Western</strong> <strong>Desert</strong>AreaHydraulic Conductivity (m/day)M<strong>in</strong>imum Maximum AverageKharga Oasis 0.38 14.1 2.5Dakhla Oasis 2.5 30.8 5.8Farafra Oasis 2.3 <strong>10</strong>.5 6.5Bahariya Oasis 2.8 32 9.5Siwa Oasis <strong>10</strong> 20 12East Owe<strong>in</strong>at <strong>10</strong>.8 20 12Aswan 1.1 2.5 1.2Because <strong>the</strong> transmissivity <strong>of</strong> an aquifer is <strong>the</strong> product <strong>of</strong> its thickness times its hydraulicconductivity and because <strong>of</strong> <strong>the</strong> multi-layered nature <strong>of</strong> shales and sandstones <strong>of</strong> <strong>the</strong> Nubiaaquifer system <strong>in</strong> <strong>the</strong> <strong>Western</strong> <strong>Desert</strong>, it is necessary to dist<strong>in</strong>guish between <strong>the</strong> tappedaquifer zone transmissivity as determ<strong>in</strong>ed from well tests and <strong>the</strong> transmissivity <strong>of</strong> <strong>the</strong> wholeNubia Sandstone succession, i.e <strong>the</strong> regional aquifer transmissivity which, <strong>in</strong> turn, is <strong>the</strong>product <strong>of</strong> <strong>the</strong> average hydraulic conductivity <strong>of</strong> <strong>the</strong> aquifer times its aggregate thickness asgiven <strong>in</strong> Table (3).Table (3) - Regional Transmissivity <strong>of</strong> <strong>the</strong> Nubia Sandstone Aquifer, <strong>Western</strong> <strong>Desert</strong>AreaAverage HydraulicConductivity(m/d)Average AquiferThickness(m)RegionalTransmissivity(m 2 /d)Kharga 2.5 600 1500Dakhla 5.8 1200 6960Farafra 6.5 2000 13000Bahariya 9.5 1800 17<strong>10</strong>0Siwa 12 500 6000East Owe<strong>in</strong>at 12 300 3600Aswan 1.2 200 240Source: GARPAD, (1981)In <strong>the</strong> sou<strong>the</strong>rn part <strong>of</strong> <strong>the</strong> <strong>Western</strong> <strong>Desert</strong> where <strong>the</strong> Nubia Sandstone formation is exposedat <strong>the</strong> ground surface and unconf<strong>in</strong>ed aquifer conditions prevail with aquifer specific yieldvalues range between 0.1 to 0.2. North <strong>of</strong> lat. 25 0 N, where <strong>the</strong> Nubia aquifer is under<strong>Hydrogeology</strong> <strong>of</strong> <strong>Deep</strong> <strong>Aquifers</strong> 2 - 11 EPIQ Water Policy Reform Program


conf<strong>in</strong>ed condition by <strong>the</strong> overly<strong>in</strong>g blanket <strong>of</strong> shales - limestone cap rocks, <strong>the</strong> aquiferstorativity ranges from 3x<strong>10</strong> -4 to 0.05 (Ezzat, 1974 and Nour 1983). The aquifer regionalstorativity was estimated from <strong>the</strong> specific storage (calculated from pump<strong>in</strong>g tests as <strong>the</strong>storativity per unit thickness <strong>of</strong> tested aquifer), as follows:Aquifer regional storativity = specific storage (m -1 ) x aquifer thickness (m).Us<strong>in</strong>g <strong>the</strong> aquifer storativity value determ<strong>in</strong>ed from pump<strong>in</strong>g tests and calculat<strong>in</strong>g <strong>the</strong> specificstorage values <strong>in</strong> <strong>the</strong> different tested areas <strong>of</strong> <strong>the</strong> <strong>Western</strong> <strong>Desert</strong>, a specific storativity mapwas prepared as shown <strong>in</strong> Figure (14). (Euroconsult/Pacer Consultants, 1983), and used toderive <strong>the</strong> aquifer regional storativity <strong>in</strong> terms <strong>of</strong> its total thicknessPump<strong>in</strong>g <strong>of</strong> groundwater from <strong>the</strong> multi-layered Nubia Sandstone aquifer system will createvertical hydraulic gradients and will result <strong>in</strong> vertical flow. In this case, <strong>the</strong> water levels <strong>in</strong> <strong>the</strong>shallow and deep aquifer zones will change when water is extracted from one or both <strong>of</strong> <strong>the</strong>mTherefore, <strong>the</strong> vertical permeability <strong>of</strong> <strong>the</strong> aquifer system must also be considered for propersimulation <strong>of</strong> <strong>the</strong> groundwater condition. It should be made clear that <strong>the</strong> verticalpermeability <strong>of</strong> Nubia sandstone must be low due to <strong>the</strong> frequent occurrence <strong>of</strong> shale<strong>in</strong>tercalation with<strong>in</strong> <strong>the</strong> sandstone beds.The vertical permeability <strong>of</strong> <strong>the</strong> Nubia sandstone aquifer, or its reciprocal, <strong>the</strong> verticalresistance, <strong>in</strong> <strong>the</strong> Kharga-Dakhla area, was 400,000 days, determ<strong>in</strong>ed for <strong>the</strong> aquifer <strong>of</strong> 1,000m depth (FAO, 1979). For <strong>the</strong> Bahariya Oasis, <strong>the</strong> value <strong>of</strong> <strong>the</strong> vertical resistance <strong>of</strong> <strong>the</strong>aquifer was estimated to be 130,000 days due to more <strong>in</strong>tensive fractur<strong>in</strong>g, fold<strong>in</strong>g, and o<strong>the</strong>rtectonic movements. (Euroconsult/ Pacer Consultants, 1983).2.5.4 Aquifer Potentiometry and Groundwater Flow PatternThe potentiometric map <strong>of</strong> <strong>the</strong> Nubia Sandstone aquifer system constructed by Ball <strong>in</strong> 1927has been modified by several <strong>in</strong>vestigators us<strong>in</strong>g improved aquifer data records and<strong>in</strong>formation. Based on <strong>the</strong> measured potentiometric levels <strong>in</strong> <strong>the</strong> monitor<strong>in</strong>g wells <strong>in</strong> <strong>the</strong><strong>Western</strong> <strong>Desert</strong> (Figure 15), a modified potentiometric surface map was prepared by Ezzat(Figure 16). The aquifer piezometric levels <strong>in</strong> remote areas were <strong>in</strong>terpolated with <strong>the</strong>potentiometric levels <strong>in</strong> Libya. The map <strong>in</strong>dicates that <strong>the</strong> groundwater elevations are 260 m<strong>in</strong> El-Gilf El-Kebir, 250 m <strong>in</strong> East Owe<strong>in</strong>at, 145 m <strong>in</strong> El-Dakhla Oasis, 80 m <strong>in</strong> El-KhargaOasis, 130 m <strong>in</strong> El-Bahariya Oasis, <strong>10</strong>0 m <strong>in</strong> Siwa Oasis and – 50 m <strong>in</strong> <strong>the</strong> QattaraDepression. The regional groundwater gradient is about 0.0007 with a groundwater flowpattern mov<strong>in</strong>g generally N-NE towards <strong>the</strong> major discharge areas at <strong>the</strong> <strong>Western</strong> <strong>Desert</strong>Oasis and <strong>the</strong> Qattara Depression, although <strong>the</strong> flow direction is distorted near <strong>the</strong> faultstructures and diverted parallel to <strong>the</strong> fault plane due to <strong>the</strong> existence <strong>of</strong> very lowpermeability zone result<strong>in</strong>g from <strong>the</strong> silicification and/or <strong>the</strong> ferrug<strong>in</strong>ation <strong>of</strong> <strong>the</strong> NubiaSandstone formation along <strong>the</strong> fault zones. The Giaghboub Oasis (Libya)-Siwa Oasis – <strong>the</strong>Qattara Depression, topographically low land, is considered <strong>the</strong> f<strong>in</strong>al base level <strong>of</strong> Nubiagroundwater where natural lakes, sabkhas, and salt marshes exist. The map also <strong>in</strong>dicatesobvious groundwater depressions form<strong>in</strong>g closed s<strong>in</strong>ks at El-Kharga Oasis, El-Dakhla Oasis,and <strong>the</strong> Qattara Depression due to long-term groundwater outflow.Ezzat, through flow-net analysis (1974), estimated <strong>the</strong> total annual recharge to <strong>the</strong> <strong>Western</strong><strong>Desert</strong> Nubia Sandstone aquifer system to be about 3.36x<strong>10</strong> 6 m 3 /day, <strong>of</strong> which 1.82x<strong>10</strong> 6<strong>Hydrogeology</strong> <strong>of</strong> <strong>Deep</strong> <strong>Aquifers</strong> 2 - 12 EPIQ Water Policy Reform Program


m 3 /day <strong>in</strong>flows through <strong>the</strong> western front from Libya, 0.52x<strong>10</strong> 6 m 3 /day <strong>in</strong>flows through <strong>the</strong>Gilf El-Kebir uplift and 1.02x<strong>10</strong> 6 m 3 /day <strong>in</strong>flows through <strong>the</strong> sou<strong>the</strong>rn front with Sudan.Although observation wells are scattered <strong>in</strong> and around <strong>the</strong> <strong>Western</strong> <strong>Desert</strong> oases, no regulargroundwater monitor<strong>in</strong>g data was found available s<strong>in</strong>ce 1980. This is probably due to <strong>the</strong>remoteness <strong>of</strong> <strong>the</strong> monitor<strong>in</strong>g wells and <strong>in</strong>adequate technical staff. Table (4) shows <strong>the</strong>observed piezometric levels <strong>of</strong> <strong>the</strong> well monitor<strong>in</strong>g network <strong>in</strong> <strong>the</strong> <strong>Western</strong> <strong>Desert</strong> Oases,which <strong>in</strong>dicates that <strong>the</strong> rate <strong>of</strong> decl<strong>in</strong>e <strong>in</strong> <strong>the</strong> piezometric head ranges between 0.2 m/yearand 2.2 m/year.2.5.5 Orig<strong>in</strong> <strong>of</strong> Nubia GroundwaterThe orig<strong>in</strong> <strong>of</strong> <strong>the</strong> groundwater resources <strong>in</strong> <strong>the</strong> Nubia Sandstone aquifer, has been <strong>the</strong> subject<strong>of</strong> many hydrogeologic studies. These studies have resulted <strong>in</strong> <strong>the</strong> follow<strong>in</strong>g concepts:• The Allochtonous Concept: This concept postulates a regional cont<strong>in</strong>uousgroundwater recharge from <strong>the</strong> southwestern recharge areas (Tebesti and Ennedi <strong>in</strong>Chad) to <strong>the</strong> north and nor<strong>the</strong>astern discharge areas <strong>in</strong> Kufra Oasis (Libya) and <strong>the</strong><strong>Western</strong> <strong>Desert</strong> depressions, which <strong>in</strong>dicates that <strong>the</strong> groundwater is considered arenewable resource. This concept is based on <strong>the</strong> observed groundwater gradient from<strong>the</strong> southwest to nor<strong>the</strong>ast.<strong>Hydrogeology</strong> <strong>of</strong> <strong>Deep</strong> <strong>Aquifers</strong> 2 - 13 EPIQ Water Policy Reform Program


Table (4) Change <strong>in</strong> Piezometric Levels <strong>of</strong> <strong>the</strong> Observation Wells <strong>in</strong> <strong>the</strong> <strong>Western</strong> <strong>Desert</strong>Monitored AreaWell Average Piezometric head(m.a.m.s.l)& Year <strong>of</strong> ObservationChange <strong>in</strong> Head Dur<strong>in</strong>gObservation Period (m/year)Kharga OasisUmm El-Qusur 77.4 (1967) * 55.5 (1997)0.73El-Malaa 64.5 (1962) * -11.51 (1997)2.20East Bulaq 40.1 (1968) * 26.5 (1997)0.47Baris -20 80.5 (1966) * 76.4 (1997)0.13Zayat -1 145.8 (1961) * 144.3 (1980)0.08Dakhla OasisMut-3 154.6 (1962) * 142.8 (1968)1.97Mut airport 130.9 (1965) * 123.6 (1997)0.20Mawhub west-2 140.9 (1964) * 138.3 (1968)0.65Mawhub west-15 150.0 (1969) * 148.0 (1978)0.20Balat - 8 146.4 (1962) * 133.8 (1968)2.<strong>10</strong>Farafra OasisQasr EL-Farafra 150.6 (1966) * 145.6 (1978)0.42El-Farafra - 1 151.8 (1965) * 147.0 (1978)0.37West Farafra - 7 157.8 (1967) * 154.8 (1983)0.19West Farafra - 11 152 (1967) * 149.7 (1983)0.14Bahariya OasisEL-Maisra -1 127.8 (1963) * 120 (1970)1.<strong>10</strong>EL-Qasaa - 3 127.6 (1963) * 119.3 (1970)1.20Source :GARPAD (1981)IL Nouvo Castoro (1985)NVID (1997)• The Authochtonous Concept: This concept <strong>in</strong>fers that <strong>the</strong> bulk <strong>of</strong> <strong>the</strong> groundwater wasformed locally <strong>in</strong> <strong>the</strong> surround<strong>in</strong>gs <strong>of</strong> <strong>the</strong> present discharge areas dur<strong>in</strong>g one or more<strong>in</strong>tervals <strong>of</strong> a more humid climate which prevailed over <strong>the</strong> desert, <strong>the</strong> last <strong>of</strong> which<strong>Hydrogeology</strong> <strong>of</strong> <strong>Deep</strong> <strong>Aquifers</strong> 2 - 14 EPIQ Water Policy Reform Program


was 8,000 years ago. This is based ma<strong>in</strong>ly on <strong>the</strong> <strong>in</strong>terpretation <strong>of</strong> groundwaterisotope measurements, which resulted <strong>in</strong> groundwater age dat<strong>in</strong>g rang<strong>in</strong>g between<strong>10</strong>,000 and 30,000 years B.P. Because no age gradient along groundwater flow l<strong>in</strong>eshas been observed, <strong>the</strong> groundwater <strong>of</strong> <strong>the</strong> Nubia aquifer is considered a nonrenewableresource.2.5.6 Groundwater QualityThe Nubia Sandstones were deposited under shallow mar<strong>in</strong>e conditions and consequentlywere filled with salt water. When <strong>the</strong> Nubia Sandstone was brought to its present cont<strong>in</strong>entalposition, fresh water recharge dur<strong>in</strong>g <strong>the</strong> successive pluvial times flushed out <strong>the</strong> salt water to<strong>the</strong> maximum down dip northward to its present fresh – salt water contact. This co<strong>in</strong>cideswith <strong>the</strong> trace <strong>of</strong> a fault plane form<strong>in</strong>g a permeability barrier to <strong>the</strong> north <strong>of</strong> Siwa Oasis andcross<strong>in</strong>g <strong>the</strong> Qattara Depression to <strong>the</strong> north <strong>of</strong> Ghazalat well, <strong>the</strong>n sw<strong>in</strong>g<strong>in</strong>g <strong>in</strong> a sou<strong>the</strong>rndirection to lie south <strong>of</strong> Wadi El-Rayan depression. This permeability barrier prevented anyfur<strong>the</strong>r flush<strong>in</strong>g <strong>of</strong> <strong>the</strong> salt water northward, where <strong>the</strong> Nubia aquifer is still fully saturatedwith its sal<strong>in</strong>e formation water.The sal<strong>in</strong>ity <strong>of</strong> <strong>the</strong> Nubia Sandstone aquifer groundwater changes vertically and laterally. To<strong>the</strong> south <strong>of</strong> lat. 29 0 N, <strong>the</strong> groundwater sal<strong>in</strong>ity ranges between <strong>10</strong>0 ppm and 500 ppm(Figure 17).In general, <strong>the</strong> recorded sal<strong>in</strong>ity decreases, with depth <strong>in</strong> El-Kharga and El-Dakhla Oasis,from 1,000 ppm <strong>in</strong> <strong>the</strong> upper horizons to 200 ppm <strong>in</strong> <strong>the</strong> lower ones. No change <strong>in</strong>groundwater sal<strong>in</strong>ity was observed dur<strong>in</strong>g <strong>the</strong> last 30 years <strong>in</strong> <strong>the</strong> New Valley Oasis. At Siwa– Qattara area, near <strong>the</strong> fresh–saltwater <strong>in</strong>terface, <strong>the</strong> upper part <strong>of</strong> <strong>the</strong> Nubia aquifer issaturated with 200-400 ppm <strong>of</strong> fresh water and underla<strong>in</strong> by hypersal<strong>in</strong>e water with chloridesal<strong>in</strong>ity up to <strong>10</strong>0,000 ppm The demarcation <strong>of</strong> <strong>the</strong> depth – water sal<strong>in</strong>ity pr<strong>of</strong>ile, its densityand piezometric heads is required to assess <strong>the</strong> susta<strong>in</strong>able potential <strong>of</strong> <strong>the</strong> fresh groundwater,which can be safely exploited <strong>in</strong> <strong>the</strong> development area <strong>of</strong> Siwa Oasis without caus<strong>in</strong>g qualitydeterioration.Although Nubia groundwater is fresh, it has been found to be highly corrosive. This is due to<strong>the</strong> presence <strong>of</strong> free CO 2 and H 2 S and <strong>the</strong> relatively low p H and redox potential (Clark, 1962)which causes corrosion <strong>of</strong> well cas<strong>in</strong>gs, screens and pumps.2.5.7 Groundwater Resources EvaluationAssessment <strong>of</strong> <strong>the</strong> groundwater resources potential <strong>of</strong> <strong>the</strong> Nubia Sandstone aquifer system <strong>in</strong><strong>the</strong> <strong>Western</strong> <strong>Desert</strong> was carried out us<strong>in</strong>g groundwater simulation model<strong>in</strong>g techniques which<strong>in</strong>cluded analogue and numerical models. A number <strong>of</strong> models have been used to simulatepart or all <strong>of</strong> <strong>the</strong> Nubia Sandstone aquifer. The regional models were used to perform asensitivity analysis on <strong>the</strong> most important aquifer parameters, which will be considered forfur<strong>the</strong>r detailed field <strong>in</strong>vestigations. Figure (18) shows <strong>the</strong> boundaries <strong>of</strong> <strong>the</strong>se regionalmodels. The results <strong>of</strong> <strong>the</strong> calibration for <strong>the</strong> <strong>in</strong>itial aquifer condition are given <strong>in</strong> Table (5),which <strong>in</strong>dicates different values due to <strong>the</strong> difference <strong>in</strong> model boundaries and aquiferparameters.The follow<strong>in</strong>g presentation is a summary <strong>of</strong> <strong>the</strong> results <strong>of</strong> <strong>the</strong> numerical groundwater modelswhich were developed to simulate exist<strong>in</strong>g and future groundwater extraction plans fordifferent use sectors and <strong>the</strong>ir long-term consequences. The current groundwater<strong>Hydrogeology</strong> <strong>of</strong> <strong>Deep</strong> <strong>Aquifers</strong> 2 - 15 EPIQ Water Policy Reform Program


development plans <strong>in</strong> <strong>the</strong> <strong>Western</strong> <strong>Desert</strong> have been designed based on <strong>the</strong> outcomes <strong>of</strong> <strong>the</strong>semodels.2.5.7.1 Groundwater Model <strong>of</strong> <strong>the</strong> New Valley RegionThis model was developed with<strong>in</strong> <strong>the</strong> framework <strong>of</strong> <strong>the</strong> New Valley Regional DevelopmentPlan Study Project carried out by Euroconsult/Pacer Consultants (1983). The model studyarea covered <strong>the</strong> four oases: El-Bahariya, El-Farafra, El-Dakhla and El-Kharga (Figure 19). Itwas developed to simulate different groundwater extraction plans; to predict <strong>the</strong> aquiferresponse over <strong>10</strong>0 years <strong>of</strong> exploitation and <strong>the</strong> economic return <strong>of</strong> its use <strong>in</strong> irrigatedagriculture. The model was calibrated for steady state conditions us<strong>in</strong>g pre-1960 data and fortransient conditions for <strong>the</strong> period 1960-1980.The calibrated model was <strong>the</strong>n used to test <strong>the</strong> economy <strong>of</strong> various groundwater developmentscenarios for irrigated agriculture. Table (6) presents <strong>the</strong> f<strong>in</strong>al results <strong>of</strong> <strong>the</strong> prediction runs.Figure (20) shows <strong>the</strong> Nubia Sandstone aquifer long-term response to economic groundwaterextractions.2.5.7.2 East Owe<strong>in</strong>at ModelA f<strong>in</strong>ite element, one layer model was developed by <strong>the</strong> Development Research &Technological Plann<strong>in</strong>g Center <strong>of</strong> Cairo University (DRTPC, 1984) for <strong>the</strong> Nubia Sandstoneaquifer system <strong>in</strong> <strong>the</strong> East Owe<strong>in</strong>at area (Figure 21). The model’s objective was to forecast<strong>the</strong> long-term aquifer response to various groundwater development scenarios for irrigatedagriculture.After be<strong>in</strong>g calibrated for <strong>the</strong> aquifer’s <strong>in</strong>itial condition, <strong>the</strong> model was used to test differentgroundwater extraction scenarios to assess <strong>the</strong> long-term safe pump<strong>in</strong>g schedule. Thefollow<strong>in</strong>g constra<strong>in</strong>ts over an exploitation period <strong>of</strong> <strong>10</strong>0 years were used:• Decl<strong>in</strong>e <strong>in</strong> aquifer potentiometric level should not exceed half <strong>of</strong> its <strong>in</strong>itial saturatedthickness.• The maximum allowed decl<strong>in</strong>e <strong>in</strong> water level should not exceed <strong>10</strong>0 mThe results <strong>of</strong> <strong>the</strong> various simulated extraction scenarios <strong>in</strong>dicated that groundwater pump<strong>in</strong>gat a rate <strong>of</strong> 4.74 mcm/day could be safely implemented over a period <strong>of</strong> <strong>10</strong>0 years. Predicteddrawdown would range from 35 m to <strong>10</strong>0 m and <strong>the</strong> depth to water would be between 58 and115 m.b.g.l. by <strong>the</strong> end <strong>of</strong> <strong>the</strong> <strong>10</strong>0 year period. (Figure 22).The groundwater development priorities <strong>in</strong> <strong>the</strong> East Owe<strong>in</strong>at area were ranked by <strong>the</strong> landdevelopment areas accord<strong>in</strong>g to <strong>the</strong> decl<strong>in</strong>e <strong>of</strong> <strong>the</strong> aquifer water level and <strong>the</strong> depth topump<strong>in</strong>g level with a proposed extraction plan <strong>of</strong> 4.74 mcm/day for <strong>10</strong>0 years.<strong>Hydrogeology</strong> <strong>of</strong> <strong>Deep</strong> <strong>Aquifers</strong> 2 - 16 EPIQ Water Policy Reform Program


Table (6) - Results <strong>of</strong> Forecast System Response to Groundwater EconomicExtraction Plan <strong>in</strong> <strong>the</strong> New Valley, <strong>Western</strong> <strong>Desert</strong>DevelopmentAreaEconomicGroundwaterExtraction(mcm/year)EconomicPump<strong>in</strong>gLevel(m.b.g.l.)PredictedDepth toWater After<strong>10</strong>0 Years(m.b.g.l.)Total PossibleArea to beIrrigated(feddan)El-KhargaOasis 1<strong>10</strong> * 38 52 <strong>10</strong>,000El-Zayat Area 14 62 64 2,500Abu-TarturPhosphate22 --------- 200 ---------m<strong>in</strong>esEl-DakhlaOasis and 374 63 62 56,000MawhubWestEl-FarafraOasis and 4<strong>10</strong> 115 65 65,000Abu M<strong>in</strong>qarEl-BahariyaOasis115 96 75 20,500Total 1,045 154,000* Groundwater extraction <strong>in</strong> 1980Source: Euroconsult/Pacer Consultants (1983)Figure (23) shows East Owe<strong>in</strong>at groundwater development priority areas where futuregroundwater utilization should be located. Table (7) <strong>in</strong>dicates <strong>the</strong> possible hydroagriculturalpotentials <strong>in</strong> each <strong>of</strong> <strong>the</strong> three priority areas.<strong>Hydrogeology</strong> <strong>of</strong> <strong>Deep</strong> <strong>Aquifers</strong> 2 - 17 EPIQ Water Policy Reform Program


Table (7) – Groundwater Development Priority Areas, East Owe<strong>in</strong>atPriority Rank Total Area*(feddan)GroundwaterAvailabilityPossible Area tobe Irrigated1 st priority2 nd priority3 rd priority180,000574,00071,000(mcm/day)1.652.3<strong>10</strong>.78(feddan)66,00092,40030,400Total 825,000 4.74 188,800* Area where groundwater extraction well-fields should be evenly distributed (3465Km 2 )Source: DRTPC (1984)The simulation model did not take <strong>in</strong>to consideration <strong>the</strong> groundwater losses by evaporation<strong>in</strong> those parts <strong>of</strong> <strong>the</strong> modeled area where <strong>the</strong> water is near <strong>the</strong> ground surface. Also, <strong>the</strong>economic aspects <strong>of</strong> long-term groundwater extraction <strong>in</strong> <strong>the</strong> East Owe<strong>in</strong>at area for irrigatedagriculture have not been determ<strong>in</strong>ed, which will have a serious impact <strong>in</strong> decid<strong>in</strong>g <strong>the</strong>maximum economic and susta<strong>in</strong>able groundwater potential use <strong>in</strong> <strong>the</strong> area.2.5.7.3 South Qattara ModelEzzat, et al (1977) developed a one-layer model to cover <strong>the</strong> areas <strong>of</strong> Siwa, El-Bahariya andEl-Farafra Oasis, (Figure 24) to verify <strong>the</strong> hydrodynamic parameters <strong>of</strong> <strong>the</strong> aquifer and todeterm<strong>in</strong>e its response to future groundwater development.The analogue model was developed us<strong>in</strong>g <strong>the</strong> Electronic Circuit Analyses Program (ECAP).The model was run for steady and unsteady state conditions with development scenarios forEl-Farafra, El-Bahariya and Siwa, us<strong>in</strong>g storativity values <strong>of</strong> <strong>10</strong> -4 and <strong>10</strong> -2 . The results arepresented <strong>in</strong> Table (8).<strong>Hydrogeology</strong> <strong>of</strong> <strong>Deep</strong> <strong>Aquifers</strong> 2 - 18 EPIQ Water Policy Reform Program


Table (8)-Predicted Drawdowns Aga<strong>in</strong>st Groundwater Development <strong>in</strong>South Qattara AreaDevelopmentAreaEl-FarafraOasisEl-BahariyaOasisGroundwater Initial Water S = 0.0001 S = 0.01Extraction Level(mcm/year) (m) (1) (2) (1) (2)364 164 351 361 141 142182 132 335 345 118 130Siwa Oasis 140 - 8 194 204 0.9 3.7(1) Drawdown over 50 years (m)(2) Drawdown over <strong>10</strong>0 years (m)Source: Ezzat et al (1977)The South Qattara model did not take <strong>in</strong>to account <strong>the</strong> lateral and vertical changes <strong>in</strong>groundwater sal<strong>in</strong>ity <strong>in</strong> <strong>the</strong> <strong>Western</strong> <strong>Desert</strong> north <strong>of</strong> lat. 28 0 N. This might have adverseimpacts on <strong>the</strong> model results with regard to susta<strong>in</strong>able fresh groundwater extractions,especially <strong>in</strong> <strong>the</strong> Siwa Oasis. Also, <strong>the</strong> economic groundwater potential <strong>in</strong> <strong>the</strong> three Oases forirrigated agriculture has not been evaluated.2.5.7.4 Nubia Bas<strong>in</strong> ModelDeleted: nor<strong>the</strong>rn part <strong>of</strong> <strong>the</strong>Deleted: (Deleted: LDeleted: udeDeleted: )Soliman (1987), developed a two-dimensional f<strong>in</strong>ite element model which covers <strong>the</strong> Nubiabas<strong>in</strong> on both sides <strong>of</strong> Nasser Lake (Figure 25). The objective <strong>of</strong> <strong>the</strong> model was to estimate<strong>the</strong> yield <strong>of</strong> <strong>the</strong> Nubia Sandstone aquifer at periods <strong>of</strong> low floods when <strong>the</strong> level <strong>of</strong> <strong>the</strong> lake is<strong>the</strong> lowest and <strong>the</strong> recharge to <strong>the</strong> aquifer is m<strong>in</strong>imal.The results <strong>of</strong> <strong>the</strong> model <strong>in</strong>dicated that <strong>the</strong> potential groundwater extraction from <strong>the</strong> aquifer,at <strong>the</strong> different locations selected for irrigated agriculture (Wadi Allaqi, Afia, Toshka, AbuSimbel) amounts to 257 mcm /year with anticipated drawdowns rang<strong>in</strong>g between 60 m and70 m.2.5.7.5 Nubia Sandstone Aquifer Regional ModelHe<strong>in</strong>el and Br<strong>in</strong>kman (1987) developed a regional f<strong>in</strong>ite element model to simulate <strong>the</strong> NubiaSandstone bas<strong>in</strong> with its shar<strong>in</strong>g countries. This <strong>in</strong>cluded Egypt’s deserts, sou<strong>the</strong>ast Libya,nor<strong>the</strong>ast Chad and northwest Sudan. The model covered an area <strong>of</strong> two million km 2 (Figure26), and was constructed to test different concepts <strong>of</strong> groundwater orig<strong>in</strong>, aquifer rechargeand <strong>the</strong> long-term aquifer response to future groundwater extraction plans <strong>in</strong> <strong>the</strong> differentaquifer shar<strong>in</strong>g countries.<strong>Hydrogeology</strong> <strong>of</strong> <strong>Deep</strong> <strong>Aquifers</strong> 2 - 19 EPIQ Water Policy Reform Program


The model was calibrated for both long-term simulation (s<strong>in</strong>ce <strong>the</strong> last pluvial period <strong>of</strong> 8,000years B.P. to <strong>the</strong> year 1960) and short-term simulation dur<strong>in</strong>g <strong>the</strong> period 1960-1980. Theresults <strong>in</strong>dicate that most <strong>of</strong> <strong>the</strong> groundwater <strong>in</strong> <strong>the</strong> Nubia Sandstone aquifer <strong>in</strong> Egypt andLibya is locally recharged dur<strong>in</strong>g humid and semi-arid climatic periods. Although <strong>the</strong>re issome regional <strong>in</strong>flow, it is not sufficient to ma<strong>in</strong>ta<strong>in</strong> equilibrium conditions under <strong>the</strong> presentclimate. Therefore, <strong>the</strong> groundwater resource <strong>in</strong> <strong>the</strong> Nubia Sandstone aquifer system shouldbe considered a non-renewable resource.The calibrated model was used to predict <strong>the</strong> aquifer long-term response to proposed futureadditional extraction <strong>in</strong> Egypt and Libya (Figure 27). The base period is 1980 with a plann<strong>in</strong>ghorizon <strong>of</strong> 80 years. The results <strong>of</strong> <strong>the</strong>se extraction simulations showed <strong>the</strong> development <strong>of</strong>extraction cones <strong>in</strong> <strong>the</strong> different pump<strong>in</strong>g centers as well as <strong>the</strong> <strong>in</strong>terference between <strong>the</strong>secenters. A huge cone <strong>of</strong> depression was focused around <strong>the</strong> New Valley Oases. The predicteddrawdowns at <strong>the</strong> end <strong>of</strong> <strong>10</strong>0 years <strong>of</strong> extraction <strong>in</strong> <strong>the</strong> <strong>Western</strong> <strong>Desert</strong> groundwaterdevelopment areas are shown <strong>in</strong> Figure (28).2.5.8 Susta<strong>in</strong>able Groundwater PotentialsA number <strong>of</strong> model studies have been conducted by different consultants to simulate <strong>the</strong>Nubia Sandstone aquifer system <strong>in</strong> <strong>the</strong> different parts <strong>of</strong> <strong>the</strong> <strong>Western</strong> <strong>Desert</strong>, where irrigatedagriculture development projects are expected to be <strong>in</strong>itiated or expanded. The numericalmodel developed for <strong>the</strong> Nubia aquifer <strong>in</strong> <strong>the</strong> Oases <strong>of</strong> <strong>the</strong> New Valley (Euroconsult/PacerConsultants, 1983) estimates <strong>the</strong> susta<strong>in</strong>able and economic groundwater extraction rates forirrigated agriculture and m<strong>in</strong><strong>in</strong>g sectors at 1,045 mcm/year (see Table 6). The East Owe<strong>in</strong>at,South Qattara (Siwa Oasis) and Nasser Lake area models should be updated with availablenew hydrogeologic data, address <strong>the</strong> environmental consequences <strong>of</strong> <strong>the</strong> long-termgroundwater extraction and estimate <strong>the</strong> economic feasibility <strong>of</strong> its utilization <strong>in</strong> different usesectors. Table (9) and Figure (29) present a summary <strong>of</strong> <strong>the</strong> groundwater potential <strong>in</strong> <strong>the</strong><strong>Western</strong> <strong>Desert</strong>.2.6 Present Status <strong>of</strong> Groundwater Development <strong>in</strong> <strong>the</strong> <strong>Western</strong> <strong>Desert</strong>2.6.1 Basic CriteriaWith<strong>in</strong> <strong>the</strong> context <strong>of</strong> <strong>the</strong> national development goals, <strong>the</strong> objectives <strong>of</strong> <strong>the</strong> regionaldevelopment <strong>of</strong> <strong>the</strong> <strong>Western</strong> <strong>Desert</strong> are:Settl<strong>in</strong>g population away from overcrowded areas <strong>in</strong> <strong>the</strong> Nile Valley and Delta.Gett<strong>in</strong>g <strong>the</strong> maximum use <strong>of</strong> <strong>the</strong> exist<strong>in</strong>g natural resources <strong>in</strong> <strong>the</strong> isolated vast desert areas.Connect<strong>in</strong>g <strong>the</strong>se areas to <strong>the</strong> rest <strong>of</strong> <strong>the</strong> country.Creat<strong>in</strong>g new job opportunities for unemployed youths.The development activities <strong>in</strong> <strong>the</strong> <strong>Western</strong> <strong>Desert</strong> depend on <strong>the</strong> groundwater resources <strong>in</strong> <strong>the</strong>Nubia Sandstone aquifer. As previously <strong>in</strong>dicated, <strong>the</strong> natural recharge to <strong>the</strong> aquifer ispresently limited. It is essentially a non-renewable resource. The plann<strong>in</strong>g <strong>of</strong> its exploitationand utilization should be based on a m<strong>in</strong><strong>in</strong>g process that results <strong>in</strong> a cont<strong>in</strong>uous lower<strong>in</strong>g <strong>of</strong>aquifer potentiometric levels over time. For proper development and optimal utilization <strong>of</strong>such non-renewable resources, <strong>the</strong> follow<strong>in</strong>g criteria should be satisfied:• Extraction <strong>of</strong> groundwater resources should be economic and rational.• The exploitation must be susta<strong>in</strong>able to assume prosperity for <strong>the</strong> com<strong>in</strong>g generations.<strong>Hydrogeology</strong> <strong>of</strong> <strong>Deep</strong> <strong>Aquifers</strong> 2 - 20 EPIQ Water Policy Reform Program


It should be noted that <strong>the</strong> results <strong>of</strong> groundwater monitor<strong>in</strong>g <strong>in</strong> <strong>the</strong> <strong>Western</strong> <strong>Desert</strong> Oasesareas <strong>in</strong>dicate that exploitation <strong>of</strong> groundwater from <strong>the</strong> Nubia Sandstone aquifer usuallystarts with free-flow<strong>in</strong>g conditions. Over time, as groundwater extraction rates <strong>in</strong>crease, wellartesian pressures decrease, result<strong>in</strong>g <strong>in</strong> <strong>the</strong> need for pump<strong>in</strong>g.2.6.2 Design <strong>of</strong> Well and Well-FieldDur<strong>in</strong>g <strong>the</strong> early stage <strong>of</strong> <strong>the</strong> large-scale groundwater development scheme <strong>in</strong> <strong>the</strong> New ValleyOases (1960-1966), <strong>the</strong> groundwater development plans for irrigated agriculture were basedon <strong>the</strong> follow<strong>in</strong>gs concepts:1. The wells should cont<strong>in</strong>ue to discharge naturally over time.2. The m<strong>in</strong>imum spac<strong>in</strong>g between wells should not be less than 2 km3. The wells should be constructed to extract water from <strong>the</strong> deeper horizons <strong>of</strong> <strong>the</strong>Nubia Sandstone aquifer. This would avoid over-exploitation <strong>of</strong> <strong>the</strong> shallow horizonfrom which <strong>the</strong> exist<strong>in</strong>g spr<strong>in</strong>gs and native wells derive <strong>the</strong>ir water for irrigation.4. The deep irrigation wells were drilled based on <strong>the</strong> follow<strong>in</strong>g design criteria:• Depth: 400-800 m• Production cas<strong>in</strong>g: API, carbon steel 8 5/8 // or 9 5/8 // cas<strong>in</strong>gs.• Screen: <strong>of</strong> 6 5/8 // or 7 // diameter, made <strong>of</strong> carbon steel.• The wells spaced 2 km apart without <strong>in</strong>terl<strong>in</strong>kage.• The area reclaimed per well based on 75 percent <strong>of</strong> <strong>the</strong> <strong>in</strong>itial flow<strong>in</strong>gdischarge.The application <strong>of</strong> such well and well-field design resulted <strong>in</strong> <strong>the</strong> follow<strong>in</strong>g problemsspecifically <strong>in</strong> El-Kharga Oasis:• The size <strong>of</strong> <strong>the</strong> production cas<strong>in</strong>g expected to be used dur<strong>in</strong>g <strong>the</strong> pump<strong>in</strong>g stage aspump house cas<strong>in</strong>g was too small for <strong>the</strong> well pump needed to produce <strong>the</strong> requiredwater for irrigation.• The groundwater <strong>of</strong> <strong>the</strong> Nubia Sandstone aquifer is proved to be highly corrosive tonormal steel pipes, pumps, and equipment used <strong>in</strong> well construction, which resulted <strong>in</strong><strong>the</strong> collapse <strong>of</strong> <strong>the</strong> wells <strong>in</strong> a shorter period than expected.• The irrigated areas were small, sparse, and widely spaced. Because <strong>the</strong> wells were not<strong>in</strong>terl<strong>in</strong>ked (m<strong>in</strong>imum spac<strong>in</strong>g <strong>of</strong> 2 km), <strong>in</strong> case <strong>of</strong> well or pump failure, it was notpossible to transfer water from one well to ano<strong>the</strong>r to provide irrigation water for <strong>the</strong>cultivated crops.Because <strong>of</strong> <strong>the</strong> above-mentioned problems, <strong>the</strong> design <strong>of</strong> <strong>the</strong> wells <strong>in</strong> <strong>the</strong> <strong>Western</strong> <strong>Desert</strong>development areas was reconsidered and modified to ensure maximum operat<strong>in</strong>g hydraulicefficiency, and to satisfy free flow and pump<strong>in</strong>g stage criteria over <strong>the</strong>ir economic lifetime.The follow<strong>in</strong>g concepts were <strong>in</strong>troduced:• Well production rate is <strong>the</strong> rate which can be efficiently produced from <strong>the</strong> welldur<strong>in</strong>g its lifetime (20-25 years), based on <strong>the</strong> characteristics <strong>of</strong> <strong>the</strong> aquifer horizontapped by <strong>the</strong> well, <strong>the</strong> critical economic pump<strong>in</strong>g level <strong>in</strong> <strong>the</strong> area <strong>of</strong> <strong>the</strong> well-field<strong>Hydrogeology</strong> <strong>of</strong> <strong>Deep</strong> <strong>Aquifers</strong> 2 - 21 EPIQ Water Policy Reform Program


and <strong>the</strong> maximum well operat<strong>in</strong>g hydraulic efficiency. This rate should be set byconsider<strong>in</strong>g <strong>the</strong> effects over <strong>the</strong> life <strong>of</strong> <strong>the</strong> well on free-flow and pump<strong>in</strong>g stageregardless <strong>of</strong> <strong>the</strong> <strong>in</strong>itial well discharge rate.• The expected pump<strong>in</strong>g level throughout <strong>the</strong> well life-time.• The use <strong>of</strong> API standard steel well pump house cas<strong>in</strong>g and production cas<strong>in</strong>g whichwill be <strong>of</strong> suitable sizes and lengths to accommodate <strong>the</strong> required pump, futurepump<strong>in</strong>g levels and m<strong>in</strong>imize well losses. Corrosion-resistant materials for <strong>the</strong> wellscreens and screen cas<strong>in</strong>gs to ensure long life <strong>of</strong> <strong>the</strong> well should also be used.Details <strong>of</strong> present practices <strong>of</strong> well and well-field design for different development areas <strong>in</strong><strong>the</strong> <strong>Western</strong> <strong>Desert</strong> will be presented later when discuss<strong>in</strong>g <strong>the</strong> present status <strong>of</strong> groundwaterexploitation <strong>in</strong> <strong>the</strong>se areas.2.6.3 Groundwater Exploitation Practices <strong>in</strong> <strong>the</strong> <strong>Western</strong> <strong>Desert</strong>2.6.3.1 Historical BackgroundEven <strong>in</strong> ancient times, water from natural spr<strong>in</strong>gs <strong>in</strong> <strong>the</strong> <strong>Western</strong> <strong>Desert</strong> Oasis orig<strong>in</strong>at<strong>in</strong>gfrom <strong>the</strong> Nubia Sandstone aquifer system was used. Prior to 1960, a more systematicexploitation <strong>of</strong> groundwater resources was developed by <strong>the</strong> construction <strong>of</strong> shallow wellswith depths from 50-70 m The upper most horizon <strong>of</strong> <strong>the</strong> aquifer was tapped by apply<strong>in</strong>g <strong>the</strong>cable tool drill<strong>in</strong>g technique and us<strong>in</strong>g wooden log l<strong>in</strong><strong>in</strong>g made from <strong>the</strong> dome trees.After 1960 deep wells, extract<strong>in</strong>g water from <strong>the</strong> deep aquifer horizons with depths rang<strong>in</strong>gbetween 300 m and 1,200 m, were drilled to provide water supplies for proposed large scaleirrigated agriculture and new settlements <strong>in</strong> <strong>the</strong> New Valley Oases region at El-Kharga, El-Dakhla, El-Farafra and El-Bahariya.The groundwater extractions dur<strong>in</strong>g <strong>the</strong> period 1960 to 1997 from <strong>the</strong> Nubia Sandstoneaquifer system are presented by area <strong>in</strong> Table (<strong>10</strong>). The data given <strong>in</strong> this table were based on<strong>the</strong> observed discharges <strong>of</strong> <strong>the</strong> <strong>in</strong>dividual wells, which were measured every three months.Well observations were carried out by <strong>the</strong> General Authority for Rehabilitation Projects andAgriculture Development (GARPAD) and <strong>the</strong> New Valley Development Authority (NVDA)until mid-1995, after which <strong>the</strong> New Valley Irrigation Department (NVID) <strong>of</strong> <strong>the</strong> MPWWRtook over this responsibility.Table (<strong>10</strong>) and Figure (30) <strong>in</strong>dicate that <strong>the</strong> total groundwater extraction from <strong>the</strong> shallow anddeep wells tapp<strong>in</strong>g <strong>the</strong> Nubia Sandstone aquifer was 203 mcm/year <strong>in</strong> 1960 (from 1,043shallow wells and 27 deep wells) and <strong>in</strong>creased to 678.7 mcm/year <strong>in</strong> 1997 (from 904shallow wells and 692 deep wells). Presently 271.7 mcm/year are extracted from 1,516shallow wells and spr<strong>in</strong>gs from <strong>the</strong> post-Nubia fractured carbonate aquifers <strong>in</strong> El-Farafra andSiwa Oases.<strong>Hydrogeology</strong> <strong>of</strong> <strong>Deep</strong> <strong>Aquifers</strong> 2 - 22 EPIQ Water Policy Reform Program


2.6.3.2 Groundwater Conditions and Utilization <strong>in</strong> <strong>the</strong> <strong>Western</strong> <strong>Desert</strong>DevelopmentAreas.As previously stated, <strong>the</strong> <strong>Western</strong> <strong>Desert</strong> is a large plateau area with its surface <strong>in</strong> <strong>the</strong> centraland nor<strong>the</strong>rn parts consist<strong>in</strong>g <strong>of</strong> limestone rocks. The plateau is <strong>in</strong>terrupted by a series <strong>of</strong>north-south oriented topographic depressions. These are <strong>the</strong> south Kharga, El-Kharga, El-Dakhla, El-Farafra, El-Bahariya and Siwa Oases as well as <strong>the</strong> East Owe<strong>in</strong>at area (located <strong>in</strong><strong>the</strong> sou<strong>the</strong>rn sandstone plateau) where vast tracts <strong>of</strong> arable lands suitable for agriculturaldevelopment exist.In <strong>the</strong> follow<strong>in</strong>g sections <strong>the</strong> description <strong>of</strong> <strong>the</strong> present groundwater conditions and utilization<strong>in</strong> <strong>the</strong> different development areas <strong>of</strong> <strong>the</strong> <strong>Western</strong> <strong>Desert</strong> will be discussed.2.6.3.2.1 El-Kharga Oasis. Prior to 1938, groundwater extraction <strong>in</strong> <strong>the</strong> KhargaOasis was only conf<strong>in</strong>ed to <strong>the</strong> uppermost horizon <strong>of</strong> <strong>the</strong> Nubia Sandstone aquiferthrough <strong>the</strong> natural spr<strong>in</strong>gs and shallow wells (50 m to 70 m deep). Exploitation <strong>of</strong>deep aquifer horizons <strong>in</strong> <strong>the</strong> Oasis began dur<strong>in</strong>g <strong>the</strong> period 1938-1952 when sevendeep wells (300-500 m deep) were drilled as test-productive wells. In <strong>the</strong> year1960, when large-scale land reclamation started <strong>in</strong> <strong>the</strong> New Valley, development <strong>of</strong>groundwater from <strong>the</strong> deep horizons with free-flow<strong>in</strong>g conditions was started tosupply irrigation water, and to avoid over-exploitation <strong>of</strong> <strong>the</strong> shallow aquiferhorizon, previously <strong>the</strong> only source <strong>of</strong> water.The groundwater conditions <strong>in</strong> El-Kharga Oasis can be summarized as follows:(a) Aquifer Hydrogeologic Sett<strong>in</strong>gThe detailed hydrogeologic studies <strong>of</strong> <strong>the</strong> Nubia Sandstone aquifer system <strong>in</strong> El-Kharga Oasis <strong>in</strong>dicate that it is composed <strong>of</strong> four horizons <strong>of</strong> sandstone with shaleand silt <strong>in</strong>tercalations and separated by semi-pervious, discont<strong>in</strong>uous clay and shalebeds as shown <strong>in</strong> Figure (31). The ma<strong>in</strong> hydrogeologic characteristics <strong>of</strong> <strong>the</strong> fouraquifer horizons are given <strong>in</strong> Table (11).Table (11) - Hydrogeologic Characteristics <strong>of</strong> <strong>the</strong> Nubia Sandstone AquiferHorizons <strong>in</strong> El-Kharga OasisAverage GeologicAquiferHorizonDepth (m)From-ToTotalThickness(m)ParametersNet SandThickness(m)Average Hydraulic ParametersT S Q(m 2 / d) (x <strong>10</strong> -4 )A 7-170 99 71 250 8 190B 200-440 240 165 565 3 430C 450-600 150 90 230 2 3<strong>10</strong>D 650-750 84 52 242 3 125T: Transmissivity S: Storativity Q: Expected well yield(m 3 / hr)<strong>Hydrogeology</strong> <strong>of</strong> <strong>Deep</strong> <strong>Aquifers</strong> 2 - 23 EPIQ Water Policy Reform Program


Source: Ezzat, (1974)The shallow wells and spr<strong>in</strong>gs <strong>in</strong> <strong>the</strong> Kharga Oasis take <strong>the</strong>ir water from horizon A,while <strong>the</strong> deep wells are tapp<strong>in</strong>g horizons B, C and D, with <strong>the</strong> majority fromhorizons B and C.Groundwater sal<strong>in</strong>ity <strong>in</strong> El-Kharga Oasis ranges between 200 ppm and 800 ppm,with no significant changes dur<strong>in</strong>g <strong>the</strong> last 35 years <strong>of</strong> exploitation.(b) Groundwater ExploitationTable (<strong>10</strong>) <strong>in</strong>dicates that 279 shallow wells and spr<strong>in</strong>gs and 12 deep wells were <strong>in</strong>use <strong>in</strong> El-Kharga Oasis <strong>in</strong> 1960, yield<strong>in</strong>g a total discharge <strong>of</strong> 52.7 mcm/year, toirrigate an area <strong>of</strong> 5,800 feddan. Dur<strong>in</strong>g <strong>the</strong> period 1960-1997, <strong>the</strong> number <strong>of</strong> deepwells <strong>in</strong>creased to 185 to irrigate <strong>the</strong> new reclaimed lands and <strong>the</strong> old native landsand to substitute <strong>the</strong> shallow wells or spr<strong>in</strong>gs that were abandoned.The present groundwater extraction <strong>in</strong> El-Kharga Oasis is 118.3 mcm/year (totaleconomic extraction: 1<strong>10</strong> mcm/year) <strong>of</strong> which 92.7 mcm/year is used to irrigate17,000 feddan while <strong>the</strong> rest is allocated for domestic water supply (Table 12).Figure (32) shows <strong>the</strong> change <strong>in</strong> <strong>the</strong> number <strong>of</strong> active shallow and deep wells and<strong>the</strong>ir total discharges <strong>in</strong> El-Kharga Oasis dur<strong>in</strong>g <strong>the</strong> period 1960-1997. It also<strong>in</strong>dicates that <strong>the</strong> average daily discharge <strong>of</strong> <strong>the</strong> free-flow<strong>in</strong>g deep wells hasdecreased from 3,598 m 3 /day <strong>in</strong> 1960 to 1,400 m 3 /day at present. The rate <strong>of</strong>decl<strong>in</strong>e has been 61.1 percent dur<strong>in</strong>g this period. Out <strong>of</strong> 185 deep wells <strong>in</strong> El-Kharga Oasis, 180 wells are currently pump-operated and only 16 shallow wellsare still free-flow<strong>in</strong>g.The results <strong>of</strong> groundwater monitor<strong>in</strong>g <strong>in</strong> El-Kharga Oasis dur<strong>in</strong>g <strong>the</strong> last 35 yearsshows that a rate <strong>of</strong> decl<strong>in</strong>e <strong>in</strong> groundwater elevations ranged between 0.13 and 2.2m/year.The only groundwater development activity <strong>in</strong> El-Kharga Oasis currently is <strong>the</strong>replacement <strong>of</strong> old wells, with new ones. The replacement wells <strong>in</strong> El-KhargaOasis are be<strong>in</strong>g drilled accord<strong>in</strong>g to <strong>the</strong> designs shown <strong>in</strong> (Table 13).Table (13) – Current Well Designs <strong>in</strong> El-Kharga OasisDesign Parameters Shallow Wells <strong>Deep</strong> WellsTotal depthAquifer horizonCas<strong>in</strong>gs:20 // conductor cas<strong>in</strong>g locallymanufacturedAPI pump house cas<strong>in</strong>gAPI production cas<strong>in</strong>gScreen & Screen cas<strong>in</strong>g:6 5/8 // sta<strong>in</strong>less steel, grade 304250mA & B30m16 // (150m)---------± <strong>10</strong>0m650mB & C50m13 3/8 // (150m)9 5/8 // (300m)± 200mSource: Ezzat, (1974)<strong>Hydrogeology</strong> <strong>of</strong> <strong>Deep</strong> <strong>Aquifers</strong> 2 - 24 EPIQ Water Policy Reform Program


2.6.3.2.2 El-Dakhla Oasis. The results <strong>of</strong> previous detailed hydrogeologic<strong>in</strong>vestigations and well monitor<strong>in</strong>g <strong>in</strong>dicate that <strong>the</strong> groundwater conditions <strong>in</strong> El-Dakhla Oasis (<strong>in</strong>clud<strong>in</strong>g Mawhub West Area) are as follows:(a) Aquifer Hydrogeologic Sett<strong>in</strong>gEl-Dakhla Oasis can be geologically described as alternat<strong>in</strong>g syncl<strong>in</strong>es andanticl<strong>in</strong>es with <strong>the</strong>ir axes plung<strong>in</strong>g <strong>in</strong> a nor<strong>the</strong>ast direction. Figure (33) shows aneast-west hydrogeologic section along El-Dakhla Oasis. It <strong>in</strong>dicates that <strong>the</strong> fouraquiferous zones A, B, C, and D <strong>of</strong> El-Kharga Oasis can be traced and correlated tocont<strong>in</strong>ue <strong>in</strong> El-Dakhla Oasis, even though <strong>the</strong> deepest horizon was only partiallypenetrated as none <strong>of</strong> <strong>the</strong> deep wells reached its base. The hydrogeologic properties<strong>of</strong> <strong>the</strong> Nubia Sandstone aquifer horizons <strong>in</strong> El-Dakhla Oasis are presented <strong>in</strong> Table(14).The groundwater sal<strong>in</strong>ity <strong>in</strong> El-Dakhla Oasis ranges from 200-500 ppm <strong>in</strong> <strong>the</strong>upperhorizon (A), while it varies from 150-800 ppm <strong>in</strong> <strong>the</strong> deep horizons. Nopronounced change <strong>in</strong> sal<strong>in</strong>ity has occurred dur<strong>in</strong>g <strong>the</strong> past 35 years.Table (14) – Hydrogeologic Characteristics <strong>of</strong> <strong>the</strong> Nubia Sandstone Aquifer Horizons<strong>in</strong> El-Dakhla OasisAverage Geologic Average Hydraulic ParametersParametersAquiferHorizonDepth(m)From–ToTotalThickness(m)Net SandThickness(m)T(m 2 /d)S Q(x<strong>10</strong> -4) (m 3 /hr)A 80-180 127 97 825 7.6 65B 190-490 280 252 1900 11 2<strong>10</strong>C 520-700 137 114 940 11 145D* >7<strong>10</strong>* Not fully penetrated and testedT: Transmissivity S: Storativity Q: Expected well yieldSource: Ezzat, (1974)(b) Groundwater ExploitationBy <strong>the</strong> time <strong>the</strong> <strong>in</strong>tensive horizontal expansion activity was <strong>in</strong>itiated <strong>in</strong> 1960, <strong>the</strong>total groundwater extraction <strong>in</strong> El-Dakhla Oasis was 117.6 mcm/year, dischargedfrom 632 shallow wells and spr<strong>in</strong>gs, and 15 deep wells to irrigate about <strong>10</strong>,000feddan (Table <strong>10</strong>). At present a total <strong>of</strong> 505 shallow wells and 305 deep wells arebe<strong>in</strong>g utilized with a total extraction rate <strong>of</strong> 290.9 mcm/year <strong>of</strong> which 273.4mcm/year is used to irrigate 37,500 feddan, and 17.5 mcm/year is used fordomestic purposes <strong>in</strong> El-Dakhla and Mawhub West area. (Tables <strong>10</strong> and 12).Figure (34) shows <strong>the</strong> development <strong>of</strong> groundwater exploitation <strong>in</strong> El-Dakhla Oasisand Mawhub West area dur<strong>in</strong>g <strong>the</strong> period 1960-1997. It also shows that <strong>the</strong>average daily discharge <strong>of</strong> <strong>the</strong> free-flow<strong>in</strong>g wells decreased from 6,923 m 3 /day <strong>in</strong>1960 to 1,891 m 3 /day <strong>in</strong> 1997. This is a decl<strong>in</strong>e <strong>of</strong> 72.7 percent. In <strong>the</strong> hightopographic areas <strong>in</strong> <strong>the</strong> eastern part <strong>of</strong> El-Dakhla Oasis, (Teneida and Balat areas),pump<strong>in</strong>g <strong>of</strong> groundwater from 27 deep wells is already practiced.<strong>Hydrogeology</strong> <strong>of</strong> <strong>Deep</strong> <strong>Aquifers</strong> 2 - 25 EPIQ Water Policy Reform Program


Periodic monitor<strong>in</strong>g <strong>of</strong> groundwater levels <strong>in</strong> El-Dakhla Oasis <strong>in</strong>dicates that <strong>the</strong>rate <strong>of</strong> decl<strong>in</strong>e <strong>in</strong> <strong>the</strong> aquifer piezometric pressures ranges between 1.2 m/year and2.0 m/year.S<strong>in</strong>ce 1970, <strong>the</strong> well design shown <strong>in</strong> Table (15) has been used <strong>in</strong> El-Dakhla Oasisto satisfy both free-flow<strong>in</strong>g and pump<strong>in</strong>g conditions and to ensure economic welllife.Table (15) – Current Well Designs <strong>in</strong> El-Dakhla OasisDesign Parameter Shallow Wells <strong>Deep</strong> WellsTotal depth ± 300m ± 500m ± <strong>10</strong>00mAquifer horizon A, B B C & DCas<strong>in</strong>gs:20 // conductor cas<strong>in</strong>g ± 50m ± 50m ± 50mPump house cas<strong>in</strong>g 133 / 8 // API± 150m ± 120m ± 120m5 / 8//9cas<strong>in</strong>gAPI, productionFrom ±140mto ± 300 mFrom ±140 mto ± 800 mScreen & Screen cas<strong>in</strong>gs ± 150m ± 200m ± 200m6 5 /// 8 Sta<strong>in</strong>less steel,grade 304Source: Ezzat, (1974)The ma<strong>in</strong> current groundwater activity <strong>in</strong> El-Dakhla Oasis – Mawhub West area is<strong>the</strong> rehabilitation <strong>of</strong> presently cultivated areas. This <strong>in</strong>cludes replacement <strong>of</strong> <strong>the</strong> oldwells which have exceeded <strong>the</strong>ir economic life and those shallow or deep wellswhich have ceased flow<strong>in</strong>g or have severely decreased <strong>the</strong>ir free-flow discharge.The current practice is to replace old wells (average depth 800m) by drill<strong>in</strong>g newwells to tap <strong>the</strong> deeper horizon (1,000-1,200 m deep) at a cost <strong>of</strong> about 1,000,000L.E / well. This is nei<strong>the</strong>r rational nor economic where <strong>the</strong> old wells are stillstructurally fit and can be equipped with a pump to <strong>in</strong>crease <strong>the</strong> well waterproduction, as <strong>the</strong> free-flow<strong>in</strong>g discharges <strong>of</strong> <strong>the</strong> new wells do not exceed 2,000m 3 /day which result <strong>in</strong> <strong>the</strong> <strong>in</strong>crease <strong>in</strong> <strong>the</strong> cost <strong>of</strong> extract<strong>in</strong>g a unit <strong>of</strong> water.Due to <strong>the</strong> uncontrolled flow<strong>in</strong>g groundwater conditions <strong>in</strong> El-Dakhla Oasis,Mawhub West area, serious water wastage and dra<strong>in</strong>age problems exists. It wasnoticed dur<strong>in</strong>g a recent field visit to <strong>the</strong> area (November 1997) that <strong>the</strong> agriculturedra<strong>in</strong>age lake near Mut, <strong>the</strong> capital <strong>of</strong> <strong>the</strong> Oasis, is used as a dump site for <strong>the</strong>area’s untreated sewage water. This prevents dra<strong>in</strong>age water reuse for agricultureor aquiculture and causes adverse environmental effects.Recently, <strong>in</strong> El-Dakhla Oasis, arable lands were allocated to be reclaimed byprivate <strong>in</strong>vestors, where a total <strong>of</strong> 27 wells have been drilled2.6.3.2.3 El-Farafra Oasis(a) Aquifer Hydrogeologic Sett<strong>in</strong>gSeveral geological and hydrogeological studies <strong>of</strong> El-Farafra Oasis have beencarried out ei<strong>the</strong>r for <strong>the</strong> oasis itself or with<strong>in</strong> <strong>the</strong> New Valley region.<strong>Hydrogeology</strong> <strong>of</strong> <strong>Deep</strong> <strong>Aquifers</strong> 2 - 26 EPIQ Water Policy Reform Program


The hydrogeological studies conducted by Euroconsult/Pacer Consultants (1983)and il Nuovo Castoro (1986), as well as <strong>the</strong> results <strong>of</strong> deep test drill<strong>in</strong>g haveoutl<strong>in</strong>ed <strong>the</strong> hydrogeological conditions <strong>of</strong> El-Farafra Oasis. These studies <strong>in</strong>dicatethat <strong>the</strong> Nubia Sandstone section, which has been penetrated to a depth <strong>of</strong> 1,200 m,<strong>in</strong>cludes three ma<strong>in</strong> water-bear<strong>in</strong>g horizons separated by shale aquitards (Figure35). The hydrogeological characteristics <strong>of</strong> <strong>the</strong> three-aquifer horizons are presented<strong>in</strong> table (16).The potential development <strong>of</strong> <strong>the</strong> first aquifer horizon is poor compared to that <strong>of</strong><strong>the</strong> second and third horizons. Therefore, for economic reasons, all <strong>of</strong> <strong>the</strong> deepwells <strong>in</strong> El-Farafra Oasis were completed <strong>in</strong> <strong>the</strong> second aquifer horizon.Although <strong>the</strong> sal<strong>in</strong>ity <strong>of</strong> <strong>the</strong> Nubia groundwater <strong>in</strong> El-Farafra Oasis is ra<strong>the</strong>r lowand very suitable for all uses, it conta<strong>in</strong>s a high concentration <strong>of</strong> iron (2-20 ppm)which causes problems for use <strong>in</strong> drip irrigation, as it precipitates and clogs <strong>the</strong>drippers when it changes from ferrous <strong>in</strong>to ferric ions immediately after be<strong>in</strong>gexposed to <strong>the</strong> atmosphere.Table ( 16 ) - Hydrogeologic Characteristics <strong>of</strong> <strong>the</strong> Nubia Sandstone Aquifer Horizons<strong>in</strong> El-Farafra OasisAverage GeologicalAquifer Horizon ParametersAverage Hydraulic ParametersCover<strong>in</strong>g bed(Shale + ChalkyLimestone)Net Sand(m) H (1) Q (2) T (3) T.D.S (4)0-200 ------- ------ -------- -------- 240-9901 st horizon 200-350 90-1<strong>10</strong> 78 150 66-200 450-5502 nd horizon 450-750 235-280 149 450 2200-3370 150-2503 rd horizon* 950->1200 95->250 150 540 1815-2506 150-250* Partially penetrated(1) Piezometric head (m.a.m.s.l.)(2) Maximum possible well discharges (m 3 /hr.)(3) Aquifer transmissivity (m 2 /day)(4) Groundwater sal<strong>in</strong>ity (ppm)Source: GARPAD, (1994)(b) Groundwater ExploitationBefore 1965, <strong>the</strong> source <strong>of</strong> water supply <strong>in</strong> El-Farafra Oasis was conf<strong>in</strong>ed to 23spr<strong>in</strong>gs orig<strong>in</strong>at<strong>in</strong>g from <strong>the</strong> upward flow <strong>of</strong> groundwater from <strong>the</strong> NubiaSandstone along fault planes, fractures and jo<strong>in</strong>t systems and through <strong>the</strong> shales orchalky limestone <strong>of</strong> Maestrichtian age. The total annual discharge was 0.85 mcm.<strong>Hydrogeology</strong> <strong>of</strong> <strong>Deep</strong> <strong>Aquifers</strong> 2 - 27 EPIQ Water Policy Reform Program


At present, <strong>the</strong> number <strong>of</strong> active spr<strong>in</strong>gs has decreased to 16 with a total annualdischarge <strong>of</strong> 0.68 mcm.Dur<strong>in</strong>g <strong>the</strong> period 1965-1967, 15 deep wells were drilled as test-production wells<strong>in</strong> El-Farafra-Abu M<strong>in</strong>qar area, to <strong>in</strong>vestigate <strong>the</strong> hydrogeological sett<strong>in</strong>g <strong>of</strong> <strong>the</strong>Nubia aquifer system. The wells had a total <strong>in</strong>itial comb<strong>in</strong>ed discharge <strong>of</strong> 32.5mcm/year. These completed wells were left unused except for one well (Qasr El-Farafra) which was allocated for domestic use. In 1982 when land reclamationactivity began <strong>in</strong> El-Farafra (El-Nahda area), and Abu M<strong>in</strong>qar, an additional 8production wells were drilled. These wells naturally discharged groundwater at arate <strong>of</strong> 25.4 mcm/year.Dur<strong>in</strong>g <strong>the</strong> period 1985-1995, a large-scale land reclamation scheme wasimplemented <strong>in</strong> El-Farafra and Abu M<strong>in</strong>qar areas. A total <strong>of</strong> 73 wells were drilled<strong>in</strong> El-Farafra (Sheikh Marzouk and West Qasr El-Farafra projects) and 5 wells <strong>in</strong>Abu M<strong>in</strong>qar. At present, 97 wells are <strong>in</strong> use <strong>in</strong> El-Farafra-Abu M<strong>in</strong>qar area,yield<strong>in</strong>g naturally flow<strong>in</strong>g groundwater at an annual rate <strong>of</strong> 160 mcm, <strong>of</strong> which154.6 mcm/year is allocated to irrigate 14,000 feddan and about 5.4 mcm/year fordomestic uses. (Tables <strong>10</strong>,12 and Figure 36).The total reclaimed area <strong>in</strong> El-Farafra-Abu M<strong>in</strong>qar is 31,000 feddan, which will beirrigated by groundwater at a rate <strong>of</strong> 190 mcm/year.The groundwater monitor<strong>in</strong>g data <strong>in</strong> El-Farafra Oasis was available only for <strong>the</strong>period 1965-1983. This data <strong>in</strong>dicated a decl<strong>in</strong>e <strong>in</strong> <strong>the</strong> piezometric level <strong>of</strong> 0.14-0.42 m/year (see table 4).At present <strong>the</strong> wells and well-fields <strong>in</strong> El-Farafra Oasis are constructed with <strong>the</strong>follow<strong>in</strong>g design features: (GARPAD, 1994)Well design discharge : 450 m3/hr.Well spac<strong>in</strong>g: 1.25-1.5 km(for irrigated agriculture <strong>the</strong> wells are placed <strong>in</strong> a l<strong>in</strong>e along <strong>the</strong> ma<strong>in</strong> irrigationcanal).Well depth : ± 800 mProduc<strong>in</strong>g aquifer horizon: Second horizon (± 500m to ± 800 m)Cas<strong>in</strong>gs:- 20” conductor cas<strong>in</strong>g to ± 50 m depth.- 16” API pump house cas<strong>in</strong>g to ± 200 m depth.- 11 3/4” API production cas<strong>in</strong>g (from ± 190 m to ± 550 m)Screen and screen cas<strong>in</strong>g : 6 5/8” made <strong>of</strong> sta<strong>in</strong>less steel, grade 304 (± 250 m)The present practice <strong>of</strong> groundwater use by <strong>the</strong> landowners <strong>in</strong> El-Farafra Oasis is tolet <strong>the</strong> wells flow freely dur<strong>in</strong>g <strong>the</strong> day. This is because <strong>of</strong> <strong>the</strong> problem encounteredwith daily well shut-<strong>of</strong>f as <strong>the</strong> well structure is too weak to withstand <strong>the</strong> effect <strong>of</strong>water hammer, no technical staff is available to gradually close <strong>the</strong> well to controlits flow rate, and <strong>the</strong>re are no night storage reservoirs which could be used to save<strong>the</strong> water wasted dur<strong>in</strong>g <strong>the</strong> night to dra<strong>in</strong>s. Compar<strong>in</strong>g <strong>the</strong> rate <strong>of</strong> water allocatedfor <strong>the</strong> agriculture sector with <strong>the</strong> present cultivated area <strong>in</strong> w<strong>in</strong>ter (about 14,000feddan out <strong>of</strong> 31,000 feddan <strong>of</strong> reclaimed area) one can conclude that <strong>the</strong> appliedconsumptive use appears to be ra<strong>the</strong>r high (11,040 m 3 /feddan/year) compared to<strong>Hydrogeology</strong> <strong>of</strong> <strong>Deep</strong> <strong>Aquifers</strong> 2 - 28 EPIQ Water Policy Reform Program


<strong>the</strong> normal applied water requirement/feddan <strong>in</strong> <strong>the</strong> area (7,500 m 3 /year), which<strong>in</strong>dicates a water wastage <strong>of</strong> about 50 mcm/year.2.6.3.2.4 El-Bahariya Oasis(a) Aquifer Hydrogeologic Sett<strong>in</strong>gThe result <strong>of</strong> <strong>the</strong> detailed hydrogeologic studies <strong>of</strong> <strong>the</strong> Nubia Sandstone aquifer <strong>in</strong>El-Bahariya Oasis (Parsons, 1963; Ezzat, 1974; and Euroconsult/Pacer Consultant,1983) revealed that <strong>the</strong> aquifer is exposed at <strong>the</strong> surface and atta<strong>in</strong>s a totalthickness <strong>of</strong> 1,800 m. It consists <strong>of</strong> four water-bear<strong>in</strong>g horizons A, B, C and Dseparated by semi-pervious, regionally discont<strong>in</strong>uous clay and shale layers (Figure37). Table (17) shows <strong>the</strong> hydrogeologic characteristics <strong>of</strong> <strong>the</strong> four aquiferhorizons <strong>of</strong> <strong>the</strong> Nubia Sandstone <strong>in</strong> El-Bahariya Oasis:Table (17) – Hydrogeologic Characteristics <strong>of</strong> <strong>the</strong> Nubia Sandstone AquiferHorizons <strong>in</strong> El-Bahariya OasisAverage Geologic Average Hydraulic ParametersAquiferHorizonDepth (m) ParametersFromToTotalThickness(m)Net SandThickness(m)T(m 2 /d)SK(m/d)A Surface 275 275 180 1450-3800 <strong>10</strong> -3 17B 290 440 150 80 600-650 <strong>10</strong> -4 6C 440 520 80 42 0.8 x <strong>10</strong> -4 4D* 540 >650 > 1<strong>10</strong> > 45 250-440* Partially penetratedT = Transmissivity , S = Storativity , K = Hydraulic ConductivitySource : GARPAD, (1981)The groundwater sal<strong>in</strong>ity <strong>in</strong> El-Bahariya Oasis ranges between 200 to 700 ppm <strong>in</strong><strong>the</strong> upper most horizon (A) and from <strong>10</strong>0 to 300 ppm <strong>in</strong> <strong>the</strong> deeper horizons.(b) Groundwater ExploitationBefore 1963, <strong>the</strong> exist<strong>in</strong>g shallow wells and natural spr<strong>in</strong>gs were <strong>the</strong> only source <strong>of</strong>water for agriculture and domestic use <strong>in</strong> El-Bahariya Oasis. <strong>Deep</strong> well drill<strong>in</strong>gwas <strong>in</strong>itiated <strong>in</strong> 1963 as a part <strong>of</strong> a land reclamation plan. Table (<strong>10</strong>) and Figure(38) show <strong>the</strong> development <strong>in</strong> groundwater extraction <strong>in</strong> El-Bahariya Oasis dur<strong>in</strong>g<strong>the</strong> period (1963-1997). A total <strong>of</strong> 332 shallow wells and spr<strong>in</strong>gs were <strong>in</strong> use <strong>in</strong>1960 produc<strong>in</strong>g free-flow<strong>in</strong>g water at a rate <strong>of</strong> 32.4 mcm/year, to irrigate an area <strong>of</strong>about 400 feddan.<strong>Hydrogeology</strong> <strong>of</strong> <strong>Deep</strong> <strong>Aquifers</strong> 2 - 29 EPIQ Water Policy Reform Program


Dur<strong>in</strong>g <strong>the</strong> period 1963-1997, <strong>the</strong> number <strong>of</strong> deep wells has <strong>in</strong>creased from 7 to 59,<strong>of</strong> which 29 are presently pump-operated. Groundwater <strong>of</strong> <strong>the</strong> Nubia Sandstoneaquifer is currently extracted at a rate <strong>of</strong> 56.6 mcm/year <strong>of</strong> which 50.7 mcm/year isused to irrigate an area <strong>of</strong> 12,500 feddan, while <strong>the</strong> rema<strong>in</strong><strong>in</strong>g 5.9 mcm/year isallocated for domestic purposes (Table 12).The aquifer piezometric head <strong>in</strong> El-Bahariya Oasis has not been regularlymonitored s<strong>in</strong>ce 1970 and records are only available for <strong>the</strong> period 1963-1970.Table (4) <strong>in</strong>dicates that <strong>the</strong> rate <strong>of</strong> annual decl<strong>in</strong>e <strong>in</strong> <strong>the</strong> piezometric level dur<strong>in</strong>gthis period was approximately 1.2 m. The current implemented well designs <strong>in</strong> El-Bahariya Oasis are <strong>the</strong> same as those <strong>of</strong> El-Dakhla Oasis.2.6.3.2.5 Siwa Oasis. The Siwa Oasis is considered a part <strong>of</strong> <strong>the</strong> QattaraDepression – Giaghboub Oasis (Libya). topographically low area, with its lowestground surface elevation is about <strong>10</strong> to 18 m.b.m.s.l. The Oasis is characterized byfour ma<strong>in</strong> lakes along its lowest parts. These are <strong>the</strong>: Zeitun, Aghormi, Siwa andMaraki Lakes.At present <strong>the</strong> Oasis is fac<strong>in</strong>g serious water-logg<strong>in</strong>g and dra<strong>in</strong>age problems whichprevent <strong>the</strong> implementation <strong>of</strong> <strong>the</strong> required development plans. This is due to <strong>the</strong>absence <strong>of</strong> any control on water-well drill<strong>in</strong>g, <strong>the</strong> <strong>in</strong>crease <strong>in</strong> groundwaterextraction, <strong>the</strong> lack <strong>of</strong> proper development plans and <strong>the</strong> improper management <strong>of</strong>groundwater resources <strong>in</strong> <strong>the</strong> Oasis.(a) Hydrogeologic Sett<strong>in</strong>gAccord<strong>in</strong>g to <strong>the</strong> results <strong>of</strong> <strong>the</strong> oil exploration wells and <strong>the</strong> deep test-productionwater wells which were drilled <strong>in</strong> Siwa Oasis and <strong>the</strong> surround<strong>in</strong>g areas, four majoraquifer systems have been identified (Figure 39):(1) The Quaternary-Recent Deposits AquiferThis aquifer consists <strong>of</strong> alluvial deposits <strong>of</strong> sands, gravel, and calcareous rockfragments, sometimes with fractured limestone. The thickness <strong>of</strong> this aquiferranges from <strong>10</strong> to 20 m, while <strong>the</strong> depth to water ranges from 1 to 5 m belowground surface. The reported water sal<strong>in</strong>ity is up to 5,000 ppm <strong>in</strong> <strong>the</strong> sou<strong>the</strong>rn part<strong>of</strong> <strong>the</strong> Oasis and <strong>in</strong>creases to 40,000 ppm <strong>in</strong> <strong>the</strong> area extend<strong>in</strong>g between Siwa andZeitun Lakes. The aquifer is recharged by seepage <strong>of</strong> irrigation water, <strong>the</strong>cont<strong>in</strong>uous flow <strong>of</strong> uncontrolled and poorly designed wells and from <strong>the</strong> upwardflow from <strong>the</strong> underly<strong>in</strong>g carbonate aquifers through faults and deep fractures.(2) The Middle Miocene Limestone AquiferThis aquifer occurs under conf<strong>in</strong>ed conditions, and is composed <strong>of</strong> two waterbear<strong>in</strong>gzones:• The Upper Zone has thickness <strong>of</strong> 30 m, at a depth <strong>of</strong> 20 to 40 m. It consists <strong>of</strong> hardlimestone with shale <strong>in</strong>tercalations. Wells tapp<strong>in</strong>g this zone yield <strong>10</strong>-30 m3/hr, with apiezometric head <strong>of</strong> 1 to 5 m above ground surface. The water sal<strong>in</strong>ity ranges between2,500 and 2,800 ppm although it reaches 8,000 ppm <strong>in</strong> <strong>the</strong> areas near <strong>the</strong> sabkhas andsalt marshes.<strong>Hydrogeology</strong> <strong>of</strong> <strong>Deep</strong> <strong>Aquifers</strong> 2 - 30 EPIQ Water Policy Reform Program


• The Lower Zone has a thickness <strong>of</strong> 80 m, and is separated from <strong>the</strong> upper zone by 40m <strong>of</strong> impervious shales and marls. This zone exists at a depth <strong>of</strong> 70-150 m andconsists <strong>of</strong> an upper part <strong>of</strong> hard limestone <strong>in</strong>terbedded with th<strong>in</strong> layers <strong>of</strong> shales andmarls, and a lower part <strong>of</strong> highly fractured dolomitic limestone bottomed by 30 m <strong>of</strong>shales and marls form<strong>in</strong>g an impervious base. The wells tapp<strong>in</strong>g this zone (depth 70to 130 m) discharge water at an average rate <strong>of</strong> 35 m 3 /hr, with a piezometric head <strong>of</strong> 5to <strong>10</strong> m above <strong>the</strong> well head and a sal<strong>in</strong>ity range between 1,600 and 1,800 ppm.The recharge <strong>of</strong> <strong>the</strong> Middle Miocene aquifer is still questionable, although it wasreported that it is recharged from <strong>the</strong> ra<strong>in</strong>fall area at Jebel Akhdar <strong>in</strong> Libya (El-Mudallal, 1990).(3) The Eocene Limestone AquiferThis aquifer atta<strong>in</strong>s a thickness <strong>of</strong> 350-400 m, and consists <strong>of</strong> highly fracturedlimestone with th<strong>in</strong> marl and shale layers. The limestone beds are very rich <strong>in</strong>gypsum, which is soluble <strong>in</strong> water caus<strong>in</strong>g large cavities and creat<strong>in</strong>g a karst zoneat <strong>the</strong> <strong>in</strong>terval from 290 m to 440 m, which was penetrated dur<strong>in</strong>g deep test drill<strong>in</strong>g<strong>in</strong> <strong>the</strong> Oasis. The aquifer is underla<strong>in</strong> by <strong>the</strong> carbonate-shale complex <strong>of</strong> <strong>the</strong> lateUpper Cretaceous (120 m thick). Although none <strong>of</strong> <strong>the</strong> drilled deep wells <strong>in</strong> <strong>the</strong>Oasis tapped this aquifer, quantitative analysis <strong>of</strong> well geophysical logs <strong>in</strong>dicatedthat <strong>the</strong> average water sal<strong>in</strong>ity <strong>in</strong> <strong>the</strong> Eocene aquifer ranges from 6,000 to 7,500ppm.(4) The Nubia Sandstone AquiferThis aquifer is considered to have <strong>the</strong> highest potential for fresh groundwater <strong>in</strong>Siwa Oasis due to its vast extension <strong>in</strong> <strong>the</strong> <strong>Western</strong> <strong>Desert</strong> and its high waterquality. The Nubia aquifer system consists <strong>of</strong> <strong>the</strong> sandy sequences and shale<strong>in</strong>tercalations occurr<strong>in</strong>g between <strong>the</strong> lower Cenomanian and <strong>the</strong> Pre-Cambrianbasement complex.The results <strong>of</strong> deep test drill<strong>in</strong>g <strong>in</strong> Siwa Oasis and <strong>the</strong> surround<strong>in</strong>g areas <strong>in</strong>dicatethat <strong>the</strong> thickness <strong>of</strong> <strong>the</strong> Mesozoic-Paleozoic clastics is up to 2,700 m. The upperpart belongs to <strong>the</strong> Lower Cenomanian at a depth rang<strong>in</strong>g from 600 to 700 m belowground surface and has a thickness <strong>of</strong> 300 to 500 m. It has good hydrogeologiccharacteristics and groundwater quality. The drill<strong>in</strong>g and test<strong>in</strong>g <strong>of</strong> <strong>the</strong> deep wells<strong>in</strong> Siwa Oasis (El-Dakruri, Quaraishet, Bahai El-D<strong>in</strong> and Abu Shuruf wells) havebeen to a depth <strong>of</strong> 1,000 m. The results <strong>in</strong>dicate free-flow<strong>in</strong>g discharges <strong>of</strong> 300 to600 m 3 /hr and a pressure head <strong>of</strong> 80 to 120 m above ground surface, with <strong>the</strong>follow<strong>in</strong>g aquifer characteristics:• Average transmissivity : 3300-4000 m 2 /d• Average hydraulic conductivity : 15-20 m/d• Total sal<strong>in</strong>ity : 200-400 ppmThe drill-stem tests, which were conducted <strong>in</strong> <strong>the</strong> different lithostratigraphic unitsat <strong>the</strong> oil exploration well Siwa-1 (Jo<strong>in</strong>t Venture Qattara, 1979), <strong>in</strong>dicate that <strong>the</strong>groundwater sal<strong>in</strong>ity <strong>in</strong>creases with depth as follows: (see Figure 39)Tested Interval (m) Era Geologic Age Sal<strong>in</strong>ity (ppm)<strong>Hydrogeology</strong> <strong>of</strong> <strong>Deep</strong> <strong>Aquifers</strong> 2 - 31 EPIQ Water Policy Reform Program


797-8<strong>10</strong>1,122-1,1251,865-1,8702,000-2,500MesozoicPaleozoicCenomanianLower CretaceousCarboniferousDevonian4651,50014,00024,500Previous hydrochemical studies <strong>of</strong> <strong>the</strong> Nubia Sandstone aquifer system to assess itsfreshwater saturated zone have <strong>in</strong>dicated that <strong>the</strong> thickness <strong>of</strong> <strong>the</strong> freshwateraquifer progressively decreases to <strong>the</strong> north <strong>of</strong> <strong>the</strong> Qattara Depression-Siwa Oasiszone until latitude 29 0 30’ N where <strong>the</strong> entire aquifer is saturated with sal<strong>in</strong>e orhyper-sal<strong>in</strong>e water.(b) Groundwater ExploitationBefore 1980, <strong>the</strong> only source <strong>of</strong> water <strong>in</strong> Siwa Oasis was <strong>the</strong> water discharged from200 natural spr<strong>in</strong>gs, flow<strong>in</strong>g on <strong>the</strong> ground surface at an estimated rate <strong>of</strong> about 70mcm/year, with sal<strong>in</strong>ity rang<strong>in</strong>g between 1,800-8,000 ppm to irrigate about 2,000feddan. Much <strong>of</strong> <strong>the</strong> water was left to flow <strong>in</strong>to <strong>the</strong> depression ponds, which form<strong>the</strong> present Oasis lakes. These spr<strong>in</strong>gs are recharged from <strong>the</strong> upper zone <strong>of</strong> <strong>the</strong>Middle Miocene limestone aquifer, although previous studies have <strong>in</strong>dicated that<strong>the</strong> three large spr<strong>in</strong>gs <strong>of</strong> Abu-Suruf, Quraishet and Mashandit spr<strong>in</strong>gs (97,200m 3 /day) are recharged from <strong>the</strong> deep Eocene highly fractured limestone aquifer,through major fault systems.The time-dependent data regard<strong>in</strong>g <strong>the</strong> discharges and water levels <strong>of</strong> <strong>the</strong> spr<strong>in</strong>gs <strong>in</strong>Siwa Oasis showed a drop <strong>in</strong> <strong>the</strong> flow<strong>in</strong>g discharge <strong>of</strong> 25 percent and 2 to 3 m <strong>in</strong><strong>the</strong> water level dur<strong>in</strong>g <strong>the</strong> period 1962-1990 (Arar, 1991).Because <strong>of</strong> <strong>the</strong> decrease <strong>in</strong> <strong>the</strong> spr<strong>in</strong>g discharges (60 mcm/year <strong>in</strong> 1990), and tocompensate for <strong>the</strong> water shortage, <strong>the</strong> local people started to construct hand-dugwells <strong>of</strong> 20-40 m deep. Over 1,000 hand-dug wells were completed <strong>in</strong> <strong>the</strong> upperzone <strong>of</strong> <strong>the</strong> Middle Miocene limestone aquifer dur<strong>in</strong>g <strong>the</strong> period 1981-1992,yield<strong>in</strong>g a total discharge <strong>of</strong> <strong>10</strong>5 mcm/year. In addition, ano<strong>the</strong>r 200 wells weredrilled to tap <strong>the</strong> lower zone <strong>of</strong> <strong>the</strong> Middle Miocene limestone aquifer (70-130 mdeep). These wells are yield<strong>in</strong>g flow<strong>in</strong>g water <strong>of</strong> 70 mcm/year. The total extractionfrom <strong>the</strong> carbonate aquifers <strong>in</strong> Siwa Oasis <strong>in</strong> 1990 was about 235 mcm/year, whichwas ma<strong>in</strong>ly utilized <strong>in</strong> agriculture. The current total cultivated area <strong>in</strong> Siwa Oasis is<strong>10</strong>,000 feddan and <strong>the</strong> total extraction from <strong>the</strong> native shallow wells and spr<strong>in</strong>g is271 mcm/year. This <strong>in</strong>dicates a ra<strong>the</strong>r high consumptive use <strong>of</strong> 27,<strong>10</strong>0m 3 /year/feddan which toge<strong>the</strong>r with <strong>the</strong> poor distribution <strong>of</strong> wells (concentrated <strong>in</strong><strong>the</strong> low topographic area along <strong>the</strong> center <strong>of</strong> <strong>the</strong> Oasis) and improper well design(uncased or uncemented cased wells caus<strong>in</strong>g seepage <strong>of</strong> ascend<strong>in</strong>g water <strong>in</strong>to <strong>the</strong>top soil pr<strong>of</strong>ile) have resulted <strong>in</strong> wasted water at a rate <strong>of</strong> 196 mcm/year caus<strong>in</strong>gwater logg<strong>in</strong>g, dra<strong>in</strong>age and soil sal<strong>in</strong>ization problems <strong>in</strong> <strong>the</strong> Oasis.Dur<strong>in</strong>g <strong>the</strong> period 1990 to 1996, five deep wells were drilled and completed <strong>in</strong> <strong>the</strong>Nubia Sandstone aquifer to a depth rang<strong>in</strong>g between 850 m (Army Well) and 1,000<strong>Hydrogeology</strong> <strong>of</strong> <strong>Deep</strong> <strong>Aquifers</strong> 2 - 32 EPIQ Water Policy Reform Program


m (Bahai El-D<strong>in</strong> Well) and are discharg<strong>in</strong>g freely at a rate <strong>of</strong> 20 mcm/year with apressure head <strong>of</strong> 80-120 m above well head and a water sal<strong>in</strong>ity <strong>of</strong> 200-400 ppm.Table (<strong>10</strong>) and Figure (40) show <strong>the</strong> historical groundwater extraction from bothshallow and deep wells <strong>in</strong> Siwa Oasis dur<strong>in</strong>g <strong>the</strong> period 1960-1997, which <strong>in</strong>dicatethat <strong>the</strong> present groundwater extraction <strong>in</strong> <strong>the</strong> Oasis is about 291 mcm/year, <strong>of</strong>which 271 mcm/year is utilized <strong>in</strong> irrigated agriculture and <strong>the</strong> rema<strong>in</strong><strong>in</strong>g 20mcm/year is allocated for domestic use and <strong>the</strong> bottled water <strong>in</strong>dustry.The implemented well design at present <strong>in</strong> Siwa Oasis is shown <strong>in</strong> Table (18).A comprehensive hydrogeologic <strong>in</strong>vestigation program is be<strong>in</strong>g conducted atpresent <strong>in</strong> Siwa Oasis by <strong>the</strong> Research Institute for Groundwater (RIGW) <strong>of</strong> <strong>the</strong>National Water Research Center (NWRC). The purpose is to assess <strong>the</strong> susta<strong>in</strong>ablegroundwater potential <strong>in</strong> <strong>the</strong> oasis, which can be economically utilized for irrigatedagriculture and o<strong>the</strong>r uses. The <strong>in</strong>vestigation is also <strong>in</strong>tended to develop <strong>the</strong>necessary measures for proper management and conservation <strong>of</strong> <strong>the</strong> groundwaterresources and to avoid environmental hazards such as water wastage, water logg<strong>in</strong>gand dra<strong>in</strong>age problems.Table (18) – Well Design Practices <strong>in</strong> Siwa OasisDesign Parameter Shallow Well <strong>Deep</strong> WellTarget aquifer Miocene Limestone Nubia SandstoneTotal depth ± 150 m ± <strong>10</strong>00 mCas<strong>in</strong>gs:20 // locally made ± 20 m ± 50 mconductor cas<strong>in</strong>g.13 3 /// 8 API pump house ---------cas<strong>in</strong>g.9 5 /// 8 API production --------- ± 200 mcas<strong>in</strong>g12 // locally made cas<strong>in</strong>gFrom ± 190 m to ± 800 mSurface to ± 80 m---------Screens:12 // locally made, bridge From ± 80 to ± 150 m ---------slotted screen withgravel Pack65 /// 8 sta<strong>in</strong>less steel,screen, grade 304--------- From ± 800 to ± <strong>10</strong>00 mSource: El-Mudallal, (1990)<strong>Hydrogeology</strong> <strong>of</strong> <strong>Deep</strong> <strong>Aquifers</strong> 2 - 33 EPIQ Water Policy Reform Program


2.6.3.2.6 East Owe<strong>in</strong>at Area. The East Owe<strong>in</strong>at area is located <strong>in</strong> <strong>the</strong>southwestern part <strong>of</strong> <strong>the</strong> <strong>Western</strong> <strong>Desert</strong>, cover<strong>in</strong>g an area <strong>of</strong> 16,000 km 2 . The areais designated to become one <strong>of</strong> <strong>the</strong> major areas for agricultural development <strong>in</strong> <strong>the</strong>South Valley region. Groundwater and land resources are available to susta<strong>in</strong>irrigated agricultural projects <strong>in</strong> about 190,000 feddan to be implemented byprivate <strong>in</strong>vestors.Dur<strong>in</strong>g <strong>the</strong> period 1978 to 1985, comprehensive groundwater and land resourceevaluation studies were conducted <strong>in</strong> <strong>the</strong> East Owe<strong>in</strong>at area by General PetroleumCompany. The results <strong>of</strong> <strong>the</strong>se studies exhibited a high potential to support<strong>in</strong>tegrated development plans us<strong>in</strong>g <strong>the</strong> area’s renewable solar and w<strong>in</strong>d energyresources.(a) Aquifer Hydrogeologic Sett<strong>in</strong>gGeologically, <strong>the</strong> East Owe<strong>in</strong>at area is located <strong>in</strong> <strong>the</strong> Dakhla bas<strong>in</strong> (Klitzsch, 1987),situated <strong>in</strong> <strong>the</strong> Owe<strong>in</strong>at-Aswan structural high. It is <strong>in</strong>terrupted by a north-southoriented structural trough west <strong>of</strong> Bir Misaha as well as basement rock exposures atQaret El-Mayet, Nusab El-Balgum, Bir Abu El-Husse<strong>in</strong> and Bir Nakhlai.Groundwater occurs <strong>in</strong> <strong>the</strong> East Owe<strong>in</strong>at area <strong>in</strong> <strong>the</strong> Nubia Sandstone sequences,which unconformably overlies <strong>the</strong> basement complex form<strong>in</strong>g an unconf<strong>in</strong>edaquifer, except <strong>in</strong> those areas where frequent clay <strong>in</strong>tercalations occur. Here itfunctions as a semi-conf<strong>in</strong>ed aquifer. The depth to water ranges between 20 m and60 m below ground surface, and <strong>the</strong> aquifer saturated thickness varies between <strong>10</strong>0and 400 m <strong>in</strong> <strong>the</strong> uplifted shallow basement area and 500 to 700 m to <strong>the</strong> west <strong>of</strong>Bir Misaha and northward (Figure 41). The aquifer potentiometric levels rangebetween 260 m.a.m.s.l. <strong>in</strong> <strong>the</strong> southwest and 230 m.a.m.s.l. <strong>in</strong> <strong>the</strong> nor<strong>the</strong>ast with agroundwater hydraulic gradient <strong>of</strong> 2.5x<strong>10</strong> -4 regionally oriented <strong>in</strong> a nor<strong>the</strong>asterndirection. The results <strong>of</strong> pump<strong>in</strong>g tests <strong>in</strong>dicate <strong>the</strong> follow<strong>in</strong>g aquifer hydrauliccharacteristics:• Transmissivity: 975-2750 m 2 /day• Hydraulic conductivity: <strong>10</strong>-20 m/day• Storativity: 0.16-0.23 for unconf<strong>in</strong>ed aquifer2-8x<strong>10</strong> -4 for semi-conf<strong>in</strong>ed aquiferThe groundwater sal<strong>in</strong>ity <strong>in</strong> <strong>the</strong> East Owe<strong>in</strong>at area ranges between 200 to 700 ppmThe groundwater resource evaluation study <strong>in</strong> <strong>the</strong> East Owe<strong>in</strong>at area estimate(DRTPC, 1984) <strong>the</strong> possibility <strong>of</strong> a safe groundwater extraction rate <strong>of</strong> 4.74mcm/day over <strong>10</strong>0 years with a decl<strong>in</strong>e <strong>in</strong> <strong>the</strong> potentiometric levels <strong>of</strong> 35 to <strong>10</strong>0 m(see Figure 22).(b) Groundwater ExploitationDur<strong>in</strong>g <strong>the</strong> period 1988 to 1995, MALR <strong>in</strong>itiated a land reclamation pilot project <strong>in</strong><strong>the</strong> East Owe<strong>in</strong>at area to irrigate about 6,800 feddan us<strong>in</strong>g drip and spr<strong>in</strong>klerirrigation. A total <strong>of</strong> 59 wells were drilled to a depth <strong>of</strong> 350 m (with 13 3/8 // pumphousecas<strong>in</strong>g to a depth <strong>of</strong> between 150 m and 200 m and a length <strong>of</strong> 200 m <strong>of</strong> 65 /// 8 screen) to provide <strong>the</strong> required irrigation water at <strong>the</strong> rate <strong>of</strong> 60.5 mcm/yearwhen put <strong>in</strong>to full production. At present, only 32 wells are be<strong>in</strong>g pumped at anannual rate <strong>of</strong> 28.5 mcm (Figure 42) which is mostly used to irrigate an area <strong>of</strong>3,000 feddan and only 0.6 mcm/year is used for domestic water. In addition, an<strong>Hydrogeology</strong> <strong>of</strong> <strong>Deep</strong> <strong>Aquifers</strong> 2 - 34 EPIQ Water Policy Reform Program


experimental farm <strong>of</strong> 200 feddan was <strong>in</strong>itiated <strong>in</strong> <strong>the</strong> area <strong>in</strong> 1988 where irrigationwater was supplied from two wells pumped at a rate <strong>of</strong> 1.4 mcm/year us<strong>in</strong>g solarenergy. Center pivot irrigation system was recently constructed by a privatecompany to irrigate an area <strong>of</strong> 1,500 feddan with<strong>in</strong> <strong>the</strong> previously reclaimed 6,800feddan.In 1979, <strong>the</strong> GOE decided to implement a 200,000 feddan land reclamation plan <strong>in</strong><strong>the</strong> East Owe<strong>in</strong>at area to be allocated to 20 private <strong>in</strong>vestors to establish irrigatedagriculture schemes <strong>of</strong> <strong>10</strong>,000 feddan each. N<strong>in</strong>e monitor<strong>in</strong>g wells have beendrilled <strong>in</strong> <strong>the</strong> East Owe<strong>in</strong>at area, but no regular records <strong>of</strong> time-dependentgroundwater levels, extraction rates and water quality data are available. Regulargroundwater monitor<strong>in</strong>g will be <strong>of</strong> vital importance when <strong>the</strong> large-scalegroundwater development beg<strong>in</strong>s.Dur<strong>in</strong>g a recent visit to <strong>the</strong> area (April, 1998), it was noticed that <strong>the</strong> ongo<strong>in</strong>ggroundwater development activities <strong>in</strong> <strong>the</strong> East Owe<strong>in</strong>at area are be<strong>in</strong>g carried outwithout <strong>the</strong> necessary control and follow-up by <strong>the</strong> New Valley IrrigationDirectorate (NVID).2.6.3.2.7 West Nasser Lake Area(a) Aquifer Hydrogeologic Sett<strong>in</strong>gIn <strong>the</strong> <strong>Western</strong> fr<strong>in</strong>ges <strong>of</strong> Nasser Lake, <strong>the</strong> Nubia Sandstone aquifer consists <strong>of</strong> twoma<strong>in</strong> aquifer zones separated by shale and sandy shale. The upper zone isunconf<strong>in</strong>ed with a maximum thickness <strong>of</strong> 200 m.The Lower zone is conf<strong>in</strong>ed and reaches a maximum thickness <strong>of</strong> 300 m. Theaquifer hydraulic conductivity ranges between 1 to 1.2 m/day. The groundwaterquality <strong>in</strong> <strong>the</strong> area west <strong>of</strong> Nasser Lake ranges between 400 to <strong>10</strong>00 ppm <strong>in</strong> <strong>the</strong>Upper zone and 2000 to 7000 <strong>in</strong> <strong>the</strong> Lower zone.Groundwater level observations <strong>in</strong> <strong>the</strong> area west <strong>of</strong> Nasser Lake <strong>in</strong>dicate that <strong>the</strong>upper zone <strong>in</strong> hydraulic connection with <strong>the</strong> water <strong>of</strong> <strong>the</strong> lake and receivesconsiderable recharge by seepage, while <strong>the</strong> Lower zone is hydraulically separatedfrom <strong>the</strong> lake, except <strong>in</strong> <strong>the</strong> nor<strong>the</strong>rn part <strong>of</strong> <strong>the</strong> area (Kalabsha) where monitor<strong>in</strong>gwells showed groundwater response to <strong>the</strong> lake water fluctuations. (Hefny, 1996)Previous groundwater resource evaluation <strong>in</strong> <strong>the</strong> Nasser lake bas<strong>in</strong> area (seeSection 2.5.7.4) <strong>in</strong>dicates <strong>the</strong> potential groundwater extraction from <strong>the</strong> NubiaSandstone aquifer for irrigated agriculture development at Abu Simbel, Toshka,Afia may reach 200 mcm/year (Soliman, 1987; Hefny, 1991).(b) Groundwater ExploitationA number <strong>of</strong> deep wells (14) are under constuction along <strong>the</strong> ma<strong>in</strong> canal <strong>of</strong> Toshkaproject to provide water for <strong>the</strong> construction and to provide water for planneddemonstration farms. In addition, (6) wells are be<strong>in</strong>g drilled by <strong>the</strong> Nasser LakeDevelopment Authority for afforestation around Nasser Lake environmentalprotection zone. The expected total annual groundwater extraction from <strong>the</strong>se (20 )is about <strong>10</strong> mcm.<strong>Hydrogeology</strong> <strong>of</strong> <strong>Deep</strong> <strong>Aquifers</strong> 2 - 35 EPIQ Water Policy Reform Program


2.7 Long-term <strong>Deep</strong> Groundwater Development Plans <strong>in</strong> <strong>the</strong> <strong>Western</strong> <strong>Desert</strong>2.7.1 Status <strong>of</strong> Groundwater DevelopmentThe development strategies <strong>in</strong> <strong>the</strong> arid areas <strong>of</strong> <strong>the</strong> <strong>Western</strong> <strong>Desert</strong> should focus, primarily,on a rational allocation and exploitation <strong>of</strong> water, <strong>the</strong> scarcest resource. In allocat<strong>in</strong>g <strong>the</strong>groundwater to various economic sectors (e.g., agriculture, m<strong>in</strong><strong>in</strong>g, tourism, <strong>in</strong>dustries,services) priorities have to be set for <strong>the</strong> exploitation <strong>of</strong> unique location-bound activities, suchas m<strong>in</strong><strong>in</strong>g and tourism. The rema<strong>in</strong>der <strong>of</strong> water resources can best be used for <strong>the</strong>rehabilitation and reclamation <strong>of</strong> potentially suitable soils.S<strong>in</strong>ce <strong>the</strong> allocated groundwater to <strong>the</strong> m<strong>in</strong><strong>in</strong>g sector is fixed (24.5 mcm/year for Abu Tarturphosphate m<strong>in</strong>e and El-Bahariya iron m<strong>in</strong>e out <strong>of</strong> 679 mcm/year be<strong>in</strong>g extracted <strong>in</strong> <strong>the</strong><strong>Western</strong> <strong>Desert</strong> at present), and s<strong>in</strong>ce <strong>the</strong> allocation for <strong>the</strong> tourism sector is <strong>in</strong>significant, <strong>the</strong>plann<strong>in</strong>g <strong>of</strong> <strong>the</strong> optimal use <strong>of</strong> groundwater resources has to be centered on <strong>the</strong> allocations to<strong>the</strong> agriculture and domestic use sectors.Before 1996, national large-scale land reclamation projects <strong>in</strong> <strong>the</strong> <strong>Western</strong> <strong>Desert</strong> werecarried out by <strong>the</strong> Government, which usually <strong>in</strong>cluded <strong>the</strong> development <strong>of</strong> basic<strong>in</strong>frastructures such as irrigator wells, irrigation and dra<strong>in</strong>age networks, settlements androads. The reclaimed lands were <strong>the</strong>n tenured to small farmers, <strong>in</strong>vestors, cooperativesocieties and graduates. S<strong>in</strong>ce 1997, <strong>the</strong> GOE began to encourage <strong>the</strong> private sectorparticipation <strong>in</strong> land reclamation activities <strong>in</strong> <strong>the</strong> <strong>Western</strong> <strong>Desert</strong> where about 235,000 feddanwere allocated to be reclaimed by private <strong>in</strong>vestors <strong>in</strong> <strong>the</strong> East Owe<strong>in</strong>at and El-Farafra areas.Evaluation <strong>of</strong> <strong>the</strong> Nubia groundwater resources <strong>in</strong> <strong>the</strong> different development areas <strong>of</strong> <strong>the</strong><strong>Western</strong> <strong>Desert</strong> <strong>in</strong>dicates <strong>the</strong> viability <strong>of</strong> long-term groundwater exploitation for agricultureand o<strong>the</strong>r sectors over <strong>10</strong>0 years as follows:New Valley Oases: <strong>10</strong>45 mcm/year (see table 9)East Owe<strong>in</strong>at : 1200 mcm/yearSiwa Oasis: 140 mcm/year--------------------Total :2385 mcm/yearIt should be made clear that long-term economic groundwater extraction was evaluated for<strong>the</strong> New Valley development areas <strong>of</strong> El-Kharga, El-Dakhla, El-Farafra and El-BahariyaOasis, while it has not been estimated for future development <strong>in</strong> Siwa and East Owe<strong>in</strong>atareas. Also, <strong>the</strong> Nubia Sandstone aquifer potential <strong>in</strong> <strong>the</strong> South Valley area, which extendsbetween East Owe<strong>in</strong>at-Darb El-Arba<strong>in</strong>- Nasser Lake area has not been evaluated forsusta<strong>in</strong>able and economic groundwater utilization.Previous soil surveys <strong>in</strong> <strong>the</strong> <strong>Western</strong> <strong>Desert</strong> have <strong>in</strong>dicated vast areas <strong>of</strong> suitable land forirrigated agriculture, although only part <strong>of</strong> it can be developed on groundwater. Table (19)<strong>in</strong>dicates that <strong>the</strong> area <strong>of</strong> <strong>the</strong> highest land capability which can be readily reclaimed on Nubiagroundwater is about 365,500 feddan <strong>of</strong> which <strong>10</strong>5,000 feddan had already been reclaimedby 1997.<strong>Hydrogeology</strong> <strong>of</strong> <strong>Deep</strong> <strong>Aquifers</strong> 2 - 36 EPIQ Water Policy Reform Program


2.7.2 Future Groundwater Development PlansAccord<strong>in</strong>g to <strong>the</strong> results <strong>of</strong> deep groundwater resources evaluation <strong>in</strong> <strong>the</strong> <strong>Western</strong> <strong>Desert</strong>, <strong>the</strong>present extraction rates for different use sectors (e.g., agriculture, m<strong>in</strong><strong>in</strong>g, domestic) as shown<strong>in</strong> Tables 9 and 12, and <strong>the</strong> GOE current plans to implement large-scale horizontal expansionprojects <strong>in</strong> <strong>the</strong> South Valley region, <strong>the</strong> future deep groundwater development <strong>in</strong> <strong>the</strong> differentparts <strong>of</strong> <strong>the</strong> <strong>Western</strong> <strong>Desert</strong> are summarized as follows:2.7.2.1 El-Kharga OasisNo additional groundwater extraction is foreseen <strong>in</strong> this area as <strong>the</strong> present extraction (118mcm/year) exceeds <strong>the</strong> maximum economic extraction rate (1<strong>10</strong> mcm/year).2.7.2.2 El-Zayat – Abu Tartur AreaThe total available groundwater extraction <strong>in</strong> El-Zayat – Abu Tartur areas is 36 mcm/year.The present extraction <strong>in</strong> <strong>the</strong> two areas is <strong>10</strong> mcm/year <strong>of</strong> which 3 mcm/year is used <strong>in</strong> El-Zayat to irrigate 700 feddan (out <strong>of</strong> <strong>the</strong> 1,200 feddan already reclaimed) and 7 mcm/year <strong>in</strong>Abu Tartur for phosphate ore benefaction and domestic water supplies. Thus, an additionalgroundwater extraction <strong>of</strong> 26 mcm/year can be pumped <strong>in</strong> both areas.2.7.2.3 El-Dakhla Oasis – West Mawhub AreaWhile <strong>the</strong> total available groundwater extraction <strong>in</strong> <strong>the</strong> area is estimated to be 374 mcm/year,<strong>the</strong> present extraction for agriculture and domestic use is 291 mcm/year. Therefore, anadditional groundwater rate <strong>of</strong> 83 mcm/year can be feasibly extracted from 57 new wells(1.44 x <strong>10</strong> 6 m 3 /year/well). It should be expected that <strong>the</strong> shallow wells and spr<strong>in</strong>gs will ceaseflow<strong>in</strong>g over <strong>the</strong> time, and a plan should be developed to drill <strong>the</strong> required number <strong>of</strong>properly designed replacement wells.2.7.2.4 El-Farafra Oasis – Abu M<strong>in</strong>qar AreaThe total estimated annual economic groundwater extraction from <strong>the</strong> Nubia Sandstoneaquifer system <strong>in</strong> El-Farafra Oasis – Abu M<strong>in</strong>qar area is 4<strong>10</strong> mcm The present extraction rate<strong>of</strong> 160 mcm/year is used for agriculture and domestic water supply, which is expected to be<strong>in</strong>creased to 190 mcm/year when <strong>the</strong> exist<strong>in</strong>g wells are put <strong>in</strong>to full operation.Recently, <strong>the</strong> GOE has allocated an additional 35,000 feddan to be reclaimed by <strong>the</strong> privatesector <strong>in</strong> eastern Farafra (Karaw<strong>in</strong> pla<strong>in</strong>) where irrigation groundwater <strong>of</strong> 220 mcm/year canbe feasibly exploited from 85 new deep wells that are go<strong>in</strong>g to be drilled by <strong>the</strong> <strong>in</strong>vestors(2.59 x <strong>10</strong> 6 m 3 /year/well).The soil survey previously conducted <strong>in</strong> El-Farafra Oasis <strong>in</strong>dicates an additional area <strong>of</strong>20,000 feddan <strong>of</strong> high land capability recommended to be reclaimed <strong>in</strong> E<strong>in</strong> Dalla – Wadi El-Obeid area to <strong>the</strong> north <strong>of</strong> El-Farafra Oasis, if <strong>the</strong> required groundwater is proved to befeasibly available, (GARPAD, 1981).<strong>Hydrogeology</strong> <strong>of</strong> <strong>Deep</strong> <strong>Aquifers</strong> 2 - 37 EPIQ Water Policy Reform Program


2.7.2.5 El-Bahariya OasisA total economic groundwater extraction rate <strong>of</strong> 115 mcm/year can be feasibly utilized <strong>in</strong> El-Bahariya Oasis for multi-discipl<strong>in</strong>ary development uses. The present annual extraction <strong>of</strong> 57mcm is used <strong>in</strong> agriculture (12,500 feddan) and domestic water supply, thus, futuregroundwater development at an annual rate <strong>of</strong> 58 mcm is envisaged, which can be obta<strong>in</strong>edby drill<strong>in</strong>g 40 new wells (1.44 x <strong>10</strong> 6 m 3 /year/ well).2.7.2.6 Siwa OasisPrevious Nubia groundwater resources evaluation has <strong>in</strong>dicated <strong>the</strong> possibility <strong>of</strong> reclaim<strong>in</strong>g17,000 feddan <strong>in</strong> Siwa Oasis, us<strong>in</strong>g 140 mcm/year.Future groundwater development <strong>in</strong> Siwa Oasis is constra<strong>in</strong>ed by <strong>the</strong> exist<strong>in</strong>g serious waterlogg<strong>in</strong>g and dra<strong>in</strong>age problems <strong>in</strong> <strong>the</strong> Oasis caused by <strong>the</strong> uncontrolled flow<strong>in</strong>g wells andexcessive groundwater outflow from <strong>the</strong> carbonate aquifer system. It is necessary to reevaluate<strong>the</strong> Nubia groundwater resources by us<strong>in</strong>g updated results <strong>of</strong> <strong>the</strong> detailedhydrogeological <strong>in</strong>vestigations currently carried out by <strong>the</strong> Research Institute forGroundwater (RIGW) to assess <strong>the</strong> maximum susta<strong>in</strong>able fresh groundwater extraction ratefrom <strong>the</strong> Nubia Sandstone aquifer <strong>in</strong> Siwa Oasis without caus<strong>in</strong>g water quality deterioration.2.7.2.7 South Valley AreaThe South Valley area is located <strong>in</strong> <strong>the</strong> sou<strong>the</strong>rn part <strong>of</strong> <strong>the</strong> <strong>Western</strong> <strong>Desert</strong> and extendsbetween <strong>the</strong> East Owe<strong>in</strong>at area <strong>in</strong> <strong>the</strong> west, <strong>the</strong> Darb El-Arba<strong>in</strong> road <strong>in</strong> <strong>the</strong> middle and NasserLake <strong>in</strong> <strong>the</strong> east (Figure 43). This area was recently allocated by <strong>the</strong> GOE for national largescale horizontal expansion projects, based on <strong>the</strong> Nile water (Toshka Project) and <strong>the</strong> Nubiaaquifer groundwater (East Owe<strong>in</strong>at, Darb El-Arba<strong>in</strong> road, and Aswan-Abu Simbel roadirrigated agriculture projects).2.7.2.7.1 The East Owe<strong>in</strong>at Area. Although <strong>the</strong> result <strong>of</strong> <strong>the</strong> groundwater resourceevaluation <strong>in</strong> <strong>the</strong> East Owe<strong>in</strong>at area <strong>in</strong>dicated <strong>the</strong> possibility <strong>of</strong> a susta<strong>in</strong>ableexploitation <strong>of</strong> <strong>the</strong> Nubia Sandstone aquifer at a rate <strong>of</strong> 1200 mcm/year over aperiod <strong>of</strong> <strong>10</strong>0 years, <strong>the</strong> economic feasibility <strong>of</strong> groundwater utilization <strong>in</strong> irrigatedagriculture <strong>in</strong> <strong>the</strong> area has not yet been assessed. This will def<strong>in</strong>itely determ<strong>in</strong>e <strong>the</strong>economic groundwater extraction rate and consequently <strong>the</strong> f<strong>in</strong>al scale <strong>of</strong>horizontal expansion <strong>in</strong> <strong>the</strong> area.The present groundwater extraction rate <strong>in</strong> <strong>the</strong> East Owe<strong>in</strong>at is 30.5 mcm/year,primarily used to irrigate an area <strong>of</strong> 3,200 feddan <strong>of</strong> <strong>the</strong> previously reclaimed area<strong>of</strong> 6,800 feddan.Recently, <strong>the</strong> GOE allocated 200,000 feddan to be reclaimed by twenty private<strong>in</strong>vestors, which were only concentrated <strong>in</strong> <strong>the</strong> second and third groundwaterdevelopment priority areas (Figure 44), <strong>in</strong>stead <strong>of</strong> be<strong>in</strong>g distributed over <strong>the</strong> wholeplanned aquifer development areas (see Table 7). This could result <strong>in</strong> a rapid andserious decl<strong>in</strong>e <strong>of</strong> aquifer potentiometric levels exceed<strong>in</strong>g <strong>the</strong> marg<strong>in</strong>al economicpump<strong>in</strong>g level <strong>in</strong> a short period which will have serious impact on <strong>the</strong><strong>Hydrogeology</strong> <strong>of</strong> <strong>Deep</strong> <strong>Aquifers</strong> 2 - 38 EPIQ Water Policy Reform Program


susta<strong>in</strong>ability <strong>of</strong> development <strong>in</strong> <strong>the</strong> area. It is recommended that <strong>the</strong> areasallocated for future large-scale horizontal agricultural expansion as shown <strong>in</strong>Figure 44, be reconsidered regard<strong>in</strong>g proper distribution <strong>of</strong> groundwater extractionpatterns and rates based on <strong>the</strong> groundwater development priority areas, whichshould ensure susta<strong>in</strong>able and economic development <strong>in</strong> <strong>the</strong> East Owe<strong>in</strong>at area.2.7.2.7.2 Darb El-Arba<strong>in</strong> Road Area. In <strong>the</strong> framework <strong>of</strong> <strong>the</strong> National SouthValley Development Project, <strong>the</strong> GOE planned to establish agricultural communitycenters along <strong>the</strong> strategic road <strong>of</strong> Darb El-Arba<strong>in</strong>, which extends between Assiouton <strong>the</strong> Nile Valley <strong>in</strong> <strong>the</strong> north to <strong>the</strong> Sudanese border <strong>in</strong> <strong>the</strong> south and <strong>the</strong>ncont<strong>in</strong>ues <strong>in</strong>to Sudan.Based on <strong>the</strong> results <strong>of</strong> previous geological, geophysical surveys and a few testwells <strong>in</strong> <strong>the</strong> South Kharga depression area, n<strong>in</strong>e agricultural communities, spaced20 km apart are be<strong>in</strong>g established at present along <strong>the</strong> Darb El-Arba<strong>in</strong> road, with atotal area <strong>of</strong> <strong>10</strong>,300 feddan. The irrigation water will be supplied from 85 wells at arate <strong>of</strong> <strong>10</strong>0 mcm/year. It was estimated that such a groundwater extraction rate willresult <strong>in</strong> a decl<strong>in</strong>e <strong>in</strong> <strong>the</strong> water level rang<strong>in</strong>g between 35 m and 90 m over a period<strong>of</strong> 25 years (REGWA Co., 1997). The <strong>in</strong>teraction between <strong>the</strong> two foreseen largescalegroundwater extraction centers at Darb El-Arba<strong>in</strong> and <strong>the</strong> East Owe<strong>in</strong>at hasnot been studied.2.7.2.7.3 Aswan – Abu Simbel Road Area. This area is located with<strong>in</strong> <strong>the</strong> easternpart <strong>of</strong> Toshka bas<strong>in</strong> which is bounded <strong>in</strong> <strong>the</strong> west by Nakhlai-Aswan uplift and <strong>in</strong><strong>the</strong> east by Nasser Lake western shore l<strong>in</strong>e.At present, 20 wells are planned to be drilled <strong>in</strong> <strong>the</strong> Toshka project area, <strong>of</strong> which(14) are under construction along <strong>the</strong> bank <strong>of</strong> ma<strong>in</strong> canal to provide water forconstruction and to be used later for demonstration farms. The wells are be<strong>in</strong>gdrilled to a depth <strong>of</strong> 300 m yield<strong>in</strong>g <strong>10</strong>0 m 3 /hr, <strong>of</strong> sal<strong>in</strong>ity 400 – 700 ppm to irrigate<strong>10</strong>0 fed. each. The o<strong>the</strong>r 6 wells will be drilled for afforestation around NasserLake environmental protection zone. The total expected groundwater extraction isabout <strong>10</strong> mcm/year. As <strong>the</strong> ongo<strong>in</strong>g South Valley irrigated agriculture project <strong>of</strong>540,000 feddan will depend on Nile water, <strong>the</strong> evaluation <strong>of</strong> <strong>the</strong> groundwaterpotential <strong>in</strong> <strong>the</strong> Nasser Lake bas<strong>in</strong> has to be updated. The updat<strong>in</strong>g should <strong>in</strong>clude<strong>the</strong> results <strong>of</strong> <strong>the</strong> new drill<strong>in</strong>gs <strong>in</strong> <strong>the</strong> area, <strong>the</strong> expected changes <strong>in</strong> <strong>the</strong> aquiferwater balance due to future recharge by <strong>the</strong> <strong>in</strong>filtration <strong>of</strong> surface irrigation water.The aquifer response to <strong>the</strong> GOE groundwater extraction plan to irrigate 145,000feddan along <strong>the</strong> Aswan – Abu Simbel road should also be evaluated.<strong>Hydrogeology</strong> <strong>of</strong> <strong>Deep</strong> <strong>Aquifers</strong> 2 - 39 EPIQ Water Policy Reform Program


3 HYDROGEOLOGY OF DEEP AQUIFER SYSTEMS IN SINAIThe <strong>in</strong>terest <strong>in</strong> water resources <strong>in</strong> S<strong>in</strong>ai dates back to ancient times, as evidenced by <strong>the</strong> wellknownstory <strong>of</strong> <strong>the</strong> prophet Moses. He left Egypt with his people and wandered <strong>in</strong> S<strong>in</strong>ai formany years look<strong>in</strong>g for a settlement, until he found <strong>the</strong> twelve spr<strong>in</strong>gs (Moses’s Spr<strong>in</strong>gs)along <strong>the</strong> eastern coast <strong>of</strong> <strong>the</strong> Gulf <strong>of</strong> Suez.Dur<strong>in</strong>g <strong>the</strong> last two decades, <strong>in</strong>terest <strong>in</strong> gett<strong>in</strong>g <strong>the</strong> maximum use <strong>of</strong> available water resources<strong>in</strong> S<strong>in</strong>ai, <strong>in</strong>clud<strong>in</strong>g <strong>the</strong> deep groundwater, has been considered by <strong>the</strong> MPWWR as part <strong>of</strong><strong>the</strong>ir national development program.The S<strong>in</strong>ai Pen<strong>in</strong>sula covers an area <strong>of</strong> approximately 61,000 km 2 . It is triangular <strong>in</strong> shapewith its apex formed by <strong>the</strong> junction <strong>of</strong> <strong>the</strong> Gulf <strong>of</strong> Aqaba and <strong>the</strong> Gulf <strong>of</strong> Suez <strong>in</strong> <strong>the</strong> southand its base by <strong>the</strong> Mediterranean Sea coastl<strong>in</strong>e between Port said <strong>in</strong> <strong>the</strong> west and Rafah <strong>in</strong><strong>the</strong> east (Figure 45).3.1 Previous InvestigationsMany water resource studies have been undertaken <strong>in</strong> <strong>the</strong> S<strong>in</strong>ai Pen<strong>in</strong>sula by various<strong>in</strong>dividuals and agencies dur<strong>in</strong>g <strong>the</strong> last four decades.• Shata (1956) discussed <strong>the</strong> structural development <strong>of</strong> <strong>the</strong> S<strong>in</strong>ai Pen<strong>in</strong>sula based on <strong>the</strong>geological studies done by petroleum companies. He <strong>in</strong>dicated that <strong>the</strong> S<strong>in</strong>ai Pen<strong>in</strong>sula isdivided <strong>in</strong>to seven parts: <strong>the</strong> Mediterranean foreshore; <strong>the</strong> mobile platform (<strong>in</strong>clud<strong>in</strong>g <strong>the</strong>major strongly-folded areas <strong>of</strong> Gebel El-Maghara, Gebel Yallaq and Gebel El-Halal); <strong>the</strong>nor<strong>the</strong>rn stable platform (h<strong>in</strong>g belt); <strong>the</strong> central S<strong>in</strong>ai slightly folded area; <strong>the</strong> centralS<strong>in</strong>ai stable foreland; <strong>the</strong> sou<strong>the</strong>rn S<strong>in</strong>ai Shield area; and <strong>the</strong> west and east S<strong>in</strong>ai rift areas(Suez rift valley and Aqaba rift valley).• Ge<strong>of</strong>izika Co. (1963), carried out geological, geophysical, hydrological andhydrogeological and soil <strong>in</strong>vestigations <strong>in</strong> <strong>the</strong> nor<strong>the</strong>rn, central and southwestern parts <strong>of</strong>S<strong>in</strong>ai, to assess <strong>the</strong> basic data and <strong>in</strong>formation <strong>of</strong> water and soil resources for futureagricultural development plans. In this study, <strong>the</strong> geomorphological features and <strong>the</strong>geological succession were described.Both Wadi El-Karm and Wadi El-Le<strong>the</strong>ili were found to be <strong>of</strong> high potential for surfaceand groundwater storage.The groundwater occurrences <strong>in</strong> <strong>the</strong> deep tertiary aquifers <strong>in</strong> El-Hemma bas<strong>in</strong> and <strong>in</strong> <strong>the</strong>Lower Cretaceous Sandstones <strong>in</strong> <strong>the</strong> central part <strong>of</strong> S<strong>in</strong>ai were discussed with specialemphasis to <strong>the</strong>ir recharge mechanism and sal<strong>in</strong>ity variations. The groundwater resources<strong>in</strong> <strong>the</strong> southwestern part <strong>of</strong> <strong>the</strong> Pen<strong>in</strong>sula were reported to be <strong>of</strong> low potential <strong>in</strong> <strong>the</strong>closed geologic structures due to high sal<strong>in</strong>ity. Fur<strong>the</strong>r detailed resource <strong>in</strong>vestigationsshould be limited to areas <strong>of</strong> open geologic structures, and should <strong>in</strong>clude <strong>the</strong>establishment <strong>of</strong> a number <strong>of</strong> ra<strong>in</strong> gauges, a detailed geoelectrical sound<strong>in</strong>g survey and<strong>the</strong> drill<strong>in</strong>g <strong>of</strong> test wells.• Issar et al. (1972) discussed <strong>the</strong> hydrogeologic characteristics <strong>of</strong> <strong>the</strong> Nubia Sandstoneaquifer <strong>of</strong> <strong>the</strong> Lower Cretaceous to Upper Jurassic underly<strong>in</strong>g central S<strong>in</strong>ai and <strong>the</strong> Negev(Israel). He estimated <strong>the</strong> aquifer storage capacity to be several hundred billion cubicmeters, although only a small fraction <strong>of</strong> this water can be pumped. A large part <strong>of</strong> <strong>the</strong><strong>Hydrogeology</strong> <strong>of</strong> <strong>Deep</strong> <strong>Aquifers</strong> 3 - 1 EPIQ Water Policy Reform Program


water <strong>in</strong> this aquifer is fossil, and its dat<strong>in</strong>g us<strong>in</strong>g 14 C, <strong>in</strong>dicates an age range from 13,000to more than 30,000 years.• Dames and Moore (1985) carried out a comprehensive study <strong>of</strong> <strong>the</strong> water resources <strong>of</strong> <strong>the</strong>S<strong>in</strong>ai Pen<strong>in</strong>sula as a part <strong>of</strong> <strong>the</strong> S<strong>in</strong>ai Development Study Project. Based on <strong>the</strong> exist<strong>in</strong>gstratigraphic data from 69 wells and 57 columnar sections and hydrogeologic data from716 water po<strong>in</strong>ts, S<strong>in</strong>ai was divided <strong>in</strong>to seven groundwater prov<strong>in</strong>ces bounded by <strong>the</strong>occurr<strong>in</strong>g regional geologic structures. Seven different lithostratigraphic groundwaterbear<strong>in</strong>gunits were identified, namely <strong>the</strong> Quaternary deposits, <strong>the</strong> Miocene sandstone, <strong>the</strong>Eocene limestone, <strong>the</strong> Upper Cretaceous carbonates, Lower Cretaceous sandstone,sedimentary rocks <strong>of</strong> Cambrian to Jurassic, and <strong>the</strong> fractured basements.The study showed that <strong>the</strong> regional groundwater flow <strong>in</strong> <strong>the</strong> Lower Cretaceous sandstoneaquifer tends to be strongly <strong>in</strong>fluenced by large-scale folds and faults. In this aquifer,regional flow occurs generally northward and N-NE towards <strong>the</strong> Arava Valley – DeadSea Rift <strong>in</strong> Israel, but ano<strong>the</strong>r component <strong>of</strong> flow occurs towards <strong>the</strong> Gulf <strong>of</strong> Suez.The study concluded that <strong>the</strong> sou<strong>the</strong>rn mounta<strong>in</strong>s <strong>in</strong> S<strong>in</strong>ai generally have <strong>the</strong> best qualitygroundwater and <strong>the</strong> Suez Rift prov<strong>in</strong>ce has <strong>the</strong> worst among all <strong>the</strong> geologic unitsconsidered.Rate <strong>of</strong> recharge to <strong>the</strong> different deep aquifer systems <strong>in</strong> S<strong>in</strong>ai was estimated to be90,000 m 3 /day to <strong>the</strong> Lower Cretaceous Sandstones, 190,000 m 3 /day to MiddleCretaceous Carbonates.The study <strong>in</strong>dicated that groundwater extraction from <strong>the</strong> deep aquifers <strong>in</strong> S<strong>in</strong>ai is 2,000m 3 /day drawn from <strong>the</strong> Miocene, Eocene and Cretaceous aquifers.• The WRRI <strong>in</strong> cooperation with EEC, conducted a water resource study project <strong>in</strong> S<strong>in</strong>ai.One <strong>of</strong> its aims was to assess <strong>the</strong> deep groundwater resources <strong>in</strong> S<strong>in</strong>ai, which <strong>in</strong>cludedgeological, geophysical and test drill<strong>in</strong>g works. The study summarized <strong>the</strong> hydrogeologiccharacteristics <strong>of</strong> <strong>the</strong> deep Upper and Lower Cretaceous aquifers and estimated <strong>the</strong>storage capacity <strong>of</strong> <strong>the</strong> Lower Cretaceous freshwater aquifer <strong>in</strong> S<strong>in</strong>ai (sal<strong>in</strong>ity < 2000ppm) to be 980 bcm <strong>of</strong> which a total <strong>of</strong> 117 bcm can be extracted (Nour et al., 1993).A numerical model <strong>of</strong> <strong>the</strong> Cretaceous aquifers was prepared, but it was reported that <strong>the</strong>model calibration for aquifer <strong>in</strong>itial condition did not succeed due to <strong>the</strong> lack <strong>of</strong> controlledaquifer hydrogeologic data <strong>in</strong> Negev area <strong>in</strong> Israel and <strong>in</strong>adequate <strong>in</strong>formation <strong>of</strong> <strong>the</strong>aquifer boundary conditions <strong>in</strong> nor<strong>the</strong>rn and western S<strong>in</strong>ai.• Dur<strong>in</strong>g <strong>the</strong> period 1988 – 1992, JICA executed a groundwater resources study <strong>in</strong> NorthS<strong>in</strong>ai. N<strong>in</strong>eteen test wells were drilled and seven were completed <strong>in</strong>to <strong>the</strong> LowerCretaceous Sandstone aquifer.The study concluded that <strong>the</strong> Lower Cretaceous aquifer was recharged <strong>in</strong> <strong>the</strong> South S<strong>in</strong>aiarea approximately 20,000 years ago, and that <strong>the</strong> groundwater quality <strong>in</strong> South S<strong>in</strong>ai isbetter and has more potential than that <strong>in</strong> north S<strong>in</strong>ai. The study’s f<strong>in</strong>al report <strong>in</strong>cluded aseries <strong>of</strong> hydrogeological maps for north S<strong>in</strong>ai and recommended expand<strong>in</strong>g <strong>the</strong> study tosouth S<strong>in</strong>ai for better evaluation <strong>of</strong> <strong>the</strong> aquifer groundwater resources <strong>in</strong> <strong>the</strong> whole S<strong>in</strong>aiPen<strong>in</strong>sula.<strong>Hydrogeology</strong> <strong>of</strong> <strong>Deep</strong> <strong>Aquifers</strong> 3 - 2 EPIQ Water Policy Reform Program


• The water resources <strong>in</strong> <strong>the</strong> area <strong>of</strong> Wadi Watir, sou<strong>the</strong>ast S<strong>in</strong>ai was <strong>the</strong> subject <strong>of</strong> <strong>the</strong>study project “South S<strong>in</strong>ai Water Resources Development” conducted <strong>in</strong> 1995 by <strong>the</strong>WRRI, and f<strong>in</strong>anced by a grant from <strong>the</strong> Italian Government through <strong>the</strong> local ItalianCommodity Fund. The project <strong>in</strong>cluded geological, geophysical and hydrogeologicalstudies as well as <strong>the</strong> analysis <strong>of</strong> hydrogeological data <strong>of</strong> wells drilled <strong>in</strong> <strong>the</strong> Wadi Watirarea.The study <strong>in</strong>dicated that <strong>the</strong> Lower Cretaceous Sandstone aquifer is <strong>the</strong> most promis<strong>in</strong>gaquifer <strong>in</strong> <strong>the</strong> study area <strong>in</strong> terms <strong>of</strong> its potential and water quality. The storage capacity<strong>of</strong> <strong>the</strong> aquifer is estimated to be 320 bcm, while <strong>the</strong> annual groundwater <strong>in</strong>flow isestimated at 50 mcm. To satisfy <strong>the</strong> water demands estimated at <strong>10</strong>,500 m 3 /day by <strong>the</strong>year 2030 <strong>in</strong> <strong>the</strong> Wadi Watir area, a groundwater development plan was proposed to<strong>in</strong>clude drill<strong>in</strong>g <strong>of</strong> five deep wells and two shallow wells beside five exist<strong>in</strong>g wells.3.2 Physiographic Features <strong>of</strong> S<strong>in</strong>ai Pen<strong>in</strong>sulaThe sou<strong>the</strong>rn portion <strong>of</strong> S<strong>in</strong>ai consists <strong>of</strong> an <strong>in</strong>tricate complex <strong>of</strong> rugged mounta<strong>in</strong>s formed by<strong>the</strong> Pre-Cambrian igneous and metamorphic rocks. A major part <strong>of</strong> <strong>the</strong> pen<strong>in</strong>sula comprises amassively developed limestone plateau. One <strong>of</strong> <strong>the</strong> largest dra<strong>in</strong>age systems is formed by <strong>the</strong>Wadi El-Arish with its many tributaries. The eastern and western edges are dissected by deepgorge dra<strong>in</strong>age <strong>in</strong>to <strong>the</strong> Gulf <strong>of</strong> Aqaba and <strong>the</strong> Gulf <strong>of</strong> Suez respectively. In <strong>the</strong> nor<strong>the</strong>rnportion, <strong>the</strong> regional dip slope is broken up <strong>in</strong>to many large hills followed northward by a belt<strong>of</strong> low lands, with high sand dunes along <strong>the</strong> Mediterranean coast. The ma<strong>in</strong> geomorphologicunits <strong>in</strong> <strong>the</strong> S<strong>in</strong>ai can be described as follows: (Figure 46)- The eastern rift bas<strong>in</strong> is situated along <strong>the</strong> eastern coast <strong>of</strong> <strong>the</strong> pen<strong>in</strong>sula consist<strong>in</strong>g<strong>of</strong> a strip <strong>of</strong> low land between <strong>the</strong> Gulf <strong>of</strong> Aqaba and <strong>the</strong> basement ridges.- The western rift bas<strong>in</strong> is situated along <strong>the</strong> west coast <strong>of</strong> <strong>the</strong> pen<strong>in</strong>sula, and is apart <strong>of</strong> <strong>the</strong> Gulf <strong>of</strong> Suez down-faulted rift valley.- The basement ridges are composed <strong>of</strong> <strong>the</strong> igneous core <strong>of</strong> <strong>the</strong> S<strong>in</strong>ai situated <strong>in</strong> <strong>the</strong>south <strong>of</strong> <strong>the</strong> Pen<strong>in</strong>sula. The highest peak <strong>of</strong> <strong>the</strong>se ridges is Mount St. Ca<strong>the</strong>r<strong>in</strong>e,which atta<strong>in</strong>s an altitude <strong>of</strong> 2,630 m.a.m.s.l.- The structural plateau occupies 40 percent <strong>of</strong> <strong>the</strong> pen<strong>in</strong>sula and is represented byEl-Tih Plateau (500-1,000 m.a.m.s.l.) and El-Egma plateau (500-1,500 m.a.m.s.l.),situated <strong>in</strong> <strong>the</strong> central part <strong>of</strong> S<strong>in</strong>ai. The surface <strong>of</strong> <strong>the</strong>se plateaux are underla<strong>in</strong> byCretaceous and Eocene limestone beds, and are strongly dissected by compileddra<strong>in</strong>age l<strong>in</strong>es, which debouch northward (Wadi El-Arish) or eastward towards <strong>the</strong>Gulf <strong>of</strong> Aqaba or westward towards <strong>the</strong> Gulf <strong>of</strong> Suez.- The mobile plateau is formed by several domes, at Gabals El-Maghara, El- Halal,Risan Aneiza, El-Geddi, Yallag, and forms a zone that co<strong>in</strong>cides with <strong>the</strong> mobileshelf <strong>of</strong> S<strong>in</strong>ai.- The north coastal pla<strong>in</strong> belongs to <strong>the</strong> Mediterranean foreshore and is tiltedseaward.- The deltaic pla<strong>in</strong> is represented by <strong>the</strong> alluvial and floodpla<strong>in</strong>s and is found <strong>in</strong> asmall part <strong>of</strong> <strong>the</strong> western S<strong>in</strong>ai near Lake Timsah.<strong>Hydrogeology</strong> <strong>of</strong> <strong>Deep</strong> <strong>Aquifers</strong> 3 - 3 EPIQ Water Policy Reform Program


3.3 Regional Geological Sett<strong>in</strong>g3.3.1 StratigraphyFigure (47) shows a schematic geologic map <strong>of</strong> <strong>the</strong> S<strong>in</strong>ai Pen<strong>in</strong>sula (EGSMA, 1981), which<strong>in</strong>dicates <strong>the</strong> distribution <strong>of</strong> <strong>the</strong> different formation units. Based on <strong>the</strong> results <strong>of</strong> deep testwells (Figure 48), <strong>the</strong> lithostratigraphic rock units <strong>of</strong> <strong>the</strong> nor<strong>the</strong>rn and sou<strong>the</strong>rn parts <strong>of</strong> S<strong>in</strong>aicould be identified and presented as shown <strong>in</strong> Figure (49), and as described <strong>in</strong> <strong>the</strong> follow<strong>in</strong>gfrom older to younger:3.3.1.1 Pre-Cambrian Basement ComplexPre-Cambrian crystall<strong>in</strong>e rocks make up <strong>the</strong> bulk <strong>of</strong> <strong>the</strong> sou<strong>the</strong>rn mounta<strong>in</strong>s, and are ma<strong>in</strong>lycomposed <strong>of</strong> igneous and metamorphic rocks with jo<strong>in</strong>ts, fractures, and fault zones.3.3.1.2 Paleozoic Rock UnitsThe undifferentiated Paleozoic rock units were described from <strong>the</strong>ir surface exposures atUmm Bogma <strong>in</strong> west S<strong>in</strong>ai and from subsurface sections penetrated <strong>in</strong> central and sou<strong>the</strong>rnS<strong>in</strong>ai, (Wells Nakhl-1, Shaira-1, Feiran-1, and Wadi Gharandal-1, 3). Lithologically <strong>the</strong>undifferentiated Paleozoic sequences consist ma<strong>in</strong>ly <strong>of</strong> sand and sandstone with th<strong>in</strong> shale<strong>in</strong>terbeds. There are also mar<strong>in</strong>e dolomitic beds (Umm Bogma formation <strong>of</strong> Carboniferousage) mak<strong>in</strong>g up part <strong>of</strong> <strong>the</strong> section (Said, 1962). The total thickness is about 350 m <strong>in</strong> <strong>the</strong>central parts <strong>of</strong> S<strong>in</strong>ai and <strong>in</strong>crease northward to reach 714 m at well Abu Hamth <strong>in</strong> Nakhlarea.3.3.1.3 Mesozoic Rock Units3.3.1.3.1 Triassic Rock Unit. The Triassic Areif El-Naga formation is exposed at GebelArief El-Naga <strong>in</strong> central east S<strong>in</strong>ai, atta<strong>in</strong><strong>in</strong>g a thickness <strong>of</strong> about 400 m. Similar sections areencountered <strong>in</strong> <strong>the</strong> subsurface at Nakhl area. Lithologically, <strong>the</strong> formation is made up <strong>of</strong>limestone with shale and sandstone <strong>in</strong>tercalations. Southward <strong>the</strong> section becomes morecont<strong>in</strong>ental, mostly <strong>of</strong> sandstone facies.3.3.1.3.2 Jurassic Rock Unit. Jurassic rocks cover <strong>the</strong> cores <strong>of</strong> <strong>the</strong> domal structuralareas at Gebel El-Maghara, Risan Eneiza, El-M<strong>in</strong>shera and o<strong>the</strong>rs (EGSMA, 1981). Themaximum reported thickness <strong>of</strong> this unit reaches 2,200 m at Gebel El-Maghara. The sectionconsists <strong>of</strong> about 45 percent limestone and dolomite, 25 percent shale and 30 percentsandstone (Al Far, 1966).Results <strong>of</strong> deep drill<strong>in</strong>g at Wadi Feiran, Wadi Gharandal and south Nakhl <strong>in</strong>dicate that <strong>the</strong>percentage <strong>of</strong> sandstone <strong>in</strong>creases <strong>in</strong> south S<strong>in</strong>ai. A gradual thicken<strong>in</strong>g was found to beassociated with <strong>the</strong> <strong>in</strong>crease <strong>of</strong> mar<strong>in</strong>e sediments northward. The Upper Jurassic Massajidformation is one <strong>of</strong> <strong>the</strong> ma<strong>in</strong> groundwater-bear<strong>in</strong>g formations <strong>in</strong> El-Maghara area.<strong>Hydrogeology</strong> <strong>of</strong> <strong>Deep</strong> <strong>Aquifers</strong> 3 - 4 EPIQ Water Policy Reform Program


3.3.1.3.3 Cretaceous Rock Units. These rock units were deposited over <strong>the</strong> uneven,highly corrugated surface <strong>of</strong> <strong>the</strong> Pre-Cretaceous rocks. The Cretaceous units are divided <strong>in</strong>toLower and Upper Cretaceous.a) The Lower Cretaceous unit known as <strong>the</strong> “Malhah formation” (corresponds to Nubiasequences <strong>in</strong> <strong>the</strong> <strong>Western</strong> <strong>Desert</strong> and Kurnub formation <strong>in</strong> Israel) is reported to be <strong>the</strong>deep groundwater aquifer <strong>in</strong> S<strong>in</strong>ai with <strong>the</strong> most potential for development as a waterresource. The formation was <strong>the</strong> ma<strong>in</strong> focus <strong>in</strong> a deep groundwater <strong>in</strong>vestigation <strong>in</strong> S<strong>in</strong>ai,and several deep wells were drilled to assess <strong>the</strong> Malhah formation hydrogeologiccharacteristics. It consists <strong>of</strong> sandstone and sand with shale <strong>in</strong>tercalations <strong>in</strong> <strong>the</strong> centraland sou<strong>the</strong>rn parts <strong>of</strong> S<strong>in</strong>ai, while it facially changes <strong>in</strong>to limestone and shale to <strong>the</strong> north<strong>of</strong> <strong>the</strong> Gebel Maghara and Gebel El-Halal strongly-folded zone (where it is known as <strong>the</strong>Rizan Aneiza formation) (Figure 50). The Lower Cretaceous formation atta<strong>in</strong>s a thickness<strong>of</strong> 200 m at Nakhl, 550 m at El-Maghara, 700 m at <strong>the</strong> core <strong>of</strong> Gebel El-Halal and 975 mto <strong>the</strong> site <strong>of</strong> El-Khabra oil exploration well and th<strong>in</strong>s out south <strong>of</strong> Nakhl and El-Thamadzone until it reaches 150 m near its sou<strong>the</strong>rn outcrops (Figure 51). The depth at <strong>the</strong> top <strong>of</strong><strong>the</strong> Malhah formation ranges from <strong>10</strong>0 to 500 m <strong>in</strong> south S<strong>in</strong>ai, 600 to 900 m aroundNakhl and 1,000 to 1,200 m <strong>in</strong> <strong>the</strong> area between El-Hasana and El-Gifgafa area. Theformation was penetrated at shallow depth <strong>of</strong> 122 m at Ayun Musa (well no. 45), 90 m atEl-Hamra (well no. 46), 44 m <strong>in</strong> <strong>the</strong> vic<strong>in</strong>ity <strong>of</strong> El-M<strong>in</strong>sherah domal structure (well no.34) and at ground surface at Gebel Falig (well no. 27). Figure 52 shows <strong>the</strong> iso-depthcontour map to <strong>the</strong> Lower Cretaceous Malhah formation from <strong>the</strong> ground surface. Themap <strong>in</strong>dicates that <strong>the</strong> depth is gett<strong>in</strong>g deeper <strong>in</strong> <strong>the</strong> central part <strong>of</strong> <strong>the</strong> area between Nakhland El-Hasana, and <strong>in</strong> <strong>the</strong> nor<strong>the</strong>rn part between Gifgafa, Baghdad and Wadi El-Amro.b) The Upper Cretaceous unit represents a mar<strong>in</strong>e section, which <strong>in</strong>cludes Cenomanian,Turonian, and Senonian rock units. It consists ma<strong>in</strong>ly <strong>of</strong> limestone, dolomite, shale markand th<strong>in</strong> sandstone beds. The Upper Cretaceous can be described under <strong>the</strong> follow<strong>in</strong>gformations from older to younger:- The Raha (Galala) formation is <strong>of</strong> Cenomanian age and consists <strong>of</strong> limestone,marl, shale and sandstone beds which are exposed on <strong>the</strong> scarp face <strong>of</strong> Rahaplateau <strong>in</strong> West S<strong>in</strong>ai, overly<strong>in</strong>g <strong>the</strong> Turonian – Santonian beds andunderly<strong>in</strong>g <strong>the</strong> Lower Cretaceous Malhah formation and atta<strong>in</strong>s a thicknessrang<strong>in</strong>g from 170 to 200 m.- The Wata Formation is <strong>of</strong> Turonian age, exposed at Wadi Wata and Rahaplateau <strong>in</strong> west central S<strong>in</strong>ai. It consists <strong>of</strong> about 55 m siliceous, partlydolomitic limestone <strong>in</strong>ter-bedded with th<strong>in</strong> marl and shale bands. It has a widedistribution at El-Tih plateau, to <strong>the</strong> west and east <strong>of</strong> S<strong>in</strong>ai and around <strong>the</strong>nor<strong>the</strong>rn domal structures, e.g. Gebel Mahgara, El-Halal, Yallaq and o<strong>the</strong>rs.- The Matalla Formation is <strong>of</strong> Santonian age. It conformably follows <strong>the</strong>Turonian rock unit, and is exposed along <strong>the</strong> walls <strong>of</strong> <strong>the</strong> Egma Plateau, on <strong>the</strong>surface <strong>in</strong> <strong>the</strong> downthrown side <strong>of</strong> <strong>the</strong> major east–west Ragabat El-Naam faultwhich extends west from Wadi Raha, north <strong>of</strong> Taba <strong>in</strong> <strong>the</strong> east and covers <strong>the</strong>low lands between <strong>the</strong> highly-folded areas <strong>in</strong> north S<strong>in</strong>ai (El-Maghara, El-Halal and Um Hoseira), Gebel Yallaq, Arif El-Naga and El-Kherim <strong>in</strong> centralS<strong>in</strong>ai. The formation has a thickness <strong>of</strong> 170 m consist<strong>in</strong>g <strong>of</strong> sand, shale, marland brown limestone beds.<strong>Hydrogeology</strong> <strong>of</strong> <strong>Deep</strong> <strong>Aquifers</strong> 3 - 5 EPIQ Water Policy Reform Program


- The Sudr Formation is <strong>of</strong> Upper Campanian – Maestrichtian, lithologicallyconsists <strong>of</strong> about <strong>10</strong>0 m <strong>of</strong> snow white, chalky limestone and marl, but <strong>in</strong>places its thickness reaches up to 220 m, as <strong>in</strong> Sudr area, west S<strong>in</strong>ai.3.3.1.4 Tertiary Rock Units3.3.1.4.1 Paleocene Rock Units. Represented by Esna shale, which consists <strong>of</strong> greenishgray shales <strong>in</strong>terbedded with chalk and marly limestone, <strong>the</strong> Paleocene rock unit occurs as ath<strong>in</strong> well mapable rock unit exposed and located along <strong>the</strong> scarp face <strong>of</strong> El-Tih and Egmaplateau areas. The thickness <strong>of</strong> <strong>the</strong> unit reaches 70 m.3.3.1.4.2 Eocene Rock Units. The Eocene rock units occur over a wide area <strong>in</strong> <strong>the</strong>central and nor<strong>the</strong>rn parts <strong>of</strong> S<strong>in</strong>ai, and unconformably overlie <strong>the</strong> Cretaceous formations.The Eocene rock units can be classified <strong>in</strong>to:- The Lower Eocene (Thebes Formation) which consists <strong>of</strong> limestone, marl atbase, with a thickness reach<strong>in</strong>g 40 m.- The Middle Eocene (Mokattam Formation) consists <strong>of</strong> about 200 m <strong>of</strong> highlyfossiliferous massive limestones.- The Upper Eocene (Maadi Formation) has a limited distribution <strong>in</strong> West S<strong>in</strong>ai(Gabal Hammam Faraun) where it consists <strong>of</strong> grits, marl and sandstone withth<strong>in</strong> conglomerate beds. The thickness reaches 16 m.3.3.1.4.3 Oligocene Rock Unit. The Oligocene rock unit has a limited extension andunconformably overlies <strong>the</strong> Eocene formation. It consists <strong>of</strong> about 45 m <strong>of</strong> brown tuff andbasalt overly<strong>in</strong>g a black sandstone, breccia and conglomerate. At <strong>the</strong> coastal area <strong>of</strong> S<strong>in</strong>ai, <strong>the</strong>Oligocene section becomes mar<strong>in</strong>e represented by about 700 m <strong>of</strong> shales, siltstones andsandstones.Dur<strong>in</strong>g <strong>the</strong> Oligocene, <strong>the</strong> area was affected by a series <strong>of</strong> volcanic activities. Paralleldolorites and basalt dikes and sills cut across <strong>the</strong> Cretaceous and Eocene rock units <strong>in</strong> WadiGharandal-Gebel Somar area.3.3.1.4.4 Miocene Rock Units. The Miocene sediments, with relatively greaterthickness, have been reported <strong>in</strong> <strong>the</strong> coastal area <strong>of</strong> nor<strong>the</strong>rn S<strong>in</strong>ai and to <strong>the</strong> west <strong>of</strong> S<strong>in</strong>ai,rang<strong>in</strong>g between 1,000 m and 1,350 m as encountered <strong>in</strong> well Sneh –1(well no. 3). Th<strong>in</strong>Miocene sands were drilled south <strong>of</strong> El-Arish at well El-Misri–1 (well no. 2) atta<strong>in</strong><strong>in</strong>g athickness <strong>of</strong> 118 m. Miocene fractured basalt was penetrated <strong>in</strong> El-Hemma – El-Hasana area.At well Habashi-1, west <strong>of</strong> <strong>the</strong> Great Bitter Lakes, <strong>the</strong> Miocene sands were encountered at <strong>the</strong>depth <strong>in</strong>terval <strong>of</strong> 480 – 533 m.3.3.1.4.5 Pliocene Rock Units. The Pliocene rock unit consists <strong>of</strong> shale, siltstone,sandstone and limestone <strong>in</strong>terbeds, with an <strong>in</strong>creas<strong>in</strong>g thickness northward reach<strong>in</strong>g 250 m <strong>in</strong>well Sneh-1. A Pliocene lacustr<strong>in</strong>e facies is recorded at El-Kuntilla at Wadi Gerafi area. ThePliocene shale and clay form <strong>the</strong> base <strong>of</strong> <strong>the</strong> Quaternary deposits <strong>in</strong> <strong>the</strong> coastal zone betweenRomana and Rafah.<strong>Hydrogeology</strong> <strong>of</strong> <strong>Deep</strong> <strong>Aquifers</strong> 3 - 6 EPIQ Water Policy Reform Program


3.3.1.5 Quaternary Rock UnitsThese units consist <strong>of</strong> calcareous sandstone (Kurkar) at <strong>the</strong> nor<strong>the</strong>astern coastal area, withalluvium sand and gravel cover. They also consist <strong>of</strong> old beach deposits <strong>of</strong> 20-60 m thickalong <strong>the</strong> coastal zone between Sheikh Zuwayid and Rafah and <strong>the</strong> sand dunes extensivelydistributed <strong>in</strong> <strong>the</strong> coastal pla<strong>in</strong> which range between 20 m and 30 m thick, as well as <strong>the</strong>alluvial deposits form<strong>in</strong>g <strong>the</strong> Wadis beds.3.3.2 Major Structural ElementsFigure (53) shows <strong>the</strong> major structural features <strong>in</strong> S<strong>in</strong>ai. The area is characterized by <strong>the</strong>presence <strong>of</strong> folds, domal structures, fault<strong>in</strong>g and unconformities. These structural elementshave been recognized both above and below surface.From <strong>the</strong> structural po<strong>in</strong>t <strong>of</strong> view, S<strong>in</strong>ai is subdivided <strong>in</strong>to seven major parts (Shata 1956).These subdivisions are: <strong>the</strong> sou<strong>the</strong>rn S<strong>in</strong>ai shield area; <strong>the</strong> central S<strong>in</strong>ai stable foreland; <strong>the</strong>central S<strong>in</strong>ai slightly folded area; <strong>the</strong> north S<strong>in</strong>ai h<strong>in</strong>g belt; <strong>the</strong> north S<strong>in</strong>ai strongly-foldedarea; <strong>the</strong> Mediterranean foreshore area; and <strong>the</strong> west and east S<strong>in</strong>ai rift areas (<strong>the</strong> Gulf <strong>of</strong>Suez and <strong>the</strong> Gulf <strong>of</strong> Aqaba – Dead Sea Rift valleys).The major tectonic features <strong>in</strong> S<strong>in</strong>ai which have direct impact on <strong>the</strong> groundwater conditions<strong>in</strong> terms <strong>of</strong> replenishment, flow and potentiality, can be po<strong>in</strong>ted out <strong>in</strong> <strong>the</strong> follow<strong>in</strong>g:a- The fractures and jo<strong>in</strong>t systems <strong>in</strong> <strong>the</strong> carbonates favor <strong>the</strong> development <strong>of</strong>important aquifers <strong>in</strong> <strong>the</strong> Upper Cretaceous rock units.b- The basalt–dolorite dikes trend<strong>in</strong>g NW-SE and NE-SW act as local geologicboundaries to groundwater flow <strong>in</strong> <strong>Western</strong> S<strong>in</strong>ai, e.g. <strong>the</strong> SSW-NNE dikeextend<strong>in</strong>g from Wadi Gharandal to Gebel Somar area.c- The pronounced folded structures at Gebels El-Maghara, Yelleq, El-Halal andGebel M<strong>in</strong>sherah, Abu Kandu, Kherim, Arif El-Naga, and with <strong>the</strong> abrupt changes<strong>in</strong> <strong>the</strong> elevations <strong>of</strong> <strong>the</strong> different groundwater bear<strong>in</strong>g formations caus<strong>in</strong>g possiblediversion <strong>in</strong> its flow directions.d- The major east–west Ragabat El-Naam fault which extends westward fromslightly north <strong>of</strong> Taba towards El-Themed, to <strong>the</strong> Nakhl area, and f<strong>in</strong>ally to GebelRaha <strong>in</strong> West S<strong>in</strong>ai. The throw <strong>of</strong> this fault is about 400 m to 500 m <strong>in</strong> <strong>the</strong> areabetween Taba and El-Themed and decreases westward, with m<strong>in</strong>or verticaldislocation around Nakhl (40 m), but a considerable displacement is observedfur<strong>the</strong>r west.The ENE-WSW trend<strong>in</strong>g fault, north <strong>of</strong> <strong>the</strong> Syrian Arc folded zone <strong>of</strong> Gebels Maghara, RisanAneiza and El-Halal, with its northward downthrown side has caused <strong>the</strong> Cretaceous<strong>in</strong>tergranular formation to be blocked by <strong>the</strong> low permeability Upper Cretaceous / Tertiaryformations carbonate shale complex.The two major faults along <strong>the</strong> rifts <strong>of</strong> <strong>the</strong> Gulfs <strong>of</strong> Suez and Aqaba, caused a pronounceddifferential block fault<strong>in</strong>g which brought <strong>the</strong> Cretaceous formation aga<strong>in</strong>st <strong>the</strong> Pre-Cambrianrocks along <strong>the</strong> Gulf <strong>of</strong> Aqaba and <strong>the</strong> Tertiary evaporites along <strong>the</strong> Gulf <strong>of</strong> Suez.<strong>Hydrogeology</strong> <strong>of</strong> <strong>Deep</strong> <strong>Aquifers</strong> 3 - 7 EPIQ Water Policy Reform Program


3.4 <strong>Deep</strong> Aquifer Systems <strong>in</strong> S<strong>in</strong>aiThe exist<strong>in</strong>g deep aquifer systems <strong>in</strong> S<strong>in</strong>ai derive <strong>the</strong>ir characteristics from past geologicalevents <strong>of</strong> sedimentation and structural movements on <strong>the</strong> pen<strong>in</strong>sula, and from regional andlocal recharge conditions occurr<strong>in</strong>g over <strong>the</strong> past centuries.The results <strong>of</strong> deep test drill<strong>in</strong>g for oil and groundwater <strong>in</strong>vestigation <strong>in</strong> <strong>the</strong> different parts <strong>of</strong>S<strong>in</strong>ai (see Figure 48) show that seven deep lithostrategic units serve as <strong>the</strong> primary deepaquifers <strong>in</strong> S<strong>in</strong>ai.In <strong>the</strong> follow<strong>in</strong>g, <strong>the</strong> hydrogeologic sett<strong>in</strong>g <strong>of</strong> <strong>the</strong>se hydrostratigraphic units will be described.A special emphasis is given to <strong>the</strong> Cretaceous aquifer systems because <strong>the</strong>y <strong>of</strong>fer <strong>the</strong> mostpotential aquifers <strong>in</strong> S<strong>in</strong>ai both <strong>in</strong> quantity and quality. Figure (54) shows <strong>the</strong> location <strong>of</strong> fourregional hydrogeologic sections <strong>in</strong> S<strong>in</strong>ai which are represented <strong>in</strong> figures (55), (56), (57) and(58). Table (20) <strong>in</strong>dicates <strong>the</strong> technical and hydrogeologic data <strong>of</strong> <strong>the</strong> drilled wells tapp<strong>in</strong>gdeep aquifers <strong>in</strong> S<strong>in</strong>ai.<strong>Hydrogeology</strong> <strong>of</strong> <strong>Deep</strong> <strong>Aquifers</strong> 3 - 8 EPIQ Water Policy Reform Program


Table (20) Cont. - S<strong>in</strong>ai <strong>Deep</strong> Aquifer Technical and Hydrogeologic Well DataMap Well Depth (m) Aquifer Tapped Depth to Yield Sal<strong>in</strong>ityWell Well Name Drilled Completed Lithostratigraphic Depth Water Well Type Well UseNo. Unit (m.b.g.l) (m.b.g.l (m3/hr) (p.p.m)15 El Halal well - 2 No Data Available 140 35 2000 Production Agriculture16 El Halal well - 1 No Data Available 160 <strong>10</strong> 2500 Production Agriculture17 Gebel Libni WRRI 300 240 U. Cr. Lst. 63 - 300 220 11 3700 Production Agriculturewell No. 36C18 Baghdad Unicef well 927 - U. Cr. Lst. 861 - 927 - - - Dry.19 El Monbateh Unicef <strong>10</strong>03 972 U. Cr. Lst. 352 - <strong>10</strong>03 120 20 3500 Production Agriculturewell20 El Mowaleh WRRI 170 64 Eocene Lst. 0 - 64 23 - 19000 Test well Abandonedwell - 121 El Halal Israeli well 900 640 L. Cr. Sdst. 360 - 640 250 70 3500 Production Irrigation <strong>of</strong> 40fed.(65 <strong>in</strong> future)22 El Hasana WRRI 2<strong>10</strong> N/A U. Cr. Lst. 0 - 2<strong>10</strong> - - - Dry.well No. 4923 El Melaiz Army well 1321 1321 U. & L. Cret. Lst & Sdst. <strong>10</strong>08-1321 219 - 2480 Production Domestic24 El Gifgafa Unicef well 860 850 U. Cr. Lst. 400 - 850 219 35 3500 Production Domestic25 Habashi well - 1 2500 Lower Miocene Sdst. 480 - 533 44 - <strong>10</strong>20** Oil exploration Abandoned26 Talaat El Badan 657 502 U. Cr. Lst. 50 - 316 163 - 4690 Test productive AbandonedUnicef well27 Gebel Falig Jica well 402 302 L. Cr. Sdst. 0 - 331 288 - - Dry.No. J - 1328 El Hasana Unicef well <strong>10</strong>38 959 U. Cr. Lst. 330 - <strong>10</strong>38 172 50 4120 Production Desal<strong>in</strong>ated fordomestic use<strong>Hydrogeology</strong> <strong>of</strong> <strong>Deep</strong> <strong>Aquifers</strong> 3 - 9 EPIQ Water Policy Reform Program


Table (20) Cont. - S<strong>in</strong>ai <strong>Deep</strong> Aquifer Technical and Hydrogeologic Well DataMap Well Depth (m) Aquifer Tapped Depth to Yield Sal<strong>in</strong>ityWell Well Name Drilled Completed Lithostratigraphic Depth Water Well Type Well UseNo. Unit (m.b.g.l) (m.b.g.l (m3/hr) (p.p.m)40 Arif Al NagaNo Data AvailableL. Cr. Sdst. - 30 3200 Production Irrigaiton &MPWWR well No.4Dom. uses41 Arif Al Naga Jica 902 902 L. Cr. Sdst. 556 - 720 300 40 3008 Production Irrigation &well No. J-1 Dom. uses42 El Bruk Jica well No. 189 189 U. Cr. Lst. 128 - 189 132 20 5628 Production Not yet <strong>in</strong>J-17 use43 El Bruk Jica well No. 799 799 L. Cr. Sdst. 487 - 715 152 30 2318 Production Not yet <strong>in</strong>J-16 use44 Ayun Musa - 1 1661 152 L. Cr. Sdst. 65 - 167 +11 flow<strong>in</strong>g 2536 Oil exploration Abandoned45 Ayun Musa - 2 1770 268 L. Cr. Sdst. 122 - 271 +14 flow<strong>in</strong>g 3186 Oil exploration Abandoned46 El Hamra - 1 1460 - L. Cr. Sdst. 91 - 435 - - <strong>10</strong>000** Oil exploration Abandoned47 Sudr El Heitan WRRI <strong>10</strong>40 996 L. Cr. Sdst. 775 - 992 270 50 2000 Production Not yet <strong>in</strong>well -1 use48 Nakhl MPWWR wellNo.1(Bir Shash)<strong>10</strong>20 <strong>10</strong>20 L. Cr. Sdst. 826 - <strong>10</strong>20 254 40 1650 Production Domestic49 Nakhl MPWWR wellNo.2 (Bir Youssef)<strong>10</strong>95 <strong>10</strong>82 L. Cr. Sdst. 826 - <strong>10</strong>95 233 50 1630 Production Not <strong>in</strong> use*50 Abu Hams - 1 2714 - L. Cr. Sdst. 769 - <strong>10</strong>06 - -


Table (20) Cont. - S<strong>in</strong>ai <strong>Deep</strong> Aquifer Technical and Hydrogeologic Well DataMap Well Depth (m) Aquifer Tapped Depth to Yield Sal<strong>in</strong>ityWell Well Name Drilled Completed Lithostratigraphic Depth Water Well Type Well UseNo. Unit (m.b.g.l) (m.b.g.l (m3/hr) (p.p.m)40 Arif Al NagaNo Data AvailableL. Cr. Sdst. - 30 3200 Production Irrigaiton &MPWWR well No.4Dom. uses41 Arif Al Naga Jica 902 902 L. Cr. Sdst. 556 - 720 300 40 3008 Production Irrigation &well No. J-1 Dom. uses42 El Bruk Jica well No. 189 189 U. Cr. Lst. 128 - 189 132 20 5628 Production Not yet <strong>in</strong>J-17 use43 El Bruk Jica well No. 799 799 L. Cr. Sdst. 487 - 715 152 30 2318 Production Not yet <strong>in</strong>J-16 use44 Ayun Musa - 1 1661 152 L. Cr. Sdst. 65 - 167 +11 flow<strong>in</strong>g 2536 Oil exploration Abandoned45 Ayun Musa - 2 1770 268 L. Cr. Sdst. 122 - 271 +14 flow<strong>in</strong>g 3186 Oil exploration Abandoned46 El Hamra - 1 1460 - L. Cr. Sdst. 91 - 435 - - <strong>10</strong>000** Oil exploration Abandoned47 Sudr El Heitan WRRI <strong>10</strong>40 996 L. Cr. Sdst. 775 - 992 270 50 2000 Production Not yet <strong>in</strong>well -1 use48 Nakhl MPWWR well <strong>10</strong>20 <strong>10</strong>20 L. Cr. Sdst. 826 - <strong>10</strong>20 254 40 1650 Production DomesticNo.1(Bir Shash)49 Nakhl MPWWR well No.2(Bir Youssef)<strong>10</strong>95 <strong>10</strong>82 L. Cr. Sdst. 826 - <strong>10</strong>95 233 50 1630 Production Not <strong>in</strong> use*50 Abu Hams - 1 2714 - L. Cr. Sdst. 769 - <strong>10</strong>06 - -


Table (20) - S<strong>in</strong>ai <strong>Deep</strong> Aquifer Technical and Hydrogeologic Well DataMap Well Depth (m) Aquifer Tapped Depth to Yield Sal<strong>in</strong>ityWell Well Name Drilled Completed Lithostratigraphic Depth Water Well Type Well UseNo. Unit * (m.b.g.l) (m.b.g.l (m3/hr) (p.p.m)1 El-Arish - 1 1667 - L. Cr. Lst 375-1250 - - - Oil exploration well Abandoned2 El-Arish - 1 260 260 Miocene Sands 141-259 27 - <strong>10</strong>450 Oil exploration well Abandoned3 Sneh - 1 2990 - L. Cr. Lst 2050-2850 - - 19000** Oil exploration well Abandoned4 El Khabra - 1 3134 - L. Cr. Lst & Sdst. 730-1704 - - 14000** Oil exploration well Abandoned5 El Magdaba Unicef 978 - U. Cr. Lst. - 67 - <strong>10</strong>870 Production Abandonedwell6 Wadi El Amro 980 980 U. Cr. Lst. 504-974 73 30 4000 Production Not <strong>in</strong> useUnicef well - 17 Um Shihan Unicef <strong>10</strong>03 902 L. Cr. Lst. 387-<strong>10</strong>03 113 35 3900 Production Irrigation 48 fedwell - 1& domestic8 Um Shihan MPWWR N/A*** N/A L. Cr. Lst. N/A 113 60 3900 Production Not yet <strong>in</strong>well - 2use9 El Fath - 1 N/A N/A Upper Jurassic Lst. N/A 40 3.5 800 Production Domestic<strong>10</strong> El Fath - 2 N/A N/A Upper Jurassic Lst. N/A 140 9 2<strong>10</strong>0 Production Domestic11 El Maghara MPWWR N/A N/A Upper Jurassic Lst. N/A 1<strong>10</strong> 28 2500 Production Agriculturewell No.112 El Maghara MPWWR N/A N/A Upper Jurassic Lst. N/A - 5 1800 Production Agriculturewell No.213 El Maghara MPWWR N/A N/A Upper Jurassic Lst. N/A 135 70 1800 Production Agriculturewell No.514 El Maghara MPWWR N/A N/A Upper Jurassic Lst. N/A 1<strong>10</strong> 20 2500 Production Agriculturewell No. 12* L. Cr : Lower Cretaceous, U.Cr : Upper Cretaceous, Lst : Limestone, Sdst : Sandstone** Sal<strong>in</strong>ity determ<strong>in</strong>ed from well logs*** N/A: Data not available


Table (20) Cont. - S<strong>in</strong>ai <strong>Deep</strong> Aquifer Technical and Hydrogeologic Well DataMap Well Depth (m) Aquifer Tapped Depth to Yield Sal<strong>in</strong>ityWell Well Name Drilled Completed Lithostratigraphic Depth Water Well Type Well UseNo. Unit (m.b.g.l) (m.b.g.l (m3/hr) (p.p.m)15 El Halal well - 2 No Data Available140 35 2000 Production Agriculture16 El Halal well - 1 No Data Available160 <strong>10</strong> 2500 Production Agriculture17 Gebel Libni WRRI 300 240 U. Cr. Lst. 63 - 300 220 11 3700 Production Agriculturewell No. 36C18 Baghdad Unicef well 927 - U. Cr. Lst. 861 - 927 - - - Dry.19 El Monbateh Unicef <strong>10</strong>03 972 U. Cr. Lst. 352 - <strong>10</strong>03 120 20 3500 Production Agriculturewell20 El Mowaleh WRRI 170 64 Eocene Lst. 0 - 64 23 - 19000 Test well Abandonedwell - 1Irrigation <strong>of</strong> 4021 El Halal Israeli well 900 640 L. Cr. Sdst. 360 - 640 250 70 3500 Productionfed.(65 <strong>in</strong> future)22 El Hasana WRRI 2<strong>10</strong> N/A U. Cr. Lst. 0 - 2<strong>10</strong> - - - Dry.well No. 4923 El Melaiz Army well 1321 1321 U. & L. Cret. Lst & Sdst. <strong>10</strong>08-1321 219 - 2480 Production Domestic24 El Gifgafa Unicef well 860 850 U. Cr. Lst. 400 - 850 219 35 3500 Production Domestic25 Habashi well - 1 2500 Lower Miocene Sdst. 480 - 533 44 - <strong>10</strong>20** Oil exploration Abandoned26 Talaat El Badan 657 502 U. Cr. Lst. 50 - 316 163 - 4690 Test productive AbandonedUnicef well27 Gebel Falig Jica well 402 302 L. Cr. Sdst. 0 - 331 288 - - Dry.No. J - 1328 El Hasana Unicef well <strong>10</strong>38 959 U. Cr. Lst. 330 - <strong>10</strong>38 172 50 4120 Production Desal<strong>in</strong>ated fordomestic use


Table (20) Cont. - S<strong>in</strong>ai <strong>Deep</strong> Aquifer Technical and Hydrogeologic Well DataMap Well Depth (m) Aquifer Tapped Depth to Yield Sal<strong>in</strong>ityWell Well Name Drilled Completed Lithostratigraphic Depth Water Well Type Well UseNo. Unit (m.b.g.l) (m.b.g.l (m3/hr) (p.p.m)29 El Hasana MPWWRwell - 1N/A30 El Hasana WRRI 298 200 U. Cr. Lst. 181 - 295 180 - 7000 Production Not <strong>in</strong> usewell No.531 El Hasana MPWWRwell No.2N/A32 El M<strong>in</strong>shareh WRRI 502 462 U. Cr. Lst. 307 - 502 162 - 2740 Piezometer Not <strong>in</strong> usewell No. 57 A33 El M<strong>in</strong>sherah Army <strong>10</strong>60 <strong>10</strong>60 L.Cr. Sdst. 747 - <strong>10</strong>60 158 - 1500 Production Abandonedwell34 El M<strong>in</strong>sherah Jica well 300 270 L.Cr. Sdst. 44 - 286 182 30 2970 Production Not <strong>in</strong> useNo. J-1235 Wadi El Melaiz WRRI 293 293 U. Cr. Lst. 0 - 293 97 20 8480 Production Abandonedwell No. 7036 El Tamada - 1 1300 1300 L.Cr. Sdst. 800 - 1300 225 - 2630 Production Abandoned37 Arif El Naga L.Cr. Sdst. - 271 15 3500 Production Irrigation &N/AMPWWR No. 1dom. uses38 Arif El Naga U. Cr. Lst. 92 40 2300 Production Irrigation &N/AMPWWR No. 2dom. uses39 Arif El NagaN/AL.Cr. Sdst. 1<strong>10</strong> 18 3500 Production Irrigation &


Table (20) Cont. - S<strong>in</strong>ai <strong>Deep</strong> Aquifer Technical and Hydrogeologic Well DataMap Well Depth (m) Aquifer Tapped Depth to Yield Sal<strong>in</strong>ityWell Well Name Drilled Completed Lithostratigraphic Depth Water Well Type Well UseNo. Unit (m.b.g.l) (m.b.g.l (m3/hr) (p.p.m)40 Arif Al Naga No Data Available L. Cr. Sdst. - 30 3200 Production Irrigaiton &MPWWR well No.4Dom. uses41 Arif Al Naga Jica 902 902 L. Cr. Sdst. 556 - 720 300 40 3008 Production Irrigation &well No. J-1Dom. uses42 El Bruk Jica well No. 189 189 U. Cr. Lst. 128 - 189 132 20 5628 Production Not yet <strong>in</strong>J-17 use43 El Bruk Jica well No. 799 799 L. Cr. Sdst. 487 - 715 152 30 2318 Production Not yet <strong>in</strong>J-16 use44 Ayun Musa - 1 1661 152 L. Cr. Sdst. 65 - 167 +11 flow<strong>in</strong>g 2536 Oil exploration Abandoned45 Ayun Musa - 2 1770 268 L. Cr. Sdst. 122 - 271 +14 flow<strong>in</strong>g 3186 Oil exploration Abandoned46 El Hamra - 1 1460 - L. Cr. Sdst. 91 - 435 - - <strong>10</strong>000** Oil exploration Abandoned47 Sudr El Heitan WRRI <strong>10</strong>40 996 L. Cr. Sdst. 775 - 992 270 50 2000 Production Not yet <strong>in</strong>well -1use48 Nakhl MPWWR well <strong>10</strong>20 <strong>10</strong>20 L. Cr. Sdst. 826 - <strong>10</strong>20 254 40 1650 Production DomesticNo.1(Bir Shash)49 Nakhl MPWWR wellNo.2 (Bir Youssef)<strong>10</strong>95 <strong>10</strong>82 L. Cr. Sdst. 826 - <strong>10</strong>95 233 50 1630 Production Not <strong>in</strong> use*50 Abu Hams - 1 2714 - L. Cr. Sdst. 769 - <strong>10</strong>06 - -


Table (20) Cont. - S<strong>in</strong>ai <strong>Deep</strong> Aquifer Technical and Hydrogeologic Well DataMap Well Depth (m)Aquifer TappedDepth to Yield Sal<strong>in</strong>ityWell Well Name Drilled Completed Lithostratigraphic Depth Water Well Type Well UseNo. Unit (m.b.g.l) (m.b.g.l (m3/hr) (p.p.m)55 Nakhl MPWWR L. Cr. Sdst Production Not yet <strong>in</strong> useN/AN/Awell No.656 Nakhl MPWWR L. Cr. Sdst Not yet <strong>in</strong> useN/AN/Awell No.757 Darag well 844 844 L. Cr. Sdst 8<strong>10</strong> - 844 183 - 1490 Oil exploration Abandoned58 El Kuntilla WRRI 652 - - 554 - 750Failed to be completed due to frequent complete loss <strong>of</strong> mudwell No.1circulation59 El Kuntilla WRRI No Data Available L. Cr. Sdst 50 1728 Production Not <strong>in</strong> usewell No.260 El Thamad Unicef well 760 730 U. Cr. Lst 245 - 554 380 ? 3500 Production Not <strong>in</strong> useL. Cr. Sdst 554 - >76061 El Thamad MPWWR 805 789 L. Cr. Sdst 408 ->789 382 30 1768 Production Not <strong>in</strong> usewell No.262 Ras Sudr - 15 1930 - L. Cr. Sdst 1860-1930 - - 227450 Oil exploration Abandoned63 Jica test well No.1 N/A N/A L. Cr. Sdst N/ATest-production Not <strong>in</strong> use64 Jica test well No.2 N/A N/A L. Cr. Sdst N/ATest-production Not <strong>in</strong> use65 Jica test well No.3 N/A N/A L. Cr. Sdst N/ATest-production Not <strong>in</strong> use66 Jica test well No.4 N/A N/A L. Cr. Sdst N/ATest-production Not <strong>in</strong> use67 Jica test well No.5 N/A N/A L. Cr. Sdst N/ATest-production Not <strong>in</strong> use68 Taba Heights Co. 742 742 L. Cr. Sdst 545 - 730 358 75 1556 Production Not yet <strong>in</strong> use but


Table (20) Cont. - S<strong>in</strong>ai <strong>Deep</strong> Aquifer Technical and Hydrogeologic Well DataMap Well Depth (m)Aquifer TappedDepth to Yield Sal<strong>in</strong>ityWell Well Name Drilled Completed Lithostratigraphic Depth Water Well Type Well UseNo. Unit (m.b.g.l) (m.b.g.l (m3/hr) (p.p.m)70 Naqab test well No. 400 - L. Cret. Sdst. 295 - 400J-15Dry71 Shaira WRRI well 815 804 L. Cret. Sdst. 564 - 807 355 23 1680 Production Used <strong>in</strong>No. 1 (Km. 83)irrigat<strong>in</strong>g an72 Shaira WRRI well 328 325 U. Cret. Lst. 175 - >325 85 5 <strong>10</strong>24 Production experimentalNo. 2 (Km. 83)farm <strong>of</strong> 20 fed.73 Shaira MPWWR well 830 828 L. Cret. Sdst. 565 - 815 350 30 1200 Production Not yet <strong>in</strong>No. 3 (Km. 83)use74 Shaira MPWWR well 735 714 L. Cret. Sdst. 483 - 731 347 30 1236 Production Not yet <strong>in</strong>No. 4 (Km. 82)use75 El Hithi MPWWR 408 400 U. Cret. Lst. 0 - 330 93 26 <strong>10</strong>50 Production Not yet <strong>in</strong>well No.2 (Km 70.5) L. Cret. Sdst. 330 ->403 use76 El Hithi MPWWR 352 352 U. Cret. Lst. 0 - 160 289 <strong>10</strong> 1269 Production Not yet <strong>in</strong>well No.1 (Km 72.5) L. Cret. Sdst. 160 - >352 use77 Wadi Watir MPWWR 920 860 L. Cret. Sdst. 625 - >960 141 60 768 Production Not yet <strong>in</strong>well No.1 (Km 52.5)use78 Wadi Watir MPWWR 860 860 L. Cret. Sdst. 615 - >860 148 46 887 Production Not <strong>in</strong> usewell No.2 (Km 53)79 Wadi Gharandal 230 228 U. Cret. Lst. 0 - 230 21 5 8680 Production AbandonedWRRI well No.1


Table (20) Cont. - S<strong>in</strong>ai <strong>Deep</strong> Aquifer Technical and Hydrogeologic Well DataMap Well Depth (m) Aquifer Tapped Depth to Yield Sal<strong>in</strong>ityWell Well Name Drilled Completed Lithostratigraphic Depth Water Well Type Well UseNo. Unit (m.b.g.l) (m.b.g.l (m3/hr) (p.p.m)81 Wadi Gharandal 930 777 Upper Paleozoic 657 - 770 96 57 2500 Production DomesticWRRI well No.3Sdst.82 Jica test well No.6 L. Cret. Sdst No Data Available (500)? Test production Not <strong>in</strong> use83 Petropel Co. well-field Miocene Sands 350 4600 House hold &N/A(four wells)<strong>in</strong>dustrial use84 Wadi Feiran WRRI 676 623 L. Cret. Sdst 390 - 623 57 60 864 Production Not yet <strong>in</strong>well No.2use85 Wadi Feiran WRRI 776 450 L. Cret. Sdst 185 - 450 37 50 850 Production Not yet <strong>in</strong>well No.1use86 Wadi Feiran WRRI 366 250 L. Cret. Sdst 150 - 270 39 70 850 Production Domesticwell No.387 Wadi Feiran WRRI 600 560 L. Cret. Sdst 67 65 1150 Production Not yet <strong>in</strong>well No.4use88 Wadi Feiran 550 472 L. Cret. Sdst 37 Production Not yet <strong>in</strong>MPWWR well No.5use89 Wadi Feiran L. Cret. Sdst Production Not yet <strong>in</strong>N/AN/AMPWWR well No.6use90 Wadi Feiran L. Cret. Sdst Production Not yet <strong>in</strong>MPWWR well No.7 N/AN/Ause


3.4.1 The Miocene Aquifer SystemThe Miocene units serv<strong>in</strong>g as aquifers are sandstone, belong<strong>in</strong>g to <strong>the</strong> Lower MioceneGharandal Group, and sandstone and grits form<strong>in</strong>g a th<strong>in</strong> basal Miocene unit. These unitsoccur on <strong>the</strong> west side, along <strong>the</strong> Gulf <strong>of</strong> Suez, <strong>in</strong> <strong>the</strong> Bitter Lake area, Wadi Feiran and <strong>the</strong>coastal foreshore area (south <strong>of</strong> Rafah and El-Magdaba).The Miocene aquifer system has only been tested <strong>in</strong> a few wells <strong>in</strong> western and nor<strong>the</strong>rnS<strong>in</strong>ai. At <strong>the</strong> Habashi oil exploration well (well no. 25), east <strong>of</strong> Bitter Lakes, a Miocenesandstone unit produced water with a sal<strong>in</strong>ity <strong>of</strong> 1,020 ppm. South at Ras Misalla, wellstapp<strong>in</strong>g basal Miocene yielded water with a total sal<strong>in</strong>ity rang<strong>in</strong>g from 2,600 ppm to 5,000ppm. Fur<strong>the</strong>r south, <strong>the</strong> aquifer groundwater sal<strong>in</strong>ity progressively <strong>in</strong>creases to reach 380,000ppm at well Lagia–2. Downstream <strong>of</strong> Wadi Feiran, at <strong>the</strong> Petropel Co. well-field, wellstapp<strong>in</strong>g Miocene sandstone unit (well no. 83) yield water with sal<strong>in</strong>ity rang<strong>in</strong>g from 3,900ppm to 5,300 ppm. The results <strong>of</strong> test<strong>in</strong>g <strong>the</strong> Miocene sandstone <strong>in</strong> <strong>the</strong> nor<strong>the</strong>rn coastalforeshore area at well Misri – 1 (well no. 2) showed that its groundwater is <strong>of</strong> poor quality,(<strong>10</strong>,000 ppm).3.4.2 Eocene Aquifer SystemThe Eocene fractured carbonate aquifer is represented by limestone and marl. It extendsoutcropp<strong>in</strong>g from El-Tih and El-Egma plateau <strong>in</strong> central S<strong>in</strong>ai to cover vast areas northwardto <strong>the</strong> l<strong>in</strong>e between Risan Aneiza and Gebel Maghara and atta<strong>in</strong>s a thickness <strong>of</strong> 200 to 360 m.The Eocene aquifer was only tapped <strong>in</strong> a few wells <strong>in</strong> north and west S<strong>in</strong>ai, (Table 20), butnone <strong>of</strong> <strong>the</strong>m have been tested for <strong>the</strong> aquifer hydraulic parameters. Based on <strong>the</strong> availabledata regard<strong>in</strong>g <strong>the</strong> groundwater quality, <strong>the</strong> Eocene limestone aquifer appears to yield water<strong>of</strong> usable quality at only a few locations <strong>in</strong> central and nor<strong>the</strong>astern S<strong>in</strong>ai. A characteristic <strong>of</strong>this aquifer, developed <strong>in</strong> <strong>the</strong> limestone, is <strong>the</strong> shortage <strong>of</strong> groundwater at <strong>the</strong> basal part <strong>of</strong> <strong>the</strong>limestone underla<strong>in</strong> by <strong>the</strong> impervious Paleocene Esna shales. This is clearly demonstrated atA<strong>in</strong> El-Gudeirate and A<strong>in</strong> Qedees <strong>in</strong> El-Quseima area which issue from <strong>the</strong> Eocene limestoneand discharge water at daily rates <strong>of</strong> 1,500 m 3 and 480 m 3 with a total sal<strong>in</strong>ity <strong>of</strong> 1,440 ppmand 1,200 ppm respectively. Also, an abandoned oil exploration well located nor<strong>the</strong>ast <strong>of</strong> RasSudr (well Abu Qiteifa 1), yielded water from <strong>the</strong> Eocene rocks with a sal<strong>in</strong>ity <strong>of</strong> 1,990 ppm,which <strong>in</strong>creases progressively to reach 3<strong>10</strong>,000 ppm at Lagia area south <strong>of</strong> Ras Sudr. Allo<strong>the</strong>r wells tapp<strong>in</strong>g <strong>the</strong> Eocene aquifer north <strong>of</strong> <strong>the</strong> zone between Gifgafa and El-Quseimayielded water with a total sal<strong>in</strong>ity rang<strong>in</strong>g from 8,500 ppm to reach 19,000 ppm at El-Mowaleh well (well no. 20).The Eocene carbonate aquifer <strong>in</strong> S<strong>in</strong>ai is ma<strong>in</strong>ly recharged by <strong>the</strong> percolation <strong>of</strong> ra<strong>in</strong>fallthrough its highly fractured and fissured outcrops.Based on <strong>the</strong> limited hydrogeologic <strong>in</strong>formation, <strong>the</strong> favorable areas for groundwaterdevelopment from <strong>the</strong> Eocene aquifer <strong>in</strong>clude <strong>the</strong> area between El-Hasana and El-Quseimaand <strong>the</strong> area north <strong>of</strong> Nakhl and El-Thamad, where <strong>the</strong> aquifer hydrogeologic sett<strong>in</strong>g issimilar to that prevails <strong>in</strong> nor<strong>the</strong>astern S<strong>in</strong>ai at A<strong>in</strong> El-Gudeirate and A<strong>in</strong> Qedees.<strong>Hydrogeology</strong> <strong>of</strong> <strong>Deep</strong> <strong>Aquifers</strong> 3 - 18 EPIQ Water Policy Reform Program


3.4.3 The Upper Cretaceous Aquifer SystemThe Upper Cretaceous carbonate aquifer system is composed <strong>of</strong> three hydrostratigraphicunits, e.g., <strong>the</strong> Senonian Matalla unit, <strong>the</strong> Turonian Wata unit and <strong>the</strong> Cenomania Galala unit.However, due to <strong>the</strong> scarcity <strong>of</strong> hydrogeologic data for <strong>the</strong> first two water-bear<strong>in</strong>gformations, <strong>the</strong> three units will be dealt with, <strong>in</strong> this report, as one aquifer system designatedas <strong>the</strong> Upper Cretaceous aquifer system.3.4.3.1 Occurrence and ExtentThe upper Cretaceous aquifer system consists ma<strong>in</strong>ly <strong>of</strong> chalky limestones and shales <strong>in</strong> <strong>the</strong>upper part (Senonian Matalla Formation) and limestones, dolomites, dolomitic limestonesand marls <strong>in</strong> <strong>the</strong> lower part (Turonian Wata Formation and Cenomanian Galala Formation).The aquifer occupies vast tracks <strong>in</strong> S<strong>in</strong>ai, with its sou<strong>the</strong>rn boundaries located north <strong>of</strong> <strong>the</strong>sou<strong>the</strong>rn slopes <strong>of</strong> El-Tih and El-Egma plateau, where <strong>the</strong> aquifer is elevated above itsregional potentiometric surface.The aquifer extends north until it is dammed by <strong>the</strong> down-faulted block <strong>of</strong> Teriary formationsnorth <strong>of</strong> Gebels Maghara, Risan Aneiza and El-Halal zone form<strong>in</strong>g its nor<strong>the</strong>rn boundary. To<strong>the</strong> east, <strong>the</strong> aquifer extends to <strong>the</strong> Aqaba - Dead Sea Rift Valley, while to <strong>the</strong> west, it isbounded by <strong>the</strong> down-faulted Teriary and Recent low permeability sequence and <strong>the</strong> basaltand diorite dikes between Gebel Somar and Wadi Gharandal (see Figure 47).The aquifer thickness ranges from 400 m to 700 m <strong>in</strong> <strong>the</strong> central and nor<strong>the</strong>rn parts <strong>of</strong> S<strong>in</strong>ai,while it gradually decreases southward reach<strong>in</strong>g 150 to 200 m <strong>in</strong> <strong>the</strong> vic<strong>in</strong>ity <strong>of</strong> itsoutcropp<strong>in</strong>g area along <strong>the</strong> El-Tih and El-Egma plateau slopes.3.4.3.2 Aquifer PotentiometryData obta<strong>in</strong>ed from test wells tapp<strong>in</strong>g <strong>the</strong> Upper Cretaceous carbonate aquifer <strong>in</strong> S<strong>in</strong>ai (Table20) <strong>in</strong>dicate that <strong>the</strong> depth to water ranges from 85 m at well Shaira – 2 (well no. 72) and 180m at El-Hasana well (well no. 30) to 40-90 m at Wadi El-Amro / El-Magdaba areas <strong>in</strong> northS<strong>in</strong>ai (Nour, 1993).Figure (59), shows <strong>the</strong> potentiometric surface map <strong>of</strong> <strong>the</strong> Upper Cretaceous aquifer. The map<strong>in</strong>dicates a general SE - NW groundwater gradient <strong>of</strong> 0.0035. The map also shows agroundwater divide near <strong>the</strong> eastern borderl<strong>in</strong>e with a groundwater flow eastward to <strong>the</strong>aquifer discharge area at <strong>the</strong> Dead Sea region <strong>in</strong> Israel, where a potentiometric level <strong>of</strong> 250m.b.m.s.l. at well Admon – 1 was reported (Dames and Moore, 1985).3.4.3.3 Aquifer Hydraulic ParametersThe results <strong>of</strong> <strong>the</strong> aquifer tests conducted at seven well sites <strong>in</strong> S<strong>in</strong>ai <strong>in</strong>dicate that <strong>the</strong>transmissivity <strong>of</strong> <strong>the</strong> Upper Cretaceous Turonian aquifer was determ<strong>in</strong>ed to be as low as 0.94m 2 /day at Shaira shallow well (well no. 72) <strong>in</strong> sou<strong>the</strong>ast S<strong>in</strong>ai and 6m 2 /day at WadiGharandal (well no. 79) <strong>in</strong> southwest S<strong>in</strong>ai. The highest aquifer transmissivity values wererecorded at those wells tapp<strong>in</strong>g <strong>the</strong> Cenomanian limestone at El-Hasana (well no. 28) and El-<strong>Hydrogeology</strong> <strong>of</strong> <strong>Deep</strong> <strong>Aquifers</strong> 3 - 19 EPIQ Water Policy Reform Program


Bruk (well no. 42) areas, be<strong>in</strong>g <strong>of</strong> <strong>10</strong>2 and 660 m 2 /day, respectively. The specific capacity <strong>of</strong><strong>the</strong> wells produc<strong>in</strong>g from <strong>the</strong> Upper Cretaceous aquifer ranges from 0.05 m 3 /hr/m at WadiGharandal and 4.5 m 3 /hr/m at Wadi El-Bruk. The Upper Cretaceous aquifer system isconf<strong>in</strong>ed <strong>in</strong> <strong>the</strong> major part <strong>of</strong> central and nor<strong>the</strong>astern S<strong>in</strong>ai while elsewhere, <strong>the</strong> system isunconf<strong>in</strong>ed.3.4.3.4 Aquifer RechargeThe recharge <strong>of</strong> <strong>the</strong> Upper Cretaceous aquifer occurs through <strong>the</strong> direct <strong>in</strong>filtration <strong>of</strong> ra<strong>in</strong>fallor from surface flow on its exposed areas. The estimated rate <strong>of</strong> recharge to <strong>the</strong> UpperCretaceous aquifer is estimated to be 190,000 m 3 /day (Dames & Moore, 1985).3.4.3.5 Groundwater QualityFigure (60) represents <strong>the</strong> iso-sal<strong>in</strong>ity contour map <strong>of</strong> <strong>the</strong> Upper Cretaceous aquifer system. It<strong>in</strong>dicates a general trend <strong>of</strong> sal<strong>in</strong>ity <strong>in</strong>crease towards <strong>the</strong> north, with <strong>the</strong> lowest values <strong>of</strong>1,<strong>10</strong>0 and 1,500 ppm, observed at Shaira well (well no. 72) and Yerqa Spr<strong>in</strong>g (located <strong>in</strong> <strong>the</strong>western part <strong>of</strong> Gebel El-Tih) respectively. The highest sal<strong>in</strong>ity <strong>of</strong> 5,628 ppm was observed atEl-Bruk well (well no. 42) and <strong>10</strong>,870 ppm at El-Magdaba well (well no.5).Although, <strong>the</strong> map <strong>in</strong>dicates that <strong>the</strong> Upper Cretaceous aquifer conta<strong>in</strong>s relatively low sal<strong>in</strong>itygroundwater <strong>in</strong> El-Tih and El-Egma Plateau area, <strong>the</strong> observed sal<strong>in</strong>ity at Wadi Gharandalwell tapp<strong>in</strong>g <strong>the</strong> same aquifer (well no.79) was reported to be about 5,000 ppm, which maybe attributed to <strong>the</strong> fact that <strong>the</strong> Cretaceous aquifer <strong>in</strong> Wadi Gharandal is hydraulicallyseparated from <strong>the</strong> o<strong>the</strong>r part <strong>of</strong> <strong>the</strong> aquifer <strong>in</strong> El-Tih / El-Egma plateau.3.4.4 The Lower Cretaceous Aquifer System3.4.4.1 Occurrence and ExtentThe Lower Cretaceous Malhah water-bear<strong>in</strong>g formation, consists ma<strong>in</strong>ly <strong>of</strong> alternat<strong>in</strong>g beds<strong>of</strong> sandstones and shales <strong>in</strong> <strong>the</strong> central and sou<strong>the</strong>rn parts <strong>of</strong> S<strong>in</strong>ai, while to <strong>the</strong> north <strong>of</strong> GebelMaghara- Gebel El-Halal folded zone, <strong>the</strong> formation is facially changed <strong>in</strong>to carbonates andshales complex. The aquifer thickness ranges, <strong>in</strong> general, between 150 m and 300 m,although it reaches 600 m at Gebel El-Halal.The aquifer extends between <strong>the</strong> areas <strong>of</strong> <strong>the</strong> Dead Sea - Wadi Arava Rift <strong>in</strong> sou<strong>the</strong>rn Israel<strong>in</strong> <strong>the</strong> east and Ayun Musa on <strong>the</strong> Gulf <strong>of</strong> Suez <strong>in</strong> <strong>the</strong> west. Its nor<strong>the</strong>rn boundary is locatednorth <strong>of</strong> Gebels Maghara, Risan Aneiza and El-Halal zone, while its sou<strong>the</strong>rn andsou<strong>the</strong>astern boundaries are def<strong>in</strong>ed by <strong>the</strong> l<strong>in</strong>e where <strong>the</strong> regional water table <strong>in</strong>tercepts <strong>the</strong>aquifer base approximately at <strong>10</strong> to 20km to <strong>the</strong> north <strong>of</strong> its outcrops along <strong>the</strong> face <strong>of</strong> El-Tih,El-Egma and El-Hazim plateaux (see Figure 57). The aquifer is bounded to <strong>the</strong> west by <strong>the</strong>major NW-SE fault where it is blocked when <strong>the</strong> uplifted Teriary evaporates with onlynarrow western cont<strong>in</strong>uity <strong>in</strong>to Ayun Musa area. The Gebel Somar basaltic dike forms an<strong>in</strong>ternal boundary to <strong>the</strong> aquifer.<strong>Hydrogeology</strong> <strong>of</strong> <strong>Deep</strong> <strong>Aquifers</strong> 3 - 20 EPIQ Water Policy Reform Program


The aquifer is topped by <strong>the</strong> Cenomanian dolomitic, marly limestones and shales. The topsurface <strong>of</strong> <strong>the</strong> Malhah formation slopes broadly from <strong>the</strong> south to north, with its depthrang<strong>in</strong>g between <strong>10</strong>0 m at <strong>the</strong> nor<strong>the</strong>rn vic<strong>in</strong>ity <strong>of</strong> its sou<strong>the</strong>rn outcrop, 500 m at Shaira (wellno. 71), 800 to 900 m at Nakhl area and <strong>in</strong>creases northward to reach 1,000 to 1,200 m <strong>in</strong> <strong>the</strong>Hasana – Gifgafa area, (see Figure 52).The base <strong>of</strong> <strong>the</strong> Lower Cretaceous aquifer has been reached <strong>in</strong> very few wells, where it isrepresented by <strong>the</strong> top surface <strong>of</strong> <strong>the</strong> Upper Jurassic formation.The Malhah aquifer system is believed to function as an unconf<strong>in</strong>ed aquifer only at a limitedzone (1 to 2 km) near its sou<strong>the</strong>rn outcrops, and is conf<strong>in</strong>ed elsewhere, be<strong>in</strong>g capped by <strong>the</strong>overly<strong>in</strong>g Teriary – Upper Cretaceous complex (see Figure 57).3.4.4.2 Aquifer PotentiometryFigure (61) shows <strong>the</strong> depth to water from <strong>the</strong> groundwater surface <strong>in</strong> <strong>the</strong> Lower Cretaceousaquifers. It <strong>in</strong>dicates that north <strong>of</strong> Ragabat El-Naam fault <strong>the</strong> depth to water is about 200m.b.g.l. around <strong>the</strong> Nakhl – El-Hasana road and gets deeper eastward and westward to reach300 to 400 m.b.g.l. South <strong>of</strong> <strong>the</strong> fault, <strong>the</strong> depth to water <strong>in</strong> <strong>the</strong> Lower Cretaceous aquifer <strong>in</strong>El-Tih – El-Egma plateau area ranges between 300 m.b.g.l. <strong>in</strong> <strong>the</strong> nor<strong>the</strong>rn part and <strong>in</strong>creaseto 400 m.b.g.l. near <strong>the</strong> sou<strong>the</strong>rn outcrops <strong>of</strong> <strong>the</strong> Malhah formation.Figure (62) shows <strong>the</strong> Lower Cretaceous aquifer potentiometric surface map. The map<strong>in</strong>dicates that <strong>the</strong> highest observed potentiometric level <strong>of</strong> 420 m.a.m.s.l. was observed at <strong>the</strong>well Shaira-1 (well no.71), while <strong>the</strong> lowest level <strong>of</strong> 24 m.a.m.s.l. was observed at <strong>the</strong> HalalIsraeli well (well no.21). A regional flow direction is distorted by <strong>the</strong> existence <strong>of</strong> <strong>the</strong> E-WRagabat El-Naam sector type fault which seems to <strong>in</strong>terrupt <strong>the</strong> aquifer hydraulic cont<strong>in</strong>uityat its eastern and western term<strong>in</strong>us, and <strong>the</strong> nor<strong>the</strong>rn folded structures at Gebel Yallaq,M<strong>in</strong>sherah, Maghara, and El-Halal which cause partial h<strong>in</strong>drance to groundwater flow.The map also shows that <strong>the</strong> groundwater <strong>in</strong> <strong>the</strong> Lower Cretaceous aquifer system flows fromits sou<strong>the</strong>rn recharge (outcrop) area along El-Tih, El-Egma and El-Hazim plateaux to <strong>the</strong>north and northwest to <strong>the</strong> vic<strong>in</strong>ities <strong>of</strong> <strong>the</strong> Ragabat El-Naam fault. It <strong>the</strong>n diverts its directiontoward <strong>the</strong> Nakhl area where <strong>the</strong> fault displacement is m<strong>in</strong>or, and through which <strong>the</strong> flowcrosses <strong>the</strong> fault northward to central S<strong>in</strong>ai.The existence <strong>of</strong> <strong>the</strong> NE folded structures <strong>in</strong> central S<strong>in</strong>ai and <strong>the</strong> aquifer nor<strong>the</strong>rn lowpermeability boundary north <strong>of</strong> Gebel Maghara, Risan Aneiza and Gebel El-Halal zone,causes <strong>the</strong> diversion <strong>of</strong> <strong>the</strong> groundwater flow direction to <strong>the</strong> E-NE and <strong>the</strong> W-SW towards<strong>the</strong> system’s major discharge areas at <strong>the</strong> Dead Sea-Wadi Arava rift <strong>in</strong> sou<strong>the</strong>rn Israel andAyun Musa area on <strong>the</strong> Gulf <strong>of</strong> Suez rift, where <strong>the</strong> potentiometric surface map shows twopotentiometric depressions <strong>of</strong> –250 m and +40 m, respectively. There is no evidence <strong>of</strong> anyflow <strong>in</strong> <strong>the</strong> Lower Cretaceous aquifer to <strong>the</strong> north <strong>of</strong> Gebel Maghara, as <strong>the</strong> predom<strong>in</strong>antCarbonate shale facies present is <strong>of</strong> low permeability, and <strong>the</strong> pronounced differential blockfault<strong>in</strong>g causes <strong>the</strong> diversion <strong>of</strong> groundwater flow eastward to <strong>the</strong> Dead Sea region.<strong>Hydrogeology</strong> <strong>of</strong> <strong>Deep</strong> <strong>Aquifers</strong> 3 - 21 EPIQ Water Policy Reform Program


3.4.4.3 Aquifer Hydraulic ParametersBased on <strong>the</strong> <strong>in</strong>terpretations <strong>of</strong> both long-duration and step-drawdown tests conducted for 11wells tapp<strong>in</strong>g <strong>the</strong> Lower Cretaceous aquifer, Nour (1993), reported that <strong>the</strong> aquifertransmissivity ranges between 11 to 54 m 2 /day for wells located near or at <strong>the</strong> domalstructures at El-Halal, El-M<strong>in</strong>sherah, and El-Bruk, while higher transmissivity values rang<strong>in</strong>gbetween <strong>10</strong>0 to 400 m 2 / day were observed at <strong>the</strong> wells <strong>of</strong> Sudr El-Heitan, Nakhl, Arif El-Naga, and Shaira wells where no significant structural disturbance occurred.The aquifer hydraulic conductivity exhibits its lowest values (0.17 to 0.7 m/day) <strong>in</strong> <strong>the</strong> foldedzone at El-M<strong>in</strong>sherah, El-Bruk and El-Halal, while <strong>the</strong> aquifer atta<strong>in</strong>s its highest values (2 to4 m/day) <strong>in</strong> <strong>the</strong> areas between El-Hassana, Talaat El-Badan, Arif El-Naga, Nakhl, and SudrEl-Heitan, as well as <strong>in</strong> <strong>the</strong> areas <strong>of</strong> Shaira, Wadi Gharandal, and Wadi Feiran.The storativity <strong>of</strong> <strong>the</strong> Lower Cretaceous was found to vary between <strong>10</strong> -3 at Arif El-Naga well(well no. 41) and <strong>10</strong> -5 at Wadi Gharandal well (well no. 81). The specific capacity <strong>of</strong> <strong>the</strong>wells yield<strong>in</strong>g water from <strong>the</strong> Lower Cretaceous aquifer <strong>in</strong>dicates ranges between 2 and 9m 3 /hr/m with <strong>the</strong> exception <strong>of</strong> El-Bruk and El-Halal Israeli deep wells (wells no. 34 and 22)which <strong>in</strong>dicate ra<strong>the</strong>r low specific capacities (0.5-0.9 m 3 /hr/m).3.4.4.4 Groundwater QualityFigure (63) represents <strong>the</strong> iso-sal<strong>in</strong>ity contour map <strong>of</strong> <strong>the</strong> Lower Cretaceous aquifer. It showsa general <strong>in</strong>crease <strong>of</strong> groundwater sal<strong>in</strong>ity towards <strong>the</strong> west and <strong>the</strong> north, with four sal<strong>in</strong>ityzones recognized as follows:Zone I: Groundwater sal<strong>in</strong>ity is


Zone V: occupies <strong>the</strong> nor<strong>the</strong>rn and western parts <strong>of</strong> S<strong>in</strong>ai where <strong>the</strong> Lower Cretaceous aquiferhas been deeply buried by fault<strong>in</strong>g. The ra<strong>the</strong>r high sal<strong>in</strong>ity values <strong>in</strong> this zone (14,000 ppmat well no. 4; 19,000 ppm at well No. 3) may be due to <strong>the</strong> <strong>in</strong>effective flush<strong>in</strong>g <strong>of</strong> <strong>the</strong>formation’s sal<strong>in</strong>e water by <strong>the</strong> recharg<strong>in</strong>g meteoric water due to <strong>the</strong> <strong>in</strong>terruption <strong>of</strong> <strong>the</strong>groundwater flow paths by block fault<strong>in</strong>g.Along <strong>the</strong> eastern coast <strong>of</strong> <strong>the</strong> Gulf <strong>of</strong> Suez, <strong>the</strong> sal<strong>in</strong>ity <strong>of</strong> <strong>the</strong> Lower Cretaceous aquifer ishigh (227,000 ppm at well Ras Sudr 15 well no. 62) because it is deeply down-faulted and <strong>the</strong>formation water has not been diluted or flushed by groundwater <strong>in</strong>flow from <strong>the</strong> east. Theexception to this, is <strong>the</strong> aquifer discharg<strong>in</strong>g area at Ayun Musa where <strong>the</strong> groundwatersal<strong>in</strong>ity <strong>of</strong> 2,536 to 3,180 ppm was observed at wells no. 44 and 45, This could be attributedto <strong>the</strong> fact that <strong>the</strong> aquifer occurs at a shallow uplifted block and it is possible that hydrauliccont<strong>in</strong>uity occurs with <strong>the</strong> aquifer <strong>in</strong> <strong>the</strong> east.Recent age dat<strong>in</strong>g studies <strong>of</strong> <strong>the</strong> Lower Cretaceous groundwater <strong>in</strong>dicate <strong>the</strong> presence <strong>of</strong> agegradient from south to north S<strong>in</strong>ai, which can be expla<strong>in</strong>ed by recent ra<strong>in</strong>fall recharge to <strong>the</strong>aquifer through its outcrops <strong>in</strong> <strong>the</strong> south.3.4.4.5 Aquifer Storage Capacity and Groundwater Inflow - Outflow Pattern3.4.4.5.1 Aquifer Storage Capacity. Nour (1993), estimated <strong>the</strong> storage capacity <strong>of</strong> <strong>the</strong>Lower Cretaceous sandstone aquifer system <strong>in</strong> S<strong>in</strong>ai to be approximately 1,<strong>10</strong>0 bcm, while <strong>in</strong><strong>the</strong> part <strong>of</strong> <strong>the</strong> aquifer conta<strong>in</strong><strong>in</strong>g groundwater with sal<strong>in</strong>ity less than 2,000 ppm <strong>in</strong> central andsou<strong>the</strong>rn S<strong>in</strong>ai, <strong>the</strong> amount <strong>of</strong> stored water is about 980 bcm, <strong>of</strong> which 117 bcm could berecovered.3.4.4.5.2 Aquifer Inflow – Outflow. The recharge to <strong>the</strong> Lower Cretaceous aquifer <strong>in</strong>S<strong>in</strong>ai is by <strong>in</strong>filtration <strong>of</strong> ra<strong>in</strong> through its outcrops along <strong>the</strong> face <strong>of</strong> El-Egma – El-Hazimplateaux <strong>in</strong> south S<strong>in</strong>ai and its exposed surface <strong>in</strong> <strong>the</strong> cores <strong>of</strong> <strong>the</strong> nor<strong>the</strong>rn mounta<strong>in</strong>s <strong>in</strong>North S<strong>in</strong>ai. Dames and Moore (1985) estimate <strong>the</strong> recharge to <strong>the</strong> Lower Cretaceous aquifersystem to be about 90,000 m 3 /day.The Lower Cretaceous aquifer outflow is represented by <strong>the</strong> groundwater abstraction bywells, and by natural losses <strong>in</strong> <strong>the</strong> topographically low areas located along <strong>the</strong> two rift valleysi.e., <strong>the</strong> Dead Sea – Wadi Arava <strong>in</strong> sou<strong>the</strong>rn Israel, and <strong>the</strong> Ayun Musa area <strong>in</strong> <strong>the</strong> easterncoast <strong>of</strong> <strong>the</strong> Gulf <strong>of</strong> Suez, which represent <strong>the</strong> base level <strong>of</strong> <strong>the</strong> aquifer where groundwater ismost probably exploited or lost by evaporation.Based on <strong>the</strong> groundwater flow pattern <strong>in</strong> <strong>the</strong> Lower Cretaceous aquifer (Figure 59) and itshydraulic parameters, Nour (1993) estimates <strong>the</strong> annual aquifer system water balance us<strong>in</strong>g<strong>the</strong> Darcian approach; to be as follows:• Annual <strong>in</strong>flow from <strong>the</strong> sou<strong>the</strong>rn recharge area = 21.4 mcm.• Outflow- Annual outflow through <strong>the</strong> eastern border to Wadi Arava (Israel) : <strong>10</strong> mcm.- Annual outflow through <strong>the</strong> nor<strong>the</strong>astern border to <strong>the</strong> Dead Sea: 5 mcm.- Annual outflow to Ayun Musa area at <strong>the</strong> Gulf <strong>of</strong> Suez: 6 mcm.- Total annual outflow from <strong>the</strong> aquifer: 21 mcm.<strong>Hydrogeology</strong> <strong>of</strong> <strong>Deep</strong> <strong>Aquifers</strong> 3 - 23 EPIQ Water Policy Reform Program


3.4.5 The Pre-Lower Cretaceous Aquifer SystemsThe hydrogeology <strong>of</strong> <strong>the</strong> Pre-Lower Cretaceous section <strong>in</strong> S<strong>in</strong>ai has been <strong>in</strong>adequatelystudied. It consists <strong>of</strong> <strong>the</strong> follow<strong>in</strong>g aquifer systems: (Jica, 1992)• The Jurrasic aquifer has been identified <strong>in</strong> Gebel El-Maghara area <strong>in</strong> north S<strong>in</strong>ai and <strong>in</strong>Ayun Musa area <strong>in</strong> west S<strong>in</strong>ai.The aquifer system occurs <strong>in</strong> <strong>the</strong> Upper Jurassic limestones(Massajid formation) and <strong>the</strong> Middle Jurassic sandstones (Safa formation) and shales.• The Upper Jurassic Massajid aquifer is reported to conta<strong>in</strong> a limited amount <strong>of</strong>groundwater, ow<strong>in</strong>g to <strong>the</strong>ir lithologies and limited outcrops at Gebel El-Maghara area.Recent local recharge from run<strong>of</strong>f on <strong>the</strong> Gebel slopes provides groundwater to shallowwells (30 m to 1<strong>10</strong> m deep), which yield 120 to 840 m 3 /day with a sal<strong>in</strong>ity rang<strong>in</strong>gbetween 800 ppm and 2,500 ppm.• The Middle and Lower Jurassic sandstone aquifer developed <strong>in</strong> <strong>the</strong> dome <strong>of</strong> Gebel EL-Maghara, at a shallow depth rang<strong>in</strong>g between 150 m and 275 m. Wells tapp<strong>in</strong>g thisaquifer yield groundwater with a sal<strong>in</strong>ity rang<strong>in</strong>g between 4,<strong>10</strong>0 ppm and 7,500 ppm.The Jurassic aquifer <strong>in</strong> <strong>the</strong> area <strong>of</strong> Ayun Musa, near <strong>the</strong> Gulf <strong>of</strong> Suez rift, yieldsgroundwater with chloride concentrations rang<strong>in</strong>g between 4,000 and 8,000 ppm.• The Paleozoic sandstone aquifer occurs overly<strong>in</strong>g <strong>the</strong> Pre-Cambrian basement rocks withits catchment area <strong>in</strong> south S<strong>in</strong>ai along <strong>the</strong> face <strong>of</strong> <strong>the</strong> sou<strong>the</strong>rn plateau and <strong>the</strong> igneoussedimentarybelt along both <strong>the</strong> Gulf <strong>of</strong> Suez and <strong>the</strong> Gulf <strong>of</strong> Aqaba (see Figure 47).The hydrogeologic characteristics <strong>of</strong> <strong>the</strong> Paleozoic aquifer <strong>in</strong> S<strong>in</strong>ai are poorly identified dueto lack <strong>of</strong> adequate studies. Only <strong>in</strong> Wadi Gharandal, has <strong>the</strong> Upper Paleozoic sandstoneaquifer been tapped and tested <strong>in</strong> well Gharandal-3 (well no. 81), which yields 57 m 3 /hr. witha sal<strong>in</strong>ity <strong>of</strong> 3,700 ppm. The results <strong>of</strong> <strong>the</strong> aquifer test conducted at <strong>the</strong> well site <strong>in</strong>dicate anaquifer transmissivity <strong>of</strong> 173 m 2 /day and a hydraulic conductivity <strong>of</strong> 1.3 m/day.3.5 <strong>Deep</strong> Groundwater Resources EvaluationA review <strong>of</strong> available assessments <strong>of</strong> <strong>the</strong> deep groundwater resources <strong>in</strong> S<strong>in</strong>ai <strong>in</strong>dicate a lack<strong>of</strong> proper evaluation <strong>of</strong> <strong>the</strong> resource potential for different use sectors, and <strong>the</strong> long termhydrodynamic response <strong>of</strong> <strong>the</strong> deep aquifers to groundwater extraction plans. This wasessentially due to <strong>in</strong>adequate hydrogeologic <strong>in</strong>formation <strong>of</strong> <strong>the</strong> deep aquifers.As previously mentioned <strong>in</strong> 3.1, <strong>the</strong> deep groundwater potential <strong>of</strong> <strong>the</strong> Cretaceous aquifersystems were only estimated by Dames and Moore (1985) and Nour (1993) apply<strong>in</strong>g <strong>the</strong>water balance and Darcian approaches. The results <strong>of</strong> <strong>the</strong> south S<strong>in</strong>ai groundwater resourcesstudy project recently conducted by JICA will make it possible to complete <strong>the</strong>hydrogeologic data base required to develop a simulation model for <strong>the</strong> Lower Cretaceousaquifer system <strong>in</strong> order to assess its optimum exploitation, over time.3.6 <strong>Deep</strong> Groundwater Development <strong>in</strong> S<strong>in</strong>ai3.6.1 BackgroundThe drill<strong>in</strong>g <strong>of</strong> deep wells <strong>in</strong> S<strong>in</strong>ai was started <strong>in</strong> <strong>the</strong> mid–fifties by <strong>the</strong> oil companies for oilexploration purposes. Later, <strong>the</strong> Army Corp <strong>of</strong> Eng<strong>in</strong>eers and <strong>the</strong> Unicef drilled a number <strong>of</strong><strong>Hydrogeology</strong> <strong>of</strong> <strong>Deep</strong> <strong>Aquifers</strong> 3 - 24 EPIQ Water Policy Reform Program


deep wells to produce water from <strong>the</strong> Cretaceous aquifer systems <strong>in</strong> central S<strong>in</strong>ai to providedr<strong>in</strong>k<strong>in</strong>g water supplies for local settlements.In 1992, <strong>the</strong> MPWWR implemented a deep well drill<strong>in</strong>g plan. The plan <strong>in</strong>cludes <strong>the</strong> drill<strong>in</strong>g<strong>of</strong> 52 deep production wells to tap <strong>the</strong> Cretaceous aquifer system at different selectedlocations <strong>in</strong> central and south S<strong>in</strong>ai.The drill<strong>in</strong>g <strong>of</strong> deep production wells, <strong>the</strong> supply and <strong>in</strong>stallation <strong>of</strong> pumps, <strong>the</strong>ir ma<strong>in</strong>tenanceand operation works and <strong>the</strong> construction <strong>of</strong> a water storage reservoir is <strong>the</strong> responsibility <strong>of</strong><strong>the</strong> MPWWR, while <strong>the</strong> water users are responsible for <strong>the</strong> supply, ma<strong>in</strong>tenance andoperation <strong>of</strong> <strong>the</strong> drip irrigation systems.The S<strong>in</strong>ai Water Resources Development Department based <strong>the</strong> use <strong>of</strong> <strong>the</strong> groundwater fromdeep wells <strong>in</strong> S<strong>in</strong>ai on <strong>the</strong> ratio 80 percent for agriculture and 20 percent for domestic uses.Although all <strong>of</strong> <strong>the</strong>se wells are equipped with pumps, most <strong>of</strong> <strong>the</strong> wells are not yet <strong>in</strong> use.This is probably due to <strong>the</strong> absence <strong>of</strong> targets and lack <strong>of</strong> allocat<strong>in</strong>g <strong>the</strong> well use amongdifferent sectors at <strong>the</strong> plann<strong>in</strong>g stage.3.6.2 Exist<strong>in</strong>g Groundwater Extraction and UtilizationThe utilization <strong>of</strong> deep groundwater <strong>in</strong> S<strong>in</strong>ai is very recent, as most groundwater use wasfocused on <strong>the</strong> Quaternary aquifer systems <strong>in</strong> nor<strong>the</strong>astern S<strong>in</strong>ai (El-Arish – Rafaa coastalzone) and <strong>the</strong> El-Qaa pla<strong>in</strong> on <strong>the</strong> eastern coast <strong>of</strong> <strong>the</strong> Gulf <strong>of</strong> Suez <strong>in</strong> south S<strong>in</strong>ai. Currentgroundwater abstraction from <strong>the</strong> deep aquifer systems at different parts <strong>of</strong> S<strong>in</strong>ai can besummarized as follows:• The Miocene Sandstone AquiferA total <strong>of</strong> 1,400 m 3 /day (0.511 mcm/year) is reported to be withdrawn from <strong>the</strong> Miocenesandstone aquifer <strong>in</strong> Wadi Feiran (at <strong>the</strong> junction with El-Tor road) <strong>in</strong> south S<strong>in</strong>ai by <strong>the</strong>Petropel Oil Co. for use <strong>in</strong> <strong>the</strong> oil fields. The Hammam Saidna Musa at El-Tor city dischargesMiocene water at a rate <strong>of</strong> 430 m 3 /day.• The Eocene Limestone AquiferGroundwater discharg<strong>in</strong>g from <strong>the</strong> Eocene aquifer at El-Gudeirate and Qedees spr<strong>in</strong>gs <strong>in</strong>nor<strong>the</strong>ast S<strong>in</strong>ai (El-Quseima area) is estimated to be at <strong>the</strong> rate <strong>of</strong> about 2,000 m 3 /day (0.73mcm/year) mostly used <strong>in</strong> irrigat<strong>in</strong>g 200 feddan <strong>of</strong> olive trees. The Hammam Faraun Spr<strong>in</strong>g,located 40 km south <strong>of</strong> Ras Sudr, discharges <strong>the</strong>rmal water (70 o C) from <strong>the</strong> Eoceneformation at a rate <strong>of</strong> 2,000 m 3 /day.• The Upper Cretaceous Carbonate AquiferThe total annual groundwater extraction rate from <strong>the</strong> Upper Cretaceous Carbonate aquifer <strong>in</strong>north and south S<strong>in</strong>ai is 0.426 mcm (from 7 deep wells), <strong>of</strong> which 0.261 mcm/year is used <strong>in</strong>irrigation while <strong>the</strong> rest is allocated for domestic purposes.• The Lower Cretaceous Sandstone AquiferThirty-one deep wells tapp<strong>in</strong>g <strong>the</strong> Lower Cretaceous Sandstone (Malhah formation) aquiferwere drilled and equipped with pump<strong>in</strong>g facilities and ready for operation at an annual rate <strong>of</strong>4.56 mcm. At present only 12 <strong>of</strong> <strong>the</strong>se wells are <strong>in</strong> use, yield<strong>in</strong>g about 0.99 mcm/year <strong>of</strong><strong>Hydrogeology</strong> <strong>of</strong> <strong>Deep</strong> <strong>Aquifers</strong> 3 - 25 EPIQ Water Policy Reform Program


which 0.54 mcm/year is utilized <strong>in</strong> agriculture and 0.45 mcm/year is allocated for domesticpurposes.• The Jurassic Aquifer SystemConf<strong>in</strong>ed only to El-Maghara area, 6 wells are produc<strong>in</strong>g water from <strong>the</strong> Massajid formationat an annual rate <strong>of</strong> 0.396 mcm <strong>of</strong> which 0.037 mcm/year is used for domestic purposes and<strong>the</strong> rest <strong>of</strong> is utilized <strong>in</strong> <strong>the</strong> irrigation <strong>of</strong> about 120 feddan <strong>in</strong> Gebel El-Maghara RuralDevelopments Project.• The Paleozoic Sandstone and AquiferOnly one well tapp<strong>in</strong>g <strong>the</strong> Paleozoic sandstone aquifer at Wadi Gharandal <strong>in</strong> south S<strong>in</strong>ai isproduc<strong>in</strong>g water that is totally used for domestic purposes at a rate <strong>of</strong> 400 m 3 /day (0.146mcm/year).The current total deep groundwater extraction from <strong>the</strong> different aquifer systems <strong>in</strong> S<strong>in</strong>aipen<strong>in</strong>sula is 3.199 mcm/year <strong>of</strong> which 1.89 mcm/year is used <strong>in</strong> agriculture and <strong>the</strong> rest isused for domestic and <strong>in</strong>dustrial uses. This does not <strong>in</strong>clude <strong>the</strong> free groundwater dischargesfrom <strong>the</strong> <strong>the</strong>rmal spr<strong>in</strong>gs located along <strong>the</strong> rift valley <strong>of</strong> <strong>the</strong> Gulf <strong>of</strong> Suez such as Ayun Musa,Hammam Saidna Musa at El-Tor (34 0 C) and Hammam Faraun (70 0 C) which outflow fromMiocene and Lower Cretaceous units, and A<strong>in</strong> Um Ahmed at Wadi Zelega and A<strong>in</strong> El-Hadraat Wadi Lithi El-Kebir along <strong>the</strong> rift valley <strong>of</strong> <strong>the</strong> Gulf <strong>of</strong> Aqaba, which derive <strong>the</strong>ir waterfrom <strong>the</strong> Paleozoic aquifer.3.6.3 <strong>Deep</strong> Groundwater Development Priority Areas <strong>in</strong> S<strong>in</strong>aiBecause <strong>of</strong> its wide extension, considerable storage and fairly good water quality, <strong>the</strong>Cretaceous aquifers are considered to be <strong>of</strong> high potential. Priority areas for deepgroundwater development from <strong>the</strong>se aquifers can be identified based on <strong>the</strong> hydrogeologiccharacteristics <strong>of</strong> <strong>the</strong> Cretaceous aquifers, which are:Groundwater sal<strong>in</strong>ity levels and its suitability for different uses; Depth to water determ<strong>in</strong>es<strong>the</strong> cost <strong>of</strong> lift<strong>in</strong>g a water unit to <strong>the</strong> ground surface for different uses, and <strong>the</strong> possibility <strong>of</strong>complet<strong>in</strong>g an efficient production well; Depth to aquifer determ<strong>in</strong>es <strong>the</strong> cost <strong>of</strong> wellconstruction; and Aquifer productivity which controls <strong>the</strong> well optimum production rate and<strong>the</strong> cost <strong>of</strong> produc<strong>in</strong>g one unit <strong>of</strong> groundwater.3.6.3.1 The Upper Cretaceous Carbonate AquiferThe sal<strong>in</strong>ity <strong>of</strong> groundwater <strong>in</strong> this type <strong>of</strong> aquifer is ra<strong>the</strong>r high <strong>in</strong> most <strong>of</strong> S<strong>in</strong>ai (3,200 to<strong>10</strong>,870 ppm) with <strong>the</strong> exception <strong>of</strong> its central part along G. El-Tih, El-Egma, and Shaira zone,where <strong>the</strong> reported groundwater sal<strong>in</strong>ity <strong>of</strong> <strong>the</strong> Upper Cretaceous ranges between 1,<strong>10</strong>0 ppmand 1,500 ppm. In this zone, although <strong>the</strong> recorded depth to water is relatively shallow (85m.b.g.l. at well Shaira –1), <strong>the</strong> aquifer productivity proved to be very poor (well specificcapacity: 0.08 m 3 /hr/m). Consequently, it is not recommended to rely on exploit<strong>in</strong>g thisaquifer for future development projects <strong>in</strong> S<strong>in</strong>ai.<strong>Hydrogeology</strong> <strong>of</strong> <strong>Deep</strong> <strong>Aquifers</strong> 3 - 26 EPIQ Water Policy Reform Program


3.6.3.2 The Lower Cretaceous Sandstone AquiferWith reference to Figures (52), (61) and (63), <strong>the</strong> priority areas for <strong>the</strong> development andutilization <strong>of</strong> groundwater <strong>of</strong> <strong>the</strong> Lower Cretaceous aquifer are presented <strong>in</strong> Table (21) andshown <strong>in</strong> (Figure 64).Table (21)- Prority Areas for Lower Cretaceous Groundwater Development <strong>in</strong> S<strong>in</strong>aiAquifer CharacteristicsPriorityClassLocation Sal<strong>in</strong>ity(ppm)(A)(B)(A1)• <strong>Western</strong> S<strong>in</strong>aiDownstream<strong>of</strong> WadiFeiran andWadiGharandal• Central and SouthS<strong>in</strong>aiEl-M<strong>in</strong>shera, Nakhl,El-Bruk, WadiWatir(A2)El-Quseima, Arif El-Naga El-Kuntilla, El-Thamad, Sudr El-Heitan(B1)El-Tih plateau, South <strong>of</strong>Sudr El-Heitan, El-Thamad road, Shaira(B2)Ayun Mosa,Gifgafa, El-Hasana,Talat El Badan, El-Halal, Um Shihan,Wadi El Amro, El-Kherim800-1500800-2000Depth toWater(m.b.g.l.)37 - 78<strong>10</strong>0 - 200Depth toAquifer(m.b.g.l.)190 –350500 –800WellProductivity(m 3 /hr.)50 – 8030 – 601500-3000 200-300 500-700 20 – 40≤ 1500 300-400 500-900 50-753000-5000 150-250 800-<strong>10</strong>0030-60Source: Nour, (1993)The areas located north <strong>of</strong> Gebel El-Maghara, Gebel El-Halal and El-Ouga, and along <strong>the</strong>eastern coastal zone <strong>of</strong> <strong>the</strong> Gulf <strong>of</strong> Suez between Ras Sudr and Ras Mohamed, wheregroundwater sal<strong>in</strong>ity ranges from 5,000 ppm to more than 200,000 ppm, are notrecommended for <strong>the</strong> development <strong>of</strong> <strong>the</strong> Lower Cretaceous groundwater.<strong>Hydrogeology</strong> <strong>of</strong> <strong>Deep</strong> <strong>Aquifers</strong> 3 - 27 EPIQ Water Policy Reform Program


The identified deep groundwater development priority areas, should be considered <strong>in</strong> <strong>the</strong>evaluation <strong>of</strong> <strong>the</strong>ir susta<strong>in</strong>able potentials, apply<strong>in</strong>g groundwater model<strong>in</strong>g and <strong>in</strong> <strong>the</strong>assessment <strong>of</strong> <strong>the</strong> economics <strong>of</strong> <strong>the</strong>ir use for different sectors.3.6.4 Water Well DesignFor deep groundwater development <strong>in</strong> S<strong>in</strong>ai until 1993, <strong>the</strong> follow<strong>in</strong>g deep production welldesign was used:- Well total depth : 325 – 1200 m.- Design well yield : 50 m 3 /hr.-Production Cas<strong>in</strong>g : 9 5 / // 8 API Carbon Steel cas<strong>in</strong>g.- Screen : 6 5 /// 8 sta<strong>in</strong>less steel screen grade 304 hanged <strong>in</strong> <strong>the</strong> 9 5 / // 8 cas<strong>in</strong>g.To maximize <strong>the</strong> well productivity to more than 50 m 3 /hr, <strong>the</strong> follow<strong>in</strong>g deep production welldesign has been modified to <strong>in</strong>clude:- Pump house cas<strong>in</strong>g : 13 3 / // 8 API carbon steel cas<strong>in</strong>g.-Production cas<strong>in</strong>g : 9 5 / // 8 API carbon steel cas<strong>in</strong>g with <strong>10</strong> m overlap <strong>in</strong> <strong>the</strong>13 3 / // 8 cas<strong>in</strong>g.- Screen : 6 5 / // 8 sta<strong>in</strong>less steel screen, grade 304 hanged <strong>in</strong> <strong>the</strong> 9 5 / // 8 cas<strong>in</strong>g.<strong>Hydrogeology</strong> <strong>of</strong> <strong>Deep</strong> <strong>Aquifers</strong> 3 - 28 EPIQ Water Policy Reform Program


4 ADDITIONAL HYDROGEOLOGIC INVESTIGATIONSPLANS IN THE WESTERN DESERT AND SINAIReview <strong>of</strong> <strong>the</strong> previous <strong>in</strong>vestigations <strong>of</strong> <strong>the</strong> deep aquifer systems <strong>in</strong> <strong>the</strong> <strong>Western</strong> <strong>Desert</strong> andS<strong>in</strong>ai and <strong>the</strong> evaluation <strong>of</strong> <strong>the</strong>ir resources <strong>in</strong>dicate <strong>the</strong> need to carry out additional<strong>in</strong>vestigations <strong>in</strong> those areas lack<strong>in</strong>g adequate hydrogeologic <strong>in</strong>formation. Fur<strong>the</strong>r<strong>in</strong>vestigations are also needed for <strong>the</strong> evaluation <strong>of</strong> groundwater resources which arecurrently under development (<strong>the</strong> Nubia sandstone, <strong>the</strong> Malhah sandstone, and <strong>the</strong> Moghraaquifer systems) and those which are planned for future development (<strong>the</strong> Carbonate aquifersystems).Recommended plans for <strong>the</strong> required additional <strong>in</strong>vestigations to be carried out for <strong>the</strong>potential deep aquifers <strong>in</strong> <strong>the</strong> <strong>Western</strong> <strong>Desert</strong> and S<strong>in</strong>ai, are presented <strong>in</strong> <strong>the</strong> follow<strong>in</strong>gsections.4.1 The <strong>Western</strong> <strong>Desert</strong>4.1.1 The Moghra Aquifer SystemFigure (9) shows <strong>the</strong> location and extent <strong>of</strong> <strong>the</strong> Moghra aquifer system. As previously stated,<strong>the</strong> aquifer was only subjected to a detailed hydrogeologic study <strong>in</strong> Wadi El-Fareigh located<strong>in</strong> <strong>the</strong> desert fr<strong>in</strong>ges <strong>of</strong> <strong>the</strong> West Delta area, where a large scale irrigated agriculture projectbased on El-Moghra fresh groundwater has been developed (planned 35,000 feddan <strong>of</strong> which12,700 feddan is cultivated at present). Only a few wells have been drilled <strong>in</strong>to <strong>the</strong> Moghraaquifer. These provide domestic water for <strong>the</strong> oil fields <strong>of</strong> Abu S<strong>in</strong>an, Abu El-Gharadiq andQarun, located between <strong>the</strong> West Delta desert fr<strong>in</strong>ges and Qattara – Bahariya Depressions.4.1.1.1 Objectives <strong>of</strong> <strong>the</strong> Additional InvestigationAdditional hydrogeologic <strong>in</strong>vestigation are needed to:• Def<strong>in</strong>e aquifer geometry, hydrogeologic boundaries and hydraulic parameters.• Determ<strong>in</strong>e <strong>the</strong> aquifer groundwater sal<strong>in</strong>ity <strong>in</strong> space and time.• Forecast <strong>the</strong> aquifer long-term response to <strong>the</strong> present and future groundwater extractionand to asses its optimum potential over time for different use sectors (<strong>in</strong>clud<strong>in</strong>g domesticwater supply and afforestation <strong>in</strong> <strong>the</strong> exist<strong>in</strong>g oil fields), with a special emphasis on <strong>the</strong>possibility <strong>of</strong> groundwater quality deterioration over time <strong>in</strong> areas where <strong>in</strong>tensiveextraction is practiced at present (Wadi El-Fareigh).4.1.1.2 Investigation Work PlanThe follow<strong>in</strong>g work plan is proposed:• Collection, review and analysis <strong>of</strong> all available hydrogeologic <strong>in</strong>formation and well datapert<strong>in</strong>ent to <strong>the</strong> aquifer geometry, hydraulic parameters, hydrogeologic boundaries andgroundwater quality.• Based on <strong>the</strong> results <strong>of</strong> <strong>the</strong> analysis <strong>of</strong> available <strong>in</strong>formation, and <strong>in</strong> <strong>the</strong> areas which lackdata on aquifer hydrogeologic characteristics, 260 vertical electrical sound<strong>in</strong>gs should beconducted along 4 N-S geoelectric sound<strong>in</strong>g pr<strong>of</strong>iles and 2 E-W pr<strong>of</strong>iles with special<strong>Hydrogeology</strong> <strong>of</strong> <strong>Deep</strong> <strong>Aquifers</strong> 4 - 1 EPIQ Water Policy Reform Program


emphasis on <strong>the</strong> area along El-Giza-Bahariya Oasis road and <strong>the</strong> area between Wadi El-Fareigh and Qattara Depression. The results <strong>of</strong> <strong>the</strong>se geoelectric sound<strong>in</strong>gs will helpdeterm<strong>in</strong>e <strong>the</strong> aquifer aggregate and saturated thickness, <strong>the</strong> depth <strong>of</strong> <strong>the</strong> aquifer base and<strong>the</strong> related geological structures, water quality, and <strong>the</strong> proposed locations for testdrill<strong>in</strong>g.• Drill<strong>in</strong>g <strong>of</strong> test wells (5 wells) to a depth <strong>of</strong> ± 500 m each with satellite piezometer toobta<strong>in</strong> controlled data regard<strong>in</strong>g <strong>the</strong> formation thickness, depth to water, aquifer hydraulicparameters, well-specific capacity and water sal<strong>in</strong>ity. One proposed test-drill<strong>in</strong>g site willbe 50 km west <strong>of</strong> Wadi El-Fareigh (near Zebeida oil exploration well) and <strong>the</strong> o<strong>the</strong>r twowill be along Giza – El-Bahariya road and Giza - Fayoum road.• Establishment <strong>of</strong> a hydrogeologic data base for <strong>the</strong> Moghra aquifer system which will<strong>in</strong>clude <strong>the</strong> geological and structural sett<strong>in</strong>g <strong>of</strong> <strong>the</strong> Moghra formation, its extent, lateraland vertical boundaries, potentiometric surface, aquifer hydraulic parameters(transmissivity, hydraulic conductivity and storativity), water sal<strong>in</strong>ity, present and futuregroundwater extraction plans.• Development <strong>of</strong> an appropriate groundwater model for <strong>the</strong> Moghra aquifer to simulate <strong>the</strong>present and proposed future groundwater extractions and to predict <strong>the</strong> aquifer responseto <strong>the</strong> different extraction scenarios and probable changes <strong>in</strong> groundwater quality over <strong>the</strong>foreseen period <strong>of</strong> exploitation, to assess <strong>the</strong> optimum, economic and susta<strong>in</strong>ablegroundwater extraction plan.• For proper control and management <strong>of</strong> El-Moghra aquifer groundwater currently utilizedfor irrigated agriculture <strong>in</strong> Wadi El-Fareigh project (at present 12,700 feddan to beexpanded to 35,000 feddan <strong>in</strong> future), <strong>the</strong> exist<strong>in</strong>g monitor<strong>in</strong>g well network should besupported by an additional 2 wells to be located <strong>in</strong> <strong>the</strong> western and northwestern vic<strong>in</strong>ities<strong>of</strong> <strong>the</strong> project area to monitor probable movement <strong>of</strong> <strong>the</strong> Moghra brackish groundwatertowards <strong>the</strong> project fresh water well-field.4.1.2 The Eocene – Miocene Carbonate Aquifer SystemThis system is bordered <strong>in</strong> <strong>the</strong> south by <strong>the</strong> Nubia Sandstone Complex along El-Dakhla – El-Kharga – South Kharga depressions, and <strong>in</strong> <strong>the</strong> north by <strong>the</strong> nor<strong>the</strong>rn plateau overwhelm<strong>in</strong>g<strong>the</strong> northwestern coastal zone (Figure 65).The area <strong>of</strong> El-Diffa plateau located to <strong>the</strong> north <strong>of</strong> Siwa Oasis – Qattara Depression <strong>in</strong> <strong>the</strong>south and <strong>the</strong> Salum – Matruh coastal zone <strong>in</strong> <strong>the</strong> north and crossed by <strong>the</strong> Siwa – Matruhroad <strong>in</strong> <strong>the</strong> West and El-Alme<strong>in</strong> – Qattara rim road <strong>in</strong> <strong>the</strong> east, is considered a target area forfuture nomad settlements, animal graz<strong>in</strong>g and for water supply and afforestation purposes, <strong>in</strong><strong>the</strong> exist<strong>in</strong>g oil-fields.The Nubia Sandstone aquifer <strong>in</strong> this part <strong>of</strong> <strong>the</strong> <strong>Western</strong> <strong>Desert</strong> is highly sal<strong>in</strong>e (chloridesal<strong>in</strong>ity <strong>of</strong> <strong>10</strong>,000-120,000 ppm), while <strong>the</strong> overly<strong>in</strong>g Upper Cretaceous – Middle MioceneCarbonates jo<strong>in</strong>tly described as <strong>the</strong> <strong>Western</strong> Plateau aquifer complex, atta<strong>in</strong>s a thickness <strong>of</strong>500 to 600 m and sal<strong>in</strong>ity <strong>of</strong> 2,000 ppm <strong>in</strong> <strong>the</strong> south which <strong>in</strong>creases to <strong>10</strong>,000 ppm <strong>in</strong> <strong>the</strong>nor<strong>the</strong>rn part <strong>of</strong> <strong>the</strong> plateau.Based on geomorphological and morphostructural analyses which provide a comprehensive2D view <strong>of</strong> possibly karstified terra<strong>in</strong>s and <strong>the</strong> sal<strong>in</strong>ity <strong>of</strong> <strong>the</strong> carbonate groundwater, <strong>the</strong> area<strong>of</strong> <strong>the</strong> northwestern plateau (El-Diffa Plateau) was identified by RIGW (1997) as one <strong>of</strong> <strong>the</strong><strong>Hydrogeology</strong> <strong>of</strong> <strong>Deep</strong> <strong>Aquifers</strong> 4 - 2 EPIQ Water Policy Reform Program


promis<strong>in</strong>g bas<strong>in</strong>s for groundwater development <strong>in</strong> <strong>the</strong> carbonate aquifer system and isproposed for detailed hydrogeologic <strong>in</strong>vestigation to assess its groundwater potential.The follow<strong>in</strong>g is <strong>the</strong> proposed plan for detailed hydrogeologic <strong>in</strong>vestigation required toevaluate <strong>the</strong> carbonate aquifer groundwater resources.4.1.2.1 Investigation ObjectivesThe objectives <strong>of</strong> <strong>the</strong> <strong>in</strong>vestigation program <strong>of</strong> <strong>the</strong> Carbonate aquifer <strong>in</strong> <strong>the</strong> northwesternplateau area <strong>of</strong> <strong>the</strong> <strong>Western</strong> <strong>Desert</strong> are:• To del<strong>in</strong>eate areas <strong>of</strong> possibly karstified or fractured limestone terra<strong>in</strong>s.• To determ<strong>in</strong>e regional tectonic l<strong>in</strong>es and fault zones and <strong>the</strong> <strong>in</strong>tensive karstificationwhich can be associated <strong>the</strong>rewith.• To evaluate <strong>the</strong> aquifer hydraulic parameters (hydraulic conductivity and storativity)as well as its hydrodynamic behavior.• To determ<strong>in</strong>e <strong>the</strong> aquifer water balance (<strong>in</strong>flow – outflow pattern).• To determ<strong>in</strong>e groundwater genesis and orig<strong>in</strong> and its relation to current or paleorecharge.• To evaluate <strong>the</strong> groundwater resources potential <strong>in</strong> <strong>the</strong> carbonate aquifers and <strong>the</strong>iroptimal utilization, over time.4.1.2.2 Investigation Work PlanThe follow<strong>in</strong>g work plan is proposed:• Review and analyze all previous studies, <strong>in</strong>formation pert<strong>in</strong>ent to geology,geophysics, hydrogeology, hydrochemistry and well data <strong>of</strong> <strong>the</strong> Carbonate aquifersystems, with a special emphasis on <strong>the</strong> results <strong>of</strong> geophysical surveys and <strong>the</strong> testwells previously carried out by <strong>the</strong> oil companies.• Analyze available l<strong>in</strong>eaments and geologic structure maps to assess geomorphologicaland morphostructural features <strong>of</strong> <strong>the</strong> study area to identify <strong>the</strong> structure <strong>of</strong> <strong>the</strong>formations, surface <strong>in</strong>filtration zones as well as <strong>the</strong> tectonic evaluation <strong>of</strong> <strong>the</strong> areawhich will reveal possible karstified or fractured limestone terra<strong>in</strong>s.• Conduct geophysical surveys apply<strong>in</strong>g <strong>the</strong> microgravimetric and micro-resistivitymethod, along a number <strong>of</strong> N-S pr<strong>of</strong>iles <strong>in</strong> areas which have proved to be <strong>in</strong>tensivelykarstified or fractured.• Based on <strong>the</strong> results achieved from <strong>the</strong> geomorphological, geological and geophysicalsurveys, test wells (5 wells <strong>of</strong> ±500 m depth each) will be located, drilled and tested todeterm<strong>in</strong>e <strong>the</strong> subsurface hydrogeologic sett<strong>in</strong>g <strong>of</strong> <strong>the</strong> aquifer and its hydraulicparameters <strong>of</strong> fractures transmissivities, storage coefficient and <strong>the</strong> porous mediastorage coefficient and leakage factors between <strong>the</strong> two cont<strong>in</strong>ual media. Satellitepiezometers shall be constructed to monitor <strong>the</strong> test well dur<strong>in</strong>g pump test<strong>in</strong>g. Thehydrochemical characteristics <strong>of</strong> <strong>the</strong> groundwater and its suitability for different usesectors will be assessed.• Prepare a potentiometric surface map and determ<strong>in</strong>e <strong>of</strong> <strong>the</strong> ma<strong>in</strong> direction <strong>of</strong>groundwater flow <strong>in</strong> <strong>the</strong> Carbonate aquifer system.• Evaluate <strong>of</strong> <strong>the</strong> aquifer system hydrodynamics by apply<strong>in</strong>g <strong>the</strong> water balanceapproach to determ<strong>in</strong>e <strong>the</strong> aquifer <strong>in</strong>flow-outflow components.<strong>Hydrogeology</strong> <strong>of</strong> <strong>Deep</strong> <strong>Aquifers</strong> 4 - 3 EPIQ Water Policy Reform Program


• Based on <strong>the</strong> results <strong>of</strong> <strong>the</strong> geomorphological, geological, geophysical surveys andtest drill<strong>in</strong>g, a hydrogeologic data base <strong>of</strong> <strong>the</strong> carbonate aquifer system <strong>in</strong> <strong>the</strong> studyarea will be prepared to <strong>in</strong>clude: aquifer geometry, (extent, lateral and verticalboundaries, thickness) hydrogeologic boundary conditions (location and type),hydraulic parameters (fracture and porous transmissivities and storage coefficients),aquifer potentiometry and recharge - discharge pattern.The model will be calibrated to verify <strong>the</strong> present aquifer potentiometric levels, and will <strong>the</strong>nbe used as a tool to forecast <strong>the</strong> aquifer response to groundwater extraction plans over time,and to select <strong>the</strong> most optimum, economic extraction plan which will ensure its susta<strong>in</strong>abilitywithout water quality deterioration.4.1.3 The Nubia Sandstone Aquifer SystemThe additional regional and detailed hydrogeologic <strong>in</strong>vestigations proposed for betterdescrib<strong>in</strong>g <strong>the</strong> regional hydrogeologic sett<strong>in</strong>g <strong>of</strong> <strong>the</strong> Nubia Sandstone aquifer system and tocover <strong>the</strong> hydrogeologic <strong>in</strong>formation gap areas <strong>in</strong> <strong>the</strong> <strong>Western</strong> <strong>Desert</strong> to support <strong>the</strong>evaluation <strong>of</strong> its groundwater resources <strong>in</strong> <strong>the</strong> planned development areas.Regular and cont<strong>in</strong>uous groundwater monitor<strong>in</strong>g (levels, extraction and quality) is essentiallyrequired.4.1.3.1 Regional Hydrogeologic InvestigationsThe proposed additional regional hydrogeologic <strong>in</strong>vestigation <strong>of</strong> <strong>the</strong> Nubia Sandstone aquifersystem <strong>in</strong> <strong>the</strong> <strong>Western</strong> <strong>Desert</strong> <strong>in</strong>clude:4.1.3.1.1 Test Wells. Drill<strong>in</strong>g <strong>of</strong> seven deep test wells (with associated satellitepiezometers) to fully penetrate <strong>the</strong> Nubia Sandstone formation is proposed. The wells will belithostratigraphically described, geophysically logged and pump-tested with <strong>the</strong> objectives <strong>of</strong>determ<strong>in</strong><strong>in</strong>g <strong>the</strong> tops <strong>of</strong> <strong>the</strong> penetrated hydrolithostratigraphic units and <strong>the</strong>ir thickness, depthto water, hydraulic parameters (transmissivity, hydraulic conductivity, storativity, leakagefactors, well-specific capacity) and water quality. Open-hole aquifer tests <strong>in</strong> <strong>the</strong> post-NubiaSandstone carbonate aquifers should also be conducted. The results can be used to bettercontrol <strong>the</strong> hydrogeologic database <strong>of</strong> <strong>the</strong> Nubia Sandstone aquifer system <strong>in</strong> <strong>the</strong> <strong>Western</strong><strong>Desert</strong>. This will significantly help better describ<strong>in</strong>g <strong>the</strong> hydrogeology <strong>of</strong> <strong>the</strong> system and willprovide more controlled data for <strong>the</strong> development <strong>of</strong> regional and local simulation models forgroundwater resource evaluation.The proposed sites for <strong>the</strong> recommended 7 deep test wells are: (Figure 66)• El-Gilf El-Kebir: to <strong>the</strong> northwest <strong>of</strong> Gebel Kamel, with expected total depth <strong>of</strong> ±1,000m.• NorthEast Owe<strong>in</strong>at: Proposed location is midway between East Owe<strong>in</strong>at project area andEl-Dakhla Oasis. The expected drill<strong>in</strong>g depth is ± 1,000 m.• El-Kharga – Armant Road: Cross<strong>in</strong>g <strong>the</strong> Nile Valley western plateau, <strong>the</strong> recommendedtest-drill<strong>in</strong>g site is midway between El-Kharga and Armant. The proposed test well isexpected to penetrate Eocene – Upper Cretaceous Carbonate and <strong>the</strong> Nubia Sandstone<strong>Hydrogeology</strong> <strong>of</strong> <strong>Deep</strong> <strong>Aquifers</strong> 4 - 4 EPIQ Water Policy Reform Program


formations with an expected total depth to <strong>the</strong> aquifer base (<strong>the</strong> Pre-Cambrian Basement)at ± 1,500 m• Wadi El-Qubaniya: located to <strong>the</strong> northwest <strong>of</strong> Aswan where potential land resources forirrigated agriculture are targeted for future development. The test well will be drilled <strong>in</strong><strong>the</strong> Nubia Sandstone formation to a f<strong>in</strong>al depth <strong>of</strong> ±500 m.• A<strong>in</strong> Dalla Depression: situated <strong>in</strong> <strong>the</strong> known Kufra – A<strong>in</strong> Dalla structural bas<strong>in</strong> to <strong>the</strong>northwest <strong>of</strong> El-Farafra Oasis. The area is considered one <strong>of</strong> <strong>the</strong> potential areas forhorizontal expansion <strong>in</strong> <strong>the</strong> <strong>Western</strong> <strong>Desert</strong>. The expected total depth <strong>of</strong> <strong>the</strong> proposed twotest wells is ± 2,000 m each.• El-Bahariya Oasis – Siwa Oasis Road: The proposed site for test drill<strong>in</strong>g is located along<strong>the</strong> El-Bahariya – Siwa road and south <strong>of</strong> El-Bahre<strong>in</strong> depression (south periphery <strong>of</strong>Qattara Depression). The expected well total depth is ± 2,500 m.4.1.3.1.2 Groundwater Monitor<strong>in</strong>g. Because <strong>the</strong> exist<strong>in</strong>g observation wells networks <strong>in</strong> <strong>the</strong><strong>Western</strong> <strong>Desert</strong> Oases (see Figure 15) used to monitor<strong>in</strong>g groundwater levels are located at50 to <strong>10</strong>0 km apart, render<strong>in</strong>g regular on-site observation to be difficult (see Section 2.5.4). Itwould be more effective to establish a monitor<strong>in</strong>g well network us<strong>in</strong>g a telemetry system totransmit periodic water level records to a central control stations <strong>in</strong> El-Kharga, El-Dakhla,and El-Farafra Oases.4.1.3.2 Detailed Groundwater Evaluation StudiesDetailed groundwater resources evaluation studies are recommended <strong>in</strong> those areas <strong>in</strong> <strong>the</strong><strong>Western</strong> <strong>Desert</strong> where groundwater is expected to be exploited for irrigated agriculture.Priority should be given to <strong>the</strong> areas <strong>of</strong> Siwa Oasis, A<strong>in</strong> Dalla and <strong>the</strong> sou<strong>the</strong>rn part <strong>of</strong> <strong>the</strong><strong>Western</strong> <strong>Desert</strong> designated as <strong>the</strong> “South Valley Development Project”, where <strong>the</strong> GOE hasrecently <strong>in</strong>itiated a national horizontal expansion project that <strong>in</strong>cludes East Owe<strong>in</strong>at, Darb El-Arba<strong>in</strong> and Aswan – Abu Simbel road areas, us<strong>in</strong>g <strong>the</strong> Nubia Sandstone aquifer groundwater(see Figure 43).4.1.3.2.1 Siwa Oasis. The deep Nubia aquifer fresh groundwater resource <strong>in</strong> Siwa Oasis iscurrently be<strong>in</strong>g <strong>in</strong>vestigated by <strong>the</strong> RIGW with<strong>in</strong> <strong>the</strong> framework <strong>of</strong> <strong>the</strong> study <strong>of</strong> <strong>the</strong> dra<strong>in</strong>ageproblems <strong>in</strong> <strong>the</strong> Oasis. It is expected that <strong>the</strong> results <strong>of</strong> <strong>the</strong> present hydrogeologic<strong>in</strong>vestigation will address <strong>the</strong> susta<strong>in</strong>able and economic groundwater extraction rate, whichcan be utilized without caus<strong>in</strong>g any environmental adverse impacts. It is recommended that adeep test well <strong>of</strong> ± 2,000 m depth be drilled to fully penetrate <strong>the</strong> Nubia Sandstone formationfrom <strong>the</strong> top <strong>of</strong> Lower Cenomanian (Bahariya formation) to <strong>the</strong> base <strong>of</strong> <strong>the</strong> Carboniferous.The different hydrolithostratigraphic units (<strong>the</strong> Teriary carbonates, <strong>the</strong> Mesozoic andPaleozoic clastics) should be tested for groundwater piezometric and sal<strong>in</strong>ity levels. This<strong>in</strong>formation can be used to develop <strong>the</strong> appropriate model to simulate possible groundwaterquality changes, over time, aga<strong>in</strong>st groundwater extraction from <strong>the</strong> fresh water aquifercaused by upward flow <strong>of</strong> <strong>the</strong> sal<strong>in</strong>e groundwater <strong>in</strong> <strong>the</strong> lower Paleozoic aquifers or by lateralmovement <strong>of</strong> <strong>the</strong> nor<strong>the</strong>rn saltwater / fresh water <strong>in</strong>terface towards <strong>the</strong> Oasis.4.1.3.2.2 A<strong>in</strong> Dalla Area. The A<strong>in</strong> Dalla depression area located <strong>in</strong> <strong>the</strong> northwestern vic<strong>in</strong>ity<strong>of</strong> El-Farafra Oasis, has been targeted with potential land resource development <strong>of</strong> about20,000 feddan. Two test wells should be drilled <strong>in</strong> this area. Data from <strong>the</strong>se wells andavailable hydrogeologic data for <strong>the</strong> Nubia Sandstone aquifer <strong>in</strong> El-Farafra will formsufficient hydrogeologic database to evaluate <strong>the</strong> Nubia groundwater water potential <strong>in</strong> <strong>the</strong><strong>Hydrogeology</strong> <strong>of</strong> <strong>Deep</strong> <strong>Aquifers</strong> 4 - 5 EPIQ Water Policy Reform Program


A<strong>in</strong> Dalla area. A detailed groundwater model should be developed for <strong>the</strong> El-Farafra Oasis<strong>in</strong>clud<strong>in</strong>g <strong>the</strong> A<strong>in</strong> Dalla area to assess <strong>the</strong> economic and susta<strong>in</strong>able groundwater resourcesfor land reclamation. The model should consider <strong>the</strong> <strong>in</strong>teraction between <strong>the</strong> different presentand future groundwater extraction areas <strong>in</strong> El-Farafra Oasis.4.1.3.2.3 South Valley RegionThe South Valley region <strong>in</strong>cludes <strong>the</strong> areas allocated by <strong>the</strong> GOE for national horizontalagricultural expansion projects us<strong>in</strong>g <strong>the</strong> Nubia aquifer groundwater as a source <strong>in</strong> <strong>the</strong> EastOwe<strong>in</strong>at area (200,000 feddan), Darb El-Arba<strong>in</strong> area (<strong>10</strong>,300 feddan) and West Nasser Lakearea, along <strong>the</strong> Aswan – Abu Simbel Road (145,000 feddan), as shown <strong>in</strong> Figure (43).Although several geological geophysical, hydrogeological, and groundwater resourcesevaluation studies have been carried out for East Owe<strong>in</strong>at and Nasser Lake areas, acomprehensive hydrogeologic <strong>in</strong>vestigation and groundwater economic evaluation study hasnot been conducted to assess <strong>the</strong> susta<strong>in</strong>able, economic groundwater extraction <strong>in</strong> <strong>the</strong> areasallocated by <strong>the</strong> GOE to be reclaimed by <strong>the</strong> private sector.The follow<strong>in</strong>g plan for additional groundwater <strong>in</strong>vestigations <strong>in</strong> <strong>the</strong> South Valley region hasbeen prepared to assist <strong>in</strong> determ<strong>in</strong><strong>in</strong>g <strong>the</strong> best use for <strong>the</strong> deep groundwater potential bydifferent use sectors <strong>in</strong> <strong>the</strong> region, over time.• The Study AreaAlthough <strong>the</strong> proposed area for detailed hydrogeologic study should focus on those areaswhere irrigated agriculture projects will use Nubia groundwater, (i.e., East Owe<strong>in</strong>at, DarbEl-Arba<strong>in</strong>, western shores <strong>of</strong> <strong>the</strong> Nasser Lake and Wadi El-Qubaniya areas) <strong>the</strong> aquifersimulation model to be developed to evaluate and assess <strong>the</strong> optimum groundwaterextraction rate will require its boundaries to be extended beyond <strong>the</strong> actual study area asshown <strong>in</strong> Figure (67). This will guarantee credible results <strong>of</strong> <strong>the</strong> aquifer response toproposed extraction, over time.• Study ObjectivesThe objectives <strong>of</strong> <strong>the</strong> proposed study <strong>in</strong> <strong>the</strong> South Valley region to assess <strong>the</strong> susta<strong>in</strong>ableand economic groundwater extraction plan for <strong>the</strong> future irrigated agriculture projects are:- To establish a comprehensive and well-controlled hydrogeologic data base <strong>of</strong><strong>the</strong> Nubia Sandstone aquifer system <strong>in</strong> <strong>the</strong> study area us<strong>in</strong>g <strong>the</strong> results <strong>of</strong> <strong>the</strong>available previous studies, new <strong>in</strong>vestigations and test drill<strong>in</strong>g to be conducteddur<strong>in</strong>g <strong>the</strong> study.- To determ<strong>in</strong>e <strong>the</strong> groundwater resource potential and its long term nationaland economic extraction plans which ensure susta<strong>in</strong>ed agriculturaldevelopment <strong>in</strong> <strong>the</strong> present cultivated areas (El-Kharga and El-Dakhla Oases)and <strong>in</strong> <strong>the</strong> areas identified for future horizontal expansion <strong>in</strong> <strong>the</strong> South Valleyregion (East Owe<strong>in</strong>at, Darb El-Arba<strong>in</strong> and Aswan- Abu Simbel road and WadiEl-Qubaniya areas).• Work PlanTo meet <strong>the</strong> study objectives <strong>the</strong> follow<strong>in</strong>g work plan is recommended:- Review, analyze and evaluate <strong>the</strong> previous hydrogeologic study reports, dataand <strong>in</strong>formation related to soil, geology, geophysics and hydrogeology <strong>of</strong> <strong>the</strong>Nubia Sandstone aquifer system and results <strong>of</strong> groundwater resources<strong>Hydrogeology</strong> <strong>of</strong> <strong>Deep</strong> <strong>Aquifers</strong> 4 - 6 EPIQ Water Policy Reform Program


evaluation <strong>in</strong> <strong>the</strong> Sou<strong>the</strong>rn Valley regions and <strong>the</strong> surround<strong>in</strong>g areas <strong>in</strong> <strong>the</strong><strong>Western</strong> and Eastern <strong>Desert</strong>s.- Carry out geoelectrical resistivity pr<strong>of</strong>iles along <strong>the</strong> proposed sites for landreclamation projects along Darb El-Arba<strong>in</strong> road (9 sites for a total area <strong>of</strong><strong>10</strong>,300 feddan) for a total length <strong>of</strong> 150 km and Wadi El-Qubaniya for a totalpr<strong>of</strong>il<strong>in</strong>g length <strong>of</strong> 300 Km. The analysis and <strong>in</strong>terpretation <strong>of</strong> <strong>the</strong> conductedgeoelectrical pr<strong>of</strong>iles will be used <strong>in</strong> def<strong>in</strong><strong>in</strong>g <strong>the</strong> aquifer geometry, saturatedthickness and sites for test drill<strong>in</strong>g.- Drill<strong>in</strong>g <strong>of</strong> three test wells with expected associated satellite piezometersalong Darb El-Arba<strong>in</strong> road. The expected depths <strong>of</strong> <strong>the</strong> proposed test wellsrange between ±150 m and ±500 m. The wells will be pump tested for aquiferhydraulic parameters: transmissivity, hydraulic conductivity, storativity, wellspecificcapacity and hydraulic performance.The results <strong>of</strong> drill<strong>in</strong>g, completion and test<strong>in</strong>g <strong>of</strong> <strong>the</strong>se test wells toge<strong>the</strong>r with<strong>the</strong> test wells to be drilled at El-Gilf El-Kebir, north <strong>of</strong> East Owe<strong>in</strong>at, Kharga –Armant and Wadi El-Qubaniya (see Figure 65) will be used to asses <strong>the</strong> NubiaSandstone lithology, thickness, hydrogeologic boundaries, potentiometry,hydraulic parameters, well-specific capacity and groundwater quality.• Based on <strong>the</strong> results <strong>of</strong> review<strong>in</strong>g <strong>the</strong> previous hydrogeologic <strong>in</strong>vestigations, <strong>the</strong>groundwater resource evaluation studies and <strong>the</strong> results <strong>of</strong> <strong>the</strong> new geophysical andtest drill<strong>in</strong>g campaign, a hydrogeologic data base <strong>of</strong> <strong>the</strong> Nubia Sandstone aquifersystem <strong>in</strong> <strong>the</strong> South Valley region will be prepared and used to develop a groundwatersimulation model.• Development <strong>of</strong> a groundwater model to simulate <strong>the</strong> Nubia Sandstone aquifer system<strong>in</strong> <strong>the</strong> South Valley area with its boundaries extended to its natural boundary at <strong>the</strong>Red Sea mounta<strong>in</strong> ranges and <strong>in</strong>to northwestern Sudan as shown <strong>in</strong> Figure (67). Themodel will be used, after be<strong>in</strong>g calibrated for aquifer <strong>in</strong>itial condition, to forecast <strong>the</strong>aquifer long-term response to different groundwater extraction scenarios required for<strong>the</strong> targeted irrigated agriculture schemes <strong>in</strong> <strong>the</strong> study area as well as <strong>the</strong> <strong>in</strong>teractionbetween <strong>the</strong> different pump<strong>in</strong>g centers <strong>in</strong> <strong>the</strong> proposed agriculture horizontalexpansion areas, over time.• The groundwater simulation model should be l<strong>in</strong>ked to a l<strong>in</strong>ear programm<strong>in</strong>g modelto assess <strong>the</strong> optimum crop pattern with <strong>the</strong> highest return and to a well-fieldoptimization model to assess <strong>the</strong> optimum well and well-field designs which shouldensure <strong>the</strong> optimum groundwater development schemes for irrigation purposes and<strong>the</strong> m<strong>in</strong>imum cost <strong>of</strong> a groundwater unit.• To study <strong>the</strong> feasibility <strong>of</strong> utiliz<strong>in</strong>g solar and w<strong>in</strong>d energy, as alternative low-costenergy sources for a large-scale groundwater pumpage scheme <strong>in</strong> <strong>the</strong> areas <strong>of</strong> EastOwe<strong>in</strong>at, Darb El-Arba<strong>in</strong>. Previous renewable energy studies identified <strong>the</strong> high w<strong>in</strong>dpotential <strong>in</strong> <strong>the</strong> area <strong>of</strong> Gilf El-Kebir.• The determ<strong>in</strong>ation <strong>of</strong> <strong>the</strong> most economic, rational and susta<strong>in</strong>able groundwaterextraction rates for irrigated agriculture development <strong>in</strong> <strong>the</strong> East Owe<strong>in</strong>at, Darb El-Arba<strong>in</strong>, Aswan – Abu Simbel and Wadi El-Qubaniya areas. Figure (68) shows <strong>the</strong>flow chart <strong>of</strong> <strong>the</strong> recommended plann<strong>in</strong>g procedure to be followed for propergroundwater development <strong>in</strong> <strong>the</strong> South Valley region.<strong>Hydrogeology</strong> <strong>of</strong> <strong>Deep</strong> <strong>Aquifers</strong> 4 - 7 EPIQ Water Policy Reform Program


4.2 S<strong>in</strong>ai4.2.1 Evaluation <strong>of</strong> Lower Cretaceous Groundwater PotentialAs previously discussed <strong>in</strong> 3.4 and due to its widespread, considerable storage capacity andgood to fair groundwater quality, <strong>the</strong> Lower Cretaceous Malhah water-bear<strong>in</strong>g formation isconsidered to be <strong>the</strong> ma<strong>in</strong> aquifer system <strong>in</strong> <strong>the</strong> central and sou<strong>the</strong>rn parts <strong>of</strong> S<strong>in</strong>ai. Theimportance <strong>of</strong> <strong>the</strong> Lower Cretaceous groundwater development is essentially related to <strong>the</strong>necessity <strong>of</strong> provid<strong>in</strong>g basic extension services (ma<strong>in</strong>ly water supply for domestic purposesand for small-scale irrigated agriculture) to <strong>the</strong> exist<strong>in</strong>g nomad tribes <strong>in</strong> central and southS<strong>in</strong>ai, so <strong>the</strong>y will establish permanent settlements and not migrate north to El-Salam Canalproject development areas. Moreover, as <strong>the</strong> groundwater <strong>in</strong> <strong>the</strong> Lower Cretaceous aquifer ismov<strong>in</strong>g down gradient across <strong>the</strong> eastern border towards <strong>the</strong> aquifer discharge area along <strong>the</strong>Dead Sea – Gulf <strong>of</strong> Aqaba rift valley, it is desirable to use this water <strong>in</strong> <strong>the</strong> S<strong>in</strong>ai before itgets naturally lost <strong>in</strong> <strong>the</strong> rift discharge areas.Dur<strong>in</strong>g <strong>the</strong> last decade, <strong>the</strong> Water Resources Research Institute (WRRI) <strong>of</strong> <strong>the</strong> NationalWater Resources Center (NWRC), has conducted a comprehensive hydrogeologic<strong>in</strong>vestigation program to establish a reliable hydrogeologic data base to be used <strong>in</strong> <strong>the</strong>evaluation <strong>of</strong> <strong>the</strong> groundwater potential <strong>in</strong> <strong>the</strong> Lower Cretaceous aquifer system <strong>in</strong> centraland south S<strong>in</strong>ai. It is <strong>the</strong>refore, recommended us<strong>in</strong>g this data to develop a groundwaternumerical model <strong>of</strong> <strong>the</strong> lower Cretaceous aquifer system <strong>in</strong> S<strong>in</strong>ai, to assess <strong>the</strong> susta<strong>in</strong>ableand economic groundwater potential which can be utilized <strong>in</strong> different use sectors.4.2.1.1 The Model Conception• The model will simulate <strong>the</strong> unconf<strong>in</strong>ed and conf<strong>in</strong>ed parts <strong>of</strong> <strong>the</strong> Lower Cretaceousaquifer with possible vertical leakage from or to <strong>the</strong> aquifer.• The model study area will be extended eastward to <strong>the</strong> aquifer discharge area along <strong>the</strong>Dead Sea – Gulf <strong>of</strong> Aqaba rift valley, and westward to <strong>the</strong> Gulf <strong>of</strong> Suez faulted block.The model’s nor<strong>the</strong>rn boundary will be represented by <strong>the</strong> low permeability carbonate –shale complex. (Figure 69).• The Ragabat El-Naam fault should be simulated as an <strong>in</strong>ternal boundary with its easternand western term<strong>in</strong>us as no-flow boundaries where <strong>the</strong> Lower Cretaceous aquifer isfaulted aga<strong>in</strong>st <strong>the</strong> Pre-Cambrian basement or low permeability carbonate rocks.• The Lower Cretaceous aquifer system <strong>in</strong> <strong>the</strong> two sedimentary bas<strong>in</strong>s at Wadi Gharandaland Wadi Feiran <strong>in</strong> southwestern S<strong>in</strong>ai are believed to be hydraulically separated from <strong>the</strong>o<strong>the</strong>r part <strong>of</strong> <strong>the</strong> system <strong>in</strong> south S<strong>in</strong>ai.• Recharge to <strong>the</strong> aquifer by <strong>in</strong>filtration <strong>of</strong> ra<strong>in</strong>water occurs along its sou<strong>the</strong>rn andsou<strong>the</strong>astern outcrops, however, where <strong>the</strong> aquifer is highly elevated above <strong>the</strong> regionalpotentiometric surface along its sou<strong>the</strong>rn parts, it is unsaturated. Recharge to <strong>the</strong> LowerCretaceous aquifer from <strong>the</strong> overly<strong>in</strong>g Upper Cretaceous Carbonate aquifer by downwardflow is also possible.• As <strong>the</strong> recharge rate to <strong>the</strong> aquifer is limited (21 mcm/year) <strong>the</strong> groundwater developmentwill be a m<strong>in</strong><strong>in</strong>g process and <strong>the</strong>refore, it should be susta<strong>in</strong>able, rational and economic.<strong>Hydrogeology</strong> <strong>of</strong> <strong>Deep</strong> <strong>Aquifers</strong> 4 - 8 EPIQ Water Policy Reform Program


4.2.1.2 Model Input Data• As most <strong>of</strong> <strong>the</strong> test wells tapp<strong>in</strong>g <strong>the</strong> Lower Cretaceous aquifer are partially penetrat<strong>in</strong>g<strong>the</strong> aquifer, <strong>the</strong> tested aquifer transmissivity (or hydraulic conductivity) and storativityshould be adjusted to represent <strong>the</strong> full aquifer section.• Estimates <strong>of</strong> <strong>the</strong> aquifer recharge rate and natural losses (<strong>in</strong>flow – outflow pattern) shouldbe <strong>in</strong>troduced to <strong>the</strong> model as <strong>in</strong>itial values for model calibration for <strong>the</strong> aquifer steadystate condition.• Present and future plans for groundwater abstraction should be identified <strong>in</strong> space andtime, based on <strong>the</strong> water requirements for different use sectors until <strong>the</strong> year 2017.• Economic evaluation <strong>of</strong> groundwater utilization should be made to determ<strong>in</strong>e <strong>the</strong> cost <strong>of</strong> awater unit for different uses versus <strong>the</strong> cost <strong>of</strong> o<strong>the</strong>r sources (transported Nile water,transported groundwater, desal<strong>in</strong>ated sea or brackish groundwater). The evaluation shouldalso address <strong>the</strong> maximum or critical economic pump<strong>in</strong>g level. The same plann<strong>in</strong>gprocedure shown <strong>in</strong> Figure (68) can be applied.4.2.1.3 Model OutputAfter <strong>the</strong> model verification <strong>of</strong> <strong>the</strong> aquifer <strong>in</strong>itial condition, it will be used to predict <strong>the</strong> longterm aquifer response to different groundwater extraction scenarios for different use sectors<strong>in</strong> order to select <strong>the</strong> optimum scenario which will satisfy <strong>the</strong> economic and susta<strong>in</strong>abilityconstra<strong>in</strong>ts over a period <strong>of</strong> 50 years.4.2.2 Monitor<strong>in</strong>g <strong>of</strong> <strong>Deep</strong> GroundwaterThe development <strong>of</strong> deep groundwater has already started <strong>in</strong> central and south S<strong>in</strong>ai. About50 wells have been drilled to tap <strong>the</strong> lower Cretaceous aquifer, <strong>of</strong> which only 38 wells arebe<strong>in</strong>g used at present for agriculture and domestic purposes.GOE <strong>in</strong>tends to implement a large-scale plan for <strong>the</strong> utilization <strong>of</strong> deep groundwater <strong>in</strong> S<strong>in</strong>ai,so it will be <strong>of</strong> vital importance for proper management <strong>of</strong> resources to establish a wellmonitor<strong>in</strong>gnetwork to monitor both time-dependent groundwater levels and quality whichwill help <strong>in</strong> predict<strong>in</strong>g <strong>the</strong> aquifer long-term hydraulic and quality response to extraction.A monitor<strong>in</strong>g well is proposed to be located <strong>in</strong> each <strong>of</strong> <strong>the</strong> exist<strong>in</strong>g deep well-fields: El-Hasana, G. El-Halal, El-Bruk, Nakhl, Arif El-Naga, Shaira, El-Kuntilla, Sudr El-Heitan,Wadi Watir and Wadi Feiran. The network should be extended to <strong>the</strong> foreseen future wellfields.Because <strong>the</strong> deep well-fields <strong>in</strong> S<strong>in</strong>ai are far apart, and it is difficult to be monitored on acont<strong>in</strong>uous basis, it is recommended that a telemetry system be established to facilitate datacollection at central control stations at Nakhl and El-Hassana..<strong>Hydrogeology</strong> <strong>of</strong> <strong>Deep</strong> <strong>Aquifers</strong> 4 - 9 EPIQ Water Policy Reform Program


5 SUMMARY, CONCLUSIONS AND RECOMMENDATIONS5.1 SummaryThe present report is an assessment <strong>of</strong> <strong>the</strong> hydrogeological sett<strong>in</strong>g <strong>of</strong> <strong>the</strong> deep aquifer systems<strong>in</strong> <strong>the</strong> <strong>Western</strong> <strong>Desert</strong> and S<strong>in</strong>ai. The groundwater resource potentials <strong>of</strong> <strong>the</strong>se aquifers, <strong>the</strong>current status <strong>of</strong> deep groundwater development and utilization for different use sectors, anddeep groundwater development priority areas are described.Additional hydrogeologic <strong>in</strong>vestigations required for better describ<strong>in</strong>g <strong>the</strong> deep aquifersystems <strong>in</strong> <strong>the</strong> <strong>Western</strong> <strong>Desert</strong> and S<strong>in</strong>ai are proposed. Such <strong>in</strong>vestigations will help <strong>in</strong> <strong>the</strong>economic evaluation <strong>of</strong> <strong>the</strong> optimal utilization, over time, <strong>of</strong> deep groundwater resources <strong>in</strong><strong>the</strong> <strong>Western</strong> <strong>Desert</strong> and S<strong>in</strong>ai.Several important groundwater resource management and policy issues have been identifiedas a result <strong>of</strong> this technical review <strong>of</strong> <strong>the</strong> hydrogeology <strong>of</strong> <strong>the</strong> aquifers and <strong>the</strong> current status<strong>of</strong> resource development and use. In <strong>the</strong> <strong>Western</strong> <strong>Desert</strong>, <strong>the</strong> Nubia Sandstone Aquifer mustbe considered a non-renewable resource. Additionally, over time, <strong>the</strong> artesian conditions <strong>of</strong>this aquifer can be expected to gradually disappear, requir<strong>in</strong>g pump<strong>in</strong>g for fur<strong>the</strong>rgroundwater utilization to occur. Future development <strong>of</strong> groundwater <strong>in</strong> <strong>the</strong> <strong>Western</strong> <strong>Desert</strong>and S<strong>in</strong>ai must be rational, economic and susta<strong>in</strong>able with careful plann<strong>in</strong>g and managementand <strong>in</strong>creased participation <strong>of</strong> water users and o<strong>the</strong>r stakeholders.5.2 ConclusionsThe follow<strong>in</strong>g conclusions are made as a result <strong>of</strong> this assessment. These are separated <strong>in</strong>totwo subsections, one set <strong>of</strong> conclusions regard<strong>in</strong>g <strong>the</strong> aquifers <strong>in</strong> <strong>Western</strong> <strong>Desert</strong> and one setregard<strong>in</strong>g <strong>the</strong> situation <strong>in</strong> <strong>the</strong> S<strong>in</strong>ai.5.2.1 The <strong>Western</strong> <strong>Desert</strong>i. The <strong>Western</strong> <strong>Desert</strong> comprises three plateau areas <strong>in</strong>terrupted by a north–southoriented cha<strong>in</strong> <strong>of</strong> natural depressions, Siwa depression <strong>in</strong> <strong>the</strong> nor<strong>the</strong>rn plateau, <strong>the</strong>New Valley depressions <strong>of</strong> El-Bahariya, El-Farafra <strong>in</strong> <strong>the</strong> central plateau and El-Dakhla, El-Kharga, <strong>the</strong> South Kharga depression and <strong>the</strong> East Owe<strong>in</strong>at area <strong>in</strong> <strong>the</strong>sou<strong>the</strong>rn plateau.ii. The hydrogeological framework <strong>of</strong> <strong>the</strong> <strong>Western</strong> <strong>Desert</strong> comprises three ma<strong>in</strong>aquifer systems: <strong>the</strong> Lower Miocene Moghra sandy aquifer, <strong>the</strong> Tertiary/UpperCretaceous fissured Carbonate aquifer and <strong>the</strong> Mesozoic / Paleozoic NubiaSandstone aquifer.<strong>Hydrogeology</strong> <strong>of</strong> <strong>Deep</strong> <strong>Aquifers</strong> 5 - 1 EPIQ Water Policy Reform Program


iii. The hydrogeologic <strong>in</strong>vestigation <strong>of</strong> <strong>the</strong> Moghra aquifer has been limited to <strong>the</strong> area<strong>of</strong> Wadi El-Fareigh located at <strong>the</strong> desert fr<strong>in</strong>ges <strong>of</strong> West Delta area, where <strong>the</strong>aquifer conta<strong>in</strong>s fresh groundwater (400-1,000 ppm). Test drill<strong>in</strong>g did <strong>in</strong>dicate,however that groundwater sal<strong>in</strong>ity <strong>in</strong>creases southward and westward (<strong>10</strong>,000 ppmat <strong>the</strong> Qattara Depression). A 35,000 feddan land reclamation project has beenstarted <strong>in</strong> Wadi El-Fareigh area, utiliz<strong>in</strong>g <strong>the</strong> Moghra groundwater at an annual rate<strong>of</strong> 120 mcm.iv. Due to its vast extension, high productivity, and good water quality, <strong>the</strong> NubiaSandstone aquifer system is considered to be <strong>the</strong> best potential aquifer system <strong>in</strong><strong>the</strong> central and sou<strong>the</strong>rn parts <strong>of</strong> <strong>the</strong> <strong>Western</strong> <strong>Desert</strong>. The system is described as amulti-layered system with a thickness rang<strong>in</strong>g from 200 m <strong>in</strong> <strong>the</strong> south to 3,000 m<strong>in</strong> <strong>the</strong> west central part <strong>of</strong> <strong>the</strong> <strong>Western</strong> <strong>Desert</strong>. It conta<strong>in</strong>s a huge non-renewablefresh groundwater reserve <strong>of</strong> 200,000 bcm. The results <strong>of</strong> test drill<strong>in</strong>g <strong>in</strong>dicate that<strong>the</strong> Nubia Sandstone aquifer is unconf<strong>in</strong>ed where it is outcropp<strong>in</strong>g, south <strong>of</strong> <strong>the</strong> 25 olatitude, while northward it acts as a conf<strong>in</strong>ed to semi-conf<strong>in</strong>ed aquifer under thick,low permeability cap rocks. The aquifer’s regional transmissivity values rangebetween 240 m 2 /d <strong>in</strong> Toshka area and 17,000 m 2 /d <strong>in</strong> El-Bahariya Oasisv. The potentiometry <strong>of</strong> <strong>the</strong> Nubia Sandstone aquifer <strong>in</strong>dicates a groundwater flowfrom <strong>the</strong> southwest to <strong>the</strong> north-nor<strong>the</strong>ast direction towards its f<strong>in</strong>al base levelalong <strong>the</strong> Qattara Depression – Siwa Oasis - Giaghboub Oasis (Libya) wheregroundwater <strong>of</strong> 90 mcm/year is naturally lost. The aquifer potentiometric surfacemap shows closed s<strong>in</strong>ks at <strong>the</strong> Qattara Depression, El-Dakhla and El-Kharga Oasesdue to <strong>the</strong> long-term groundwater outflow <strong>in</strong> <strong>the</strong>se areas.vi. The Nubia Sandstone aquifer conta<strong>in</strong>s fresh groundwater <strong>of</strong> <strong>10</strong>0-1,000 ppm, withno observed change <strong>in</strong> sal<strong>in</strong>ity with time. North <strong>of</strong> <strong>the</strong> 29 o latitude <strong>the</strong> lowest part<strong>of</strong> <strong>the</strong> aquifer conta<strong>in</strong>s sal<strong>in</strong>e water which <strong>in</strong>creases northward to <strong>the</strong> saltwater/freshwater <strong>in</strong>terface where <strong>the</strong> aquifer becomes fully saturated with sal<strong>in</strong>e.As <strong>the</strong> Nubia aquifer groundwater is highly corrosive to normal carbon steel, <strong>the</strong>current well design practices is to equip <strong>the</strong> wells with API cas<strong>in</strong>gs and sta<strong>in</strong>lesssteel screens to prolong <strong>the</strong>ir life periods.vii. Several regional groundwater models us<strong>in</strong>g different model<strong>in</strong>g techniques, havebeen developed to study <strong>the</strong> Nubia aquifer system’s hydrodynamic behavior and toadjust its regional hydraulic parameters. A number <strong>of</strong> detailed simulation modelswere also developed for different development areas such as <strong>the</strong> New ValleyOases, <strong>the</strong> East Owe<strong>in</strong>at, Nasser Lake shores area and Siwa Oasis, with <strong>the</strong>objectives <strong>of</strong> forecast<strong>in</strong>g <strong>the</strong> aquifer’s long term response to groundwaterextraction plans for agriculture and m<strong>in</strong><strong>in</strong>g, and to assess <strong>the</strong> most susta<strong>in</strong>able,economic groundwater extraction scenario. The results <strong>of</strong> <strong>the</strong>se model studies<strong>in</strong>dicate that groundwater can be extracted at an annual rate <strong>of</strong> 2.385 bcm for <strong>10</strong>0years from <strong>the</strong> Nubia sandstone aquifer <strong>in</strong> <strong>the</strong> New Valley Oases, Siwa Oasis andEast Owe<strong>in</strong>at area, although <strong>the</strong> economic groundwater extraction rates <strong>in</strong> Siwaand East Owe<strong>in</strong>at areas have not been evaluated.viii. The Nubia groundwater <strong>in</strong> <strong>the</strong> <strong>Western</strong> <strong>Desert</strong> receives a very limited recharge andis essentially considered a non-renewable resource. The utilization <strong>of</strong> thisgroundwater resource is a m<strong>in</strong><strong>in</strong>g process.<strong>Hydrogeology</strong> <strong>of</strong> <strong>Deep</strong> <strong>Aquifers</strong> 5 - 2 EPIQ Water Policy Reform Program


ix. In <strong>the</strong> areas <strong>of</strong> El-Dakhla, El-Farafra and Siwa Oasis, naturally flow<strong>in</strong>ggroundwater at considerable pressures occurs. In <strong>the</strong>se areas a total <strong>of</strong> 1,636uncontrolled and cont<strong>in</strong>uously flow<strong>in</strong>g wells are discharg<strong>in</strong>g at an annual rate <strong>of</strong>0.675 bcm. It is estimated that almost half <strong>of</strong> this water is wasted as a result <strong>of</strong> <strong>the</strong>improper utilization and poor management <strong>of</strong> groundwater by <strong>the</strong> users <strong>in</strong> <strong>the</strong>seareas. Daily well shut-<strong>of</strong>f may cause well collapse caused by water hammer on <strong>the</strong>well-tapped water-bear<strong>in</strong>g formation if not carefully implemented by tra<strong>in</strong>edtechnicians. Such conditions create negative environmental effects such as waterwastage, water logg<strong>in</strong>g, dra<strong>in</strong>age problems and soil degradation which all haveserious adverse impacts on <strong>the</strong> agriculture production <strong>in</strong> <strong>the</strong>se Oases.x. The deep Nubia groundwater exploitation <strong>in</strong> <strong>the</strong> <strong>Western</strong> <strong>Desert</strong> Oases started <strong>in</strong>1960, with an annual rate <strong>of</strong> 0.203 bcm, which was progressively <strong>in</strong>creased toreach 0.679 bcm <strong>in</strong> 1997. The present annual groundwater discharges from <strong>the</strong>Carbonate aquifers <strong>in</strong> El-Farafra and Siwa Oasis are about 0.271 bcm. N<strong>in</strong>ety twopercent <strong>of</strong> <strong>the</strong> total groundwater extraction <strong>in</strong> <strong>the</strong> <strong>Western</strong> <strong>Desert</strong> is utilized <strong>in</strong>agriculture (present reclaimed area is <strong>10</strong>5,000 feddan. The rema<strong>in</strong>der <strong>of</strong>groundwater extraction is allocated for domestic and m<strong>in</strong><strong>in</strong>g uses.xi. The priority areas for future Nubia groundwater development <strong>in</strong> <strong>the</strong> <strong>Western</strong><strong>Desert</strong> were identified based on <strong>the</strong> groundwater resource potential, susta<strong>in</strong>ability,economic evaluation <strong>of</strong> its utilization and <strong>the</strong> availability <strong>of</strong> land resources. Theidentified deep groundwater priority areas for future development are: El-DakhlaOasis (additional 83 mcm/year), El-Farafra Oasis (additional 220 mcm/year), andEl-Bahariya (additional 58 mcm/year). The expected total groundwater extractionrate from <strong>the</strong> Nubia Sandstone aquifer <strong>in</strong> <strong>the</strong> East Owe<strong>in</strong>at and Siwa Oasis areas is1340mcm/year. This extraction rate needs to be economically evaluated to assess<strong>the</strong> realistic groundwater potential that can be efficiently utilized <strong>in</strong> different usesectors. New areas with land resource potentials that can also be considered forfuture development if sufficient groundwater potential is found available are A<strong>in</strong>El-Dalla – Wadi El-Obeid <strong>in</strong> El-Farafra Oasis (20,000 feddan), Wadi El-Qubaniyato <strong>the</strong> northwest <strong>of</strong> Aswan (<strong>10</strong>,000 feddan), and Darb El-Arba<strong>in</strong> road (<strong>10</strong>,300feddan).xii. The ma<strong>in</strong>tenance, operation and replacement <strong>of</strong> <strong>the</strong> irrigation wells <strong>in</strong> <strong>the</strong> oldreclaimed lands <strong>in</strong> <strong>the</strong> <strong>Western</strong> <strong>Desert</strong> is still <strong>the</strong> responsibility <strong>of</strong> <strong>the</strong> MPWWR.The new desert areas are to be reclaimed by <strong>the</strong> private sector. Recently 235,000feddan were allocated to private <strong>in</strong>vestors <strong>in</strong> East Owe<strong>in</strong>at and El- Farafra area toestablish irrigated agriculture and agro-<strong>in</strong>dustrial projects.xiii. In <strong>the</strong> South Valley region (Darb El-Arba<strong>in</strong> and along <strong>the</strong> Aswan – Abu Simbelroad areas), <strong>the</strong> GOE <strong>in</strong>tends to implement large scale horizontal expansionprojects <strong>in</strong> about 155,000 feddan utiliz<strong>in</strong>g Nubia groundwater at an annual rate <strong>of</strong>1.16 bcm. This will require a pre-implementation, comprehensive groundwaterresources evaluation study to confirm <strong>the</strong> long-term availability <strong>of</strong> groundwater tomeet irrigation water requirements.<strong>Hydrogeology</strong> <strong>of</strong> <strong>Deep</strong> <strong>Aquifers</strong> 5 - 3 EPIQ Water Policy Reform Program


5.2.2 S<strong>in</strong>aii. The S<strong>in</strong>ai Pen<strong>in</strong>sula is characterized by <strong>the</strong> occurrence <strong>of</strong> six deep aquifers: TheMiocene sands, <strong>the</strong> Eocene limestone, <strong>the</strong> Upper Cretaceous Carbonates, <strong>the</strong>Lower Cretaceous sandstones, <strong>the</strong> Jurassic sedimentary rocks and <strong>the</strong> Paleozoicsandstone.ii. Previous hydrogeologic <strong>in</strong>vestigations <strong>in</strong>dicate that due to <strong>the</strong> limited extension <strong>of</strong><strong>the</strong> Miocene aquifer, <strong>the</strong> low productivity and <strong>the</strong> poor groundwater quality <strong>of</strong> <strong>the</strong>Eocene / Upper Cretaceous aquifer systems, <strong>the</strong> Lower Cretaceous sandstone isconsidered to be <strong>the</strong> most important aquifer <strong>in</strong> S<strong>in</strong>ai with <strong>the</strong> highest potentialquantity and quality groundwater.iii. The results <strong>of</strong> geological, geophysical studies and test drill<strong>in</strong>g <strong>in</strong>dicated that <strong>the</strong>Lower Cretaceous Malha sandstone formation reaches a thickness rang<strong>in</strong>g from150 m near its outcrop along <strong>the</strong> sou<strong>the</strong>rn plateau to about 1,000 m <strong>in</strong> <strong>the</strong> nor<strong>the</strong>rnforeshore zone <strong>of</strong> S<strong>in</strong>ai. The aquifer transmissivity ranges between 11m 2 /d and 400m 2 /d except at <strong>the</strong> structurally high areas where it ranges between 0.2 to 0.7 m 2 /d.The Lower Cretaceous groundwater elevations show that <strong>the</strong> direction <strong>of</strong> flow isfrom its sou<strong>the</strong>rn recharge area to <strong>the</strong> north and northwest towards Nakhl area,<strong>the</strong>n towards <strong>the</strong> central S<strong>in</strong>ai, where it diverts east towards <strong>the</strong> Dead Sea – Gulf <strong>of</strong>Aqaba Rift valley and to <strong>the</strong> west towards <strong>the</strong> Ayun Musa area on <strong>the</strong> Gulf <strong>of</strong> SuezRift valley with <strong>the</strong>se two rift areas represent<strong>in</strong>g <strong>the</strong> aquifer’s f<strong>in</strong>al natural outflowareas.iv. The Lower Cretaceous groundwater sal<strong>in</strong>ity ranges between 500 ppm near itssou<strong>the</strong>rn outcrops, 1,500 ppm <strong>in</strong> <strong>the</strong> sou<strong>the</strong>rn sedimentary part <strong>of</strong> S<strong>in</strong>ai, 1,600 to3,000 ppm <strong>in</strong> central S<strong>in</strong>ai and <strong>the</strong>n progressively <strong>in</strong>creas<strong>in</strong>g to reach up to 19,000ppm <strong>in</strong> <strong>the</strong> nor<strong>the</strong>rn foreshore zone. In <strong>the</strong> western S<strong>in</strong>ai coastal area, <strong>the</strong> sal<strong>in</strong>ity<strong>of</strong> Lower Cretaceous groundwater is <strong>of</strong> a hyper-sal<strong>in</strong>e nature (227,000 ppm) exceptat Ayun Musa area where it is 2,500-3,000 ppm.v. Priority areas for <strong>the</strong> development <strong>of</strong> <strong>the</strong> Lower Cretaceous groundwater <strong>in</strong> S<strong>in</strong>aiwere identified based on <strong>the</strong> aquifer hydrogeologic characteristic and groundwaterquality. These are:− Areas <strong>of</strong> first priority: The downstream <strong>of</strong> Wadi Gharandal and WadiFeiran <strong>in</strong> western S<strong>in</strong>ai, El-M<strong>in</strong>sherah, Nakhl <strong>in</strong> central S<strong>in</strong>ai and WadiWatir <strong>in</strong> South S<strong>in</strong>ai.− Areas <strong>of</strong> 2nd priority: El-Quseima, Arif Al-Naga, El-Kuntilla <strong>in</strong> eastCentral S<strong>in</strong>ai, and Sudr El-Heitan, El-Thamad <strong>in</strong> South Central S<strong>in</strong>ai.− Area <strong>of</strong> third priority: South <strong>of</strong> <strong>the</strong> tunnel – Nuweiba <strong>in</strong>ternationalroad cover<strong>in</strong>g El-Tih – El-Egma – El-Hazim plateaux areas.− Area <strong>of</strong> fourth priority: Gifgafa, El-Hasana, Talat El-Badan, El-Halal,Um Shihan, Wadi El-Amro and El-Kherim <strong>in</strong> north Central S<strong>in</strong>ai.− Areas not recommended for Lower Cretaceous aquifer development<strong>in</strong>cludes area to <strong>the</strong> north <strong>of</strong> Gebel El-Maghara, Gebel El-Halal zone and<strong>the</strong> western coastal pla<strong>in</strong> <strong>of</strong> S<strong>in</strong>ai between Port Said and Ras Mohamed.<strong>Hydrogeology</strong> <strong>of</strong> <strong>Deep</strong> <strong>Aquifers</strong> 5 - 4 EPIQ Water Policy Reform Program


vi. Prelim<strong>in</strong>ary evaluation <strong>of</strong> <strong>the</strong> groundwater resources <strong>in</strong> <strong>the</strong> Lower Cretaceousaquifer system <strong>in</strong> S<strong>in</strong>ai <strong>in</strong>dicates that <strong>the</strong> total storage capacity <strong>of</strong> <strong>the</strong> system is1,<strong>10</strong>0 bcm. The system conta<strong>in</strong>s 980 bcm with a sal<strong>in</strong>ity <strong>of</strong> ≤ 2000 ppm <strong>of</strong> which117 bcm can be used.The total annual <strong>in</strong>flow <strong>in</strong>to <strong>the</strong> Lower Cretaceous aquifer was estimated to be 21.4mcm, which is <strong>in</strong> balance with <strong>the</strong> aquifer’s natural outflow to <strong>the</strong> Dead Sea – Gulf<strong>of</strong> Aqaba Rift Valley <strong>in</strong> <strong>the</strong> east (15 mcm/year) and to <strong>the</strong> Gulf <strong>of</strong> Suez Rift valley<strong>in</strong> <strong>the</strong> west (6 mcm/year). A more accurate and reliable evaluation <strong>of</strong> <strong>the</strong> LowerCretaceous groundwater resource <strong>in</strong> S<strong>in</strong>ai should be made us<strong>in</strong>g a groundwatersimulation model. The presently available aquifer hydrogeologic data and<strong>in</strong>formation are quite adequate to develop such model.vii. Accord<strong>in</strong>g to <strong>the</strong> latest well <strong>in</strong>ventory, <strong>the</strong> present total extraction from <strong>the</strong>different deep aquifers <strong>in</strong> S<strong>in</strong>ai is 3.199 mcm/year <strong>of</strong> which 1.89 mcm/year is used<strong>in</strong> agriculture and <strong>the</strong> rest is allocated for domestic and <strong>in</strong>dustrial uses. Although31 production wells have been drilled and equipped with pumps to exploit <strong>the</strong>Lower Cretaceous groundwater at a rate <strong>of</strong> 4.56 mcm/year, only 12 wells are <strong>in</strong> useat present yield<strong>in</strong>g a rate <strong>of</strong> 0.99 mcm/year. This can be attributed to <strong>the</strong> lack <strong>of</strong>proper plann<strong>in</strong>g and allocation on <strong>the</strong> use <strong>of</strong> <strong>the</strong> groundwater beforeimplementation.viii. At present, <strong>the</strong> construction <strong>of</strong> deep wells, <strong>the</strong> supply <strong>of</strong> pump<strong>in</strong>g equipment, <strong>the</strong>construction <strong>of</strong> water storage reservoir and <strong>the</strong> operation and ma<strong>in</strong>tenance worksare <strong>the</strong> responsibility <strong>of</strong> <strong>the</strong> MPWWR. The users are only responsible for <strong>the</strong>supply, ma<strong>in</strong>tenance and operation <strong>of</strong> <strong>the</strong> irrigation networks.5.2.3 Recommended Additional Hydrogeologic Investigation PlansBased on <strong>the</strong> results <strong>of</strong> <strong>the</strong> previously conducted deep aquifer groundwater resources<strong>in</strong>vestigations <strong>in</strong> <strong>the</strong> <strong>Western</strong> <strong>Desert</strong> and S<strong>in</strong>ai, and for better describ<strong>in</strong>g <strong>the</strong>ir hydrogeologiccharacteristics and/or <strong>the</strong> evaluation <strong>of</strong> <strong>the</strong>ir groundwater potentials, additional <strong>in</strong>vestigationsfor <strong>the</strong> Moghra aquifer, <strong>the</strong> Tertiary fissures Carbonate aquifer and <strong>the</strong> Nubia Sandstoneaquifer <strong>in</strong> <strong>the</strong> <strong>Western</strong> <strong>Desert</strong> and <strong>the</strong> Lower Cretaceous Sandstone aquifer <strong>in</strong> S<strong>in</strong>ai arerecommended. The work plans <strong>of</strong> <strong>the</strong>se <strong>in</strong>vestigations should <strong>in</strong>clude geological,morphostructural analyses; geophysical surveys; water balance studies; hydrochemicalstudies; test drill<strong>in</strong>g; groundwater simulation model<strong>in</strong>g; and <strong>the</strong> establishment <strong>of</strong> groundwatermonitor<strong>in</strong>g networks equipped with data telemetry systems.The follow<strong>in</strong>g plans for additional hydrogeologic <strong>in</strong>vestigations are proposed:i. Seven deep test wells (depth: ± 500 m to ± 2500 m) should be drilled at sites <strong>in</strong> El-Gilf El-Kebir, North East Owe<strong>in</strong>at, El-Kharga – Armant road, A<strong>in</strong> Dalla, El-Bahariya – Siwa road, Wadi Qubaniya.ii. In <strong>the</strong> South Valley Region (comprised <strong>of</strong> <strong>the</strong> East Owe<strong>in</strong>at, Darb El-Arba<strong>in</strong> andToshka bas<strong>in</strong> areas) where areas are allocated for large-scale horizontal expansionprojects us<strong>in</strong>g deep groundwater resources, <strong>the</strong> follow<strong>in</strong>g studies arerecommended:<strong>Hydrogeology</strong> <strong>of</strong> <strong>Deep</strong> <strong>Aquifers</strong> 5 - 5 EPIQ Water Policy Reform Program


- Geoelectrical resistivity sound<strong>in</strong>gs and drill<strong>in</strong>g <strong>of</strong> three test wells (depth:±150 m to ±500 m) along Darb El-Arba<strong>in</strong> road.- Preparation <strong>of</strong> a hydrogeologic database <strong>of</strong> <strong>the</strong> Nubia Sandstone aquifer for<strong>the</strong> region.- Development <strong>of</strong> a groundwater model to assess <strong>the</strong> most susta<strong>in</strong>able andeconomic groundwater extraction plans for agricultural use <strong>in</strong> <strong>the</strong> areas <strong>of</strong>East Owe<strong>in</strong>at, Darb El-Arba<strong>in</strong>, Aswan – Abu Simbel road, and WadiQubaniya. The model study area should be extended eastward to <strong>the</strong>aquifer’s natural boundary along <strong>the</strong> Red Sea mounta<strong>in</strong> ranges, andnorthward to El-Kharga – El-Dakhla Oases.- Design <strong>the</strong> optimum well-fields, which will determ<strong>in</strong>e <strong>the</strong> optimumgroundwater production rates versus <strong>the</strong> m<strong>in</strong>imum cost.iii. With<strong>in</strong> <strong>the</strong> framework <strong>of</strong> <strong>the</strong> ongo<strong>in</strong>g hydrogeologic study program be<strong>in</strong>g carriedout by RIGW <strong>in</strong> Siwa Oasis, a deep test well is recommended to be drilled to adepth <strong>of</strong> ± 2,000 m to obta<strong>in</strong> controlled data regard<strong>in</strong>g <strong>the</strong> groundwater sal<strong>in</strong>itiesand piezometric heads <strong>of</strong> <strong>the</strong> different hydrolithostratigraphic units. This will help<strong>in</strong> <strong>the</strong> preparation <strong>of</strong> a simulation model to determ<strong>in</strong>e <strong>the</strong> maximum susta<strong>in</strong>ableand economic fresh groundwater exploitation rate that can be achieved withoutcaus<strong>in</strong>g water quality deterioration.iv. Two test wells should be drilled <strong>in</strong> E<strong>in</strong> Dalla depression (northwest <strong>of</strong> El-FarafraOasis) to identify f<strong>in</strong>e <strong>the</strong> Nubia aquifer hydrogeologic characteristics, needed toevaluate <strong>the</strong> availability <strong>of</strong> groundwater to reclaim 20,000 feddan <strong>of</strong> arable landus<strong>in</strong>g a groundwater simulation model. The model study area should cover all <strong>of</strong>El-Farafra Oasis and to address <strong>the</strong> <strong>in</strong>teraction between <strong>the</strong> different groundwaterextraction areas <strong>in</strong> <strong>the</strong> Oasis.v. For future utilization <strong>of</strong> <strong>the</strong> deep aquifers <strong>in</strong> <strong>the</strong> nor<strong>the</strong>rn part <strong>of</strong> <strong>the</strong> <strong>Western</strong><strong>Desert</strong>, it is recommended to evaluate <strong>the</strong> groundwater potentials <strong>of</strong> <strong>the</strong> LowerMiocene Moghra sandy aquifer <strong>in</strong> <strong>the</strong> West Delta desert fr<strong>in</strong>ge and <strong>the</strong> Tertiaryfissured Carbonate aquifer <strong>in</strong> northwestern <strong>Western</strong> <strong>Desert</strong> (El-Diffa Plateau).Geophysical, morphostructural, hydrochemical and test<strong>in</strong>g drill<strong>in</strong>gs (8 test wells <strong>of</strong>±500 m each) and groundwater model<strong>in</strong>g are proposed.vi. It is important to properly evaluate <strong>the</strong> groundwater resources <strong>in</strong> <strong>the</strong> LowerCretaceous Sandstone aquifer system <strong>in</strong> S<strong>in</strong>ai to assess its susta<strong>in</strong>able andeconomic exploitation over time for different use sectors. A simulationgroundwater model for <strong>the</strong> Lower Cretaceous aquifer is proposed to determ<strong>in</strong>e <strong>the</strong>available economic groundwater potential, <strong>in</strong> <strong>the</strong> different identified aquiferdevelopment priority areas. An economic evaluation should be carried out todeterm<strong>in</strong>e if it is more cost effective to use <strong>the</strong> groundwater locally or to betransported for domestic use <strong>in</strong> <strong>the</strong> tourist resort centers along <strong>the</strong> Gulf <strong>of</strong> Aqaba.This should be economically compared to options <strong>of</strong> transported Nile water ordesal<strong>in</strong>ated sea water.5.3 Recommendationsi. Additional hydrogeologic and economic evaluation studies on <strong>the</strong> Nubia Sandstoneaquifer <strong>in</strong> <strong>the</strong> South Valley region, which comprises East Owe<strong>in</strong>at, Darb El-Arba<strong>in</strong>and <strong>the</strong> area around Aswan – Abu Simbel road, should be carried out before <strong>the</strong>implementation <strong>of</strong> <strong>the</strong> proposed horizontal expansion projects.<strong>Hydrogeology</strong> <strong>of</strong> <strong>Deep</strong> <strong>Aquifers</strong> 5 - 6 EPIQ Water Policy Reform Program


ii. Evaluation <strong>of</strong> <strong>the</strong> Nubia aquifer groundwater potential <strong>in</strong> A<strong>in</strong> El-Dalla and WadiEl-Qubaniya should be carried out to determ<strong>in</strong>e <strong>the</strong> possibility <strong>of</strong> horizontalexpansion projects <strong>in</strong> <strong>the</strong>se areas.iii. Proper groundwater monitor<strong>in</strong>g <strong>in</strong> <strong>the</strong> <strong>Western</strong> <strong>Desert</strong> and S<strong>in</strong>ai development areasmust be carried out as an <strong>in</strong>tegral part <strong>of</strong> <strong>the</strong> groundwater development, utilizationand management process. To overcome <strong>the</strong> remoteness <strong>of</strong> <strong>the</strong> well monitor<strong>in</strong>gnetwork and <strong>the</strong> lack <strong>of</strong> technical staff to collect periodical records at regular<strong>in</strong>tervals, it is recommended that a telemetry system be established to monitorgroundwater response (groundwater levels, and quality) at central stations <strong>in</strong> El-Kharga, El-Dakhla, El-Farafra and East Owe<strong>in</strong>at areas <strong>in</strong> <strong>the</strong> <strong>Western</strong> <strong>Desert</strong> andNakhl, El-Hasana <strong>in</strong> S<strong>in</strong>ai.iv. Special studies are recommended to evaluate <strong>the</strong> susta<strong>in</strong>ability and economicviability <strong>of</strong> different groundwater exploitation options. This <strong>in</strong>cludes assess<strong>in</strong>g <strong>the</strong>present practice <strong>of</strong> us<strong>in</strong>g collective and <strong>in</strong>tensive large-scale groundwaterextraction versus small-scale, widely-spaced extraction. The evaluation should take<strong>in</strong>to account <strong>the</strong> related aquifer hydrogeologic and economic impacts which<strong>in</strong>clude <strong>the</strong> rate <strong>of</strong> decl<strong>in</strong>e <strong>of</strong> well piezometric levels, rapid transfer from flow<strong>in</strong>gcondition to pump<strong>in</strong>g stage, cost <strong>of</strong> ma<strong>in</strong>tenance and operation, <strong>the</strong> economiclifetime <strong>of</strong> <strong>the</strong> use sector, <strong>the</strong> cost <strong>of</strong> <strong>in</strong>frastructures (roads, extensionservices…etc.) and <strong>the</strong> control and management <strong>of</strong> well-fields.v. To reduce <strong>the</strong> rate <strong>of</strong> aquifer piezometric level decl<strong>in</strong>e and prolong <strong>the</strong> economiclife <strong>of</strong> groundwater utilization for different use sectors, it is recommended that <strong>the</strong>distribution <strong>of</strong> <strong>the</strong> groundwater extraction among different aquifer horizons <strong>in</strong>stead<strong>of</strong> concentrat<strong>in</strong>g on one horizon (as is <strong>the</strong> case <strong>in</strong> El-Farafra Oasis) beeconomically evaluated.vi. Because <strong>the</strong> Nubia groundwater <strong>in</strong> <strong>the</strong> <strong>Western</strong> <strong>Desert</strong> receives a very limitedrecharge and is essentially considered a non-renewable resource, <strong>the</strong> plann<strong>in</strong>g <strong>of</strong> itsdevelopment and utilization should be based on a m<strong>in</strong><strong>in</strong>g process, that results <strong>in</strong>cont<strong>in</strong>uous lower<strong>in</strong>g <strong>of</strong> groundwater levels. Consequently, for proper and last<strong>in</strong>gutilization <strong>of</strong> such resources, groundwater exploitation should be economic,rational and susta<strong>in</strong>able.vii. Due to <strong>the</strong> cont<strong>in</strong>u<strong>in</strong>g decl<strong>in</strong>e <strong>in</strong> <strong>the</strong> piezometric levels <strong>of</strong> <strong>the</strong> Nubia aquifer <strong>in</strong> <strong>the</strong><strong>Western</strong> <strong>Desert</strong>, groundwater extraction is shift<strong>in</strong>g from free-flow<strong>in</strong>g condition topumped conditions. Therefore, production wells should be designed toaccommodate <strong>the</strong> required future pumps. Long-term groundwater utilization plansshould be based on future pump<strong>in</strong>g conditions, regardless <strong>of</strong> <strong>the</strong> aquifer’s <strong>in</strong>itialnatural flow<strong>in</strong>g conditions. Expected future water levels should be used todeterm<strong>in</strong>e well discharge, aquifer future pump<strong>in</strong>g level and to layout <strong>the</strong> properwell design. It is also important to determ<strong>in</strong>e <strong>the</strong> critical economic pump<strong>in</strong>g levels<strong>in</strong> <strong>the</strong> different groundwater development areas at which <strong>the</strong> benefit obta<strong>in</strong>ed from<strong>the</strong> pumped water would be equal to <strong>the</strong> cost <strong>of</strong> its extraction and which should notbe exceeded dur<strong>in</strong>g <strong>the</strong> planned groundwater utilization period.<strong>Hydrogeology</strong> <strong>of</strong> <strong>Deep</strong> <strong>Aquifers</strong> 5 - 7 EPIQ Water Policy Reform Program


viii. As a result <strong>of</strong> <strong>the</strong> uncontrolled cont<strong>in</strong>uously free-flow<strong>in</strong>g conditions <strong>in</strong> El-Dakhla,El-Farafra and Siwa Oases, and due to <strong>the</strong> absence <strong>of</strong> proper groundwaterutilization and management <strong>in</strong> <strong>the</strong>se areas, it is urgently recommended that <strong>the</strong>necessary technical, legal and <strong>in</strong>stitutional measures be taken to mitigate <strong>the</strong>serious environmental impacts affect<strong>in</strong>g agricultural production <strong>in</strong> <strong>the</strong>se areas.ix. At locations where <strong>the</strong> free-flow<strong>in</strong>g discharges <strong>of</strong> wells are significantly less than<strong>the</strong> required irrigation water supply rates, it may be less expensive to <strong>in</strong>stall pumps<strong>in</strong> <strong>the</strong>se wells as long as <strong>the</strong>y are structurally fit to be pump-operated, <strong>in</strong>stead <strong>of</strong>apply<strong>in</strong>g <strong>the</strong> current practice <strong>of</strong> drill<strong>in</strong>g new deeper wells. This should beconsidered as part <strong>of</strong> <strong>the</strong> groundwater development program.x. It is recommended that <strong>the</strong> development and exploitation <strong>of</strong> <strong>the</strong> Nubia nonrenewablegroundwater resources be planned to be a gradual process and <strong>in</strong>accordance with <strong>the</strong> availability <strong>of</strong> <strong>the</strong>ir economic potential, with cont<strong>in</strong>uousgroundwater monitor<strong>in</strong>g to identify <strong>the</strong> effect <strong>of</strong> extraction to <strong>the</strong> full utilization <strong>of</strong>all available groundwater resources with<strong>in</strong> a planned period <strong>of</strong> 5-15 years.xi. To achieve <strong>the</strong> benefits <strong>of</strong> deep groundwater development <strong>in</strong> S<strong>in</strong>ai, <strong>the</strong> allocation<strong>of</strong> groundwater use sector and its demands should be identified dur<strong>in</strong>g <strong>the</strong> plann<strong>in</strong>gstage.xii. The present GOE policy is to encourage <strong>the</strong> full <strong>in</strong>volvement <strong>of</strong> <strong>the</strong> private sector<strong>in</strong> <strong>the</strong> large-scale reclamation projects us<strong>in</strong>g <strong>the</strong> deep groundwater resource <strong>in</strong> <strong>the</strong><strong>Western</strong> <strong>Desert</strong>. To ensure <strong>the</strong> proper development, utilization and conservation <strong>of</strong><strong>the</strong>se resources, strong coord<strong>in</strong>ation between <strong>the</strong> MPWWR and <strong>the</strong> deepgroundwater users or stakeholders is essential. The MPWWR should beresponsible for <strong>the</strong> overall plann<strong>in</strong>g, follow-up and monitor<strong>in</strong>g <strong>of</strong> all <strong>the</strong>groundwater development and exploitation activities. The construction, operationand ma<strong>in</strong>tenance <strong>of</strong> <strong>the</strong> well-fields should be <strong>the</strong> responsibility <strong>of</strong> <strong>the</strong> private sectoror <strong>the</strong> water users, <strong>in</strong> accordance with <strong>the</strong> technical and legal guidel<strong>in</strong>es <strong>of</strong> <strong>the</strong>MPWWR. Therefore, it is recommended to establish and promote Associations <strong>of</strong>Groundwater Users and o<strong>the</strong>r Stakeholders <strong>in</strong> <strong>the</strong> <strong>Western</strong> <strong>Desert</strong>’s old and newreclaimed areas. These associations would, over time, assume full or partialresponsibility for groundwater development, utilization, ma<strong>in</strong>tenance, operationand management with cont<strong>in</strong>uous technical support from <strong>the</strong> MPWWR.xiii. It is recommended to study <strong>the</strong> feasibility <strong>of</strong> us<strong>in</strong>g renewable sources <strong>of</strong> energysuch as w<strong>in</strong>d and solar energy for pump<strong>in</strong>g groundwater for different use sectors toreduce <strong>the</strong> cost <strong>of</strong> extract<strong>in</strong>g a groundwater unit.xiv. It is recommended to study <strong>the</strong> economic feasibility <strong>of</strong> utiliz<strong>in</strong>g <strong>the</strong> <strong>the</strong>rmalgroundwater <strong>in</strong> <strong>the</strong> <strong>Western</strong> <strong>Desert</strong> Oasis (El-Bishmo well <strong>in</strong> El-Bahariya Oasis)and <strong>in</strong> S<strong>in</strong>ai (Hamam Faroun Spr<strong>in</strong>gs) for medic<strong>in</strong>al tourism.xv. A national awareness program should be carried out to make <strong>the</strong> public aware <strong>of</strong><strong>the</strong> scarceness and high cost <strong>of</strong> groundwater resources <strong>in</strong> <strong>the</strong> desert areas.<strong>Hydrogeology</strong> <strong>of</strong> <strong>Deep</strong> <strong>Aquifers</strong> 5 - 8 EPIQ Water Policy Reform Program


6 REFERENCESAbd<strong>in</strong>, A.S., 1974 “Oil and Gas Discoveries <strong>in</strong> <strong>the</strong> Nor<strong>the</strong>rn <strong>Western</strong> <strong>Desert</strong> <strong>of</strong> Egypt”-Internal <strong>Report</strong>, <strong>Western</strong> <strong>Desert</strong> Operat<strong>in</strong>g Petroleum Company, Alexandria.Al Far, D. M., 1966, “Geology and Coal Deposits <strong>of</strong> Gebel El-Maghara, Nor<strong>the</strong>rn S<strong>in</strong>ai”,Geological Survey <strong>of</strong> Egypt, Cairo.Amer, A., S. Nour, M. Mishriki, 1981, “F<strong>in</strong>ite Element Model <strong>of</strong> Nubian Sandstone Aquifer<strong>in</strong> Egypt”, Proceed<strong>in</strong>g <strong>of</strong> <strong>the</strong> International Conference on Water Resources Plann<strong>in</strong>g <strong>in</strong>Egypt, Cairo.Arar, Abdullah, 1991, “Water Logg<strong>in</strong>g & Sal<strong>in</strong>ity Problems <strong>in</strong> Siwa Oasis”. Document No. 2,submitted at <strong>the</strong> first workshop on Rehabilitation & Development <strong>of</strong> Siwa Oasis, Organizedby Agricultural Development Project <strong>in</strong> <strong>the</strong> North-West Coastal Zone and Siwa Oasis(FAO/EGY/87/<strong>10</strong>).Attia, F.A.R, 1995, “Policies and Strategies for <strong>the</strong> Development and Management <strong>of</strong>Groundwater <strong>in</strong> Egypt.” Proceed<strong>in</strong>g <strong>of</strong> <strong>the</strong> National Sem<strong>in</strong>ar <strong>of</strong> <strong>the</strong> Arab M<strong>in</strong><strong>in</strong>g andPetroleum Association, Cairo.Ball, J., 1927, “Problems <strong>of</strong> <strong>the</strong> Libyan <strong>Desert</strong>. The Artesian Water Supplies <strong>of</strong> <strong>the</strong> Libyan<strong>Desert</strong>. “Geographical Journal, London, 70, 1927.Borelli, M., and J. Karanjac, 1968, “Basis for <strong>the</strong> Analogue Model <strong>of</strong> Kharga and DakhlaOases”, INDUSTRO PROJEKT, Zagreb, Yugoslavia.Burdon, D.J., and M.J. Pavlov, 1959, “Proposed Pre-development Investigations Prior toLarge Scale Groundwater Development <strong>in</strong> <strong>the</strong> <strong>Western</strong> <strong>Desert</strong> <strong>of</strong> <strong>the</strong> Egyptian Region,U.A.R.” <strong>Report</strong> to <strong>the</strong> General <strong>Desert</strong> Development Authority, U.A.R, by <strong>the</strong> United NationsTechnical Assistance Experts.Center for Environments for Arab Region and Europe and NWRC, 1994, “Regional Programon Development and Utilization <strong>of</strong> <strong>the</strong> Nubian Sandstone Aquifer”- Egyptian Status <strong>Report</strong> –F<strong>in</strong>al <strong>Report</strong>.Clark, F.E., 1963, “Appraisal <strong>of</strong> Corrosion Characteristics <strong>of</strong> <strong>Western</strong> <strong>Desert</strong> Well Waters,Egypt”. U.S.G.S, Open File <strong>Report</strong>.Dames and Moore, 1985, “S<strong>in</strong>ai Development Study - Phase I., F<strong>in</strong>al <strong>Report</strong>, Water Suppliesand Costs”. Volume V- <strong>Report</strong> Submitted to <strong>the</strong> Advisory Committee for Reconstruction,M<strong>in</strong>istry <strong>of</strong> Development, Cairo.DRTPC, 1984, “Groundwater Resources Evaluation <strong>in</strong> East Owe<strong>in</strong>at Area – GroundwaterModel”, <strong>Report</strong> submitted to <strong>the</strong> General Petroleum Co., Cairo.EGSMA, 1981, “Geological Map <strong>of</strong> Egypt, Scale 1:2000000”.<strong>Hydrogeology</strong> <strong>of</strong> <strong>Deep</strong> <strong>Aquifers</strong> 6 - 1 EPIQ Water Policy Reform Program


El-Bishlawy, S., 1970, “Formation Water Sal<strong>in</strong>ities <strong>of</strong> <strong>the</strong> Cretaceous and Jurassic Sand”,AMOCO, Internal <strong>Report</strong>.Elewa, H. H., 1993, “Hydrogeological Study <strong>in</strong> Gharb El-Qasr (Farafra) Region and <strong>the</strong>Adjacent Areas, <strong>Western</strong> <strong>Desert</strong>”, M.Sc. Thesis submitted to <strong>the</strong> Faculty <strong>of</strong> Science, CairoUniversity, Cairo.El-Mudallal, U.H, 1990, “Agricultural Development <strong>in</strong> <strong>the</strong> Northwestern Coast and SiwaOasis – Water Resources Study <strong>in</strong> Siwa Oasis”, Project (FAO / EGY / 87 / <strong>10</strong>).El-Ramly, I., 1967, “Contribution to <strong>the</strong> Hydrogeological Study <strong>of</strong> Limestone Terra<strong>in</strong>s <strong>in</strong>UAR, Actes du Colloques de Dubrovnik, Octobre 1965, Hydrologie des Roches Fissures,vol.1, Publ. No. 73, AIHS – UNESCO.Ezzat, M.A., 1959, “Orig<strong>in</strong> <strong>of</strong> <strong>the</strong> Undergroundwater <strong>in</strong> <strong>the</strong> Libyan <strong>Desert</strong> and Prelim<strong>in</strong>aryEvaluation <strong>of</strong> its Amount”, <strong>Report</strong> to <strong>the</strong> General <strong>Desert</strong> Development Organization, Cairo.Ezzat, M.A., et al., 1962, “ Prelim<strong>in</strong>ary <strong>Report</strong> on <strong>the</strong> <strong>Hydrogeology</strong> <strong>of</strong> <strong>the</strong> New Valley,<strong>Western</strong> <strong>Desert</strong>, Egypt with Special Emphasis on Kharga Oasis”, Prepared for <strong>the</strong> General<strong>Desert</strong> Development Organization, <strong>in</strong> Cooperation with <strong>the</strong> U.S.G.S and Under <strong>the</strong> auspices<strong>of</strong> <strong>the</strong> USAID.Ezzat, M.A., and Abdel Azim Abou El-Atta, 1974, “Regional Hydrogeological Conditions –El-Wadi El-Gedid Project Area”, Part I <strong>of</strong> <strong>the</strong> Groundwater Series <strong>in</strong> A.R.E, M<strong>in</strong>istry <strong>of</strong>Agriculture and Land Reclamation, Cairo.Ezzat, M.A., and Abdel Azim Abou El-Atta, 1974, “Exploitation <strong>of</strong> Groundwater <strong>in</strong> <strong>the</strong>Dakhla Oasis”, Part III <strong>of</strong> <strong>the</strong> Groundwater Series <strong>in</strong> A.R.E, M<strong>in</strong>istry <strong>of</strong> Agriculture and LandReclamation, Cairo.Ezzat, M.A., and Abdel Azim Abou El-Atta, 1974, “Exploitation <strong>of</strong> Groundwater <strong>in</strong> <strong>the</strong>Kharga Oasis” Part IV <strong>of</strong> <strong>the</strong> Groundwater Series <strong>in</strong> A.R.E, M<strong>in</strong>istry <strong>of</strong> Agriculture and LandReclamation”, Cairo.Ezzat, M.A., 1976, “The Development <strong>of</strong> <strong>the</strong> Egyptian <strong>Desert</strong>s – 50 Year Plan 1975 – 2025”,<strong>Desert</strong> Irrigation Department, M<strong>in</strong>istry <strong>of</strong> Irrigation.Ezzat, M.A., S. Nour, T. Morshed, M. Mishriki, 1977, “South Qattara Area GroundwaterModel”, General Petroleum Company, Cairo.Euroconsult/Pacer Consultants, 1983, “Regional Development Plan for New Valley”,Volume 2 Annex B – Groundwater, <strong>Report</strong> submitted to M<strong>in</strong>istry <strong>of</strong> Development, Cairo.Euroconsult/Pacer Consultants, 1983, “Regional Development Plan for New Valley”,Volume 3 Annex C – Land Reclamation, <strong>Report</strong> submitted to M<strong>in</strong>istry <strong>of</strong> Land Reclamation,Cairo.F.A.O., 1976, “Groundwater Resources – Groundwater Pilot Scheme, New Valley, Egypt”,Work<strong>in</strong>g Document No.7, U.N.D.P / F.A.O <strong>Report</strong>, AGON: EGY 71/561 Cairo.<strong>Hydrogeology</strong> <strong>of</strong> <strong>Deep</strong> <strong>Aquifers</strong> 6 - 2 EPIQ Water Policy Reform Program


Gad, S.M. et al., 1971, “<strong>Hydrogeology</strong> and Geochemistry <strong>of</strong> Bahariya Oasis”, General <strong>Desert</strong>Development Authority, Kharga Oasis.GARPAD, 1981, “Groundwater Data Book”, Volume 1- Regional Development New ValleyRegion <strong>Report</strong> submitted to M<strong>in</strong>istry <strong>of</strong> Development.GARPAD, 1994, “Groundwater Resources <strong>in</strong> <strong>the</strong> Farafra Oasis”, Internal <strong>Report</strong> prepared by<strong>the</strong> Central Department for Groundwater Projects, General Authority for RehabilitationProjects and Agricultural Development, Cairo.General Petroleum Company, 1979, “Regional Geophysical Surveys <strong>in</strong> <strong>the</strong> <strong>Western</strong> <strong>Desert</strong> <strong>of</strong>Egypt”, <strong>Report</strong> submitted to <strong>the</strong> Technical Committee for <strong>the</strong> Nubian Groundwater Resources<strong>in</strong> <strong>the</strong> <strong>Western</strong> <strong>Desert</strong>, M<strong>in</strong>istry <strong>of</strong> Land Reclamation, Cairo, 1979.Ge<strong>of</strong>izika Co., 1963, “<strong>Report</strong> on Investigation <strong>of</strong> Water and Soil Resources <strong>in</strong> <strong>the</strong> North andCentral Part <strong>of</strong> S<strong>in</strong>ai Pen<strong>in</strong>sula”, Zagreb, Yugoslavia.Ge<strong>of</strong>izika Co., 1963, “F<strong>in</strong>al <strong>Report</strong>, Southwestern S<strong>in</strong>ai, Reconnaissance Investigations:<strong>Hydrogeology</strong>, Geophysics and Soil studies”, Zagreb, Yugoslavia.Ge<strong>of</strong>izika Co., 1966, “Regional Geological, Geophysical Exploration and TopographicMapp<strong>in</strong>g <strong>of</strong> South Kharga and Toshka Area, New Valley Project, Egypt”, F<strong>in</strong>al <strong>Report</strong>, Vol.I, Geology and Geophysics, submitted to <strong>the</strong> Egyptian <strong>Desert</strong> Development Organization,Cairo.Harper, M.L. and Kerdany, M.T., 1965, “Stratigraphy and Petroleum Geology <strong>of</strong> <strong>the</strong> NileStructural Bas<strong>in</strong>”, 24 pp. 2 fig., 7 encl., Geol. Dept. <strong>Report</strong> No. 18, Pan America UAR OilCompany, Cairo.Hefny, K., 1991, “Plann<strong>in</strong>g for Groundwater Development <strong>of</strong> Nubian Sandstone Aquifer forSusta<strong>in</strong>able Agriculture”, Round Table Meet<strong>in</strong>g on Plann<strong>in</strong>g for Groundwater Development<strong>in</strong> Arid Region – Scientific Monthly Magaz<strong>in</strong>e <strong>of</strong> <strong>the</strong> Water Research Center, Cairo.Hefny, K. and Abdu Shata, 1996, “Strategy for Development <strong>of</strong> <strong>Deep</strong>-ly<strong>in</strong>g <strong>Aquifers</strong> <strong>in</strong>Egyptian <strong>Desert</strong>”, WRSR Publication Series No.18.He<strong>in</strong>el, M.F. and P.E. Br<strong>in</strong>kman, 1987, “Special Research Project <strong>in</strong> Arid Areas –Groundwater Model for <strong>the</strong> Nubian Sandstone Aquifer System”, Technical University <strong>of</strong>Berl<strong>in</strong>, Germany.Hellestrom, B., 1940, “The Subterranean Water <strong>in</strong> <strong>the</strong> Libyan <strong>Desert</strong>”, Sartreyk UrGeographiska Annatar, Stockholm, Vol. 34.Himida, I.H., 1968, “A Quantitative Study <strong>of</strong> Artesian Water Exploration Resources <strong>in</strong>Kharga and Dakhla Oases, <strong>Western</strong> <strong>Desert</strong>”, Bullet<strong>in</strong> <strong>of</strong> <strong>the</strong> <strong>Desert</strong> Research Institute, TomeXVI, No.2, 1966, Issued <strong>in</strong> 1968.il Nouvo Castoro, 1986, “Techno-economic Feasibility Study <strong>of</strong> <strong>the</strong> Reclamation <strong>of</strong> 50,000Feddan <strong>in</strong> <strong>the</strong> Farafra Oasis”, Vol. Geohydrology – submitted to <strong>the</strong> General Authority forRehabilitation Projects and Agricultural Development, Cairo.<strong>Hydrogeology</strong> <strong>of</strong> <strong>Deep</strong> <strong>Aquifers</strong> 6 - 3 EPIQ Water Policy Reform Program


Issar, A., A. Be<strong>in</strong> and A. Michaeli, 1972, “On <strong>the</strong> Ancient Water <strong>of</strong> <strong>the</strong> Upper NubianSandstone Aquifer <strong>in</strong> Central S<strong>in</strong>ai and Sou<strong>the</strong>rn Israel”, Journal <strong>of</strong> Hydrology, Vol. 17.Jacob, C.E.,et al., 1964, “Geology and Hydrology <strong>of</strong> Kharga Oasis, <strong>Western</strong> <strong>Desert</strong>, Egypt”,General <strong>Desert</strong> Development Organization, Cairo.JICA, 1992, “North S<strong>in</strong>ai Groundwater Resources study <strong>in</strong> <strong>the</strong> Arab Republic <strong>of</strong> Egypt”,F<strong>in</strong>al <strong>Report</strong> submitted to <strong>the</strong> Research Institute for Water Resources, Water ResearchCenter, Cairo.Jo<strong>in</strong>t Venture Qattara, 1979, “Study Qattara Depression”, Vol. III Part 1: Topography,Regional Geology and <strong>Hydrogeology</strong>. Lahmeyer International, Salzgitter Consult andDeutsche Project Union, GMBH, German Federal Republic.Klitzsch, E., et al, 1987 “Geology <strong>of</strong> <strong>the</strong> Sedimentary Bas<strong>in</strong>s <strong>of</strong> Nor<strong>the</strong>rn Sudan andBorder<strong>in</strong>g Areas”, Proceed<strong>in</strong>g <strong>of</strong> <strong>the</strong> Special Research Project <strong>in</strong> Arid Areas, Berl<strong>in</strong>.NAVDA, 1994, “Records <strong>of</strong> Well Discharges <strong>in</strong> <strong>the</strong> New Valley Oases for <strong>the</strong> Period 1981-1994”, Kharga. (<strong>in</strong> Arabic).NIVD, 1997, “Water Levels and Discharges Data <strong>of</strong> Wells <strong>in</strong> <strong>the</strong> New Valley Oases as at1997”, Kharga.Neev, D. 1975, “Tectonic Evaluation <strong>of</strong> <strong>the</strong> Middle East and <strong>the</strong> Levat<strong>in</strong>e Bas<strong>in</strong> (EasternmostMediterranean)”, Geological Survey <strong>of</strong> Israel, Vol.3.Nour, S.E et al., 1979, “Groundwater Exploitation Problems <strong>in</strong> <strong>the</strong> <strong>Western</strong> <strong>Desert</strong>”,Proceed<strong>in</strong>g <strong>of</strong> <strong>the</strong> International Conference on Water Resources Plann<strong>in</strong>g <strong>in</strong> Egypt, Cairo.Nour, S.E et al., 1983, “Hydro-agriculture Study Project, East Owe<strong>in</strong>at Region, <strong>Western</strong><strong>Desert</strong>, Egypt, - Groundwater Resources. Interim <strong>Report</strong> submitted to <strong>the</strong> General PetroleumCompany, Cairo.Nour, S., 1987, “Results <strong>of</strong> <strong>the</strong> Regional and Local Models <strong>of</strong> <strong>the</strong> Nubia Sandstone AquiferSystem <strong>in</strong> <strong>the</strong> <strong>Western</strong> <strong>Desert</strong> <strong>of</strong> Egypt”. Proceed<strong>in</strong>gs <strong>of</strong> <strong>the</strong> Symposium on <strong>the</strong> Results <strong>of</strong> <strong>the</strong>Regional Groundwater Studies <strong>in</strong> Southwestern <strong>Desert</strong> <strong>of</strong> Egypt, The General Petroleum Co.,Cairo, 1987.Nour and M. Yehia, 1993, “<strong>Hydrogeology</strong> <strong>of</strong> Cretaceous Aquifer Systems <strong>in</strong> S<strong>in</strong>aiPen<strong>in</strong>sula”, Internal <strong>Report</strong>, Water Resources Research Institute, Water Research Center,Cairo.Nour, 1995, “Groundwater Exploitation Plans <strong>in</strong> <strong>the</strong> <strong>Western</strong> <strong>Desert</strong> Areas”, Proceed<strong>in</strong>g <strong>of</strong><strong>the</strong> National Sem<strong>in</strong>ar <strong>of</strong> <strong>the</strong> Arab M<strong>in</strong><strong>in</strong>g and Petroleum Association, Cairo (<strong>in</strong> Arabic).Nour, 1996, “Groundwater Potential for Irrigation <strong>in</strong> <strong>the</strong> East Owe<strong>in</strong>at Area, <strong>Western</strong> <strong>Desert</strong>,Egypt”. Environmental Geology – 27, p.143 – 154 Spr<strong>in</strong>ger – Verlag 1996.<strong>Hydrogeology</strong> <strong>of</strong> <strong>Deep</strong> <strong>Aquifers</strong> 6 - 4 EPIQ Water Policy Reform Program


Parson’s Eng<strong>in</strong>eer<strong>in</strong>g Co., 1962, “F<strong>in</strong>al <strong>Report</strong>, Bahariya and Farafra Areas, New ValleyProject, <strong>Western</strong> <strong>Desert</strong> <strong>of</strong> Egypt, <strong>Report</strong> to Egyptian <strong>Desert</strong> Development Organization”,Los Angeles, California, U.S.A.Parson’s Eng<strong>in</strong>eer<strong>in</strong>g Co., 1963, “F<strong>in</strong>al <strong>Report</strong>, Siwa Oasis Area, New Valley Project,<strong>Western</strong> <strong>Desert</strong> <strong>of</strong> Egypt, <strong>Report</strong> to Egyptian <strong>Desert</strong> Development Organization”, LosAngeles, California, U.S.A.REGWA Co., 1997, “Hydraulic Performance <strong>of</strong> Water Well-fields <strong>of</strong> Darb El-Arba<strong>in</strong>Reclamation Project”, Internal <strong>Report</strong>, Cairo, 1997.RIGW, 1993, “The Possibility <strong>of</strong> <strong>the</strong> Reclamation <strong>of</strong> 60,000 Feddan <strong>in</strong> Wadi El-FareighArea”, <strong>Report</strong> submitted to <strong>the</strong> General Company for Research and Groundwater (REGWA),Cairo.RIGW, Central Directorate <strong>of</strong> New Valley and Strategic Research Program, 1996, “Policesfor <strong>the</strong> Management <strong>of</strong> <strong>Deep</strong> Groundwater <strong>in</strong> Egyptian <strong>Desert</strong>s”, WRSR Publication SeriesNo. 12, Cairo.RIGW, 1996, “Regional Prospective <strong>of</strong> <strong>the</strong> Fissured Carbonate Aquifer System <strong>in</strong> Egypt”F<strong>in</strong>al <strong>Report</strong> submitted to <strong>the</strong> Academy <strong>of</strong> Scientific Research & Technology, Cairo.RIGW & IWACO, 1998, “Environmental Management <strong>of</strong> Groundwater Resources”.TN/70.00067/WQM/97/20, Cairo.RIGW & IWACO, 1988, Hydrogeological Map <strong>of</strong> Egypt (1:2000000), Cairo, Egypt.RIGW, New Valley Central Directorate for Irrigation, 1996, “Policies for <strong>the</strong> Management <strong>of</strong><strong>Deep</strong> Groundwater <strong>in</strong> Egyptian <strong>Desert</strong>s”, Water Resources Strategic Research Activity –Publication Series No. 12.Said, R., 1962, “The Geology <strong>of</strong> Egypt”, El-Sever Publish<strong>in</strong>g Co., Amsterdam, New York.Shata, A., 1953, “New lights on <strong>the</strong> Structural Developments <strong>of</strong> <strong>the</strong> <strong>Western</strong> <strong>Desert</strong> <strong>of</strong>Egypt”, Bull. <strong>Desert</strong> Inst., Cairo, U.A.R.Shousha, S. and Hassan Abdel Salam, 1995, “Water Quality Variation <strong>in</strong> Sand <strong>Aquifers</strong>Around Abu El-Gharadig Bas<strong>in</strong>, <strong>Western</strong> <strong>Desert</strong>, Egypt”. Proceed<strong>in</strong>g <strong>of</strong> <strong>the</strong> National Sem<strong>in</strong>ar<strong>of</strong> <strong>the</strong> Arab M<strong>in</strong><strong>in</strong>g & Petroleum Association, Cairo.Soliman, M.M., 1987, “<strong>Report</strong> on Groundwater Model for <strong>the</strong> Nubian Aquifer <strong>in</strong> <strong>the</strong> NorthEastern Region <strong>of</strong> Africa – The Nubia Bas<strong>in</strong>” – Groundwater Research Institute (Internal<strong>Report</strong>), Giza.Talkhan, M.Y, 1988 “Some Geological and Hydrogeological Studies on <strong>the</strong> Area Southwest<strong>of</strong> Egypt”, MSc Thesis submitted to <strong>the</strong> Faculty <strong>of</strong> Science, Menoufia University, Sheb<strong>in</strong> El-Kom.<strong>Hydrogeology</strong> <strong>of</strong> <strong>Deep</strong> <strong>Aquifers</strong> 6 - 5 EPIQ Water Policy Reform Program


Thorwei U., 1987 “<strong>Hydrogeology</strong> <strong>of</strong> <strong>the</strong> Nubian Aquifer System <strong>of</strong> <strong>the</strong> Eastern Sahara”,Proceed<strong>in</strong>gs <strong>of</strong> <strong>the</strong> Symposium on <strong>the</strong> Results <strong>of</strong> <strong>the</strong> Regional Groundwater Studies <strong>in</strong>Southwestern <strong>Desert</strong> <strong>of</strong> Egypt, The General Petroleum Co., Cairo.Zaghloul, E. A., 1983, “Review on <strong>the</strong> Geology <strong>of</strong> <strong>the</strong> Nor<strong>the</strong>rn Part <strong>of</strong> <strong>the</strong> Gulf <strong>of</strong> Suez”Total Oil Co., Internal <strong>Report</strong>, Cairo.Zaghloul, E.A, Saleh Nour, Hassan Ibrahim and Mohammed Yehia, 1993, “The<strong>Hydrogeology</strong> <strong>of</strong> <strong>Deep</strong> Aquifer Systems <strong>in</strong> S<strong>in</strong>ai Pen<strong>in</strong>sula, Egypt, “Proceed<strong>in</strong>g <strong>of</strong> <strong>the</strong>International conference <strong>of</strong> <strong>the</strong> <strong>10</strong>0 years Activity <strong>in</strong> Geological Sciences”, GeologicalSurvey <strong>of</strong> Egypt, Cairo.<strong>Hydrogeology</strong> <strong>of</strong> <strong>Deep</strong> <strong>Aquifers</strong> 6 - 6 EPIQ Water Policy Reform Program

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!