10.07.2015 Views

program scores-ship structural response in waves - Ship Structure ...

program scores-ship structural response in waves - Ship Structure ...

program scores-ship structural response in waves - Ship Structure ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

SSC-230PROGRAM SCORES-SHIP STRUCTURALRESPONSE IN WAVESThis document has been approvedfor public release and sale; itsdistribution is unlimited.SHIP STRUCTURE COMMITTEE1972


SHIP STRUCTURE COMMITTEEAN INTERAGENCY ADVISORYCOMMITTEE DEDICATED TO IMPROVINGTHE STRUCTURE OF SHIPSMEMBER AGENCIES: AOORE5S cORRESPONDENCE TO:UN, It [1 STATES COAST G(JARD SECRETARYNA\’Al S141P SYSTEMS COMMAND SHIP STIMJCTURE COMMITTEEM(l\l&RY SF A1. !rT COMMAND U.S. COLST G\JARD HFADIXJARTEHSMARITIME ADMINISTRATION WASHINGTON, 9.C. 20591AMIII(AN RI lREAIJ OF SHIPPINGSR-1741972DearSir:A major portion of the effort of the <strong>Ship</strong> <strong>Structure</strong> Committee<strong>program</strong> has been devoted to improv<strong>in</strong>g capability of predict<strong>in</strong>gthe loads which a <strong>ship</strong>’s hull experiencesThis report conta<strong>in</strong>s details of a computer <strong>program</strong>, SCORES,which predicts these loads Details of the development andverification of the <strong>program</strong> are conta<strong>in</strong>ed <strong>in</strong> SSC-229, Evaluationand Verification of Computer Calculations of Wave-Induced <strong>Ship</strong>Structural Loads . Additional <strong>in</strong>formation on this <strong>program</strong> maybe found <strong>in</strong> SSC-231 , Further Studies of Computer Simulation ofSlamm<strong>in</strong>g and Other Wave- Induced Vibratory Structural Load<strong>in</strong>gs .Comments on this report would be wel corned.S<strong>in</strong>cerely,mtiaW. F. RSA, IIIRear Admiral, U. S. Coast GuardChairman, <strong>Ship</strong> <strong>Structure</strong> Committee


SSC-230F<strong>in</strong>al ReportonProject SR-174, “<strong>Ship</strong> Computer Response”to the<strong>Ship</strong> <strong>Structure</strong> CommitteePROGRAM SCORES - SHIPSTRUCTURALRESPONSE IN WAVESbyAlfred 1, RaffOceanics, Inc.underDepartment of the NavyNaval <strong>Ship</strong> Eng<strong>in</strong>eer<strong>in</strong>g CenterContract No. NOO024-70-C-5076This doeumnt has bem approved for public release andsale; its dist~ibution is unlimited.U. S. Coast Guard HeadquartersWash<strong>in</strong>gton, D. C.1972


ABSTRACTInformation necessary for the use of the SCORES digital computer<strong>program</strong> is given. This <strong>program</strong> calculates both the”vertical andlateral plane motions and applied loads of a <strong>ship</strong> <strong>in</strong> <strong>waves</strong>. Striptheory is used and each <strong>ship</strong> l~ullcross-section is assumed to be ofLewis form for the purpose of calculat<strong>in</strong>g hydrodynamic forces. The<strong>ship</strong> can be at any head<strong>in</strong>g, relative to the wave direction. Bothregular and irregular wave results can be obta<strong>in</strong>ed, <strong>in</strong>clud<strong>in</strong>g shortcrested seas (directional wave spectrum). All three primary <strong>ship</strong>hull load<strong>in</strong>gs are computed, i.e. vertical bend<strong>in</strong>g, lateral bend<strong>in</strong>gand torsional moments.All the basic equations used <strong>in</strong> the analysis are given, aswell as a description ofthe overall <strong>program</strong> structure. The <strong>in</strong>putdata requirements and format are specified. Sample <strong>in</strong>put and outputare shown. The Appendices <strong>in</strong>clude a description of the FORTRAN<strong>program</strong> organization, together with flowcharts and a complete cross--referencedlist<strong>in</strong>g of the source language.ii


PageINTRODUCTION . . . , . . . ....●.......,......1METHOD OF ANALYSIS . . . . ....✎..,..,........~VERTICAL PLANE EQUATIONS.LATERAL PLANE EQUATIONS .WAVE SPECTRA EQUATIONS. .NON-DIMENSIONAi FORMS .............✎✎✎✎.........................................,..038lb19PROGRAM ORGANIZATION . ......✎....*.......20GENERAL . . . . . . .RESTRICTIONS. . . . .RUNNING TIME. . . . ...............✎✎...................*...................202122DATA INPUT ...,...●....✎.......a....22UNITS. . . . . . . .DATA CARD PREPARATIONSAMPLE INPUT. . . . .✎✎...........✎✎✎.....B............*.a..“..............222330PROGRAM OUTPUT . . . . .✎..●.✎..............29DESCRIPTION . . . . .SAMPLE OUTPUT . , , .✎●●●..✎✎●●✎✎....●o*●.....*......4.,.....2932ERROR MESSAGES . , . . ,✎✎.0●✎.,.✎....*..*..37ACKNOWLEDGEMENTS . . . .☛✎..☛✎..,✎..........37APPENDIX A - PROGRAM DESCRIPTION....✎........38APPENDIX B - FLOWCHARTS . . . . ...✎..........40APPENDIX C - LISTING. . . . . . ..●✎✎... .....,52iii—.


SHIP STRUCTURE COMMITTEEThe SHIP STRUCTURE COMMITTEE is constituted to prosecute a research<strong>program</strong> to improve the hull structures of <strong>ship</strong>s by an extension of knowledgeperta<strong>in</strong><strong>in</strong>g to design, materials and methods of fabrication,RADM W. F. Rea, III, USCG, ChairmanChief, Office of Merchant Mar<strong>in</strong>e SafetyU, S. Coast Guard HeadquartersCapt. J. E. Rasmussen, USNHead, <strong>Ship</strong> Systems Eng<strong>in</strong>eer<strong>in</strong>gand Design DepartmentNaval <strong>Ship</strong> Eng<strong>in</strong>eer<strong>in</strong>g CenterNaval <strong>Ship</strong> Systems CommandMr. K. Morland, Vice PresidentAmerican Bureau of <strong>Ship</strong>p<strong>in</strong>gMr. E. .S.DillonChiefOffice of <strong>Ship</strong> ConstructionMaritime Adm<strong>in</strong>istrationCapt. L. L. Jackson, USNMa<strong>in</strong>tenance and Repair OfficerMilitary Sealift CommandSHIP STRUCTURE SUBCOMMITTEEThe SIIIPSTRUCTURE SUBCOMMITTEE acts for the <strong>Ship</strong> <strong>Structure</strong> Committeeon technical matters b.yprovid<strong>in</strong>q technical coord<strong>in</strong>ation for the determ<strong>in</strong>ation ofgoals and objectives o; the prog~am, and by evaluat<strong>in</strong>g and <strong>in</strong>terpret<strong>in</strong>g the results<strong>in</strong> terms of <strong>ship</strong> structura” design, construction and operation.NAVAL SHIP ENGINEERING CENTERMr. P. M. Pal”ermo - ChairmanMr. J. B. O’Brien - Contract AdmMr. G. Sork<strong>in</strong> - MemberMr. H. S. Sayre - AlternateMr, I. Fioriti - AlternateU. S. COAST GUARDnistratorOFFICE OF NAVAL RESEARCHMr. J. M. Crowley - MemberDr. W. G. Rauch - Alternate,NAVAL SHIP RESEARCH & DEVELOPMENTCENTERMr. A. B. Stavovy - AlternateLCDR C, S. Loosmore, USCG - SecretaryCAPT C. R. Thompson, USCG - MemberCDR J. W. Kime, USCG - AlternateCDR J. L. Coburn, USCG - AlternateMARITIME ADMINISTRATIONMr. F. Dashnaw - MemberMr. A. Maillar - MemberMr. R. Falls - AlternateMr, R. F. Coombs - AlternateMILITARY SEALIFT COMMANDMr. R. R. Askren - MemberLTJG E. T. Power~, USNR - MemberAMERICAN BUREAU OF SHIPPINGMr. S. G. Stiansen - MemberMr. F. J. Crum - MemberivNATIONAL ACADEMY OF SCIENCES -<strong>Ship</strong> Research CommitteeMr. R. W. Rumke, LiaisonProf. R. A. Yagle, LiaisonSOCIETY OF NAVAL ARCHITECTS & MARINEENGINEERSMr. T. M. Buermann, LiaisonBRITISH NAVY STAFFDr. V, Fl<strong>in</strong>t, LiaisonCDR P. H. H. Ablett, RCNC, LiaisonWELDING RESEARCH COUNCILMr. K. H. Koopman, LiaisonMr. C. Larson, Liaison— —.


I. INTRODUCTIONThis manual describes <strong>in</strong> detail the use of SCORES,which is a digital computer <strong>program</strong> for the calculation of thewave-<strong>in</strong>duced motions and loads of a <strong>ship</strong>. Both the vertical andlateral plane motions are treated, so that results for verticalbend<strong>in</strong>g, lateral bend<strong>in</strong>g and torsional hull moments can be obta<strong>in</strong>ed.The pr<strong>in</strong>cipal assumptions of the method are that themotions are l<strong>in</strong>ear, can be solved by “strip theory” and thatthe <strong>ship</strong> sections can be approximated by#’Lewis forms” for thepurpose of calculat<strong>in</strong>g the hydrodynamic forces, that is, therequired two-dimensional added mass and wave darnp<strong>in</strong>g propertiesBoth regular or irregular <strong>waves</strong> can be specified, and for thelatter multi-directional (short crested) seas are allowed.SCORES was written <strong>in</strong> the FORTRAN IV language andchecked out and run on the Control Data 6600 Computer us<strong>in</strong>g theSCOPE operat<strong>in</strong>g system (version 3.1.6). The <strong>program</strong> is unclassified.The method of analysis used <strong>in</strong> SCORES is outl<strong>in</strong>ed below<strong>in</strong> Section 11. All the equations of motion and load<strong>in</strong>gs aregiven. In Section IIT, the organization of the SCORES <strong>program</strong>is discussed briefly. An explanation of <strong>in</strong>put data card preparationis given <strong>in</strong> Section IV, and of <strong>program</strong> output <strong>in</strong> Section V.’An example problem is shown. Error messages which can appeardur<strong>in</strong>g <strong>program</strong> execution are described <strong>in</strong> Section VI.The Appendices <strong>in</strong>clude a description of the FORTRAN<strong>program</strong> organization, flowcharts for each sub<strong>program</strong> and a completecross-referenced (to the flowcharts) list<strong>in</strong>g of the sourcelanguage.11. METHOD OF ANALYSISThe analysis used <strong>in</strong> SCORES was developed and <strong>in</strong>vestigatedto some extent <strong>in</strong> work supported by the <strong>Ship</strong> <strong>Structure</strong> Committee.*The exposition to be given here will serve as a convenient list<strong>in</strong>gof the equations, but for the full derivation and explanation ofthe analysis method, the references listed should be consulted.*Kaplan, Paul, “Development of Mathematical Models for Describ<strong>in</strong>g<strong>Ship</strong> Structural Response <strong>in</strong> Waves,”” <strong>Ship</strong> <strong>Structure</strong>Committee Report SSC-193, January 1969 (m 682591)Kaplan, P., Sargent, T.P. and Raff,A.I. , “An Investigation of theUtility of Computer Simulation to Predict <strong>Ship</strong>Structural Response <strong>in</strong> Waves,” <strong>Ship</strong> <strong>Structure</strong>Committee Report SSC-197, June 1969 (AD 690229)Kaplan, P., and Raff, A.I., “Evaluation and Verification of ComputerCalculations of Wave-Induced <strong>Ship</strong> Structural Response,”<strong>Ship</strong> <strong>Structure</strong> Committee Report SSC-229, July 1972.


The relation<strong>ship</strong> between the water wave system and the<strong>ship</strong> coord<strong>in</strong>ate axes system is shown <strong>in</strong> Figure 1. The wave propagation,at speed c, is considered fixed <strong>in</strong> space. The <strong>ship</strong> thentravels, at speed V, at some angle, ~ with respect to the wavedirection. The wave velocity pktential, for s;mple deep-water<strong>waves</strong>! is then def<strong>in</strong>ed by:-ace-kz’ COS k (X’ + C~)(1)where a =wavewaveamplitudespeedk =wave number = ~wavelengthz’ =x’ =t =vertical coord<strong>in</strong>ate, from undisturbed water surfacepositive downwardsaxis fixed <strong>in</strong> spacetimeThe x-y axes, with orig<strong>in</strong> at G, the center of gravity of the <strong>ship</strong>,translate with the <strong>ship</strong>. The x’ coord<strong>in</strong>ate of a po<strong>in</strong>t <strong>in</strong> the x–yplane can be def<strong>in</strong>ed by:x’ = -(x-FVt) cos E? -+y s<strong>in</strong> B (2)Then, the surface wave elevation ~ (positive upwards) can be expressedas follows:n1n —9(a $W)— = a s<strong>in</strong> k (x’ + et)atz l— -0(3)s<strong>in</strong>ceCp=fwhere 9 = acceleration of gravityIn x-y coord<strong>in</strong>ates we have:n = a s<strong>in</strong> k [-x cos 6 + y s<strong>in</strong> B+(c-V cos B)t](4). mn z —Dt‘(~ -vat+) n (X,t).n = akc cos k [-x cos B+y s<strong>in</strong> @ + (c-V cos !3)t](5)


3\direction of <strong>ship</strong> travslat speed, VxII


I‘bIy;x . ~xilx+MdxJx.sw(lo)where~.mass of <strong>ship</strong>Iy= mass moment of <strong>in</strong>ertia of <strong>ship</strong> about y axisdzlocal sectional vertical hydromechanic force on=<strong>ship</strong>x~ , ~= Coord” mates of stern and bow ends of <strong>ship</strong>rrespectivelyz Mw = wave excitationw’force and moment on <strong>ship</strong>The general hydromechanicforce istaken to be:dz Dm= - m33 (;-X6+VO)[ A’ -N;(;-x;+VB) –pgB*(z-xQ)1(11)whereP =density of water‘:3-local sectionalverticaladded massN; =local sectional verticalcoefficientdamp<strong>in</strong>gforceB* =local waterl<strong>in</strong>ebeamandN; =pgqJJ3(12)withz =ratio of generated wave to heave amplitude forvertical motion-<strong>in</strong>duced waveExpand<strong>in</strong>gthe derivative, we obta<strong>in</strong>:


5—= dZ%3- A;3 (z-x;+2V6) - N;-Vmdx [1(;-X6+VB)- pgB* (z-x6) (13)The equations of motion, (9) and (10) are then transformed <strong>in</strong>tothe familiar form as follows:.. ..a’z + b; + C’Z - de - es - g’e = Zw (14)A; + B6 +CO - Dz - E; - G’z = Mw (15)The coefficients on the left hand sides are def<strong>in</strong>ed by:a’ = mi- J ‘~3dx~.i,IN; dx -V d (A;3),cl= pg B*dxJrd=D=!‘;3 xdx~dx -2V‘i3dx-vxd(A;3)B*xdx -VbA = Iy+ A’ 33xzdxJ— —- —. —


N,x2dx.2v~A;3xdx.v ~x2d;A,3,~=\C=pgB*x,d~.VEJE =N;xdx-vxd(A;3)IG’= ~gB*xdx!where all the <strong>in</strong>dicated <strong>in</strong>tegrations are over the length of the<strong>ship</strong>.andThe wave excitation, the right hand sides of Eqs. (14)(15)~ is given by:1‘b dZZw = ~ dxdx(17)x s(18)The local sectional vertical wave force act<strong>in</strong>g on the<strong>ship</strong> section is represented as:(19)— — -—


7where E = mean section draft. Substitut<strong>in</strong>g the expressions for n,h and ~ fromEq. (4), (5) and (6), with y=O and apply<strong>in</strong>g theapproximate factor for short wave lengths we obta<strong>in</strong>:dZ2=-kc(ae-kii{[%3‘N;-v)dx(~gB*=A;3 kg)s<strong>in</strong>(-kx cos ~) +– ‘Os(-”co’dcos “J+[(P’B’-A’3’()%31COS(-kx COS E)-kc s<strong>in</strong>(-kx cos 5) s<strong>in</strong> Uet .‘;-v dx1 JrB*s<strong>in</strong> —[ As<strong>in</strong> 6 )(20]ITB*A s<strong>in</strong> ~The value of ~ is approximatedby:ii = Hc=whereH = local section draftC~= local section area coefficientThe steady state solution of the equations of motion areobta<strong>in</strong>ed by conventional methods for second order ord<strong>in</strong>arydifferential equations, us<strong>in</strong>g complex notation. The solutions areexpressed as:(22)where the zero subscripted quantities are the amplitudes and &E are the phase angle differences, i.e. leads with respect to thewave elevation <strong>in</strong> Eq. (7).The local vertical load<strong>in</strong>g is given by:dfz .. ..dx = ‘dm ‘Z-xc) + % ‘%— ..— — —


8where dm = local mass, per unit length.~t (23) is simply the summation of <strong>in</strong>ertial, hy~rodyn~i~, hy&costaticand wave excitation forces. The latter terms are given <strong>in</strong>Eqs . (13)and (20). The vertical bend<strong>in</strong>g moment at location X. isthen given by:xo ‘bdfBMz (Xo) = or (x-xo) & dx (24)_l x 1] sx oand is expressed <strong>in</strong> a form similar to the motions, i.e.13MZ= BMZO s<strong>in</strong> (Uet+O) (25)B. Lateral Plane EquationsThe coupled equations of motion for sway, y (positive tostarboard), yaw, ~ (positive bow-starboard) , and roll, $ (positiVestarboard-down) , are given as:(26)IZJ -Ixz; = dYsJXsXdx+N w(27)(28)Jx swhere I = mass moment of <strong>in</strong>ertia of <strong>ship</strong> about z axiszI = mass moment of <strong>in</strong>ertia of <strong>ship</strong> about x axisxI = mass product of <strong>in</strong>ertia of <strong>ship</strong> <strong>in</strong> x-z planeX2— — —


9dY— = local sectional lateral hydrodynamicdzdK— = local sectional hydrodynamic roll<strong>in</strong>gdxforce on <strong>ship</strong>momenton <strong>ship</strong>IfwrNw, Kw = wave excitation force and moments on <strong>ship</strong>~ = <strong>in</strong>itial metacentric height of <strong>ship</strong> (hydrostatic).The hydrodynamic force and moment are taken to be:— dY = DMs (j+x&V~)-Fr5~ -Ns (j+xj-v~) 1- Nrs;dx “ m [ 1+m~=(Q) + m NJ(29)(30)where m =distance of <strong>ship</strong> C.G. from waterl<strong>in</strong>e, positive upMs =sectionallateral added massN~ =sectionallateral damp<strong>in</strong>gforce coefficientM s~ =sectionalmotionadded mass momentof <strong>in</strong>ertia due to lateralN =s~sectionalmotiondamp<strong>in</strong>g moment coefficient due to lateralIr =sectionaladded mass momentof <strong>in</strong>ertiaNr =sectionaldamp<strong>in</strong>g momentcoefficientF rs =sectionallateral added massdue to roll motionN rs =sectional lateral damp<strong>in</strong>g force coefficient due toroll motionand the sectional added mass moments and damp<strong>in</strong>g moment coefficientsare taken with respect to an axis at the waterl<strong>in</strong>e.-..


10The additional roll damp<strong>in</strong>gand bilge keel effects is taken as acritical roll damp<strong>in</strong>g, as follows:moment to account for viscousparticular fraction of thewhere Nr* =h =cc =sectional damp<strong>in</strong>g moment coefficient due to viscousand bilge keel effectsfraction of critical roll damp<strong>in</strong>g (empirical data)critical roll damp<strong>in</strong>gL =“$ =<strong>ship</strong> lengthnatural roll(L=x~-xs)(resonant) frequencyNr(mo) = value of Nr a-k frequency ~ $“The critical roll damp<strong>in</strong>g is expressed <strong>in</strong> terms of the naturalroll frequency by: -cc =2mgtX ~-1$7(32)1. .Jwhere the <strong>in</strong>tegral is over the <strong>ship</strong> length. The calculation ofthe natural roll frequency, u , as <strong>in</strong>dicated above is carriedout by means of successive ap$roximation.Expand<strong>in</strong>g the derivatives, we obta<strong>in</strong>dY. .dM— = -Ms(y+x~-2V;) + —dx v dxs ‘%i )($+X$+7$)(33)‘ (Frdm”) “ [NrsN:v (~’m~H’dK —. .dxIr -1-~ MJL ‘rs + m Ms ;+ v[()1 [—.


11( )(-~~r~+ N~+W~)N — -=+65=:-N. -N; ] i’ +-(:s;::.)+N[(dhldM+~N~–V ~+~< (j+xlj-vi))Sl$)1:XV-2V,(34)The equations of motion, (26), (27) and (28) are then transformed<strong>in</strong>to this familiar form:all;+a12~+a14~:a15i+al~v+a17T+a18$= Ywa21?+a22?+a24$$a25;+a26$+a27~+a28&= NW(35)a31Y+a32~+a34;+a35$+a36$+a37~+a38;+a39$= Kw~The coefficients on the left-hand sides are def<strong>in</strong>ed by:all=m + MsdxJa12=JN.dx-vJd(M.’ra14= Msxdx , Nsxdx -2V M~dx -V xd(Ms) ,Ja15 = J ~ Ja16 = -va12 ,- ~ Msdx ,a17 = “ J‘rsdx fNr~dx + ~V d(Ms)-~ N~dx + V d(Frs)a18 = - J J J ~a21 = I Msxdx = Nsxdx -V xd(M~) ,‘ a22 J J1(36))a24 =Iz+ Msx2dx , ?Nsx2dx-2V M~xdx-V x2d(Ms) ,Ia25 = I J fxdx -~ M~xdx fa26 = -va22 ‘ a27 = ‘1X2 - ~ ‘~s ~1)- Nr~xdx+~V xd(M~) -~ Nsxdx+V xd(Fr~) .a28 = J J \ J37)— — — —


12r\,-v1~ d(Ir)+~> (38)Iare over the <strong>ship</strong> length.‘b dy(39)dxwIJxs‘b dy(40)IJxsI‘b ~K(41)F ‘xx sa39 =mgi5i 1where all the <strong>in</strong>dicated <strong>in</strong>tegrationsThe wave excitation, the right-hand sides of Eqs. (35) isgiven by:Yw = — dxNw= — dxwX dxKw =— — —


13The local sectional lateral force and rotational momentdue ko &he <strong>waves</strong> act<strong>in</strong>g on the <strong>ship</strong> are represented as:‘i+’ ‘<strong>in</strong>‘) (42)where v = lateral orbital wave velocitywS = local section area; = local sectional center of buoyancy, fromwaterl<strong>in</strong>eThe lateral wave orbital velocity is obta<strong>in</strong>ed as follows:(43)vw=-—a$Wayv ‘ - akc e -k~s<strong>in</strong> @ s<strong>in</strong>k -x COSB + y s<strong>in</strong> B+ (c-V cos~)t [ 1 (44]wand then we have:Dvw—=-akgeDt-k~s<strong>in</strong>B cosk -x cos B+ y s<strong>in</strong>B+ (c-V cosp)t (45)[ 1—.- — .—


14After substitut<strong>in</strong>g these expressions and expand<strong>in</strong>g terms, we obta<strong>in</strong>mw—dx= Tl cos wet + ‘1’2s<strong>in</strong> met(46)with‘1 = ‘3 [‘T4 Cos ‘6 + c ‘5 ‘<strong>in</strong> ‘61.T2 = T3 -gT4[s<strong>in</strong> T6 + C T5 COS T61‘3 =- ake-kfi s<strong>in</strong>@I—s<strong>in</strong>[$’TB*Ts<strong>in</strong>js<strong>in</strong> 6‘4‘5= pS+M~-kM s$ldM~+kV&--= ‘S-v dx@Is~‘6= -kx COS Fd%and —dx= T, cos Uet + 7?8s<strong>in</strong> uet(47)with T = T7 3g T9 COS[ ‘6 + c ‘1O ‘<strong>in</strong> ‘61‘8 = ‘3-g T9 s<strong>in</strong> r —‘6 + c ‘1O Cos ‘61B* 3-S; -M -5E T4‘9=~m-Sr$( )dM=N— s+‘1O S+ ‘v dx-~ T5The steady-stake solution of the equations of motion are expressedas:Y=YO s<strong>in</strong> (uet + k) (48)(49)-.. —. — —


(50)where the zero–subscripted quantities are the amplitudes and K, aand v are phase angle leads with respect to the wave elevation.The local lateral and rotational load<strong>in</strong>gs are given by:(51)where c = local center of gravity (relative to <strong>ship</strong> C.G.)positive downY = local mass gyradius<strong>in</strong> rolland the hydrodynamic and wave excitation terms are given <strong>in</strong> Eqs.(33), (34), (46), and (471.The lateralx are then:oBMY(XO) =TMX(XO) =[and aga<strong>in</strong> they arebend<strong>in</strong>g and torsional moments at locztion7x o ‘borx sx oorx sexpressed‘o I -1df(X-XO) + dx<strong>in</strong> this form:(53](54)BM = BMY yos<strong>in</strong> (wet + -r)(55)TMX = TMXO s<strong>in</strong> (uet + V)


16The requirement on the local vertical mass center is:‘b6rn.Cdx= O (56)I‘sSimilarly, the requirement on the local roll gyradius is:1‘b6mY2dx = Ix (57)(58)The product of <strong>in</strong>ertia <strong>in</strong> the x-z plane is def<strong>in</strong>ed by:‘bIXz= amx~dxx s\ x sc. Wave Spectra EquationsThe wave spectrum for calculations <strong>in</strong> irregular seas isconsidered to be a separable function of wave frequency anddirection as follows:s (U,LI) =s+ s2(ld for O


17(60)where ~= mean squared wave amplitude.S<strong>in</strong>ce we impose:1 ;S2(p) du = 1.0. - 2(61)wethen have:(mJoAdditional statistical properties are formulated from the meansquared amplitude:wherea / ~rms =(63)a avg‘1.25 arms(64)= 2.0 armsal/3(65)al/lo= 2.55 arms(66)a = root-mean-squared wave amplitudermsaavg = average (statistical)wave amplitude


18al/3 =amo=significant- (average of 1/3 highesti)wave amplitudeaverage of 1/10 highest wave amplitude.Neumann Spectrum (1953)This frequency spectrum(as used) is given by:Sl(w) = 0.000827 g2n3u-6e -2g2u–2~–2 (67)where U = w<strong>in</strong>dspeedThe constant is one half that orig<strong>in</strong>ally specified byNeumann so that this spectrum satisfies Eq. (62). Thus , orig<strong>in</strong>allythe Neumann spectrum required only a factor of ~~ <strong>in</strong> Eq. (65),<strong>in</strong>stead of 2.0.Pierson-Moskowitz (1964)This is given by:74g’+wSl(w) = 0.0081 g2u–5e-.-4U-4and was derived on the basis ofTwo Parameter (1967)Sl(u) =where ~ .B = .‘1/3 =~.~u-5e-wk— —0“25 %/32(o *17 ~)~.?significant wave(68)fully arisen seas.(69)height (=2.Oa 1/3); =mean wave periodThis spectrum is usually used <strong>in</strong> conjunction with “observed”wave height and period~ which are then taken to be the significantheight and mean period. This spectrum is similar to that adoptedby the I.S.S.C. (1967) as “nom<strong>in</strong>al”, except that it is expressed<strong>in</strong> circular wave frequency i“nsteadof frequency <strong>in</strong> cycles persecond.


Uni-Directional Spread<strong>in</strong>g (Long Crested Seas)This is obviously:19S2(p) = 6(P)(delta function)(70)Cos<strong>in</strong>e-SquaredSpread<strong>in</strong>gS*(P) = ; COS2V (71)ResponsesAll of the motions and moments calculated are consideredto be l<strong>in</strong>ear and the pr<strong>in</strong>ciple of wave superposition is assumed.Thus for each <strong>response</strong> a spectrum is calculated by:Si(u,ll)=Fi(42 s ‘l’’tu)(72)where Ti(U,B) = <strong>response</strong>per unitamplitude operatorwave amplitude)(amplitude of <strong>response</strong>We then have, similar tothe waveamplitude:~ =m$1oI. = Twhe~e a,2 = mean squared <strong>response</strong> amplitude.1Eqs . (63) - (66) then apply to each <strong>response</strong>,D. Non-dimensional FormsFrequency parameter:%=?H‘e2


20Non-dimensional l<strong>in</strong>ear motion (heave, sway):motionamplitudeaNon-dimensional angular(pitch, yaw, roll):motion motion amplitude2va/~Non–dimensionalNon-dimensionalmoment:shear:BMz(orBMPg B;L4aShear Forcepg B;Laor TMX)111. PROGRAM ORGANIZATIONA. GeneralIn general, the SCORES computer <strong>program</strong> has been arrangedand organized to both keep a) the cod<strong>in</strong>g simple and flexible (forpossible future modification) and b) the runn<strong>in</strong>g times low (for&bvious reasons) . Thus, precision of computation has not been ofmajor priority <strong>in</strong> <strong>program</strong> development. This approach is consideredreasonable at the present time because precise correlation (toless than about 5%) with <strong>in</strong>dependent data (model or full-scale ex–periments) is not envisioned, and the theoretical analysis itselfis an approximation.Aside from the actual cod<strong>in</strong>g and data structure <strong>in</strong> the<strong>program</strong>, which will not be discussed here (see Appendices A, Band C of this report) , this approach manifests itself primarily<strong>in</strong> two aspects. The first is the precision with which the local, ortwo-dimensional, sectional added mass and damp<strong>in</strong>g characteristicsor properties, are calculated. For vertical oscillation, the methodof Grim* is used. For the two-dimensional properties <strong>in</strong> lateraland roll oscillations, the method of Tasai** has been <strong>program</strong>med.In general, these methods can be carried out to <strong>in</strong>creas<strong>in</strong>g degreesof numerical accuracy. For practical purposes of keep<strong>in</strong>g runn<strong>in</strong>gtime reasonable, these calculations have been limited. For example<strong>in</strong> the lateral and roll computations, the <strong>in</strong>f<strong>in</strong>ite series of termsrepresent<strong>in</strong>g the velocity potential is truncated to n<strong>in</strong>e termsand only 15 po<strong>in</strong>ts along the Lewis form contour are used for leastsquare approximation purposes. While the full range of sectionproperties and frequencies has not been explored <strong>in</strong> detail, resultson the order of 1% accuracy or better are obta<strong>in</strong>ed for averagesections over a wide frequency range.* Grim, O. , “Die Schw<strong>in</strong>gungen von schwimmeden, zweidimensionalenKorpern,” HSVA Report No. 1171, September 1959.Grim, O., and Kirsch, M., private communication, September 1967.**T’asai,F. , “Hydrodynamic Force and Moment Produced by Sway<strong>in</strong>g andRoll<strong>in</strong>g Oscillation of Cyl<strong>in</strong>ders on kh~ Free Surface,”Reports of Research Institute for Applied Mechanics,Kyushu University Japan, Vol. Ix, No, 35, 1961


The second aspect of <strong>program</strong> organization is related to theabove. While the computations of the two-dimensional propertiesare limited as described, they still are relatively lengthy. Thatis at a particular condition of <strong>ship</strong> speed, wave angle and wavelength, the bulk of the computation time would be devoted to thesecalculations rather than the formation of the coefficients,wave excitation, solution of <strong>ship</strong> motions and the result<strong>in</strong>gcalculation of applied moments. Therefore, it was decided thatrather than calculate for each frequency at each cross-sectionthe above mentioned two-dimensional properties, <strong>in</strong>stead the two–dimensional properties are calculated first at 25 values offrequency over a wide range and then <strong>in</strong>terpolated (or extrapolated)for each subsequent frequency. The results of the <strong>in</strong>itialcalculation over the frequency range are saved <strong>in</strong> the computermemory for the calculations at hand, and can also be saved on apermanent disc file (or magnetic tape storage) , for later usag@.In this way, a large range of <strong>ship</strong> speeds and head<strong>in</strong>gs can be run,each over the appropriate frequency range, without excessivelyhigh runn<strong>in</strong>g times. The <strong>in</strong>terpolation procedure used is asix-po<strong>in</strong>t cont<strong>in</strong>ued fraction method which gives results that aregenerally well with<strong>in</strong> l%.In other respectsl the SCORES <strong>program</strong> is organized <strong>in</strong> afairly straightforward manner. The <strong>in</strong>put consists of:21a) basic data which specify the hull form and weightdistribution and.b) conditional data which specify the speeds and waveparameters.Repeated sets of conditional data can be run with the same basicdata, that is, for the “same def<strong>in</strong>ed <strong>ship</strong>. A fair amount of <strong>in</strong>putdata verification is <strong>in</strong>corporated <strong>in</strong>to the <strong>program</strong>.B. RestrictionsThe ma<strong>in</strong> restrictions <strong>in</strong> the <strong>program</strong> concern the follow<strong>in</strong>giterns:Maximum no. of <strong>ship</strong> cross–sections ..........21(stations O to 20)Maximum no. of wave angles (<strong>in</strong> one run) .....25Maximum no. of wave lengths (<strong>in</strong> one run) ....51Maximum no. of sea stakes (<strong>in</strong> one run) ......10The core storage requirement is about 25,000 cells ascompiled on the CDC 6600. This <strong>in</strong>cludes the <strong>program</strong> <strong>in</strong>structions,data storage and system rout<strong>in</strong>es to handle <strong>in</strong>put–output systemcontrol and provide mathematical functions. It would be possibleto decrease this core requirement via <strong>program</strong> overlay andl<strong>in</strong>kage techniques, should the need arise. However, it probablywould be relatively difficult to fit the <strong>program</strong> with<strong>in</strong> a 12Kcore restra<strong>in</strong>t.. — .-


The word length on the CDC 6600 is 60 bits. No loss <strong>in</strong>overall computational accuracy would be expected if this werereduced, as <strong>in</strong> other digital computers, to 36 bits.A special syskem subrout<strong>in</strong>e called DATE is used whichprovides the current date. This is used only <strong>in</strong> the head<strong>in</strong>g onthe output.22The follow<strong>in</strong>g approximate times are for runn<strong>in</strong>g under theSCOPE operat<strong>in</strong>g system on the CDC 6600 computer.Program compilation (RUN compiler) ..........lO .0 sees.Program load<strong>in</strong>g <strong>in</strong>to core ................... 1.0 sees,Calculation of TI)P*Array (21 sections,both vertical and lateral modes) .......... 25 Sees.Calculate motions, moments at one condition,(21 sections, both vertical and lateralmodes) ....... ● . ● ................● ......... 0.14 sees.Calculate spectral <strong>response</strong>,. .for eachspectrum, for each cond~t~on. ............0.006 sees.Thus , for a run with two <strong>ship</strong> speeds, 7 head<strong>in</strong>gs (at 30° <strong>in</strong>crementsfrom head to follow<strong>in</strong>g seas), 21 wave frequencies (to adequatelycover the spectral energy bands) and 5 sea states, the <strong>in</strong>crementaltime once the <strong>program</strong> was compiled, loaded and the TDP Array wascalculated, would be estimated as follows:IV. DATA INPUT(2) (7) (21) [0.14+(5) (0.006)] = 50 sees.This section of the manual describes the details of datacard <strong>in</strong>put to the SCORES <strong>program</strong>.A. UnitsFor calculations <strong>in</strong> regular <strong>waves</strong>, there are no <strong>in</strong>herentunits assigned to any of the variables <strong>in</strong> the <strong>program</strong>. Thus, theuser is free to choose any desired set as long as they areconsistent for all <strong>in</strong>put parameters. The units are establishedby the <strong>in</strong>put values of water density and gravity acceleration.Some typical units are shown below..—*Two-dimensionalproperties— — — — .


IWater Density lbs./cu. ft.I Gravity Accel. I[ft./sec.223tons/cu.ft.Resultant Unit I ft.-lbs.-sec. ft.-kons-sec.System~II ft./sec.2 I meter/see. 2 Imeter-metricI -LOn-sec. /Wave direction angles are always specified <strong>in</strong> degrees,rather than radians.Howeverr for spectral calculations <strong>in</strong> irregular <strong>waves</strong>, us<strong>in</strong>geither the Neumann or Pierson-Moskowikz spectra, the SCORES <strong>program</strong>assumes ft.-see. units, full scale. The <strong>in</strong>put w<strong>in</strong>d speedsused to specify spectral <strong>in</strong>tensities, or sea skates, are thenassumed to be <strong>in</strong> knots.The follow<strong>in</strong>g <strong>in</strong>put data description <strong>in</strong>dicates typicalconsistent units for all parameters. Other systems of unitscould be used, as noted above.B. Data Card PreparationEvery data card def<strong>in</strong>es several parameters which arerequired by the <strong>program</strong>; each of.these parameters must be <strong>in</strong>putaccord<strong>in</strong>g to a specific format. “I” format (<strong>in</strong>teger) means thatthe value is to be <strong>in</strong>put without a decimal po<strong>in</strong>t and packed tothe right of the spec$fied field. “1?”format (float<strong>in</strong>g po<strong>in</strong>t)requires that the data be <strong>in</strong>put with a decimal po<strong>in</strong>t; the ntiercan appear anywhere <strong>in</strong> the field <strong>in</strong>dicated. “A” format(alphanumeric) <strong>in</strong>dicates that certa<strong>in</strong> alphabetic characters ortitle <strong>in</strong>formation must be entered


24The first 30 columns are used as a label for the TDP array file.Thus , subsequent runs us<strong>in</strong>g the file must duplicate these first30 columns which are then checked aga<strong>in</strong>st the file label beforeus<strong>in</strong>g the data. This avoids <strong>in</strong>advertent use of an <strong>in</strong>correctTDP file.2) Option Control Card (*)columns Format Entry1-2 I Integration option control tag3-4 I Moment option control tag5-6 I Mass dist. option control tag7-8 I Wave spectra option control tag9-1o I Degrees of freedom option control tag11-12 I Directionality option control tag13-14 I TDP file option control tag15-16 I Moment closure option control tag17-18 I Output form option control tag19-20 I Torsion axis option control tag21-22 I Number of <strong>ship</strong> segmentsEach option control tag is given a value of O, 1, 2 or 3where the mean<strong>in</strong>g of each is given <strong>in</strong> the table below. The lastentry of the card, the number of <strong>ship</strong> segments, corresponds to theeven number of equal length segments, or strips, <strong>in</strong>to which the<strong>ship</strong> hull is divided lengthwise for purposes of calculation.OPTIONCONTROL TAG INTERPRETATIONLetter ~ TagCode \ DescriptorOptions AvailableA ~ IntegrationB ~ Momento:1:0:1:2:Simple summationTrapezoidal ruleCalc. motions only, usesummary mass propertiesCalc. motions only, usema~s dist.Calc. moments, use massdist.cMass dist.0:1:Input massesInput weightsDWave spectra0:1:2:3:Regular <strong>waves</strong>Neumann spectraPierson-Moskowitz spectraTwo parameter spectra(cont<strong>in</strong>ued on next page)— — .


25OPTION CONTROL TAG INTERPIWTATION,Cont<strong>in</strong>uedoptions AvailableE ;Degreesfreedomofo:1:2:Vertical plane onlyVertical and lateral planeLateral plane Only1?GIIDirectionalityTDP file0:1:0:1:2:Uni-directional <strong>waves</strong>Cos-sq . wave spread<strong>in</strong>gGenera&e TDP file, writeon file (Tape 10)Read TJ)Pfile, (Tape 1(J), pr<strong>in</strong>tout TDP dataRead TD.Pfile, (Tape 10), nopr<strong>in</strong>t-outHMomentclosure0:1:Suppress closure talcs. .Calc. and pr<strong>in</strong>t outclosure resultsIOutput form!:DimensionalNon-dimensionalJTorsionaxiso:1:Center of gravityWaterl<strong>in</strong>e3) Length Card (*)Columns Format Entry11-20 F <strong>Ship</strong> length (ft.)21-30 F Water density (tons/cu.ft.)31-40 1? Acceleration of gravity (ft./sec.2)41-50 F <strong>Ship</strong> displacement (tons)The entri~s on this card are self descriptive and determ<strong>in</strong>ethe units to be used for all other parameters, except as notedearlier.4) Hull Form Cards (*)Columns Format Entry1-1o F Section waterl<strong>in</strong>e breadth (ft.)11-20 F Section area coefficient (-)21-30 F Section drafti (ft.)31-40 F Section centroid (ft.)


One card is used for each section to be specified, <strong>in</strong> orderalong the <strong>ship</strong> length start<strong>in</strong>g at the bow. For example, if thenumber of segments is 10, and the <strong>in</strong>tegration option tag is O,then 10 hull form cards are required which correspond to the hullat stations l/2, 1 l/2r 2 1/2, .... 8 1/2, 9 1/2. If the<strong>in</strong>tegration tag is 1, then 11 hull form cards are required atstations 0, 1, 2, 3 ..... 9, 10.The entries for sectional waterl<strong>in</strong>e breadth, area coefficientand draft are straightforward. The fourth entry, thesection centroidr is measured downwards from the waterl<strong>in</strong>e , Ifno entries are given and the centroids are needed for lateralplane motions calculations, approximate controids are thencalculated based on the area coefficient and draft (us<strong>in</strong>g a two–dimensional version of the Moorish Approximation).5) Lateral Plane Cardcolumns Format Entry261-10 F <strong>Ship</strong> vertical center of gravity (ft.)11-20 F Radius of gyration <strong>in</strong> roll (ft.)This card is used only if the degrees of freedom optiontag is 1 or 2, <strong>in</strong>dicat<strong>in</strong>g lateral plane calculations. The <strong>ship</strong>vertical e.g. is measured from the waterl<strong>in</strong>e, positive upwards.6) Smary Mass Properties CardColumns Format Entry1-1o F Radius of gyration, longitud<strong>in</strong>al(ft.)11-20 F Longit~d<strong>in</strong>al center of gravity(ft.)This card is used only if the moment option tag is O.The longitud<strong>in</strong>al cmter of gravity is measured from amid<strong>ship</strong>s,positive forwards.7) Sectional Mass Properties cardscolumnFormatEntry1-10 F11-20 F21-30 FSegment weight, or mass (tons,or tons-sec2/ft.)Segment vert. e.g. (ft.)Segment roll gyradius (ft.)These cards are used only if the moment option taq is1 or 2, <strong>in</strong> lieu of the summary mass properties card above. Onecard is used for each section to be spe~ified, <strong>in</strong> a similarmanner as the hull form cards described earlier.The first entry on each card is the segment weight, ormass, depend<strong>in</strong>g on whether the mass dist. option tag is 1, or O,


27respectively. The second entry, the segmenk vextiical center ofgravity, necessary only for lateral bend<strong>in</strong>g moment calculations,is measured, positive downwards, with respect to the <strong>ship</strong>’s overallvertical center, as specified on the lateral plane data cardabove. S<strong>in</strong>ce it is required that the vertical mass moment<strong>in</strong>tegral satisfy the specified overall V.c.q.r the <strong>in</strong>put segmentV.c.g. ‘s are shifted by an equal amount, up or down as necessaryto exactly balance the vertical moment for the hull. Thism<strong>in</strong>imizes the effort required to obta<strong>in</strong> precise balance <strong>in</strong> <strong>in</strong>putdata preparation. The third card entry, the segment roll gyradius,is needed only for torsional moment calculations. If no entriesare given the overall <strong>ship</strong> value is used at each segment.8) Moment Station Card (*)Column Format Entry1-1o I First station for moment calculations11-20 I Last station for moment calculations21-30 I Increment between stationsThe parameters on this card determ<strong>in</strong>e where along the <strong>ship</strong>hull the moment. calculations are to be performed. Station numbersare def<strong>in</strong>ed as zero at the forward end of the first segment,<strong>in</strong>creas<strong>in</strong>g to N, the number of segments, at the after end of thelast segment. If the calculations are required only at one station,then the first two entries on the card should be equal to thatstation number.The moment results at only one station are stiored forsubsequent irregular seas spectral calculations. In the calculationsover a range of stations at which moments are calculated (andpr<strong>in</strong>ted), then only the results at mid<strong>ship</strong>s are stored for thesubsequent spectral calculations.9) Run Control Card (*)Columns Format Entry1-10 F Run control tag and waveamplitude (ft.)11-20F Initial wave length, or21-30frequency (ft. or rad./sec.)F F<strong>in</strong>al wave length, or frequency(ft. or rad./sec.)31-40 F Increment <strong>in</strong> wave length, orfrequency (ft. or rad./sec.)41.-50 F Initial <strong>ship</strong> speed (ft./see.)51-60 F F<strong>in</strong>al <strong>ship</strong> speed (ft./see.)61-70 F Increment <strong>in</strong> <strong>ship</strong> speed (ft./see.)The first entry, the run control tag? determ<strong>in</strong>es <strong>program</strong>cont<strong>in</strong>uiti~:.


28Run Control ‘Tag ActionI 1Greater than 0.0 Cont<strong>in</strong>ue calculations, us<strong>in</strong>g this aswave amplitude0.0 (or blank) Stop calculations; read new basicdata setLess than 0.0 Stop <strong>program</strong> executionThus , if the run control tag is not greater than 0.0, thenthe rema<strong>in</strong><strong>in</strong>g parameters on the card are irrelevant. Z%blankcard, for example, is used to stop calculations and proceed ‘coread a complete new set of data start<strong>in</strong>g with the title card ,1) above. This parameter is also used as the wave amplitude, andis usually set to 1.0.The next three entries determ<strong>in</strong>e the wave lengths to beused <strong>in</strong> the calculations. If the wave spectra option control tagis O, <strong>in</strong>dicat<strong>in</strong>g regular <strong>waves</strong>, then these entries are the <strong>in</strong>itial,f<strong>in</strong>al and <strong>in</strong>crement <strong>in</strong> wave length. If the wave spectra optioncontrol tag is greater than O, <strong>in</strong>dicat<strong>in</strong>g irregular wave calculations,then these entries are the <strong>in</strong>itial, f<strong>in</strong>al and <strong>in</strong>crement <strong>in</strong> wavefrequency. The <strong>in</strong>crements should always be positive, so that wavelength, or frequency, <strong>in</strong>creases from <strong>in</strong>itial to f<strong>in</strong>al value.The last three entries are similar parameters for <strong>ship</strong> speed.If calculations are required at only one value, then the <strong>in</strong>itialand f<strong>in</strong>al values should both be set equal to it.10) RO1l Damp<strong>in</strong>g CardColumn Format Entry1-1o F Fraction of critical roll damp<strong>in</strong>g(empirical data)This card is used only if the degrees of freedom optioncontrol tag is 1 or 2 <strong>in</strong>dicat<strong>in</strong>g lateral plane motions calculationsare <strong>in</strong>cluded. The calculated wave damp<strong>in</strong>g <strong>in</strong> roll, at the naturalroll frequency, is <strong>in</strong>creased so that the total damp<strong>in</strong>g is thespecified fraction of critical damp<strong>in</strong>g. The additional rolldamp<strong>in</strong>g thus determ<strong>in</strong>ed <strong>in</strong>itially is then used for all subsequentcalculations .11) Wave Angle Card (*)column Format Entry1-10 F Initial wave angle, degrees11-20 F F<strong>in</strong>al wave angler degrees21-30 F Increment <strong>in</strong> wave angle, degreesThese entries specify the wave direction angles to be used<strong>in</strong> t-hecalculations and are always given <strong>in</strong> degrees. Forcalculations with uni-directional <strong>waves</strong>, the mean<strong>in</strong>g of theparameters is as <strong>in</strong>dicated. If the directionality option control— — —


tag is greater than O, <strong>in</strong>dicat<strong>in</strong>g calculations for a directionalwave spectrum, then only two choices exist. If the <strong>in</strong>itial waveangle is 180.0 the calculations proceed for head seas only,<strong>in</strong>clud<strong>in</strong>g the wave directionality. If the <strong>in</strong>itial wave angle isnot 180.0 the calculations proceed for all angles from follow<strong>in</strong>gseas to head seas, <strong>in</strong> steps accord<strong>in</strong>g to the wave angle <strong>in</strong>crementspecified.In bOth cases the <strong>in</strong>tegrations with respect to wave angleuse the same <strong>in</strong>crement, as specified.12) Wave Spectra Card(s)29columns Format Entry1-1o I No. of sea states (wave spectra)11-15 F First spectra parameter16-20 F Second spectra parameter21-25 1? Third spectra parameter(5 Col.fields) F :56-60 F Tenth spectra parameterThis card is used only for calculations<strong>in</strong> irregular seas(wave spectra option control tag is greater than 0). The firstentry specifies the number of sea states (spectra) to be used(maximum 10). For both the Neumann and Pierson-Moskowitz spectra(wave spectra option control tag equals 1 or 2), the parametersto be specified axe the w<strong>in</strong>d speed, <strong>in</strong> knots, for each seasta’ce. For the two parametex spectrum (option tag equals 3),the parameters on this card are the significant wave heightsfor each sea state. A second card is then used which conta<strong>in</strong>sthe mean periods for each correspond<strong>in</strong>g sea state, as thespectral parameter entries specified above.c. Sample Input DeckA sample <strong>in</strong>put card deck list<strong>in</strong>g is given on the nextpage. The units are meters, metric tons and seconds.v. PROGRAM OUTPUTA. DescriptionThe pr<strong>in</strong>ted output from the SCORES <strong>program</strong> depends on theoption control tags set as <strong>in</strong>put. Each output section will bedescribed, though <strong>in</strong> any given run not all sections will bepr<strong>in</strong>ted. Each section starts a new page and is labeled witih thetitle <strong>in</strong>formation and date.The first part of the output is a list<strong>in</strong>g of the basic<strong>in</strong>put data as processed. This def<strong>in</strong>es the hull form and.weightdistribution. Then the conditional data cards are pr<strong>in</strong>ted out.For irregular seas cases, the wave spectra will then be pr<strong>in</strong>ted,together with <strong>in</strong>ternally generated wave statistics. If the TDParray is calculated diagnostic messages concern<strong>in</strong>g thesecalculations may then appear.— — — .—- — —


The next output will be the list<strong>in</strong>g of the two-dimensionalproperties (TDP array) for each station and each frequency. Ifthe data is be<strong>in</strong>g read from file, this output can be suppressed.For lateral plane calculations, the natural roll frequency androll damp<strong>in</strong>g <strong>in</strong>formation will then be pr<strong>in</strong>ted.Then, the vertical and/or lateral,plane <strong>response</strong>s will bepr<strong>in</strong>ted out with all frequencies, or wave lengths, for a given<strong>ship</strong> speed and wave angle, on the same page. For irregular seascalculations , this will be followed by a pr<strong>in</strong>t-out of the<strong>response</strong> spectra and statistics (long crested seas) . These pageswill be repeated for each wave angle at the <strong>in</strong>itial <strong>ship</strong> speed.Then directional seas calculations results will he output, ifspecified. The output is, of course, then repeated foradditionally specified <strong>ship</strong> speeds.B. Sample Output30A sample output list<strong>in</strong>g, <strong>in</strong> abbreviatedfollow<strong>in</strong>g the sample <strong>in</strong>put list<strong>in</strong>g.form, is givenSample Input Card Deck List<strong>in</strong>g14.39 .Rf? 11.~~22.88 .RY& 11. (-I3,?b.($u .Q2~ 11.032?s5k .Q/n ...._jl. n327.57 .“”q9 ] li:0327.57 .99+ 11. n?27.57 .qy4 11.0327.5? .994 11.03“27.57 .994 11.93_2!,57... -..:994- . . ..;.+;{; -..??.57,~qkZ7.57 .5’93 11.0327.57 .iu Y” )1, ii327,57 .9b B 11. f1327.24 .Qdl 11.03?5. Y4 , “R51._..._ 11.03..il.:03 ---- .–‘23;46 ,75R.19,63 .6d7 11. n313.07 .4L9 “-” 11.0?4.41 .53 I.l Q“-1.0Q85 U,960?52&o.6. . .. ——--.— —-------- .“4US.”3 ‘–”--—-”-”1203.2.-.2406, j.3850.14090.7 ““.4331 *4 .—. .— .-— .. . . _._. _______ .4331.433hu. Blb8i. &—. .-“3?+65: I3146.3.—.1955.1 ““”””-””” ”--–” -–-”-” “-721.9—...—————— .— - ...__.“401;3L20.3-..1 ~“ -- .–r-m -- . ..-. -.--r ...... .... ... -..1.0 0,3157 1.3079 o.n451 b.5257 6mh257 1,00.1010.0 17U. O ?U. n--.--...-–.–. .–i. >. ~,-1,..-.-... ..-!!.~ ._.- — —


31Sample Input List<strong>in</strong>gSERIES 60 HULL FoRM, 10. HO MLLICK (T140 F?PT. MO. 100 S) OCEANICS PPCIJECT ND. 1093—.OPTION CO NTHOL TAGS - A k c 1) EFGHIJ1 –-~=–-j--o---o ~ .1 ...rT._ . ...- .. ..—.. __ h!Os “OF STZTIUNS‘“LENGTH-”=” - “193.00 cEpl$I[y ❑ “1”.025000UISPL, = 4Ml?b.4n GRAVITY = Y.806b5flST AT TON. .. fimoo.hkAM 4PEA COk F, DRAFT Z-BC, R dEIti Hi ZFTA GYR, ROLL-n. oodp -O, oollrl 0$0000 ““rl. (looi 240. bOOO 0.0000 8.~6u2l.nu 14.3900 ,87?0 11.0300 5.044,, 4H1.3000 f1.000o 8.q6022.00 22.”RHnn”– .R94U 11.030L! 5.1251*127 ,64 4—”-”‘——---Av)/ii” 5.277 ““ --——-—-— ——--- =,--Tr-- — ---- .— .— ---— —— . -,.


32~,1.~1,,1’ 1,(,!...*.!.. . . . . . . . . . ..e. .a*. e-Oaap-oop- 000PO1’ -P=1’ ,’ ~1=,,~:. . . . . . . . .’.*!... ......... ● *I..e=epenooa~o oooo~o~apo,’,,),I1( I r1’~● . . . . . . . . . . . . . . ..! ..1 .*000 O-.o.b-b--oL..=OLIIi,..**.,....... ........... iOnooouooopo,,,1~IUaa-la-mapoII-P=. . . .>009;~I i, ~’. . . . . . . . . . . . . . . . . . . . .Oremaoooo 10.=0000 ‘= C:c=lpc,,II I1,II. . . .Oolp=,I,,I. . . . . . . . . ..l. .~. . ● . . ..i‘oop=~neo~==n’aw,,y-n-o=Ii, i!,,,i,’I...... . ..1...... . . . . . .aoouomo aa 00-,00 -oo -@cp,,,IliI. . . . . . . . .’ . ...’. . ..!. ..(Oaonoooe=,on 0-100 -0-0 L cI 1’I... . ●Dope1’++++ rbob000:I?:k‘n I’l’fulmCo momr-mm+., ..,.~ry’J. . . . . . . . . . . . . . . ‘ . ...!.1,ICoae=nm’co<strong>in</strong>-eoeeoo.i”m==o==u euaoeoaoe am0.s .O-m.roln-m.t<strong>in</strong> r: : . . . . . . . . . . . . . . . . . .a, A---.I-00.00000.00Lnmeeoc*omr-m-. . . . . .lulT!l+!ult-ml-b.,-. . . .. .=,— —


33.-‘\. .


Sample Output List<strong>in</strong>g, Cont<strong>in</strong>uedsT& 2U,0O.uooo IMFIWITY 0. 1.5164E-01 0..0100 ?.3139E+o0 1.44 bll E-n3 1.5327E-01 4.1053 E-o5.0300 1. b71q E+na 1,1455E-02 1.56 H7E-01 6.19 boE-04●u6Gn !,? Bll E+na 4.u(15i E-@2 1.6218E-01 3.3197E-03.1 O[IO 1,0357 E+o0 9,72k?E-O? 1.6791E-01 i. U910E-02.1500 L!, j20fi F-01 --mTzE=Til 1.7159E-01 2,6235 E-132.2100 ?.591=lE-ol 3,3n MHE-01 1.70 bi!E-01 4.9848E-02..2800 b;79h4E-ol.3600___ b,23~o E-01.4500 5. R24q E-ol.5500 5,5394 E-01.6700 5.3z’56E-01.a?oo 5.,17 F.QF-01l, UII)O 3.!l$197E-nl1.2500 5. I16PIE-011 .mo--—- 5.. ln63E-nl1. Y500 5,1Y94F-(,12.4500 k..311iiE-n I3.0500 kl.3Y97E-nl5.1 Y17E-ok7.5q~!E-okI, L)52HE, +O0l,39MbE+O01,8314 E+TI02.3 H+ JE+II0-3iIli9K+l)o4, f1322E+o0“5;1844E+O06. 1566E+O0H.77m+om–1.131 dE+nl[.41 U7E+011.56 B1E+011.6358E-011.5311 E-01].$060E-011.2 Hb5E-01m55E. ol1.(!776E-019,9-r l15E-02--9*36 J5E-02B,9413E-028.66 T9E-02-m,zcGi7E-nT!B.4952E-02B,519EE-o?B,58i6E-02B, fi632E-o?,B41J5E-02,0630 E-01.Z912E-01.+526& -01m-o=oT.610 bE-ol.bl.26E-m.5716E-o L.4977E.DT.3945L-01.2773E-DI.15+J4L-01.0385E-61.2533E-02.]9J3E-02 -i,—Ton<strong>in</strong>:5753E.ol4*7000 5. H186E-111“5. UOC!I 5.95~4F-n I 1.564 c?E+017,1 OO(I ~.06?5ti-fil 1.55 brE+oi B.7497E-02 7.2513E-02T7~0--~2667- n3--5K8~+nr+nr - B.~-ZTTF-T!r-6WTT.5E-mZ-2, L1796E-0]-Z,9152E_ol-2,9968F-01-3,1172E-01-3,2494F-01-G37~mm-3.3268F-01-3,1871 E-O-1:2.9490 E-01-2.6703E-01-2,4008E-0].~sr~=o~-1 .9276 f-01-1 .74 Y7F-01-1.6252E-01=T~5T7E-01-1.5450E-01- .58 lE-~-1.6462E-01-1.7166E-01‘1.7~03F-01E!$4kE-01-l,9039E-ol=T;9574E-01-2.0115E-010, b.633fl E-01-9,0894E-056,7142E-01‘1.3757E-03 6,89s5E-o I-7, &1149E -03 7.1632E-01-2,44 s2E-02 7*4630E-01=~~3Ei02 ‘7,671 f!E-o K‘1.1373E-01 7,65? ?E-01-1,-B OP2E-01 7.3400E-01-2.6827E-01-310601E-01-3,500 BE-01.3 W3T5E -01-4.0735E-01-4.2.? 94 E-IT1-4.3199E-01-4.3622 E-7JI-4.3575E-oi-4.27 .54 E-01-4,0 B65E-01-3.71329E-31‘3.4514E-01-3.130 ZE-01-.2.7925E-01-? .4 B52E-01-2,1946E-01?;7934E-016.1403E-015,4951E-01–FO?JTT3G O~4.314 ?jE-013cB3q6E-013,4s13E-013,2550E-013,15qqE-013,- r~g~~~3,2.147 E-013.45w,E-013.597 uE-01‘3.7& 71 E-013t893n E-01Q. T207E-014.1714E-olo. -2.82,0i24E-04 -2,93.0561E-03 =2,1.6530E-02 -3.15.4955E-02 -3.2I,34T5E-01 .3,32.5917E-01 -3,34,1519E.01 -3,1i.7410E-o7.l191E-018,1809E-01‘Bm2HE=ijr9.5333E-01V. E327+E-019. S93HE-019,7473E-019.4023E-01-;9i349E-01B.3156E-017.6443E-016.945 BE-016.233.5E-0]5.5596E-014,9244E-TI4,2975E-01I-2-2,6-27.T3-1.9.1-1.5-I-1.3- I-1.2-1.2-]-];2-1-1-1,3SERIES 60 HULL FORM. O.BO RLuCK —- (TND RPT. NO. 100 s) OCEAtd ICS.—PRoJECT IUO, 1093. SEP ?4,SPEED ❑ 6,5257 WAVE ANGLE = 10.00 DEC. VERTICAL PLANE RE.sPoMSES (NON-01 ME N510NALl‘- ‘--~~1 TLH @J&m -wmmP - M rm~--–p ~-~ rH-FREOUEMCIE5 LENti TH LENGTH +MPL. PHASE LMPL. PIIAsE—‘VtR7TtiL-F.Et4AMPLITuDEDPHA.31570 .?5039 618.232 3,2033 .B611 i79.3 .8729 ’85 .8.36080 .2754q 473.334 ‘2.4525 (fbb 170 .s .Bom -84 .?.4059n _.297~3 373,992 1.9378 :6657 178.0 .7.?62 ‘.22,4.45100 .31771 -- J02. ~34 1.56~=–-.5~OT7677.T2~Z~Z— -an;~.&9b10 .33Af11 250,358 i.2972 :3797 174.0 .5091 -77.4;~4120 .3&9?b 21u.371 1.0900 2263 ‘167.4 .3841 -- -=7 L.?,56630 ,361i3 179,251 .9288 :096k 142;6 :259~ ‘70.2“--*b31bo ,37n)4 54.558 .8008 07 49 . ●1449 ‘64.7,67650 ,37659 134,637 .6976 :1254 31.0 .0523 -53.4,72160 ,38037 -Ilfi33T---.mr -;-mr~r -70159 6?,.3,76670 ,38140 io~,~zl .5431___%io77 20,0 , 0456 115.1–-–TT4;F.EI1l Ho ,37993’ 93,49R” ‘—— .4B4* .0513 12,4 .0487, 65b90 ,37571 f13,9]5 .434!3 .0140 -9B,7 ,0331 135.3962C o ,36082 15.?32 .3924 .lv14b -L39.9 mTr7 lbo.T;94710 ,35927 68.692 ●3559 .0457 ‘i43,2 .0006 -76.8,99220 ,.347nb .5z’59i— -;3243 7211 -L4303- .0133 –-49,51.03730 .33217 57.2h5 ,296T .0084 31,1 .0006 -32,4m?40 .3146352’5qT .2(25 -- .0210––—33.3 .0026–-%H1.12750 .2q44148.469 .2511 .0103 14.5 .0059 119,2. 60 .27153 4+.813 .2 ,0124 -132.9 ●m3~*51,.21770 .24599 41.555 .2153 .022i -i57.8 .0019 -21?*8‘IZ6280 .2177~Xi3;63~ 7~~0165 149.TJ .0052 –-49.41.30790 .1 H690 36.021 . 1H66 .0250 7.2. ? .0035 -es*34,075E-03‘-6;5W~.0T- ‘-9,603E-03‘- l.300E.02-1.631E-021. B95E-022.026E-02– r.w~~:u~I,696E-02‘l; .237E.026.793E-032.16.4E-03 113.321 E-03 -150T.3G3G 03- -~~~3.069E-03~w262E.04-120-9l, b70E_031.93BE-037.459E-04Imm13-1442.316E-03 -i431.008E-03 171.821E-03


Sample Output List<strong>in</strong>g, Cont<strong>in</strong>uedSERIES bn HuLL FORIM, n.HO FLOCK ITIVO HpT. No. 100 s! 0CE8M[CS PRfl JECT NO. 1093 SFP ?49 1970SPEED = 6.525-/ I,AVE A,YGLE = 10.00 DEc. LA TEHAL PLANE RF SPONSES (NON-O IMFMSIONd LlWAVE- mCi3nF7TER WAVE WnVE/SHIP SWLY YAW !?0FRLOl)t NCIE5 LFM5TH LEhlGTH ,,l.lPL, PHJSE ~hlp~m PHASE Af4PL .I-LPHASELATERAL 5END. MTo&F3v L1 1 UULf-l-i.>=TORSIONAL&MPLITUDCMOMENTPH45E.3 L570 ,25039 61u.23? 3.2033 .169b 90.6 .1807 -,4 .zb74‘.36080 .275kY Q7XT3T -z4525– -–.15= -7;E~9fi--Yc--:~~9,4!7590 .297Q3 373.992 1.937FJ .1265 Yi, l .1?10 .5 .2675— .45To0 ,’31771 372-,-934 -1,56~6 –mo~90 91-i3--- ,1567 1,1- ,2593.4~blo .336P1 250,359 1.2’972 .0651 91.0 ,136P 1.8 ,2235—-74120 ,349?F 210,371 l,i)qall .0299” P,i3;4 ,1109 ?.-T - .14.23.58b3rJ .361 /13 17 Y,251 .q7B8 .0045 -36.4 , 0U22 3.6 ____ .0398,h314rl .3rn L4 15 L!;55H - .13uoti . [1262 -mi4- ~r 4.4 –.0858.67650 ,3765 – ,Oom -T13. T—.O1161,21770 ,z45q9 41.555 .2153 .0213 173.5 ,0069 -111.7 .00801.26?J70 .?i777 36 .-fi39 .?o (l? .0423 166.4 .0037 -113.8 .00291,30790 .lf16go 36.021 ,IB66 .0235 157.0 .0044 .97,2 .0009-95.3‘97,2-ion. z-104.0-A]I,4-119,1_-ll?.52P*31’4.016. ?lh.520,32~,9-17fl.l-133.74;:::-loq.7116.3104,0106,210R.3-. 92.1 B2E-043,935E=m6.7??E-041 ,QF!?E-031.623E-032.235E-U32.823E-03‘3. ?19E-033,311E-032,994E-032,29 E4E-031.381E-034.924E-041 .287E-043.433E-041.~95E-042.077E-045.31$E-04b.654E-045.206E-04I ,763E-041.1280 E-1342, fJ12E-04.97,0~h.195,1~fl,494,094.094.2-~4.996,097,6100.0ln3,410+3.5-71,3.5(3,5-34,8W*5126,5130,4145*5 -13e.33,7-.72,362E-05 -146.13;730E-r15 -145*J5,440E-05 -144,:7. ZSJ6E-05 -143.”,B,766E-r15 -143.’Bm9rJ3E-05 -144.;6.846 E-115 -140.;3.369E-05 -131, !5,905E-05 -22,11.15 HE-04 -4. (1.611 E-04 4.:1.795E-Ok 11.11*602E-04 18. +l,0ti7E-n4 23.13,aooE-05 8,[2m6f3BE-05 -93,:4.02 FIE-05 -122.;3.33aE-fi5 -144*{1.079E-05 174.~1.wr5E-n5 9*:2.649E-05 63. (2.6? EE-05 52*’1,997E-05 $8, !sEl?TFS bn HULL FoRM, O.HO !3LuCK (TNU RPI. h,o. 100 S) oCE&Ihl ICS PRoJECT ho, 10~3 SEP ?4! 1970SPLEII = 6.5257 ,.dAVE &,qGLE = 10. (TO rlfc. SHEh R AND HOPENT CLOSURE RESULTS—WaVE ‘~ii~oZl~TER iF,4u~ ‘w~/sHIp vETTICAL BENOING LdTERaL- BENDING TORSIONAL’FPEQ1JENCIE5 L: NbTH LENGTH SHEAR MOMENT SHEAR 14r)t4ENT k40HEM7,3157(I:36(I96,*n5Y(l.45100.49hlo.5$120.5 B63n.63F6T.6;650.72!60.i’h670.81180.85h90,90200,94110,9’3?201,037701,082401,21770l,262F!al,30/~11,25[139 bl’a ,232 3.Z033–Wbhf) ‘-- 471.334 -Z;.$r.2q7Q3 37d, Y~2 1.Y37e.31?71 .3n?.934 1.5696.33491 ?5U.3SP 1.2972.349?b 21 U. 371.36<strong>in</strong>3 179.251--ml+ — -1%4.55H.376s9 i34. (137.3 Flllj7 i IU.333.3 F1148 104. B2I.379C13 Y3.49H.3757i 83,915,36 FJB2—— 7!J.73T --.35Y?T 68.69?.34706 62,59n.33217 57.26S.31463 52,5Y3.29441 .4B.4b9V77 i 53-– ‘—m-owl 3,245q9 4A ,555.21777 36,639.1 B69V 36.0211.0900.V2B8–.-mm, b976.b13J.5431;4844, 434.Y‘,Tm..3559.3243.2967.2725.2511-.z’3?r.2153.2002.18661 .031 E-15‘-VX03E-1=! ;114E-15i..ll7E-l5 -=,990E-16t.204E-16L.144E-17> ,z27ET–! ,175JE-16?.264E-161 .557!s-16‘7,635E-lT?.q OYE-17oz52E=I—7.974E-17h.510c-17d.33HE-17A.646E-174.431 E-17P.630E=I–a;255E-17/..653 E-177,503 E-178.7 b2E-14‘T.825E-148;7Y7E-i41.745E-149.-/3 l14l47.14aE-143.022E-14‘2.5? 4E-l4-1.490E-141.991E-144.h90E-146-,355E-142,704E-14mm- 141.739E-142.12 ZE-131.5505.-131.302E-13q.3b9E-14~;w31E-131.538E-132.41 OE-I31.491E-i32,307E-i78, n 352=1-T5,652 F-1”14,?93E-177,023E-175.n40E-173.719E-17-3, tj14E-175,62?F-172.169E-171.?.62E-173.j B9E-l E!7,272E-ia-z; R79F-171.6 Z6E-17q,272E-la1,114E-172,456F-172,042F-173;61HE-188.624E-182,495F-17I,176E-174,9g6E-13S,938E-~32. Iq9E-137.944 !3-142.6 HfSE-137.6@E-]42.00 RE-1$li63YEil%-1.952E-141.392E-142. ITt3E-144.4 f36E-141.365E-133.z3aE-13-0.1*748F-132,047E-131.932E-134.012E-141 ,3g3E=Tr3.409E-13o.6.333E-146.415 (?-14‘q~4T6E=l4-6.568E-145.475 E-14-6,542E-144,618E-144,56eE-143.q!aiE=Tr7. f164E-k48.0 Ei5E-lr–3.905E-143. Zq6E-142.1q OE-143*m E -r5-6.0137E-1410sf39E-T31,104E-13–3.7ra E-l-4-1.227E-13–3;TJ67E-l4-2.199E-149.4 b9E-14-7,501E-14


Sample Output List<strong>in</strong>g, Cont<strong>in</strong>ued_:~RlE5 60 HULL FnF?KA, O,HO bLLICK ITNO RPT. No, 100 S) O_C_EANICS PROJECT “NO. 10.93 SEP 24: 1970SPEED . ~* 5257 WAVE AlqGLE ❑ 10.00 DEC. V SIG. WAVE HT. = 8.40. MEAN PERIoD = 10.00.RESPONSE (AMPLITLIDE1 SPECTRAWAVE ENcoUVTER WAVEF R~OU L MC I E S LFt4GTH - Hlil~ ‘-PITCH s wAy —- Y AU “-~m- ~,iT.~XT.B.F4, TOR SwL. m.—,3]570 .25713Y 6]6.?T ~o~ .2 0 -R2 l.o -m-02 3.g8 o -o -7*3WETr 6255-0 ~2.203E-10z 5S1E 1.360R0.275494! J,33 2.007E+o0 1..26 OE+OO 7.711 E-02 6,165E-02 1.311E-01 1: B33E-06 6,641 E-09 5’960E11?—,.40590 .?97q33/ J.qr3. tilb E+OO 4.d Ofk +OtI 1.+d2L-01 2.3 S2t -01.45100 .31771 3U.2. Y3 3.453 E+rjo 6.764E*o0 l,20i_E-01 $.248E-01 1,]63E+O0 2.666E-05 1. S64E-07 8,395E-10.49610 .33LR1 2=.36 1.a4B c+oo 4.942 r+ o r~ ? .97 L- r;~ 3 RE+06 4,+ -05 4, - r L.146352,59 3.441 E-04 2.399E-04 3,40 BE-04 1.137 E-03 9,48q E-03 3.790E=oe 2,a49E-c!9 1.124E-111.12 F0-” , 2~— 4 dm 6.ea7~-O-E=OEAO~3,Yb2&.041.u6m.051;446E-03 ‘-4.610E.0~b9Z .— t.wbt-ldL.17260,27153 4*. B1 H.21HE-05 5,333E-04 5,669E-05 7 .472E-04 4,604E-03 2.555Ew08 1 Iasf4E.09 2.25 BE=121.21770 .24599 4i05F2 . 66E -04 mt ~TL-n~5TTk-03z 15 E 3 060t .Oa 1 r!m . o ● .003 L-1


37VI. ERROR MESSAGESVarious error messages may appear <strong>in</strong> the output and cause<strong>program</strong> term<strong>in</strong>ation. Each will be labeled with the subrout<strong>in</strong>ewhich found the error, and possibly a brief note as to the typeof error. Some messages give error numbers as expla<strong>in</strong>ed below:Subrout<strong>in</strong>eErrorNo.Ex~lanationPRELIMB/CPRELIMBPRELIMBPRELIMBPRELIMCPRELIMCPRELIMCo123456Too many sections, wavelengths, wave angles, etc.Sum of weight distribution+displacementHull volume <strong>in</strong>consistent iwith displacementLongitud<strong>in</strong>al center ofbuoyancy # long. center ofgravityError <strong>in</strong> range or <strong>in</strong>crementof variable conditionsTDP calculation<strong>in</strong>completeTDP file lable # title data,Col. 1-30Errors <strong>in</strong> the calculation af the two-dimensional propertieswill be self explanatory. However, if an error is found <strong>in</strong> theenergy balance check on the results of the two-dimensional lateralmotion calculation the message is pr<strong>in</strong>ted, but computations proceed.It has usually been found that such errors <strong>in</strong> the energy balancecheck have little <strong>in</strong>fluence on the calculated two-dimensionalproperties.VII.ACKNOWLEDGEMEiYTSThe SCORES <strong>program</strong> derives from earlier basic <strong>ship</strong> motion<strong>program</strong>s orig<strong>in</strong>ally developed <strong>in</strong> the Department of Naval Architectureat M.I.T. <strong>in</strong> 1963–64, and subsequently updated atNSRDC . Thus , while the <strong>program</strong> concept is not wholly orig<strong>in</strong>al,the <strong>in</strong>creased level of both complexity and flexibility <strong>in</strong>Program SCORES results <strong>in</strong> a new generation <strong>program</strong> with littleresemblance to its predecessors. However, the earlier work isacknowledged as the root source for the present development.


The <strong>ship</strong> <strong>response</strong>s at each speed and wave angle are pr<strong>in</strong>tedout by Subrout<strong>in</strong>e TNIRPA, <strong>in</strong>clud<strong>in</strong>g closure results if required.38APPENDIX A - PROGRAM DESCRIPTIONThe SCORES <strong>program</strong>, written <strong>in</strong> FORTRAN IV (RUN FortranVersion 2 under SCOPE Version 3 for CDC 6600 computer), isstructured <strong>in</strong> a fairly conventional manner. The ma<strong>in</strong> <strong>program</strong>serves as a control for the job process<strong>in</strong>g, call<strong>in</strong>g varioussubrout<strong>in</strong>es as required. The major <strong>program</strong> loops over <strong>ship</strong> speed,wave angle and wave frequency are established <strong>in</strong> the ma<strong>in</strong> <strong>program</strong>.Data are transferred among subrout<strong>in</strong>es via labeled common blocks,each subrout<strong>in</strong>e access<strong>in</strong>g those blocks specifically required. Aspecial common block labeled PROGRAM is used and shared by manysubrout<strong>in</strong>es for storage of <strong>in</strong>termediate calculation data.Subrout<strong>in</strong>e PRELIMB reads, processes and stores the basic<strong>in</strong>put data. Prelim<strong>in</strong>ary calculations are performed and the dataare checked to some extent for self-consistency. Subrout<strong>in</strong>e PRELIMCreads, stores and processes the conditional <strong>in</strong>put data. Prelim<strong>in</strong>arycalculations are performed <strong>in</strong>clud<strong>in</strong>g spectral density calculationsand pr<strong>in</strong>ti out (via Subrout<strong>in</strong>e l?AR) if required. Then the twodimensionalproperties are obta<strong>in</strong>ed, either read from file orcalculated via Subrout<strong>in</strong>es CKLEW, ZIPSMO and TDLR.Subrout<strong>in</strong>e CKLEW simply calculates the two Lewis formparameters for each section and checks them aga<strong>in</strong>st criteria to<strong>in</strong>sure positive contours. If necessary, the section area coefficientis <strong>in</strong>creased to satiisfy the criterion. Subrout<strong>in</strong>e ZIPSMOcalculates the two-dimensional properties for vertical oscillation,while Subrout<strong>in</strong>e TDLR does the same for the lateral and roll<strong>in</strong>gmodes. The latter rout<strong>in</strong>e follows both the method and the notationof Tasai. Subrout<strong>in</strong>e MATPAC is used by ZIPSMO for solution ofsimultaneous equations.If lateral plane computations are required, Subrout<strong>in</strong>e F.OLDis used to calculate the natural roll frequency and the additionalroll damp<strong>in</strong>g, to approximately account for viscous effects.The basic <strong>ship</strong> <strong>response</strong> calculations at a given conditionare performed by call<strong>in</strong>g Subrout<strong>in</strong>es ALTNT, COEFF, EXCITE, MOTIONand BENDSH, sequentially. Subrout<strong>in</strong>e ALINT f<strong>in</strong>ds and stores thevalue of each required two-dimensional property by cont<strong>in</strong>uedfraction <strong>in</strong>terpolation <strong>in</strong> frequency parameter (equal to circularfrequency of encounter squared times draft divided by accelerationof gravity) . Subrout<strong>in</strong>es COEFF and EXCITE calculate the coefficientsand excitation, respectively, <strong>in</strong> the equations of motion,which are then solved <strong>in</strong> Subrout<strong>in</strong>e MOTION . Subrout<strong>in</strong>e BENDSHthen calculates the local load<strong>in</strong>gs and <strong>in</strong>tegrated moments. Closureresults are calculated, if required. Throughout all the calcula–tions, sub<strong>program</strong> function SINT is used as a simple <strong>in</strong>tegrator.


39pr<strong>in</strong>ts the <strong>response</strong> spectra and statistics for long crested, oruni-directional, seas at the particular <strong>ship</strong> speed and waveangle. Only the <strong>in</strong>tegrated spectral <strong>response</strong> at each wave angleis saved( so khat the <strong>response</strong> spectra for short crested seasare not available. For short_ crested seas results, subrout<strong>in</strong>eSPREAD is used after the full range of wave angles has beendepleted. The <strong>in</strong>tegrated <strong>response</strong>s over wave angle are computedand pr<strong>in</strong>ted.After completion of the specified calculations, controlreverts to Subrout<strong>in</strong>e PRELIMC for additional cases with thesame basic data, that is, the same <strong>ship</strong>. If no additionalcomputations are required, normal <strong>program</strong> term<strong>in</strong>ation occurs <strong>in</strong>Subrout<strong>in</strong>e PRELIMC upon <strong>in</strong>put of a run control tag less than 0.0.Only one special system subrout<strong>in</strong>e is <strong>in</strong>cluded <strong>in</strong> the <strong>program</strong>.This is referenced <strong>in</strong> the ma<strong>in</strong> <strong>program</strong> by CALL DATE (DTA, DTB)which provides the current date i“n the argument variables asHollerith data (DTA = MMiwbDD,b19,DTB=YY).Program SCORES - Input Data Card SummaryConditions(see legendbelow) -*‘k‘#*OT (E)>OOT (B)=OOT(B)>O*,___________ .*OT(E)>O*OT(D)>OO!T(D)=3ParametersTitleEh*ered<strong>in</strong>formationOption control tags; n~e~ ofsegmentsLength; density; gravity; displacementBreadth; area coef f. ; draf k;centroid (each station)VCG; roll gyradius (<strong>ship</strong>)Long. gyradius; LCGWeight; VCG; roll gyradius (eachstation) .First sta.; last sta.; <strong>in</strong>crementfox moment talcs,---- __----- __ --—----------------------Run control tag; <strong>in</strong>itial, f<strong>in</strong>al and<strong>in</strong>crement <strong>in</strong> wavelength, or frequency;<strong>in</strong>itial, f<strong>in</strong>al and <strong>in</strong>crement<strong>in</strong> speedFrackion of critical roll damp<strong>in</strong>gInitial, f<strong>in</strong>al and <strong>in</strong>crement <strong>in</strong>wave angleNo. of spectra; parameters ....Additional correspond<strong>in</strong>g parametersI?or<strong>in</strong>at& ColumnsASO111210X, 4F1O4F1O2F1O2F1O3F1O3110___ -—----7F1OF1O3F10110, 10F510X, 10F5


40APPENDIX B - FLOWCHARTSFlowcharts follow for the ma<strong>in</strong><strong>program</strong> and each subrout<strong>in</strong>e . Thereferences given on the flowcharts ,such as C-01 etc. (above and on theright of the symbolic outl<strong>in</strong>es)correspond to numbered comment cards<strong>in</strong>cluded with the FORTRAN source<strong>program</strong>, and listed <strong>in</strong> the nextappendix.


41F, “tic..,, ,“, !“4,. ..”66”.. .. . . . .. .. . . . . . . . .s,,,., .. .. .,. . .>>>>>>>>>,>>>>. ,., + c-”, . .,>>>>>>>,...,+,... .,,...,.,.,.+,.,,+.,.,..,●✎✌☞✎>>>>>>>>,. >>>>>>>>>>>>>>>>.


42.:.m:0.*..’,7..:.. .\:*\7:.’..,\::. . . . . .‘2.. . . . . ..:. ” .:++,,, : ,: ““,... :L-..-.-,. . .0.-. ..J .=..ti.,J..:::.::. ... . .. . .. ..-. !(, .. . . . . . ..-,, !-..,, .,..., .,, —,.. . . . ..:. ..:


43IIIIj--+I..o!ifJ.-J’mmA ● -> + +* .. . . . .. .....uAAiAAAvv:v“v:“v:v:v.-.---- . . ..k, .w:w,+>A A. . . .. . +/3. r!m. . .. . *. . . . . . .. *.. . :ZE* ..30u? *.. . .ZLL. *X..+ ...● H .+->qzo*.Em● *3. !J+,..,*.!,,—. —..— —


44:,. : . ..v.,. . . . .***..●...“.“* . . . . . *:; .. “ ... . ..,7.x.. 3..-z:a. . ..I i I4+-I>+*Vv““:\ v.\ v\ v:.V. . .... -. ‘... .“\l-!!\v,r. u,+->\,,. ::\ .“>‘\ :-.... . . . ..,i,..+..,..:;,,,*.-, :,.,-, ., ., .!.,>;~ ,.:,‘“. ..-. :,i.. .. .,1 r- ..:r:,,J:,:.:..::.:., ..,..,”.,.-:.? .,.,.,., >~: -”!:.+, .::’, :.,,.., .,.;“ll.:..!::.::’.. . . . . ..< .,..’.., .!.”... ,1(,.. . . ‘ ;..:+:..)+.+, -,. .,, .-,1-. -:,- !..., . . .. ..-. i-.,,,’, . -, .. ..-..,,. .\—- .—


● ✎ ✎ ✎ .✎●. .. . . .. .i. ..● +-Ii. . .. . . ...●✎. v’YAAAA.4. * *“. . .. . . . .c: 12“:vvvvvvṿ,.AẠ


. . . . . . . . . . . . .,r.~;.y.. .>>>>>>>>>>>>>>>> >>>>*.!+. c-n5 c-o?.* 9. . . . . . . . . . . . . . . ,.,,* CHECK *, cORGECT . SET UP .*, RF.SULT5 . *>>>>>>>>>>>>>>>> >. VADIOUS . >>>>>>>>>>>>>>>>>*, ,* cONSTANTS *. .* ,,, , .,.,...,.. . . .////{{//////// PtiltiT // EktiOU // l.lESSh Gb ////////(/////*..+. . . . . . .. . . . . . . . . . .* ,+l-. F- +.r,.,+ +.+*++*+ Yr-. ,.,+ h>>+ **. ., ..,.,?,,,’. +++ ..,...... . . . . . . ...&*+ ., . *&+4*4+4+44+ * C-25. . . . . . . . . . . . . . . . . .+ sTORE RES(II. TS .+ . Id 7DP ilRRAy ,? . { I,v f.lK?\naY) .. . . . . . . . . . . . . . . . . .+ +?’***+?’*+4


.. . .s.:,. ...,,, .... . .,,>.. ..>: ;, .-.“’:.,,> .:.,::!,:2. !1-. .,,. . . . .~ ,, ., ,,... W.: u ..!. “:... ..:..!... . . .f’. .-. .,,, . .. . . . ..>, . . . . ,: ., 1 ,.,.:


,:,


FLnu?14,cT.............. ,!,7., ,. . .L.L >>>>>>,>>>>>>>>>,>+................... r.”,,...,..=,. .......ST&P. 1 ..P .nu,. wL8M.F= .nr ..,, , ,,,.1. .. ..,. ..-. .,+,+., ...!,... . . . .. .. . *,. . .. >>>>>>,>+ ./.... ..”3-,,. i................. +. r..,, I LT. ,kr . .. F.. p.. .“,1. .>> >>>>>-. ,,.,,. .,. .,mn.,r.,,,q .. . . . . . . . . . . . . . . . .●✎●✎☛.Nn...,* ●.Un .* VERT ●..<


.............. ...... .. . .. r.nl.................%F. ll@ ,c*, rl!,f,TT ”,! ,. P&Ptl,.lrP~ .........1.. . . . . . ., ........ ... ....... .!. &>>>>> >>>>>>>>>>>4. A (--05. .................. STOPT LOOP ..*r%JFP STbT!rIN5 ..F.R VOHT C*LC5 .. .................. .. . >>>, >>>>>, >>, >>3+. A c-oh + .*.+ o................. ●. ,, ch, c MwENTs . ‘. ..VS .“ . ~TfiTroN5 MDRF ●“.. .Fri.F4c H TYPE ,* ,,. .. . . ?&, r. .4, . . . .* *+, .RFTUPN .* ‘. .“ 4+. ..+ . . . . . . . . . . . . . .* . . ● +’?>>; >>?>>>>>>>>.,.. . ,yr5>> >>>,Inr.1 im,nr~,c .n~sl,tls .................. ..............................-. .UTQ, . ..,.. .—.*>>,>>>>>>>>>>>>>>>.”. . C-nl* /)//////////)* ,pRr Nl FRFO /.>> JV=. .. ,.(37 .,,/, //!/)1/// ./aQT~17 ,Oro / *,X, qmnkls.. . ,>>> >>>>>>.,Lb7% 01 Afi, F/ .1,/)/////!!/! 4>>>>>>>>>>>>>>>>*,,,——● *VFS .. CLOSURE ....


FLOWCHARTFOR suRRnlJTINESTAT I>>,>>>>> >>>>> >>>*>>>>; ,57AT15T!cS AND ,: G1fiTE R&WF , . STORE I?ESULIS .................. .................&.* C-06///)/////////c>>>>>>>>>>>>>*, +C-03* ** . ST&RT LOOP .*nvER 5E&* + . STfiTE RhNGE :, . .................*+ .+.


52APPENDIX C - LISTING—The complete FORTRAN IV source decklist<strong>in</strong>g for Program SCORES is given.The numbered comment cards, such asc-01 etc., are cross-referenced onthe flowcharts <strong>in</strong> the previous section.SCONES 11NPUTv OUT PUT WTAPE5=1NPUT 1T4PE6-OUTPUTP ThPEIO IcnMhIoN / / TnP (21,25.101rOMMON / COND4 , P1, GkMMfi,QRAv, !?OCOMMON / MHDT , HDAIlb I,DTA, DTR. I@VIC,l D, IE, IF*! G, IH,ll,lJ, STS 15)cOMMnN / ObsOA / RPL. DISPL, TMASS?YMERT, BSTAR 1211 ,ARFA 121) *xsEcoE(21) .nRAFT121) lzBAR(21), x1121)*x Isolzl)PxDwEIGH[211, DMAss(211* zwT(211,0nL 121) *zc Q*xNERT*xxzPERT, GM, MINKRIs MAx KRl, INc RES. ROLn PFCOMMmtJ / CASDA , NN,0MW(51), WV L(51i,0MWE 151l,VMIN, VMAX*DELVVxNw&, wAo,2s), wANG1*wANGA, DwANQ. Nwl*wD (20) ,WLL(51)COMMON /’ TOIR / ME, MEN.4NS(21,10 ).KL, KU,109 IWCOMMON / MIblD / IA, NS, DX1, V,WAklG90ME6b *WhVEN*cw TDIX 121*51 vFACPw ADATA s75/6HPN. sQ,6HR. M.S.,61’IAVG. ,6HSI0, ,6HAV]/lo /,,c .. *+ GPEC14L SYSTEM SUBROUTINE wHICH RETuRNs CURRENT DATE ‘* “’CALL DbTE lfITb,DT8)c-o] RE4P, PROCESS ANn STORE INPuT n&TdC4LL PRELIMU50 CALL PRKLIMrIF , IE. GT. O ) chLL ROLDr.02 1N17, kL1ZE SHIP SPEEOv = vMINc-03 t.00D OVFR NAVE ANGLE RANGEf,o no qn lWtil,NW4WUblG = WA0(7W1*P!/l BO, OC.04 ~FT TOP bRRb Y USb6E LIMITsKL=lTF( tE .GT. 1 ) KL.3(u . 10IF , IE ,L7. 1 .OR. AMOD(Wh D(l W) Vle O.O1. EQ. O.O 1IF ( IP. LT.? ,OR, Mb FKRl, EQ. MINKRI ) GO TO 70PP7h17 920 WHDU, DTb. D70PRINT 9?1. VVNbn[IW)IF ( 11. ro. l 1 PRINT 924PRrhll 9?3KU . 2C-0570LOnD OVFR NAVE FREQUENCYno gn 10=1 ,hlNOMEfit x OMW11O!k(AvFh,z Ob\EGA*OMCQA/GRAVwVL(1OI= 2. O*pl/UAv ENWLL (TO) = ~vL[lO1/BpLRANGEc-ohCA LCULb TE FPEQUENCY parameterscw z GR4v/OMEGAL,E . wAVEN*[ CU. V*COSIWANO) )OMWFI IO) Z WEMEN , #E* WE/GRb VPRoGROM SCORES (2NPUT,OUTPUT, TApE5=1NPUT .TAPE6*0UTDu T,TbpE1 n!lcONTINUED1c-OT PERFn RM CAL CIJLbTIONS AT EACH FREQuENCYrhLL AL TNTr.VLL COFFFCALL EXC7TECALL MOTIONIF ( lB, LT,2 ) Go To 80CALL BENnsHRO COklTTNUFr-oe mR1b’T OUT RESULT$ FOR THIS 5PEE0 ANO WAVE ANGLECALL TM1RP4IF ( lD.EO. () 1 @O TO 90FaC . [(1.0 /(Dls PL*OPL) -1,0 1*1!.CbLL STAT1qn PQMTINIJETF , IF.LT.1 ) no To 100C4LL sPREADC-OQ lNCPFMENT SHIP SPEEO10Q V r v.DFLVIF 1 v.LE. VMAX .AND. VMIN. NE. VMAX 1 @O TO 60no Tn 50


53sl)UPnUT7NE PRELIMM?OMMDN / COhlDA / PI, GAMMA, QRAV, ROCnMMnN I MHDT / HDAll~) .DTb*DTUP IH*l C* ID* IEVl F* IG~IHPIf*l J,STslslCOMMON / mASOA / BPL, DIS?L, TMASS*YNERT ~B5TAR (21) .ARFA 1211 9x sEcoE[21), DRAFT 12111 z0AR1211*x 1121)#x1so 12119xowc1QH(211, DMAs5(zl ),zw T[211. QRL[21)*zco PxNERTvxxzP2RT. GM, qINKR17MAxKR I*INcREs*RoLnpFcOMMON / MIMD / lA, NS, DX1, V,WANG. OMEGA .WAVEN, CM. DIX 12115 )PFAC*wh?flMMfiN / PROGRAM / STORAGF (L36). Y[211#STfi(Z1 1,W1211c-01 READ (ONO PROCESS] BAsIC INPUT DATA1 RFAD 901, HDARFAn 902, IA, IR, IC, IO, IE, IF, IO, IH*l I,lJ*NM = M-1AIF ( M. GT,21 ) Go to 951NS. Mno 2 I.l. MS STA [T) = I-IJ,50*(1,0.1A1PEhn 903. BpL. Q4MMA, GRAV, DtSPLRFAn 904, (BSTAF(l), SECoE, TI, DRb FT ,1), ZBAQ, II, l.I, M)IF ( ZEAR(21, GT.0,0 .OR. IE. LT.1 I @o To 6t)n ‘! 1,1, MA = 11.0.2. O*SEr OEIIl)/6. OIF ( A .GT. 0.80 ) A . 0.803 ZBAR (II = DPAFT(I)*o4 IF ( IE. LT. I ) GO TO 12RFAn 904, ZcG, RAoOROIZ rF (rR.GT, O ) 60 To 10RFAn qn4, P4DQYR, CQLco 70 1110 QFflD Qo+, lDwE1QHII),2WT(11, GPL,(11,A,,1.1,”)TF I GWL121. GT, O.O ,OR, IE,I7.1 00 TO 11


54PRINT 9flR, NNl, (WD(rl, 1=1,1 O1IF ( lD.NE.3 1 GO TO 25READ q09, (WU(I), l.ll ,20)PRINT q09, (UU(11,1=11W20)c-03 tf4PUT DATA ERROR CHECK25 TX=0IF 1 MINKF1. NE. MbXKR1 .AND. INcRES. LE,O 1 1X=3IF ( SWL.NE.flNL .AND. DELWL. LF. D.O 1 IX*3IF ( VI+lN.NE. VMAX .AND. DELV. LE. O.O ) 1X.3IF ( U&NGI. NE. WANOA ,4ND. DwANG.LE, O.O , IX , 3IF 1 lX.NE.0 ) 60 TO 950C-05lbllT1bLr7E IAND CHECK) INTERNAL PARAMETERSM . hlsnFT , 1.0DOT , 1:0IV ( Nwl, QT.1O ) GO TO 9S1Nhl. l@!dL-Sb’L)/nELWL+l. OO1IF [ NN, GT.51 ) GO TO 951IF ( lb.LT.1 ) Go To 30c-oh PRELIMINARY c4Lc UL4TIONS FOR lRREQULAR W4VE$nO ?? l.l, hlN?2 ‘IM. (1)k SWL.UELWL+ (I-11CALL PA.IF ( lF.LT.1 ) 00 TO 32K = 90.001 /DdANGTF [ K.LT.2 ) K=2IF 1 K.GT,12 ) K = 12OWING . ~o.0/tiWJhlnl . IBo. oIF ( WbNGA-UAl”GT .EQ.0.0 1 GO TO 23.&h,@T . 0,0G. To 3723 WbhlG1 = qO. O‘?0Tn 37r.07 pvEL7Mt NApY CALCULATIONS FOR REQULAR UAVES30 no 31 1=1, NN31 “.W, ,) . SORT(?.04PT*GQ4”, (SWL.DELWL* (X-1) ))32 hlWA . (hlANG4-wANGIl/DNANG.l. ODllF ( MWA. GT.25 , GO TO 951no 33 1=1, klwh$,AD(T) . WAblQI.nWAN5+(l .1133 CONTINUFC-Oq CALCULATE TWO-DIMENSIONAL SECTION PROPERTIESc AND CONVERT TO DIMENSIONAL PESULTS.0 lF ( 16.07.0 1 GO TO EOCALL. CKLENIF 1 lE,GT. I 1 GO TO 42C.10 “FQ7, C4L 05CILLA:IONSCULL ZIPSVO (UET)rA = Pr*RO/R. ono .5 JE1. MFAC , FA. BSTAHIJI .*2no d5 1=1.NF1,5 TnPIJ .1,11 = TDP(J. r,I).FACIF ( lE.LT.1 1 GO TO .3C-11 LATFPAL AND ROLLING O5C1LLATION542 cbLL TDLR (PDT)nO .6 J=I. MPRO. = 50RT(H5Tb R[J1/12.00GRAV) 1IF ( RROE .LE. “.0 ) GO TO .6R?nf,l . RO*A*EQIJ1R5A ,’) . RS, (3),9 BOBUSA (51 . RSA(3)+R STAR(J)Psb (h) = RSD151/QB OriP!+h(?l . RSA(51. RSTAR (J)USA(R1 . RSAI1), RBOGDSA (q) . R5b (51❑SA(l U) = R5A 161DO 44 1=1,ilFDO b4 K.3,1Oh4 TPP1,l,l,K1 = TDP(d, l,Kl+RSb (K)hb rflblTINUFC-12 URITF Tl)P fiRR4Y ON FILE (T4PE1o)&3 WRITF (101 (W A(l), l.l ,5).WRJTF (101 ([(TnPIJ.l, K1,J.l, M,,l.1 ,NF1, K.l ,10)IF , DFT. EQ, o.o .OR, DDt. EQ.O. ” ) 1X E &c-13 ..1,,, 0(,T TWO- DIMENSIONAL SECTION PRoPERTIEs47 PRINT q20, HDA, DTA,0T0PR1b,T q97“n ‘P J.), M.7A . J-o.50. (l.lA)PR1klT WR, 37ALa PPTklT 99~, OMT (l), lTDP(J, 1,K), K=2,1 O),x 1 OMTf I1, ITDPIJ, 1,K1, K.1.101.1.2, NFI60 T“ 5]C-OR505%51REAP TOP ARRAY FRoM FILE [T4PE10 ISF ( lG.r,T.2 ) GO TO 51REAb (10) (HDC [11,1=1,51Do 5? 1,1,5IF , HOC(I) .NE. HOA (I) 1 eo To 949rONTINUFuEbn (In) ([(TDPIJ, l,K), J.l, M1,l=l ,NF), K.l ,101IF , lG.EQ, l ) GO TO 47YG,3IF ( lX.NE, n 1 GO TO q50RFTURNc-o? 00 RACK FoR NEV RASIC INPUT DAT41 CULL PRELIMB(40 TO 20C-04 EPROP STOPS949 7X.595n lx . 7X.1951 PRTMT q40,1XIF ( lX.EII.6 ) PRINT 941, HOC60 STOP83? FORMb T ( /3flHOCONDIT10N4L INPUT DATA C4FD PRINT OUT /)907 FOPMAT ( BF1O.41908 FOPMAT ( 110, 10F5.1 19oq FORMb T ( 10X, 1“F5.1 1Y20 FORMAT ( lH1, 13&b, A2, 3X, A1O, ?421*AO FOPMAT ( 39HOSTOP IN 5UWROUTINE PRELIMC. ERROP NO. , r3,*41 FORMAT 1 15HOTDP FILE LABEL , 5x. 5A61997 FnRMAT 1 1H17,10 X.34HTWO-D1MENS1ONAL SECTION PROPER77ES /4x.5 HFREa.X,&X,,Z?HPAUAM. A.PRIME [331 A(BARISQ. M-SUB(5) N.SUB IS, MX(S.PHI1 N($. PHI I I-SUR (RI N-sun [R) F-5 Ufl(R,5) N-SUU (R.X5) 199e FoQM4T ( 4H STb , F5.1 1799 ;~:MAT ( F1o, u, 12H INFINITY , 9E12, L/ 1 F1o.4, IoF12. bl )C-91C-D?SUBROUTINE PARCOMMON / CONOA / P1. BbMMfl.QRAV, ROCOMMON / MliOT / HI)A(L4), DTA, DTB,lB,lc, ID, IE,7F,1G, IH,ll,lJ, sTS[51COMMON / CA5DA / NN.0MW1511, WVL1511,0MWE 151l,VMIN. VM4X, DELV,ti NWA, WAD(Z5) .WANG1, WANGA,0W4NG, NN1, ”D (20),HLL (51,COMMON / 5Tb T / 5PECM(10,511, RSD(h,lO, Z5)rrtMMnN / PFOGRAM / STOF4GE(39BI ,Y(51) ,UVST (10,5)P1MF)IS1ON SPC (l?)DATA SPC/6HNEUMAN,6HN 1195.6H31 lH&.bHLF1 ,K 6HP1ERs0, bHN. M0SK,6H0W1TZ ,6H(1V64, ,K 6HTw0 PA,6HRAMETE,6HR, 1SS,6HC 1967/GSOIIDR . GBflV*GBAVCONTT = 0.000 U27*m SOU4R*Pl**3CALCULb TE WAVE $PECTUAL DENsITY AT EACH FREOUENCTnn ?0 KK=l, NNU61+W = OMW(KK1*OMW(KK)OMSQ = OMU(KK1*VOITH.VOITHLOOP OVER WIND SPEED [OR SE4 STATE) RANQEno 49 1=1, NW1u = wD(r)*L.6B80@e8qGO Tn 1 10. 2U, 30 1 , IDC-3.4 rdEu.&NN 5PECTWJM 119631 (HALF. so THAT 519. . 2 TIMFS R.M.s.110 PowFw v l-2.O*GSQtiAR)/(v07TH+U.U)SPECV1l, KK1 = (cONST. EXP (POWER) )/(OMSO*OMW, KK) )00 TO 49c-3.4 PIEP?ON-MOSKOWIT7 SPECTRUM (19641 FOP FULLY ARISEN SEhS20 POUFQ = -.74* (QsQUAR/ (U.UVVO, TH) )“.??PEc M(l, KK1 = .0081 .QSQUAQ.FXP (POWER 1/OMSO00 Tn b9C-3.. T\dO PARoMETFR 5PEc TU11M, BASED ON 51’3N1F1CANT !4bVF HFIGHT fiND MEANc bIAVF PEP1OD, SIMILAR TO I.S.S.C. NOMINAL (1967)30 4A = 0.250 *wD(lluwD (11K . IO-TBB = [0.R170*2. flnP1/WD(K) l**&PllWFD = -BB/(VOITH*Vfll TH)5PEc M(l, KKI = AA.BB*EXPIPOWFR)IOMSO49 CnhlTINUF50 CONTINUF


,.,. . . . .u-l<strong>in</strong>+.ru.%..: ::8G0+, r..‘:. . .:i. .mmm.-.. M... .z-mmmmr.mrm-o-m-U1-mm mu..ru+ r.-...C.l--. -.mb?.1 . . . . . . ..-. .-.-rmul..-.-”m=-a+m. . . . . . .mz .>.


56C-02r-037>?iKJ(K, J1*SIN( AKfONTTNUE●2. O*AJ)LOOP OVER MUMMER OF STATIONS00 1n05 K1.l, NSIF ( K1 ,EQ, 1 1 00 TO 85CHECK FOR CONST4NT SECTION PARAMETER5KK . K1-1IF ( SB8BIK1) .NF. SB8B(KK)) GO TO 05IF 1 SRHIK1), NE. $BHIKK1 ) 00 ?0 05“o RO tr .l. NFrnP, K1.,i F.li = TDP(KK, IF, ll1 TDP(v I.lF ,21 x TDPIKK, IF,21(70 TO 1005t-oh CHECK FoR ZERO sECTION05 IF ( S8PB(K11. LF. O.O .OR. SRH(KII. LE. O.O 1 00 To ORsANm3,1&159. (sOUEIKll.4. O.3, 141S~)*SBH(Kl)/l[[SRHIKl l&l, O)*(SBHIKll*l. O) 1swA.5.5si65- l,?707B*SANIF (%wA! 11,12,1?11 WPITF [6,1201 XlIZO FORM AT(47HOINCORRECT PARAMETERS, ZIPEMO QUITS FOP EThTION v13~PET . 0.0f10TO 100512 SAZ. ?.3561Q+5QRT(5WA)$A. IsOHIK1l -l.0)/[SBti[Kl).l. D1*sA7/S4NsR.5Az/shN-1.05Afi.5A*sb.3 .0*90qAAb. Sh*SAh+3. Q*EA*SU?A2. -1I,0.5A)*(0.39333. O.06667 .sA40,0ze57*sAh 40. o15B79sAAA)v.9. o.sB*10.2-o .14ze6*5A-o .0370b*sh A-o, o1810. stiAA)SAN= -(1. O.SM)*(0,06bb7t O,02n57*SA. O,015BT*S4k)-9. O*5B1*(0.1428 b.o,03704*5A. o.o101e*5AA)sF3.-(l .04sk). (Q.02e57*o, Q15e7.54)-9. o*sB* (o.0310bd o.olel B*5h)sF6.. [l.o.5A)+o. o15e7.9. o.5B*o, ol81eC-OS L.oOPOVER FREQUENCYBANGEBE ,90 100b IF.l, NFsFRPb . OMT(l F1.SBH(K1llF f SFRP4 .OT. 0.0) 00 TO 3SAR . 0.0c? . 0.0GO TO 10033 SW= SFRPA /[1. O+SA.50)SF1 = S&2-0,785 A0*5W*ll.0+5#1AMM.l. o1F1(B811- (0.001 .BAI1 21.21,2021 Ro. (-BD-4LoG ll.781*BA11*EHYRE=(-BE. UC)*EHYGb. RD.CX-BE*SIKGR.M*CX4ED*51Xf<strong>in</strong> ‘r” lnoo17 iil.l. O;Eel~0 ?? MM.1!5AMMm14MPII.Ro-COBC2*W1nE.RE-st8c2*8tilWR1.BH1*AMM/BACORCI=C0eC2VCORC -S1BC2*SIfl CS1BC7. S1BC2*COBC*51 BC*COBC2c’7Rc?.cr19c122 cONTTNUE0A=RO-3. 14159265 ?*EHY*S1XRR=RC.3,14159265%* EHY*CX1000 S5h(11. -GBSPA (1I.-G&15 CONTINUE5S40=SSA (11;Q*. o.05236>0 25 1.2,11L1m ISOAII1.SSA( ll-SSAO*(I. O-[A1.1 ,0)/10.01sm.-so. (0.15707 e4s01?FQ1=sFO1+ sPB(II*5FMSFP1.$FP1. SPA (1)●SFMCONTINUE?Foi. SFfll-0,5.SPB(lll*SFM5FP1.5FP1-0 .5*SPA(11)*SFMFPA(I,l). $SAOFfiA[7 1 .sSBO.,no ?i J.1.5YSUR.2*JsIA. slA+SD& (151)B)* SIKIl K,J)S19=S1B. SDU(l SUH1*SIKI( K,J1CONTTNUEnn 70 J.I.&T6U; ,?.Jils>R.52R, SDB(1SUP)~@S1KJ(K ,dl?2b P524. sDA(lsu P1. srKJ(K, dlrnNT7NuFiQA(KK) .0.264667*S lB.O.131333*$2BFPb[K,5> =0.0675?*5wFPA(’,5) m0.11&?7*SWFPA(6,5) .-1. O-O.07U28. SUFPR; ,1=,.O+SA. SiFPO(?l. O.63662V(0.333333a (1.o.s A!-l. BO*SB)FPB(3)=fl .31R31. (0.0b667.0 .06667 *SA.l. Z8571*S9)FPB(’). ”.b36624( 0.00952,0 .00952 *5A40.l1111*5B1FPB(?l. fl.31a31* (0.007 q3+0.007930SA. O.0818Z+SB1n!J 100 1=1.5no 101 J.1,5101 R1(7. J1 x EPA(l, J1.1 (1.6) = -E’2A[?1Dn 1n7 .1.?,1010’/ Ri(i. J)-= -..0100 R1(T,lll = E?H1l Ino 1n5 1=6,10TJ . T-5HI(r.1) = CQA(IJ)nO 1“4 J.2,510. will.J1 = 0.0nk 1.6 d=6.10JJ = J-G106 R1li. J) . EPA(IJ, dJ)105 Rl[l .111 = O.u


57C-O& CAL1, MATP4CCALL MATPQCIF (nDT.EO. n.01 DET . 0,onil 35 1=1,5FDX, ,l . B1(l, lI)35 FoX(T1 . B1 (1+5,1117PV.FPX(l). SFP1-EQX[ ll*SFQl .EPX(21*SF l.EPX[31. $F?1.FPX(.1*5F3 .EPX151.SF4?C=SDF/ (0.7ti54+(1.D.5A.5B )*(1 .0.Sb. SB1l5AR.?. 1L159. S.V


587F 1ABS(XO). LT.lO, E-6) X0 = 0.0IF (8H$(YO). LT. lo.E-kl Yo = 0.0lF (xo.l.T, 0.0 .flR. YO.LT. 0.01 Go To ~0Y?(T1 . XoYS (l! = ‘fOCOEFF1 (1>= 11.-4I1*SSS. TA3*STS~nEFF2 [1)= 11,.A31.h I*sl NIE.4ss).2. *A3*s1N 14.*$s)C-09 CA(.


C-19 rOMP, NE TERMS FOQ F1N4L RESULTSPP . P(l) aP (l) .“ (1).0(1,00 . FMO *P(1) .FNO “Q(1)DO . FNn *P(1) .FMO “0(],.. . XR 4P (11 . YR a(l)P5 . ‘fR .P (l, . KM .0(1)7F (tiM. FO.11 GO TO 67c-2n 5W4V RESULTS%x = 4Rs1Qo*z. o/[P1*P1l -1.”)IF (xx,LT. o.025n ) GO To b?1, ( ABS( 0D-4. g3481/4MAX 1[BBS(F”0+P [ill,ABs(FNO, Q(]))) .GT, 0,10,1x=1b5x XK . HO/l S1C~6PP).,1, = xK!+PnXK =X.oR(. ) = X,*P$C-216RYK = A[7, MP1&(l, MP1 . A(I, l)66 A(l .1) . XK7F”(’MM, EO. 1 ) 00 TO 96..,1GO T(!6?C-2? POLL RESULTS67 XT . AFJ?(P5*B. o/(PI. P1l -1 .01XK = HO/, A,fl*SIG*PP)P(51 = XK.PPR(7) = XK*POXK . XK*SOPT(XIB)R(61 = P1*P1*x K,@. OR(R1 . YK+QQGo To 6RC-23 76Pfl FQEOU


CV[lll . FX(2)-V*DFX(llCV (I?) . BX1lF ( KU.LT.3 ) 90 To LoC-olC.OZcOMMON / C0~lD4 j P1.G4MMA. QRAV. ROcnMMnN / BASDO / RPL, DISPL, TMb SS, YNERT, BST4R[Z11 .ARFA [211 1x SECOE(21), nRAFT(21), ZBfiR(21) .Xl[21). XISO [21)*xDwEIGH[zll, DMASS121). ZWT121 1!GRL(211*ZCG9xNERr*xXZPERT, GM, ”lNKR1. MkXKR1. lNCRES, ROLfiPFCnMMON / TOIR / WE,tiEN.bN5(21, lD1. KL, Ku. 10,IwCOMMON / MIMU / lA.NS.DX1, V,WAMG, OMEGA. whVEN. CW. D1f(21*5). F4CV WACOMMON / EQMO / CV(12), CL1271,7W 9MW, YW*NW, KW.OMPLEX 2W,MW,’fW.NW, KWcnMMnhl / PRflGRAM / STORAGE (h421. F1l O1+FX1l O1vFX5(41, DF[5), DFX [5)*x DFXS(21, Y(211TT , 1A“,.5Of . OxrTV = 2.O*VCALrULATE RF9UIPEb lNTEGPALs OVERD“ 1“ K.KL, KU>F(KI m 51NT1lT, M.Y,Dx1IF ( (K.ll/z. EQ. b 1 GO TO 10no . I.l. M. V(7I = Y1ll*X1(llFX (K,. slm(IT, M, Y.oxllF ( K.GT. h ) 60 TO 10nt) 6 1.~,MY(l) . V(I1*XI1l JFxs(Kl=slhlT (lT.M,Y,Dx)?“MT, NUFRI . SINT(lT, M,8STAP, DX)*QAMMAno 13 1=1, MY1l) = PSTAR(l)+xl [l)RXI . S7MT(1T, M,Y,DX1*GAMMAPfi 1. Iml, Mv(r) . Y(I )*X1(T)RXSI, SINT(IT, ”,Y,DX1*QAMhASHIP LENGTHIblCPFASF ROLL ohMPING (TO ACCOUNT FoR VISCOUS EFFEcTS)F(RI . F(BI. ROLVPFIF ( KL. GT.2 ) 09 TO 19FAC . efl/s QRT(wFw*3/6RAv)F(?) . F(21*FAcFYI?) = FX[21*FACFxS (71 . FX51Z1*FACC-IJ3 CMLrIILATE pk0d7RED DER1v471vEs bm THEIR lNTEQ*ALS19 7nY . 2.n*Dx IMM = M-1n“ ?q K.KL,KU,?WK . (K.11f2nlX(l, KK) = 14N?(l, K1-AN5(2, K))/DX1“rX, t4.KK) . (ANSIM-l, K)-ANSIM, K)l/DX1bn ?? ~=2. VM22 C)TX(T. KK1 = (ANS(I.l VK1-ANS (I.l!K1!ITDXnn 9. r.l, M?L Y(1, . nIxll. KK1nr(h’k-)= S1N7[1;;M+:!:; )IF 1 KK.FO.. 1nn ?5 r.l, bl%5 Y(1) = Y(II*x1(llhFX(KK1. SINT(l T,M,Y.OX1IF ? KK.6T.2 ) GO TO 20bn ?6 Y.l, M?6 v(l) . Y(ll *X1(l)nFxq, KK). 51NT(TT, M,Y,QX1?0 ?nblTTNUEIF [ KL, GT.? ) GO TO 30c.06 FORM cOKFFICILhlTS FOR VERT1C4L PLANE MOTIONS IHEAVE . PITCH)cV( 11 = TMbS5. F(l)?“( 7) a F121-V4DF [11Cv( -+). 81CV( .1 . Fx(llCV1 5) . FX(21-V*nFX (n-TV. F(l)rvl h) . BX1-V*CV 12)CV1 71 = YNFUT. FXS(llCV( e) m FXS121. V*DFXSII1-TV*FX1 1)?!/( 0) = BX51-V*FX (214V*V*DFX[ 11Cv (lo] = Fx (l)C-U5 FORM COEFF5, FOP L4TERAL PLANE MOTIONS (SWAY. YAW +ROLL)30 CL( 1) = TMAS5” F13)cL( ?) . F(+) -VVDF [2)CL( ~) = 0.0CL( i)FX (3,CLC ?1FX,. )-”*DFZ(2)-7V.V,3>CL( k)-V. CL(?lCL[ 71 . -F(9) -7CG*F 13)CL( B) -F ILOI.ZCG.tL(2). v.DF (51CL( 010.0CL (lnlFX{3t?L(l I1 . FX,4)-”*DF X(21CL (17) , 0.0CL[l I! YNERT. FXS (31CL(l’1 , Fx5(a, -v* DFx5[21-Tv+Fx (31CL[15) ..ṁ .V*CL(, I,CL(161 -X7 PERT.FX ,91-ZCG*FX (31CL (17) -FX(1 O)-ZCG*CL( 111. V*DFX (5)CL(l P1 0,0CL(191 -F(5) -7CG*F (31CL(?O1 . -F{6)-7CG*CL (21.V.OF(*)cL(?ll = 0,0CL (7?) = ‘X7 PERT -F X(5) -Z CQ*FX [31CL[??I . .FX[61-7CG*CL 11L1.V*DFXl~)-TV*CL (19)CL IP.) . -V* CLl?O1CL{??) . XNFRT+F (71.ZCG*F(~l-ZCQ.CL IIql?l(?el . FIP)-zr G*CL(20). ZCQW[F[ 101-v *DF(511-V*DF [4)CL (77) . D15PL*GM40 RET(IRNFNOC.ol1?SUn PfiUTINE ExCITEcmunv / cONDA / PI. G4MMA,6RAV, P0cflM.nN / RaSDA / BPL, OISPL. TMASS, YNERT. ESTAQ (211,ARF& (211 tx SECOE[211. DRbFT1211. ZBAR (211vX1121)?X1S0 (211.xDwEIGH(El ).DMAs5(211. zHT[211. GRLt2!), zcG. xNERT*xx2PERT, GM, MlNKR1, M&XKR1 ,lNCRES, ROLn PFrnMf4”N / TDTR / WE,WEN,ANS(21,107. KL. KU,1O.1WrOM. ON / MIMD / lA,NS,DXI. V,WANG, OMEGb, wAVEN, CW, D1X(21.51, FAC. WAcO14M0hl/ EQMO / CV(12), CL[271, ZW,MW, YW,NW, KUCOMPLEX ZW,MW, Ybl,NW, KWCOMMON / HhDA / cxFs T{zll. cxFL1211vcxMR 1211.50MM151.31. smMP [51.31COPPLKx CXF5T. CXFL*CXMPr’lf4MfIN, PRoGRAM / 5TORAGE(I,57) ,V 121) .W 121)TT , 1AM . k,snx . bx7.hl , WAVENCW4k( x COS[WAN6)SW.), . SIN fhlANG1CALC(lLATE N6VE EXCITATION AT EACH STATION““ >!. l.l, NSXKCW = -WN*X1(l). CWANcXK = CnSIX&C#lsxf . 51N(x KCHIFXY . -FXP(-WN*n P&FT(ll*SECnE (l)1*U4xA . D5T&R(7) *wN*3WAN/2. O1? , XA. FQ, O.O ) Go To 12FXY , ExY+SIN(Xbl/XAlF ( KL.GT,2 1 GO TO 10c-02 FORM VERTICAL FoPCE COMPONENTSFKL . GAMMA*B5TAR (r)-WNVGR&V*ANS (T,l)?.KL . WN*CW*( fiNS11,21*FfiC-V*DIX [1.11)rx = ( FKL*5%K. SKL*CXK1%XY= [ FKL4CXK-5K L*SXK, .EXY;;F5T [11 = CMPLT(C!4,5X)TF { XU. L7.3 ) LO TO 30C-03 FORM LATERhL FOPCE COMPONENTSIn FKL . GOb V.(RO*b RE4(11. ANS(t .3)-wN*AN511 .511CKL = C.*l ANS(l. ~)- V*DIX(I, ?l.MN*V*U1X11V31)FXY , WN*EXY*5Wh Nc!i r ( FKL. CXM. SKL*5FK). EXY?X , (-FKL05x&. sKL*CXK1*EXYcXFL, lI = CMPLX(CX, SX1c-ohFOPM ROLL MOMENT c0MP0NEN75FKL = GR4V*(RU* (@STAR[1)**3/12,0 -AREfilll*ZBh R(l) )-AhlS(1,51 1x -ZCG.FKL5KL = CW*[-ANS (1,61 +V+~DIX[1,3 11-ZCG+SKLcx . [ FKL*cx6. sKL.SXK1*EXYPM (T”) . CbB5, R4)*57, >95,7gRP(lrI) = AT4N2[BEAL IRA1,A1M4G[U4)) .57,29577920 nFTIJPtdFND. —


6130-X . (-FKL*SXti+St?L.CXK> ●FXYrX~R (l) = cMPLX(CX,5X1cONTINUEIF ( KL, GT.2 1 QO TO 60C-OS3233c-oh40c-al4?L3&4IhITEGRATE VERTICAL FOQCE ANDDo 3? r=l. N$Y(1) . PEA L(CXFST(I1)!4(11 = AIMAG(c XF$T II))cx . SIN1ll T.M,Y,UXIqx . SIN711T. M,w. DZ)7W . CMPLX(CX, SXIno ?3 1=1.N5YI1l x YI1l*XII1)!4[11 = W{ I).x L(l)rx P -51 M7(ITVM. Y,DXIsx . -SINTIITVM. w,Dx]MW . CMPLXICX, SZIlF 1 KU.LT,3 ) Go To 507N7EGRATF LbTERAL FoPCE,Do .? r.l, hlsV(1) . REAL (CXFL III)(,,(T). fi7”A”(Gx FL (I))cx . SIN1(IT, M,Y,DXISt r 51NT(lT, M,W,DX]‘fu. CMPLX(CX, SX1no 4? 1=1, h15v(l) = V(ll*Z1 (l)W(11 = P(ll. X1(TIcx . SIN TIIT. M.Y,DX)5X . SIN T(lT,M,W,DX)NW . CM9LX(CX,5X1no .. 1=1,NSY(l) = RFAL(CXMF ,1)),8(1) . ATMAC,CXMR (1))rx , 57NT(77. M.Y,Dx I?X . 51NT[lT. M.N.OX>Ku . cMPLx(c&, sxl50 RETURNFND


6222 HK . KR7T.l+YuJF , KK. GT,h15 1 00 TO 26A . b-CTFST (N5,K)/(l. IblB . P- CTF$T (N!,,K)/[lt Ih)*(x1(NS ,)-xx)IF , KK.GT. hlT ) BO TO 26nO ?4 l=KK. NTA . o-CTF5T(1, K)?6 R . R-C7FST (1,K)*(KI(71-XX1?6 lF ( K.FQ.3 1 B=b6“ RFT(,RNgo F“P.6T , r9.4, 110, 3( E13.3, F?. o)FNDsUFR”UTINE TIUIRPArOMMON / CONDA / P1. GAMMA, GRAV, ROrnMMON / MHI)T / HDA1141w DTb, DTR. IB, IC.l D,lE,lF,l G,IH, 11,1 J,STS($IrOMMf)N / RASD4 / uPL. D!SPL, TMASS, YNERT.8STAR [211 ,ARFA {211 .sEcoE(21), DRAFT [211,7 BARl?ll, x1(21 ).xlsQ (211.; DWEIGti(21), DMbSS(21) ,ZNT 121) ,GRL 1211 ,ZCG. XNEQT.xXZPERT, GM, MINKR1. MAXKR1,1NCRE5. ROLn PFCOMMON / CbSDA / NN,OMW($ll ,WVL [511,0MWE (51) ,vMIN,; MbX.DELV,x NwA, wAD(2s), waNG1, wAN5A, DwNdQ, Nwl, uD(20, ,wLL (51)r“l+ilnbl/ TDIF / wE,WEN,ANSI% 1,101,KL, KU ,10,1 Wrnv Mn,I / MIMD / 16,NS. bX1. V,WANG,OMEGA .WfiVEN, CW.DIX [21,sI, FAc. WAc“MMnN / MOTN / 7M(511. zP1511, TM1511. TP (51).SM[511. qP(511, YM 151).x YP1511. RM(GI, .. .RP ,511r“”14nN , BMDA / CXFS+[21), CZFL,21i; iXMR (21),SBMM(51,3), SBMP {51.31r(IMPLEX cXF5T, CXFL, CXMRCnMMON / PROGUAM / CL8M(51,31 .CLSH151,2). SPACE (401,7 N(511,7N (51),x xN(51, ,Mbl(511D1MF,IS1ON HDbP(?l, HDBP(&l, HDCP (&), VN(511“BTA HDAP / !+H AMP,6HL. PH.4HASE /PATA HDRP / 6H hMV6HPLITUD, bHE pHA.3HsE /DAT6 HDCP / 6P! ,6H5HFAR ,&li M,6HOMFNT ,T,, . 3/,0.Oibw,lUAhl . l.O+ll* (1.O/WA-1.0)M5 . (Ns.11/?GLR , (1.O/[GAMMA *@PL*&PL. USTAR(MS1* MA)-],0)*11.l.0IF ( KL. GT. ? 1 GO TO 20PRXhIT Wr FeEUUCNCY RE$PON5E FuNc TIONS, VERTLCAL pLAMEPqTh,T 970, HDA, DTfi,07RPPIN7 971, v.HAn(lwlPRTh(T 93sIF 1 11.FfJ.1 1 PRINT 937PPr~lT 9??PRINT q?3PR1k\T q?4PRINT V25, HDAP. HDAPPR1hlT 9?6. HDBPDO n I.I, NN7N (1, . 7v[, )*wbNYhl(l) = TM(ll*( l.O.II*(WVL1ll/TP 1-L .O~)8 xN (T, . SRMV(l, l)*GLBPRINT 930. (OMW1l), OMWE1ll, WVL(I1*ULL (11.ZN(I). ZPI1), YNI1l VTP 111.x XN(I>,5BMP 17,1 )S1=19NN)lF 1 KU.LT.3 1 GO TO LOC.OF PRJh,T 0“1 FRE[AUENCY RE5PONSF FUNCTIONS. L&TERAL PLANE?n PR1blT +2D.’dD4.0Tfi+bTBPRINT 921, V,Wbn[l W1PP1hlT 936IF ( 11.FQ.1 ) PRINT v37PPTblT 9%?PR7hlT 977PPThlT 9?.PRIMT 9?5, FDA P,HDAP, H13APPnlhll 9>8, NDdP.HOBPno ?5 1=1, N)7N(T) = SM(l)*WAMFNX , l.o+ll* [WVL11)/7P1-1. O1YN (l, = YM1l)*FNXYN(ll = FM(ll*FhlXVIN(ll . SBMV[l, ?l*GLR?5 !lhl(l) . 5HM!”(X.31.6LflPRIWT 9?1. 10MW17), OMWE1ll, WWLI1), WLL 17). 7N111,5P Irl,YN[ll*Yp (11vx XN1ll, RP1il, WNII1, SPMP[l .21 .VN[ll, SBMP(1,3). i=l, NNl&n TF ( Iti.LC.0 1 GO TO 60c-”3 PPThlT OIIT SHEAR QND MOMENT CLOSUPE RESULTS.PJrJT 9?0. H[>A,DTfi.DTBPR1N7 q>]. 11.NAnl~w1❑P7L’T .33PP1hlT 9?%PR1!IT 979PR7hlT Q74PR7h,T 93?. HDCP. HDCP, HDCP(31, HDCP (4)PUTNT ~>b, llJMwll),OMWE1l), WVL(T1. WLL [1). (CLSHII, KI,CLBMII!S1 *K.I.21. ?LHMI 1.3), I.l, NN 1~“xOETIJPhlv7n FnPMa T ( lH1, 13A6. AZ, 3X, 410, AZ)V?I FOP MOT ( 9H” SPEFD . , Fe .4, 6x, 13HwAVE ANOLE = , F7.2,5H DEG.)Y?; FnRMOT ( /43tIU NAVE ENcouNTER I14VE WAVt,SHIP )923 .flDMOT ( lH+, 42X. 53H HEAVE plTCH VEDTICb L~A....,.r!\! l>..,.“,.v2b FnP. DT(’3H’FRE OUENCIES LENGTH LENGTH I9?5 FORMAT 1 lH., b?X. 3( 2A6, 46 ))9?6 FORWOT ( lti-. 1.X. 3k6. A3 / 1‘+?7 FnDkqAT 1 lH.. 47X. 89H SWAY AV ROLXL LATFFAL 6END. MT. ToRSTONAL MOME;T !Y?H FnR. bT ( lH. , qOX, 21 3?36, b3 1 / 1Y?9 FnPMPT I IH. . 4exq 5.HvEPT7c4L BENDTNG LArEn4L BENDINGx TOP C1ONAL1Y30 F.QMOT ( 2F11 .5, F11.3. F1O... F8,4. F8.1, FB.4, F8.1, E13.3? ?S.11931 FoPMAT ( 2r11 .5. F11.3. FIO. b. FU, &. F8.1. FR.4. FS.1, FS, &+ Fe.1,E13.3, FO.1. E13.3. Fa.11U., ,., X.”F.AT ( lb!., A>X, 10A6 /)933 FrlPMbT 1 lH+, ! F,,x, WH5HEAR Am MOMENT cL0511RE RE5cILTS )93. FOP MAT ( ?F1l .5. F1l .3. F<strong>in</strong>. b, 5E12.3)v35 FOPMfiT ( lH., 51X,FUHVERTICfi L PL&NE FE5PONSE5 )q36 FnUbtAT t lH. , 51X,Z3HLATERAL PLb ! NE RESPONSES 1*37 FORbAMT ( I!I..76X, 17H(NONUD1MENSIONAL) 1FhlUcl)ePPUT1hl E 5Ta T1COMMON / MHDT / HDA[lb) ?0T4, DTP,lB.l C.ID,l E,lF.l G.lH.ll,ld*s T$[51rOPMn N / CASUti / NN,OMW( 511, WVL151). OMWE (511, VMIN. VMAX. DELVV< Nwb. !4bO(Z5) ,u&NG1, WANGA,OUANG, NW1, VO [20) ,WLL [511rnM. nN , MIMD / Tb,N5, DX1, V.WAtJG,OMEGA ,NAVEN. CW. D1X(21,51. FAC* WhrnMP,nN , TfilR / wF.wEN, AN5121,10 I,KL, KU, IO, lWrob~MnN , MOTN / e&bl(51.10)tnMbohl / Wlna / SPACE(12b1 . SRMM(G1V31 ,5PACEB (1531rnM!””hl, STAT / 5PEc M(10,511, R$D(8,10 .25!rO.MON / PROGUb M / B5P[51,8), T(51). R5T [8.51


63.no . L.l, NN3 U?P(, ,I1 . n.o,,


UNCIASSIFIFnSecurityClassificationDOCUMENT CONTROL DATA . R & D(S., rurity class tiirat, on o{ fitlc, body ol;tbstrnrt ;J,, d,,]dex,?, gannotatiU71TY CL AS SIFIC&T, ONUnclasslfledOceanics, Inc.Pla<strong>in</strong>view, New York.?b. GRouPREPORTT,TLEProgram SCORES ~= <strong>Ship</strong> Structural Response <strong>in</strong> WavesDE SC RI PTIV< Fdo TEs (Type of report and irtclus?vc dates)AU THOR(S) (First name, middle ,n:tf al, fasf rjamc)I5.IA, I. Raff6. REPORT DATE 7D, TOTAL NO. OF PAGEsJuly 1972638a, CONTRACT OR GRANT NO,NOO024-70-C-5076b. PROJECT No.I9.3, ORIGltdATOROS F7EP0eT NuM@ER[5)7b. MO OF REFSc, 9b. OTHER REPORT NO IS) (Any other ntimbers thet may be tiss?gnedthis report)d.10, DISTRIBUTION STATEMENTSSC-230iUnlimitedI11. SUPPLEMENTARY NOTES )2. SPONSORING MILITARY ACTIVITYNaval <strong>Ship</strong> Systems CommandIInformation necessary for the use of the SCORES digital computer<strong>program</strong> is given. This <strong>program</strong> calculates both the vertical andlateral plane motions and applied loads of a <strong>ship</strong> <strong>in</strong> <strong>waves</strong>. Striptheory is used and each <strong>ship</strong> hull cross-section is assumed to be ofLewis form for the purpose of calculat<strong>in</strong>g hydrodynamic forces. The<strong>ship</strong> can be at any head<strong>in</strong>g, relative to the wave direction. Bothregular and irregular wave results can be obta<strong>in</strong>ed, <strong>in</strong>clud<strong>in</strong>g shortcrested seas (directional wave spectrum). All three primary <strong>ship</strong>hull load<strong>in</strong>gs are computed, i.e. vertical bend<strong>in</strong>g, lateral bend<strong>in</strong>gand torsional moments.All the basic equations used <strong>in</strong> the analysis are given, aswell as a description of the overall <strong>program</strong> structure, The <strong>in</strong>putdata requirements and format are specified. Sample <strong>in</strong>put and outputare shown. The Appendices <strong>in</strong>clude a description of the FORTRAN<strong>program</strong> organization, together with flowcharts and a complete cross--referencedlist<strong>in</strong>g of the source language.PDDR%1473 “AGE’)UNCLASSIFIEDS/N 0101-807.6801 SecurityClassification


UNCLASSIFIEDSecurityClassification4KEYWORDSROLELINKAWTROLELINKBWTROLELINKCWT)D,F:cYm1473 (BACK)(PAGF 2)UNCLASSIFIEDSecurityClassification


SHIP RESEARCH COMMITTEEMaritime Transportation Research BoardNational Academy of Sciences-National Research CouncilThe <strong>Ship</strong> Research Committee has technical cognizance of the <strong>in</strong>ter-agency<strong>Ship</strong> <strong>Structure</strong> Committee’s research <strong>program</strong>:PROF. R. A. YAGLE, Chairman, Prof. of Naval Amhitectum, Univemity of MichiganDR. H. N.ABRAMSON, Dizwctor,Dept. of Mechan{ca2Science8,SouthvestResearch Inst.MR. W. H.BUCKLEY, Coord<strong>in</strong>atorofilyd~ofoilStmc.Rez., Naval <strong>Ship</strong> R & D CenterMR. E. L.DR. W. D.CRISCUOLO, Sen


SHIPSTRUCTURE COMMITTEE PUBLICATIONSSSC-219,Thas@ documents ape distributed bg the National TeclwzicaZInformation SQPvice, Spr<strong>in</strong>gfield,-Va. 22151. These documentshave been announced <strong>in</strong> the Clear<strong>in</strong>ghouse JoWU.S. Government Reseamh & Development Repoyt8 (USGRDR)under the <strong>in</strong>dicated AD numbem.C~ack Propagation and Ar~est <strong>in</strong> <strong>Ship</strong> and Other Steels by G. T. Hahn,R. G. Hoagland, P. N. M<strong>in</strong>cer, A. R. Rosenfield, and M. Sarrate.1971.,~t.!,..+.ISSC-220,SSC-221,SSC-222,SSC-223,SSC-224,SSC-225,SSC-226,SSC-227,SSC-228,SSC-229,SSC-230,SSC-231,A Limited Survey of <strong>Ship</strong> Structural Damage by S. Hawk<strong>in</strong>s, G. H.Lev<strong>in</strong>e, and R. Taggart. 1971.Re6ponse of th~ Delta Te6t to Specimen Variables by L. J. FlcGeady.1971 ●Catamaran6 - Technological Limits to Size and Appraisal of StructuralDesign Information and Procedure by N. M. Maniar and N. P.Chiang. “1971.Compressive Strength of <strong>Ship</strong> Hull Gi~der6 - Part II - StiffenedP2ates by H. Becker, A. Colao, R. Goldman, and J. Pozerycki. 1971.Feasibility Study of Gla6~ Re<strong>in</strong>forced Plastic Cargo <strong>Ship</strong> by R. J.Scott and J. H. Sommella. 1971.Structural Analysis of Longitud<strong>in</strong>al@ Framed <strong>Ship</strong>s by R. Nielson,P. Y. Chang, and L. C. Deschamps. 1972.Tanker Longitud<strong>in</strong>al Strength Analysis - Use~’~ Manual and ComputerProgzmm by R. Nielson, P. Y. Chang, and L. C. Deschamps. 19.72.Tanker Transverse Strength Analy6is - User’s Manual by R. Nielson,P. Y. Chang, and L. C. Deschamps. 1972.Tanker T~ansverse Strength Analysis - Programmer’g MantiaZby R.Nielson, P. Y. Chang, and L. C. Deschamps. 1972.Evaludion and Verification of Computer Ca~culations of Wave-Induced<strong>Ship</strong> Stmctural Loads by P. Kaplan and A. 1. Raff. 1972.Program SCORES -- <strong>Ship</strong> Structural Response <strong>in</strong> Waves by A. I. Raff,1972.Further Studies of Computer Simulation of Shrnm<strong>in</strong>g and Othe~ Wave-Induced Vibrato~y Structural Load<strong>in</strong>gs on <strong>Ship</strong>s <strong>in</strong> Waves by P. Kaplanand T. P. Sargent. 1972.—. .- -—

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!