10.07.2015 Views

arsenic in geothermal waters of costa rica - Mark- och vattenteknik ...

arsenic in geothermal waters of costa rica - Mark- och vattenteknik ...

arsenic in geothermal waters of costa rica - Mark- och vattenteknik ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

ARSENIC IN GEOTHERMALWATERS OF COSTA RICAA M<strong>in</strong>or Field StudyLotta HammarlundJuan PiñonesDecember 2009TRITA-LWR Master ThesisISSN 1651-064XLWR-EX-09-02


Lotta Hammarlund & Juan Piñones TRITA LWR Masters Thesis 09-02ii


Arsenic <strong>in</strong> Geothermal Waters <strong>of</strong> Costa RicaARSENIC IN GEOTHERMAL WATERS OFCOSTA RICAA M<strong>in</strong>or Field StudyLotta HammarlundJuan PiñonesM.Sc. ProgramEnvironmental Eng<strong>in</strong>eer<strong>in</strong>g and Susta<strong>in</strong>able InfrastructureKTHMa<strong>in</strong> SupervisorPr<strong>of</strong>. Prosun BhattacharyaKTH-International Groundwater Arsenic Research Group (GARG)Department <strong>of</strong> Land and Water Resources Eng<strong>in</strong>eer<strong>in</strong>g, Royal Institute <strong>of</strong> Technology (KTH)SE-100 44 STOCKHOLM, SwedenCo-SupervisorPr<strong>of</strong>. J<strong>och</strong>en BundschuhPr<strong>of</strong>. Guillermo E. AlvaradoInstituto Costarricense de Electricidad (ICE), San Jóse, Costa RicaExam<strong>in</strong>erPr<strong>of</strong>. Jon-Petter GustafssonDepartment <strong>of</strong> Land and Water Resources Eng<strong>in</strong>eer<strong>in</strong>g, Royal Institute <strong>of</strong> Technology (KTH) SE-100 44STOCKHOLM, SwedenStockholmDecember, 2009iii


Lotta Hammarlund & Juan Piñones TRITA LWR Masters Thesis 09-02iv


Arsenic <strong>in</strong> Geothermal Waters <strong>of</strong> Costa RicaRoyal Institute <strong>of</strong> TechnologyInternational OfficePREFACEThis study has been carried out with<strong>in</strong> the framework <strong>of</strong> the M<strong>in</strong>or Field StudiesScholarship Programme, MFS, which is funded by the Swedish InternationalDevelopment Cooperation Agency, Sida.The MFS Scholarship Programme <strong>of</strong>fers Swedish university students anopportunity to carry out two months’ field work, usually the student’s f<strong>in</strong>al degreeproject, <strong>in</strong> a Third World Country. The results <strong>of</strong> the work are presented <strong>in</strong> an MFSreport which is also the student’s Master <strong>of</strong> Science Thesis. M<strong>in</strong>or Field Studies areprimarily conducted with<strong>in</strong> subject areas <strong>of</strong> importance from a developmentperspective and <strong>in</strong> a country where Swedish <strong>in</strong>ternational cooperation is ongo<strong>in</strong>g.The ma<strong>in</strong> purpose <strong>of</strong> the MFS Programme is to enhance Swedish universitystudents’ knowledge and understand<strong>in</strong>g <strong>of</strong> these countries and their problems andopportunities. MFS should provide the student with <strong>in</strong>itial experience <strong>of</strong> conditions<strong>in</strong> such a country. The overall goals are to widen the Swedish human resourcescadre for engagement <strong>in</strong> <strong>in</strong>ternational development cooperation and to promotescientific exchange between universities, research <strong>in</strong>stitutes and similar authorities<strong>in</strong> develop<strong>in</strong>g countries and <strong>in</strong> Sweden.The International Office at the Royal Institute <strong>of</strong> Technology, KTH, Stockholm,adm<strong>in</strong>isters the MFS Programme for the faculties <strong>of</strong> eng<strong>in</strong>eer<strong>in</strong>g and naturalsciences <strong>in</strong> Sweden.Sigrun SantessonProgramme OfficerMFS Programme/LP ProgrammeInternational Office, MFSKTH, SE–100 44 Stockholm, Sweden, Phone: +46 8 790 7i83 , Fax: +46 8 790 8192, E-mail: sigrun@kth.sewww.kth.se/student/utlandsstudier/examensarbete/mfsv


Lotta Hammarlund & Juan Piñones TRITA LWR Masters Thesis 09-02vi


Arsenic <strong>in</strong> Geothermal Waters <strong>of</strong> Costa RicaTABLE OF CONTENTSTABLE OF CONTENTS........................................................................................................................... VIIACKNOWLEDGEMENTS ..........................................................................................................................IXABSTRACT...................................................................................................................................................XISAMMANFATTNING..............................................................................................................................XIIISINTESIS ....................................................................................................................................................XV1. BACKGROUND.......................................................................................................................................... 11.1 GEOTHERMAL SYSTEMS................................................................................................ 11.1.1 Classification <strong>of</strong> <strong>geothermal</strong> systems......................................................................................................................................11.1.2 Classification <strong>of</strong> <strong>geothermal</strong> systems......................................................................................................................................11.2 ENVIRONMENTAL EFFECTS OF GEOTHERMAL ACTIVITY................................................. 31.3 ARSENIC IN GEOTHERMAL SYSTEMS.............................................................................. 31.3.1 Dispersion <strong>of</strong> <strong>arsenic</strong> and environmental contam<strong>in</strong>ation........................................................................................................31.3.2 Health effects <strong>of</strong> <strong>arsenic</strong> and risks ........................................................................................................................................31.4 HISTORY OF EXPLOITATION OF GEOTHERMAL ENERGY IN C OSTA R ICA ......................... 41.5 RATIONALE OF THE PRESENT STUDY ............................................................................ 41.6 T HE STUDY AREAS....................................................................................................... 51.6.1 Miravalles <strong>geothermal</strong> field...................................................................................................................................................51.6.2 R<strong>in</strong>con de la Vieja <strong>geothermal</strong> field......................................................................................................................................91.7 AIMS AND OBJECTIVES................................................................................................. 91.8 LIMITATIONS............................................................................................................... 92. ARSENIC IN GEOTHERMAL WATER.................................................................................................102.1 T HE SOURCE OF ARSENIC IN GEOTHERMAL SYSTEMS ....................................................102.1.1 The source and nature <strong>of</strong> <strong>geothermal</strong> fluids .........................................................................................................................102.1.2 The source <strong>of</strong> As <strong>in</strong> <strong>geothermal</strong> fluids.................................................................................................................................112.1.3 Arsenic from host rock leach<strong>in</strong>g..........................................................................................................................................112.2 SPECIATION OF ARSENIC IN GEOTHERMAL FLUIDS .......................................................112.2.1 Dissolved <strong>arsenic</strong>................................................................................................................................................................112.2.2 Low sulphide, reduced fluids ..............................................................................................................................................112.2.3 High sulfide, reduced fluids ................................................................................................................................................112.2.4 Redox state........................................................................................................................................................................122.3 ARSENIC DEPOSITION FROM GEOTHERMAL FLUIDS.......................................................122.4 ARSENIC IN HOT SPRING DEPOSITS AND SCALES ..........................................................122.5 T HE FATE OF ARSENIC FROM GEOTHERMAL SOURCES ...................................................132.6 SURFACE WATERS .......................................................................................................132.7 GROUNDWATER..........................................................................................................143. MATERIALS AND METHODS ...............................................................................................................153.1 FIELD INVESTIGATIONS ..............................................................................................153.1.1 Field location and sampl<strong>in</strong>g ...............................................................................................................................................153.1.2 Collection <strong>of</strong> field data........................................................................................................................................................153.2 LABORATORY INVESTIGATIONS ...................................................................................213.2.1 Alkal<strong>in</strong>ity .........................................................................................................................................................................213.2.2 Major ions.........................................................................................................................................................................223.2.3 Trace elements....................................................................................................................................................................223.2.4 Arsenic (III)......................................................................................................................................................................223.2.5 DOC ................................................................................................................................................................................22vii


Lotta Hammarlund & Juan Piñones TRITA LWR Masters Thesis 09-023.2 T REATMENT OF ANALYTICAL DATA .............................................................................224. RESULTS.................................................................................................................................................. 234.1 GEOTHERMAL WELLS ..................................................................................................234.1.1 Field measured parameters.................................................................................................................................................234.1.2 Major ions.........................................................................................................................................................................234.1.3 Trace elements....................................................................................................................................................................254.1.4 Correlation between various chemical parameters ................................................................................................................254.2 T HERMAL SPRINGS -NEUTRAL AND A CID .....................................................................264.2.1 Field measured parameters.................................................................................................................................................264.2.2 Major ions.........................................................................................................................................................................264.2.3 Trace elements....................................................................................................................................................................284.2.4 Correlation between various chemical parameters ................................................................................................................304.3 C OLD SURFACE WATERS ..............................................................................................314.3.1 Field measured parameters.................................................................................................................................................314.3.2 Major ions.........................................................................................................................................................................314.3.3 Trace elements....................................................................................................................................................................314.4 ANOMALOUS BORON CONCENTRATIONS.......................................................................325. DISCUSSION........................................................................................................................................... 335.1 ARSENIC CONCENTRATIONS IN MIRAVALLES AND RINCON DE LA VIEJA........................335.1.1 Geothermal wells................................................................................................................................................................335.1.2 Thermal spr<strong>in</strong>gs.................................................................................................................................................................335.1.3 Cold surface <strong>waters</strong> ............................................................................................................................................................335.2 C OMPARISON OF THE DATA WITH OTHER GEOTHERMAL FIELDS IN N EW Z EALAND, USAAND PHILIPPINES.............................................................................................................335.2.1 Concentrations <strong>of</strong> <strong>arsenic</strong> and variability ............................................................................................................................345.2.2 Arsenic concentrations <strong>in</strong> Miravalles and R<strong>in</strong>con de la Vieja ............................................................................................345. CONCLUSIONS....................................................................................................................................... 367. REFERENCES......................................................................................................................................... 37viii


Arsenic <strong>in</strong> Geothermal Waters <strong>of</strong> Costa RicaACKNOWLEDGEMENTSThis Master <strong>of</strong> Science thesis comprises the f<strong>in</strong>al part <strong>of</strong> our degree <strong>in</strong> EnvironmentalEng<strong>in</strong>eer<strong>in</strong>g at KTH. This study could never have been realized without the assistance andsupport from several persons to whom we would like to express our gratitude:Prosun Bhattacharya, Jon Petter Gustafsson, Gunnar Jacks and all the other people at theDepartment <strong>of</strong> Land and Water Resources Eng<strong>in</strong>eer<strong>in</strong>g (LWR) at KTH for advice and guidancethroughout this study.Our local supervisors J<strong>och</strong>en Bundschuh and Guillermo E. Alvarado from InstitutoCostarricense de Electricidad (ICE), who provided <strong>in</strong>valuable guidance and support dur<strong>in</strong>g ourfieldwork.Antonio Yock, Paul Moya and other staff at ICE, for support and help dur<strong>in</strong>g our work and formak<strong>in</strong>g our stay <strong>in</strong> Costa Rica a pleasant and memorable experience.Sida/SAREC for partly f<strong>in</strong>anc<strong>in</strong>g this project and Sigrun Santesson at the MFS Programme<strong>of</strong>fice.Ann Fylkner and Monika Löwén, LWR-KTH, for laboratory assistance and supervision at thelaboratories <strong>of</strong> LWR-KTH.Carl-Magnus Mörth, Universitetslektor på Institutionen för Geologi <strong>och</strong> geokemi, for laboratoryanalysis.…and all the sympathetic people <strong>in</strong> Costa Rica that made this project an unforgettableexperience.Lotta HammarlundJuan PiñonesStockholm, December 2009ix


Lotta Hammarlund & Juan Piñones TRITA LWR Masters Thesis 09-02x


Arsenic <strong>in</strong> Geothermal Waters <strong>of</strong> Costa RicaABSTRACTArsenic (As) contam<strong>in</strong>ated land and groundwater is a serious health problem <strong>in</strong> a globalperspective. Long-term <strong>in</strong>take <strong>of</strong> water with high As concentration is directly l<strong>in</strong>ked to variouslife threaten<strong>in</strong>g diseases such as cancer and sk<strong>in</strong> lesions. In <strong>geothermal</strong> areas As contam<strong>in</strong>ationoccurs <strong>in</strong> two ma<strong>in</strong> processes: i) natural contam<strong>in</strong>ation where the gothermal <strong>waters</strong> reach thesurface as natural spr<strong>in</strong>gs and then mix with surface water flows or shallow groundwater bodies,used by humans for both irrigation and dr<strong>in</strong>k<strong>in</strong>g water supply; and ii) human exploitation <strong>of</strong><strong>geothermal</strong> <strong>waters</strong> as an energy resource causes mobilisation <strong>of</strong> As and other heavy metalsconta<strong>in</strong>ed <strong>in</strong> the <strong>geothermal</strong> <strong>waters</strong> to reach the surface and then contam<strong>in</strong>ate surface andshallow groundwater bodies. Both <strong>of</strong> these processes may affect the environment and the health<strong>of</strong> humans and animals. Typical symptoms that arise due to the use <strong>of</strong> contam<strong>in</strong>ated <strong>waters</strong><strong>in</strong>clude sk<strong>in</strong> lesions and different forms <strong>of</strong> cancer.The study area is located at the areas close to the volcanoes Miravalles and R<strong>in</strong>cón de la Vieja <strong>in</strong>Costa Rica. This area is rich <strong>in</strong> <strong>geothermal</strong> resources and the <strong>geothermal</strong> <strong>waters</strong> and thermal mudconta<strong>in</strong> high levels <strong>of</strong> As. Concentrations up to 30 mg As/l have been recorded and thus presenta problem for a country which is utilis<strong>in</strong>g these <strong>geothermal</strong> resources. It also <strong>in</strong>dicates potentialhealth problem as it exceeds the WHO dr<strong>in</strong>k<strong>in</strong>g water guidel<strong>in</strong>e (10 μg/L).The purpose <strong>of</strong> the study is to <strong>in</strong>vestigate the occurrences <strong>of</strong> As as well as an overallcharacterisation <strong>of</strong> the <strong>geothermal</strong> <strong>waters</strong> <strong>in</strong> the areas <strong>of</strong> Miravalles and Pailas-Bor<strong>in</strong>quien<strong>geothermal</strong> fields. The specific objectives are to characterize <strong>geothermal</strong> <strong>waters</strong> extracted from<strong>geothermal</strong> wells used for power generation, natural thermal spr<strong>in</strong>gs and cold spr<strong>in</strong>gs <strong>in</strong> thesurround<strong>in</strong>gs <strong>of</strong> Miravalles and Pailas-Bor<strong>in</strong>quien <strong>geothermal</strong> fields. The results from this studyhave also been compared with the ge<strong>och</strong>emical characteristics <strong>of</strong> the <strong>geothermal</strong> <strong>waters</strong> from<strong>geothermal</strong> wells and thermal spr<strong>in</strong>gs <strong>in</strong> New Zealand, Philipp<strong>in</strong>es and USA.Totally 50 sample were collected at 49 different places <strong>in</strong> the surround<strong>in</strong>gs <strong>of</strong> the Miravalles andthe R<strong>in</strong>con de la Vieja volcano areas. Water from three types <strong>of</strong> reservoirs was collected;<strong>geothermal</strong> well fluids, thermal spr<strong>in</strong>gs and cold surface <strong>waters</strong>. In 35 <strong>of</strong> the 50 sampled placesAs concentration exceed the WHO limit for safe dr<strong>in</strong>k<strong>in</strong>g water. All the <strong>geothermal</strong> well fluidsgreatly exceed the WHO limit while all the cold spr<strong>in</strong>gs fall below that limit. Sampled <strong>geothermal</strong>well fluids are generally <strong>of</strong> Na-Cl-B type with an almost neutral pH. They conta<strong>in</strong> an extremelyhigh As concentration. Sampled thermal spr<strong>in</strong>gs can be divided <strong>in</strong>to neutral thermal <strong>waters</strong> andacidic thermal <strong>waters</strong>. The neutral thermal spr<strong>in</strong>gs (pH almost neutral) are generally <strong>of</strong> HCO 3 -Cltype while the acidic thermal spr<strong>in</strong>gs (pH 1.97-3.25) are generally <strong>of</strong> SO 4 -S-Cl-Al type. Theyconta<strong>in</strong> low to high As concentrations. Sampled cold surface <strong>waters</strong> are generally <strong>of</strong> Si-SO 4 -HCO 3 type with a neutral to alkal<strong>in</strong>e pH and conta<strong>in</strong> low As concentrations.As comparison with New Zealand, USA and Philipp<strong>in</strong>es show that the well fluids used for<strong>geothermal</strong> energy <strong>in</strong> Costa Rica have extremely high As concentrations.Keywords: Geothermal energy, <strong>arsenic</strong>; boron, <strong>geothermal</strong> systems; thermal spr<strong>in</strong>gs, Costa Rica;Miravalles; R<strong>in</strong>cón de la Vieja.xi


Lotta Hammarlund & Juan Piñones TRITA LWR Masters Thesis 09-02xii


Arsenic <strong>in</strong> Geothermal Waters <strong>of</strong> Costa RicaSAMMANFATTNINGArsenikförorenad mark <strong>och</strong> grundvatten är ett allvarligt, globalt hälsoproblem. Konsumtion avvatten med hög arsenikhalt under lång tid är direkt förknippat med flera livshotande sjukdomar, t.ex. cancer <strong>och</strong> störn<strong>in</strong>gar på centrala nervsystem. I geotermiska områden förekommerarsenikföroren<strong>in</strong>gar i huvudsakligen i två processer: i) naturliga föroren<strong>in</strong>gar där geotermisktvatten når markytan genom naturliga källor <strong>och</strong> som sedan blandar sig med ytvatten ellergrundvatten som används både för bevattn<strong>in</strong>g <strong>och</strong> som dricksvattenkälla, <strong>och</strong> ii) exploater<strong>in</strong>g avgeotermiska naturresurser för energiutv<strong>in</strong>n<strong>in</strong>g leder till att arsenik <strong>och</strong> andra tungmetaller somf<strong>in</strong>ns i det geotermiska vattnet når markytan <strong>och</strong> förorenar yt- <strong>och</strong> grundvattenkällor. Båda dessaprocesser påverkar miljön <strong>och</strong> hälsotillståndet hos människor <strong>och</strong> djur. Vanliga symptom vidkonsumtion av arsenikförorenat vatten är olika typer av cancer.De aktuella studieområdena är belägna i vulkanområdena Miravalles <strong>och</strong> R<strong>in</strong>cón de la Vieja iCosta Rica. Här f<strong>in</strong>ns rikligt av geotermiska naturresurser med höga halter av arsenik i bådegeotermisktvatten <strong>och</strong> lera. Arsenik koncentrationer har uppmäts till 30 mg/L <strong>och</strong> är ett problemför ett land som utv<strong>in</strong>ner energi från dessa naturresurser. Dessa halter <strong>in</strong>dikerar en hälsorisk dåhalterna överstiger WHO:s gränsvärde för säkert dricksvatten (10 μg/L).Syftet med den här studien är att undersöka förekomsten av arsenik i de geotermiska vattnen iområdet runt Miravalles <strong>och</strong> Pailas-Bor<strong>in</strong>quien geotermiska kraftverk. Målet är också attkarakterisera vattnet från: de geotermiska naturtillgångarna som används för att utv<strong>in</strong>na energi, denaturliga termiska källorna samt ytvattnen i omgivn<strong>in</strong>garna runt Miravalles <strong>och</strong> Pailas-Bor<strong>in</strong>quiens geotermiska kraftverk. Resultatet från den här studien har jämförts medkaraktäriser<strong>in</strong>gen av vatten från geotermiska kraftverk <strong>och</strong> termiska källor i Nya Zeland,Phillip<strong>in</strong>erna <strong>och</strong> USA.50 vattenprover från 49 olika plaster samlades <strong>in</strong> i omgivn<strong>in</strong>garna runt vulkanområdenaMiravalles <strong>och</strong> R<strong>in</strong>cón de la Vieja. Vattenprover togs från 3 olika typer av reservoarer;geotermiska kraftverk, termiska källor <strong>och</strong> kalla ytvatten. Arsenikhalten översteg WHO:sgränsvärde för säkert dricksvatten i 35 av de 50 proverna. Alla prover från de geotermiskakraftverken översteg kraftigt WHO:s gränsvärden medan alla prover från de kalla ytvattnen föllunder gränsvärdet. De geotermiska vattnen från kraftverken är av vattentypen Na-Cl-B med ettneutralt pH.. De <strong>in</strong>nehöll extremt höga As värden.Proverna från de termiska källorna kan delas <strong>in</strong> i neutrala eller sura vatten. De neutrala termiskakällorna (pH nära 7) är generellt av vattentypen HCO 3 -Cl medan de sura termiska källorna (pH1.97-3.25) generellt har vattentypen SO 4 -S-Cl-Al. De <strong>in</strong>nehåller både låga <strong>och</strong> höga arsenikhalter.De kalla ytvattnen var av vattentypen Si-SO 4 -HCO 3 med ett neutralt till basiskt pH <strong>och</strong> <strong>in</strong>nehölllåga arsenikhalter.Jämförelser med arsenikhalterna i Nya Zeland, USA <strong>och</strong> Phillip<strong>in</strong>erna visar att vattnen somanvänds för utv<strong>in</strong>n<strong>in</strong>g av energi i Costa Rica <strong>in</strong>nehåller extremt höga arsenik koncentrationer.Nyckelord: Geotermisk energi, arsenik; bor, Geotermiska system; termiska källor, Costa Rica;Miravalles; R<strong>in</strong>cón de la Vieja,xiii


Lotta Hammarlund & Juan Piñones TRITA LWR Masters Thesis 09-02xiv


Arsenic <strong>in</strong> Geothermal Waters <strong>of</strong> Costa RicaSINTESISLa contam<strong>in</strong>ación de agua subterránea causada por arsénico es un problema serio para la salud yde importancia a nivel global. El consumo prolongado de agua con altas concentraciones dearsénico esta relacionado con diferentes tipos de enfermedades mortales, tales como cáncer ycon efectos degenerativos del sistema nervioso y de la piel. En areas geotérmicas la concentraciónde arsénico ocurre en dos procesos pr<strong>in</strong>cipales: i) contam<strong>in</strong>ación natural causada cuando lasaguas geotermales alcanzan la superficie en forma de ballestas naturales y consecuentemente semezclan con corrientes de aguas superficiales o sistemas llanos de aguas subterráneas usadas porlos habitantes para la irrigación o como provisiones de agua potable y ii) la explotación de aguasgeotermales como recursos de energía causa una mobilisación de arsénico y otros metalespesados que se transportan con las aguas geotermales y asi alcanzan la superficie y sistemas llanosde aguas subterráneas. Ambos síntomas que surgen por uso de aguas contam<strong>in</strong>adas <strong>in</strong>cluyenlesiones de la piel, diferentes tipos de cáncer.La área de estudio está localizada en Miravalles y R<strong>in</strong>cón de la Vieja en el norte de Costa Rica.En esta área se encuentran grandes recursos geotermales y las aguas subterráneas contienen altasconcentraciones de arsénico. Las concentraciones de arsénico registradas han alcanzado hasta 30mg/L en agua subterránea y por lo tal presenta un potencial problema de salud a un pais quehace uso de sus recursos geotermales. Adicionalmente señala un riesgo para la salud al exceder las<strong>in</strong>dicaciones de 10µg/L en agua potable determ<strong>in</strong>ada por OMS.El objetivo de este estudio es de <strong>in</strong>vestigar las concentraciones de As y hacer una caracterizacióngeneral de las aguas geotermales en los alrededores de los campos geotérmicos en Miravalles yPailas-Bor<strong>in</strong>quien. Los objetivos específicos son de hacer caracterizaciones de las aguasgeotermales extraídas de pozos geotermales y utilizadas para la generación de energía, fuentestermales naturales y fuentes frías en los alrededores de los campos de aguas geotermales enMiravalles y Pailas-Bor<strong>in</strong>quien. Los resultados tambien han sido estudiados en relación con lascaracterísticas de las aguas geotermales de pozos geotermales y fuentes de aguas termales enNueva Zelándia, Las Filip<strong>in</strong>as y Estados Unidos.Un total de 50 muestras fueron recogidas en diferentes lugares a los alrededores de las áreasvolcánicas de Miravalles y el R<strong>in</strong>cón de la Vieja. Las aguas fueron recogidas en tres diferentestipos de reservas, corrientes de pozos geotermales, arroyos termales y aguas frías llanas. En 35 delas 50 muestras analizadas la concentración de arsénico sobrepasó el límite de recomendación dela OMS en agua potable. Todas las corrientes de aguas geotermales de los pozos sobrepasaronnotablemente el límite postulado por la OMS para agua potable. Mientras que las ballestas deaguas frías estaban bien por debajo del mismo límite. Por lo general los iones dom<strong>in</strong>antes enmuestras de corrientes de pozo geotermales son Na-Cl-B con pH neutral. S<strong>in</strong> embargo, estascontenían altas concentraciones de arsénico. Las ballestas de aguas termales pueden ser divididasen agua termal neutral y agua termal acída. Los iones dom<strong>in</strong>antes fueron generalmente delHCO 3 -Cl en las aguas neutrales (pH casí 7) y SO 4 -S-Cl-Al en las aguas acídas (pH 1.97-3.25).Estas contenían de baja a altas concentraciones de arsénico. Las muestras de aguas frías llanassobrepasaron el límite de la OMS en agua potable. Los iones dom<strong>in</strong>antes fueron Si-SO 4 -HCO 3con pH neutral y contenían baja concentración de arsénico.Una comparación con los resultados de Nueva Zelandia, Estados Unidos y Las Filip<strong>in</strong>as muestraque las aguas de pozo usadas para la energía geotermal en Costa Rica contienen concentracionesextremedamente elevadas de Arsénico.Palabras claves: Energía geotérmica, Arsénico; boro; sistemas geotérmicos, aguas termales,Costa Rica; Miravalles; R<strong>in</strong>cón de la Viejaxv


Lotta Hammarlund & Juan Piñones TRITA LWR Masters Thesis 09-02xvi


Arsenic <strong>in</strong> Geothermal Waters <strong>of</strong> Costa Rica1. BACKGROUNDGeothermal <strong>waters</strong> are related to active or <strong>in</strong>activevolcanism and change their specific chemicalcomposition dur<strong>in</strong>g their pathway from deepseated sources to the surface <strong>of</strong> the earth. Thepresence <strong>of</strong> <strong>arsenic</strong> (As) is high <strong>in</strong> these <strong>waters</strong>.Several gaps exist <strong>in</strong> our present day knowledge <strong>of</strong>the genesis and mobility <strong>of</strong> As <strong>in</strong> <strong>geothermal</strong>systems and its ge<strong>och</strong>emical processes and k<strong>in</strong>etics<strong>in</strong> the near-surface environment. This lack <strong>of</strong>knowledge is <strong>of</strong> particular concern where countriesutilise <strong>geothermal</strong> <strong>waters</strong> for energy generation andactively facilitate the movement <strong>of</strong> potentiallycontam<strong>in</strong>ated water at depth to the surface, whichis the case <strong>in</strong> Costa Rica. This study forms a part<strong>of</strong> a recently <strong>in</strong>itiated collaboration betweenInstituto Costarricense de Electricidad (ICE),Costa Rica and the Department <strong>of</strong> Land andWater Resource Eng<strong>in</strong>eer<strong>in</strong>g at the Royal Institute<strong>of</strong> Technology (KTH), Stockholm.1.1 Geothermal systems1.1.1 Classification <strong>of</strong> <strong>geothermal</strong> systemsGeothermal systems can be classified <strong>in</strong>to threedifferent categories:• Low temperature (< 90° C)• Moderate-temperature (90° - 150° C)• High temperature (> 150° C)The temperature determ<strong>in</strong>es the method used toextract the energy.High temperature resources are generally usedonly for electric power generation. Wells <strong>of</strong>vary<strong>in</strong>g depth tap steam and hot water to driveturb<strong>in</strong>es that drive electric generators. The threetypes <strong>of</strong> <strong>geothermal</strong> power plants most commontoday are:• Dry steam plants directly use <strong>geothermal</strong>steam to turn turb<strong>in</strong>es.• Flash steam plants pull deep, highpressurehot water <strong>in</strong>to lower-pressuretanks and use the result<strong>in</strong>g flashed steamto drive turb<strong>in</strong>es.• B<strong>in</strong>ary-cycle plants transfer heat frommoderately hot <strong>geothermal</strong> water to asecondary fluid with a much lower boil<strong>in</strong>gpo<strong>in</strong>t caus<strong>in</strong>g the secondary fluid to boil.The result<strong>in</strong>g vapour is then used to driveturb<strong>in</strong>es.Low- and moderate-temperature resources can bedivided <strong>in</strong>to two categories:• Direct use, which uses the heat <strong>in</strong> water(over short distances) without a heatpump or power plant to heat build<strong>in</strong>gs,<strong>in</strong>dustrial processes, greenhouses andresorts. Geothermal district heat<strong>in</strong>gsystems supply heat by pump<strong>in</strong>g<strong>geothermal</strong> water through a heatexchanger, which transfers the heat towater <strong>in</strong> separate pipes that is pumped<strong>in</strong>to build<strong>in</strong>gs. After pass<strong>in</strong>g through theheat exchanger, the <strong>geothermal</strong> water is<strong>in</strong>jected back <strong>in</strong>to the reservoir where itcan be recharged and used aga<strong>in</strong>. Thismethod <strong>in</strong>volves the extraction <strong>of</strong> waterfrom the ground and can thereforeimpact <strong>geothermal</strong> features.• Geothermal heat pump system, whichconsists <strong>of</strong> pipes buried <strong>in</strong> shallow groundnear a build<strong>in</strong>g or <strong>in</strong>serted <strong>in</strong> a verticalwell, a heat exchanger and ductwork <strong>in</strong>the recipient build<strong>in</strong>g. In w<strong>in</strong>ter, heatfrom warmer ground is passed through aheat exchanger and used to warm anycooler environment (e.g. a build<strong>in</strong>g or abody <strong>of</strong> water). The process can work <strong>in</strong>the opposite way <strong>in</strong> warm environments;draw<strong>in</strong>g cool air from below ground <strong>in</strong>to abuild<strong>in</strong>g and us<strong>in</strong>g the ground as a heatdump (National Park Service, NPSWestern Energy Summit, January 21-23,2003 ).1.1.2 Classification <strong>of</strong> <strong>geothermal</strong> systemsHigh temperature <strong>geothermal</strong> systems occur allover the world; <strong>in</strong> the Philipp<strong>in</strong>es, New Zealand,USA, Hawaii, Japan, Russia, Italy, Iceland, Chile1


Lotta Hammarlund & Juan Piñones TRITA LWR Masters Thesis 09-02Figure 1: Map <strong>of</strong> Central Ame<strong>rica</strong> show<strong>in</strong>g pr<strong>in</strong>cipal sites <strong>of</strong> <strong>geothermal</strong> resources (Birkle & Bundschuh 2007).and <strong>in</strong> all <strong>of</strong> the central Ame<strong>rica</strong>n countries(except for Belize).All Central Ame<strong>rica</strong>n countries (with the exception<strong>of</strong> Belize) are endowed with significant <strong>geothermal</strong>potential due to their location with<strong>in</strong> the PacificRim volcanic zone. The <strong>geothermal</strong> systems <strong>of</strong>Central Ame<strong>rica</strong> are so-called ‘convectionsystems’, related to an active volcanic belt, andderive their heat from magmatic bodies at shallowto <strong>in</strong>termediate levels. Such <strong>geothermal</strong> systemsprovide a natural energy source for manydevelopmental activities. The countries <strong>in</strong> CentralAme<strong>rica</strong> utiliz<strong>in</strong>g these sources for powergeneration are Guatemala, El Salvador, Nicaraguaand Costa Rica. An <strong>in</strong>itial assessment study <strong>of</strong><strong>geothermal</strong> resources <strong>in</strong> Central Ame<strong>rica</strong> wasperformed by the relevant national authoritiesdur<strong>in</strong>g the 1960’s and 70’s (Birkle & Bundschuh2007). The most important sites are showed <strong>in</strong>Figure 1.High temperature <strong>geothermal</strong> systems are generallyassociated with three dist<strong>in</strong>ct plate tectonicenvironments:i) with<strong>in</strong> proximity <strong>of</strong> the plate boundaries,ii) regions around ‘hot spots’, where local magmachambers rise from near the mantle to shallowdepths <strong>in</strong> the earths crust, andiii) <strong>in</strong> rift zones where the tectonic plates diverge.Geothermal active areas occur where deeplycirculat<strong>in</strong>g ground<strong>waters</strong> are conductively heated<strong>in</strong> the crust and an unusually high <strong>geothermal</strong>gradient allows hot water or steam to appear at theearth’s surface. The temperature <strong>of</strong> <strong>geothermal</strong>fluids may be elevated by only a few degrees,above ambient levels (Ellis & Mahon 1967). Heatmay be derived from volcanic or magmaticactivity, metamorphism, fault<strong>in</strong>g and radioactivity.The hot fluids are <strong>of</strong> lower density thansurround<strong>in</strong>g <strong>waters</strong> and rise through the host rock.As <strong>geothermal</strong> fluids rise through the crust, adecrease <strong>in</strong> pressure allows high temperatures<strong>in</strong>gle-phase fluids to separate at shallow depth<strong>in</strong>to two phases: steam and water. This processcan also occur wherever there is a sudden decrease<strong>in</strong> pressure due to the presence <strong>of</strong> a rock fractureor fissure (Webster & Nordstrom 2003). Many<strong>geothermal</strong> fields have been developed, or aretargeted for development, to generate energy fromthe steam and hot water reservoirs beneath theearth’s surface (Bundchuh et al. 2002). As part <strong>of</strong>2


Arsenic <strong>in</strong> Geothermal Waters <strong>of</strong> Costa Rica___________________________________________________________________________________the exploitation process, reservoir fluid is drilledand brought to the surface under pressure. Whenit reaches the surface the water is “flashed” to adesirable temperature to generate the steam to runsteam turb<strong>in</strong>es. The extent <strong>of</strong> steam and <strong>waters</strong>eparation (boil<strong>in</strong>g) can be artificially manipulatedto maximise plant efficiency (Webster 1999).1.2 Environmental effects <strong>of</strong> <strong>geothermal</strong>activityDevelopment <strong>of</strong> <strong>geothermal</strong> fields for powergenerations tends to <strong>in</strong>crease the rate and volume<strong>of</strong> <strong>geothermal</strong> fluids reach<strong>in</strong>g the surface. Thewater formed dur<strong>in</strong>g the process <strong>of</strong> separationbecomes a waste product. This wastewater <strong>of</strong>tenhas higher contam<strong>in</strong>ant concentrations thannatural hot spr<strong>in</strong>g water because the processes thatremove or immobilise contam<strong>in</strong>ants <strong>in</strong> natural<strong>geothermal</strong> features, such as the precipitation <strong>of</strong>m<strong>in</strong>eral-rich s<strong>in</strong>ters, have been bypassed. Disposal<strong>of</strong> these waste <strong>waters</strong> can be problematic. In mostmodern <strong>geothermal</strong> power stations, waste <strong>waters</strong>are re-<strong>in</strong>jected back <strong>in</strong>to the field. However, atsome older fields such as the Wairakei GeothermalField <strong>in</strong> New Zealand these <strong>waters</strong> are stilldischarged <strong>in</strong>to surface dra<strong>in</strong>age systems (Webster& Nordstrom 2003).One <strong>of</strong> the most important environmental effectsresult<strong>in</strong>g from <strong>geothermal</strong> activity is thecontam<strong>in</strong>ation <strong>of</strong> natural dra<strong>in</strong>age systems by (As)and other harmful elements. Arsenic is a typicalcomponent <strong>of</strong> active <strong>geothermal</strong> systems. Itcommonly occurs together with otherenvironmental contam<strong>in</strong>ants such as boron (B),mercury (Hg), antimony (Sb), selenium (Se),thallium (Tl), lithium (Li), fluoride (F) andhydrogen sulphide (H 2 S). These elements are alsorecognized as typical contam<strong>in</strong>ants <strong>of</strong> <strong>geothermal</strong>systems (Webster & Nordstrom 2003). Theconcentrations <strong>of</strong> As frequently exceed 10 μg/Land have been measured as high as 2000 μg/Lfrom some areas <strong>of</strong> <strong>geothermal</strong> activity. Waterflow through the surface and subsurfacecatchments therefore has the potential to transportAs and other harmful elements beyond theboundary <strong>of</strong> <strong>geothermal</strong> fields. In the areasurround<strong>in</strong>g <strong>geothermal</strong> systems, contam<strong>in</strong>ation <strong>of</strong>surface- and ground<strong>waters</strong> is common (Webster &Nordstrom 2003). The exploitation <strong>of</strong> <strong>geothermal</strong>resources can also change the landscape with thedrill<strong>in</strong>g <strong>of</strong> wells, ly<strong>in</strong>g <strong>of</strong> pipel<strong>in</strong>es andconstruction <strong>of</strong> power plants. Exploitation canalso lead to ground subsidence if the fluidwithdrawal exceeds the natural <strong>in</strong>flow (i.e if re<strong>in</strong>jectionis not effective). It also causes emissions<strong>of</strong> <strong>in</strong>condensable greenhouse gases, H 2 S and otherpollutants (Bargagli et al. 1997).1.3 Arsenic <strong>in</strong> <strong>geothermal</strong> systemsWorldwide, little is known about <strong>geothermal</strong> As,its genesis, speciation and mobility. Little is alsoknown about the ge<strong>och</strong>emical and bi<strong>och</strong>emicalprocesses which occur with the fluxes <strong>of</strong> As fromthe <strong>geothermal</strong> sources at the surface, wherepressure, temperature and oxidation conditionschange. It is also an issue <strong>of</strong> primaryenvironmental concern, to <strong>in</strong>vestigate thecharacteristics and behaviour <strong>of</strong> <strong>geothermal</strong> Asand its impact on the natural ecosystems. It is alsoimportant for develop<strong>in</strong>g strategies to improve thesocio-economic conditions <strong>of</strong> affected areas.1.3.1 Dispersion <strong>of</strong> <strong>arsenic</strong> and environmentalcontam<strong>in</strong>ationArsenic contam<strong>in</strong>ation occurs due to two ma<strong>in</strong>processes:1) Natural processes: Geothermal <strong>waters</strong> reach thesurface as natural spr<strong>in</strong>gs and then mix withsurface water flows or shallow groundwaterbodies. These fresh water sources may be used byhumans for both irrigation and dr<strong>in</strong>k<strong>in</strong>g <strong>waters</strong>upply.2) Geothermal exploitation: Human exploitation<strong>of</strong> <strong>geothermal</strong> <strong>waters</strong> as an energy source, causesmobilisation <strong>of</strong> As and other heavy metalsconta<strong>in</strong>ed <strong>in</strong> the <strong>geothermal</strong> <strong>waters</strong> to the surface.This then <strong>in</strong>creases the likelihood <strong>of</strong> surface andshallow groundwater contam<strong>in</strong>ation.Both <strong>of</strong> these processes may affect theenvironment and the health <strong>of</strong> humans andanimals. Typical symptoms that arise due to theuse <strong>of</strong> contam<strong>in</strong>ated <strong>waters</strong> <strong>in</strong>clude sk<strong>in</strong> lesions,hyperkeratosis, melanosis and different forms <strong>of</strong>carc<strong>in</strong>oma and lung cancer (WHO 1993, 2008;Webster & Nordstrom 2003).1.3.2 Health effects <strong>of</strong> <strong>arsenic</strong> and risksThe acute and chronic toxic effects <strong>of</strong> As are welldocumented. Arsenic has been declared a humancarc<strong>in</strong>ogen, contribut<strong>in</strong>g to a high <strong>in</strong>cidence <strong>of</strong>sk<strong>in</strong> and other cancers <strong>in</strong> populations exposed tohigh levels <strong>of</strong> As <strong>in</strong> dr<strong>in</strong>k<strong>in</strong>g water (WHO 1993,3


Lotta Hammarlund & Juan Piñones TRITA LWR Masters Thesis 09-022008). The WHO dr<strong>in</strong>k<strong>in</strong>g water guidel<strong>in</strong>e for Aswas lowered from 50 μg/L to 10 μg/L <strong>in</strong> 1993,and the new value has s<strong>in</strong>ce been adopted by manycountries as a dr<strong>in</strong>k<strong>in</strong>g water standard (Table 1).Table 1: Guidel<strong>in</strong>e values for <strong>arsenic</strong> recommended by WorldHealth Organisation (WHO 1993) for different purposes.Use <strong>of</strong> waterµg/lDr<strong>in</strong>k<strong>in</strong>g water limit 10Protection <strong>of</strong> aquatic life 19Stockwater<strong>in</strong>g 20Irrigation 10Arsenic concentrations <strong>in</strong> natural surface dra<strong>in</strong>agesystems frequently exceed 10μg/L <strong>in</strong> areas with<strong>geothermal</strong> activity. Symptoms <strong>of</strong> chronic Aspoison<strong>in</strong>g such as sk<strong>in</strong> lesions and high Asconcentrations <strong>in</strong> hair and nails have beenreported from <strong>geothermal</strong> areas but this may notalways be as a direct consequence <strong>of</strong> dr<strong>in</strong>k<strong>in</strong>gwater contam<strong>in</strong>ation (Webster & Nordstrom2003). At the Mt. Apo <strong>geothermal</strong> field <strong>in</strong> thePhilipp<strong>in</strong>es, for example, the two rivers dra<strong>in</strong><strong>in</strong>gthe field carry elevated As concentrations due tohot spr<strong>in</strong>gs activity <strong>in</strong> the river beds. Dur<strong>in</strong>gdevelopments <strong>of</strong> the field, alternative cleandr<strong>in</strong>k<strong>in</strong>g water supplies were provided and used bylocal residents, but the symptoms <strong>of</strong> high Asexposure appeared to persist (Webster 1999). Theaccumulation <strong>of</strong> As <strong>in</strong> edible aquatic plants is likelyto have been to blame, as high levels <strong>of</strong> As havebeen reported <strong>in</strong> aquatic weeds <strong>in</strong> other riversystems receiv<strong>in</strong>g <strong>geothermal</strong> fluids (Webster &Nordstrom 2003).1.4 History <strong>of</strong> exploitation <strong>of</strong> <strong>geothermal</strong>energy <strong>in</strong> Costa RicaDur<strong>in</strong>g the 1970’s, Costa Rica satisfied itselectricity needs us<strong>in</strong>g hydro (70%) and thermal(30%) energy sources. The cont<strong>in</strong>uous rise <strong>in</strong> oilprices, especially dur<strong>in</strong>g the 1973 crisis, motivatedthe national electricity authority (InstitutoCostarricense de Electricidad [ICE]), to study thepossibility <strong>of</strong> us<strong>in</strong>g other energy sources for thegeneration <strong>of</strong> electricity, <strong>in</strong>clud<strong>in</strong>g <strong>geothermal</strong>energy (Moya 2005).The first three deep wells were constructed 1979-80 close to the foot <strong>of</strong> the Miravalles volcano. ICEstarted to generate electricity <strong>in</strong> the beg<strong>in</strong>n<strong>in</strong>g <strong>of</strong>1994. S<strong>in</strong>ce then more wells have been constructedand the <strong>in</strong>stalled capacity today is about 163MWe.Even though only about 8.6% <strong>of</strong> the <strong>geothermal</strong>capacity was <strong>in</strong>stalled <strong>in</strong> 1994, the energy producedrepresented about 15% <strong>of</strong> the total energyproduced <strong>in</strong> Costa Rica, accord<strong>in</strong>g to thecomparison made dur<strong>in</strong>g 2004 (Paul Moya, ICE,pers. comm.).The most studied areas for <strong>geothermal</strong>exploitation are the volcanoes <strong>of</strong> Miravalles,R<strong>in</strong>cón de la Vieja and Tenorio (Figure 2B) (Moya2005). The largest thermal manifestations <strong>in</strong> thearea are <strong>in</strong> the Las Hornillas zone on theMiravalles volcano and <strong>in</strong> the Las Pailas zone onthe R<strong>in</strong>con de la Vieja-Santa Maria volcaniccomplex. They conta<strong>in</strong> lakes and acid-sulphatespr<strong>in</strong>gs, steam<strong>in</strong>g ground, fumaroles emissions,small craters and mud volcanoes. The <strong>geothermal</strong>reservoir <strong>in</strong> this area are high-temperature andliquid-dom<strong>in</strong>ated (Gherardi et al. 2002). As aconsequence <strong>of</strong> <strong>in</strong>creas<strong>in</strong>g exploitation <strong>of</strong><strong>geothermal</strong> resources, there has been emerg<strong>in</strong>gconcern about associated environmental impacts<strong>in</strong> the surround<strong>in</strong>g region. The <strong>geothermal</strong> <strong>waters</strong>and mud <strong>in</strong> Costa Rica are known to conta<strong>in</strong> highlevels <strong>of</strong> As; concentrations up to 30 mg/L havebeen recorded <strong>in</strong> the <strong>geothermal</strong> <strong>waters</strong>. Arsenicpresents a serious potential environmentalcontam<strong>in</strong>ation and a risk for human health. Asconcentrations <strong>in</strong> many places are above the WHOdr<strong>in</strong>k<strong>in</strong>g water guidel<strong>in</strong>es limit <strong>of</strong> 10 µg/l, (WHO2008). However, the <strong>geothermal</strong> <strong>waters</strong> havehighly varied characteristics that <strong>in</strong>dicatedifferential patterns <strong>of</strong> hydro ge<strong>och</strong>emicalevolution. It is therefore difficult to predictenvironmental risks on any practical level withoutdetailed study.1.5 Rationale <strong>of</strong> the present studySeveral gaps exist <strong>in</strong> our present day knowledge <strong>of</strong>the genesis and mobility <strong>of</strong> As <strong>in</strong> <strong>geothermal</strong>systems and the ge<strong>och</strong>emical processes and theirk<strong>in</strong>etics <strong>in</strong> near-surface environments. S<strong>in</strong>ce thereare an <strong>in</strong>creas<strong>in</strong>g number <strong>of</strong> areas where outflow<strong>of</strong> <strong>geothermal</strong> <strong>waters</strong> come <strong>in</strong> contact with humanbe<strong>in</strong>gs and graz<strong>in</strong>g animals understand<strong>in</strong>g <strong>of</strong> Asbehaviour is <strong>of</strong> great importance for the futuredevelopment and management <strong>of</strong> <strong>geothermal</strong>resources. It is a trend <strong>of</strong> <strong>in</strong>creas<strong>in</strong>g exploitation <strong>of</strong><strong>geothermal</strong> resources for energy and tourismtherefore the understand<strong>in</strong>g <strong>of</strong> ge<strong>och</strong>emicalprocesses that occur along the pathway <strong>of</strong><strong>geothermal</strong> <strong>waters</strong> is essential. Hydro-ge<strong>och</strong>emicaland ge<strong>och</strong>emical <strong>in</strong>vestigations <strong>of</strong> surface and4


Arsenic <strong>in</strong> Geothermal Waters <strong>of</strong> Costa Rica___________________________________________________________________________________deep <strong>geothermal</strong> <strong>waters</strong> and the sediments found<strong>in</strong> the areas surround<strong>in</strong>g thermal spr<strong>in</strong>gs andfumaroles are essential for develop<strong>in</strong>g effectivestrategies to safeguard the human health and theenvironment.The geological history <strong>of</strong> southern CentralAme<strong>rica</strong> is dom<strong>in</strong>ated by the growth <strong>of</strong> aCenozoic magmatic arc that is superimposed on aJurassic-Eocene ophiolite basement that consists<strong>of</strong> basalt and volcanic – sedimentary units. CostaRica is tectonically complex because <strong>of</strong> the<strong>in</strong>terplay <strong>of</strong> four plates: Cocos, Caribbean, Nazca,and the South Ame<strong>rica</strong>n block (Figure 2A). Thefigure shows the subduction <strong>of</strong> the Cocos Platebeneath the Caribbean Plate, which has caused thedevelopment <strong>of</strong> an <strong>in</strong>ter-oceanic volcanic arc allalong the Middle Ame<strong>rica</strong>n Trench.The Costa Rican Volcanic Front is associated withthe north eastward subduction <strong>of</strong> the Cocos platebeneath the Caribbean plate with a well-def<strong>in</strong>edBeni<strong>of</strong>f zone with a maximum depth <strong>of</strong> seismicityat 200 km and a subduction velocity <strong>of</strong> 9-10cm/year at an angle <strong>of</strong> 60 to 70˚ (Alvarado et al.1999; Montero 1999). The four mounta<strong>in</strong> ranges<strong>in</strong> Costa Rica, known as Guanacaste, Tilarán,Central and Talamanca ranges. The Guanacasterange is a NW-SW trend<strong>in</strong>g cha<strong>in</strong> <strong>of</strong> Quaternarystratovolcanos; predom<strong>in</strong>antly andesitic <strong>in</strong>composition. The range comprises ma<strong>in</strong>ly <strong>of</strong>pyroclastic (fallout, surge, and flow) rocks, lavaflows, and fluvio-lacustr<strong>in</strong>e deposits that haveformed gently slop<strong>in</strong>g plateaus on both sides <strong>of</strong>the range. The area is under constant regionalstress due to the subduction <strong>of</strong> the Cocos Plateunder the Caribbean Plate and due to the regionaluplift <strong>of</strong> the volcanic arc (Vega et al. 2005).Surface <strong>in</strong>dications <strong>of</strong> <strong>geothermal</strong> activity <strong>in</strong>cludenumerous spr<strong>in</strong>gs, fumaroles, vents and boil<strong>in</strong>gmud pots. These <strong>geothermal</strong> expressions formbeautiful landscapes <strong>in</strong> comb<strong>in</strong>ation withvolcanoes and tropical ra<strong>in</strong> forest. The uniquevisual nature <strong>of</strong> this landscape comb<strong>in</strong>ed with itshigh biodiversity has created a region <strong>of</strong> high valuetourism. This <strong>in</strong>dustry contributes significantly tothe economic and social development <strong>of</strong> thecountry (Vega et al. 2005).1.6 The Study areasThe present study focuses on <strong>in</strong>vestigate theoccurrences <strong>of</strong> As as well as an overallcharacterisation <strong>of</strong> the <strong>geothermal</strong> <strong>waters</strong> <strong>in</strong> thevic<strong>in</strong>ity <strong>of</strong> the volcanoes <strong>of</strong> Miravalles and R<strong>in</strong>cónde la Vieja based on the sampl<strong>in</strong>g <strong>of</strong> the<strong>geothermal</strong> wells, natural thermal spr<strong>in</strong>gs and coldspr<strong>in</strong>gs. The follow<strong>in</strong>g section gives a briefoverview <strong>of</strong> the study areas.1.6.1 Miravalles <strong>geothermal</strong> fieldMiravalles is the most studied <strong>geothermal</strong> area <strong>in</strong>Costa Rica. Here 53 wells are drilled; from which32 <strong>of</strong> them are used for production while 14 areused for gravity <strong>in</strong>jection <strong>of</strong> residual <strong>waters</strong>(Maniere 2005).Figure 2: A) Tectonic sketch map <strong>of</strong> Central Ame<strong>rica</strong>. Thesubduction <strong>of</strong> the Cocos Plate beneath the Caribbean Plate isshowed, which caused the development <strong>of</strong> an <strong>in</strong>ter-oceanic volcanicarc all along the Middle Ame<strong>rica</strong>n Trench. B) Geographical map<strong>of</strong> Costa Rica show<strong>in</strong>g location <strong>of</strong> ma<strong>in</strong> volcanoes and Miravallesand R<strong>in</strong>con de la Vieja <strong>geothermal</strong> fields. The Guanacaste arcconsist <strong>of</strong> the Orosi-Cacao, R<strong>in</strong>con de la Vieja-Santa Maria,Miravalles-Paleo Miravalles and Tenorion-Montezuma volcaniccomplexes (Gherardi et al. 2002).5


Lotta Hammarlund & Juan Piñones TRITA LWR Masters Thesis 09-02Cross section <strong>of</strong>Figure 4Figure 3: Geological-structural map <strong>of</strong> Miravalles <strong>geothermal</strong> reservoir and well field located <strong>in</strong> Guayabo caldera. The Map section <strong>of</strong> LaFortuna Graben is enclosed by a black frame (Birkle and Bundchuh 2007).6


Arsenic <strong>in</strong> Geothermal Waters <strong>of</strong> Costa Rica___________________________________________________________________________________Figure 4: Geological-structural cross section <strong>of</strong> parts <strong>of</strong> the Miravalles <strong>geothermal</strong> field: A) from well 51 <strong>in</strong> the south to well 58 <strong>in</strong> the north,and b) from well 58 <strong>in</strong> the northwest to well 64 <strong>in</strong> the southeast. The estimated 220˚C isotherm is also plotted. Locations <strong>of</strong> the cross-sectionsare shown <strong>in</strong> Figure 3 (Birkle and Bundchuh 2007).Miravalles <strong>geothermal</strong> area is located <strong>in</strong> the northwesternpart <strong>of</strong> Costa Rica <strong>in</strong> the Guanacastemounta<strong>in</strong> range <strong>of</strong> Guanacaste Prov<strong>in</strong>ce. TheMiravalles volcano is a Quaternary strato-volcanoris<strong>in</strong>g to 2028 m a.s.l. and is currently <strong>in</strong>active. The<strong>geothermal</strong> reservoir is high-temperature andliquid-dom<strong>in</strong>ated. The Miravalles field area ischaracterised by the Guayabo caldera (Figure 3)which is an active hydrothermal system <strong>of</strong> acaldera-type collapse structure <strong>of</strong> about 15 kmdiameter (Bundschuh et al. 2002; Vega et al. 2005).The highest reservoir temperature measured was255 ˚C with typical measured temperatures rang<strong>in</strong>gbetween 230-240˚C. The north-eastern part <strong>of</strong> theGuanacaste Cordillera seems to be the ma<strong>in</strong>recharge zone. Regional ground<strong>waters</strong> andreservoir fluids have been identified to haveseveral mix<strong>in</strong>g trends (Gherardi et al. 2002). Inorder to study the hydrologic relations between thereservoir and the surface water bodies’ sampleswere taken from zones surround<strong>in</strong>g the Miravalles<strong>geothermal</strong> field and from <strong>geothermal</strong> fluids.1.6.1.1 Geo-volcanological frameworkThe Miravalles <strong>geothermal</strong> field is located <strong>in</strong>sidethe Guayabo caldera (Figure 3), which formeddur<strong>in</strong>g the Pleistocene after three separate phases<strong>of</strong> volcanic activity. With<strong>in</strong> the Guayabo calderathe volcanic activity gradually shifted <strong>in</strong> anorthwest direction and then south-westwardsdur<strong>in</strong>g these phases. Reveal<strong>in</strong>g the existence <strong>of</strong>strong tectonic activity, four ma<strong>in</strong> fault systemshave been identified <strong>in</strong> the area (Gherardi et al.2002) all <strong>of</strong> which contribute to the hydraulicpermeability <strong>of</strong> the <strong>geothermal</strong> reservoir (Vega etal. 2005).In order <strong>of</strong> decreas<strong>in</strong>g age, they are oriented:1. NW–SE direction sub-parallel to that <strong>of</strong>the ma<strong>in</strong> Central-Ame<strong>rica</strong>n mounta<strong>in</strong>cha<strong>in</strong>, and, <strong>in</strong> particular, to the axis <strong>of</strong> theGuanacaste volcanic belt.2. N–S, formed dur<strong>in</strong>g the Holocene, andhas produced a graben-like structureabout 3 km <strong>in</strong> width known as La FortunaGraben (Figure 3). The La FortunaGraben has displaced part <strong>of</strong> the Guayabocaldera and forms the eastern and westernmarg<strong>in</strong> <strong>of</strong> the <strong>geothermal</strong> field.3. NE–SW, sub-parallel to the migrat<strong>in</strong>geruptive centres <strong>of</strong> the Miravalles volcano.7


Lotta Hammarlund & Juan Piñones TRITA LWR Masters Thesis 09-02Figure 5: Conceptual model <strong>of</strong> Miravalles <strong>geothermal</strong> reservoir, with a heat source related to Miravalles volcano. Alsoshown are ma<strong>in</strong> aquifer systems <strong>of</strong> the <strong>geothermal</strong> reservoir with flow directions, which are <strong>in</strong>fluenced by major faults (e.g. LasHornillas fault) (Birkle and Bundchuh 2007).4. E–W, <strong>in</strong>tersects the graben surface, andhas been encountered <strong>in</strong> severalproductive wells. This is the youngestfault system and is expressed at thesurface as hydrothermal alterations,sulfataras, mud volcanoes and hot spr<strong>in</strong>gs(e.g., Las Hornillas at Hornillas fault)(Gherardi et al. 2002; Vega et al. 2005).In the Guayabo caldera, surface geologicalmapp<strong>in</strong>g comb<strong>in</strong>ed with lithological descriptionsfrom the 53 <strong>geothermal</strong> wells reveal differentstratigraphic units (Figure 4). Three phases <strong>of</strong>volcanic activity can be dist<strong>in</strong>guished: pre-calderavolcanism, caldera volcanism and post calderavolcanism (Birkle & Bundchuh 2007; Vega et al.2005).To get to know the temperature distribution <strong>in</strong> the<strong>geothermal</strong> field, <strong>in</strong>formation on water-rock<strong>in</strong>teractions and result<strong>in</strong>g hydrothermal alterationwas obta<strong>in</strong>ed from the 53 <strong>geothermal</strong> wells. Threetemperature zones, partly overlapp<strong>in</strong>g, could bedist<strong>in</strong>guished:1. a smectit zone (


Arsenic <strong>in</strong> Geothermal Waters <strong>of</strong> Costa Rica___________________________________________________________________________________1.6.2 R<strong>in</strong>con de la Vieja <strong>geothermal</strong> fieldR<strong>in</strong>con de la Vieja is the only active volcano <strong>of</strong> thevolcanoes <strong>in</strong> the Guanacaste Volcanic Range. It isan andesitic stratovolcano located <strong>in</strong> the northwest<strong>of</strong> Costa Rica near the border <strong>of</strong> Nicaragua,at about 25 km NE from the city <strong>of</strong> Liberia(Figure 2B). R<strong>in</strong>con de la Vieja is a complexvolcano, with a maximum elevation <strong>of</strong> 1916 m(Santa Maria cone), consist<strong>in</strong>g <strong>of</strong> seven craters,form<strong>in</strong>g a 8 km long NW trend<strong>in</strong>g ridge with<strong>in</strong> anolder, wider caldera. The majority <strong>of</strong> thermalemissions <strong>of</strong> R<strong>in</strong>con de la Vieja volcano arelocated <strong>in</strong> the western outer flank <strong>of</strong> the ActiveCrater. The orig<strong>in</strong> <strong>of</strong> the thermal discharges isma<strong>in</strong>ly due to the boil<strong>in</strong>g <strong>of</strong> a shallow aquiferheated by <strong>in</strong>puts <strong>of</strong> magmatic-related hot fluidsand the expressions <strong>of</strong> <strong>geothermal</strong> activity <strong>in</strong> thearea ma<strong>in</strong>ly consist <strong>of</strong> hot mud pools and hotspr<strong>in</strong>gs (Tassi et al. 2005).The largest thermal manifestations on the LasPailas zone <strong>in</strong> R<strong>in</strong>con de la Vieja are the SantaMaria volcanic complex which conta<strong>in</strong>s lakes andacid-sulphate spr<strong>in</strong>gs, steam<strong>in</strong>g ground, fumarolesemissions, small craters and mud volcanoes(Gherardi et al. 2002).1.8 LimitationsThe chemical behaviour <strong>of</strong> As <strong>in</strong> sulphide-richfluids has been the subject <strong>of</strong> considerable andongo<strong>in</strong>g debate as there are several major obstaclesto the accurate prediction <strong>of</strong> As speciation.In part, this reflects the lack <strong>of</strong> a completethermodynamic database for As species. Stabilityconstants for ion pairs and complexes between theoxyanions and polyvalent cations are few andlimited <strong>in</strong> applicability. Also, polymerisation <strong>of</strong>arsenite, arsenate and thioarsenite complexes <strong>in</strong>high As or high sulphur solutions appears likely,but is largely unconfirmed. These reactions couldsignificantly complicate As speciation. However,reliable thermodynamic data are available for someAs species, and these can be used to <strong>in</strong>terpret Asbehaviour <strong>in</strong> many <strong>geothermal</strong> systems and surfacewater environments, as long as the limitations arerecognized (Webster & Nordstrom 2003).1.7 Aims and objectivesThe purpose <strong>of</strong> the study is to <strong>in</strong>vestigate theoccurrences <strong>of</strong> As as well as an overallcharacterisation <strong>of</strong> the <strong>geothermal</strong> <strong>waters</strong> <strong>in</strong> theareas <strong>of</strong> Miravalles and Pailas-Bor<strong>in</strong>quien<strong>geothermal</strong> fields.The specific objectives are to characterize <strong>waters</strong>extracted from:• Geothermal wells used for powergeneration.• Natural thermal spr<strong>in</strong>gs.• Cold spr<strong>in</strong>gs.• Suggest protection measures to avoid Ascontam<strong>in</strong>ation.This study is expected to give an opportunity tocompare similarities and dissimilarities <strong>of</strong> Asconcentration with results from <strong>geothermal</strong> wellsand thermal spr<strong>in</strong>gs <strong>in</strong> New Zealand, Philipp<strong>in</strong>esand USA where these issues have been<strong>in</strong>vestigated.9


Lotta Hammarlund & Juan Piñones TRITA LWR Masters Thesis 09-022. ARSENIC IN GEOTHERMAL WATERInorganic As is known to be potentially toxic and ahazardous to humans. Arsenic is a strongly redoxsensitiveelement and <strong>in</strong> natural aquifer systems ispresent <strong>in</strong> two dom<strong>in</strong>ant redox states; As(ΙΙΙ) andAs(V). As(V) is generally the stable species <strong>in</strong>oxidiz<strong>in</strong>g environments while As(ΙΙΙ) speciespredom<strong>in</strong>ates under reduc<strong>in</strong>g conditions. Thetoxicity (and mobility) <strong>of</strong> As(ΙΙΙ) is greater thanthat <strong>of</strong> As(V). As(ΙΙΙ) is toxic s<strong>in</strong>ce it coagulatesprote<strong>in</strong>s, forms complexes with coenzymes, and<strong>in</strong>hibits ATP production (necessary for metabolicprocesses) (Bhattacharaya et al. 2002).The upris<strong>in</strong>g <strong>geothermal</strong> <strong>waters</strong> are normallyreduc<strong>in</strong>g (suggest<strong>in</strong>g the presence <strong>of</strong>predom<strong>in</strong>antly As(ΙΙΙ) species) at depth. While itcomes <strong>in</strong> contact with shallow aquifers or mixeswith surface <strong>waters</strong>, the redox conditions becomeoxidis<strong>in</strong>g. In such oxidized systems, the mobility<strong>of</strong> As is a function <strong>of</strong> the redox transformation <strong>of</strong>the As(ΙΙΙ) to the oxidised As(V) species. TheAs(V) species is then sorbed on oxide m<strong>in</strong>erals,i.e., amorphous Al-, Mn- and Fe oxides andhydroxides. However, if residence time <strong>of</strong> waterwith<strong>in</strong> the <strong>geothermal</strong> system is short, redoxtransformations are rather <strong>in</strong>complete and thusAs(ΙΙΙ) species may be present at the surfaceoutlets <strong>of</strong> thermal spr<strong>in</strong>gs. The mobility <strong>of</strong> As <strong>in</strong>reduced systems is also governed by thedissolution <strong>of</strong> Fe- and Mn-oxyhydroxides <strong>in</strong> theaquifer sediments due to microbial mediatedbioge<strong>och</strong>emical <strong>in</strong>teractions (Bhattacharaya et al.2002).Geothermal <strong>waters</strong>, which are m<strong>in</strong>eralised withover 1g/L <strong>of</strong> total dissolved solids change theirspecific chemical composition dur<strong>in</strong>g theirpathway from deep seated sources to the surface<strong>of</strong> the earth. S<strong>in</strong>ce <strong>geothermal</strong> <strong>waters</strong> are related toactive or <strong>in</strong>active volcanism, the presence <strong>of</strong> As iseverywhere <strong>in</strong> these <strong>waters</strong>. The concentration andspeciation <strong>of</strong> As depends on the thermal sources atdepth and subsequent hydro-chemical evolution <strong>of</strong>water chemistry along its pathway up to thesurface. Due to <strong>in</strong>teractions with the sedimentsand other unstable constituents generated dur<strong>in</strong>gthe volcanic activities (fumaroles, gas vents etc.)the concentration and speciation <strong>of</strong> As change andleave beh<strong>in</strong>d hydrothermal mud (Webster &Nordstrom 2003).Geothermal fluids may conta<strong>in</strong> as much as 50mg/L As, although concentrations between 1 and10 mg/L are more typical (Ballantyne & Moore1988).2.1 The source <strong>of</strong> <strong>arsenic</strong> <strong>in</strong> <strong>geothermal</strong>systems2.1.1 The source and nature <strong>of</strong> <strong>geothermal</strong>fluidsActive <strong>geothermal</strong> areas occur where an unusuallyhigh <strong>geothermal</strong> gradient allows hot water orsteam to reach the earth’s surface. Heat sourcesmay be related to magmatic or volcanic activity,fault<strong>in</strong>g, radioactivity or metamorphism.Regardless <strong>of</strong> the heat source, deeply circulat<strong>in</strong>gground<strong>waters</strong> are heated <strong>in</strong> the crust.The hot fluids (that may be heated by only a fewdegrees or by hundreds <strong>of</strong> degrees above thesurround<strong>in</strong>gs) are <strong>of</strong> lower density thansurround<strong>in</strong>g <strong>waters</strong>, and rise through the hostrock, to complete the circulation system. Thepressure decreases when the <strong>geothermal</strong> fluids risethrough the crust and the fluid separates <strong>in</strong>to asteam phase and a water phase. This usually occursat a shallow depth, but can occur wherever there isa sudden decrease <strong>in</strong> pressure due to rock fracture.Different k<strong>in</strong>d <strong>of</strong> surface features can be seen <strong>in</strong>areas <strong>of</strong> <strong>geothermal</strong> energy. They can be grouped<strong>in</strong>to two ma<strong>in</strong> types, on the basis <strong>of</strong> theirrelationship to the ris<strong>in</strong>g <strong>geothermal</strong> fluids. Hotwater spr<strong>in</strong>gs is a direct discharge <strong>of</strong> the hot waterphase. They are rich <strong>in</strong> chloride and silica and havean almost neutral pH.Steam vents and acidic, sulphate-rich spr<strong>in</strong>gs areformed by the <strong>in</strong>teraction <strong>of</strong> the steam phase withshallow aquifer <strong>waters</strong>. This mixture <strong>of</strong> water andsteam lead to precipitation and sublimation <strong>of</strong>elemental sulphur which follows by microbialoxidation to sulphuric acid.Intense alteration <strong>of</strong> the host rock caused by thefluid can lead to an unstable ground surface andthe formation <strong>of</strong> bubbl<strong>in</strong>g “mudpools”. Geysersand carbonate-rich spr<strong>in</strong>gs are also examples <strong>of</strong>hot water discharges and <strong>in</strong>clude steam-heat<strong>in</strong>gand steam-phase mix<strong>in</strong>g (Webster & Nordstrom2003).10


Arsenic <strong>in</strong> Geothermal Waters <strong>of</strong> Costa Rica___________________________________________________________________________________2.1.2 The source <strong>of</strong> As <strong>in</strong> <strong>geothermal</strong> fluidsThe presence <strong>of</strong> As <strong>in</strong> <strong>geothermal</strong> fluids has beenknown s<strong>in</strong>ce the mid 19 th century. Many studieshave been performed <strong>in</strong> the Yellowstone NationalPark which conta<strong>in</strong>s one <strong>of</strong> the largest <strong>geothermal</strong>systems <strong>in</strong> the world. Here As concentrations <strong>in</strong>the thermal features generally range from


Lotta Hammarlund & Juan Piñones TRITA LWR Masters Thesis 09-02Reactions between arsenate ions and dissolvedsulphide can result <strong>in</strong> the successive replacement<strong>of</strong> oxygen with sulphur. The exact nature <strong>of</strong> suchthio-As complexes still rema<strong>in</strong>s much debated. Byassum<strong>in</strong>g that a trimmer structure occurs <strong>in</strong> asaturated <strong>geothermal</strong> fluid the follow<strong>in</strong>g reactiongives the solubility <strong>of</strong> orpiment:1.5As 2 S 3 + 1.5HS + 0.5 H + = H 2 As 3 S 6-The solubility <strong>of</strong> orpiment <strong>in</strong>creases with pH andsulphide concentration but is not greatly affectedby temperature changes below 200°C (Webster &Nordstrom 2003).2.2.4 Redox stateWhen the redox conditions <strong>in</strong> low sulphide fluidsbecome sufficiently oxidiz<strong>in</strong>g, oxidation <strong>of</strong>arsenious acid to arsenate (H 2 As ν O 4- or HAs ν O 42-)is likely to occur. Oxidation occurs when a ris<strong>in</strong>g<strong>geothermal</strong> fluids is exposed to atmosphericoxygen or mixed with another oxidiz<strong>in</strong>g fluid, suchas a shallow groundwater. Arsenate ions appear tobe formed <strong>in</strong> hot spr<strong>in</strong>gs and their surfacedra<strong>in</strong>age systems. Hot spr<strong>in</strong>gs form from reservoirfluids conta<strong>in</strong> ma<strong>in</strong>ly As(III) , whereas acid-sulfateand bicarbonate features are more enriched <strong>in</strong>As(V) . Important to notice is that reported As(III)concentrations may be underestimated if thesample has not been appropriately preserved priorto analysis. To preserve the sample it is importantto perform on site filtration through a 0.45μm (orf<strong>in</strong>er) membrane to remove bacteria. The sampleshould be stored cold and without air contact. It isalso <strong>of</strong>ten recommended to acidify the samplewith HNO 3 or HCl to pH 1.5-2.0 because this<strong>in</strong>hibits oxidation <strong>of</strong> As(III) by chemical oxidantssuch as Fe(III). Although, <strong>in</strong> some <strong>waters</strong>,acidification has been observed to change Asspeciation slightly, reduc<strong>in</strong>g As(V) to As(III).Geothermal water collected immediately aftersteam separation, and before enter<strong>in</strong>g the dra<strong>in</strong>,does not show a similar rate <strong>of</strong> As oxidation.Instead there is no noticeable As(III) oxidation <strong>in</strong>the waste water (collected directly <strong>in</strong>to a sterileglass bottle), even if bubbled with air for severalhours.Rapid As(III)/As(V) oxidation k<strong>in</strong>etics isapparently catalysed by microbial activity, althoughthe specific mechanisms by which bacteria couldfacilitate arsenite oxidation at temperatures > 50˚Crema<strong>in</strong> not completely understood. Bacteria<strong>in</strong>fluence the As(III) oxidation <strong>in</strong> <strong>geothermal</strong>systems and therefore studies is be<strong>in</strong>g made <strong>in</strong> theidentification <strong>of</strong> the thermophilic bacteria that canoxidise As(III).The ability <strong>of</strong> H 2 S and thiosulphate (S 2 O 3 ) toreduce As(V) to As(III) is well known because<strong>geothermal</strong> <strong>waters</strong> conta<strong>in</strong><strong>in</strong>g sulphide orthiosulphate will preserve As as As(III) until thereduced sulphur is oxidised or volatilised (Webster& Nordstrom 2003).2.3 Arsenic deposition from <strong>geothermal</strong>fluidsDeposits <strong>of</strong> As, Sb, Au and Hg occurpredom<strong>in</strong>antly near the surface <strong>in</strong> <strong>geothermal</strong>systems while base metals such as Ag, Cu, Pb, Znwill be deposited at greater depth. The metalzonation is due to a three-step process <strong>of</strong> fluidboil<strong>in</strong>g, gas phase transport and acid reactionswith<strong>in</strong> metal-bear<strong>in</strong>g <strong>waters</strong>. Base metalprecipitation occurs due to boil<strong>in</strong>g and the pH<strong>in</strong>crease which occurs when CO 2 gas is driven <strong>of</strong>f.Dur<strong>in</strong>g boil<strong>in</strong>g, As rema<strong>in</strong>s soluble as an oxyanionunder the higher pH and lower sulphideconcentrations present <strong>in</strong> the fluid. Precipitation<strong>of</strong> orpiment then occurs <strong>in</strong> response to theacidification <strong>of</strong> hot spr<strong>in</strong>g <strong>waters</strong> with acidsulphate<strong>waters</strong>, subsurface cool<strong>in</strong>g <strong>of</strong> the fluid or<strong>in</strong>creased H 2 S concentrations.At many <strong>geothermal</strong> fields it has been noted thatAs was ma<strong>in</strong>ly concentrated <strong>in</strong> pyrite at depth.Arsenic m<strong>in</strong>erals such as arsenopyrite (FeAsS)appear to be uncommon <strong>in</strong> the rocks <strong>of</strong><strong>geothermal</strong> reservoirs themselves but a range <strong>of</strong>As m<strong>in</strong>erals are precipitated from <strong>geothermal</strong>surface features such as hot spr<strong>in</strong>gs (Webster &Nordstrom 2003).2.4 Arsenic <strong>in</strong> hot spr<strong>in</strong>g deposits andscalesThe coloured precipitate form<strong>in</strong>g at the periphery<strong>of</strong> hot spr<strong>in</strong>gs, hot pool and geysers can have ahigh concentration <strong>of</strong> As rang<strong>in</strong>g from two to acouple <strong>of</strong> hundreds mg/kg. It can be difficult todeterm<strong>in</strong>e the m<strong>in</strong>eralogy <strong>of</strong> these colouredprecipitates though As:S ratios may be affected byother sulphide-bear<strong>in</strong>g m<strong>in</strong>erals and the colour canvary. For example, amorphous realgar has a brightred colour but so have stibnite and c<strong>in</strong>nabar too.12


Arsenic <strong>in</strong> Geothermal Waters <strong>of</strong> Costa Rica___________________________________________________________________________________Orpiment has a yellow-green colour that rem<strong>in</strong>d <strong>of</strong>native sulphur. However, <strong>in</strong> hot spr<strong>in</strong>gs with lowlevels <strong>of</strong> antimony and mercury, the yellowprecipitate is commonly orpiment. Realgar doesnot seem to deposit <strong>in</strong> hot spr<strong>in</strong>gs but does occuras coat<strong>in</strong>g and ve<strong>in</strong>s <strong>in</strong> the altered rocks <strong>of</strong> the<strong>geothermal</strong> field. Other types <strong>of</strong> deposits have alsobeen reported from around the world but so farlittle is known.The scales which form <strong>in</strong> pipes and dra<strong>in</strong>s <strong>of</strong> adeveloped field can also be rich <strong>in</strong> As. The Asdeposition may occur due to adsorption on Feoxide(Webster & Nordstrom 2003).2.5 The fate <strong>of</strong> <strong>arsenic</strong> from <strong>geothermal</strong>sourcesOne <strong>of</strong> the most significant negativeenvironmental effects <strong>of</strong> <strong>geothermal</strong> activity is thecontam<strong>in</strong>ation <strong>of</strong> natural dra<strong>in</strong>age systems by As.While direct soil contam<strong>in</strong>ation will occur to somedegree near a <strong>geothermal</strong> field, this is typically onlya local effect generally considered acceptable. Thema<strong>in</strong> risk is presented by the transportation <strong>of</strong> Asbeyond the boundary <strong>of</strong> the <strong>geothermal</strong> field viawater flow through the surface and subsurfacecatchments. It is chemical contam<strong>in</strong>ation <strong>of</strong>surface water, rather than ground<strong>waters</strong>, which ismost commonly detected <strong>in</strong> the vic<strong>in</strong>ity <strong>of</strong><strong>geothermal</strong> systems. In surface <strong>waters</strong>, As enters acycle <strong>of</strong> chemical and bi<strong>och</strong>emical reactions whichaffect its potential impact (Webster & Nordstrom2003).2.6 Surface <strong>waters</strong>Hot spr<strong>in</strong>gs, geysers and steam features allproduce an excess <strong>of</strong> fluid at the surface thatusually dra<strong>in</strong>s directly <strong>in</strong>to the nearest catchmentssystem. Even after orpiment precipitation, manyhot spr<strong>in</strong>g fluids will still conta<strong>in</strong> >1mg/kg Asbecause orpiment is a relatively soluble salt. Forthat reason, water used for dr<strong>in</strong>k<strong>in</strong>g, stockwater<strong>in</strong>g and irrigation or support<strong>in</strong>g aquatic lifemay have unacceptably high As concentrationsdownstream <strong>of</strong> a <strong>geothermal</strong> system.Arsenic contam<strong>in</strong>ation <strong>of</strong> dr<strong>in</strong>k<strong>in</strong>g water maycause serious health problems and has thereforereceived lots <strong>of</strong> attention.Arsenic speciation is important <strong>in</strong> surface <strong>waters</strong>because acute toxicity <strong>of</strong> As(III) is greater thanthat <strong>of</strong> As(V) or the organic forms <strong>of</strong> As. Forhuman chronic toxicity, the redox form <strong>of</strong> As maynot matter because As is largely reduced to As(III)and methylated. Another issue is the processes bywhich As <strong>in</strong>teracts with sediments and organic andbiotic substrates <strong>in</strong> fresh<strong>waters</strong>, as this affects bothAs concentration and speciation.Studies <strong>of</strong> As <strong>in</strong> the rivers dra<strong>in</strong><strong>in</strong>g two <strong>geothermal</strong>systems: Yellowstone National Park and theTaupo Volcanic Zone, have shown that As ispr<strong>in</strong>cipally transported <strong>in</strong> dissolved form.“Dissolved” <strong>in</strong> this case is def<strong>in</strong>ed as pass<strong>in</strong>gthrough a 0.45μm filter membrane. On a macroscaleAs also appears to behave conservativelydownstream <strong>of</strong> these <strong>geothermal</strong> systems, withlittle change <strong>in</strong> As mass flux down the river or <strong>in</strong>lakes and estuaries. Studies <strong>of</strong> <strong>geothermal</strong>-derivedAs <strong>in</strong> other freshwater systems support thisobservation (Webster & Nordstrom 2003).2.6.1 Dissolved <strong>arsenic</strong> speciationThe presence <strong>of</strong> bacteria <strong>in</strong> the oxidation processmay be very important both <strong>in</strong> river <strong>waters</strong> andaround the outlets <strong>of</strong> the <strong>geothermal</strong> spr<strong>in</strong>gs.Wilkie & Her<strong>in</strong>g (1998) noted that As oxidation <strong>in</strong>Hot Creek did not occur if the river water wasfiltered under sterile conditions or after anantibiotic had been added. Their conclusion fromthis was that bacteria attached to submerged plantswere mediat<strong>in</strong>g As(III) oxidation. Some <strong>of</strong> themost common bacteria capable <strong>of</strong> As(III)oxidation are Pseudomonas sp, Xanthomonas andAcromobacter. Significantly, while As(V) may bethe predom<strong>in</strong>ant form <strong>of</strong> As found <strong>in</strong> anenvironment, the As(III) form can still occur dueto seasonal changes <strong>in</strong> water and microbialconditions(Webster & Nordstrom 2003).2.6.2 Transport and removal from the water columnPart <strong>of</strong> the As released <strong>in</strong>to a river from a<strong>geothermal</strong> system will be <strong>in</strong>corporated <strong>in</strong>to thebi<strong>och</strong>emical cycle, <strong>in</strong>teract<strong>in</strong>g with plants, biota,suspended material and bed sediments.A strong association between As and Fe-oxides <strong>in</strong>river and lake sediments has been reported. Thisassociation is attributed to the adsorption <strong>of</strong>arsenate onto the Fe-oxide coat<strong>in</strong>g on sedimentparticles.The life-cycle <strong>of</strong> aquatic plants may also affect theconcentration <strong>of</strong> As <strong>in</strong> the water column. Theuptake <strong>of</strong> As by aquatic macrophytes (plants) hasbeen reported <strong>in</strong> rivers contam<strong>in</strong>ated by<strong>geothermal</strong> <strong>waters</strong>. There is <strong>of</strong>ten a significant13


Lotta Hammarlund & Juan Piñones TRITA LWR Masters Thesis 09-02degree <strong>of</strong> As enrichment relative to the watercolumn. High phosphate concentrations can<strong>in</strong>hibit As uptake by plants, as well as Asadsorption on Fe-oxide surfaces.F<strong>in</strong>ally, As <strong>in</strong>teracts with macrobiota either directlyor via the food cha<strong>in</strong>. As well as the issue <strong>of</strong>toxicity, there is the potential problem <strong>of</strong> Asaccumulation <strong>in</strong> animal flesh (Webster &Nordstrom 2003).2.7 GroundwaterEven though As-rich ground<strong>waters</strong> are common,there are relatively few examples where the As isclearly related to <strong>geothermal</strong> activity. Geothermalfluids are themselves effectively deeply circulat<strong>in</strong>gground<strong>waters</strong>. The thermal attractive force to thesurface limits the spread<strong>in</strong>g <strong>of</strong> these As-rich fluidsat depth. However, at or near the surfacecontam<strong>in</strong>ation <strong>of</strong> shallow aquifer systems can anddoes occur.Groundwater contam<strong>in</strong>ation is a concern for<strong>geothermal</strong> developers because there are severalpotential pathways for aquifer contam<strong>in</strong>ation(Webster & Nordstrom 2003). These <strong>in</strong>clude:• Un<strong>in</strong>tentional re-<strong>in</strong>jection <strong>of</strong> spent<strong>geothermal</strong> waste water <strong>in</strong>to an aquifer.This will normally occure only if the<strong>in</strong>tegrity <strong>of</strong> the cas<strong>in</strong>g around a well isbreached.• Seepage from poorly-l<strong>in</strong>ed or unl<strong>in</strong>ed,hold<strong>in</strong>g ponds for the retention <strong>of</strong><strong>geothermal</strong> fluids and from pipel<strong>in</strong>es.• Burial <strong>of</strong> As-rich sludge from wastetreatment process or from dra<strong>in</strong>s andpipes.14


Arsenic <strong>in</strong> Geothermal Waters <strong>of</strong> Costa Rica___________________________________________________________________________________3. MATERIALS AND METHODS3.1 Field <strong>in</strong>vestigationsFieldwork was carried out dur<strong>in</strong>g September 2005.It consisted <strong>of</strong> field measurements and <strong>waters</strong>ampl<strong>in</strong>g. Totally 50 sample were collected at 49different places <strong>in</strong> the surround<strong>in</strong>gs <strong>of</strong> theMiravalles and the R<strong>in</strong>con de la Vieja volcanoareas. Water from three types <strong>of</strong> reservoirs wascollected e.g. <strong>geothermal</strong> well fluids (GTW),thermal spr<strong>in</strong>gs (TS) and cold surface <strong>waters</strong> (CS)(Table 2).3.1.1 Field location and sampl<strong>in</strong>g3.1.1.1 MiravallesTwenty eight 28 samples were collected aroundthe Miravalles volcano area.13 <strong>of</strong> these samples (PGM-11, PGM-14, PGM-62,PGM-31, PGM-08, PGM-45, PGM-43, PGM-12,PGM-20, PGM-46, PGM-29, PGM-07, PGM-19)were extracted directly from the pipes which arepump<strong>in</strong>g up the water from the <strong>geothermal</strong> well ata depth vary<strong>in</strong>g between 960-1998 meters <strong>of</strong> the<strong>geothermal</strong> field <strong>of</strong> Miravalles (Figure 6).11 samples (Termal Guayabal, Sitio 13, Corralito,Termal union, U1, Hornillas Miravalles, Colegi<strong>of</strong>ortuna, San bernardo 1, San bernardo 2, Salitralbagaces and Panteon) were collected from thermalspr<strong>in</strong>gs and 4 samples (Toma guayabo, Toma casamaqu<strong>in</strong>as, Toma fortuna, and Toma colonia) werecollected from cold surface spr<strong>in</strong>gs (Figure 7).3.1.1.2 R<strong>in</strong>con de la ViejaIn the R<strong>in</strong>con de la Vieja volcano area, 21 sampleswere collected. Among these, 4 samples (PGP-01,PGP-03, PGP-04 and PGB-01) were extracted bypump equipment directly from the <strong>geothermal</strong> wellat a depth vary<strong>in</strong>g between 1414-2595 meters <strong>of</strong>the <strong>geothermal</strong> field <strong>of</strong> Pailas-Bor<strong>in</strong>quen (Figure8). 16 samples were collected from thermal spr<strong>in</strong>gs(Figure 9) among which 5 were extracted atHornillas hotel Bor<strong>in</strong>quen, Hornillas Parque,Pailas agua, Santa Maria Caliente and Azufrales.The rema<strong>in</strong><strong>in</strong>g samples were collected from 11 hotwater spr<strong>in</strong>gs <strong>in</strong> this area from Rio Salitral, RioTizate1, Rio Tizate 2, Salitral las lilas 1, Salitral laslilas 2, Salitral las lilas 1+2, Pedernal, NacientesNieve Arraya1 and Nacientes Nieve Arraya 2. 1sample was collected from the cold spr<strong>in</strong>g <strong>of</strong>Hotel Guachipel<strong>in</strong>. Figure 10 show an overviewover R<strong>in</strong>con de la Vieja area and Figure 11 showhow the sampl<strong>in</strong>g at R<strong>in</strong>con de la Vieja was carriedout.3.1.2 Collection <strong>of</strong> field dataThe follow<strong>in</strong>g data was collected/measured <strong>in</strong> thefield:• GPS coord<strong>in</strong>ates, <strong>in</strong>formation given fromICE• Well depth, <strong>in</strong>formation given from ICE• Temperature, us<strong>in</strong>g a portable EcoScan pH6 meter (temp range 0-100˚C).Temperatures for the <strong>geothermal</strong> wells:<strong>in</strong>formation given from ICE• pH, us<strong>in</strong>g a portable EcoScan pH 6 meter(pH range 0-14, +/- 0.01)• Eh (redox), us<strong>in</strong>g a portable EcoScan pH 6meter (-1000-1000mV, +/- 2 mV))• Dissolved oxygen, s<strong>in</strong>g a CyberScan DO100• -Conductivity, us<strong>in</strong>g a portable EcoScan pH6 meter• Field estimation <strong>of</strong> total As concentration,us<strong>in</strong>g a Hach Field test kit (range: 10-500µg/l).The equipments were checked and calibratedbefore the field measurements. The pH-meter wascalibrated once a day us<strong>in</strong>g buffer solutions andthe redox electrode was checked with Zobell’ssolution several times dur<strong>in</strong>g the <strong>in</strong>vestigationperiod. Field measurements <strong>of</strong> redox potential(Eh) are known to be problematic withquestionable reliability (Appelo & Postma 1993).Water samples were taken from each location andbrought back to the laboratory <strong>of</strong> the Department<strong>of</strong> Land and Water Resources Eng<strong>in</strong>eer<strong>in</strong>g, RoyalInstitute <strong>of</strong> Technology Stockholm for furtheranalyses. A set <strong>of</strong> four bottles was taken, oneplastic bottle <strong>of</strong> 50 ml volume, one 50 ml bottlewith dark glass and two plastic bottles <strong>of</strong> 22 ml(see below).15


Lotta Hammarlund & Juan Piñones TRITA LWR Masters Thesis 09-02Figure 6: Map pf Miravalles <strong>geothermal</strong> field with sampled <strong>geothermal</strong> wells.16


Arsenic <strong>in</strong> Geothermal Waters <strong>of</strong> Costa Rica___________________________________________________________________________________Figure 7: Map <strong>of</strong> spr<strong>in</strong>g locations around Miravalles17


Lotta Hammarlund & Juan Piñones TRITA LWR Masters Thesis 09-02Figure 7:Figure 8: Map <strong>of</strong> Las Pailas-Bor<strong>in</strong>quien <strong>geothermal</strong> fields and the sampled <strong>geothermal</strong> wells.18


Arsenic <strong>in</strong> Geothermal Waters <strong>of</strong> Costa Rica___________________________________________________________________________________Figure 9: Map <strong>of</strong> spr<strong>in</strong>g locations around R<strong>in</strong>con de la Vieja.Figure 10: Ooverview map R<strong>in</strong>con de la Vieja area.19


Lotta Hammarlund & Juan Piñones TRITA LWR Masters Thesis 09-02Figure 11: Sampl<strong>in</strong>g at Las-Pailas- Bor<strong>in</strong>quien (1-3) and Miravalles <strong>geothermal</strong> fields (4). 1) Construction <strong>of</strong> pump equipment 2) W<strong>in</strong>chused to lower and extract sample equipment <strong>in</strong>to boreholes 3) Cool<strong>in</strong>g ponds 4) Releas<strong>in</strong>g the gas before tak<strong>in</strong>g sample at Miravalles<strong>geothermal</strong> field.20


Arsenic <strong>in</strong> Geothermal Waters <strong>of</strong> Costa Rica___________________________________________________________________________________Table 2: Overview <strong>of</strong> the samples collected from Miravalles and R<strong>in</strong>con de la Vieja <strong>geothermal</strong> sitesSample nr Sample ID Location Sample source WL84 WL84 X Y Elevation Well_Depth Max Reservoir TempW N Lambert North Lambert East m(asl) m °C1 PGM-11 Miravalles Geothermal well 85 10´55.774" 10 43´6.000" 299,780 407,149 719 1450 2422 PGM-14 Miravalles Geothermal well x x x x 702 1396 See graph3 PGM-62 Miravalles Geothermal well 85 11´15.855" 10 43´7.997" 300,577 406,791 692 1758 2384 PGM-31 Miravalles Geothermal well 85 11´25.249" 10 42´37.539 299,843 406,539 643 1724 2345 PGM-08 Miravalles Geothermal well 85 11´44.568" 10 42´25.736" 298,908 406,251 809 1200 2326 PGM-45 Miravalles Geothermal well 85 11´54.829" 10 41´59.767" 298,547 405,663 593 960 2357 PGM-43 Miravalles Geothermal well 85 12´4.878" 10 42´3.971" 297,750 405,350 578 953 2298 PGM-12 Miravalles Geothermal well 85 11´43.921" 10 41´18.524" 297,880 405,044 516 1596 2279 PGM-20 Miravalles Geothermal well 85 11´50.390" 10 41´25.179" 296,482 405,677 517 1700 23110 PGM-46 Miravalles Geothermal well 85 11´43.145" 10 41´47.299" 296,687 405,481 584 1198 23311 PGM-29 Miravalles Geothermal well 85 10´30.171" 10 40´40.117" 297,366 405,703 473 1380 23012 PGM-07 Miravalles Geothermal well 85 10´45.090" 10 42´58.249" 295,296 407,915 738 1998 23913 PGM-19 (öppen) Miravalles Geothermal well 85 11´23.373" 10 41´51.316" 299,541 407,473 608 1260 23214 Termal Guayabal Miravalles Thermal spr<strong>in</strong>g 85 11´37.173" 10 45´16.444" 303,791 405,902 610 x x15 Sitio 13 Miravalles Thermal spr<strong>in</strong>g 85 11´52.648" 10 44´18.953" 302,026 405,427 575 x x16 Corralito Miravalles Thermal spr<strong>in</strong>g 85 11´38.53" 10 44´20.46" 590 x x17 Termal union Miravalles Thermal spr<strong>in</strong>g 85 11´46.396" 10 43´8.110" 299,849 405,611 550 x x18 U1 Miravalles Thermal spr<strong>in</strong>g 85 11´37.876 10 42´33.761" 298,793 405,867 625 x x19 Hornillas (Miravalles) Miravalles Thermal spr<strong>in</strong>g 85 10´45.83" 10 42´51.05" 754 x x20 Colegio Fortuna Miravalles Thermal spr<strong>in</strong>g 85 12´35.667" 10 40´25.262" 294,850 404,100 380 x x21 San Bernardo 1 Miravalles Thermal spr<strong>in</strong>g 85 12´10.239" 10 35´56.798" 286,600 404,850 335 x x22 San Bernardo 2 Miravalles Thermal spr<strong>in</strong>g x x x x 335 x x23 Salitral Bagaces Miravalles Thermal spr<strong>in</strong>g 85 14´24.114" 10 35´49.765" 286,396 400,780 165 x x24 Panteon Miravalles Thermal spr<strong>in</strong>g 85 12´57.37" 10 42´16.52" 510 x x25 Toma Guayabo Miravalles Cold spr<strong>in</strong>g 85 11´27.084" 10 43´34.234" 300,650 406,200 610 x x26 Toma casa maqu<strong>in</strong>as Miravalles Cold spr<strong>in</strong>g 85 10´50.520" 10 43´46.701 301,030 407,312 780 x x27 Toma Fortuna Miravalles Cold spr<strong>in</strong>g 85 11´40.640" 10 40´46.309" 295,492 405,774 480 x x28 Toma Colonia Miravalles Cold spr<strong>in</strong>g 85 11´14.620" 10 40´37.395" 295,216 406,564 455 x x29 PGP-01 R<strong>in</strong>cón de la Vieja Geothermal well 85 21´42.980 10 45´51.235" x x 659 1418 24030 PGP-03 R<strong>in</strong>cón de la Vieja Geothermal well 85 21´6.635" 10 46´19.767 305,788 388,607 757 1772 24431 PGP-04 R<strong>in</strong>cón de la Vieja Geothermal well 85 21´32.571 10 45´29.037" 304,232 387,814 631 1418 22932 PGB-01 R<strong>in</strong>cón de la Vieja Geothermal well 85 24´30.555 10 48´24.866 309,652 382,425 699 2595 27633 Hornillas hotel Bor<strong>in</strong>quen R<strong>in</strong>cón de la Vieja Thermal spr<strong>in</strong>g 85 24´54.507" 10 48´49.132" 310,400 381,700 535 x x34 Hornillas parque R<strong>in</strong>cón de la Vieja Thermal spr<strong>in</strong>g 85 22´24.0" 10 47´3.8" 307,150 386,260 760 x x35 Pailas agua R<strong>in</strong>cón de la Vieja Thermal spr<strong>in</strong>g 85 20´43.8" 10 46´21.9" 305,850 389,300 763 x x36 Santa Maria Caliente R<strong>in</strong>cón de la Vieja Thermal spr<strong>in</strong>g 85 19´30.0" 10 45´38.6" 304,460 391,540 715 x x37 Azufrales R<strong>in</strong>cón de la Vieja Thermal spr<strong>in</strong>g 85 19´39.5" 10 45´33.2" 304,350 391,250 725 x x38 Rio salitral (Hotel buena vista) R<strong>in</strong>cón de la Vieja Thermal spr<strong>in</strong>g 85 24´24.9" 10 48´41.1" 310,150 382,600 630 x x39 Rio tizate 1 R<strong>in</strong>cón de la Vieja Thermal spr<strong>in</strong>g 85 26´14.7" 10 46´28.9" 306,100 379,250 330 x x40 Rio tizate 2 R<strong>in</strong>cón de la Vieja Thermal spr<strong>in</strong>g 85 26´26.175" 10 46´25.602" 306,000 378,900 300 x x41 Salitral las lilas 1 R<strong>in</strong>cón de la Vieja Thermal spr<strong>in</strong>g 85 28´11.9" 10 48´19.2" 309,500 375,700 245 x x42 Salitral las lilas 2 R<strong>in</strong>cón de la Vieja Thermal spr<strong>in</strong>g 85 28´18.5" 10 48´12.6" 309,300 375,500 250 x x43 Salitral las lilas 1+2 R<strong>in</strong>cón de la Vieja Thermal river 85 28´18.5" 10 48´12.6" 309,300 375,500 250 x x44 Pedernal (NE de C Fortuna) R<strong>in</strong>cón de la Vieja Thermal spr<strong>in</strong>g 85 27´26.0" 10 49´1.6" 310,800 377,100 315 x x45 Naciente Nieves Araya 2 R<strong>in</strong>cón de la Vieja Thermal spr<strong>in</strong>g 85 19´39.4" 10 53´52.9" 319,700 391,300 435 x x46 Naciente Nieves Araya 1 R<strong>in</strong>cón de la Vieja Thermal spr<strong>in</strong>g 85 19´39.4" 10 53´52.9" 319,700 391,300 435 x x47 El volcancito R<strong>in</strong>cón de la Vieja Thermal spr<strong>in</strong>g 85 19´29.7" 10 54´35.2" 321,000 391,600 410 x x48 Las Avestruces R<strong>in</strong>cón de la Vieja Thermal spr<strong>in</strong>g x x x x 400 x x49 El albergue agroecologico R<strong>in</strong>cón de la Vieja Thermal spr<strong>in</strong>g x x x x 400 x x50 Hotel Guachipel<strong>in</strong> R<strong>in</strong>cón de la Vieja Cold spr<strong>in</strong>g 85 21´46.2" 10 45´42.6" 304,650 387,400 595 x xWater samples collected from each well <strong>in</strong>volved:• 50 ml filtered samples for alkal<strong>in</strong>ity andmajor anion analysis.• 22 ml filtered acidified samples (14MHNO 3 ), for major cation and trace elementsanalysis.• 22 ml acidified samples (14M HNO 3 ), keptfrozen when possible, for DOC analysis.• 50 ml filtered through a DisposableCartridge TM filter that removes species <strong>of</strong>As(V) and then acidified <strong>in</strong> a dark glassbottle, for As(III) analysis.The dark glass bottle was used for stor<strong>in</strong>g thewater meant for As analyses. Before bottl<strong>in</strong>g thewater was filtered through a cartridge filter withthe pore size 0.45 µm. to remove most <strong>of</strong> thecolloidal material and micro organisms that caneffect the dissolved As(ΙΙΙ/ V) ratio.Some <strong>of</strong> the samples were also acidified with 5 mlHNO 3per liter sample. Bottles were closedavoid<strong>in</strong>g air bubbles. The samples were put <strong>in</strong> acooled box dur<strong>in</strong>g transportation and storedrefrigerated until the analysis was completed <strong>in</strong>Stockholm dur<strong>in</strong>g October, 2006.3.2 Laboratory <strong>in</strong>vestigationsThe water was analyzed for major ions, total Asand other trace elements and further for As(III),DOC and alkal<strong>in</strong>ity. Below follows a description<strong>of</strong> the methods used for each <strong>of</strong> the analysis.3.2.1 Alkal<strong>in</strong>ityThe alkal<strong>in</strong>ity was measured follow<strong>in</strong>g thestandard SS-EN ISO 9963-2 (SIS 1996).21


Lotta Hammarlund & Juan Piñones TRITA LWR Masters Thesis 09-023.2.2 Major ionsAnions were analyzed at the laboratory <strong>of</strong> theDepartment <strong>of</strong> Land and Water ResourceEng<strong>in</strong>eer<strong>in</strong>g at KTH on a Dionex DX-120 IonChromatograph. In order to save the sensitiveequipment samples were diluted between 1 and100 times prior to analysis yield<strong>in</strong>g lowerconcentrations <strong>of</strong> ions. Dilution was made withguidance from the field-measured conductivity.For anion analysis untreated samples and anIonPac AS9-SC coloumn was used. Thechromatograph was run several times until almostall results were with<strong>in</strong> the calibrated <strong>in</strong>terval set bythe standard solutions used for verify<strong>in</strong>g theresults.Cations were analysed with ICP-OES (OpticalEmission Spectroscopy) from Varian Vista Ax..These analyses were performed at the StockholmUniversity.3.2.3 Trace elementsAcidified samples were analyzed at the StockholmUniversity with an ICP-OES (Optical EmissionSpectroscopy) from Varian Vista Ax.3.2.4 Arsenic (III)Samples used were directly filtered <strong>in</strong> the fieldthrough Disposable Cartridge filters that removesAs(V) and then acidified. Analyzes was performedat the Stockholm University us<strong>in</strong>g the same<strong>in</strong>strument as for trace elements, see above.3.2.5 DOCDissolved organic carbon was analyzed at thelaboratory <strong>of</strong> the Department <strong>of</strong> Land and WaterResource Eng<strong>in</strong>eer<strong>in</strong>g at KTH on a TOC-5000SHIMADZU Total Organic Carbon Analyzer asNPOC (Non-Purgeable Organic Carbon).3.2 Treatment <strong>of</strong> analytical dataAquaChem 4.0 (Waterloo Hydrogeologic, 1997)was used to determ<strong>in</strong>e water types and create piperdiagrams <strong>of</strong> major ions <strong>in</strong> the sampled <strong>waters</strong>.Scatter and Box plots was also carried out.22


Arsenic <strong>in</strong> Geothermal Waters <strong>of</strong> Costa Rica___________________________________________________________________________________4. RESULTSResults <strong>of</strong> field parameters and the concentrations<strong>of</strong> major ions, selected m<strong>in</strong>or ions, trace elementsand DOC <strong>in</strong> <strong>geothermal</strong> wells, thermal spr<strong>in</strong>gs andcold spr<strong>in</strong>gs from the study areas <strong>of</strong> R<strong>in</strong>con de laVieja and Miravalles are summarized <strong>in</strong> Tables 3-9.4.1 Geothermal wells4.1.1 Field measured parametersA summary <strong>of</strong> the field measured parameters forwater samples are presented <strong>in</strong> Table 3. Thetemperature <strong>of</strong> the <strong>geothermal</strong> well fluids had tobe cold down before measur<strong>in</strong>g could be carriedout. The measurements were taken at atemperature <strong>of</strong> 9-90 °C at Miravalles and 24-29 °Cat R<strong>in</strong>con de la Vieja. The reservoir temperature atMiravalles and R<strong>in</strong>con de la Vieja varies between230-255°C and 229-276°C respectively.The pH <strong>in</strong> the <strong>geothermal</strong> wells is neutral andvalues ranges between 7-7.8 <strong>in</strong> samples collected atthe wellhead at Miravalles with three exceptions <strong>of</strong>PGM-29,PGM-07 and PGM-19 which are weaklyalkal<strong>in</strong>e (pH 4.8-5.7). The samples collected at thebottom <strong>of</strong> the wells <strong>in</strong> R<strong>in</strong>con de la vieja (PGP-01at 1414 m, PGP-03 at 1773 m, PGP-04 at 1419 mand PGB-01 at 2595m depths) were neutral toweakly alkal<strong>in</strong>e (pH 5.72-7.77). Field measuredredox potential (Eh) <strong>in</strong> the <strong>geothermal</strong> well fluidsvaries between 99-431 mV at Miravalles and 160-366 mV at R<strong>in</strong>con de la Vieja.Elect<strong>rica</strong>l conductivity (EC) is high, rangesbetween 8.940-15.150 mS/cm (with one exception130.310 mS/cm) at Miravalles and 8.00-12.85mS/cm at R<strong>in</strong>con de la Vieja.4.1.2 Major ionsVariation <strong>of</strong> major ion concentration <strong>in</strong> samples atMiravalles (MV) and R<strong>in</strong>con de la Vieja (RV) ispresented Table 4 and also plotted <strong>in</strong> Box andWhisker diagram <strong>in</strong> Figure 12.Cl - and Na + are the dom<strong>in</strong>ant ions <strong>in</strong> both<strong>geothermal</strong> <strong>waters</strong>. Na + is by far the mostpredom<strong>in</strong>ant major cation (MV: 1289–2178 mg/L,RV: 1125–1809 mg/L ), followed by K + (MV:192–362 mg/L, RV: 245–457 mg/L), Ca 2+ (MV:23–109 mg/L, RV: 23–109 mg/L) andMg 2+( MV:0.04-7 mg/L, RV: 0.26-0.78 mg/L).Table 3: Summary <strong>of</strong> the field measured parameters forwater samples at the study areasS.No. Sample ID Date T pH Eh EC As (Field)°C mV µS/cm µg/lMiravalles1 PGM-11 sep-05 90,7 7,72 99 1300 >5002 PGM-14 sep-05 15,9 7,74 212 1290 >5003 PGM-62 sep-05 17,1 7,2 200 1236 >5004 PGM-31 sep-05 31,8 7,81 236 1238 >5005 PGM-08 sep-05 34,9 7,53 292 1271 >5006 PGM-45 sep-05 10,6 7,16 395 1370 >5007 PGM-43 sep-05 29,6 7,57 262 13031 >5008 PGM-12 sep-05 9,8 7,3 333 1515 >5009 PGM-20 sep-05 11,6 7,71 308 1472 >50010 PGM-46 sep-05 9,4 7,41 289 1492 >50011 PGM-29 sep-05 25,2 5,74 339 894 >50012 PGM-07 sep-05 12,3 4,91 392 1225 >50013 PGM-19 (Open) sep-05 13,3 4,8 431 960 >50014 Termal Guayabal sep-05 62,9 2,28 683 484 >50015 Sitio 13 sep-05 33,7 3,25 192 255 25-5016 Corralito sep-05 35,6 2,72 635 257 50-10017 Termal union sep-05 38,1 5,9 456 40


Lotta Hammarlund & Juan Piñones TRITA LWR Masters Thesis 09-02Figure 12: Major ion chemistry <strong>of</strong> the <strong>geothermal</strong> <strong>waters</strong> plotted <strong>in</strong> Box and Whisker diagram from the productions wells at Miravalles (tothe left) and R<strong>in</strong>con de la Vieja (to the right) sites.Table 4: Major ion chemistry <strong>of</strong> the <strong>geothermal</strong> <strong>waters</strong> from the productions wells at Miravalles and R<strong>in</strong>con de la Vieja sites.Sample nr Sample ID Ca 2+ K + Mg 2+ Na + Cl - HCO3 - SO4 2- NO3 - Ion Balance Water typemg/l mg/l mg/l mg/l mg/l mg/l mg/ mg/l %Miravalles1 PGM-11 54,8 307 0,11 1855 3843 93,8 61,6 1,6 -9,9 Na-Cl-B2 PGM-14 69,1 305 0,09 1734 3437 48,6 46,7 3,6 -6,5 Na-Cl-B3 PGM-62 60,9 298 0,07 1760 3828 42,8 140,5 6,5 -12,3 Na-Cl-B4 PGM-31 74,8 299 0,13 1807 4117 58,7 144,5 6,0 -14,4 Na-Cl-B5 PGM-08 71,8 313 0,06 1825 4333 30,5 149 15,5 -16,2 Na-Cl-B6 PGM-45 82,4 363 0,09 2002 4822 26,9 155,5 24 -16,5 Na-Cl-B7 PGM-43 85,0 331 0,05 1988 4543 28,3 142,5 10 -14,1 Na-Cl-B8 PGM-12 109,2 343 0,19 2179 4947 49,1 254 23 -14,5 Na-Cl-B9 PGM-20 103,6 338 0,11 2107 8935 57,6 297 34 -42,2 Na-Cl-B10 PGM-46 94,7 313 0,12 1983 4316 65,9 199 58,5 -12,8 Na-Cl-B11 PGM-29 66,7 193 1,31 1290 2865 273,5 143 9,0 -15,7 Na-Cl-B12 PGM-07 29,7 309 3,63 1769 3421 0,0 237 32,5 -8,1 Na-Cl-B13 PGM-19 (open) 23,1 302 7,32 1656 2974 0,0 329,5 8,5 -5,4 Na-Cl-BR<strong>in</strong>con de la Vieja29 PGP-01 60,1 245 0,35 1125 2456 120,7 92,75 3,8 -11,4 Na-Cl-B30 PGP-03 99,3 457 0,68 1810 4444 41,8 144,5 14,5 -15,1 Na-Cl-B31 PGP-04 101,0 331 0,27 1566 3635 58,7 169 18,5 -13,6 Na-Cl-B32 PGB-01 94,8 274 0,78 1438 3148 121,0 135,5 10,0 -11,5 Na-Cl-BTable 5: Selected trace element chemistry <strong>of</strong> the <strong>geothermal</strong> <strong>waters</strong> at Miravalles and R<strong>in</strong>con de la Vieja sites.Sample nr Sample ID As (tot) As(III) B Al Fe Mn Ba Li Si DOCmg/l mg/l mg/l mg/l mg/l mg/l mg/l mg/l mg/l mg/lMiravalles1 PGM-11 25,58 6,79 49,3 0,31 0,003 0,05 0,44 8,77 305 1,662 PGM-14 24,46 6,84 47,5 0,32 0,008 0,02 0,26 bdl 305 1,543 PGM-62 25,13 6,90 50,3 0,27 0,018 0,02 0,29 bdl 296 1,094 PGM-31 25,70 6,82 51,8 0,26 0,043 0,05 0,60 8,17 275 1,575 PGM-08 25,58 7,13 51,4 0,30 0,015 0,02 0,30 bdl 280 1,836 PGM-45 27,42 7,69 57,1 0,28 0,213 0,03 0,31 bdl 275 2,917 PGM-43 27,46 7,31 57,5 0,26 0,039 0,03 0,26 bdl 285 0,868 PGM-12 29,13 7,60 60,1 0,24 0,009 0,04 0,77 7,55 241 1,169 PGM-20 29,07 7,58 59,7 0,26 0,069 0,04 0,69 bdl 258 1,2810 PGM-46 26,92 7,55 56,7 0,26 0,044 0,05 0,58 7,50 251 1,1511 PGM-29 11,86 3,63 33,9 0,04 6,416 1,25 0,16 6,75 199 3,2412 PGM-07 26,34 7,58 54,2 0,19 0,795 0,58 0,23 8,24 314 0,4113 PGM-19 (open) 25,89 7,31 49,2 0,07 1,479 1,73 0,18 7,06 271 0,76R<strong>in</strong>con de la Vieja29 PGP-01 7,81 2,34 20,6 0,04 0,560 0,23 0,04 5,90 176 4,2230 PGP-03 13,00 3,45 33,1 0,03 0,891 0,45 0,06 bdl 203 3,7331 PGP-04 12,80 3,57 30,1 0,05 0,891 0,33 0,06 bdl 206 4,0832 PGB-01 5,99 1,63 27,1 0,04 0,054 0,03 0,03 bdl 170 4,3624


Arsenic <strong>in</strong> Geothermal Waters <strong>of</strong> Costa Rica___________________________________________________________________________________4.1.3 Trace elementsA summary <strong>of</strong> trace elements for the <strong>geothermal</strong>wells are presented <strong>in</strong> Table 5. Extremely highconcentration <strong>of</strong> As (MV: 11.9-29.1 mg/L, RV:5.99-13.0 mg/L) and B (MV: 33-60 mg/L, RV:20.6-33.1 mg/L) are the typical characterise these<strong>geothermal</strong> <strong>waters</strong>.The concentrations <strong>of</strong> Fe and Mn were low <strong>in</strong> all<strong>geothermal</strong> wells at both Miravalles and R<strong>in</strong>conde la Vieja sites with concentration ranges between0.003-0.89 mg/L and 0.02-0.58 mg/L respectively.However, <strong>in</strong> the wells PGM 29 and PGM-19, theconcentrations <strong>of</strong> Fe was high with respectivevalues <strong>of</strong> 6.4 mg/L and 1.5 mg/L while thecorrespond<strong>in</strong>g Mn levels <strong>of</strong> 1.25 mg/L and 1.73mg/L.Some <strong>of</strong> the <strong>geothermal</strong> well fluids have high Liconcentrations. Seven sampled wells at Miravalleshave Li concentrations rang<strong>in</strong>g between 6.75-8.77mg/L and one <strong>of</strong> the sampled <strong>geothermal</strong> fluids <strong>in</strong>R<strong>in</strong>con de la Vieja revealed Li concentration <strong>of</strong> 5.9mg/L.All <strong>of</strong> the sampled <strong>geothermal</strong> wells have high Siconcentrations (MV: 198-313 mg/L and RV: 169-205 mg/L).In general, the concentrations <strong>of</strong> DOC and HCO 3-is quite low <strong>in</strong> the <strong>geothermal</strong> well fluids <strong>of</strong>Miravalles area with one exception PGM-29 whichhas high DOC and HCO 3- values. At R<strong>in</strong>con de laVieja the DOC is high while the HCO 3- is low.4.1.4 Correlation between various chemicalparametersFigure 13-15 show Bivariate plots <strong>of</strong> the<strong>geothermal</strong> wells (GTW) show<strong>in</strong>g relationshipbetween the concentrations <strong>of</strong>:13. Total As with a HCO 3 , b SO4, c Fe, d B14. DOC and a As, b HCO 315. SO 4 and a Ca+Mg, b CaArsenic has high positiv correlation with HCO 3-(MV: r=0.76 and RDLV: r=0.94),Figure 13: Bivariate plots <strong>of</strong> the <strong>geothermal</strong> <strong>waters</strong> show<strong>in</strong>g relationship between As concentration and a HCO3, b SO4, c Fe and d B25


Lotta Hammarlund & Juan Piñones TRITA LWR Masters Thesis 09-02Figure 14: Bivariate plots <strong>of</strong> the <strong>geothermal</strong> <strong>waters</strong> show<strong>in</strong>g relationship between the DOC concentration and a As, b HCO3Figure 15: Bivariate plots <strong>of</strong> the <strong>geothermal</strong> <strong>waters</strong> show<strong>in</strong>g relationship between the SO4 concentration and a Ca+Mg, b CaHigh correlation are also seen between As andDOC (MV: 0.68 and RDLV: 0.74) and betweenHCO 3- and DOC (r=0.81 for both areas)Sulfate with Ca+Mg show a positive correlation(MV:r=0.75 and RDLV: r=0.87) and so doessulphate with Ca 2+ (MV: 0.74 and RDLV: 0.88).4.2 Thermal spr<strong>in</strong>gs -Neutral and Acid4.2.1 Field measured parametersThe temperature ranged between 33.7-88.9°C <strong>in</strong>Miravalles and between 26-91˚C at R<strong>in</strong>con de lavieja. A summary <strong>of</strong> the field measured parametersfor the thermal spr<strong>in</strong>gs are presented <strong>in</strong> Table 3.The thermal spr<strong>in</strong>gs have pH <strong>in</strong>terval rang<strong>in</strong>gbetween 1.97-7.84. Four <strong>of</strong> the sampled thermalwater <strong>in</strong> Miravalles and four <strong>of</strong> the sampledthermal <strong>waters</strong> <strong>in</strong> R<strong>in</strong>con de la vieja were acidic(pH 1.97-3.25 resp 2.17-3.98) while the rest had aneutral or weakly alkal<strong>in</strong>e pH (5.63-7.25 resp 5.00-7.63). The two most acidic spr<strong>in</strong>gs at Miravalleshave the highest measured temperatures (HornillasMiravalles: pH 1.97 and temperature 88.9˚C andThermal Guayabal: pH 2.28 and temperature62.9˚C) and the same states for R<strong>in</strong>con de la vieja(Pailas aguas: pH 2.17 and temperature 87.3˚C andHornillas parque: pH 3.75 and temperature91.2˚C).The redox potential (Eh) were between 192-683mV at Miravalles and between 9-564 mV atR<strong>in</strong>con de la vieja. The electric conductivity (EC)at Miravalles was between 0.26-4.84 mS/cm and atR<strong>in</strong>con de la vieja 0.143-9.58 mS/cm.4.2.2 Major ionsThe thermal spr<strong>in</strong>gs can be divided <strong>in</strong>to two ma<strong>in</strong>types:Acid thermal spr<strong>in</strong>gs (TSA) andNeutral thermal spr<strong>in</strong>gs (TSN).The major ion characteristics <strong>of</strong> the thremalspr<strong>in</strong>gs at the two study sites are presented <strong>in</strong>Table 6. Variation <strong>of</strong> major ion concentration <strong>in</strong>samples collected at the thermal spr<strong>in</strong>gs atMiravalles and R<strong>in</strong>con de la Vieja are presented <strong>in</strong>Box and Whisker plots <strong>in</strong> Figure 16 for Acidthermal spr<strong>in</strong>gs and <strong>in</strong> Figure 17 for Neutralthermal spr<strong>in</strong>gs. Figure 18 show Piper diagramsfor Neutral thermal spr<strong>in</strong>gs (TSN) at Miravallesand R<strong>in</strong>con de la Vieja.26


Arsenic <strong>in</strong> Geothermal Waters <strong>of</strong> Costa Rica___________________________________________________________________________________Figure 16: Major ion chemistry <strong>of</strong> the Acid thermal <strong>waters</strong> plotted <strong>in</strong> Box and Whisker diagram from the productions wells at Miravalles(to the left) and R<strong>in</strong>con de la Vieja (to the right) sites.Figure 17: Major ion chemistry <strong>of</strong> the Neutral thermal <strong>waters</strong> plotted <strong>in</strong> Box and Whisker diagram from the productions wells atMiravalles (to the left) and R<strong>in</strong>con de la Vieja (to the right) sites.Figure 18: Piper diagram for Neutral thermal <strong>waters</strong> at Miravalles (to the left) and R<strong>in</strong>con de la Vieja (to the right) sites.27


Lotta Hammarlund & Juan Piñones TRITA LWR Masters Thesis 09-02The acidic thermal spr<strong>in</strong>gs (TSA) had highSO 42- content (MV: 493-2699 mg/L and RV: 35-2275 mg/L). The Cl - content is low (MV: 21-642mg/L and RV: 2-434 mg/) as well as the NO 3-(MV: 1.4 -16 mg/L and RV: 1-5 mg/L) and theHCO 3- (MV: 0 mg/L and RV: 0 mg/L) content.Ca 2+ (MV: 19-145 mg/L and RV: 15-164 mg/L)predom<strong>in</strong>ates over Mg 2+ (MV: 8-91 mg/L and RV:6-26 mg/L), Na + (MV: 15-73 mg/L and RV: 6-79mg/L) and K + ( MV: 6-13 mg/L and RV: 2-14mg/L ) <strong>in</strong> the acid spr<strong>in</strong>gs reflect<strong>in</strong>g SO 4 -watertype:(MV: 62-146 mg/L and RV: 64-188 mg/L) andMn + (MV: 0.32-6.1 mg/L and RV: 0.23-4.23mg/L). The DOC content is low (MV: 0.4-1.23and RV: 0.9-1.39 mg/L with one exception <strong>of</strong>Pailas aguas 9.62 mg/L).The neutral thermal spr<strong>in</strong>gs (TSN) are rich <strong>in</strong>HCO 3- (MV: 0-608 mg/L and RV: 0-535 mg/L),Cl - (6-2914 mg/L) and SO 42- (MV: 6-237 mg/Land RV: 23-812 mg/L). Mg 2+ concentrations arelow (MV: 2-19 mg/L and RV: 5-301 mg/L) as wellas K + (MV: 8-22 mg/L and RV: 2-186mg/L). Thewater type can be divided <strong>in</strong>to HCO 3 -Si-SO 4 , Cl-Na and Cl-SO4.Two <strong>of</strong> the samples (Salitral las lilas 1 and 2) <strong>in</strong>R<strong>in</strong>con de la Vieja differs from the rest with areally high Cl - (2667 resp 2914 mg/L) and Na +(1242 resp 1250 mg/L) concentration.Concentrations <strong>of</strong> Ca 2+ (145 resp 150 mg/L), K +(186 resp 180 mg/L), HCO 3- (250 resp 310 mg/L),SO 42- (210 resp 212 mg/L) are quite low.One hundred meters downstream the river fromSalitral las lilas 1 and 2 is Salitral las lilas 1+2sampled. The concentration <strong>of</strong> Cl - (76 mg/L) andNa + (46 mg/L) are much lower <strong>in</strong> this sample <strong>in</strong>comparison with Salitra las lilas 1 and 2. Ca 2+ (15mg/L), K + (6 mg/L), HCO 3- (47 mg/L), SO 42- (25mg/L) and Mg 2+ (5 mg/L) are also much lower.The water is designated as Cl-HCO 3 -Na-Si type.4.2.3 Trace elementsA summary <strong>of</strong> the trace elements for the thermalspr<strong>in</strong>gs are presented <strong>in</strong> Table 7.Figure 19: Box and Whisker plots for Acidic thermal <strong>waters</strong>at Miravalles for As, B and Fe.The neutral spr<strong>in</strong>gs (TSN) have a low DOC. Feand Mn are both low while the As concentration(0.005-10.9 mg/L) exceeds the WHO limit <strong>in</strong> 13<strong>of</strong> the 20 samples. High boron concentrationsoccur <strong>in</strong> all the samples (0.65-25.7 mg/L).Two <strong>of</strong> the samples (Salitral las lilas 1 and 2) <strong>in</strong>R<strong>in</strong>con de la Vieja differs from the rest with reallyhigh As (10.9 resp 10.6 mg/L) and boron (25.7resp 25.6 mg/L) concentrations. The Mgconcentration (13 resp 14 mg/L) is also muchhigher than <strong>in</strong> the other samples.One hundred meters downstream the river fromSalitral las lilas 1 and 2 is Salitral las lilas 1+2sampled. The concentrations <strong>of</strong> B (3.09 mg/L)and As (0.13 mg/L) is still high here but <strong>in</strong>comparison with Salitral las lilas 1 and 2 theconcentration has to be considered low.The acidic thermal spr<strong>in</strong>gs (TSA) have a highcontent <strong>of</strong> A, B and Fe as showed <strong>in</strong> the Box andWhisker plots <strong>in</strong> Figure 19.Other trace elements <strong>in</strong> these <strong>waters</strong> <strong>in</strong>clude S 2-(MV: 202-814 mg/L and RV: 57-598 mg/L), Al 3+(MV: 20-453 mg/L and RV: 0-141 mg/L), Si 4+28


Arsenic <strong>in</strong> Geothermal Waters <strong>of</strong> Costa Rica___________________________________________________________________________________Table 6: Major ion chemistry <strong>of</strong> the thermal <strong>waters</strong> from the productions wells at Miravalles and R<strong>in</strong>con de la Vieja sites.Sample nr Sample ID Ca 2+ K + Mg 2+ Na + Cl - HCO3 - SO4 2- NO3 - Ion Balance Water typemg/l mg/l mg/l mg/l mg/l mg/l mg/ mg/l %Miravalles14 Termal Guayabal 104 7 25 65 642 bdl 2700 16 12.7 Al-SO4-Cl15 Sitio 13 312 14 92 74 148 bdl 1613 1 10.8 Ca-Mg-SO416 Corralito 146 9 22 41 177 bdl 1303 2 14.3 Al-Ca-SO417 Termal union 36 9 13 26 13 190 40 1 0.4 Na-Ca-Mg-HCO318 U1 60 19 16 55 19 318 66 1 6.2 Na-Ca-HCO319 Hornillas (Miravalles) 20 8 8 16 22 bdl 494 5 43.8 Al-SO420 Colegio Fortuna 46 14 20 45 16 386 58 1 12.7 Ca-Na-Mg-HCO321 San Bernardo 1 43 20 17 91 100 395 27 1 19.7 Na-Ca-HCO3-Cl-B22 San Bernardo 2 42 21 17 94 62 396 25 18 15.3 Na-Ca-HCO3-B23 Salitral Bagaces 9 9 2 39 17 140 6 bdl 23.2 Na-HCO3-B24 Panteon 100 22 76 74 51 608 238 4 4.8 Mg-Ca-Na-HCO3-SO4R<strong>in</strong>con de la Vieja33 Hornillas hotel Bor<strong>in</strong>quen 14 6 6 10 10 33 42 bdl 21.5 Ca-Mg-B-HCO3-SO434 Hornillas parque 15 5 7 14 3 bdl 36 2 -8.5 Na-Ca-Mg-B-SO435 Pailas agua 15 3 9 7 2 bdl 2275 1 46.2 Al-SO436 Santa Maria Caliente 22 4 9 17 7 35 96 0 4.5 Ca-Na-Mg-SO4-HCO337 Azufrales 29 9 11 30 23 bdl 294 3 Na-Ca-SO438 Rio salitral (buena vista) 26 5 8 26 11 141 24 2 Na-Ca-HCO3-SO439 Rio tizate 1 23 7 13 34 13 174 52 1 7.1 Na-Ca-Mg-HCO3-SO440 Rio tizate 2 23 6 13 34 13 182 53 2 9.3 Na-Ca-Mg-HCO3-SO441 Salitral las lilas 1 145 187 14 1243 2667 251 210 13 22.9 Na-Cl-B42 Salitral las lilas 2 150 180 15 1251 2914 310 213 9 25.8 Na-Cl-B43 Salitral las lilas 1+2 15 6 5 46 77 48 26 3 32.3 Na-B-Cl44 Pedernal (NE de C Fortuna) 11 3 6 8 6 69 8 2 31.5 Ca-Mg-B-HCO345 Naciente Nieves Araya 2 325 130 280 307 1200 535 813 9 4.9 Mg-Ca-Na-Cl-SO446 Naciente Nieves Araya 1 340 147 294 323 1326 510 894 21 6.2 Mg-Ca-Na-Cl-SO447 El volcancito 354 144 301 334 973 531 667 19 -7.4 Mg-Ca-Na-Cl-SO448 Las Avestruces 63 14 14 58 92 37 178 5 28.6 Ca-Na-B-SO4-Cl49 El albergue agroecologico 164 14 26 79 435 bdl 353 5 15.1 Ca-Cl-SO4Table7: Selected trace element chemistry <strong>of</strong> the thermal <strong>waters</strong> at Miravalles and R<strong>in</strong>con de la Vieja sitesSample nr Sample ID As (tot) As(III) B Al Fe Mn Ba Li Si DOCmg/l mg/l mg/l mg/l mg/l mg/l mg/l mg/l mg/l mg/lMiravalles14 Termal Guayabal 4.564 1.531 2.730 453.646 76.738 1.775 0.017 0.172 133.6 0.7915 Sitio 13 0.224 0.193 3.029 56.809 16.817 6.104 0.015 0.060 62.1 0.6316 Corralito 0.099 0.158 2.098 133.971 28.176 2.696 0.008 0.048 85.8 0.4017 Termal union 0.008 0.012 0.994 0.007 0.001 0.004 0.063 0.011 77.6 0.5918 U1 0.012 0.013 1.557 0.013 0.006 0.002 0.013 0.094 104.0 0.8019 Hornillas (Miravalles) 0.017 0.018 1.833 20.449 16.802 0.325 0.051 0.008 146.6 1.2320 Colegio Fortuna 0.010 0.011 0.925 0.010 0.003 0.802 0.056 0.016 74.0 0.9021 San Bernardo 1 0.271 0.017 2.355 0.010 0.002 0.000 0.087 0.379 80.7 0.9422 San Bernardo 2 0.281 0.024 2.432 0.010 0.003 0.000 0.085 0.392 82.2 0.8723 Salitral Bagaces 0.188 0.012 1.145 0.039 0.017 0.019 0.084 0.110 64.4 1.4924 Panteon 0.005 0.012 0.923 0.015 2.850 0.334 0.056 0.036 59.2 1.74R<strong>in</strong>con de la Vieja33 Hornillas hotel Bor<strong>in</strong>quen 0.008 0.014 1.709 0.062 0.681 0.084 0.050 0.005 44.5 4.9634 Hornillas parque 0.005 0.009 1.534 2.682 5.859 0.269 0.075 0.015 84.0 1.3935 Pailas agua 0.024 0.026 0.729 141.387 194.899 0.424 0.055 0.005 188.9 9.6236 Santa Maria Caliente 0.015 0.008 0.657 0.181 0.039 0.119 0.036 0.022 30.9 1.4037 Azufrales 0.007 0.010 0.595 0.860 0.120 0.226 0.032 0.011 64.1 0.9138 Rio salitral (buena vista) 0.006 0.007 1.670 0.011 bdl 0.000 0.030 0.015 51.1 2.5039 Rio tizate 1 0.007 0.008 0.755 0.015 0.002 0.000 0.041 0.031 70.2 1.1640 Rio tizate 2 0.007 0.015 0.722 0.012 0.004 0.001 0.041 0.031 70.9 0.3741 Salitral las lilas 1 10.853 1.629 25.724 0.011 0.030 0.747 0.357 6.440 54.7 0.6142 Salitral las lilas 2 10.633 3.256 25.634 0.011 0.008 0.838 0.338 6.356 52.5 0.7443 Salitral las lilas 1+2 0.132 3.044 3.092 0.065 0.050 0.025 0.047 0.245 39.4 1.4644 Pedernal (NE de C Fortuna) 0.005 0.008 1.907 0.006 0.002 0.000 0.034 bdl 59.2 1.3545 Naciente Nieves Araya 2 0.053 0.033 2.514 0.011 4.396 1.485 0.047 0.519 93.8 2.5346 Naciente Nieves Araya 1 0.053 0.034 2.758 0.012 0.513 1.312 0.049 0.561 97.8 1.2447 El volcancito 0.050 0.033 2.798 0.009 3.496 1.125 0.052 0.598 98.8 0.7148 Las Avestruces 0.017 0.016 6.764 0.073 0.710 1.095 0.036 0.296 63.9 2.6449 El albergue agroecologico 0.009 0.008 1.724 11.238 0.010 4.235 0.040 0.092 82.9 1.2329


Lotta Hammarlund & Juan Piñones TRITA LWR Masters Thesis 09-024.2.4 Correlation between various chemicalparametersBivariate plots the relationship between theconcentrations <strong>of</strong> total As with B and Fe <strong>in</strong> theacid thermal spr<strong>in</strong>gs (TSA) <strong>waters</strong> are presented <strong>in</strong>Figure 20. Arsenic has high correlation with B(MV: r=0.96) and low correlation with Fe (MV:r=0.01) at Miravalles while there is no correlationat R<strong>in</strong>con de la Vieja.The relationship between SO 42- concentrations <strong>of</strong>the thermal <strong>waters</strong> with Cl - , Mg 2+ and Ca ispresented <strong>in</strong> Figure 21. SO 42- has high correlationwith Cl - (MV: r=0.89) while its low with Mg 2+(MV: r=0.08) and Ca 2+ (MV: r=0.05) while there isno correlation at R<strong>in</strong>con de la Vieja.Figure 20: Bivariate plots <strong>of</strong> the thermal <strong>waters</strong> show<strong>in</strong>g relationship between total As with a) B,and b) Fe´Figure 21: Bivariate plots <strong>of</strong> the thermal <strong>waters</strong> show<strong>in</strong>g relationship between the SO 4 concentration and a) Cl, b) Mg and c) Ca30


Arsenic <strong>in</strong> Geothermal Waters <strong>of</strong> Costa Rica___________________________________________________________________________________4.3 Cold surface <strong>waters</strong>4.3.1 Field measured parametersA summary <strong>of</strong> the field measured parameters forthe cold spr<strong>in</strong>gs are presented <strong>in</strong> Table 3.The cold spr<strong>in</strong>gs had a temperature range <strong>of</strong> 14.2-23.6°C at Miravalles while the cold spr<strong>in</strong>g atR<strong>in</strong>con de la vieja had a temperature <strong>of</strong> 27.1degrees.The pH is almost neutral for the cold spr<strong>in</strong>gs atMiravalles (6.57-7.18) while it is weakly alkal<strong>in</strong>e atR<strong>in</strong>con de la Vieja (6.01).Field measured redox potential (Eh) rangebetween 419-439 mV and the Electric conductivity(EC) ranges from 0.141-0.304 mS/cm.4.3.2 Major ionsVariation <strong>of</strong> major ion concentration <strong>in</strong> samplescollected at the cold spr<strong>in</strong>gs at Miravalles (MV)and R<strong>in</strong>con de la Vieja (RV) is presented Table 8and also plotted <strong>in</strong> Box and Whisker diagram <strong>in</strong>Figure 22.The dom<strong>in</strong>ated ions <strong>in</strong> the cold spr<strong>in</strong>gs atMiravalles are HCO 3- (38-97 mg/L), SO 42- 22-49mg/L), Si 4+ (38-44 mg/L) followed by Ca 2+ (15-26 mg/L), Na + (7-11 mg/L) and S (6-14 mg/L) <strong>in</strong>less concentrations.The dom<strong>in</strong>ated ions at the cold spr<strong>in</strong>g at R<strong>in</strong>conde la vieja are Si 4+ (49.8 mg/L), SO 42- (49.1 mg/L)and HCO 3- (41.1 mg/L) followed by Cl-, Ca 2+ ,Na + , Mg 2+ and K + . The sampled cold surface<strong>waters</strong> are generally <strong>of</strong> HCO 3 -SO 4 - Si or HCO 3 -Sitype.4.3.3 Trace elementsA summary <strong>of</strong> trace elements for the cold spr<strong>in</strong>gsare presented <strong>in</strong> Table 9.Elevated concentrations <strong>of</strong> As and B occur <strong>in</strong> thecold spr<strong>in</strong>gs (0.0052-0.007 mg/L respective 0.7-1.42 mg/L). The DOC concentration <strong>of</strong> the areasis quite low as well as the Fe and the Mn.Figure 22: Major ion chemistry <strong>of</strong> the cold surface <strong>waters</strong> plotted <strong>in</strong> Box and Whisker diagram from the productions wells at Miravalles (tothe left) and R<strong>in</strong>con de la Vieja (to the right) sites.Table 8: Major ion chemistry <strong>of</strong> the cold surface <strong>waters</strong> from the productions wells at Miravalles and R<strong>in</strong>con de la Vieja sites.Sample nr Sample ID Ca 2+ K + Mg 2+ Na + Cl - HCO3 - SO4 2- NO3 - Ion Balance Water typemg/l mg/l mg/l mg/l mg/l mg/l mg/ mg/l %Miravalles25 Toma Guayabo 21.7 2.6 7.1 8.5 6.5 97.8 22.4 0.9 22.8 Ca-Mg-B-HCO326 Toma casa maqu<strong>in</strong>as 15.9 2.3 4.0 7.3 4.1 38.6 29.0 0.2 -4.2 Na-Ca-Mg-HCO3-SO427 Toma Fortuna 26.9 3.2 7.1 11.4 6.4 86.8 49.3 0.7 19.4 Ca-B-HCO3-SO428 Toma Colonia 25.1 3.0 7.0 10.1 5.8 85.5 45.0 0.9 21.3 Ca-B-HCO3-SO4R<strong>in</strong>con de la Vieja50 Hotel Guachipel<strong>in</strong> 19.9 2.4 7.6 7.6 10.4 41.1 49.1 0.1 22.6 Ca-Mg-B-SO4-HCO331


Lotta Hammarlund & Juan Piñones TRITA LWR Masters Thesis 09-02Table9: Selected trace element chemistry <strong>of</strong> the cold surface <strong>waters</strong> at Miravalles and R<strong>in</strong>con de la Vieja sitesSample nr Sample ID As (tot) As(III) B Al Fe Mn Ba Li Si DOCmg/l mg/l mg/l mg/l mg/l mg/l mg/l mg/l mg/l mg/lMiravalles25 Toma Guayabo 0.0052 0.0075 1.42 0.0101 0.0075 0.0003 0.0336 bdl 44.0 1.1626 Toma casa maqu<strong>in</strong>as 0.0064 0.0000 0.716 0.0092 0.0035 0.0002 0.0132 bdl 40.3 1.2627 Toma Fortuna 0.0052 0.0113 1.2497 0.04 0.012 0.0011 0.0181 0.0031 39.2 1.0228 Toma Colonia 0.0065 0.0102 1.1014 0.0178 0.0036 0.0003 0.0149 bdl 38.3 0.74R<strong>in</strong>con de la Vieja50 Hotel Guachipel<strong>in</strong> 0.0052 0.0086 1.0709 0.064 0.0019 0.0067 0.0558 bdl 49.8 0.864.4 Anomalous boron concentrationsExtremly high boron (B) concentrations werefound <strong>in</strong> all the samples. Especially high was theamount <strong>of</strong> boron <strong>in</strong> the <strong>geothermal</strong> well fluids,between 47-60 mg/L <strong>in</strong> the Miravalles area andbetween 20-33 mg/L <strong>in</strong> the R<strong>in</strong>cón de la Viejaarea.High concentrations <strong>of</strong> boron (rang<strong>in</strong>g between0.66-6.76 mg/L) were found <strong>in</strong> the hot spr<strong>in</strong>gswith two exceptions which differed a lot from therest. These two were the spr<strong>in</strong>gs called Salitral lasLilas 1 and 2 with extremely high boronconcentrations (25.7 mg/L resp. 25.6 mg/L). Thethird sample were collected at the site where thesetwo spr<strong>in</strong>gs entered a stream about 100 metersdown from where these spr<strong>in</strong>gs enter<strong>in</strong>g the river(called Salitral las Lilas 1+2) which <strong>in</strong>dicated a Bconcentration <strong>of</strong> 3.1 mg/L. The concentration <strong>of</strong>B <strong>in</strong> the cold spr<strong>in</strong>gs ranged between 0.72-1.25mg/L similar to a previous study by Nable et al(1997). All the samples exceed the WHO dr<strong>in</strong>k<strong>in</strong>gwater guidel<strong>in</strong>e for boron which is 0.5 mg/L.High concentrations <strong>of</strong> boron may occur naturally<strong>in</strong> the soil or <strong>in</strong> groundwater. It can also be addedto the soil from m<strong>in</strong><strong>in</strong>g, fertilisers, or irrigationwater. B-rich soils are also <strong>of</strong> importance thoughthey might cause B toxicity <strong>in</strong> the field anddecrease crop yields. One typical visible symptom<strong>of</strong> B toxicity is leaf burn. It can also lead to fruitand bark disorders. Although there are variousmethods <strong>of</strong> determ<strong>in</strong>e the levels <strong>of</strong> B <strong>in</strong> soils,these analyses can only provide little more than ageneral risk assessment for B toxicity. There areseveral methods to ameliorat<strong>in</strong>g high boron soilsbut to get rid <strong>of</strong> boron <strong>in</strong> soil and water isextremely difficult. At present neither soil norplant analysis can be recommended to preciselypredict the growth <strong>of</strong> plants on high B soils.If B contam<strong>in</strong>ated water sources <strong>in</strong> Costa Rica areused by humans for irrigation and dr<strong>in</strong>k<strong>in</strong>g <strong>waters</strong>upply are still not known. Neither are theenvironment effects on animals and plants fromboron contam<strong>in</strong>ated water (Nable et al 1997).32


Arsenic <strong>in</strong> Geothermal Waters <strong>of</strong> Costa Rica___________________________________________________________________________________5. DISCUSSION5.1 Arsenic concentrations <strong>in</strong> Miravallesand R<strong>in</strong>con de la viejaF<strong>in</strong>d<strong>in</strong>gs <strong>in</strong>dicate that high As concentrationsoccur through out the entire study area. 35 <strong>of</strong> thetotal 50 samples exceed the WHO dr<strong>in</strong>k<strong>in</strong>g waterguidel<strong>in</strong>e for As, which is 10 μg/L5.1.1 Geothermal wellsThe results show that the highest Asconcentrations occur <strong>in</strong> the <strong>geothermal</strong> wells. The<strong>geothermal</strong> wells at Miravalles (mean 25.9 mg/L),show higher concentrations than those at R<strong>in</strong>conde la Vieja, (mean 10.3 mg/L). Of particularimportance is that the As concentrations <strong>in</strong> the<strong>geothermal</strong> <strong>waters</strong> used for power generation areextremely high at both Miravalles and R<strong>in</strong>con de laVieja.Power generation requires substantial amounts <strong>of</strong>water to be extracted. Dur<strong>in</strong>g the separation <strong>of</strong>steam and bore water <strong>in</strong> <strong>geothermal</strong> powergeneration, Ass is reta<strong>in</strong>ed <strong>in</strong> the waste bore water.High As content is one <strong>of</strong> the ma<strong>in</strong> problems <strong>in</strong>the disposal <strong>of</strong> this water (Webster & Nordstrom2003). To prevent contam<strong>in</strong>ation <strong>of</strong> cold <strong>waters</strong>used for irrigation, re-<strong>in</strong>jection <strong>of</strong> thermal <strong>waters</strong>to the reservoir is necessary. This also acts torecharge the aquifers <strong>of</strong> the thermal <strong>waters</strong>(Gemici & Tarcan 2002).We have stated that high As concentrations occur<strong>in</strong> the water used for <strong>geothermal</strong> energy <strong>in</strong> CostaRica. It is unknown if any leakage occurs <strong>in</strong> the<strong>geothermal</strong> power plants <strong>in</strong> Costa Rica. Further<strong>in</strong>vestigations are needed to answer this question.5.1.2 Thermal spr<strong>in</strong>gsHigh As concentrations occur <strong>in</strong> the thermalspr<strong>in</strong>gs. The As concentration <strong>in</strong> the Miravallesarea rang<strong>in</strong>g from 0.005- 0.28 mg/L with theexception <strong>of</strong> one sample, collected at ThermalGuayabal, with a measured concentration <strong>of</strong> 4.6mg/L. The concentrations <strong>of</strong> As <strong>in</strong> the R<strong>in</strong>cón dela Vieja area ranged from 0.005-0.13 mg/L withtwo exceptions, Salitral las lilas 1 and Salitral laslilas 2 with As concentrations <strong>of</strong> 10.9 and 10.6mg/L respectively.This high concentration <strong>of</strong> As affects the areasurround<strong>in</strong>g these spr<strong>in</strong>gs.Salitral las lilas 1 and Salitral las lilas 2 have theiroutlet <strong>in</strong>to a river. To f<strong>in</strong>d out how diluted the Asconcentration becomes when enter<strong>in</strong>g the river asample Salitral las Lilas 1+2 was collected 100meters downstream <strong>in</strong> the river. The results showan As concentration <strong>of</strong> 0.13 mg/L, which is higherthan the WHO limit for dr<strong>in</strong>k<strong>in</strong>g water. Thisshows that thermal spr<strong>in</strong>gs with highconcentrations <strong>of</strong> As are mix<strong>in</strong>g with cold surfacewater <strong>of</strong> low As concentration.5.1.3 Cold surface <strong>waters</strong>The concentration <strong>of</strong> As <strong>in</strong> the cold spr<strong>in</strong>gs do notexceed WHOs guidel<strong>in</strong>es for dr<strong>in</strong>k<strong>in</strong>g water.Although the As concentrations <strong>in</strong> the coldspr<strong>in</strong>gs are relatively low (Miravalles 0.0052 -0.0065 mg/L respective 0.0052 mg/L <strong>in</strong> R<strong>in</strong>cónde la Vieja) the risk <strong>of</strong> thermal water mix<strong>in</strong>g withcold spr<strong>in</strong>g <strong>waters</strong> can <strong>in</strong>crease the As content <strong>in</strong>the cold <strong>waters</strong>. This might occur due to i.eflood<strong>in</strong>g dur<strong>in</strong>g the ra<strong>in</strong> season or due to leakagefrom the <strong>geothermal</strong> field for power generation.It is unknown whether contam<strong>in</strong>ated <strong>waters</strong>ources <strong>in</strong> Costa Rica are used by humans forirrigation and dr<strong>in</strong>k<strong>in</strong>g water supply. Neither arethe environmental effects on animals and plantsfrom As contam<strong>in</strong>ated water <strong>in</strong> the area <strong>of</strong>Miravalles and R<strong>in</strong>con de la Vieja.We do know that thermal spr<strong>in</strong>gs with highconcentrations <strong>of</strong> As are mix<strong>in</strong>g with cold surfacewater <strong>of</strong> low As concentration which might lead toproblems if this is used by humans and animals.Therefore further <strong>in</strong>vestigations are needed tomitigate where the highest risk <strong>of</strong> mix<strong>in</strong>g betweenthermal <strong>waters</strong> <strong>of</strong> high As concentration and coldsurface <strong>waters</strong> occur and <strong>in</strong>vestigate how thismix<strong>in</strong>g process affects humans and animals <strong>in</strong> thearea <strong>in</strong> the long term.5.2 Comparison <strong>of</strong> the data with other<strong>geothermal</strong> fields <strong>in</strong> New Zealand, USAand Philipp<strong>in</strong>esThe results show extremely high Asconcentrations <strong>in</strong> the <strong>geothermal</strong> wells andthermal spr<strong>in</strong>gs <strong>of</strong> both Miravalles and R<strong>in</strong>con dela vieja area. So, how high are the As levels33


Lotta Hammarlund & Juan Piñones TRITA LWR Masters Thesis 09-02Table 10: Arsenic concentrations <strong>in</strong> hot spr<strong>in</strong>gs and <strong>in</strong> production or exploration well br<strong>in</strong>es at Yellowstone National Park <strong>in</strong> the USA,which is ma<strong>in</strong>ly dra<strong>in</strong>ed by the Madison and Yellowstone Rivers, the Taupo Volcanic Zone <strong>in</strong> New Zealand, which is dra<strong>in</strong>ed by theWaikato River, and Mt Apo <strong>in</strong> the Phillipp<strong>in</strong>es.Field As (mg/kg) ReferenceGeothermal wellsWairakei, NZ 1.0 - 5.2 Ritchie (1961)Waiotapu, NZ 2.1 - 3.9 Ellis and Mahon (1977)Ohaaki/Broadlands, NZ 5.7 - 9.0 Ewers and Keays (1977)Tongonan, Philipp<strong>in</strong>es 28 (mean) Darby (1980)Miravalles, Costa Rica 11.86 - 29.13 mean value 25.8919R<strong>in</strong>con de la Vieja, Costa Rica 5.99 - 13.00 mean value 10.302Thermal spr<strong>in</strong>gsYellowstone Nat Park, US 0.16 - 10 Stauffer and Thomson (1984); Unpublished data, USGSWairakei, NZ 0.23 - 3.0 Ritchie (1961)Waiotapu, NZ 0.71 - 6.5 Webster (1990)Ohaaki/Broadlands, NZ 1.0 Ellis and Mahon (1977)Mt Apo, Philipp<strong>in</strong>es 3.1 - 6.2 Webster (1999)Miravalles, Costa Rica 0.005 - 4.56 mean value 0.0991R<strong>in</strong>con de la Vieja, Costa Rica 0.005 - 10.85 mean value 0.015levels <strong>in</strong> these areas <strong>in</strong> comparison with<strong>geothermal</strong> fields <strong>in</strong> other countries?Let us take a look at table 10 where Asconcentrations from New Zealand, USA and thePhilipp<strong>in</strong>es are presented.5.2.1 Concentrations <strong>of</strong> <strong>arsenic</strong> and variabilityArsenic concentrations reported <strong>in</strong> <strong>geothermal</strong>wells from <strong>geothermal</strong> fields <strong>in</strong> New Zealand(Wairakei 1.0 - 5.2 mg/kg, Waiotapu 2.1 - 3.9mg/kg and Ohaaki/Broadlands 5.7 - 9.0 mg/kg)are substantially lower than the ones from thisstudy <strong>in</strong> Costa Rica.The mean As concentration presented from thePhilipp<strong>in</strong>es (28 mg/kg) are higher than reportedfrom this study <strong>in</strong> Costa Rica (25.9 and 10.30mg/L).After this comparison it is possible to state thatthe As concentrations <strong>in</strong> the <strong>geothermal</strong> wells <strong>of</strong>Costa Rica are extremely high.If we then compare the result from the thermalwells we can see that R<strong>in</strong>con de la vieja has thelowest as well as the highest reported Asconcentration <strong>of</strong> all (0.005 - 10.85 mg/L), whileMiravalles have a higher maximum concentration(4.56 mg/L) than Ohaaki/Broadlands (1.0 mg/L)and Wairakei 3.0 mg/L) but lower than Waiotapu(6.5 mg/L) <strong>in</strong> New Zealand. It also has got a lowerconcentration than reported from USA (10 mg/L)and the Philipp<strong>in</strong>es (6.2 mg/L).5.2.2 Arsenic concentrations <strong>in</strong> Miravalles andR<strong>in</strong>con de la ViejaThe thermal spr<strong>in</strong>gs can be divided <strong>in</strong>to to ma<strong>in</strong>types: Acid thermal spr<strong>in</strong>gs (TSA) and Neutralthermal spr<strong>in</strong>gs (TSN).The acid thermal spr<strong>in</strong>gs consist <strong>of</strong> hot water andsteam hav<strong>in</strong>g a low pH and are rich <strong>in</strong> sulphate.They are formed by the <strong>in</strong>teraction <strong>of</strong> the steamphase with shallow aquifer <strong>waters</strong>. This mixture <strong>of</strong>water and steam lead to precipitation andsublimation <strong>of</strong> elemental sulphur which follows bymicrobial oxidation to sulphuric acid. Intensealteration <strong>of</strong> the host rock caused by the fluid(Webster & Nordstrom 2003) has lead to anunstable ground surface and the formation <strong>of</strong>bubbl<strong>in</strong>g “mudpools” at several sampl<strong>in</strong>glocations.The neutral thermal spr<strong>in</strong>gs hav<strong>in</strong>g an almostneutral pH, are rich <strong>in</strong> carbonate, chloride andsilica. They are examples <strong>of</strong> hot water dischargesand <strong>in</strong>clude steam-heat<strong>in</strong>g and steam-phase mix<strong>in</strong>g(Webster & Nordstrom 2003).Two <strong>of</strong> the neutral thermal spr<strong>in</strong>gs (Salitral las lilas1 and 2) stand out from the others with As34


Arsenic <strong>in</strong> Geothermal Waters <strong>of</strong> Costa Rica___________________________________________________________________________________concentrations reach<strong>in</strong>g 10.8 mg/L and 10.6 mg/Lrespectively and the water <strong>of</strong> Cl-Na type differsfrom the other thermal spr<strong>in</strong>gs.Measurements from these two spr<strong>in</strong>gs have more<strong>in</strong> common with record<strong>in</strong>gs from the <strong>geothermal</strong>wells used for power generation. Similarities notedare a neutral pH, high conductivity, similar Cl-Nawater type and high concentrations <strong>of</strong> both As andB.Possible reasons for this similarity might be:1. Water feed<strong>in</strong>g Salitral las lilas 1 and 2come from the same deep natural<strong>geothermal</strong> source as the water extractedfor power generation, while the otherthermal spr<strong>in</strong>gs <strong>in</strong> the area get fed byshallower <strong>geothermal</strong> sources. The highconcentration <strong>of</strong> As and boron recordedat the surface <strong>of</strong> the spr<strong>in</strong>gs suggests thatthis possibility may be unlikely however.This is because water feed<strong>in</strong>g natural hotspr<strong>in</strong>gs goes through several chemicalprocesses (such as precipitation) on theway to the surface which substantiallyreduces the levels <strong>of</strong> dissolvedcontam<strong>in</strong>ants that reach the surface. Incontrast to this, the rapid extraction <strong>of</strong><strong>geothermal</strong> water for power generationprevents these chemical changes.Contam<strong>in</strong>ant levels are therefore relativelyunchanged when the water reaches thesurface.2. The development <strong>of</strong> the <strong>geothermal</strong> fields<strong>in</strong>clud<strong>in</strong>g the drill<strong>in</strong>g and extraction <strong>of</strong>water has disturbed the naturalgroundwater systems and <strong>in</strong>creased therate and volume <strong>of</strong> <strong>geothermal</strong> fluidsreach<strong>in</strong>g the surface. Two th<strong>in</strong>gs whichmay have artificially <strong>in</strong>creased the level <strong>of</strong>contam<strong>in</strong>ants <strong>in</strong> the spr<strong>in</strong>gs are leakage <strong>of</strong>fluid from the extraction pipes or an<strong>in</strong>crease <strong>in</strong> the natural spr<strong>in</strong>g flow rate.Increas<strong>in</strong>g the flow rate might lead to areduction <strong>in</strong> the <strong>in</strong>tensity <strong>of</strong> the naturalchemical processes that occur <strong>in</strong> the wateron the way to the surface.3. Re<strong>in</strong>jected waste water is feed<strong>in</strong>g <strong>in</strong>to theaquifer <strong>of</strong> Salitral las lilas 1 and 2.If the thermal spr<strong>in</strong>gs <strong>of</strong> Salitral las lilas 1 and 2are <strong>in</strong>fluenced by the activity at the <strong>geothermal</strong>field, it means that the reservoir fluids from the<strong>geothermal</strong> field are mix<strong>in</strong>g with the groundwater<strong>in</strong> the area. More <strong>in</strong>vestigations <strong>of</strong> groundwaterand sediment samples are needed to drawconclusions on whether <strong>geothermal</strong> extraction isaffect<strong>in</strong>g nearby ground<strong>waters</strong>.35


Lotta Hammarlund & Juan Piñones TRITA LWR Masters Thesis 09-025. CONCLUSIONSThe present study <strong>in</strong>dicates that high Asconcentrations occur throughout the entire studyarea. 35 <strong>of</strong> the total 50 samples exceed the WHOdr<strong>in</strong>k<strong>in</strong>g water guidel<strong>in</strong>e for As which is 10 μg/L.Extremely high As values were measured from the<strong>geothermal</strong> wells (11.86-29.13 mg/L) whileconcentrations <strong>in</strong> thermal spr<strong>in</strong>gs (0.0052- 4.56mg/L) were low to high and cold surface water(0.0052- 0.065 mg/L) was low. High boronconcentrations (33.9-60.1 mg/L) also occurthrough out the entire area.• Arsenic concentrations exceed the WHO limitfor safe dr<strong>in</strong>k<strong>in</strong>g water (10μg/L) <strong>in</strong> 35 <strong>of</strong> the 50samples. Geothermal well fluids greatly exceedthe WHO limit while all the cold spr<strong>in</strong>gs fallbelow that limit.• Boron concentrations exceed the WHO limit forsafe dr<strong>in</strong>k<strong>in</strong>g water (0.5 mg/L is the B limitrecommended for dr<strong>in</strong>k<strong>in</strong>g water by the WHO(1998) <strong>in</strong> all <strong>of</strong> the 50 samples.• Sampled <strong>geothermal</strong> well fluids are generally <strong>of</strong>Na-Cl-B type with an almost neutral pH andwith oxidiz<strong>in</strong>g conditions. They conta<strong>in</strong>extremely high As and boron concentrations.• Sampled thermal spr<strong>in</strong>gs can be divided <strong>in</strong>toneutral thermal <strong>waters</strong> and acidic thermal <strong>waters</strong>.The neutral thermal spr<strong>in</strong>gs (pH almost neutral)are generally <strong>of</strong> HCO 3 -Cl type with reduc<strong>in</strong>gconditions. The acidic thermal spr<strong>in</strong>gs (pH 1.97-3.25) are generally <strong>of</strong> SO 4 -S-Cl-Al type and withreduc<strong>in</strong>g conditions. They conta<strong>in</strong> low to highAs concentrations.• Sampled cold spr<strong>in</strong>gs are generally <strong>of</strong> Si-SO 4 -HCO 3 type with a neutral to alkal<strong>in</strong>e pH withreduc<strong>in</strong>g conditions. They conta<strong>in</strong> low Asconcentrations.• As comparison with New Zealand, USA andPhilipp<strong>in</strong>es show that the well fluids used for<strong>geothermal</strong> energy <strong>in</strong> Costa Rica have extremelyhigh As concentrations.• Re<strong>in</strong>jection <strong>of</strong> <strong>geothermal</strong> fluids <strong>in</strong> Miravallesand R<strong>in</strong>con de la Vieja is needed although thewaste fluid conta<strong>in</strong>s extremely highconcentrations <strong>of</strong> both As and B.36


Arsenic <strong>in</strong> Geothermal Waters <strong>of</strong> Costa Rica___________________________________________________________________________________7. REFERENCESAlvarado, G., Acevedo, A.P., Monsalve, M.L., Esp<strong>in</strong>dola, J.M., Gómez, D., may, M., Naranjo, J.A., Pulgar<strong>in</strong>,B., Raigosa, J., Sigarán, C., & Van der Laat, R. (1999) El desarrollo de la Vulcanología en Lat<strong>in</strong>oamé<strong>rica</strong> enel último Cuarto de Siglo XX. Rev. Ge<strong>of</strong>ísica 51: 785-241Appelo, C.A.J., Postma, D. (1993). Ge<strong>och</strong>emistry, Groundwater and Pollution. A.A.Balkema, Rotterdam.Bhattacharya, P., Jacks, G., Ahmed, K.M., Routh, J., Khan, A.A. (2002) Arsenic <strong>in</strong> groundwater <strong>of</strong> the Bengal deltapla<strong>in</strong> aquifers <strong>in</strong> Bangladesh. Bull. Environ. Cont. Toxicol. 69: 538-545.Ballantyne, J.M., Moore, J.N. (1988) Arsenic ge<strong>och</strong>emistry <strong>in</strong> <strong>geothermal</strong> systems. Ge<strong>och</strong>imica et Cosm<strong>och</strong>imicaActa 52: 475-483.Bargagli, R., Cateni, D., Nelli, L., Olmastroni, S., Zagarese, B. (1997) Environmental impact <strong>of</strong> trace elementemissions from <strong>geothermal</strong> power plants. Arch. Environ.Contam.Toxicol. 33: 172-181Birkle, P., Bundschuh, J. (2007) High and low enthalpy <strong>geothermal</strong> resources and potentials. In: Bundschuh, J.& G.E. Alvarado (eds.) (2007): Central Ame<strong>rica</strong>: Geology, Resources and Hazards. Taylor and Francis/CRCPress, Publisher, The Netherlands. pp.705-776 (ISBN: 9780415416474)Bundschuh, J., Alvarado, G., Reyes, E., A.R.R. Rodriguez, Palma, M.J., Zuñíga, A., Castillo, G. (2002)Geothermal energy <strong>in</strong> the Central-Ame<strong>rica</strong>n region. In: Chandrasekharam, D. & Bundschuh, J. (eds.)Geothermal Energy for Develop<strong>in</strong>g Countries. Balkerna Publisher, The Netherlands; pp. 313-364.Ellis, A.J., Mahon, W.A.J. (1964) Natural hydrothermal systems and experimental hot-water/rock <strong>in</strong>teractions.Ge<strong>och</strong>imica et Cosm<strong>och</strong>imica Acta 28: 1329-1367.Ellis, A.J., Mahon, W.A.J. (1967) Natural hydrothermal systems and experimental hot-water/rock <strong>in</strong>teractions(Part II). Ge<strong>och</strong>imica et Cosm<strong>och</strong>imica Acta 31: 519-538.Gemici, Ü., Tarcan, G., (2002) Distribution <strong>of</strong> boron <strong>in</strong> thermal <strong>waters</strong> <strong>of</strong> western Anatola, Turkey andexamples <strong>of</strong> their environmental impacts. Environmental Geology 43: 87-98.Gherardi, F., Panichi C., Yock, A., Gerardo-Abaya, J. (2002) Ge<strong>och</strong>emistry <strong>of</strong> the surface and deep fluids <strong>of</strong>the Miravalles volcano <strong>geothermal</strong> system (Costa Rica). Geothermics 31: 91–128.Kloppman, W., Bianch<strong>in</strong>i, G., Charalambides, A., Dotsika, E., Guerrot, C., Klose, P., Marei, A., Pennisi, M..,Vengosh, A., Voutsa, D. (2005) Boron contam<strong>in</strong>ation <strong>of</strong> Mediterranean groundwater resources: extent,sources and pathways elucidated by environmental isotopes. Geophysics Research Abstracts. 7: 10162.Manieri, A. (2005) Costa Rica country update report. Proc. World Geothermal Congress, Antalya, Turkey, 24-29 5ppMontero, W. (1999): Sismícidad, Sismotectónica y Amenaza sismica en Amé<strong>rica</strong> Central. Rev. Ge<strong>of</strong>ísica 51: 243-259Moya, P. (2005) La Energía geotérmica en Costa Rica p. 1-14.Nable, R.O., Bañuelos, G.S., Paull, J.G. (1997) Boron toxicity. Plant and Soil 193: 181-198.National Park Service (2003) U.S. Department <strong>of</strong> the Interior, Geothermal Energy Development Overview, GeologicResources Division, NPS Western Energy Summit January 21–23, 2003.Tassi, F., Vaselli, O., Capaccioni, B., Giolito, C., Duarte, E., Fernandez, E., M<strong>in</strong>issale, A., Magro, G. (2005)The hydrothermal-volcanic system <strong>of</strong> R<strong>in</strong>con de la Vieja volcano (Costa Rica): A comb<strong>in</strong>ed (<strong>in</strong>organic andorganic) ge<strong>och</strong>emical approach to understand the orig<strong>in</strong> <strong>of</strong> the fluid discharges and its possible applicationto volcanic surveillance. J. Volcanology and Geothermal Research 148: 315-333.Vega, E., Chavarría, L., Barrantes, M.., Mol<strong>in</strong>a, F., Hakanson, C.E., Mora, O. (2005) Geologic model <strong>of</strong> theMiravalles <strong>geothermal</strong> field, Costa Rica. Proc. World Geothermal Congress, Antalya, Turkey, April 24-29 pp. 1-5.Webster, J.G.(1999) The source <strong>of</strong> <strong>arsenic</strong> (and other elements) <strong>in</strong> the Marbel – Mat<strong>in</strong>go river catchment,M<strong>in</strong>danao, Philipp<strong>in</strong>es. Geothermics 28: 95–111.37


Lotta Hammarlund & Juan Piñones TRITA LWR Masters Thesis 09-02Webster, J.G.& Nordstrom, D. K. (2003) Geothermal Arsenic. In: Welch, A. & Stollenwerk, K.G. (eds.) 2003:Arsenic <strong>in</strong> groundwater, Elsevier, pp 101-125.WHO (1993) Guidel<strong>in</strong>es for dr<strong>in</strong>k<strong>in</strong>g water quality, vol 2. Health criteria and other support<strong>in</strong>g <strong>in</strong>formation.World Health Organization,, Geneva.WHO (2008) Guidel<strong>in</strong>es for Dr<strong>in</strong>k<strong>in</strong>g-Water Quality, Incorporat<strong>in</strong>g the First and Second Addenda, Volume 1(Third Edition), World Health Organization, Geneva. 515p.Wilkie, J. A., Her<strong>in</strong>g, J. G. (1998) Rapid Oxidation <strong>of</strong> Geothermal Arsenic (III) <strong>in</strong> Stream<strong>waters</strong> <strong>of</strong> the EasternSierra Nevada. Environ. Sci. Technol..32: 657-66238

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!