19.11.2012 Views

roposal - The Center for Research and Learning - IUPUI

roposal - The Center for Research and Learning - IUPUI

roposal - The Center for Research and Learning - IUPUI

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Date of submission: s 03/08/2011 0<br />

Proposed d project title e: Design Li ithium-Air Battery B<br />

Principal l mentor’s na ame: Young gsik Kim<br />

Principal l mentor’s tit tle: Assistan nt Professor r<br />

Department<br />

<strong>and</strong> Scho ool: Mechan nical Engine eering, Purddue<br />

School of Engineerring<br />

<strong>and</strong><br />

Technolo ogy<br />

Phone nu umber: 317-2 274-9711<br />

E-mail: yk35@iupui<br />

y i.edu<br />

Principal l mentor’s na ame: Rongrong<br />

Chen<br />

Principal l mentor’s tit tle: Associat te Professor r<br />

Department<br />

<strong>and</strong> Scho ool: Mechan nical Technology,<br />

Purddue<br />

School oof<br />

Engineering<br />

<strong>and</strong><br />

Technolo ogy<br />

Phone nu umber: 317-2 274-4280<br />

E-mail: rochen@iup<br />

r pui.edu<br />

<strong>The</strong> proje ect will be carried<br />

out an nd completed d (check onlyy<br />

one):<br />

Academic<br />

year<br />

Summerr<br />

(Note e: <strong>The</strong> academ mic year ends May 2) (Summer runns<br />

June 1 – Juuly<br />

31)<br />

This is i a block gr rant project but b not carrie ed out in a cclass.<br />

(Note e: Block grant t projects invo olve more tha an six studentts.<br />

<strong>The</strong> requireement<br />

<strong>for</strong> incclusion<br />

of mulltiple<br />

discip plines is not as<br />

stringent <strong>for</strong><br />

this type of p<strong>roposal</strong> but, , neverthelesss,<br />

preference wwill<br />

be givenn<br />

to<br />

propo osals that inclu ude multidisc ciplinary team ms.)<br />

This is i a block gr rant project <strong>for</strong> f a class, designated d ass<br />

an <strong>IUPUI</strong> SStudent<br />

Multiidisciplinary<br />

<strong>Research</strong> Team projec ct. (Note: Block<br />

grant prop posals to be caarried<br />

out witthin<br />

a class reequire<br />

the signnature<br />

of the dep partment chair r. Block grant t projects involve<br />

more thaan<br />

six studentts.<br />

<strong>The</strong> requirrement<br />

<strong>for</strong><br />

inclusion of multiple disciplines d is not n as stringen nt <strong>for</strong> this typpe<br />

of p<strong>roposal</strong>l;<br />

but neverthheless,<br />

prefereence<br />

will be giv ven to propos sals that inclu ude multidisci iplinary teamss.)<br />

Total num mber of stud dents request ted: 4<br />

(Note: Th he total numbe er of students s must exceed d by two the nnumber<br />

of meentors)<br />

Total Nu umber of fres shmen <strong>and</strong>/o or sophomore es to be recru ruited: 1<br />

(Note: Pre eference will be given to projects p that in nclude freshmmen<br />

<strong>and</strong> sophoomores)<br />

MURI Mentor’s<br />

Project Propos sal Form, Updated d: 7-5-2010<br />

Cov ver Pagge<br />

1


Disciplin nes or majors s of students s (at least two o disciplines oor<br />

majors):<br />

Mechani ical Enginee ering, Chem mistry, <strong>and</strong> Mechanical M l Engineerinng<br />

Technoloogy<br />

Skills exp pected from students:<br />

Chemica al Synthesis;<br />

Mechanical<br />

engineeri ing design a<strong>and</strong><br />

fabricattion<br />

Names of o students you y request to work on this projecct.<br />

(Mentors s are invited to recomme end students that they woould<br />

prefer tto<br />

work on thhe<br />

proposed<br />

project. Please P provid de an email address <strong>and</strong> a rationale; <strong>for</strong> examplee,<br />

a student mmay<br />

have ann<br />

essential skill, may already a be wo orking on a similar projeect,<br />

or may bbe<br />

intendingg<br />

to apply to<br />

graduate school to pu ursue the sam me area of re esearch.)<br />

<strong>The</strong> Cent ter <strong>for</strong> Resea arch <strong>and</strong> Lea arning will consider<br />

the sstudents<br />

requ quested beloww,<br />

but cannoot<br />

guarantee e placement of specific students s on teams. t<br />

Name of f Student:<br />

2)______ __________ ___<br />

3)______ __________ ___<br />

4)______ __________ ___<br />

*Please Note: N All stu udents must t have compl leted the Cennter<br />

<strong>for</strong> Ressearch<br />

<strong>and</strong> L<strong>Learning</strong><br />

MMURI<br />

Applicati ion Form du ue on Septem mber 3, 2010 0 to be conssidered<br />

<strong>for</strong> fi financial suppport<br />

duringg<br />

AY<br />

2010-201 11. Once the e award winning<br />

MURI I projects aree<br />

posted (app pprox. Septemmber<br />

16)<br />

students will then be e asked to fil ll out a shor rt additional l<strong>for</strong>m due onn<br />

Septemberr<br />

22 that rannks<br />

their proj oject choices s.<br />

MURI Mentor’s<br />

Project Propos sal Form, Updated d: 7-5-2010<br />

Student’s Email: E<br />

_________ ______<br />

_________ ______<br />

_________ ______<br />

Rationale:<br />

1)_Moon nsik Chung_ ___ chu ungmoo@im mail.iu.edu Knowledgee<br />

of organicc<br />

chemistry<br />

____________________<br />

_______<br />

____________________<br />

_______<br />

____________________<br />

_______<br />

2


<strong>The</strong> developmen nt of electric vehicles (EVs)<br />

<strong>and</strong> elecctrical<br />

energgy<br />

storage (EEES)<br />

has reqquired<br />

the highe er energy de ensity of the Li-ion rechargeable<br />

batttery<br />

technollogy.<br />

Howeever,<br />

their ennergy<br />

density is i limited be ecause the number n of Li-ions thatt<br />

correspondd<br />

to the nummber<br />

of eleectron<br />

charge ar re limited to be intercala ated in the pr resent solid ssolution<br />

matterials<br />

<strong>for</strong> annode<br />

<strong>and</strong> cathhode.<br />

<strong>The</strong> use of lithium metal m as ano ode <strong>and</strong> air as a cathode pproduces<br />

an extremely hhigh<br />

capacityy,<br />

ten<br />

times hig gher than tha at of the pres sent lithium ion battery. Although vvery<br />

high eneergy<br />

densitiees<br />

are<br />

achievable,<br />

there are challenges associated with w the desiign<br />

of a pracctical<br />

Li-Air cell. Emplooying<br />

an inorga anic solid ele ectrolyte wit th a thin <strong>and</strong> d dense mechhanical<br />

propperty<br />

is a keyy<br />

to the desiign<br />

of<br />

the Li-Ai ir cell. <strong>The</strong> purpose of this t project is i to design a rechargeabble<br />

Li-Air battery<br />

<strong>and</strong> teest<br />

its<br />

electroch hemical prop perties includ ding voltage,<br />

capacity, cyycle-life,<br />

annd<br />

rate capabbility.<br />

1) Obje<br />

T<br />

Li + ectives<br />

<strong>The</strong> first obje ective of this s research will<br />

be to design<br />

a testingg<br />

battery cell<br />

that uses a fast-<br />

-ion conducting c solid electro olyte. Li metal m <strong>and</strong> aair<br />

will be uused<br />

as anoode<br />

<strong>and</strong> cathhode,<br />

respectiv vely, <strong>for</strong> the cell. <strong>The</strong> an node part of f the cell, whhich<br />

consistss<br />

of Li metaal,<br />

should bee<br />

well<br />

designed d to protect it tself from being<br />

exposed<br />

to air <strong>and</strong> moisture diirectly.<br />

<strong>The</strong> second objeective<br />

of this re esearch will be focused on o the desig gn of the cathhode<br />

part off<br />

the cell, whhich<br />

is compposed<br />

of an aqueous a electrolyte<br />

<strong>for</strong> r providing Li-ion conductivity,<br />

carbon papper<br />

<strong>for</strong> eleectron<br />

conductiv vity, <strong>and</strong> a medium fo or the oxyg gen pathwayy.<br />

<strong>The</strong> finaal<br />

objectivee<br />

will be too<br />

test<br />

electroch hemical prop perties of the e constructed d Li-Air celll,<br />

including voltage, cappacity,<br />

cyclee-life,<br />

<strong>and</strong> rate capability. <strong>The</strong> compo onents of th he cell such as the aqueeous<br />

electrollyte<br />

<strong>and</strong> eleectron<br />

conducto ors will be modified to o improve th he cell propperties.<br />

Thhrough<br />

this multidiscipllinary<br />

research activity, stu udents will learn l the con ncepts behinnd<br />

Li-Air annd<br />

Li-ion baatteries<br />

incluuding<br />

how their r critical com mponents aff ffect their ele ectrochemicaal<br />

propertiess<br />

from both a mechanicaal<br />

<strong>and</strong><br />

a chemic cal point of view. v<br />

2) Resea arch Meth hodology<br />

<strong>The</strong> stated objec ctives of the e research will w be achievved<br />

through a number oof<br />

interactivee<br />

<strong>and</strong><br />

iterative <strong>Research</strong> Activities A (RA A), which ar re summarizzed<br />

as followws:<br />

RA-1: Design D of a la aboratory-s<br />

In th he first phase e of the proj<br />

× 1 inch, 150μm thic ck). Its chem<br />

its ionic conductivity c y is 10<br />

students will seal th<br />

separator r. <strong>The</strong> chal<br />

organic liquid l electro<br />

be caused d by even a<br />

-4 sized Li-Air cell<br />

ject, we will l purchase a Li<br />

mical compo osition is bel<br />

S/cm m. To protec ct the Li met<br />

he anode par rt consisting g of Li meta<br />

llenge will be b to find a suitable se<br />

olyte <strong>and</strong> str rong acidic or basic wat<br />

small leakag ge of air or water, w resulti<br />

+ -ion connducting<br />

ceraamic<br />

film (11<br />

inch<br />

ieved to be LLi1+x+yAlxTii2-xSiyP3-yO122,<br />

<strong>and</strong><br />

tal anode froom<br />

exposuree<br />

to air <strong>and</strong> wwater,<br />

al, an organiic<br />

liquid eleectrolyte,<br />

annd<br />

the<br />

ealing agentt<br />

that is stabble<br />

both with<br />

an<br />

ter. Seriouss<br />

damage to the Li metaal<br />

can<br />

ing in impropper<br />

data fromm<br />

our test ceells.<br />

MURI Mentor’s<br />

Project Propos sal Form, Updated d: 7-5-2010<br />

Pr <strong>roposal</strong>l<br />

3


+<br />

Rubber<br />

balloon<br />

Current collector c<br />

Figure 1. Schematic di iagram of the e cell designed d <strong>for</strong> Li metall<br />

anode <strong>and</strong> aair<br />

as cathode. .<br />

RA-2: Test T of the electrochemi<br />

ical propert ties of the ceell<br />

<strong>The</strong> electrochem mical proper rties of the test cell designed<br />

in RRA-1<br />

will bee<br />

evaluated. . <strong>The</strong><br />

voltage, discharge, d an nd charge ca apacities of the cell willl<br />

be the mainn<br />

focus of innvestigation.<br />

<strong>The</strong><br />

aqueous electrolyte, current coll lector (thick kness, surfacce<br />

area, <strong>and</strong>d<br />

type of materials),<br />

cattalyst<br />

material, <strong>and</strong> other cell c compon nents will be e investigateed<br />

to producce<br />

repeatablee<br />

electrochemmical<br />

data.<br />

RA-3: Cell<br />

optimiza ation <strong>and</strong> ev valuation<br />

<strong>The</strong> promising cell component<br />

materi ials to emerrge<br />

from RRA-2<br />

will bee<br />

subjected to a<br />

thorough h characteriz zation in term ms of their more detaileed<br />

electrochhemical<br />

perf<strong>for</strong>mance<br />

unnder<br />

a<br />

range of conditions. Electrochem mical charac cterization (inn<br />

terms of eenergy<br />

<strong>and</strong> ppower<br />

densityy<br />

<strong>and</strong><br />

long-term m cyclability y/stability) will w be made e using the mmore<br />

interessting<br />

materiaals<br />

which emmerge<br />

from RA A-2.<br />

3) Team m Organiz zation<br />

A multidisciplin<br />

m nary team of f undergradu uate students,<br />

three fromm<br />

mechanicall<br />

engineeringg<br />

<strong>and</strong><br />

one from m chemistry will w be assem mbled to con nduct the prooject<br />

under the supervission<br />

of the MMURI<br />

mentors. Two mento ors, Dr. Yo oungsik Kim m <strong>and</strong> Dr. RRongrong<br />

CChen<br />

will wwork<br />

closely with<br />

students to guide them m in their ex xpertise area as.<br />

MURI Mentor’s<br />

Project Propos sal Form, Updated d: 7-5-2010<br />

Air A<br />

Li L<br />

-<br />

Aqueeous<br />

electrolytee<br />

Silicon rubbber<br />

Laminate fillm<br />

Solid electroolyte<br />

Polymer sepparator<br />

Organic elecctrolyte<br />

Polyethylenne<br />

O ring<br />

Teflon<br />

Stainless Steeel<br />

4


a) Th he principal mentor, Dr r. Youngsik Kim, will ttake<br />

the leaad<br />

in supervvising<br />

studennts<br />

to<br />

per<strong>for</strong>m<br />

all st teps of the re esearch activ vities (RA) pproposed<br />

aboove.<br />

b) Th he co-mentor(s)<br />

will be available to o students too<br />

provide stuudents<br />

assistance<br />

as follows.<br />

Dr. D Rongrong g Chen will supervise s the e specifics oof<br />

RA2 <strong>and</strong> RRA3.<br />

c) Gr raduate stude ents (if appli icable) will train t studentts<br />

to __________N/A.<br />

d) Po ostdoctoral re esearchers (i if applicable e) will providde<br />

leadershipp<br />

to ___________N/A.<br />

e) Co onsultants (if f applicable) ) will provid de _________ __________NN/A.<br />

f) Th hree students s in mechani ical engineer ring will takke<br />

the leadersship<br />

in role iin<br />

RA-1 <strong>and</strong>d<br />

RA-<br />

3.<br />

g) On ne student in n Chemistry will take the e leadership in role in RAA-2.<br />

h) Stu udents majo oring in all fields f will co ollaborate inn<br />

discussing the experimmental<br />

resultts<br />

<strong>and</strong><br />

th he data analy ysis<br />

i) Stu udents majo oring in each<br />

separate field will prepare mmaterials<br />

<strong>for</strong> presentatioon<br />

by<br />

em mphasizing the specifics s of the respe ective majorr<br />

field.<br />

4) Exp pected Out tcomes<br />

<strong>The</strong> outcome o of this project will be the design of a rechargeabble<br />

battery ssystem<br />

to tesst<br />

the<br />

effectiven ness of air as a a cathode e <strong>and</strong> lithium m metal as an anode. IIt<br />

is anticipaated<br />

that thee<br />

cell<br />

develope ed in this pro oject will pro oduce a volta age of ~ 2.5 V <strong>and</strong> a largge<br />

capacity oof<br />

~ 5000 mAAh/g,<br />

which is more than te en times larg ger than the capacity of tthe<br />

present llithium<br />

ion bbattery.<br />

<strong>The</strong>e<br />

high<br />

energy density d Li-Ai ir battery co ould be used d in the electtrical<br />

energyy<br />

storage <strong>for</strong>r<br />

next-generration<br />

electroch hemical devi ices. Howev ver, the com mmercializatiion<br />

of Li-Airr<br />

battery tecchnology<br />

reqquires<br />

further re esearch <strong>and</strong> developmen d nt in solid ele ectrolytes annd<br />

their cost <strong>and</strong> mechannical<br />

propertiies.<br />

5) Ben nefits<br />

We anticipate a tha at the results s of the prop posed researcch<br />

project wwill<br />

be used bby<br />

undergraduate<br />

students to learn th he chemistr ry, electroch hemistry, annd<br />

engineerring<br />

design of recharggeable<br />

batteries by collabor rating with an a interdisci iplinary reseearch<br />

group. . Further, tthey<br />

will become<br />

scientific cally productive<br />

by und dertaking the ese research activities. Thus, at leaast<br />

one scieentific<br />

paper wi ill be co-aut thored by th he students, <strong>and</strong> they wiill<br />

gain expeerience<br />

of RR&D<br />

in the “real<br />

world”. This will no ot only bene efit them in their future career but also motivatte<br />

them to aattend<br />

graduate school. <strong>The</strong> T success of this research<br />

projecct<br />

will provvide<br />

a new direction foor<br />

the<br />

ongoing Li-ion batter ry research at a the Lugar <strong>Center</strong> <strong>for</strong> RRenewable<br />

EEnergy<br />

in ouur<br />

university. .<br />

MURI Mentor’s<br />

Project Propos sal Form, Updated d: 7-5-2010<br />

5


6) Tim me Table<br />

<strong>Research</strong><br />

Activit ty Q1<br />

Purch hase items an nd<br />

do lit terature work ks<br />

Desig gn the anode e<br />

part of o the cell<br />

Desig gn the cathod de<br />

part of o the cell<br />

Test of o the cell<br />

voltage<br />

<strong>and</strong><br />

capac city<br />

Cell optimization<br />

o n<br />

<strong>and</strong> evaluation e<br />

7) Item mized Budg<br />

get (<strong>The</strong> max ximum budge et allowance iis<br />

$2,000 <strong>for</strong> eequipment<br />

annd/or<br />

suppliess<br />

neede ed <strong>for</strong> the rese earch team. Please P justify each e item in tthe<br />

budget. NNote<br />

that geneerally<br />

speakinng,<br />

expen nditures <strong>for</strong> co omputers <strong>and</strong> d/or travel are e not approveed<br />

by the revieew<br />

committeee<br />

at this time ddue<br />

to fina ancial constra aints.)<br />

Items s<br />

Solid electrolytes, 4 pieces (1 in nch × 1 inch)<br />

Teflon n<br />

Stainl less steel bar<br />

Carbo on paper<br />

Chem micals <strong>for</strong> elec ctrolytes<br />

Li me etal<br />

Epoxy y<br />

Air fa an<br />

Acryl lic plate<br />

Mech hanic shop ser rvice<br />

Total<br />

$2,000 of f the proposed d budget will be b covered fr rom MURI buudget.<br />

<strong>The</strong> resst<br />

will be covvered<br />

from owwn<br />

funds.<br />

MURI Mentor’s<br />

Project Propos sal Form, Updated d: 7-5-2010<br />

Q2<br />

Jun<br />

Q3 Q Q44<br />

Q5<br />

Projeected<br />

Expensse<br />

($)<br />

$ 10000<br />

($250 per eeach)<br />

$ 1500<br />

$ 50<br />

$ 30<br />

$ 2000<br />

$ 2000<br />

$ 1000<br />

$ 50<br />

$ 30<br />

$ 2000<br />

$ 2,010<br />

Jully<br />

Q6<br />

Q7<br />

Q8<br />

6


8) Bibl liography<br />

[1] John n B. Goode<br />

Chem mistry of Ma<br />

[2] You ungsik Kim,<br />

“Acc cess to M<br />

Li-io<br />

[3] You<br />

suita<br />

Solid<br />

[4] You<br />

Na,<br />

[5] You<br />

Stru<br />

Chem<br />

[6] You<br />

prep<br />

(200<br />

[7] You<br />

incr<br />

163<br />

3+ enough <strong>and</strong><br />

aterials, 22 (<br />

Kyu-sung P<br />

/M /<br />

on Batteries,<br />

ungsik Kim<br />

able electrol<br />

d-State Lette<br />

ungsik Kim<br />

Ag),” Electr<br />

ungsik Kim,<br />

ucture of a<br />

mistry of Ma<br />

ungsik Kim<br />

pared by me<br />

06) 2881-288<br />

ungsik Kim<br />

rease in Li2S<br />

18-16325.<br />

2+ Youngsik Kim, K “Challlenges<br />

<strong>for</strong> Li Recharggeable<br />

Batteries,”<br />

(2010) 587 - 603.<br />

Park, Sang-h hoon Song, Jiantao Hann,<br />

<strong>and</strong> John B. Goodenoough,<br />

redox couple c in lay yered LiMS22<br />

sulfides (MM<br />

= Ti, V, CCr)<br />

as Anodees<br />

<strong>for</strong><br />

,” Journal of f the Electro ochemical Soociety,<br />

156 (22009)<br />

A703-A708.<br />

<strong>and</strong> John B.<br />

Goodenou ugh, “Reinveestigation<br />

off<br />

Li1-xVyTi1-yS2<br />

electroddes<br />

in<br />

lytes: Highl ly improved d electrochemmical<br />

propeerties,”<br />

Elecctrochemicall<br />

<strong>and</strong><br />

ers, 12 (2009 9) A73-A75<br />

<strong>and</strong> John B. . Goodenoug gh, “Lithiumm<br />

Intercalatiion<br />

into ATi2(PS4)3<br />

(A = Li,<br />

rochemistry Communica ation, 10 (20008)<br />

497-501.<br />

, Nachiappa an Arumuga am, <strong>and</strong> Joohn<br />

B. Gooodenough,<br />

“3D Frameework<br />

New Lithiu um Thiopho osphate, LiTTi2(PS4)3<br />

ass<br />

Lithium IInsertion<br />

Hoosts,”<br />

aterials 20 (2 2008) 470-4 474.<br />

<strong>and</strong> Steve W. W Martin, “Ionic “ conduuctivities<br />

off<br />

various GeeS2-based<br />

gllasses<br />

elt-quenchin ng <strong>and</strong> mech hanical millling<br />

methodds,”<br />

Solid SState<br />

Ionics, , 177<br />

87.<br />

m, Jason Sai ienga, <strong>and</strong> Steve W. MMartin,<br />

“Annomalous<br />

Ioonic<br />

conducctivity<br />

S + GeS2 + GeO2 G glasses s,” Journal oof<br />

Physical Chemistry BB,<br />

110(33) (22006)<br />

9) Shor rt Resume<br />

Attached d below<br />

10) App pendix<br />

es (maximum two-page res sumes of the PPM<br />

<strong>and</strong> all thhe<br />

Co-Ms)<br />

Two MU URI projects have been su upervised by y Dr. Rongroong<br />

Chen.<br />

1. Project<br />

entitled d "Novel cat talyst <strong>for</strong> dir rect ethanol ffuel<br />

cells" wwas<br />

conducte<br />

Reed R (Chem/ ME/Phys) an nd Diego Qu uevedo (MEE)<br />

in the fall of 2006 to th<br />

<strong>The</strong> T students prepared cat talysts <strong>and</strong> electrodes e <strong>for</strong><br />

studying ooxygen<br />

reduc<br />

fo or direct met thanol fuel cells. c <strong>The</strong> re esults were ppresented<br />

in tthe<br />

215<br />

Hawaii H by Michael<br />

Reed. .<br />

th ed by Michaeel<br />

he spring 20007.<br />

ction reactionns<br />

ECCS<br />

meeting aat<br />

MURI Mentor’s<br />

Project Propos sal Form, Updated d: 7-5-2010<br />

7


2. Project<br />

entitled d “Developm ment of nove el catalytic laayers<br />

<strong>for</strong> dirrect<br />

ethanol ffuel<br />

cells” wwas<br />

co onducted by Alan Bened dict (ME), Michael M Reedd<br />

(ME/Physiics)<br />

during thhe<br />

spring 20006.<br />

<strong>The</strong> T students established reliable r char racterizationn<br />

methods to characterizee<br />

electrocataalytic<br />

ac ctivities of catalysts c <strong>for</strong> oxygen redu uction reactioons<br />

<strong>and</strong> ethaanol<br />

oxidatioon<br />

reactions. <strong>The</strong><br />

work w paved a ground <strong>for</strong> future fundi ing <strong>and</strong> publlication.<br />

MURI Mentor’s<br />

Project Propos sal Form, Updated d: 7-5-2010<br />

8


Signatures<br />

Name <strong>and</strong> Signatu ure of the Principal<br />

Me entor:<br />

(writing g the full name<br />

suffices as signature s <strong>for</strong> electronic coopies)<br />

Youngs sik Kim____ _______ __ ___________ ___________________________08/277/2010<br />

Name<br />

Signatu ure<br />

Date<br />

MURI Mentor’s<br />

Project Propos sal Form, Updated d: 7-5-2010<br />

9


Education<br />

Youngsik Kim<br />

• 2006, Ph.D., Materials Science <strong>and</strong> Engineering, Iowa State University, Ames, Iowa.<br />

• 2003, M.S., Materials Science <strong>and</strong> Engineering, Iowa State University, Ames, Iowa.<br />

• 2000, B.S., Materials Engineering, Sungkyunkwan University, Suwon, South Korea.<br />

Positions Held at <strong>IUPUI</strong><br />

• 2010-Present, Assistant Professor of Mechanical Engineering.<br />

Other Related Experience<br />

• 2006-2010, Postdoctoral Fellow, Texas Materials Institute, <strong>The</strong> University of Texas at Austin.<br />

<strong>Research</strong> Interests<br />

Identifying <strong>and</strong> developing advanced functional materials<br />

Underst<strong>and</strong>ing the chemistry-structure- physical property relationships in materials<br />

Li <strong>and</strong> Na rechargeable batteries <strong>for</strong> high power <strong>and</strong> energy storage applications<br />

Asymmetric hybrid supercapacitor <strong>for</strong> high power supply applications<br />

Fast-ion conducting solid membranes<br />

Honors <strong>and</strong> Awards<br />

Norbert J. Kreidl Award, May 2007<br />

<strong>Research</strong> Excellence Award, August 2006<br />

Selected Publications<br />

[1] John B. Goodenough <strong>and</strong> Youngsik Kim, “Challenges <strong>for</strong> Li Rechargeable Batteries,”<br />

Invited Review Paper <strong>for</strong> Chemistry of Materials, 22 (2010) 587 - 603.<br />

[2] John B. Goodenough <strong>and</strong> Youngsik Kim, “Locating Redox Couples in the Layered<br />

Sulfides with Application to Cu[Cr2]S4,” Journal of the Solid-State Chemistry, 182<br />

(2009) 2904-2911.<br />

[3] Youngsik Kim, Kyu-sung Park, Sang-hoon Song, Jiantao Han, <strong>and</strong> John B.<br />

Goodenough, “Access to M 3+ /M 2+ redox couple in layered LiMS2 sulfides (M = Ti, V,<br />

Cr) as Anodes <strong>for</strong> Li-ion Batteries,” Journal of the Electrochemical Society, 156 (2009)<br />

A703-A708<br />

[4] Youngsik Kim <strong>and</strong> John B. Goodenough, “Reinvestigation of Li1-xVyTi1-yS2 electrodes<br />

in suitable electrolytes: Highly improved electrochemical properties,” Electrochemical<br />

<strong>and</strong> Solid-State Letters, 12 (2009) A73-A75<br />

[5] Jian-Tao Han, Dong-Qiang Liu, Sang-Hoon Song, Youngsik Kim <strong>and</strong> John B.<br />

Goodenough, “Lithium Ion Intercalation Per<strong>for</strong>mance of Niobium Oxides: KNb5O13<br />

<strong>and</strong> K6Nb10.8O30,” Chemistry of Materials, 21 (2009) 4753-4755.<br />

[6] Youngsik Kim <strong>and</strong> John B. Goodenough, “Lithium Insertion into Transition Metal<br />

Monosulfides: Tuning the Position of the Metal 4s B<strong>and</strong>,” Journal of Physical<br />

Chemistry C, 112 (2008) 15060-15064.


[7] Youngsik Kim <strong>and</strong> John B. Goodenough, “Lithium Intercalation into ATi2(PS4)3 (A =<br />

Li, Na, Ag),” Electrochemistry Communication, 10 (2008) 497-501.<br />

[8] Youngsik Kim, Nachiappan Arumugam, <strong>and</strong> John B. Goodenough, “3D Framework<br />

Structure of a New Lithium Thiophosphate, LiTi2(PS4)3 as Lithium Insertion Hosts,”<br />

Chemistry of Materials 20 (2008) 470-474.<br />

[9] Youngsik Kim, Haesuk Hwang, Katherine Lawler, Steve W. Martin, <strong>and</strong> Jaephil Cho,<br />

“Electrochemical Behavior of Ge <strong>and</strong> GeX2 (X = O, S) Glasses: Improved Reversibility<br />

of the Reaction of Li with Ge in Sulfide Medium,” Electrochimica Acta, 53 (2008)<br />

5058.<br />

[10] Youngsik Kim, Haesuk Hwang, Chong S. Yoon, Min G. Kim, <strong>and</strong> Jaephil Cho,<br />

“Reversible Lithium Intercalation in Teardrop-shaped Ultrafine SnP0.94 Particle: An<br />

Anode Material <strong>for</strong> Lithium-Ion Batteries,” Advanced Materials, 19 (2007) 92-96.<br />

[11] Youngsik Kim <strong>and</strong> Steve W. Martin, “Ionic conductivities of various GeS2-based<br />

glasses prepared by melt-quenching <strong>and</strong> mechanical milling methods,” Solid State<br />

Ionics, 177 (2006) 2881-2887.<br />

[12] Youngsik Kim, Hyun Soo Kim, <strong>and</strong> Steve W. Martin, “Synthesis <strong>and</strong> electrochemical<br />

characteristics of Al2O3-coated LiNi1/3Co1/3Mn1/3O2 cathode material <strong>for</strong> lithium ion<br />

batteries,” Electrochimica Acta 52 (2006) 1316-1322.<br />

[13] Youngsik Kim, Jason Saienga, <strong>and</strong> Steve W. Martin, “Anomalous Ionic conductivity<br />

increase in Li2S + GeS2 + GeO2 glasses,” Journal of Physical Chemistry B, 110(33)<br />

(2006) 16318-16325.<br />

[14] Hyun Soo Kim, Youngsik Kim, Seong-Il Kim, <strong>and</strong> Steve W. Martin, “Enhanced<br />

electrochemical properties of the LiNi1/3Co1/3Mn1/3O2 cathode material by coating with<br />

LiAlO2 nanoparticles,” Journal of Power Sources, 161(1) (2006) 623-627.<br />

[15] Youngsik Kim, Jason Saienga, <strong>and</strong> Steve W. Martin, “Glass <strong>for</strong>mation in <strong>and</strong> structural<br />

investigation of Li2S + GeS2 + GeO2 composition using Raman <strong>and</strong> IR spectroscopy,”<br />

Journal of Non-Crystalline Solids, 351 (2005) 3716-3724.<br />

Invited Lectures<br />

[1] “Correlation between local structure <strong>and</strong> anomalous ionic conductivity increase in Li2S +<br />

GeS2 + GeO2 glasses”, invited lecture as a Norbert Kreidl award winner, American<br />

Ceramic Society Annual Meeting, Rochester, NY, 2007<br />

[2] “Challenge <strong>and</strong> further development of Li rechargeable batteries” Department of<br />

Materials Science <strong>and</strong> Engineering, Iowa State University, 2010


Rongrong Chen<br />

a. Education<br />

Major Degree & Year<br />

Xiamen University, Xiamen, China Physical Chemistry B.S., 1983<br />

Case Western Reserve University<br />

Clevel<strong>and</strong>, Ohio, USA<br />

Electrochemistry Ph.D., 1993<br />

b. Appointments<br />

8/2008- present,<br />

Associate Professor, Indiana University Purdue University Indianapolis, USA<br />

10/2005-7/2008,<br />

Associate <strong>Research</strong> Professor, Indiana University Purdue University Indianapolis, USA<br />

3/1995-9/2005,<br />

Group Leader at Delphi’s Indiana Technical <strong>Center</strong>, Indianapolis, Indiana<br />

5/1993-2/1995,<br />

Post-doctoral Fellow, E. Yeager Electrochemical <strong>Center</strong>, Case Western Reserve University,<br />

Clevel<strong>and</strong>, Ohio<br />

1/1987-4/1993,<br />

Graduate Teaching/<strong>Research</strong> Assistant, E. Yeager Electrochemical <strong>Center</strong>, Case Western Reserve<br />

University, Clevel<strong>and</strong>, Ohio<br />

c. Publications<br />

1. Hui He, Lu Zhang, Andrew Hsu <strong>and</strong> Rongrong Chen, “<strong>The</strong> influence of LiCoO2 with spinel<br />

symmetry on lithium-ion battery per<strong>for</strong>mance <strong>and</strong> electrochemical properties”, to be submitted to<br />

JECS, Aug. 2010.<br />

2. Qingmin Xu, Ruihua Cheng, Deryn Chu <strong>and</strong> Rongrong Chen, “In Situ STM investigation on<br />

stability of Pt-nanoparticles in acid <strong>and</strong> alkaline solutions”, to be submitted to JACS, Aug. 2010.<br />

3. Wei Sun, Andrew Hsu <strong>and</strong> Rongrong Chen, “Carbon supported tetragonal manganese oxide<br />

catalysts <strong>for</strong> oxygen reduction in alkaline media”, in press, Journal of Power Sources, 2010.<br />

4. Luhua Jiang, Andrew Hsu, Deryn Chu, Rongrong Chen, “A highly active Pd coated Ag<br />

electrocatalyst <strong>for</strong> oxygen reduction reactions in alkaline media”, Electrochimica Acta, 55 (2010)<br />

4506-4511.<br />

5. Luhua Jiang, Andrew Hsu, Deryn Chu, Rongrong Chen, “Ethanol electro-oxidation on Pt/C <strong>and</strong><br />

PtSn/C catalysts in alkaline <strong>and</strong> acid solutions”, International Journal of Hydrogen Energy, 35<br />

(2010) 365-372.<br />

6. Junsong Guo, Andrew Hsu, Deryn Chu, Rongrong Chen, “Factors Affecting Ag/C Catalyst<br />

Activity <strong>for</strong> Oxygen Reduction Reaction in Alkaline Solutions”, J. Phys Chem C, 2010, 114,<br />

4324-4330.<br />

7. Guigui Wang, Yiming Weng, Jun Zhao, Deryn Chu, Dong Xie <strong>and</strong> Rongrong Chen,<br />

“Developing a novel alkaline anion exchange membrane derived from poly(ether-imide) <strong>for</strong><br />

improved ionic conductivity”, Polymer Advanced Technology, 21 554–560, 2010.<br />

8. Guigui Wang, Yiming Weng, Deryn Chu, Dong Xie <strong>and</strong> Rongrong Chen, “Preparation of<br />

alkaline anion exchange membranes based on functional poly(ether-imide) polymers <strong>for</strong> potential<br />

fuel cell applications”, Journal of Membrane Science, 326,4-8, 2009.<br />

9. Guigui Wang, Yiming Weng, Jun Zhao, Rongrong Chen <strong>and</strong> Dong Xie, “Chloromethylation of a<br />

functional poly(ether-imide) membrane”, Journal of Applied Polymer Science, 112, 721-727,<br />

2009.<br />

1


10. Guigui Wang, Yiming Weng, Deryn Chu, Rongrong Chen, Dong Xie, “Developing a<br />

polysulfone-based alkaline anion exchange membrane <strong>for</strong> improved ionic conductivity”, Journal<br />

of Membrane Science, 332, 63-68, 2009.<br />

11. Luhua Jiang, Andrew Hsu, Deryn Chu <strong>and</strong> Rongrong Chen, “Oxygen reduction reaction on<br />

carbon supported Pt <strong>and</strong> Pd in alkaline solutions”, Journal of Electrochemical Society, 156 (3)<br />

B370-376 (2009).<br />

12. Luhua Jiang, Anderew Hsu, Deryn Chu <strong>and</strong> Rongrong Chen,“ Oxygen reduction on carbon<br />

supported Pt <strong>and</strong> PtRu catalysts in alkaline solutions“, Electroanalytical Chemistry, 629,87-93<br />

(2009).<br />

13. Luhua Jiang, Andrew Hsu, Deryn Chu <strong>and</strong> Rongrong Chen, “Size-dependent activity of<br />

palladium nanoparticles <strong>for</strong> oxygen electroreduction in alkaline solution”, Journal of<br />

Electrochemical Society, 156 (5) B643-B649 (2009).<br />

14. Lihong Huang, Jian Xie, Rongrong Chen, Deryn Chu, Andrew T. Hsu, “Iron-promoted nickelbased<br />

catalysts <strong>for</strong> hydrogen generation via auto-thermal re<strong>for</strong>ming of ethanol”, Catalysis<br />

Communications, 10 (5)502-508 (2009).<br />

15. Lihong Huang, Jian Xie, Rongrong Chen, Deryn Chu, Andrew T. Hsu, “Fe promoted Ni-<br />

Ce/Al2O3 in auto-thermal re<strong>for</strong>ming of ethanol <strong>for</strong> hydrogen production”, Catalysis Lett., 130,<br />

432-439(2009).<br />

16. Lihong Huang, Jian Xie, Rongrong Chen, Deryn Chu, Andrew T. Hsu, “Nanorod aluminasupported<br />

Ni¨CZr¨CFe/Al2O3 catalysts <strong>for</strong> hydrogen production in auto-thermal re<strong>for</strong>ming of<br />

ethanol”, Materials <strong>Research</strong> Bulletin, In Press, Corrected Proof, Available online 6 September<br />

2009.<br />

17. Rongrong Chen, Haoxia Li, Deryn Chu, Guofeng Wang, “Unraveling Oxygen Reduction<br />

Reaction Mechanisms on Carbon Supported FePhthalocyanine <strong>and</strong> Co-Phthalocyanine Catalysts<br />

in Alkaline Solutions”, J Phys Chem C, 2009, 113, 20689.<br />

18. Lihong Huang, Jian Xie, Rongrong Chen, Deryn Chu, Andrew T. Hsu, “Effect of iron on<br />

durability of nickel-based catalysts in auto-thermal re<strong>for</strong>ming of ethanol <strong>for</strong> hydrogen<br />

production”, International Journal of Hydrogen Energy, 33 7448-7456(2008).<br />

19. Guofeng Wang, Nitia Ramesh, Andrew Hsu, Deryn Chu <strong>and</strong> Rongrong Chen, “Density<br />

Functional <strong>The</strong>ory Study of the Adsorption of Oxygen Molecule on Iron Phthalocyanine <strong>and</strong><br />

Cobalt Phthalocyanine”, Molecular Simulation, 34, 1051-105(2008).<br />

20. Naiping Hu., Rongrong Chen <strong>and</strong> Andrew Hsu, “Molecular Simulation of the Glass Transition<br />

<strong>and</strong> Proton Conductivity of 2, 2’-benzidinedisulfonic acid (BDSA) <strong>and</strong> 4, 4’diaminodiphenylether-2,<br />

2’-disulfonic acid (ODADS) Based Copolyimides as Polyelectrolytes<br />

<strong>for</strong> Fuel Cell Applications,” Polymer International, 55, 872-882 (2006).<br />

d. Patents:<br />

1. Rongrong Chen, Lihong Huang, Jian Xie, <strong>and</strong> Andrew Hsu, “New Catalyst <strong>for</strong> Ethanol<br />

Autothermal Re<strong>for</strong>ming”, 11/21/08.<br />

2. Guigui Wang, Dong Xie, Andrew Hsu <strong>and</strong> Rongrong Chen, “Functionalization <strong>and</strong> Membrane<br />

Preparation of Polyimides <strong>and</strong>/, or Polyethers <strong>for</strong> Alkaline Anion Exchange”, 1/15/08.<br />

3. Guigui Wang, Dong Xie, Andrew Hsu <strong>and</strong> Rongrong Chen, “Improvement of Proton Exchange<br />

Membranes by Addition of Sulfonated Super Porous Polystyrene Particles”, Jan. 15 th , 2008.<br />

4. Rongrong Chen <strong>and</strong> Junsong Guo, “New Catalysts <strong>for</strong> Oxygen Reduction”, July, 2010.<br />

5. Rongrong Chen <strong>and</strong> John L. Ayres, US patent 6,803,151, “Improved Positive Electrode,”<br />

October, 2004.<br />

6. Rongrong Chen, Shay Harrison <strong>and</strong> W. Kwok, US patent 6,755,874, “Plate Making Process <strong>for</strong><br />

Lead Acid Battery,” June, 2004.<br />

7. Rongrong Chen <strong>and</strong> W. Kwok, US patent 6,617,071, “Active Material <strong>for</strong> High Power <strong>and</strong> High<br />

Energy Lead Acid Batteries <strong>and</strong> Method of Manufacturing,” September, 2003.<br />

2

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!