19.11.2012 Views

roposal - The Center for Research and Learning - IUPUI

roposal - The Center for Research and Learning - IUPUI

roposal - The Center for Research and Learning - IUPUI

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Date of submission: s 03/08/2011 0<br />

Proposed d project title e: Design Li ithium-Air Battery B<br />

Principal l mentor’s na ame: Young gsik Kim<br />

Principal l mentor’s tit tle: Assistan nt Professor r<br />

Department<br />

<strong>and</strong> Scho ool: Mechan nical Engine eering, Purddue<br />

School of Engineerring<br />

<strong>and</strong><br />

Technolo ogy<br />

Phone nu umber: 317-2 274-9711<br />

E-mail: yk35@iupui<br />

y i.edu<br />

Principal l mentor’s na ame: Rongrong<br />

Chen<br />

Principal l mentor’s tit tle: Associat te Professor r<br />

Department<br />

<strong>and</strong> Scho ool: Mechan nical Technology,<br />

Purddue<br />

School oof<br />

Engineering<br />

<strong>and</strong><br />

Technolo ogy<br />

Phone nu umber: 317-2 274-4280<br />

E-mail: rochen@iup<br />

r pui.edu<br />

<strong>The</strong> proje ect will be carried<br />

out an nd completed d (check onlyy<br />

one):<br />

Academic<br />

year<br />

Summerr<br />

(Note e: <strong>The</strong> academ mic year ends May 2) (Summer runns<br />

June 1 – Juuly<br />

31)<br />

This is i a block gr rant project but b not carrie ed out in a cclass.<br />

(Note e: Block grant t projects invo olve more tha an six studentts.<br />

<strong>The</strong> requireement<br />

<strong>for</strong> incclusion<br />

of mulltiple<br />

discip plines is not as<br />

stringent <strong>for</strong><br />

this type of p<strong>roposal</strong> but, , neverthelesss,<br />

preference wwill<br />

be givenn<br />

to<br />

propo osals that inclu ude multidisc ciplinary team ms.)<br />

This is i a block gr rant project <strong>for</strong> f a class, designated d ass<br />

an <strong>IUPUI</strong> SStudent<br />

Multiidisciplinary<br />

<strong>Research</strong> Team projec ct. (Note: Block<br />

grant prop posals to be caarried<br />

out witthin<br />

a class reequire<br />

the signnature<br />

of the dep partment chair r. Block grant t projects involve<br />

more thaan<br />

six studentts.<br />

<strong>The</strong> requirrement<br />

<strong>for</strong><br />

inclusion of multiple disciplines d is not n as stringen nt <strong>for</strong> this typpe<br />

of p<strong>roposal</strong>l;<br />

but neverthheless,<br />

prefereence<br />

will be giv ven to propos sals that inclu ude multidisci iplinary teamss.)<br />

Total num mber of stud dents request ted: 4<br />

(Note: Th he total numbe er of students s must exceed d by two the nnumber<br />

of meentors)<br />

Total Nu umber of fres shmen <strong>and</strong>/o or sophomore es to be recru ruited: 1<br />

(Note: Pre eference will be given to projects p that in nclude freshmmen<br />

<strong>and</strong> sophoomores)<br />

MURI Mentor’s<br />

Project Propos sal Form, Updated d: 7-5-2010<br />

Cov ver Pagge<br />

1


Disciplin nes or majors s of students s (at least two o disciplines oor<br />

majors):<br />

Mechani ical Enginee ering, Chem mistry, <strong>and</strong> Mechanical M l Engineerinng<br />

Technoloogy<br />

Skills exp pected from students:<br />

Chemica al Synthesis;<br />

Mechanical<br />

engineeri ing design a<strong>and</strong><br />

fabricattion<br />

Names of o students you y request to work on this projecct.<br />

(Mentors s are invited to recomme end students that they woould<br />

prefer tto<br />

work on thhe<br />

proposed<br />

project. Please P provid de an email address <strong>and</strong> a rationale; <strong>for</strong> examplee,<br />

a student mmay<br />

have ann<br />

essential skill, may already a be wo orking on a similar projeect,<br />

or may bbe<br />

intendingg<br />

to apply to<br />

graduate school to pu ursue the sam me area of re esearch.)<br />

<strong>The</strong> Cent ter <strong>for</strong> Resea arch <strong>and</strong> Lea arning will consider<br />

the sstudents<br />

requ quested beloww,<br />

but cannoot<br />

guarantee e placement of specific students s on teams. t<br />

Name of f Student:<br />

2)______ __________ ___<br />

3)______ __________ ___<br />

4)______ __________ ___<br />

*Please Note: N All stu udents must t have compl leted the Cennter<br />

<strong>for</strong> Ressearch<br />

<strong>and</strong> L<strong>Learning</strong><br />

MMURI<br />

Applicati ion Form du ue on Septem mber 3, 2010 0 to be conssidered<br />

<strong>for</strong> fi financial suppport<br />

duringg<br />

AY<br />

2010-201 11. Once the e award winning<br />

MURI I projects aree<br />

posted (app pprox. Septemmber<br />

16)<br />

students will then be e asked to fil ll out a shor rt additional l<strong>for</strong>m due onn<br />

Septemberr<br />

22 that rannks<br />

their proj oject choices s.<br />

MURI Mentor’s<br />

Project Propos sal Form, Updated d: 7-5-2010<br />

Student’s Email: E<br />

_________ ______<br />

_________ ______<br />

_________ ______<br />

Rationale:<br />

1)_Moon nsik Chung_ ___ chu ungmoo@im mail.iu.edu Knowledgee<br />

of organicc<br />

chemistry<br />

____________________<br />

_______<br />

____________________<br />

_______<br />

____________________<br />

_______<br />

2


<strong>The</strong> developmen nt of electric vehicles (EVs)<br />

<strong>and</strong> elecctrical<br />

energgy<br />

storage (EEES)<br />

has reqquired<br />

the highe er energy de ensity of the Li-ion rechargeable<br />

batttery<br />

technollogy.<br />

Howeever,<br />

their ennergy<br />

density is i limited be ecause the number n of Li-ions thatt<br />

correspondd<br />

to the nummber<br />

of eleectron<br />

charge ar re limited to be intercala ated in the pr resent solid ssolution<br />

matterials<br />

<strong>for</strong> annode<br />

<strong>and</strong> cathhode.<br />

<strong>The</strong> use of lithium metal m as ano ode <strong>and</strong> air as a cathode pproduces<br />

an extremely hhigh<br />

capacityy,<br />

ten<br />

times hig gher than tha at of the pres sent lithium ion battery. Although vvery<br />

high eneergy<br />

densitiees<br />

are<br />

achievable,<br />

there are challenges associated with w the desiign<br />

of a pracctical<br />

Li-Air cell. Emplooying<br />

an inorga anic solid ele ectrolyte wit th a thin <strong>and</strong> d dense mechhanical<br />

propperty<br />

is a keyy<br />

to the desiign<br />

of<br />

the Li-Ai ir cell. <strong>The</strong> purpose of this t project is i to design a rechargeabble<br />

Li-Air battery<br />

<strong>and</strong> teest<br />

its<br />

electroch hemical prop perties includ ding voltage,<br />

capacity, cyycle-life,<br />

annd<br />

rate capabbility.<br />

1) Obje<br />

T<br />

Li + ectives<br />

<strong>The</strong> first obje ective of this s research will<br />

be to design<br />

a testingg<br />

battery cell<br />

that uses a fast-<br />

-ion conducting c solid electro olyte. Li metal m <strong>and</strong> aair<br />

will be uused<br />

as anoode<br />

<strong>and</strong> cathhode,<br />

respectiv vely, <strong>for</strong> the cell. <strong>The</strong> an node part of f the cell, whhich<br />

consistss<br />

of Li metaal,<br />

should bee<br />

well<br />

designed d to protect it tself from being<br />

exposed<br />

to air <strong>and</strong> moisture diirectly.<br />

<strong>The</strong> second objeective<br />

of this re esearch will be focused on o the desig gn of the cathhode<br />

part off<br />

the cell, whhich<br />

is compposed<br />

of an aqueous a electrolyte<br />

<strong>for</strong> r providing Li-ion conductivity,<br />

carbon papper<br />

<strong>for</strong> eleectron<br />

conductiv vity, <strong>and</strong> a medium fo or the oxyg gen pathwayy.<br />

<strong>The</strong> finaal<br />

objectivee<br />

will be too<br />

test<br />

electroch hemical prop perties of the e constructed d Li-Air celll,<br />

including voltage, cappacity,<br />

cyclee-life,<br />

<strong>and</strong> rate capability. <strong>The</strong> compo onents of th he cell such as the aqueeous<br />

electrollyte<br />

<strong>and</strong> eleectron<br />

conducto ors will be modified to o improve th he cell propperties.<br />

Thhrough<br />

this multidiscipllinary<br />

research activity, stu udents will learn l the con ncepts behinnd<br />

Li-Air annd<br />

Li-ion baatteries<br />

incluuding<br />

how their r critical com mponents aff ffect their ele ectrochemicaal<br />

propertiess<br />

from both a mechanicaal<br />

<strong>and</strong><br />

a chemic cal point of view. v<br />

2) Resea arch Meth hodology<br />

<strong>The</strong> stated objec ctives of the e research will w be achievved<br />

through a number oof<br />

interactivee<br />

<strong>and</strong><br />

iterative <strong>Research</strong> Activities A (RA A), which ar re summarizzed<br />

as followws:<br />

RA-1: Design D of a la aboratory-s<br />

In th he first phase e of the proj<br />

× 1 inch, 150μm thic ck). Its chem<br />

its ionic conductivity c y is 10<br />

students will seal th<br />

separator r. <strong>The</strong> chal<br />

organic liquid l electro<br />

be caused d by even a<br />

-4 sized Li-Air cell<br />

ject, we will l purchase a Li<br />

mical compo osition is bel<br />

S/cm m. To protec ct the Li met<br />

he anode par rt consisting g of Li meta<br />

llenge will be b to find a suitable se<br />

olyte <strong>and</strong> str rong acidic or basic wat<br />

small leakag ge of air or water, w resulti<br />

+ -ion connducting<br />

ceraamic<br />

film (11<br />

inch<br />

ieved to be LLi1+x+yAlxTii2-xSiyP3-yO122,<br />

<strong>and</strong><br />

tal anode froom<br />

exposuree<br />

to air <strong>and</strong> wwater,<br />

al, an organiic<br />

liquid eleectrolyte,<br />

annd<br />

the<br />

ealing agentt<br />

that is stabble<br />

both with<br />

an<br />

ter. Seriouss<br />

damage to the Li metaal<br />

can<br />

ing in impropper<br />

data fromm<br />

our test ceells.<br />

MURI Mentor’s<br />

Project Propos sal Form, Updated d: 7-5-2010<br />

Pr <strong>roposal</strong>l<br />

3


+<br />

Rubber<br />

balloon<br />

Current collector c<br />

Figure 1. Schematic di iagram of the e cell designed d <strong>for</strong> Li metall<br />

anode <strong>and</strong> aair<br />

as cathode. .<br />

RA-2: Test T of the electrochemi<br />

ical propert ties of the ceell<br />

<strong>The</strong> electrochem mical proper rties of the test cell designed<br />

in RRA-1<br />

will bee<br />

evaluated. . <strong>The</strong><br />

voltage, discharge, d an nd charge ca apacities of the cell willl<br />

be the mainn<br />

focus of innvestigation.<br />

<strong>The</strong><br />

aqueous electrolyte, current coll lector (thick kness, surfacce<br />

area, <strong>and</strong>d<br />

type of materials),<br />

cattalyst<br />

material, <strong>and</strong> other cell c compon nents will be e investigateed<br />

to producce<br />

repeatablee<br />

electrochemmical<br />

data.<br />

RA-3: Cell<br />

optimiza ation <strong>and</strong> ev valuation<br />

<strong>The</strong> promising cell component<br />

materi ials to emerrge<br />

from RRA-2<br />

will bee<br />

subjected to a<br />

thorough h characteriz zation in term ms of their more detaileed<br />

electrochhemical<br />

perf<strong>for</strong>mance<br />

unnder<br />

a<br />

range of conditions. Electrochem mical charac cterization (inn<br />

terms of eenergy<br />

<strong>and</strong> ppower<br />

densityy<br />

<strong>and</strong><br />

long-term m cyclability y/stability) will w be made e using the mmore<br />

interessting<br />

materiaals<br />

which emmerge<br />

from RA A-2.<br />

3) Team m Organiz zation<br />

A multidisciplin<br />

m nary team of f undergradu uate students,<br />

three fromm<br />

mechanicall<br />

engineeringg<br />

<strong>and</strong><br />

one from m chemistry will w be assem mbled to con nduct the prooject<br />

under the supervission<br />

of the MMURI<br />

mentors. Two mento ors, Dr. Yo oungsik Kim m <strong>and</strong> Dr. RRongrong<br />

CChen<br />

will wwork<br />

closely with<br />

students to guide them m in their ex xpertise area as.<br />

MURI Mentor’s<br />

Project Propos sal Form, Updated d: 7-5-2010<br />

Air A<br />

Li L<br />

-<br />

Aqueeous<br />

electrolytee<br />

Silicon rubbber<br />

Laminate fillm<br />

Solid electroolyte<br />

Polymer sepparator<br />

Organic elecctrolyte<br />

Polyethylenne<br />

O ring<br />

Teflon<br />

Stainless Steeel<br />

4


a) Th he principal mentor, Dr r. Youngsik Kim, will ttake<br />

the leaad<br />

in supervvising<br />

studennts<br />

to<br />

per<strong>for</strong>m<br />

all st teps of the re esearch activ vities (RA) pproposed<br />

aboove.<br />

b) Th he co-mentor(s)<br />

will be available to o students too<br />

provide stuudents<br />

assistance<br />

as follows.<br />

Dr. D Rongrong g Chen will supervise s the e specifics oof<br />

RA2 <strong>and</strong> RRA3.<br />

c) Gr raduate stude ents (if appli icable) will train t studentts<br />

to __________N/A.<br />

d) Po ostdoctoral re esearchers (i if applicable e) will providde<br />

leadershipp<br />

to ___________N/A.<br />

e) Co onsultants (if f applicable) ) will provid de _________ __________NN/A.<br />

f) Th hree students s in mechani ical engineer ring will takke<br />

the leadersship<br />

in role iin<br />

RA-1 <strong>and</strong>d<br />

RA-<br />

3.<br />

g) On ne student in n Chemistry will take the e leadership in role in RAA-2.<br />

h) Stu udents majo oring in all fields f will co ollaborate inn<br />

discussing the experimmental<br />

resultts<br />

<strong>and</strong><br />

th he data analy ysis<br />

i) Stu udents majo oring in each<br />

separate field will prepare mmaterials<br />

<strong>for</strong> presentatioon<br />

by<br />

em mphasizing the specifics s of the respe ective majorr<br />

field.<br />

4) Exp pected Out tcomes<br />

<strong>The</strong> outcome o of this project will be the design of a rechargeabble<br />

battery ssystem<br />

to tesst<br />

the<br />

effectiven ness of air as a a cathode e <strong>and</strong> lithium m metal as an anode. IIt<br />

is anticipaated<br />

that thee<br />

cell<br />

develope ed in this pro oject will pro oduce a volta age of ~ 2.5 V <strong>and</strong> a largge<br />

capacity oof<br />

~ 5000 mAAh/g,<br />

which is more than te en times larg ger than the capacity of tthe<br />

present llithium<br />

ion bbattery.<br />

<strong>The</strong>e<br />

high<br />

energy density d Li-Ai ir battery co ould be used d in the electtrical<br />

energyy<br />

storage <strong>for</strong>r<br />

next-generration<br />

electroch hemical devi ices. Howev ver, the com mmercializatiion<br />

of Li-Airr<br />

battery tecchnology<br />

reqquires<br />

further re esearch <strong>and</strong> developmen d nt in solid ele ectrolytes annd<br />

their cost <strong>and</strong> mechannical<br />

propertiies.<br />

5) Ben nefits<br />

We anticipate a tha at the results s of the prop posed researcch<br />

project wwill<br />

be used bby<br />

undergraduate<br />

students to learn th he chemistr ry, electroch hemistry, annd<br />

engineerring<br />

design of recharggeable<br />

batteries by collabor rating with an a interdisci iplinary reseearch<br />

group. . Further, tthey<br />

will become<br />

scientific cally productive<br />

by und dertaking the ese research activities. Thus, at leaast<br />

one scieentific<br />

paper wi ill be co-aut thored by th he students, <strong>and</strong> they wiill<br />

gain expeerience<br />

of RR&D<br />

in the “real<br />

world”. This will no ot only bene efit them in their future career but also motivatte<br />

them to aattend<br />

graduate school. <strong>The</strong> T success of this research<br />

projecct<br />

will provvide<br />

a new direction foor<br />

the<br />

ongoing Li-ion batter ry research at a the Lugar <strong>Center</strong> <strong>for</strong> RRenewable<br />

EEnergy<br />

in ouur<br />

university. .<br />

MURI Mentor’s<br />

Project Propos sal Form, Updated d: 7-5-2010<br />

5


6) Tim me Table<br />

<strong>Research</strong><br />

Activit ty Q1<br />

Purch hase items an nd<br />

do lit terature work ks<br />

Desig gn the anode e<br />

part of o the cell<br />

Desig gn the cathod de<br />

part of o the cell<br />

Test of o the cell<br />

voltage<br />

<strong>and</strong><br />

capac city<br />

Cell optimization<br />

o n<br />

<strong>and</strong> evaluation e<br />

7) Item mized Budg<br />

get (<strong>The</strong> max ximum budge et allowance iis<br />

$2,000 <strong>for</strong> eequipment<br />

annd/or<br />

suppliess<br />

neede ed <strong>for</strong> the rese earch team. Please P justify each e item in tthe<br />

budget. NNote<br />

that geneerally<br />

speakinng,<br />

expen nditures <strong>for</strong> co omputers <strong>and</strong> d/or travel are e not approveed<br />

by the revieew<br />

committeee<br />

at this time ddue<br />

to fina ancial constra aints.)<br />

Items s<br />

Solid electrolytes, 4 pieces (1 in nch × 1 inch)<br />

Teflon n<br />

Stainl less steel bar<br />

Carbo on paper<br />

Chem micals <strong>for</strong> elec ctrolytes<br />

Li me etal<br />

Epoxy y<br />

Air fa an<br />

Acryl lic plate<br />

Mech hanic shop ser rvice<br />

Total<br />

$2,000 of f the proposed d budget will be b covered fr rom MURI buudget.<br />

<strong>The</strong> resst<br />

will be covvered<br />

from owwn<br />

funds.<br />

MURI Mentor’s<br />

Project Propos sal Form, Updated d: 7-5-2010<br />

Q2<br />

Jun<br />

Q3 Q Q44<br />

Q5<br />

Projeected<br />

Expensse<br />

($)<br />

$ 10000<br />

($250 per eeach)<br />

$ 1500<br />

$ 50<br />

$ 30<br />

$ 2000<br />

$ 2000<br />

$ 1000<br />

$ 50<br />

$ 30<br />

$ 2000<br />

$ 2,010<br />

Jully<br />

Q6<br />

Q7<br />

Q8<br />

6


8) Bibl liography<br />

[1] John n B. Goode<br />

Chem mistry of Ma<br />

[2] You ungsik Kim,<br />

“Acc cess to M<br />

Li-io<br />

[3] You<br />

suita<br />

Solid<br />

[4] You<br />

Na,<br />

[5] You<br />

Stru<br />

Chem<br />

[6] You<br />

prep<br />

(200<br />

[7] You<br />

incr<br />

163<br />

3+ enough <strong>and</strong><br />

aterials, 22 (<br />

Kyu-sung P<br />

/M /<br />

on Batteries,<br />

ungsik Kim<br />

able electrol<br />

d-State Lette<br />

ungsik Kim<br />

Ag),” Electr<br />

ungsik Kim,<br />

ucture of a<br />

mistry of Ma<br />

ungsik Kim<br />

pared by me<br />

06) 2881-288<br />

ungsik Kim<br />

rease in Li2S<br />

18-16325.<br />

2+ Youngsik Kim, K “Challlenges<br />

<strong>for</strong> Li Recharggeable<br />

Batteries,”<br />

(2010) 587 - 603.<br />

Park, Sang-h hoon Song, Jiantao Hann,<br />

<strong>and</strong> John B. Goodenoough,<br />

redox couple c in lay yered LiMS22<br />

sulfides (MM<br />

= Ti, V, CCr)<br />

as Anodees<br />

<strong>for</strong><br />

,” Journal of f the Electro ochemical Soociety,<br />

156 (22009)<br />

A703-A708.<br />

<strong>and</strong> John B.<br />

Goodenou ugh, “Reinveestigation<br />

off<br />

Li1-xVyTi1-yS2<br />

electroddes<br />

in<br />

lytes: Highl ly improved d electrochemmical<br />

propeerties,”<br />

Elecctrochemicall<br />

<strong>and</strong><br />

ers, 12 (2009 9) A73-A75<br />

<strong>and</strong> John B. . Goodenoug gh, “Lithiumm<br />

Intercalatiion<br />

into ATi2(PS4)3<br />

(A = Li,<br />

rochemistry Communica ation, 10 (20008)<br />

497-501.<br />

, Nachiappa an Arumuga am, <strong>and</strong> Joohn<br />

B. Gooodenough,<br />

“3D Frameework<br />

New Lithiu um Thiopho osphate, LiTTi2(PS4)3<br />

ass<br />

Lithium IInsertion<br />

Hoosts,”<br />

aterials 20 (2 2008) 470-4 474.<br />

<strong>and</strong> Steve W. W Martin, “Ionic “ conduuctivities<br />

off<br />

various GeeS2-based<br />

gllasses<br />

elt-quenchin ng <strong>and</strong> mech hanical millling<br />

methodds,”<br />

Solid SState<br />

Ionics, , 177<br />

87.<br />

m, Jason Sai ienga, <strong>and</strong> Steve W. MMartin,<br />

“Annomalous<br />

Ioonic<br />

conducctivity<br />

S + GeS2 + GeO2 G glasses s,” Journal oof<br />

Physical Chemistry BB,<br />

110(33) (22006)<br />

9) Shor rt Resume<br />

Attached d below<br />

10) App pendix<br />

es (maximum two-page res sumes of the PPM<br />

<strong>and</strong> all thhe<br />

Co-Ms)<br />

Two MU URI projects have been su upervised by y Dr. Rongroong<br />

Chen.<br />

1. Project<br />

entitled d "Novel cat talyst <strong>for</strong> dir rect ethanol ffuel<br />

cells" wwas<br />

conducte<br />

Reed R (Chem/ ME/Phys) an nd Diego Qu uevedo (MEE)<br />

in the fall of 2006 to th<br />

<strong>The</strong> T students prepared cat talysts <strong>and</strong> electrodes e <strong>for</strong><br />

studying ooxygen<br />

reduc<br />

fo or direct met thanol fuel cells. c <strong>The</strong> re esults were ppresented<br />

in tthe<br />

215<br />

Hawaii H by Michael<br />

Reed. .<br />

th ed by Michaeel<br />

he spring 20007.<br />

ction reactionns<br />

ECCS<br />

meeting aat<br />

MURI Mentor’s<br />

Project Propos sal Form, Updated d: 7-5-2010<br />

7


2. Project<br />

entitled d “Developm ment of nove el catalytic laayers<br />

<strong>for</strong> dirrect<br />

ethanol ffuel<br />

cells” wwas<br />

co onducted by Alan Bened dict (ME), Michael M Reedd<br />

(ME/Physiics)<br />

during thhe<br />

spring 20006.<br />

<strong>The</strong> T students established reliable r char racterizationn<br />

methods to characterizee<br />

electrocataalytic<br />

ac ctivities of catalysts c <strong>for</strong> oxygen redu uction reactioons<br />

<strong>and</strong> ethaanol<br />

oxidatioon<br />

reactions. <strong>The</strong><br />

work w paved a ground <strong>for</strong> future fundi ing <strong>and</strong> publlication.<br />

MURI Mentor’s<br />

Project Propos sal Form, Updated d: 7-5-2010<br />

8


Signatures<br />

Name <strong>and</strong> Signatu ure of the Principal<br />

Me entor:<br />

(writing g the full name<br />

suffices as signature s <strong>for</strong> electronic coopies)<br />

Youngs sik Kim____ _______ __ ___________ ___________________________08/277/2010<br />

Name<br />

Signatu ure<br />

Date<br />

MURI Mentor’s<br />

Project Propos sal Form, Updated d: 7-5-2010<br />

9


Education<br />

Youngsik Kim<br />

• 2006, Ph.D., Materials Science <strong>and</strong> Engineering, Iowa State University, Ames, Iowa.<br />

• 2003, M.S., Materials Science <strong>and</strong> Engineering, Iowa State University, Ames, Iowa.<br />

• 2000, B.S., Materials Engineering, Sungkyunkwan University, Suwon, South Korea.<br />

Positions Held at <strong>IUPUI</strong><br />

• 2010-Present, Assistant Professor of Mechanical Engineering.<br />

Other Related Experience<br />

• 2006-2010, Postdoctoral Fellow, Texas Materials Institute, <strong>The</strong> University of Texas at Austin.<br />

<strong>Research</strong> Interests<br />

Identifying <strong>and</strong> developing advanced functional materials<br />

Underst<strong>and</strong>ing the chemistry-structure- physical property relationships in materials<br />

Li <strong>and</strong> Na rechargeable batteries <strong>for</strong> high power <strong>and</strong> energy storage applications<br />

Asymmetric hybrid supercapacitor <strong>for</strong> high power supply applications<br />

Fast-ion conducting solid membranes<br />

Honors <strong>and</strong> Awards<br />

Norbert J. Kreidl Award, May 2007<br />

<strong>Research</strong> Excellence Award, August 2006<br />

Selected Publications<br />

[1] John B. Goodenough <strong>and</strong> Youngsik Kim, “Challenges <strong>for</strong> Li Rechargeable Batteries,”<br />

Invited Review Paper <strong>for</strong> Chemistry of Materials, 22 (2010) 587 - 603.<br />

[2] John B. Goodenough <strong>and</strong> Youngsik Kim, “Locating Redox Couples in the Layered<br />

Sulfides with Application to Cu[Cr2]S4,” Journal of the Solid-State Chemistry, 182<br />

(2009) 2904-2911.<br />

[3] Youngsik Kim, Kyu-sung Park, Sang-hoon Song, Jiantao Han, <strong>and</strong> John B.<br />

Goodenough, “Access to M 3+ /M 2+ redox couple in layered LiMS2 sulfides (M = Ti, V,<br />

Cr) as Anodes <strong>for</strong> Li-ion Batteries,” Journal of the Electrochemical Society, 156 (2009)<br />

A703-A708<br />

[4] Youngsik Kim <strong>and</strong> John B. Goodenough, “Reinvestigation of Li1-xVyTi1-yS2 electrodes<br />

in suitable electrolytes: Highly improved electrochemical properties,” Electrochemical<br />

<strong>and</strong> Solid-State Letters, 12 (2009) A73-A75<br />

[5] Jian-Tao Han, Dong-Qiang Liu, Sang-Hoon Song, Youngsik Kim <strong>and</strong> John B.<br />

Goodenough, “Lithium Ion Intercalation Per<strong>for</strong>mance of Niobium Oxides: KNb5O13<br />

<strong>and</strong> K6Nb10.8O30,” Chemistry of Materials, 21 (2009) 4753-4755.<br />

[6] Youngsik Kim <strong>and</strong> John B. Goodenough, “Lithium Insertion into Transition Metal<br />

Monosulfides: Tuning the Position of the Metal 4s B<strong>and</strong>,” Journal of Physical<br />

Chemistry C, 112 (2008) 15060-15064.


[7] Youngsik Kim <strong>and</strong> John B. Goodenough, “Lithium Intercalation into ATi2(PS4)3 (A =<br />

Li, Na, Ag),” Electrochemistry Communication, 10 (2008) 497-501.<br />

[8] Youngsik Kim, Nachiappan Arumugam, <strong>and</strong> John B. Goodenough, “3D Framework<br />

Structure of a New Lithium Thiophosphate, LiTi2(PS4)3 as Lithium Insertion Hosts,”<br />

Chemistry of Materials 20 (2008) 470-474.<br />

[9] Youngsik Kim, Haesuk Hwang, Katherine Lawler, Steve W. Martin, <strong>and</strong> Jaephil Cho,<br />

“Electrochemical Behavior of Ge <strong>and</strong> GeX2 (X = O, S) Glasses: Improved Reversibility<br />

of the Reaction of Li with Ge in Sulfide Medium,” Electrochimica Acta, 53 (2008)<br />

5058.<br />

[10] Youngsik Kim, Haesuk Hwang, Chong S. Yoon, Min G. Kim, <strong>and</strong> Jaephil Cho,<br />

“Reversible Lithium Intercalation in Teardrop-shaped Ultrafine SnP0.94 Particle: An<br />

Anode Material <strong>for</strong> Lithium-Ion Batteries,” Advanced Materials, 19 (2007) 92-96.<br />

[11] Youngsik Kim <strong>and</strong> Steve W. Martin, “Ionic conductivities of various GeS2-based<br />

glasses prepared by melt-quenching <strong>and</strong> mechanical milling methods,” Solid State<br />

Ionics, 177 (2006) 2881-2887.<br />

[12] Youngsik Kim, Hyun Soo Kim, <strong>and</strong> Steve W. Martin, “Synthesis <strong>and</strong> electrochemical<br />

characteristics of Al2O3-coated LiNi1/3Co1/3Mn1/3O2 cathode material <strong>for</strong> lithium ion<br />

batteries,” Electrochimica Acta 52 (2006) 1316-1322.<br />

[13] Youngsik Kim, Jason Saienga, <strong>and</strong> Steve W. Martin, “Anomalous Ionic conductivity<br />

increase in Li2S + GeS2 + GeO2 glasses,” Journal of Physical Chemistry B, 110(33)<br />

(2006) 16318-16325.<br />

[14] Hyun Soo Kim, Youngsik Kim, Seong-Il Kim, <strong>and</strong> Steve W. Martin, “Enhanced<br />

electrochemical properties of the LiNi1/3Co1/3Mn1/3O2 cathode material by coating with<br />

LiAlO2 nanoparticles,” Journal of Power Sources, 161(1) (2006) 623-627.<br />

[15] Youngsik Kim, Jason Saienga, <strong>and</strong> Steve W. Martin, “Glass <strong>for</strong>mation in <strong>and</strong> structural<br />

investigation of Li2S + GeS2 + GeO2 composition using Raman <strong>and</strong> IR spectroscopy,”<br />

Journal of Non-Crystalline Solids, 351 (2005) 3716-3724.<br />

Invited Lectures<br />

[1] “Correlation between local structure <strong>and</strong> anomalous ionic conductivity increase in Li2S +<br />

GeS2 + GeO2 glasses”, invited lecture as a Norbert Kreidl award winner, American<br />

Ceramic Society Annual Meeting, Rochester, NY, 2007<br />

[2] “Challenge <strong>and</strong> further development of Li rechargeable batteries” Department of<br />

Materials Science <strong>and</strong> Engineering, Iowa State University, 2010


Rongrong Chen<br />

a. Education<br />

Major Degree & Year<br />

Xiamen University, Xiamen, China Physical Chemistry B.S., 1983<br />

Case Western Reserve University<br />

Clevel<strong>and</strong>, Ohio, USA<br />

Electrochemistry Ph.D., 1993<br />

b. Appointments<br />

8/2008- present,<br />

Associate Professor, Indiana University Purdue University Indianapolis, USA<br />

10/2005-7/2008,<br />

Associate <strong>Research</strong> Professor, Indiana University Purdue University Indianapolis, USA<br />

3/1995-9/2005,<br />

Group Leader at Delphi’s Indiana Technical <strong>Center</strong>, Indianapolis, Indiana<br />

5/1993-2/1995,<br />

Post-doctoral Fellow, E. Yeager Electrochemical <strong>Center</strong>, Case Western Reserve University,<br />

Clevel<strong>and</strong>, Ohio<br />

1/1987-4/1993,<br />

Graduate Teaching/<strong>Research</strong> Assistant, E. Yeager Electrochemical <strong>Center</strong>, Case Western Reserve<br />

University, Clevel<strong>and</strong>, Ohio<br />

c. Publications<br />

1. Hui He, Lu Zhang, Andrew Hsu <strong>and</strong> Rongrong Chen, “<strong>The</strong> influence of LiCoO2 with spinel<br />

symmetry on lithium-ion battery per<strong>for</strong>mance <strong>and</strong> electrochemical properties”, to be submitted to<br />

JECS, Aug. 2010.<br />

2. Qingmin Xu, Ruihua Cheng, Deryn Chu <strong>and</strong> Rongrong Chen, “In Situ STM investigation on<br />

stability of Pt-nanoparticles in acid <strong>and</strong> alkaline solutions”, to be submitted to JACS, Aug. 2010.<br />

3. Wei Sun, Andrew Hsu <strong>and</strong> Rongrong Chen, “Carbon supported tetragonal manganese oxide<br />

catalysts <strong>for</strong> oxygen reduction in alkaline media”, in press, Journal of Power Sources, 2010.<br />

4. Luhua Jiang, Andrew Hsu, Deryn Chu, Rongrong Chen, “A highly active Pd coated Ag<br />

electrocatalyst <strong>for</strong> oxygen reduction reactions in alkaline media”, Electrochimica Acta, 55 (2010)<br />

4506-4511.<br />

5. Luhua Jiang, Andrew Hsu, Deryn Chu, Rongrong Chen, “Ethanol electro-oxidation on Pt/C <strong>and</strong><br />

PtSn/C catalysts in alkaline <strong>and</strong> acid solutions”, International Journal of Hydrogen Energy, 35<br />

(2010) 365-372.<br />

6. Junsong Guo, Andrew Hsu, Deryn Chu, Rongrong Chen, “Factors Affecting Ag/C Catalyst<br />

Activity <strong>for</strong> Oxygen Reduction Reaction in Alkaline Solutions”, J. Phys Chem C, 2010, 114,<br />

4324-4330.<br />

7. Guigui Wang, Yiming Weng, Jun Zhao, Deryn Chu, Dong Xie <strong>and</strong> Rongrong Chen,<br />

“Developing a novel alkaline anion exchange membrane derived from poly(ether-imide) <strong>for</strong><br />

improved ionic conductivity”, Polymer Advanced Technology, 21 554–560, 2010.<br />

8. Guigui Wang, Yiming Weng, Deryn Chu, Dong Xie <strong>and</strong> Rongrong Chen, “Preparation of<br />

alkaline anion exchange membranes based on functional poly(ether-imide) polymers <strong>for</strong> potential<br />

fuel cell applications”, Journal of Membrane Science, 326,4-8, 2009.<br />

9. Guigui Wang, Yiming Weng, Jun Zhao, Rongrong Chen <strong>and</strong> Dong Xie, “Chloromethylation of a<br />

functional poly(ether-imide) membrane”, Journal of Applied Polymer Science, 112, 721-727,<br />

2009.<br />

1


10. Guigui Wang, Yiming Weng, Deryn Chu, Rongrong Chen, Dong Xie, “Developing a<br />

polysulfone-based alkaline anion exchange membrane <strong>for</strong> improved ionic conductivity”, Journal<br />

of Membrane Science, 332, 63-68, 2009.<br />

11. Luhua Jiang, Andrew Hsu, Deryn Chu <strong>and</strong> Rongrong Chen, “Oxygen reduction reaction on<br />

carbon supported Pt <strong>and</strong> Pd in alkaline solutions”, Journal of Electrochemical Society, 156 (3)<br />

B370-376 (2009).<br />

12. Luhua Jiang, Anderew Hsu, Deryn Chu <strong>and</strong> Rongrong Chen,“ Oxygen reduction on carbon<br />

supported Pt <strong>and</strong> PtRu catalysts in alkaline solutions“, Electroanalytical Chemistry, 629,87-93<br />

(2009).<br />

13. Luhua Jiang, Andrew Hsu, Deryn Chu <strong>and</strong> Rongrong Chen, “Size-dependent activity of<br />

palladium nanoparticles <strong>for</strong> oxygen electroreduction in alkaline solution”, Journal of<br />

Electrochemical Society, 156 (5) B643-B649 (2009).<br />

14. Lihong Huang, Jian Xie, Rongrong Chen, Deryn Chu, Andrew T. Hsu, “Iron-promoted nickelbased<br />

catalysts <strong>for</strong> hydrogen generation via auto-thermal re<strong>for</strong>ming of ethanol”, Catalysis<br />

Communications, 10 (5)502-508 (2009).<br />

15. Lihong Huang, Jian Xie, Rongrong Chen, Deryn Chu, Andrew T. Hsu, “Fe promoted Ni-<br />

Ce/Al2O3 in auto-thermal re<strong>for</strong>ming of ethanol <strong>for</strong> hydrogen production”, Catalysis Lett., 130,<br />

432-439(2009).<br />

16. Lihong Huang, Jian Xie, Rongrong Chen, Deryn Chu, Andrew T. Hsu, “Nanorod aluminasupported<br />

Ni¨CZr¨CFe/Al2O3 catalysts <strong>for</strong> hydrogen production in auto-thermal re<strong>for</strong>ming of<br />

ethanol”, Materials <strong>Research</strong> Bulletin, In Press, Corrected Proof, Available online 6 September<br />

2009.<br />

17. Rongrong Chen, Haoxia Li, Deryn Chu, Guofeng Wang, “Unraveling Oxygen Reduction<br />

Reaction Mechanisms on Carbon Supported FePhthalocyanine <strong>and</strong> Co-Phthalocyanine Catalysts<br />

in Alkaline Solutions”, J Phys Chem C, 2009, 113, 20689.<br />

18. Lihong Huang, Jian Xie, Rongrong Chen, Deryn Chu, Andrew T. Hsu, “Effect of iron on<br />

durability of nickel-based catalysts in auto-thermal re<strong>for</strong>ming of ethanol <strong>for</strong> hydrogen<br />

production”, International Journal of Hydrogen Energy, 33 7448-7456(2008).<br />

19. Guofeng Wang, Nitia Ramesh, Andrew Hsu, Deryn Chu <strong>and</strong> Rongrong Chen, “Density<br />

Functional <strong>The</strong>ory Study of the Adsorption of Oxygen Molecule on Iron Phthalocyanine <strong>and</strong><br />

Cobalt Phthalocyanine”, Molecular Simulation, 34, 1051-105(2008).<br />

20. Naiping Hu., Rongrong Chen <strong>and</strong> Andrew Hsu, “Molecular Simulation of the Glass Transition<br />

<strong>and</strong> Proton Conductivity of 2, 2’-benzidinedisulfonic acid (BDSA) <strong>and</strong> 4, 4’diaminodiphenylether-2,<br />

2’-disulfonic acid (ODADS) Based Copolyimides as Polyelectrolytes<br />

<strong>for</strong> Fuel Cell Applications,” Polymer International, 55, 872-882 (2006).<br />

d. Patents:<br />

1. Rongrong Chen, Lihong Huang, Jian Xie, <strong>and</strong> Andrew Hsu, “New Catalyst <strong>for</strong> Ethanol<br />

Autothermal Re<strong>for</strong>ming”, 11/21/08.<br />

2. Guigui Wang, Dong Xie, Andrew Hsu <strong>and</strong> Rongrong Chen, “Functionalization <strong>and</strong> Membrane<br />

Preparation of Polyimides <strong>and</strong>/, or Polyethers <strong>for</strong> Alkaline Anion Exchange”, 1/15/08.<br />

3. Guigui Wang, Dong Xie, Andrew Hsu <strong>and</strong> Rongrong Chen, “Improvement of Proton Exchange<br />

Membranes by Addition of Sulfonated Super Porous Polystyrene Particles”, Jan. 15 th , 2008.<br />

4. Rongrong Chen <strong>and</strong> Junsong Guo, “New Catalysts <strong>for</strong> Oxygen Reduction”, July, 2010.<br />

5. Rongrong Chen <strong>and</strong> John L. Ayres, US patent 6,803,151, “Improved Positive Electrode,”<br />

October, 2004.<br />

6. Rongrong Chen, Shay Harrison <strong>and</strong> W. Kwok, US patent 6,755,874, “Plate Making Process <strong>for</strong><br />

Lead Acid Battery,” June, 2004.<br />

7. Rongrong Chen <strong>and</strong> W. Kwok, US patent 6,617,071, “Active Material <strong>for</strong> High Power <strong>and</strong> High<br />

Energy Lead Acid Batteries <strong>and</strong> Method of Manufacturing,” September, 2003.<br />

2

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!