10.07.2015 Views

7. one-time quantum pad and Quantum Vernam cipher (Slides)

7. one-time quantum pad and Quantum Vernam cipher (Slides)

7. one-time quantum pad and Quantum Vernam cipher (Slides)

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

© Claude Crépeau 2002-2009 2|Will you marry me ?〉|Divorce your wife first !〉|The papers are in the mail...〉|OK, I will !〉


© Claude Crépeau 2002-2009 3(3.1.2Q) One-<strong>time</strong> Q-<strong>pad</strong>8RdewtU5qkLa$es!T9@»I(D%eXhDqIiykl#2cV7dEwnMs»H&fs@tyHvFGhaOKpTrGbl.Z/rUih*B7B3tdsjUila


© Claude Crépeau 2002-2009 4symmetric encryptionof <strong>Quantum</strong> messagesencryption|P〉|K〉CdecryptionInformation Theoretical Security


© Claude Crépeau 2002-2009 5(3.1.2C) <strong>Vernam</strong> Q-<strong>cipher</strong>|8ΡδεωτΥ5θκΛα∃εσ!Τ9≅〉»|Ι(∆%εΞη∆θΙιψκλ#2χς7δΕωνΜσ〉»|Η&φσ≅τψϖΦηαΟΚπΤρΓβλ.Ζ/ρΥιη∗〉|Β7Β3τδσϕΥιλα〉


© Claude Crépeau 2002-2009 6symmetric encryptionof <strong>Quantum</strong> messagesencryption|P〉K|C〉decryptionInformation Theoretical Security


© Claude Crépeau 2002-2009 11|ψ〉Hx|0〉Hy|0〉|ψ〉|0〉|0〉H|ψ〉(|0〉+|1〉)|0〉|ψ〉(|0〉|0〉+|1〉|1〉)(α|0〉+β|1〉)(|00〉+|11〉)α|0〉|00〉+α|0〉|11〉+β|1〉|00〉+β|1〉|11〉α|0〉|00〉+α|0〉|11〉+β|1〉|10〉+β|1〉|01〉Hα(|0〉+|1〉)|00〉+α(|0〉+|1〉)|11〉+β(|0〉−|1〉)|10〉+β(|0〉−|1〉)|01〉|00〉(α|0〉+β|1〉)+|01〉(α|1〉+β|0〉)+|10〉(α|0〉−β|1〉)+|11〉(α|1〉−β|0〉)|xy〉(α|y〉+(−1) x β|¬y〉)


© Claude Crépeau 2002-2009 12H(3.1.2Q)One-<strong>time</strong> Q-<strong>pad</strong>H»a b⎛σ = 0 1 ⎞ ⎛x ⎜ ⎟,σ = 1 0 ⎞⎝1 0⎠z ⎜ ⎟⎝0 −1⎠HH1⁄4 : |Ψ〉1⁄4 : σ x|Ψ〉1⁄4 : σ z|Ψ〉1⁄4 : σ xσ z|Ψ〉ab


© Claude Crépeau 2002-2009 13(3.1.2Q) One-<strong>time</strong> Q-<strong>pad</strong>»<strong>Quantum</strong> key : <strong>one</strong>-<strong>time</strong> Q-<strong>pad</strong>Classical Ciphertexta btwo r<strong>and</strong>om bits|Ψ〉»»


© Claude Crépeau 2002-2009 14(3.1.2) One-<strong>time</strong> <strong>pad</strong>»Classical key : <strong>Vernam</strong> Q-<strong>cipher</strong> (various sources)<strong>Quantum</strong> Ciphertext»<strong>Quantum</strong> key : <strong>one</strong>-<strong>time</strong> Q-<strong>pad</strong> (BBCJPW)Classical Ciphertext


© Claude Crépeau 2002-2009 15symmetric encryptionof <strong>Quantum</strong> messagesencryption|P〉K|C〉decryptionInformation Theoretical Security


© Claude Crépeau 2002-2009 16(3.1.2C) <strong>Vernam</strong> Q-<strong>cipher</strong>»Classical key : <strong>Vernam</strong> Q-<strong>cipher</strong><strong>Quantum</strong> Ciphertext<strong>Quantum</strong> key : <strong>one</strong>-<strong>time</strong> Q-<strong>pad</strong>Classical Ciphertext|Ψ'〉|Ψ〉»a,b r<strong>and</strong>om bit keyρ1⁄4 : |Ψ〉1⁄4 : σ x|Ψ〉1⁄4 : σ z|Ψ〉1⁄4 : σ xσ z|Ψ〉»a,b r<strong>and</strong>om bit key|Ψ'〉=(σx) a (σz) b |Ψ〉|Ψ〉=(σz) b (σx) a |Ψ'〉⎛σ = 0 1 ⎞ ⎛x ⎜ ⎟,σ = 1 0 ⎞⎝1 0⎠z ⎜ ⎟⎝0 −1⎠


© Claude Crépeau 2002-2009 17{1/4: (α|0〉+β|1〉)ρ= 1/4: (α|1〉+β|0〉)1/4: (α|0〉−β|1〉)1/4: (α|1〉−β|0〉)4ρ=(α|0〉+β|1〉)(α ∗ 〈0|+β ∗ 〈1|)+(α|1〉+β|0〉)(α ∗ 〈1|+β ∗ 〈0|)+(α|0〉−β|1〉)(α ∗ 〈0|−β ∗ 〈1|)+(α|1〉−β|0〉)(α ∗ 〈1|−β ∗ 〈0|)=(2|α| 2 +2|β| 2 )|0〉〈0|+(αβ ∗ +βα ∗ −αβ ∗ −βα ∗ )|0〉〈1|+(βα ∗ +αβ ∗ −βα ∗ −αβ ∗ )|1〉〈0|+(2|β| 2 +2|α| 2 )|1〉〈1|=2|0〉〈0|+2|1〉〈1|ρ=( 1 0 /2 1 0 /2 )=Ι/2


© Claude Crépeau 2002-2009 18Theorems[AMTW00] showeda QES (with error probability 0)—> 2n bits to encrypt n qubits


© Claude Crépeau 2002-2009 19One-<strong>time</strong> Q-encryptionwith error εCompleteness:|ψ〉k∈KED|ψ〉Secrecy:|ψ〉k∈ K REρD|ψ〉∀|ψ 0〉,|ψ 1〉D(ρ 0,ρ 1)=Tr(|ρ 0−ρ 1|)


© Claude Crépeau 2002-2009 20Theorems[AMTW00] showeda QES (with error probability 0)—> 2n bits to encrypt n qubitsa QES with error probability ε>0—> (2-poly(ε))n bitsto encrypt n qubits.


© Claude Crépeau 2002-2009 21Theoremsa CES (with error probability 0)—> n bits to encrypt n bitsa CES with error probability ε>0—> (1−poly(ε))n bitsto encrypt n bits.


© Claude Crépeau 2002-2009 22Theorems[AMTW00] showeda QES (with error probability 0)—> 2n bits to encrypt n qubitsa QES with error probability ε>0—> (2-poly(ε))n bitsto encrypt n Eve-entangled qubits[HLSW03] showeda QES with error probability ε>0—> n+o(n) bitsto encrypt n Eve-separated qubits.


© Claude Crépeau 2002-2009 23Small Pseudo-R<strong>and</strong>om Families of Matrices:Der<strong>and</strong>omizing Approximate <strong>Quantum</strong> EncryptionAndris AmbainisAdam Smith


© Claude Crépeau 2002-2009 24Small-Bias Spaces The bias of a r<strong>and</strong>om variable in with respect to a stringdot product on :is the distance from uniform of the bit , where refers to the st<strong>and</strong>ardThe functionis the Fourier transform of the probability mass function of the distribution,taken over the group .The bias of a set with respect to is simply the bias of the uniformdistribution over that set. A setis called -biased if the absolute value of its bias is atmost for all .


© Claude Crépeau 2002-2009 25Small-bias sets of size polynomial in <strong>and</strong> were first constructed by Naor <strong>and</strong>Naor [10]. Alon, Bruck et al. (ABNNR , [1]) gave explicit (i.e. deterministic, polynomial<strong>time</strong>)constructions of -biased sets in with size . Constructions withsizewere provided by Alon, Goldreich, et al. ( AGHP , [2]). The AGHP constructionis better when . In both cases, the string in a set can be constructedin roughly <strong>time</strong> (regardless of ).One can sample a r<strong>and</strong>om point from a -biased space over using eitherbits of r<strong>and</strong>omness (using ABNNR) or usingbits (using AGHP ).


© Claude Crépeau 2002-2009 263 State R<strong>and</strong>omization <strong>and</strong> Approximate Encryption3.1 Encrypting with a Small-Bias SpaceThe ideal <strong>quantum</strong> <strong>one</strong>-<strong>time</strong> <strong>pad</strong> applies a r<strong>and</strong>om Pauli matrix to the input [3]. Considerinstead a scheme which first chooses a-bit string from some set with small bias(we will set later to be ). If the set of strings is we have:That is, we choose the key from the set , which consists of -bit strings. To encrypt,we view a -bit string as the concatenation of two strings of bits, <strong>and</strong> applythe corresponding Pauli matrix.Using the constructions of AGHP [2] for small-bias spaces, we get a polynomial-<strong>time</strong>scheme that usesbits of key.


© Claude Crépeau 2002-2009 27Fact 1. If is -dimensional <strong>quantum</strong> state <strong>and</strong> Tr , then .Main Theorem.TrTr


© Claude Crépeau 2002-2009 28


© Claude Crépeau 2002-2009 29

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!