10.07.2015 Views

Alternative sources of protein in feed for fish - The United Nations ...

Alternative sources of protein in feed for fish - The United Nations ...

Alternative sources of protein in feed for fish - The United Nations ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

P.O. Box 1390, Skulagata 4120 Reykjavik, Iceland F<strong>in</strong>al Project 2003ALTERNATIVE SOURCES OF PROTEIN IN FEED FORCULTURED FISH: A CASE STUDY ON ATLANTIC COD FRY(GADUS MORHUA)Madelín de Arazoza Dacosta-CalheirosMar<strong>in</strong>e Research CentreHavana-Cubamdearazoza@yahoo.comSupervisorsDr. Jón Árnason, LAXA Feedmill Ltdjon.arnason@laxa.isandRannveig Björnsdottir, Icelandic Fisheries Laboratoriesrannveig@rf.isABSTRACTCommercial aquaculture is grow<strong>in</strong>g, thereby <strong>in</strong>creas<strong>in</strong>g the demand <strong>for</strong> aquaculture<strong>feed</strong>s. Traditionally, these <strong>feed</strong>s have been based on animal <strong>prote<strong>in</strong></strong>. However, due tocost and availability considerations, it is <strong>in</strong>evitable that more plant <strong>prote<strong>in</strong></strong>supplements will be utilised <strong>in</strong> the <strong>feed</strong>s <strong>in</strong> the future. Plant <strong>prote<strong>in</strong></strong>s are more costeffective than animal <strong>prote<strong>in</strong></strong> supplements. <strong>The</strong> <strong>in</strong>creased acceptability and utilisationby the <strong>feed</strong> <strong>in</strong>dustry will be dependent on reliable nutritional research. Plant <strong>prote<strong>in</strong></strong>supplements are be<strong>in</strong>g used to some extent <strong>in</strong> all aquaculture <strong>feed</strong>s. Soybean meal isthe most extensively evaluated and most commonly used. This project is divided <strong>in</strong>totwo parts: firstly, a review <strong>of</strong> the <strong>prote<strong>in</strong></strong> component <strong>in</strong> the <strong>feed</strong> <strong>for</strong> carnivorous andomnivorous <strong>fish</strong>, and secondly, a case study where the effects <strong>of</strong> substitut<strong>in</strong>galternative <strong>sources</strong> <strong>of</strong> <strong>prote<strong>in</strong></strong> on growth and survival <strong>of</strong> cod fry (Gadus murhua) are<strong>in</strong>vestigated. Six isocaloric and isonitrogenus diets were tested, us<strong>in</strong>g <strong>prote<strong>in</strong></strong> <strong>of</strong>different orig<strong>in</strong>. Superior <strong>fish</strong>meal (LT) was used as reference diet and replaced partlyor totally with special <strong>fish</strong>meal (NSM), standard <strong>fish</strong>meal, Corn Gluten Meal andHYPRO Soybean meal. Fish (<strong>in</strong>itial weight 28 ± 0.5 g) were distributed among 18circular 90 L fibreglass tanks, 50 cod <strong>in</strong> each tank. Each tank was randomly assigneddiets <strong>in</strong> triplicate. <strong>The</strong> weight and length <strong>of</strong> the <strong>fish</strong> were measured every four weeks.Partial replacement <strong>of</strong> SUP with SPES; STANDARD; MGM and HYPRO or a fullreplacement with Standard did not result <strong>in</strong> a significant decrease <strong>in</strong> specific growthrate (SGR) <strong>in</strong> cod fry dur<strong>in</strong>g the first four weeks <strong>of</strong> the trial but there was a tendencyto reduced growth. <strong>The</strong> present observations suggest that it is possible to substitutehigh quality <strong>fish</strong>meal with different <strong>prote<strong>in</strong></strong> <strong>in</strong> the <strong>feed</strong> <strong>for</strong> cod fry.


Dacosta-CalheirosTABLE OF CONTENTSLIST OF TABLES.........................................................................................................21 INTRODUCTION .................................................................................................32 LITERATURE REVIEW ......................................................................................52.1 General overview <strong>of</strong> <strong>prote<strong>in</strong></strong> requirements <strong>in</strong> <strong>fish</strong> .........................................52.1.1 Carnivorous <strong>fish</strong>.....................................................................................72.1.2 Omnivorous <strong>fish</strong>...................................................................................102.2 Effects <strong>of</strong> us<strong>in</strong>g alternative <strong>prote<strong>in</strong></strong> raw materials to <strong>feed</strong> carnivorous <strong>fish</strong> 142.3 Favourable effects on the growth <strong>of</strong> <strong>fish</strong> us<strong>in</strong>g alternative raw materials ...152.4 Differences <strong>in</strong> the ability <strong>of</strong> carnivorous and omnivorous <strong>fish</strong> to usealternative <strong>prote<strong>in</strong></strong> raw materials..............................................................................162.5 <strong>The</strong> necessity <strong>of</strong> substitut<strong>in</strong>g <strong>fish</strong>meal <strong>in</strong> diets ............................................173 CASE STUDY.....................................................................................................183.1 Material and methods...................................................................................183.1.1 Source <strong>of</strong> <strong>fish</strong> .......................................................................................183.1.2 Diet preparation ...................................................................................183.1.3 Husbandry............................................................................................193.1.4 Growth parameters...............................................................................193.1.5 Statistical analysis................................................................................193.2 Results..........................................................................................................203.3 Discussion....................................................................................................213.4 Conclusions..................................................................................................223.5 Recommendations........................................................................................23ACKNOWLEDGEMENTS.........................................................................................24LIST OF REFERENCES.............................................................................................25LIST OF TABLESTable 1: Estimated dietary <strong>prote<strong>in</strong></strong> requirement <strong>for</strong> maximal growth <strong>of</strong> some species<strong>of</strong> juvenile <strong>fish</strong> (as fed basis). ................................................................................6Table 2: Typical <strong>prote<strong>in</strong></strong> requirements <strong>for</strong> tilapia (Santiago et al. 1985, Chang et al.1988). ...................................................................................................................12Table 3: Prote<strong>in</strong> content and relative price <strong>of</strong> different raw materials from LaxaFeedmill Ltd.........................................................................................................18Table 4: Percentages <strong>of</strong> raw material <strong>in</strong> the trial. .......................................................18Table 5: Diet calculated chemical parameters <strong>of</strong> the experimental diet. ....................19Table 6: Survival <strong>of</strong> cod <strong>fish</strong> ma<strong>in</strong>ta<strong>in</strong>ed under different dietary regimes dur<strong>in</strong>g thefirst four weeks <strong>of</strong> the experimental trial.............................................................20Table 7: Growth parameters ( ± SE) <strong>of</strong> cod <strong>fish</strong> ma<strong>in</strong>ta<strong>in</strong>ed under different dietaryregimes dur<strong>in</strong>g the first four weeks <strong>of</strong> the experimental trial..............................20UNU - Fisheries Tra<strong>in</strong><strong>in</strong>g Programme 2


Dacosta-Calheiros1 INTRODUCTIONAquaculture is the fastest grow<strong>in</strong>g sector <strong>of</strong> the world food trade, <strong>in</strong>creas<strong>in</strong>g by morethan 10% per year and currently accounts <strong>for</strong> more than 30% <strong>of</strong> all <strong>fish</strong> consumed.While most farmed <strong>fish</strong> are omnivorous species, such as carp and tilapia, farm<strong>in</strong>g <strong>of</strong>carnivorous species, such as salmon, is a boom<strong>in</strong>g <strong>in</strong>dustry and the number <strong>of</strong> otherfarmed carnivorous species is grow<strong>in</strong>g rapidly (Lambert and Dutil 2001).International trade <strong>in</strong> <strong>fish</strong> products has <strong>in</strong>creased to a new record <strong>of</strong> US$55.2 billion.Net export trade from develop<strong>in</strong>g countries <strong>in</strong>creased from US$10 billion <strong>in</strong> 1990 toUS$18 billion <strong>in</strong> 2000, correspond<strong>in</strong>g to a real growth <strong>of</strong> 45% (corrected <strong>for</strong> <strong>in</strong>flation)(FAO 2000).Intensive farm<strong>in</strong>g <strong>of</strong> carnivorous <strong>fish</strong> may be detrimental to the environment.Detrimental effects <strong>in</strong>clude displacement <strong>of</strong> wild <strong>fish</strong> populations, harmful genetic<strong>in</strong>teractions with wild <strong>fish</strong>, transfer <strong>of</strong> parasites and disease, discharge <strong>of</strong> untreatedwaste <strong>in</strong>to coastal waters, use <strong>of</strong> chemicals and antibiotics, and the use <strong>of</strong> largeamounts <strong>of</strong> wild <strong>fish</strong> as a <strong>feed</strong> (FDA 2001, Gorbach 2001).Atlantic cod is the most important <strong>of</strong> all the mar<strong>in</strong>e re<strong>sources</strong> <strong>in</strong> Iceland. In 2002 itrepresented 37% <strong>of</strong> the catch value and 38% <strong>of</strong> the total seafood export value (<strong>The</strong>Icelandic M<strong>in</strong>istry <strong>of</strong> Fisheries 2002). In order to ma<strong>in</strong>ta<strong>in</strong> its market share, Icelandhas been <strong>for</strong>ced to <strong>in</strong>vestigate how cod farm<strong>in</strong>g could be a pr<strong>of</strong>itable <strong>in</strong>dustry <strong>in</strong>Iceland.It is expected that <strong>in</strong>creased production <strong>of</strong> farmed cod will lead to lower prices <strong>in</strong> thefuture, but as <strong>of</strong> today, prices <strong>of</strong> farmed cod are even higher than <strong>for</strong> wild codproducts. Production costs are the factor that determ<strong>in</strong>es competitive advantage. <strong>The</strong>production cost <strong>of</strong> farm<strong>in</strong>g <strong>of</strong> cod is still high. Feed constitutes 60-70% <strong>of</strong> theproduction cost because <strong>in</strong>gredients are expensive. Culture farm<strong>in</strong>g <strong>of</strong> cod can bepr<strong>of</strong>itable us<strong>in</strong>g cheaper <strong>prote<strong>in</strong></strong> <strong>for</strong> <strong>feed</strong>.Fish, like any other animal, requires nutrients to grow and stay alive, healthy, andactive. Maximum diet per<strong>for</strong>mance <strong>in</strong>volves two important aspects: reduction <strong>of</strong><strong>feed</strong><strong>in</strong>g costs and decreased waste. <strong>The</strong> study <strong>of</strong> <strong>feed</strong><strong>in</strong>g behaviour <strong>in</strong> several <strong>fish</strong>species has revealed that the adjustment <strong>of</strong> <strong>feed</strong><strong>in</strong>g times to match natural rhythmimproves nutritional efficiency, <strong>feed</strong><strong>in</strong>g frequency, food-conversion efficiency andcan even <strong>in</strong>fluence the utilisation <strong>of</strong> certa<strong>in</strong> nutrients (Gozdowska et al. 2003).Prote<strong>in</strong> is a basic component <strong>of</strong> <strong>fish</strong> diets, both <strong>in</strong> terms <strong>of</strong> quantity and quality, and<strong>prote<strong>in</strong></strong> is also the most expensive <strong>feed</strong> component. Fishmeal provides an adequatebalance <strong>of</strong> am<strong>in</strong>o acids, but <strong>in</strong>creas<strong>in</strong>g demand and price, as well as uncerta<strong>in</strong> supply,make it necessary to f<strong>in</strong>d alternative <strong>prote<strong>in</strong></strong> <strong>sources</strong>. Other diet components(carbohydrates or fats) should be used to supply energy because they are usually lessexpensive. <strong>The</strong> economic importance <strong>of</strong> <strong>prote<strong>in</strong></strong> <strong>for</strong> farmers is related to its expense asa <strong>feed</strong> <strong>in</strong>gredient.Traditionally, animal <strong>prote<strong>in</strong></strong> supplements were the foundation <strong>of</strong> any aquaculture<strong>feed</strong> <strong>for</strong>mulation. However, given the limited world supplies and the <strong>in</strong>creas<strong>in</strong>g price<strong>of</strong> these animal <strong>prote<strong>in</strong></strong> supplements, nutritionists are consider<strong>in</strong>g alternative <strong>prote<strong>in</strong></strong>UNU - Fisheries Tra<strong>in</strong><strong>in</strong>g Programme 3


Dacosta-Calheiros<strong>sources</strong> <strong>for</strong> <strong>fish</strong> <strong>feed</strong>s. Plant <strong>prote<strong>in</strong></strong> is generally cheaper than animal <strong>prote<strong>in</strong></strong>supplements. <strong>The</strong> <strong>in</strong>creased use <strong>of</strong> plant <strong>prote<strong>in</strong></strong> supplements <strong>in</strong> aquaculture <strong>feed</strong>s willbe dependent on reliable nutrition research (Purchase and Brown 2000).Current aquaculture <strong>feed</strong> <strong>for</strong>mulations are partly based on <strong>in</strong>tuition and “unknowngrowth factors”, rather than nutritional science. Animals do not require <strong>feed</strong><strong>in</strong>gredients or <strong>for</strong>mulas, but rather the nutrients, which are part <strong>of</strong> the chemicalcomposition <strong>of</strong> these <strong>in</strong>gredients and <strong>feed</strong> <strong>for</strong>mulas. <strong>The</strong>re<strong>for</strong>e, a <strong>feed</strong> <strong>for</strong>mula ismean<strong>in</strong>gless if we don’t understand the nutritional pr<strong>in</strong>ciples <strong>in</strong>volved <strong>in</strong> <strong>for</strong>mulat<strong>in</strong>gthe <strong>feed</strong>. In general, plant <strong>prote<strong>in</strong></strong> supplements are lower <strong>in</strong> some essential am<strong>in</strong>oacids, energy, and m<strong>in</strong>erals such as phosphorous as compared to animal <strong>prote<strong>in</strong></strong>supplements. <strong>The</strong>se parameters need to be considered <strong>in</strong> <strong>feed</strong> <strong>for</strong>mulations based onplant <strong>prote<strong>in</strong></strong>s (Sugiura et al. 2001).<strong>The</strong> development <strong>of</strong> fresh water aquaculture began <strong>in</strong> Cuba <strong>in</strong> more than 1,200 dams,already built <strong>for</strong> irrigation purposes and those dams became production centres <strong>for</strong>imported species. Tilapia is one <strong>of</strong> the most important species <strong>in</strong> culture are.In Cuba, one manufacturer produces balanced <strong>feed</strong>s. In 1992 the production capacitypf <strong>feed</strong>s was 2 metrics tonnes (MT)/hour. <strong>The</strong>ir production has been dedicated ma<strong>in</strong>lyto the shrimp culture and <strong>in</strong> small quantities to tilapia and cat<strong>fish</strong>.<strong>The</strong> aquaculture development proposed by the M<strong>in</strong>istry <strong>of</strong> Fisheries started <strong>in</strong> 2001. Itis characterised by high levels <strong>of</strong> production and a diversification <strong>of</strong> species, requir<strong>in</strong>g<strong>in</strong>creased <strong>in</strong>dustrial capacity and improvements <strong>in</strong> <strong>feed</strong>. To improve the diets it isnecessary to know the nutritional requirements <strong>of</strong> the species, produce a pellet withoptimal chemical and physical parameters at a m<strong>in</strong>imum cost. Us<strong>in</strong>g alternative<strong>sources</strong> <strong>of</strong> <strong>prote<strong>in</strong></strong>, such as soybean meal, reduces the cost <strong>of</strong> <strong>feed</strong> <strong>in</strong> aquaculture (<strong>The</strong>Cuban M<strong>in</strong>istry <strong>of</strong> Fisheries 2001).This project is divided <strong>in</strong>to two parts: a literature study <strong>of</strong> the <strong>prote<strong>in</strong></strong> component <strong>in</strong>the <strong>feed</strong> <strong>for</strong> carnivorous and omnivorous <strong>fish</strong> and a case <strong>of</strong> study, which is a <strong>feed</strong><strong>in</strong>gtrial on cod <strong>fish</strong>. <strong>The</strong> ma<strong>in</strong> objectives are:1. To give an overview <strong>of</strong> the <strong>prote<strong>in</strong></strong> components <strong>in</strong> the <strong>feed</strong> <strong>for</strong> carnivorous andomnivorous <strong>fish</strong>.2. To measure the effect <strong>of</strong> substitut<strong>in</strong>g alternative <strong>sources</strong> <strong>of</strong> <strong>prote<strong>in</strong></strong> on growthand survival on cod fry (Gadus murhua).UNU - Fisheries Tra<strong>in</strong><strong>in</strong>g Programme 4


Dacosta-Calheiros2 LITERATURE REVIEW2.1 General overview <strong>of</strong> <strong>prote<strong>in</strong></strong> requirements <strong>in</strong> <strong>fish</strong><strong>The</strong> <strong>prote<strong>in</strong></strong> requirements, mean<strong>in</strong>g the m<strong>in</strong>imum amount needed to meet therequirements <strong>for</strong> am<strong>in</strong>o acids and to achieve maximum growth, have now beenmeasured <strong>in</strong> juvenile <strong>fish</strong> <strong>of</strong> many species (Table 1). <strong>The</strong>y have been obta<strong>in</strong>ed ma<strong>in</strong>lyfrom dose-response curves <strong>in</strong> which graded amounts <strong>of</strong> high-quality <strong>prote<strong>in</strong></strong> were fed<strong>in</strong> partially def<strong>in</strong>ed diets. <strong>The</strong> response measured was weight ga<strong>in</strong>. <strong>The</strong> values areexpressed as a percentage <strong>of</strong> dry diet. Although the expression <strong>of</strong> <strong>prote<strong>in</strong></strong> as aproportion <strong>of</strong> dietary energy would have focused attention on <strong>prote<strong>in</strong></strong> as a substantialsource <strong>of</strong> dietary energy, this approach was not possible <strong>for</strong> many <strong>of</strong> the studiesbecause <strong>in</strong><strong>for</strong>mation on the digestible energy (DE) content <strong>of</strong> the diets wasunavailable and values used <strong>for</strong> the energy composition <strong>of</strong> dietary components variedbetween authors. Many studies have been carried out to determ<strong>in</strong>e <strong>prote<strong>in</strong></strong>requirements <strong>for</strong> <strong>fish</strong>, with estimated <strong>prote<strong>in</strong></strong> requirements rang<strong>in</strong>g from 30% to 55%accord<strong>in</strong>g to <strong>fish</strong> species, size, dietary <strong>prote<strong>in</strong></strong> <strong>sources</strong> and environmental conditions(NRC 1993).UNU - Fisheries Tra<strong>in</strong><strong>in</strong>g Programme 5


Dacosta-CalheirosTable 1: Estimated dietary <strong>prote<strong>in</strong></strong> requirement <strong>for</strong> maximal growth <strong>of</strong> some species<strong>of</strong> juvenile <strong>fish</strong> (as fed basis).Species Prote<strong>in</strong> source Estimated <strong>prote<strong>in</strong></strong> Referencerequirement (%)Atlantic salmon Case<strong>in</strong> and gelat<strong>in</strong> 45 Lall and Bishop(1977)Channel cat<strong>fish</strong> Whole egg <strong>prote<strong>in</strong></strong> 32–36 Garl<strong>in</strong>g and Wilson(1976)Ch<strong>in</strong>ook salmon Case<strong>in</strong>, gelat<strong>in</strong>, and 40 Halver et al. (1958)am<strong>in</strong>o acidsCoho salmon Case<strong>in</strong> 40 Zeitoun et al. (1976)Common carp Case<strong>in</strong> 31–38 Og<strong>in</strong>o and Saito(1970); Takeuchi etal. (1979)Estuary grouper Tuna muscle meal 40–50 Teng et al. (1978)Gilthead seabreamCase<strong>in</strong>, <strong>fish</strong> <strong>prote<strong>in</strong></strong>concentrate, and40 Sabaut and Luquet(1973)am<strong>in</strong>o acidsGrass carp Case<strong>in</strong> 41–43 Dabrowski (1977)Japanese eel Case<strong>in</strong> and am<strong>in</strong>o 44.5 Nose and Arai (1972)acidsLargemouth bass Case<strong>in</strong> and <strong>fish</strong> 40 Anderson et al. (1981)<strong>prote<strong>in</strong></strong> concentrateMilk<strong>fish</strong> Case<strong>in</strong> 40 Lim et al. (1979)Plaice Cod muscle 50 Cowey et al. (1972)Puffer <strong>fish</strong> Case<strong>in</strong> 50 Kanazawa et al.(1980)Ra<strong>in</strong>bow trout Fishmeal, case<strong>in</strong>, 40 Satia (1974)gelat<strong>in</strong>, and am<strong>in</strong>oacidsRed sea bream Case<strong>in</strong> 55 Yone (1976)Smallmouth bass Case<strong>in</strong> and <strong>fish</strong> 45 Anderson et al. (1981)<strong>prote<strong>in</strong></strong> concentrateSnakehead Fishmeal 52 Wee and Tacon(1982)Sockeye salmon Case<strong>in</strong>, gelat<strong>in</strong>, and 45 Halver et al. (1964)am<strong>in</strong>o acidsStriped bass Fishmeal and soy 47 Millik<strong>in</strong> (1983)<strong>prote<strong>in</strong></strong>ateBlue tilapia Case<strong>in</strong> and eggalbum<strong>in</strong>34 W<strong>in</strong>free and Stickney(1981)Mossambique White <strong>fish</strong>meal 40 Jauncey (1982)tilapiaNile tilapia Case<strong>in</strong> 30 Wang et al. (1985)Zillii's tilapia Case<strong>in</strong> 35 Mazid et al. (1979)Yellowtail Sand eel and <strong>fish</strong>meal 55 Takeda et al. (1975)<strong>The</strong> <strong>prote<strong>in</strong></strong> requirements <strong>in</strong> <strong>fish</strong> diets are appreciably higher than those <strong>in</strong> the diets <strong>of</strong>terrestrial warm-blooded animals. <strong>The</strong> methods used to determ<strong>in</strong>e <strong>prote<strong>in</strong></strong>requirements, however, may overestimate requirements, <strong>in</strong> that excess dietary <strong>prote<strong>in</strong></strong>or am<strong>in</strong>o acids, which cannot be stored, are catabolised preferentially overcarbohydrates and fats and used <strong>for</strong> energy by some <strong>fish</strong>es (Wilson 1989). In addition,adequate consideration has not always been given to factors such as concentration <strong>of</strong>DE <strong>in</strong> the diet, am<strong>in</strong>o acid composition <strong>of</strong> the dietary <strong>prote<strong>in</strong></strong>, and digestibility <strong>of</strong> thedietary <strong>prote<strong>in</strong></strong> (Wilson and Halver 1986, Wilson 1989). Understand<strong>in</strong>g the nutritionalUNU - Fisheries Tra<strong>in</strong><strong>in</strong>g Programme 6


Dacosta-Calheirosconstra<strong>in</strong>ts and limitations used <strong>in</strong> arriv<strong>in</strong>g at these reported <strong>prote<strong>in</strong></strong> requirements areimportant <strong>for</strong> their proper application.2.1.1 Carnivorous <strong>fish</strong>Fish may be broadly categorised as omnivorous, carnivorous or herbivorous (Jones1982). Few species have exactly the same nutritional needs. Good nutrition isfundamental to the success and susta<strong>in</strong>ability <strong>of</strong> the aquaculture <strong>in</strong>dustry <strong>in</strong> terms <strong>of</strong>economics, <strong>fish</strong> health and high quality product production with m<strong>in</strong>imumenvironmental pollution. Few species <strong>of</strong> <strong>fish</strong> can be neatly categorised as strictlycarnivorous (meat eaters) or herbivorous (plant eaters). Additionally, the type <strong>of</strong> foods<strong>fish</strong> consume <strong>in</strong> the wild may vary seasonally and change by size and age. Thisproject focuses on the <strong>feed</strong> quality with emphasis on carnivorous and omnivorous<strong>fish</strong>.Although carnivorous f<strong>in</strong><strong>fish</strong> species represented only about 11% <strong>of</strong> total f<strong>in</strong><strong>fish</strong>aquaculture production <strong>in</strong> 1994 (i.e. 1.5 million metric tonnes, wet basis) theyconsumed an estimated 804,000 MT <strong>of</strong> <strong>fish</strong>meal and 276,000 MT <strong>of</strong> <strong>fish</strong> oil (i.e. 1million metric tonnes <strong>of</strong> <strong>fish</strong>meal and <strong>fish</strong> oil, dry basis) with<strong>in</strong> commercial aqua<strong>feed</strong>sor about 70% and 80% <strong>of</strong> the total <strong>fish</strong>meal and <strong>fish</strong> oil used <strong>in</strong> aqua<strong>feed</strong>s <strong>in</strong> 1994.Production <strong>of</strong> carnivorous, omnivorous and herbivorous f<strong>in</strong><strong>fish</strong> has <strong>in</strong>creased at anaverage compound rate <strong>of</strong> 9.8% and 10.9% per year s<strong>in</strong>ce 1984, respectively (Tacon1994).In general, carnivorous species have a limited ability to utilise starch and no capacityto digest non-starch polysaccharides. Plant materials, which are used as alternative<strong>sources</strong> <strong>of</strong> <strong>prote<strong>in</strong></strong> <strong>in</strong>stead <strong>of</strong> <strong>fish</strong>meal, will <strong>in</strong>evitably conta<strong>in</strong> significant amounts <strong>of</strong>carbohydrates, predom<strong>in</strong>antly <strong>in</strong> the <strong>for</strong>m <strong>of</strong> non-starch polysaccharides and starch.Feed<strong>in</strong>g plant materials to <strong>fish</strong> <strong>in</strong> aquaculture will be most efficient (less expensive) ifthe carbohydrate material is utilised.2.1.1.1 Prote<strong>in</strong> requirements accord<strong>in</strong>g to <strong>fish</strong> size: <strong>fish</strong> fryFish must be given a diet conta<strong>in</strong><strong>in</strong>g graded levels <strong>of</strong> high quality <strong>prote<strong>in</strong></strong> and energyand adequate balances <strong>of</strong> essential fatty acids, vitam<strong>in</strong>s and m<strong>in</strong>erals over a prolongedperiod. <strong>The</strong>se differences <strong>in</strong> apparent <strong>prote<strong>in</strong></strong> requirement are thought to be due todifferences <strong>in</strong> culture techniques as well as diet composition and <strong>fish</strong> size.Intensive tank rear<strong>in</strong>g <strong>of</strong> channel cat<strong>fish</strong> (Ictalurus punctatus, Raf<strong>in</strong>esque) fry can besuccessfully accomplished with commonly available “salmonid” starter diets.Ingredient substitution <strong>in</strong> starter diets is less important from the cost perspective butgrowth, survival and health <strong>of</strong> <strong>fish</strong> are major concerns. Several comb<strong>in</strong>ations <strong>of</strong><strong>fish</strong>meals and animal <strong>prote<strong>in</strong></strong> substitutes have been evaluated <strong>in</strong> diet <strong>for</strong>mulations <strong>for</strong>hatchery rear<strong>in</strong>g <strong>of</strong> cat<strong>fish</strong> fry. A diet <strong>for</strong>mulated on the basis <strong>of</strong> menhaden <strong>fish</strong>meal(29.1%), herr<strong>in</strong>g <strong>fish</strong>meal (25.1%) and animal by-product mixture (16.4%) gavenumerically the highest growth rate after 13 weeks <strong>of</strong> <strong>feed</strong><strong>in</strong>g, although growthreductions <strong>in</strong> <strong>fish</strong> fed diets exclusively with menhaden meal (77.6%) as <strong>prote<strong>in</strong></strong> orsubstituted with 50% animal by-product <strong>prote<strong>in</strong></strong> were not significant. Instantaneousmortality rates were the highest between weeks 2 and 4 <strong>of</strong> rear<strong>in</strong>g and <strong>in</strong>creasedalmost proportionally with <strong>in</strong>creased <strong>fish</strong>meal <strong>prote<strong>in</strong></strong> substitution. <strong>The</strong> <strong>in</strong>itial <strong>feed</strong><strong>in</strong>gUNU - Fisheries Tra<strong>in</strong><strong>in</strong>g Programme 7


Dacosta-Calheiros<strong>in</strong>creas<strong>in</strong>g dietary <strong>prote<strong>in</strong></strong> up to 50%, with growth be<strong>in</strong>g better <strong>in</strong> Murray codma<strong>in</strong>ta<strong>in</strong>ed on the last three diets than <strong>in</strong> those on 40% and 45% <strong>prote<strong>in</strong></strong> (Gunasekeraet al. 2002).A <strong>feed</strong><strong>in</strong>g trial <strong>of</strong> three dietary <strong>prote<strong>in</strong></strong> levels (30, 40 and 50%) and two dietary energylevels (19 and 21 MJ kg1 diet) us<strong>in</strong>g a factorial design with three replications wasconducted to <strong>in</strong>vestigate the effect <strong>of</strong> dietary <strong>prote<strong>in</strong></strong> and energy levels <strong>for</strong> the growth<strong>of</strong> juvenile masu salmon (Oncorhynchus masou, Brevoort). Fish, average weight 21.9g, were fed the experimental diets <strong>for</strong> 10 weeks. <strong>The</strong> weight ga<strong>in</strong> and <strong>feed</strong> efficiencyratio <strong>of</strong> <strong>fish</strong> improved as dietary <strong>prote<strong>in</strong></strong> and energy levels <strong>in</strong>creased (P < 0.05),whereas there was no significant difference between <strong>fish</strong> fed the diets conta<strong>in</strong><strong>in</strong>g 40and 50% <strong>prote<strong>in</strong></strong> at the same dietary energy level. Weight ga<strong>in</strong> <strong>of</strong> <strong>fish</strong> fed the highenergydiets was significantly higher than those fed the low-energy diets at 40 and50% dietary <strong>prote<strong>in</strong></strong> levels. <strong>The</strong> results <strong>of</strong> this study <strong>in</strong>dicate that a diet conta<strong>in</strong><strong>in</strong>g40% <strong>prote<strong>in</strong></strong> and 21 MJ kg 1 diet should be optimal <strong>for</strong> the growth and effective<strong>prote<strong>in</strong></strong> utilisation <strong>of</strong> juvenile masu salmon (Lee and Kim 2001).A study conducted at Kentucky State University determ<strong>in</strong>ed that juvenile palmettobass could be fed diets conta<strong>in</strong><strong>in</strong>g as little as 15% <strong>fish</strong>meal without adverselyaffect<strong>in</strong>g growth or body composition as long as crude <strong>prote<strong>in</strong></strong> was ma<strong>in</strong>ta<strong>in</strong>ed at 40%<strong>of</strong> the diet by us<strong>in</strong>g soybean meal and meat-and-bone meal (Webster et al. 1997).A six week <strong>feed</strong><strong>in</strong>g trial was conducted to determ<strong>in</strong>e the dietary <strong>prote<strong>in</strong></strong> requirement<strong>of</strong> juvenile giant croaker, Nibea japonica. Semipurified diets were <strong>for</strong>mulated withwhite <strong>fish</strong>meal to conta<strong>in</strong> graded levels <strong>of</strong> <strong>prote<strong>in</strong></strong> rang<strong>in</strong>g from 30% to 55% <strong>of</strong> dryweight. Diets conta<strong>in</strong><strong>in</strong>g higher <strong>prote<strong>in</strong></strong> levels (45% 55%) produced significantlyhigher muscle ratio values than diets conta<strong>in</strong><strong>in</strong>g lower <strong>prote<strong>in</strong></strong> levels (30% 40%),whereas <strong>fish</strong> fed diets conta<strong>in</strong><strong>in</strong>g different <strong>prote<strong>in</strong></strong> levels had similar muscle ash, lipid,moisture and <strong>prote<strong>in</strong></strong> values. <strong>The</strong> optimal dietary <strong>prote<strong>in</strong></strong> requirement <strong>for</strong> juvenilegiant croaker was determ<strong>in</strong>ed to be 45% <strong>of</strong> dry diet <strong>in</strong> natural seawater based onweight ga<strong>in</strong>, <strong>feed</strong> efficiency, <strong>prote<strong>in</strong></strong> efficiency ratio values and muscle ratio(HaeYoung et al. 2001).A <strong>feed</strong><strong>in</strong>g trial was conducted with juvenile red drum to determ<strong>in</strong>e their quantitativedietary requirement <strong>for</strong> arg<strong>in</strong><strong>in</strong>e. Experimental diets with 35 g crude <strong>prote<strong>in</strong></strong>/100 gfrom red drum muscle and crystall<strong>in</strong>e am<strong>in</strong>o acids were used. Based on least-squaresregression <strong>of</strong> <strong>feed</strong> efficiency and <strong>prote<strong>in</strong></strong> estimated requirement data, the m<strong>in</strong>imumrequirement <strong>of</strong> red drum <strong>for</strong> arg<strong>in</strong><strong>in</strong>e was estimated at 1.44 ± 0.15 and 1.48 ± 0.12g/100 g diet (4.11 and 4.23 g/100 g dietary <strong>prote<strong>in</strong></strong>), respectively. <strong>The</strong> arg<strong>in</strong><strong>in</strong>erequirements estimated from weight ga<strong>in</strong> data were 1.75 (± 0.18) g/100 g diet or 5.0g/100 g dietary <strong>prote<strong>in</strong></strong>. <strong>The</strong>se values are similar to those reported <strong>for</strong> othercarnivorous <strong>fish</strong> species (Daniel et al. 2000).Prote<strong>in</strong> requirements <strong>of</strong> euryhal<strong>in</strong>e <strong>fish</strong> such as the ra<strong>in</strong>bow trout (Salmo gairdneri)and the coho salmon (Oncorhynchus kisutch) reared <strong>in</strong> 20‰ is about the same as therequirements <strong>for</strong> juveniles <strong>in</strong> freshwater (Krogdahl et al. 2003). No data are available<strong>for</strong> the <strong>prote<strong>in</strong></strong> requirements <strong>of</strong> these species <strong>in</strong> full strength sea water (35‰). Salmon,trout and cat<strong>fish</strong> can use more <strong>prote<strong>in</strong></strong> than required <strong>for</strong> maximum growth because <strong>of</strong>efficiency <strong>in</strong> elim<strong>in</strong>at<strong>in</strong>g nitrogenous wastes <strong>in</strong> the <strong>for</strong>m <strong>of</strong> soluble ammoniacompounds through the gill tissue.UNU - Fisheries Tra<strong>in</strong><strong>in</strong>g Programme 9


Dacosta-CalheirosProte<strong>in</strong> requirements, as a proportion <strong>of</strong> the diet, decrease as <strong>fish</strong> approach maturity.For example, 25% <strong>prote<strong>in</strong></strong> was adequate <strong>in</strong> the diet <strong>of</strong> channel cat<strong>fish</strong> <strong>of</strong> 114 to 500 g,but 35% <strong>prote<strong>in</strong></strong> produced faster ga<strong>in</strong>s than did 25% <strong>prote<strong>in</strong></strong> <strong>in</strong> 14 to 100 g <strong>fish</strong> (Blancand Margraf 2002). Somewhat similar results have been obta<strong>in</strong>ed <strong>for</strong> salmonids(Wilson and Halver 1986).Little conv<strong>in</strong>c<strong>in</strong>g evidence exists to show that <strong>prote<strong>in</strong></strong> requirements, expressed as apercentage <strong>of</strong> dry matter, are affected by water temperature. In general, all <strong>feed</strong><strong>in</strong>gand growth functions <strong>in</strong>crease <strong>in</strong> parallel as water temperature rises, although growthrates may <strong>in</strong>crease more rapidly because <strong>of</strong> an <strong>in</strong>creased <strong>feed</strong> conversion efficiencycoupled with higher food <strong>in</strong>take (Brett 1979).2.1.2 Omnivorous <strong>fish</strong>All species <strong>in</strong> this category <strong>feed</strong> on both algal and animal diets. <strong>The</strong> group can besubdivided <strong>in</strong>to three groups accord<strong>in</strong>g to the relative importance <strong>of</strong> <strong>feed</strong> <strong>of</strong> plant andanimal orig<strong>in</strong>.1. Omnivores <strong>feed</strong><strong>in</strong>g predom<strong>in</strong>antly on algae: animals make up 6-20% <strong>of</strong> theirtotal diet.2. Omnivores <strong>feed</strong><strong>in</strong>g largely on animals: algae <strong>for</strong>ms 6-20% <strong>of</strong> the total diet <strong>of</strong>these “predators”.3. Generalised omnivores: Most omnivorous predators fall <strong>in</strong>to this group. <strong>The</strong>y<strong>feed</strong> on both algae and animals <strong>in</strong> relatively equal amounts.Carps are an important group <strong>of</strong> cultivated <strong>fish</strong>. Incorporation <strong>in</strong> the diet <strong>of</strong> soy<strong>prote<strong>in</strong></strong> crude up to 40% <strong>in</strong> the first <strong>feed</strong><strong>in</strong>g <strong>of</strong> carp larvae does not adversely affectsurvival or growth <strong>of</strong> carp larvae (Escaffre et al. 1997). However, Dabrowski andKozak (1979) found that the growth <strong>of</strong> grass carp fry was depressed when the content<strong>of</strong> soybean meal <strong>in</strong> the diet was <strong>in</strong>creased, despite the addition <strong>of</strong> deficient am<strong>in</strong>oacids. <strong>The</strong> authors suggested that carp might be less sensitive to the appetitesuppress<strong>in</strong>gfactors <strong>in</strong> soybean products than other <strong>fish</strong> species.Silver perch (Bidyanus bidyanus, Mitchell) <strong>of</strong> 65 g average weight were reared at highdensity under controlled conditions on diets conta<strong>in</strong><strong>in</strong>g 24.8% and 40.6% <strong>prote<strong>in</strong></strong>.Diets were fed at 2% or 4% <strong>of</strong> the <strong>fish</strong> biomass per day. Both the <strong>prote<strong>in</strong></strong>concentrations and <strong>feed</strong><strong>in</strong>g levels <strong>in</strong>fluenced growth and proximate composition <strong>of</strong>the <strong>fish</strong> at the end <strong>of</strong> the 50-day growth trial. <strong>The</strong> results <strong>in</strong>dicate that it is possible toobta<strong>in</strong> the same weight <strong>in</strong>crement when <strong>feed</strong><strong>in</strong>g a 24.8% <strong>prote<strong>in</strong></strong> diet at a level <strong>of</strong> 4%body weight per day as compared with only 2% body weight per day <strong>of</strong> a 40.6%<strong>prote<strong>in</strong></strong> diet. This study <strong>in</strong>dicates that the nutritional requirements <strong>for</strong> early grow-outare similar to those found with juvenile silver perch (Harpaz et al. 2001).Carnivorous <strong>fish</strong> require high levels <strong>of</strong> <strong>fish</strong>meal and <strong>fish</strong> oil. For example, farmedsalmon are fed a diet that conta<strong>in</strong>s approximately 40% <strong>fish</strong>meal and 25% <strong>fish</strong> oil(Tibbetts et al. 2001). In contrast, the diets <strong>of</strong> herbivorous and omnivorous <strong>fish</strong>, suchas tilapia, carp, and silver perch, require much lower levels <strong>of</strong> <strong>fish</strong>meal and <strong>fish</strong> oil,usually less than 10% and 1% respectively. Prote<strong>in</strong> requirements <strong>of</strong> omnivorous <strong>fish</strong>like carnivorous <strong>fish</strong> decrease as <strong>fish</strong> approach maturity.UNU - Fisheries Tra<strong>in</strong><strong>in</strong>g Programme 10


Dacosta-Calheiros2.1.2.1 Tilapia<strong>The</strong>re are several commercial farms <strong>in</strong> Central America that are successfully grow<strong>in</strong>gtilapia to export fresh fillets to North America. Additional farms are com<strong>in</strong>g onl<strong>in</strong>e <strong>in</strong>the region. In Cuba the demand <strong>for</strong> tilapia has <strong>in</strong>creased <strong>in</strong> the past few years andseveral farms are focus<strong>in</strong>g on local markets. No matter where they are grown the <strong>feed</strong>is always the largest cost <strong>in</strong> the production budget <strong>for</strong> commercial tilapia farmersregionally (Meyer 2001).Tilapias are very versatile and can be produced <strong>in</strong> diverse manners by ranch<strong>in</strong>g <strong>in</strong>large lakes, cage culture, pond culture both static and flow-through systems, pens orenclosures <strong>in</strong> irrigation canals, tanks and raceways, <strong>in</strong> both monoculture andpolyculture, and more recently, <strong>in</strong> aquaponics systems. Tilapias are hardy and canwithstand adverse water quality and low dissolved oxygen levels. However, this doesnot imply that they should be cultured under such conditions s<strong>in</strong>ce poor water quality<strong>of</strong>ten retards <strong>feed</strong><strong>in</strong>g and growth and hence productivity. Tilapias are resistant todiseases, and when problems arise, they are readily treated. Tilapia production hasbeen embraced by many <strong>for</strong> its ecologically susta<strong>in</strong>able characteristics and should beremembered when develop<strong>in</strong>g production systems (Fitzsimmons 2000).Carnivorous <strong>fish</strong> require <strong>fish</strong>meal or other animal <strong>prote<strong>in</strong></strong>s <strong>in</strong> their diets, which <strong>in</strong>general are more expensive than plant <strong>prote<strong>in</strong></strong>s. Nutritional studies which substituteplant <strong>prote<strong>in</strong></strong>s supplemented with specific am<strong>in</strong>o acid supplements may lower costs,but still not to the level that can be achieved with tilapia diets. Considerable researchhas been conducted on complete diets and on fertilisation programmes <strong>for</strong> natural andman-made ponds/tanks. Development <strong>of</strong> supplemental diets directed to specificallyprovide limit<strong>in</strong>g nutrients is a grow<strong>in</strong>g area <strong>of</strong> research (Popma and Michael 1999).One <strong>of</strong> the great advantages <strong>of</strong> tilapia <strong>for</strong> aquaculture is that they <strong>feed</strong> on a lowtrophic level. <strong>The</strong> members <strong>of</strong> the genus Oreochromis are all omnivores, <strong>feed</strong><strong>in</strong>g onalgae, aquatic plants, small <strong>in</strong>vertebrates, detrital material and the associated bacterialfilms. <strong>The</strong> <strong>in</strong>dividual species may have preferences between these materials and aremore or less efficient depend<strong>in</strong>g on species and life stage <strong>in</strong> graz<strong>in</strong>g on these foods.<strong>The</strong>y are all somewhat opportunistic and will utilise any and all <strong>of</strong> these <strong>feed</strong>s whenthey are available. This provides an advantage to farmers because the <strong>fish</strong> can bereared <strong>in</strong> extensive situations that depend upon the natural productivity <strong>of</strong> a waterbody or <strong>in</strong> <strong>in</strong>tensive systems that can be operated with low cost <strong>feed</strong>s. (Arun andAmararatne 2003).In extensive aquaculture, the <strong>fish</strong> will be able to grow by eat<strong>in</strong>g algae and detritalmatter and the farmer can grow more <strong>fish</strong> <strong>in</strong> a given area because the <strong>fish</strong> aredepend<strong>in</strong>g directly on the primary productivity <strong>of</strong> the body <strong>of</strong> water. Fish which <strong>feed</strong>on a higher trophic level, eat<strong>in</strong>g larger <strong>in</strong>vertebrates or small <strong>fish</strong>, are secondaryconsumers and a system can only support a fraction <strong>of</strong> the biomass <strong>of</strong> secondaryconsumers compared to primary consumers (Lutz 2000).In <strong>in</strong>tensive systems, tilapia has the advantage that they can be fed a prepared <strong>feed</strong>that <strong>in</strong>cludes a high percentage <strong>of</strong> plant <strong>prote<strong>in</strong></strong>s. Tilapia was stocked <strong>in</strong> a pond us<strong>in</strong>gthe optimum stock<strong>in</strong>g rate <strong>of</strong> tilapia (2 <strong>fish</strong>/m2) (16 f<strong>in</strong>gerl<strong>in</strong>g per each pen). Twometabolisable energy levels (300 and 3500 Kcal/kg diet) and two <strong>prote<strong>in</strong></strong> levels (30UNU - Fisheries Tra<strong>in</strong><strong>in</strong>g Programme 11


Dacosta-Calheirosand 3%) were used to prepare four <strong>prote<strong>in</strong></strong>/energy rations (cp/E ratio, mg/kcal/kg diet)(100, 110, 90 and 100). Improvement <strong>of</strong> tilapia body weight ga<strong>in</strong>, specific growth rateand <strong>feed</strong> conversion ratio were achieved when dietary P/E <strong>in</strong>creased while, decreaseddietary P/E ratios reduced <strong>feed</strong> consumption and <strong>in</strong>creased the condition factor. <strong>The</strong>results <strong>for</strong> the above parameters <strong>of</strong> tilapia per<strong>for</strong>mance <strong>in</strong>creased significantly (p


Dacosta-Calheiroshigher than that <strong>of</strong> <strong>fish</strong> fed 25-35% <strong>prote<strong>in</strong></strong> diets, whereas lipid content decreased with<strong>in</strong>creas<strong>in</strong>g dietary <strong>prote<strong>in</strong></strong> level (Al Hafedh 1999).In 45 g <strong>fish</strong>, both <strong>prote<strong>in</strong></strong> and lipid contents were higher <strong>in</strong> <strong>fish</strong> fed 25% and 30%<strong>prote<strong>in</strong></strong> diets than <strong>in</strong> those fed 35-45% <strong>prote<strong>in</strong></strong> diets. In larger tilapia, no significant<strong>in</strong>fluence <strong>of</strong> dietary <strong>prote<strong>in</strong></strong> levels on body <strong>prote<strong>in</strong></strong> content was found. <strong>The</strong> percentage<strong>of</strong> lipids decreased with <strong>in</strong>creas<strong>in</strong>g dietary <strong>prote<strong>in</strong></strong> levels, and no def<strong>in</strong>ite trend <strong>in</strong> ashcontent was found. <strong>The</strong> results <strong>of</strong> these studies <strong>in</strong>dicate that O. niloticus fry (0.51 g)should be reared on a practical diet conta<strong>in</strong><strong>in</strong>g 40% <strong>prote<strong>in</strong></strong>, and larger tilapia (96-264g) on a diet conta<strong>in</strong><strong>in</strong>g 30% <strong>prote<strong>in</strong></strong> (Al Hafedh 1999).<strong>The</strong> nutritional requirements are slightly different <strong>for</strong> different species <strong>of</strong> tilapia andmore importantly vary with life stage. Fry and f<strong>in</strong>gerl<strong>in</strong>gs require a diet higher <strong>in</strong><strong>prote<strong>in</strong></strong>, lipids, vitam<strong>in</strong>s and m<strong>in</strong>erals and lower <strong>in</strong> carbohydrates as they aredevelop<strong>in</strong>g muscle, <strong>in</strong>ternal organs and bone with rapid growth. Sub-adult <strong>fish</strong> needmore calories from fat and carbohydrates <strong>for</strong> basal metabolism and a smallerpercentage <strong>of</strong> <strong>prote<strong>in</strong></strong> <strong>for</strong> growth. Of course the absolute amount the <strong>fish</strong> is eat<strong>in</strong>g willstill be <strong>in</strong>creas<strong>in</strong>g as the <strong>fish</strong> is much larger. Adult <strong>fish</strong> need even less <strong>prote<strong>in</strong></strong>;however the am<strong>in</strong>o acids that make up that <strong>prote<strong>in</strong></strong> need to be available <strong>in</strong> certa<strong>in</strong>ratios.2.1.2.3 Replacement <strong>of</strong> <strong>fish</strong>meal with soybean meal <strong>in</strong> diet <strong>for</strong> tilapiaAccord<strong>in</strong>g to recent estimates, world production <strong>of</strong> cultured tilapia (Oreochromis sp.)is <strong>in</strong> excess <strong>of</strong> 1 million metric tonnes. Tilapias are cultured <strong>in</strong> a great variety <strong>of</strong>aquatic environments and with many different management protocols. <strong>The</strong>management <strong>of</strong> modern commercial tilapia production systems is an aquatic analog toNorth American <strong>feed</strong>lots used <strong>for</strong> beef production. <strong>The</strong> <strong>fish</strong> are held <strong>in</strong> cages andraceways at stock<strong>in</strong>g densities that can exceed 100 <strong>fish</strong>/m3. <strong>The</strong> <strong>fish</strong> are fed tosatiation several times each day us<strong>in</strong>g specially <strong>for</strong>mulated <strong>feed</strong>s. When large enough,the <strong>fish</strong> are harvested. Modern manufactured <strong>fish</strong> <strong>feed</strong>s are not well assimilated bytilapia. Typically only a small fraction (< 30%) <strong>of</strong> the total content <strong>of</strong> N and P <strong>in</strong> thediet is <strong>in</strong>corporated <strong>in</strong>to the <strong>fish</strong>’s biomass (= growth). <strong>The</strong> rema<strong>in</strong><strong>in</strong>g amounts <strong>of</strong>each macronutrient are never <strong>in</strong>gested (<strong>feed</strong> not consumed), excreted <strong>in</strong>to the pondwater, lost as part <strong>of</strong> faecal material, or used <strong>for</strong> ma<strong>in</strong>tenance (Deyab et al. 2003).Egyptian researchers compared a commercial tilapia diet conta<strong>in</strong><strong>in</strong>g 20% <strong>fish</strong>mealand 30% soybean meal to diets with all <strong>of</strong> the <strong>prote<strong>in</strong></strong> com<strong>in</strong>g from soybean meal withgraded levels <strong>of</strong> L-lys<strong>in</strong>e supplementation <strong>for</strong>mulated <strong>for</strong> Nile tilapia f<strong>in</strong>gerl<strong>in</strong>gs.After <strong>feed</strong><strong>in</strong>g <strong>for</strong> ten weeks, the diet conta<strong>in</strong><strong>in</strong>g 55% soybean meal and 0.5% L-lys<strong>in</strong>ewas significantly (P>0.05) better than the commercial tilapia diet with respect to f<strong>in</strong>alweight, weight ga<strong>in</strong>, <strong>feed</strong> conversion, <strong>prote<strong>in</strong></strong> efficiency ratio and <strong>feed</strong> <strong>in</strong>take. <strong>The</strong> diethad the highest digestibility coefficients <strong>for</strong> <strong>prote<strong>in</strong></strong>, fat and energy. <strong>The</strong>se researcherssuggested that a diet with 55% soybean meal supplemented with 0.05% L-lys<strong>in</strong>e cantotally replace <strong>fish</strong>meal <strong>in</strong> a diet <strong>for</strong> Nile tilapia f<strong>in</strong>gerl<strong>in</strong>gs without adverse effects on<strong>fish</strong> per<strong>for</strong>mance (El-Saidy and Gaber 2002).Two <strong>feed</strong><strong>in</strong>g trials were conducted at the Central Luzon State University FreshwaterAquaculture Centre <strong>in</strong> the Philipp<strong>in</strong>es to determ<strong>in</strong>e the viability <strong>of</strong> us<strong>in</strong>g yeast andcomposted rice straw as alternative <strong>prote<strong>in</strong></strong> <strong>sources</strong> <strong>in</strong> tilapia diets. In the first phase,UNU - Fisheries Tra<strong>in</strong><strong>in</strong>g Programme 13


Dacosta-Calheirosthe experimental diets were prepared us<strong>in</strong>g a meat gr<strong>in</strong>der to make pellets and fed totilapia <strong>in</strong> ponds. In the second phase, the diets were fed to tilapia <strong>in</strong> cages <strong>in</strong> acommon pond. In both experiments, the <strong>fish</strong> fed the diet <strong>in</strong>corporat<strong>in</strong>g the compostedstraw demonstrated the highest growth rate. Based on the results <strong>of</strong> these trials it wasconcluded that these low-cost supplemental <strong>feed</strong>s would <strong>in</strong>crease the yield from pondsand the composted rice straw would be a better <strong>prote<strong>in</strong></strong> source <strong>for</strong> the replacement <strong>of</strong><strong>fish</strong>meal compared to the variety <strong>of</strong> yeast used <strong>in</strong> the diet (Kev<strong>in</strong> et al. 1999).Considerable work has been done to evaluate the nutritive value <strong>of</strong> soybean meal as asubstitute <strong>for</strong> <strong>fish</strong>meal. Soy <strong>prote<strong>in</strong></strong> is considered the best plant <strong>prote<strong>in</strong></strong> source <strong>for</strong>meet<strong>in</strong>g the essential am<strong>in</strong>o acid requirements <strong>of</strong> tilapia and other <strong>fish</strong> speciescommercially grown. It is highly digestible by <strong>fish</strong> and the digestion coefficients arecomparable or higher than <strong>for</strong> <strong>fish</strong>meal <strong>prote<strong>in</strong></strong>.2.2 Effects <strong>of</strong> us<strong>in</strong>g alternative <strong>prote<strong>in</strong></strong> raw materials to <strong>feed</strong> carnivorous <strong>fish</strong><strong>The</strong> <strong>prote<strong>in</strong></strong> source affects growth and body composition <strong>of</strong> <strong>fish</strong>. Fishmeal is animportant source <strong>of</strong> <strong>prote<strong>in</strong></strong> <strong>in</strong> the diets <strong>of</strong> carnivorous <strong>fish</strong> species because <strong>of</strong> its high<strong>prote<strong>in</strong></strong> quality and palatability. However, <strong>fish</strong>meal is quite expensive and cansubstantially <strong>in</strong>crease <strong>feed</strong> costs. Total or partial substitution <strong>of</strong> <strong>fish</strong>meal with lessexpensive plant and animal <strong>prote<strong>in</strong></strong> <strong>feed</strong>stuffs may help to reduce <strong>feed</strong> costs, althoughthese <strong>sources</strong> may be lower <strong>in</strong> digestibility, palatability and essential am<strong>in</strong>o acids(Rob<strong>in</strong>son and Li 1996).Fish process<strong>in</strong>g creates a large amount <strong>of</strong> waste <strong>of</strong> high nutrient content which, if notproperly processed <strong>for</strong> use <strong>in</strong> human or animal nutrition, is likely to be deposited <strong>in</strong>the environment creat<strong>in</strong>g pollution problems. By-products from ra<strong>in</strong>bow troutprocess<strong>in</strong>g <strong>for</strong> smok<strong>in</strong>g, consist<strong>in</strong>g <strong>of</strong> heads, bones, tails and <strong>in</strong>test<strong>in</strong>es, were used as<strong>in</strong>gredients <strong>for</strong> gilthead bream diets. <strong>The</strong> growth and body composition data from thisprelim<strong>in</strong>ary experiment <strong>in</strong>dicated that trout waste could be used successfully as an<strong>in</strong>gredient <strong>of</strong> sea bream diets (Kotzamanis et al. 2001).Feed <strong>in</strong>take ma<strong>in</strong>ta<strong>in</strong>ed at 3% <strong>of</strong> biomass/day <strong>for</strong> the three diets at the difference withother species (red drum, ra<strong>in</strong>bow trout, and striped bass) with up to 75% replacement<strong>of</strong> FM <strong>prote<strong>in</strong></strong> with soybean <strong>prote<strong>in</strong></strong>. A replacement <strong>of</strong> <strong>fish</strong>meal with soybean meal <strong>for</strong>red drum juveniles (Davis et al. 2002) reduced the palatability <strong>of</strong> the <strong>feed</strong>. Providedthat 20% poultry by-products meal was present, <strong>fish</strong>meal was reduced to 5% <strong>of</strong> thediet and replac<strong>in</strong>g it with solvent extracted soybean meal. A similar approach wasreported on trout (Cho et al. 2001.) and a comb<strong>in</strong>ation <strong>of</strong> soy concentrate and crude<strong>prote<strong>in</strong></strong> soya (P80) would overturn the problem <strong>of</strong> succulence <strong>of</strong> the diet <strong>in</strong> absence <strong>of</strong>regular <strong>fish</strong>meal. On a 34% CP diet with <strong>prote<strong>in</strong></strong> supplied by soybean meal and<strong>fish</strong>meal, diets conta<strong>in</strong><strong>in</strong>g only soybean meal <strong>prote<strong>in</strong></strong> were poorly consumed by reddrum (Turano et al. 2002) which lost weight (Cuzón et al. 2002).In an experiment with Atlantic halibut us<strong>in</strong>g three isonitrogenous and isocaloric dietsconta<strong>in</strong><strong>in</strong>g 0%, 18% and 36% toasted full-fat soybean were prepared throughreplacement <strong>of</strong> <strong>fish</strong>meal, wheat and <strong>fish</strong> oil. <strong>The</strong> researchers concluded that up to 36%toasted full-fat soybean meal may be replacement <strong>in</strong> the diets <strong>of</strong> Atlantic halibutwithout negative effects on growth, <strong>feed</strong> efficiency or <strong>in</strong>test<strong>in</strong>al morphology(Grisdale-Helland et al. 2002).UNU - Fisheries Tra<strong>in</strong><strong>in</strong>g Programme 14


Dacosta-CalheirosFour experimental diets were fed to triplicate groups <strong>of</strong> red drum, ra<strong>in</strong>bow trout, andstriped bass, test<strong>in</strong>g the effects <strong>of</strong> the <strong>prote<strong>in</strong></strong> source and the use <strong>of</strong> an attractant. <strong>The</strong>diets conta<strong>in</strong>ed 61% FM or 37% FM and 28% soy <strong>prote<strong>in</strong></strong> concentrate (SPC) with orwithout a coat<strong>in</strong>g <strong>of</strong> squid meal. In the SPC diets, 44% <strong>of</strong> the nitrogen was suppliedfrom the SPC. <strong>The</strong>re were no significant effects <strong>of</strong> dietary treatment on specificgrowth rates and mean body weight, nor were there any effects <strong>of</strong> <strong>prote<strong>in</strong></strong> source ondigestibility or <strong>prote<strong>in</strong></strong> or energy retention <strong>in</strong> whole <strong>fish</strong> (Berge et al. 1999).Atlantic salmon (Salmo salar L.) (280 g, <strong>in</strong>itial weight) were fed <strong>for</strong> 60 days on diets<strong>in</strong> which <strong>fish</strong>meal was substituted with graded levels <strong>of</strong> extracted soybean meal(SBM) compris<strong>in</strong>g 0%, 10%, 15%, 20%, 25% or 35% <strong>of</strong> the total <strong>prote<strong>in</strong></strong>. <strong>The</strong> effectson <strong>feed</strong> <strong>in</strong>take, growth, <strong>feed</strong> conversion, apparent digestibility and utilisation <strong>of</strong>macronutrients and energy, pathohistological response <strong>of</strong> the distal <strong>in</strong>test<strong>in</strong>e (DI),activities <strong>of</strong> digestive enzymes <strong>in</strong> the mid and distal <strong>in</strong>test<strong>in</strong>al mucosa, and faecaltryps<strong>in</strong> and plasma <strong>in</strong>sul<strong>in</strong> concentrations were studied. A negative, dose-dependenteffect <strong>of</strong> SBM was observed on nearly all per<strong>for</strong>mance parameters with the notableexception <strong>of</strong> <strong>feed</strong> <strong>in</strong>take. <strong>The</strong> results suggest that caution should be exercised <strong>in</strong> theuse <strong>of</strong> even low levels <strong>of</strong> extracted SBM <strong>in</strong> salmon <strong>feed</strong>s (Krogdahl et al. 2003).2.3 Favourable effects on the growth <strong>of</strong> <strong>fish</strong> us<strong>in</strong>g alternative raw materials<strong>The</strong> high quality <strong>of</strong> <strong>fish</strong>meal <strong>prote<strong>in</strong></strong>s makes substitution difficult. However, partialsubstitutions are be<strong>in</strong>g made (Li et al. 2002, Li and Selle 2002, Tabe et al. 2002, Chenet al. 2002). Tacon (1987) recommended a crude <strong>prote<strong>in</strong></strong> level vary<strong>in</strong>g from 35% to42% <strong>for</strong> omnivorous <strong>fish</strong> without affect<strong>in</strong>g growth.For optimal growth <strong>fish</strong> require not only a m<strong>in</strong>imum level <strong>of</strong> <strong>prote<strong>in</strong></strong>, but also that theessential am<strong>in</strong>o acids are balanced to meet the requirements <strong>of</strong> each s<strong>in</strong>gle one. Thiscan easily be done by us<strong>in</strong>g <strong>fish</strong>meal as the ma<strong>in</strong> <strong>prote<strong>in</strong></strong> source. However, the amount<strong>of</strong> <strong>fish</strong>meal on a world wide basis is not high enough to cover the need <strong>for</strong> theconstantly grow<strong>in</strong>g aquaculture <strong>in</strong>dustry. Prote<strong>in</strong> requirements vary between species(F<strong>in</strong>ke et al. 1987), but are generally high (>30%) even <strong>for</strong> most omnivorous species(Tacon 1987) where all the <strong>prote<strong>in</strong></strong> (98%) can come from a mixture <strong>of</strong> plant <strong>prote<strong>in</strong></strong> -<strong>in</strong> commercial diets ma<strong>in</strong>ly from soybean. Us<strong>in</strong>g this almost “all-veggie” <strong>feed</strong> stillresults <strong>in</strong> satisfactory growth and <strong>feed</strong> utilisation.For the more strictly carnivorous species, such as Atlantic cod and Atlantic salmon,there is still a challenge to optimise dietary <strong>prote<strong>in</strong></strong>s focuss<strong>in</strong>g on alternatives t<strong>of</strong>ishmeal, and only special qualities <strong>of</strong> plant <strong>prote<strong>in</strong></strong>s, or low levels <strong>of</strong> these (no morethan 7%), can be used without any negative effects on production results (Albriktsenet al. 2003). In <strong>in</strong>tensive aquaculture <strong>in</strong> Norway and the European Union, mostspecies are strictly carnivorous, with <strong>prote<strong>in</strong></strong> requirements from 38% and higher, andgiv<strong>in</strong>g the best production results when us<strong>in</strong>g high quality <strong>fish</strong>meals such as LT-mealwith m<strong>in</strong>or additions <strong>of</strong> other <strong>prote<strong>in</strong></strong> <strong>sources</strong>. In addition to well-balanced dietaryam<strong>in</strong>o acids, the <strong>prote<strong>in</strong></strong> digestibility and absorption rates <strong>of</strong> each am<strong>in</strong>o acid are <strong>of</strong>utmost importance. To <strong>in</strong>crease <strong>prote<strong>in</strong></strong> retention from the diet, the quality andmixture <strong>of</strong> different <strong>prote<strong>in</strong></strong>s and the <strong>in</strong>clusion <strong>of</strong> partly pre-digested <strong>prote<strong>in</strong></strong>s haveshown good results.UNU - Fisheries Tra<strong>in</strong><strong>in</strong>g Programme 15


Dacosta-Calheiros2.4 Differences <strong>in</strong> the ability <strong>of</strong> carnivorous and omnivorous <strong>fish</strong> to usealternative <strong>prote<strong>in</strong></strong> raw materialsSoybean meal (SBM) has been used as a major <strong>prote<strong>in</strong></strong> source <strong>in</strong> diets <strong>for</strong> aquaticanimals, especially <strong>for</strong> the replacement <strong>of</strong> <strong>fish</strong>meal (FM), which is costlier, lessavailable, and less stable <strong>in</strong> supply and price than soybean. A significant amount <strong>of</strong>research has been conducted on the replacement <strong>of</strong> FM with SBM as a <strong>prote<strong>in</strong></strong> source<strong>in</strong> <strong>feed</strong>s <strong>for</strong> tilapia Oreochromis spp (El-Saidy and Gaber 2002, Hafez et al. 2000,Fontaínhas-Fernandes et al. 1999, El-Sayed 1998, Kev<strong>in</strong> et al. 1999).In general, omnivores have higher rates <strong>of</strong> <strong>in</strong>test<strong>in</strong>al sugar transport and lower rates <strong>of</strong>am<strong>in</strong>o acid transport than carnivores, if each is studied while eat<strong>in</strong>g their respectivenatural diets. It was unclear whether these differences <strong>in</strong>volve a genetic contribution,when omnivores are switched from a high-<strong>prote<strong>in</strong></strong> to a high-carbohydrate diet. Agroup <strong>of</strong> researchers studied eight <strong>fish</strong> species with differ<strong>in</strong>g natural diets and fedthem the same manufactured diet. <strong>The</strong>y reversibly <strong>in</strong>crease sugar transport andsuppress am<strong>in</strong>o acid transport follow<strong>in</strong>g Michaelis-Menten k<strong>in</strong>etics (Michaelis andMenten 1913, Wong 1975, Borghans et al. 1996). Values <strong>of</strong> the apparent Michaelis-Menten constant <strong>in</strong>creased with values <strong>of</strong> the maximal transport rate, probably as aresult <strong>of</strong> unstirred layer effects (Budd<strong>in</strong>gton et al. 2002):1. <strong>The</strong> ratio <strong>of</strong> prol<strong>in</strong>e to glucose uptake decreased <strong>in</strong> the sequence: carnivoresgreater than omnivores. <strong>The</strong> <strong>in</strong>test<strong>in</strong>e’s uptake capacity <strong>for</strong> the non- essentialnutrient glucose was much higher <strong>in</strong> herbivores than <strong>in</strong> carnivores, correlatedwith species differences <strong>in</strong> carbohydrate content <strong>of</strong> the natural diet. Prol<strong>in</strong>euptake varied much less among species, s<strong>in</strong>ce species with different naturaldiets still have similar <strong>prote<strong>in</strong></strong> requirements.2. S<strong>in</strong>ce all species were studied while eat<strong>in</strong>g the same diet, these speciesdifferences <strong>in</strong> uptake are not phenotypic but genetic adaptations to thedifferent natural diets.3. In two <strong>fish</strong> species, which normally switch from carnivore towards omnivoreas they mature, we observe a “hard-wired” developmental change <strong>in</strong> <strong>in</strong>test<strong>in</strong>aluptake. Larger animals had lower prol<strong>in</strong>e uptake relative to glucose uptakethan did smaller animals, even though both were be<strong>in</strong>g ma<strong>in</strong>ta<strong>in</strong>ed on the samediet <strong>in</strong> the laboratory.4. Carnivorous <strong>fish</strong> tend to allocate absorptive tissue to pyloric caeca or a thickmucosa, while omnivorous <strong>fish</strong> tend towards a long th<strong>in</strong> <strong>in</strong>test<strong>in</strong>e.Results suggest that <strong>prote<strong>in</strong></strong> catabolism <strong>in</strong>creases <strong>in</strong> SPC-rich diets, possibly because<strong>of</strong> rapid assimilation and utilisation <strong>of</strong> the methion<strong>in</strong>e supplement. <strong>The</strong> importance <strong>of</strong>am<strong>in</strong>o acid supplements and the beneficial effects <strong>of</strong> protect<strong>in</strong>g these, either bycoat<strong>in</strong>g them <strong>in</strong> <strong>prote<strong>in</strong></strong> or <strong>in</strong>corporat<strong>in</strong>g them <strong>in</strong> a <strong>prote<strong>in</strong></strong>-lipid emulsion, was<strong>in</strong>vestigated (Day and González 2003). Growth data provided some <strong>in</strong>dication that theutilisation <strong>of</strong> SPC may be improved by <strong>in</strong>corporat<strong>in</strong>g methion<strong>in</strong>e and lys<strong>in</strong>esupplement <strong>in</strong> a <strong>prote<strong>in</strong></strong>-lipid emulsion prior to diet preparation.UNU - Fisheries Tra<strong>in</strong><strong>in</strong>g Programme 16


Dacosta-Calheiros2.5 <strong>The</strong> necessity <strong>of</strong> substitut<strong>in</strong>g <strong>fish</strong>meal <strong>in</strong> dietsUnlike farmed herbivorous and omnivorous <strong>fish</strong>, such as carp, cat<strong>fish</strong> and tilapia,which consume a plant-based diet, farm<strong>in</strong>g carnivores requires a diet conta<strong>in</strong><strong>in</strong>g largeamounts <strong>of</strong> <strong>fish</strong>meal and <strong>fish</strong> oil. Farm<strong>in</strong>g carnivorous <strong>fish</strong> will result <strong>in</strong> a net loss <strong>of</strong><strong>fish</strong> if <strong>fish</strong> is used as <strong>feed</strong> <strong>for</strong> them. Even with improvements <strong>in</strong> <strong>feed</strong> and breed<strong>in</strong>g,three pounds or more <strong>of</strong> wild <strong>fish</strong> are still required to produce one pound <strong>of</strong> farmedsalmon or other carnivorous <strong>fish</strong> (Tacon 1994). Aquaculture production is to ma<strong>in</strong>ta<strong>in</strong>its current expansion (i.e. with<strong>in</strong> develop<strong>in</strong>g countries) and cont<strong>in</strong>ue to play animportant role <strong>in</strong> the food security <strong>of</strong> develop<strong>in</strong>g countries as a provider <strong>of</strong> anaf<strong>for</strong>dable source <strong>of</strong> high quality animal <strong>prote<strong>in</strong></strong>.Production systems cont<strong>in</strong>ue <strong>in</strong> develop<strong>in</strong>g countries to be targeted towards theproduction <strong>of</strong> lower-value herbivorous/omnivorous f<strong>in</strong><strong>fish</strong> <strong>for</strong> domestic markets,rather than toward to the culture <strong>of</strong> higher-value <strong>fish</strong>. Omnivorous/herbivorous f<strong>in</strong><strong>fish</strong>and crustacean species <strong>feed</strong> lower on the aquatic food cha<strong>in</strong> and are there<strong>for</strong>e lessdemand<strong>in</strong>g and more efficient <strong>in</strong> terms <strong>of</strong> nutrient resource use. In this respect it isalso high time to change farm<strong>in</strong>g systems entirely based on the production <strong>of</strong> noncarnivorousanimal species (Dey et al. 2002).Raw material and farm operat<strong>in</strong>g costs, <strong>in</strong> addition to an <strong>of</strong>ten static even decreas<strong>in</strong>gmarket value <strong>for</strong> many farmed species, necessitates that the farmer reduce productioncosts so as to ma<strong>in</strong>ta<strong>in</strong> pr<strong>of</strong>itability. Food and <strong>feed</strong><strong>in</strong>g (<strong>in</strong>clud<strong>in</strong>g fertilisation) usuallyrepresent the largest s<strong>in</strong>gle operat<strong>in</strong>g cost item. <strong>The</strong>re<strong>for</strong>e attention must be focusedon further reduc<strong>in</strong>g <strong>feed</strong> costs per unit <strong>of</strong> production through the development and use<strong>of</strong> improved <strong>feed</strong>s and on-farm fertiliser/<strong>feed</strong> and water management techniques(Delgado et al. 1999).F<strong>in</strong>ally, the dietary value and importance <strong>of</strong> aquaculture products <strong>in</strong> human nutritionas a much needed source <strong>of</strong> “af<strong>for</strong>dable” animal <strong>prote<strong>in</strong></strong> should not be overlooked;<strong>fish</strong> be<strong>in</strong>g one <strong>of</strong> the cheapest <strong>sources</strong> <strong>of</strong> animal <strong>prote<strong>in</strong></strong> <strong>in</strong> rural and coastalcommunities. For example, at present freshwater aquaculture (ma<strong>in</strong>ly cypr<strong>in</strong>ids andtilapia) <strong>of</strong>fers one <strong>of</strong> the cheapest <strong>sources</strong> <strong>of</strong> high quality animal <strong>prote<strong>in</strong></strong> with<strong>in</strong> themajor rural <strong>in</strong>land communities <strong>of</strong> Asia, <strong>in</strong>clud<strong>in</strong>g Ch<strong>in</strong>a, India, Indonesia, and thePhilipp<strong>in</strong>es (Delgado et al. 2002).Because an appropriate food supply is crucial to the rear<strong>in</strong>g <strong>of</strong> <strong>fish</strong>, we have focusedon the diet composition and <strong>feed</strong><strong>in</strong>g selectivity <strong>in</strong> early life <strong>of</strong> cod. <strong>The</strong>re<strong>for</strong>e, theaims <strong>of</strong> the case study were to measure partial substitution <strong>of</strong> different k<strong>in</strong>ds <strong>of</strong><strong>fish</strong>meal, corn gluten meal and soybean meal, <strong>in</strong> diets <strong>of</strong> juvenile cod through theexam<strong>in</strong>ation <strong>of</strong> survival, growth, and <strong>feed</strong> per<strong>for</strong>mance.UNU - Fisheries Tra<strong>in</strong><strong>in</strong>g Programme 17


Dacosta-Calheiros3 CASE STUDY<strong>The</strong> effect <strong>of</strong> substitut<strong>in</strong>g alternative <strong>sources</strong> <strong>of</strong> <strong>prote<strong>in</strong></strong> on growth and survival on codfry (Gadus murhua) are studied <strong>in</strong> this section.3.1 Material and methods3.1.1 Source <strong>of</strong> <strong>fish</strong>Cod fry from Þorlákshöfn (the Mar<strong>in</strong>e Research Institute) was transported toSauðárkrókur branch <strong>of</strong> Hólar Agricultural College and the <strong>feed</strong><strong>in</strong>g experiment wasrun there (at Sauðárkrókur, Hólar Agricultural College). 0-year-old cod werema<strong>in</strong>ta<strong>in</strong>ed on a commercial high quality <strong>fish</strong>meal diet <strong>for</strong> two weeks be<strong>for</strong>e the start<strong>of</strong> the study <strong>in</strong> early December.3.1.2 Diet preparation<strong>The</strong> experimental diets were prepared at Laxa Feedmill Ltd and proximatecomposition analysis was carried out on three subsamples (each <strong>in</strong> triplicate). Basedon table values <strong>of</strong> content <strong>in</strong> the <strong>in</strong>gredients, six isocaloric and iso-nitrogenus diets <strong>of</strong>different raw materials were produced as extruded dry <strong>feed</strong>. <strong>The</strong> raw materials testedwere: high quality <strong>fish</strong>meal - superior (LT), high quality <strong>fish</strong>meal - special (NSM),<strong>fish</strong>meal–standard, maize gluten meal (MGM) and HYPRO soya bean meal. Table 3shows the <strong>prote<strong>in</strong></strong> content and the relative price <strong>of</strong> <strong>prote<strong>in</strong></strong> <strong>in</strong> the <strong>prote<strong>in</strong></strong> raw materialused. Table 4 shows the comb<strong>in</strong>ation <strong>of</strong> the raw material <strong>in</strong> order to obta<strong>in</strong> six diets<strong>for</strong> the experiment trial. In addition, the am<strong>in</strong>o acid and fatty acid content <strong>of</strong> each <strong>of</strong>the diets were calculated from table values (Table 5). In the diet <strong>for</strong>mulation it wasensured that the essential fatty acid and am<strong>in</strong>o acid content was above the limit<strong>in</strong>glevels <strong>for</strong> carnivorous <strong>fish</strong> species.Table 3: Prote<strong>in</strong> content and relative price <strong>of</strong> different raw materials from LaxaFeedmill Ltd.Prote<strong>in</strong> content %Superior <strong>fish</strong>meal (LT) 70 100Special <strong>fish</strong>meal (NSM) 70 93Standard <strong>fish</strong>meal 70 90Corn Gluten meal 60 65HYPRO Soybean meal 47 62Relative price <strong>of</strong> <strong>prote<strong>in</strong></strong>Table 4: Percentages <strong>of</strong> raw material <strong>in</strong> the trial.NR Diet SUP % SPES % STAND % MGM % HYPRO %1 SUP 78 0 0 0 02 SUP/SPES 39 39 0 0 03 SUP/STANDARD 39 0 40 0 04 STANDARD 0 0 80 0 05 SUP/MGM 66 0 0 15 06 SUP/HYPRO 70 0 0 0 15UNU - Fisheries Tra<strong>in</strong><strong>in</strong>g Programme 18


Dacosta-CalheirosTable 5: Diet calculated chemical parameters <strong>of</strong> the experimental diet.Nr. Diet DE CP CF S CA CF NFE P Ly Me Cy DMFish1 SUP 16.2 580.0 89.8 124.0 98.6 4.4 139.0 14.9 60 16.6 6.3 908.82 SUP/SPES 16.2 580.0 89.8 124.0 98.6 4.4 139.0 14.9 60 16.6 6.3 908.83 SUP/STANDARD 16.4 580.0 90.4 120.0 107.6 4.2 134.3 15.0 52.3 17.0 5.8 910.64 STANDARD 16.4 580.0 91.0 116.0 116.4 4.1 116.7 15.0 43.6 17.1 5.2 912.25 SUP/MGM 16.4 580.0 80.1 132.9 87.7 5.6 156.0 13.6 52.8 16.6 7.2 905.26 SUP/HYPRO 16.0 580.0 95.6 87.8 97.2 9.2 128.8 14.0 58.4 14.0 6.5 15.7DE <strong>fish</strong>: Digestible energy (MJ); CP: Crude <strong>prote<strong>in</strong></strong> (g/kg); CF: Crude Fat (g/kg); S: Starch (g/kg); CA:Crude Ash (g/kg); CF: Crude fibre (g/kg); NFE: Non <strong>feed</strong><strong>in</strong>g energy (g/kg); P: Phosphorus (g/kg); Ly:Lys<strong>in</strong>e (g/kg); Me: Metion<strong>in</strong>e (g/kg); Cy: Cyste<strong>in</strong>e (g/kg); DM: Dry matter (g/kg).3.1.3 HusbandryFish (<strong>in</strong>itial overall average weight 29 g; SE±0.5 g) were distributed among 18circular fibreglass tanks (50 cod each tank) <strong>of</strong> 40 L-90 L capacity. Tanks are with<strong>in</strong> arecirculation system with a bi<strong>of</strong>ilter and a waste trap solid (flow rate <strong>of</strong> 2 l m<strong>in</strong> 1 ), thewater with<strong>in</strong> each tank was aerated. Temperature was 12±1.5 C, pH 7.2, and meanlevels <strong>of</strong> ammonia and nitrite below 0.1 ppm. A 24 hour light cycle is ma<strong>in</strong>ta<strong>in</strong>ed <strong>in</strong>the facility. Each tank was randomly assigned one <strong>of</strong> six diets (Table 4), and <strong>fish</strong> werethen acclimatised <strong>for</strong> 2 weeks be<strong>for</strong>e be<strong>in</strong>g weighed and length measured<strong>in</strong>dividually. Weight and length <strong>of</strong> <strong>fish</strong> were measured every four weeks throughoutthe <strong>feed</strong><strong>in</strong>g experiment.<strong>The</strong> experiment lasted <strong>for</strong> 16 weeks. However, this project covers only the first fourweeks <strong>of</strong> the trial. At the end <strong>of</strong> the experiment, <strong>fish</strong>es’ <strong>in</strong>dividual weights will bedeterm<strong>in</strong>ed. Fish are fed to apparent satiation once a day.At the start <strong>of</strong> the experiment, six <strong>fish</strong> were taken <strong>for</strong> proximate analysis <strong>in</strong> thebeg<strong>in</strong>n<strong>in</strong>g <strong>for</strong> each dietary treatment. Freshly killed <strong>fish</strong> was stored until proximateanalysis. In the subsequent sampl<strong>in</strong>g the quantity <strong>of</strong> <strong>fish</strong> that will be sacrificed willtake <strong>in</strong>to account optimal density <strong>of</strong> the <strong>fish</strong> <strong>in</strong> the tanks at any time.3.1.4 Growth parameters<strong>The</strong> follow<strong>in</strong>g <strong>for</strong>mula was used to assess growth.Specific growth rate (%SGR) = (ln w 2 -ln w 1 ) 100 (t 2 -t 1 ),where w 2 and w 1 are mean weight, based on the total biomass <strong>in</strong> each tank, <strong>in</strong> gramsat times t 2 and t 1 respectively.3.1.5 Statistical analysisAll data are subjected to one-way analysis <strong>of</strong> variance followed by Duncan’s multiplerange tests <strong>for</strong> comparison <strong>of</strong> the means among different treatments. All analyses willbe conducted us<strong>in</strong>g a s<strong>of</strong>tware package used at the Icelandic Fisheries Laboratories.UNU - Fisheries Tra<strong>in</strong><strong>in</strong>g Programme 19


Dacosta-Calheiros3.2 ResultsSurvival <strong>of</strong> cod fry <strong>for</strong> each <strong>of</strong> the treatments is shown <strong>in</strong> Table 6. <strong>The</strong> highestsurvival was <strong>in</strong> the treatments with dietary regimes SUP/STANDARD andSUP/MGM each with 93.2%. <strong>The</strong> lowest survival was <strong>in</strong> the treatment with thedietary regime STANDARD. Survival <strong>in</strong> relation to the dietary regime was notstatistically significant.Table 6: Survival <strong>of</strong> cod <strong>fish</strong> ma<strong>in</strong>ta<strong>in</strong>ed under different dietary regimes dur<strong>in</strong>g thefirst four weeks <strong>of</strong> the experimental trial.Nr. Diet Survival %1 SUP 90.9 ± 0.22 SUP/SPES 89.4 ± 1.33 SUP/STANDARD 93.2 ± 3.54 STANDARD 85.6 ± 5.15 SUP/MGM 93.2 ± 3.56 SUP/HYPRO 91.6 ± 1.1Growth parameter <strong>in</strong>dicators <strong>of</strong> cod fry <strong>for</strong> each <strong>of</strong> the treatments are given <strong>in</strong> Table7. F<strong>in</strong>al mean weight, <strong>in</strong>crease <strong>in</strong> mean weight as a percentage <strong>of</strong> <strong>in</strong>itial weight andSGR <strong>in</strong>creased with <strong>in</strong>creased high quality <strong>fish</strong>meal. <strong>The</strong>re are no significantdifferences <strong>in</strong> any <strong>of</strong> the parameters calculated. F<strong>in</strong>al mean weight was highest <strong>in</strong> codma<strong>in</strong>ta<strong>in</strong>ed under the dietary regime SUP with only superior <strong>fish</strong>meal, with 43.0 g,cod ma<strong>in</strong>ta<strong>in</strong>ed on treatment STANDARD had the lowest f<strong>in</strong>al weight with 39.3 g.<strong>The</strong> other treatments, partial replacement <strong>of</strong> SUP with SPES; STANDARD; MGMand HYPRO, were <strong>in</strong>termediate. Increases <strong>in</strong> mean weight and SGR show the sametendency as seen <strong>in</strong> Table 7.Table 7: Growth parameters ( ± SE) <strong>of</strong> cod <strong>fish</strong> ma<strong>in</strong>ta<strong>in</strong>ed under different dietaryregimes dur<strong>in</strong>g the first four weeks <strong>of</strong> the experimental trial.Nr. Diet Initial mean F<strong>in</strong>al mean weight Increase mean weight SGR (% day -1 )weight (g)(g)% <strong>of</strong> <strong>in</strong>itial1 SUP 28.0 ± 0.5 a 43.0 ± 2.3 a 53.6 ± 8.5 1.3 ± 0.22 SUP/SPES 29.0 ± 1.5 a 42.7 ± 1.4 a 47.3 ± 2.2 1.2 ± 0.13 SUP/STANDARD 28.0 ± 0.5 a 40.4 ± 1.1 a 44.1 ± 1.0 1.1 ± 0.04 STANDARD 28.7 ± 0.2 a 39.3 ± 2.0 a 37.0 ± 8.1 1.0 ± 0.15 SUP/MGM 28.3 ± 0.2 a 41.1 ± 0.2 a 45.2 ± 0.1 1.1 ± 0.06 SUP/HYPRO 28.7 ± 0.2 a 41.2 ± 0.1 a 43.6 ± 2.2 1.1 ± 0.0Averages are based on mean values <strong>for</strong> all three replicates. Parameter values with thesame superscript are not significantly different (P > 0.05).UNU - Fisheries Tra<strong>in</strong><strong>in</strong>g Programme 20


Dacosta-Calheiros3.3 DiscussionCod <strong>fish</strong> is a carnivorous species, which is considered to have a high culture potential<strong>in</strong> aquaculture (Ingram 2000).Carnivorous species generally require high dietary <strong>prote<strong>in</strong></strong> content, and cod is noexception to this rule, as the <strong>prote<strong>in</strong></strong> requirement <strong>for</strong> optimal growth <strong>of</strong> cod fry is atleast around 50%, by dry weight <strong>of</strong> the diet (Gunasekera et al. 2002). <strong>The</strong> <strong>prote<strong>in</strong></strong>spar<strong>in</strong>g capabilities tend to differ amongst species, both to the extent to which <strong>prote<strong>in</strong></strong>is spared, and the energy source utilised <strong>for</strong> the spar<strong>in</strong>g. For example, <strong>in</strong> salmonidslipid acts as the energy source (Hardy 2000), whilst <strong>in</strong> anguillid eels carbohydrates arethe alternative energy source (Hidalgo et al. 1993, García-Gallego et al. 1995). On theother hand, <strong>in</strong> Asian seabass (Lates calcarifer, Bloch) (Catacutan and Coloso 1997)and hybrid tilapia (Shiau 1997) lipid is known to be spared by carbohydrates as anenergy source. However, the f<strong>in</strong>d<strong>in</strong>gs on <strong>prote<strong>in</strong></strong>-spar<strong>in</strong>g capabilities <strong>in</strong> some warmwater <strong>fish</strong> species, such as tilapia, are not uni<strong>for</strong>m (El-Sayed and Teshima 1991, DeSilva et al. 1991, Hanley 1991, Shiau 1997).In the present study Superior <strong>fish</strong>meal (LT) SUP was partly or fully replaced by other<strong>prote<strong>in</strong></strong> raw materials. <strong>The</strong> raw materials tested as replacements <strong>for</strong> the Superior<strong>fish</strong>meal were Special quality <strong>fish</strong>meal (NSM) SPES, Standard <strong>fish</strong>mealSTANDARD, Maize Gluten Meal MGM and HYPRO Soya bean meal HYPRO.Partial replacement <strong>of</strong> SUP with SPES; STANDARD; MGM and HYPRO or a fullreplacement with Standard did not result <strong>in</strong> a significant decrease <strong>in</strong> growth rate <strong>in</strong>cod fry, although a trend was evident to this effect. Similar effects have been reportedby Albriktsen et al. (2003). <strong>The</strong>y found a significant effect <strong>of</strong> <strong>fish</strong>meal quality ongrowth (LT versus NSM) <strong>in</strong> a trial us<strong>in</strong>g different <strong>in</strong>clusion levels <strong>of</strong> plant <strong>prote<strong>in</strong></strong> rawmaterials (Full-fat Soya meal (2.0, 8.0, and 14.0%) and Maize-gluten meal (4.0, 16.0,28.0 %). At higher levels <strong>of</strong> plant <strong>prote<strong>in</strong></strong> there was a tendency to a negative effect ongrowth. Some <strong>of</strong> the actual raw materials (such as soya bean meal) that have beenused to replace <strong>fish</strong>meal <strong>in</strong> diets <strong>for</strong> <strong>fish</strong>, can conta<strong>in</strong> Tryps<strong>in</strong> <strong>in</strong>hibitor activity (TIA)that can limit utilisation <strong>of</strong> <strong>prote<strong>in</strong></strong> <strong>in</strong> diet (Perez-Maldonado et al. 1999).In this project, there is a tendency <strong>of</strong> reduction <strong>in</strong> survival, growth and SGR whenplant <strong>prote<strong>in</strong></strong> raw material or lower quality <strong>fish</strong>meal is used as a <strong>prote<strong>in</strong></strong> source, butthe effects are not significant. Similar results have been reported <strong>in</strong> the experimentmentioned be<strong>for</strong>e (Albriktsen et al. 2003) where significant effects <strong>of</strong> replacementswere observed. It is presumably due to the fact that the results from the presentexperiment only represent four weeks and the <strong>fish</strong> might need more time to grow <strong>for</strong> alonger period to f<strong>in</strong>d statically significant differences.In experimental trials it is very important to reduce time and costs. It could bepr<strong>of</strong>itable to sample digestive enzymes <strong>of</strong> <strong>fish</strong> <strong>in</strong> order to f<strong>in</strong>d out about its k<strong>in</strong>eticbehaviour. Tryps<strong>in</strong> is the most important digestive enzyme <strong>in</strong> cod (Lemieux et al.1999) as well as <strong>in</strong> other aquatic species (Escaffre et al. 1997, Krogdahl et al. 2003,Li and Selle 2002). Change <strong>in</strong> tryps<strong>in</strong> activity reflects <strong>prote<strong>in</strong></strong> quality, <strong>in</strong> particular ifone can expect TIA activity, <strong>of</strong> <strong>feed</strong>, which <strong>in</strong> turn will affect the growth. Change <strong>in</strong>Tryps<strong>in</strong> activity is fast: <strong>in</strong> 24 hours the effect <strong>in</strong> enzymatic activity will take place.This activity has also has been related to growth <strong>in</strong> several <strong>fish</strong> species (Wong 1975)<strong>The</strong>re<strong>for</strong>e tryps<strong>in</strong> activity can be used as a tool to measure the effects <strong>of</strong> <strong>feed</strong> qualityUNU - Fisheries Tra<strong>in</strong><strong>in</strong>g Programme 21


Dacosta-Calheiroson per<strong>for</strong>mance. This method can accurately predict results <strong>of</strong> future experiments andsuggests new l<strong>in</strong>es <strong>of</strong> work and new ways <strong>of</strong> th<strong>in</strong>k<strong>in</strong>g. <strong>The</strong>re is a cont<strong>in</strong>ual need toref<strong>in</strong>e biological assays to <strong>in</strong>crease the efficiency <strong>of</strong> experiments (Bergmeyer et al.1974).In the present study with cod fry, the SGR (% day -1 ) showed a tendency to <strong>in</strong>creasewith <strong>in</strong>creas<strong>in</strong>g quality <strong>of</strong> the <strong>fish</strong>meal. Such trends are apparent <strong>in</strong>dicators <strong>of</strong> <strong>prote<strong>in</strong></strong>spar<strong>in</strong>geffect <strong>of</strong> <strong>prote<strong>in</strong></strong> quality (van der Meer et al. 1997). It is, there<strong>for</strong>e, possiblethat <strong>in</strong> the present study the dietary <strong>prote<strong>in</strong></strong> levels used were such that they weresufficient to satisfy the basic requirement <strong>for</strong> <strong>prote<strong>in</strong></strong> accretion <strong>in</strong> all the diets eventhough there were differences <strong>in</strong> the quality <strong>of</strong> the <strong>prote<strong>in</strong></strong> component. On the otherhand at lower <strong>prote<strong>in</strong></strong> levels (near to m<strong>in</strong>imum needs <strong>of</strong> digestible <strong>prote<strong>in</strong></strong> <strong>in</strong> the diet),a reduction <strong>in</strong> high quality <strong>fish</strong>meal, with a concurrent <strong>in</strong>crease <strong>in</strong> dietary regime <strong>of</strong>plant <strong>prote<strong>in</strong></strong> raw material could compromise growth, SGR and or <strong>feed</strong> utilisation. <strong>The</strong>present observations suggest that it is possible to substitute high quality <strong>fish</strong>meal withdifferent <strong>prote<strong>in</strong></strong> raw material <strong>in</strong> the <strong>feed</strong> <strong>for</strong> cod fry.<strong>The</strong> present study shows that cod fry could be successfully reared on artificial diets,and that high quality <strong>fish</strong>meal was the best food <strong>in</strong> early life. It is known that mostcarnivorous <strong>fish</strong> species require high <strong>prote<strong>in</strong></strong> diets dur<strong>in</strong>g their earliest stages <strong>of</strong>development (Huet 1972). A slight tendency was found to an <strong>in</strong>creased f<strong>in</strong>al meanweight, <strong>in</strong>creased mean weight as a percentage <strong>of</strong> <strong>in</strong>itial weight and SGR with highquality <strong>fish</strong>meal compared to other diets, support<strong>in</strong>g the notion that <strong>prote<strong>in</strong></strong> qualityaffects <strong>feed</strong> utilisation, which is <strong>in</strong> l<strong>in</strong>e with other studies on Atlantic salmon (Aksnes1995, Hemre et al. 1995, Anderson et al. 1997). However, it is possible that small coddo not use soybean meal and corn gluten meal as well as adult <strong>fish</strong>. Other experimentsconfirmed that high quality <strong>fish</strong>meal <strong>for</strong> cod <strong>fish</strong> fry is the best <strong>in</strong>itial food (Kim et al.2000). Later on when <strong>fish</strong> grow up to f<strong>in</strong>gerl<strong>in</strong>g and grower stages and their <strong>prote<strong>in</strong></strong>requirements get lower as a result <strong>of</strong> age or size they can tolerate replacements <strong>of</strong><strong>fish</strong>meal to a greater extent. This is supported by other authors that have conductedseveral studies on carnivorous <strong>fish</strong> (Albriktsen et al. 2003, Kim et al. 2000, Lee andKim 2001, Gunasekera et al. 2002, Davis et al. 2002, Cho et al. 2001, Grisdale-Helland et al. 2002). <strong>The</strong> results from the present study show that <strong>feed</strong> with a largeproportion <strong>of</strong> animal matter <strong>of</strong> mar<strong>in</strong>e orig<strong>in</strong> and relatively small part <strong>of</strong> plant matterwould be suitable <strong>feed</strong> <strong>for</strong> grow<strong>in</strong>g cod.3.4 ConclusionsCod fry can be successfully reared on artificial diets but high quality <strong>fish</strong>meal appearsto be the best food <strong>for</strong> early life stage.Partial replacement <strong>of</strong> SUP with SPES; STANDARD; MGM and HYPRO or a fullreplacement with Standard did not result <strong>in</strong> a significant decrease <strong>in</strong> growth rates(SGR) <strong>in</strong> cod fry.<strong>The</strong> present observations suggest that it is possible to substitute high quality <strong>fish</strong>mealwith different <strong>prote<strong>in</strong></strong> <strong>in</strong> <strong>feed</strong> <strong>for</strong> cod fry.UNU - Fisheries Tra<strong>in</strong><strong>in</strong>g Programme 22


Dacosta-Calheiros3.5 RecommendationsRegard<strong>in</strong>g future experimental work the results <strong>of</strong> this trial should be reconfirmed andgreater substitution tested.It could be pr<strong>of</strong>itable to sample digestive enzymes <strong>of</strong> <strong>fish</strong> <strong>in</strong> order to f<strong>in</strong>d out moreabout its k<strong>in</strong>etic behaviour and use that to <strong>in</strong>terpret the effects <strong>of</strong> <strong>feed</strong> quality ongrowth.UNU - Fisheries Tra<strong>in</strong><strong>in</strong>g Programme 23


Dacosta-CalheirosACKNOWLEDGEMENTSI would like to express my gratitude to all the people who were <strong>in</strong>volved and havemade the culm<strong>in</strong>ation <strong>of</strong> this project possible, <strong>for</strong> their k<strong>in</strong>d help.To my supervisors: Dr. Jón Árnason from LAXA and Rannveig Björnsdóttir fromIcelandic Fisheries Laboratories and University <strong>of</strong> Akureyri <strong>for</strong> their excellentguidance and advice. I would also like to thank the technical staff at Sauðárkrókur,Hólar Agricultural College <strong>for</strong> giv<strong>in</strong>g us the opportunity to use the <strong>in</strong>stallations <strong>in</strong> theexperimental trials.UNU/FTP lectures and the staff <strong>of</strong> the Mar<strong>in</strong>e Research Institute, Icelandic FisheriesLaboratories, University <strong>of</strong> Iceland and University <strong>of</strong> Akureyri among others.Valdimar Ingi Gunnarsson from MRI who provided several articles to develop theproject. Especially <strong>in</strong> Akureyri to Arnljótur Bjarki and Þorvaldur Þóroddsson <strong>for</strong>valuable aide dur<strong>in</strong>g my stay <strong>in</strong> the north <strong>of</strong> Iceland. Pr<strong>of</strong>essor E<strong>in</strong>ar Júlíusson <strong>for</strong>their k<strong>in</strong>d help <strong>in</strong> statistical analysis.I am <strong>in</strong>debted to Dr. Tumi Tómasson, Director <strong>of</strong> the Programme, and Mr. ÞórÁsgeirsson, Deputy Director, <strong>for</strong> giv<strong>in</strong>g me a chance to study <strong>in</strong> this programme, <strong>for</strong>they valued guidance dur<strong>in</strong>g my study, <strong>for</strong> giv<strong>in</strong>g me plenty <strong>of</strong> their time, talents,knowledge and patience. Special thanks and appreciation to Dr. Tumi Tómasson <strong>for</strong>his experience and human qualities who spent time and ef<strong>for</strong>t improv<strong>in</strong>g mypr<strong>of</strong>essional skills, giv<strong>in</strong>g valuable suggestions and discussions, which have beendecisive <strong>for</strong> the completion <strong>of</strong> this project.Thanks to the fellows 2003 <strong>for</strong> their friendship, company, and good times. I don'tenumerate fear<strong>in</strong>g to <strong>for</strong>get someone.Last, but not least, to my family, <strong>for</strong> their great concern and love all the time that Ispent here <strong>in</strong> Iceland, because they make any event <strong>of</strong> my life possible.UNU - Fisheries Tra<strong>in</strong><strong>in</strong>g Programme 24


Dacosta-CalheirosLIST OF REFERENCESAksnes A. 1995. Growth, <strong>feed</strong> efficiency and slaughter quality <strong>of</strong> salmon, Salmo salarL., given fiids with different ratios <strong>of</strong> carbohydrate and <strong>prote<strong>in</strong></strong>. Aquaculture Nutrition1, 241-248.Albriktsen, S, H. Mundheim, and Britt, H. 2003. Effect <strong>of</strong> us<strong>in</strong>g different <strong>in</strong>clusionlevels <strong>of</strong> plant <strong>prote<strong>in</strong></strong> raw materials replacement <strong>fish</strong> meal quality on growth <strong>of</strong> codfry (Gadus morhua). Presentation at SSF Industry-Sem<strong>in</strong>ar. 9-10 December. Bergen,Norway.Al Hafedh, Y. S. 1999. Effects <strong>of</strong> dietary <strong>prote<strong>in</strong></strong> on growth and body composition <strong>of</strong>Nile tilapia, Oreochromis niloticus L. Effects <strong>of</strong> dietary <strong>prote<strong>in</strong></strong> on growth and bodycomposition <strong>of</strong> Nile tilapia, Oreochromis niloticus L. Aquaculture Research Volume:30: 385-393.Anderson, J. S., Higgs,D.A., Beames,R.M., Rowshandeli, M..1997. Fish meal qualityassessment <strong>for</strong> Atlantic salmon (Salmo salar L.) reaed <strong>in</strong> sea water.Aquacult .Nutr,3:5-38.Arun, B. and Amararatne, Y. 2003. Mixed <strong>feed</strong><strong>in</strong>g schedules <strong>in</strong> semi-<strong>in</strong>tensive pondculture <strong>of</strong> Nile tilapia, Oreochromis niloticus, L.: is it necessary to have two diets <strong>of</strong>differ<strong>in</strong>g <strong>prote<strong>in</strong></strong> contents? Aquaculture Research, 34(14): 1343-1352.Berge, G.; Grisdale-Helland, B. And Helland, S. 1999. Soy <strong>prote<strong>in</strong></strong> concentrate <strong>in</strong>diets <strong>for</strong> Atlantic halibut (Hippoglossus hippoglossu). Aquaculture 178: 139–148.Bergmeyer, H.U., E. Bernt., F. Schmidt, and H. Stork. 1974. D-Glucose:Determ<strong>in</strong>ation with hexok<strong>in</strong>ase and glucose-6-phosphate dehydrogenase. In H.U.Bergmeyer (ed.), Methods <strong>of</strong> Enzymatic Analysis. vol. 3. Academic Press, New York,NY, pp. 1196_1201.Blanc, T. and Margraf, J. 2002. Effects <strong>of</strong> nutrient enrichment on channel cat<strong>fish</strong>growth and consumption <strong>in</strong> Mount Storm Lake, West Virg<strong>in</strong>ia. Lakes & Reservoirs:Research and Management 7 (2), 109-123).Borghans, J.; De Boer, R. and Segel, L. 1996. Extend<strong>in</strong>g the quasi-steady stateapproximation by chang<strong>in</strong>g variables. Bullet<strong>in</strong> <strong>of</strong> Mathematics Biology. 58, 43–63.Brett, J. 1979. Environmental factors and growth. Fish Physiology. vol. 8 (eds.Hoar,W.S., Randall, D.J. & Brett, J.R.), pp. 599-675. Academic Press, New York.Budd<strong>in</strong>gton, R.; Budd<strong>in</strong>gton, K.; Deng, D. Hemre, G. and Wilson, R. 2002. HighRet<strong>in</strong>ol Dietary Intake Increases its Apical Absorption by the Proximal SmallIntest<strong>in</strong>e <strong>of</strong> Juvenile Sunsh<strong>in</strong>e Bass (Morone chrysopsx M. saxatilis). <strong>The</strong> Journal <strong>of</strong>Nutrition, 132(9): 713-2716.Catacutan, M.R. and Coloso, R.M. 1997. Growth <strong>of</strong> juvenile Asian seabass, Latescalcarifer, fed vary<strong>in</strong>g carbohydrate and lipid levels. Aquaculture, 149, 137–144UNU - Fisheries Tra<strong>in</strong><strong>in</strong>g Programme 25


Dacosta-CalheirosChang, S.L., Huang, C.M. and I.C. Liao. 1988. Effects <strong>of</strong> various <strong>feed</strong>s on seedproduction by Taiwanese red tilapia. In: Proceed<strong>in</strong>gs <strong>of</strong> the 2nd InternationalSymposium on Tilapia <strong>in</strong> Aquaculture. Pull<strong>in</strong>, R.S.V., Rhukaswan, T., Tonguthai, K.and Maclean, J.L., Eds. ICLARM, Bangkok.Chen, J.: Li, X.; Balnave, D. and Brake, J. 2002. <strong>The</strong> <strong>in</strong>fluence <strong>of</strong> dietary sodiumchloride and methion<strong>in</strong>e activity source on apparent ideal digestibility <strong>of</strong> arg<strong>in</strong><strong>in</strong>e andlys<strong>in</strong>e at two different dietary arg<strong>in</strong><strong>in</strong>e: lys<strong>in</strong>e ratios. Poultry Science. 81 (Suppl 1):56.Cho, S.; Jo, J. and Kim, D. 2001. Effects <strong>of</strong> variable <strong>feed</strong> allowance with constantenergy and ratio <strong>of</strong> energy to <strong>prote<strong>in</strong></strong> <strong>in</strong> a diet <strong>for</strong> constant <strong>prote<strong>in</strong></strong> <strong>in</strong>put on the growth<strong>of</strong> common carp Cypr<strong>in</strong>us carpio L. Aquaculture Research, Vol. 32(5), pp. 349-356.Cowey, C. B., J. A. Pope, J. W. Adron, and A. Blair. 1972. Studies on the nutrition <strong>of</strong>mar<strong>in</strong>e flat<strong>fish</strong>. <strong>The</strong> <strong>prote<strong>in</strong></strong> requirement <strong>of</strong> plaice (Pleuronectes platessa). BritannicJournal Nutrition. 28: 447-456Cowey, C.B. and Cho, C.Y.. 1993. Nutritional requirements <strong>of</strong> <strong>fish</strong>. Proceed<strong>in</strong>gs <strong>of</strong>the Nutrition Society, 52: 417-426.Cuzon, G., Gaxiola, G., Garcia, T., Sanchez, A., Aquacop., 2002. Raw <strong>in</strong>gredients <strong>for</strong>mar<strong>in</strong>e aquaculture <strong>fish</strong>. In: Cruz-Suárez, L. E., Ricque-Marie, D., Tapia-Salazar, M.,Gaxiola-Cortés, M. G., Simoes, N. (Eds.). Avances en Nutrición Acuícola VI.Memorias del VI Simposium Internacional de Nutrición Acuícola. 3-6 de Septiembredel 2002. Cancún, Qu<strong>in</strong>tana Roo, México.Dabrowski, K. R. 1977. Prote<strong>in</strong> requirements <strong>of</strong> grass carp fry (Ctenopharyngodonidella). Aquaculture 12: 63-73.Dabrowski, K., Kozak, B., 1979. <strong>The</strong> use <strong>of</strong> <strong>fish</strong> meal and soybean meal as a <strong>prote<strong>in</strong></strong>source <strong>in</strong> the diet <strong>of</strong> grass carp fry. Aquaculture 18, 107-114.Daniel E. Barziza, J. Alejandro Buentello and Delbert M. Gatl<strong>in</strong> . 2000. DietaryArg<strong>in</strong><strong>in</strong>e Requirement <strong>of</strong> Juvenile Red Drum (Sciaenops ocellatus) Based on WeightGa<strong>in</strong> and Feed Efficiency. <strong>The</strong> Journal <strong>of</strong> Nutrition. 130:1796-1799.)Davis, D.; Lazo, J. and Arnold, C. 2002. Response <strong>of</strong> juvenile red drum to practicaldiets supplemented with medium cha<strong>in</strong> triglycerides. Fish Physiology andBiochemistry. 21:235-247Day, O. and González P. 2003. Soybean <strong>prote<strong>in</strong></strong> concentrate as a <strong>prote<strong>in</strong></strong> source <strong>for</strong>turbot Scophthalmus maximus L. Aquaculture Nutrition 6; 221-228De Silva, S.S., Gunasekera, R.M. & Shim, K.F. 1991. Interactions <strong>of</strong> vary<strong>in</strong>g dietary<strong>prote<strong>in</strong></strong> and lipid levels on young red tilapia: evidence <strong>of</strong> <strong>prote<strong>in</strong></strong> spar<strong>in</strong>g. Aquaculture,95, 305–318UNU - Fisheries Tra<strong>in</strong><strong>in</strong>g Programme 26


Dacosta-CalheirosDelgado, C. L., M. Rosegrant, H. Ste<strong>in</strong>feld, S. Ehui, and C. Courbois. 1999. Livestockto 2020: <strong>The</strong> next food revolution. Food, Agriculture, and the EnvironmentDiscussion Paper No. 28. Wash<strong>in</strong>gton, D.C.: International Food Policy ResearchInstitute.Delgado, C. L., M. Rosegrant, N. Wada, and S. Meijer. 2002. Livestock and <strong>fish</strong>eriesto 2020: <strong>The</strong> food revolution <strong>in</strong> develop<strong>in</strong>g countries cont<strong>in</strong>ues. Unpublished draft <strong>of</strong>Markets, Trade, and Institutions Division Discussion Paper. International Food PolicyResearch Institute, Wash<strong>in</strong>gton, D.C.Dey, M. M., M. Ahmed, K. M. Jahan, and M. A. Rab. 2002. Analysis <strong>of</strong> <strong>fish</strong> tradepolicies <strong>in</strong> develop<strong>in</strong>g Asian countries: Liberalization vs. barriers. Paper presented atthe biennial meet<strong>in</strong>gs <strong>of</strong> the International Institute <strong>of</strong> Fisheries Economics and Trade,held <strong>in</strong> Well<strong>in</strong>gton, New Zealand, August 19–23.Deyab, M. El-Saidy, D.; Magdy, M. and Gaber R. 2003. Replacement <strong>of</strong> <strong>fish</strong> mealwith a mixture <strong>of</strong> different plant <strong>prote<strong>in</strong></strong> <strong>sources</strong> <strong>in</strong> juvenile Nile tilapia, Oreochromisniloticus (L.) diets. Aquaculture Research, 34: 1119-1127El-Saidy, D.; Dabrowski, K. and Ba, S. 2000. Nutritional effects <strong>of</strong> <strong>prote<strong>in</strong></strong> source <strong>in</strong>starter diets <strong>for</strong> channel cat<strong>fish</strong> (Ictalurus punctatus Raf<strong>in</strong>esque) <strong>in</strong> suboptimal watertemperature. Aquaculture Research, 2000, 31, 885-892.El-Saidy, D. and Gaber, M. 2002. Complete replacement <strong>of</strong> <strong>fish</strong> meal by soybeanmeal with dietary L-lys<strong>in</strong>e supplementation <strong>for</strong> Nile tilapia Oreochromis niloticus (L.)f<strong>in</strong>ger<strong>in</strong>gs. <strong>The</strong> Journal <strong>of</strong> World Aquaculture Society. 33(3): 297-306.El Sayed, A. 1998. Total replacement <strong>of</strong> <strong>fish</strong> meal with animal <strong>prote<strong>in</strong></strong> <strong>sources</strong> <strong>in</strong> Niletilapia, Oreochromis niloticus (L.), <strong>feed</strong>s. Aquaculture Research Volume 29 Issue 4:275-280.El-Sayed, A. and Teshima, S. 1991. Tilapia nutrition <strong>in</strong> aquaculture. Reviews <strong>in</strong>aquatic sciences. 5 (3-4):247-265.Escaffre, A. ., Infante, J. L. Z., Cahu, C. L., Mambr<strong>in</strong>i, M., Bergot, P., Kushik, S. J.,1997. Nutritional value <strong>of</strong> soy <strong>prote<strong>in</strong></strong> concentrate <strong>for</strong> larvae <strong>of</strong> common carp(Cypr<strong>in</strong>us carpio) based on growth per<strong>for</strong>mance and digestive enzyme activities.Aquaculture 153, 63-80.Food and Drug Adm<strong>in</strong>istration (FDA). 2001. Chapter 22: Aquaculture Drugs. In Fishand Fishery Products Hazards and Controls Guide. (Second Edition). FDA:Wash<strong>in</strong>gton. 2 May 2003, [7-02-2004]F<strong>in</strong>ke, M.; DeFoliart, D. and Benevenga, N. 1987. Use <strong>of</strong> simultaneous curve fitt<strong>in</strong>gand a four-parameter logistic model to evaluate the nutritional value <strong>of</strong> <strong>prote<strong>in</strong></strong><strong>sources</strong> at growth rates <strong>of</strong> rats from ma<strong>in</strong>tenance to maximum ga<strong>in</strong>. <strong>The</strong> Journal <strong>of</strong>Nutrition. 117: 1681-1688.UNU - Fisheries Tra<strong>in</strong><strong>in</strong>g Programme 27


Dacosta-CalheirosFitzsimmons, K. 2000. Tilapia: <strong>The</strong> most important aquaculture species <strong>of</strong> the 21 stcentury. Pages 3-8 <strong>in</strong> K. Fitzsimmons and J. C. Filho, eds., Tilapia aquaculture <strong>in</strong> the21 st century. Rio de Janeiro, Brazil. Proceed<strong>in</strong>gs from the Fifth InternationalSymposium on Tilapia Aquaculture. 682 p.Fontaínhas-Fernandes, A.; Gomes, E.; Reis-Henriques, M. and Coimbra, J. 1999.Replacement <strong>of</strong> Fish Meal by Plant Prote<strong>in</strong>s <strong>in</strong> the Diet <strong>of</strong> Nile Tilapia: Digestibilityand Growth Per<strong>for</strong>mance. Aquaculture International 7 (1): 57-67.García-Gallego, M., Bazoco, J., Suárez, M.D. & Sanz, A. (1995) Utilization <strong>of</strong> dietarycarbohydrate by <strong>fish</strong>: a comparative study <strong>in</strong> eel and trout. Anim Sci., 61, 427–436Garl<strong>in</strong>g, D.L. and Wilson, R.P. 1976. Optimum dietary <strong>prote<strong>in</strong></strong> to energy ratios <strong>for</strong>channel cat<strong>fish</strong> f<strong>in</strong>gerl<strong>in</strong>gs, Ictalurus punctatus. J. Nutr., 106, 1368-1375.Gorbach, S.L. 2001. Antimicrobial Use <strong>in</strong> Animal Feed – Time to Stop. New EnglandJournal <strong>of</strong> Medic<strong>in</strong>e. 345(16): 1-3.Gozdowska, M. Soko owska E. and Kulczykowska, E. 2003. Plasma Ca 2+concentration limits melaton<strong>in</strong> night production <strong>in</strong> two <strong>fish</strong> species. Journal <strong>of</strong> FishBiology, 62: 1405–1413.Grisdale-Helland, B; Helland, D.; Baeverfjord, G., and Berge, G. 2002. Full-fatsoybean meal <strong>in</strong> diets <strong>for</strong> Atlantic halibut: growth, metabolism and <strong>in</strong>test<strong>in</strong>alhistology. Aquaculture Nutrition 8; 265-270Gunasekera, R. M. , Turoczy, N. J., De Silva, S. S., Gav<strong>in</strong>e, F., Gooley, G. J. 2002.An evaluation <strong>of</strong> the suitability <strong>of</strong> selected waste products <strong>in</strong> <strong>feed</strong>s <strong>for</strong> three <strong>fish</strong>species. Journal <strong>of</strong> Aquatic Food Product Technology, 11, 57- 78.HaeYoung Moon Lee, Kee-Chae Ch, Jeong-Eui Lee and Sang-Geun Yang., 2001,Dietary <strong>prote<strong>in</strong></strong> requirement <strong>of</strong> juvenile giant croaker, Nibea japonica Temm<strong>in</strong>ck &Schlegel. Aquaculture Research 32 (Suppl. 1), 112-118.Hafez, F.; Samia A.; Hashih, M.; El-Husse<strong>in</strong>y, O. and El-Wally, A. 2000. Tilapiaculture <strong>in</strong> sal<strong>in</strong>e waters: a review. Aquaculture Research, 33 (Suppl. 1), 143-152.Halver, J.E., DeLong, D.C. and Mertz, E.T. 1958. Threon<strong>in</strong>e and lys<strong>in</strong>e requirements<strong>of</strong> ch<strong>in</strong>ook salmon. Federation <strong>of</strong> American Societies <strong>for</strong> Experimental BiologyFederation <strong>of</strong> American Societies <strong>for</strong> Experimental Biology: 17, pp. 1873 (Abstr.).Halver, J. E., L. S. Bates, and E. T. Mertz. 1964. Prote<strong>in</strong> requirements <strong>of</strong> sockeyesalmon and ra<strong>in</strong>bow trout. Federation <strong>of</strong> American Societies <strong>for</strong> Experimental Biology23: 1778 (abstr.).Hanley, F. (1991) Effects <strong>of</strong> <strong>feed</strong><strong>in</strong>g supplementary diets conta<strong>in</strong><strong>in</strong>g vary<strong>in</strong>g levels <strong>of</strong>lipid on growth, food convesrion, and body composition <strong>of</strong> Nile tilapia, Oreochromisniloticus (L.). Aquaculture, 93, 323–334.UNU - Fisheries Tra<strong>in</strong><strong>in</strong>g Programme 28


Dacosta-CalheirosHardy, R.W. 2000. Advances <strong>in</strong> the development <strong>of</strong> low-pollution <strong>feed</strong>s <strong>for</strong>salmonids. Global Aquacul. Advocate, 3, 63–67.Harpaz, S.; Jiang H. and D Sklan. 2001. Evaluation <strong>of</strong> silver perch (Bidyanusbidyanus, Mitchell) nutritional requirements dur<strong>in</strong>g grow-out with high and low<strong>prote<strong>in</strong></strong> diets at two <strong>feed</strong><strong>in</strong>g levels. Aquaculture Research, 2001, 32, 57-64.Hemre G.I., Sandnes K., Lie Ø ., Torrissen O. And Waagbø R. 1995. Carbohydratenutrition <strong>in</strong> Atlantic salmon (Salmo salar). Growth and <strong>feed</strong> utilization. AquacultureResearch, 26, 149-154.Hidalgo, M.C., Sanz, A., García- Gallego, M.G., Suárez, M.D. & de la Higuera, M.1993. Feed<strong>in</strong>g <strong>of</strong> the European eel (Anguilla anguilla). I. Influence <strong>of</strong> dietarycarbohydrate level. Comparative Biochemistry and Physiology, 105A, 165–169.Huet, M., 1972. Breed<strong>in</strong>g and cultivation <strong>of</strong> salmonids. In: Text Book <strong>of</strong> Fish CultureBreed<strong>in</strong>g and Cultivation <strong>of</strong> Fish, pp. 59-110. Fish<strong>in</strong>g News Books, Surrey, EnglandIngram, B.A. (ed.) 2000. Murray Cod Aquaculture; A Potential Industry <strong>for</strong> the NewMillennium. Proceed<strong>in</strong>gs <strong>of</strong> a Workshop, January. Mar<strong>in</strong>e and Freshwater Re<strong>sources</strong>Institute, Alexandra, Victoria, Australia.In<strong>for</strong>mation Centre <strong>of</strong> Food and Agriculture Organization (FAO). 2 November 2000.[7-02-2004] Jauncey, K. 1982. <strong>The</strong> effects <strong>of</strong> vary<strong>in</strong>g dietary <strong>prote<strong>in</strong></strong> level on the growth, foodconversion, <strong>prote<strong>in</strong></strong> utilization, and body composition <strong>of</strong> juvenile tilapias(Sarotherodon mossambicus). Aquaculture 27: 43-54.Jones, R. 1982. Ecosystems, food cha<strong>in</strong> and <strong>fish</strong> yields. In: D. Pauly & G. I. Murphy(eds.), <strong>The</strong>ory and management <strong>of</strong> tropical <strong>fish</strong>eries. International Center <strong>for</strong> Liv<strong>in</strong>gAquatic Re<strong>sources</strong> Management. Conference Procedures, 9: 195-239.Kanazawa, A., S. Teshima, M. Sakamoto, and A. Sh<strong>in</strong>omiya. 1980. Nutritionalrequirements <strong>of</strong> the puffer <strong>fish</strong>: Purified test diet and the optimum <strong>prote<strong>in</strong></strong> level.Bullet<strong>in</strong> <strong>of</strong> the Japanese Society <strong>of</strong> Scientific Fisheries. 46: 1357-1361.Kev<strong>in</strong>, F.; Circa, A.; Jiménez, E.; Muñoz, N. and Pereda, D. 1999. Development <strong>of</strong>low-cost supplemental <strong>feed</strong>s <strong>for</strong> tilapia <strong>in</strong> pond and cage culture. In: K. McElwee, D.Burke, M. Niles, and H. Egna (Editors), Sixteenth Annual Technical Report. PondDynamics/ Aquaculture CRSP, Oregon State University, Corvallis, Oregon, 1-8.Kim J., Lall S. and Milley J. 2000. Dietary <strong>prote<strong>in</strong></strong> requirements <strong>of</strong> juvenile haddock(Melanogrammus aeglef<strong>in</strong>us L.) Aquaculture Research 32 (Suppl. 1), 1-7.Kotzamanis, Y.; Alexis, M.; Andriopoulou, A.; Castritsi-Cathariou, I. and Fotis, F.2001. Utilization <strong>of</strong> waste material result<strong>in</strong>g from trout process<strong>in</strong>g <strong>in</strong> gilthead bream(Sparus aurata L.) diets. Aquaculture Research, 32 (Suppl. 1), 288-295.UNU - Fisheries Tra<strong>in</strong><strong>in</strong>g Programme 29


Dacosta-CalheirosKrogdahl, A.; Bakke-McKellep A. and Baeverfjord, G. 2003. Effects <strong>of</strong> graded levels<strong>of</strong> standard soybean meal on <strong>in</strong>test<strong>in</strong>al structure, mucosal enzyme activities, andpancreatic response <strong>in</strong> Atlantic salmon (Salmo salar L.). Aquaculture Nutrition, 9:361-371.Lall, S. P. and Bishop, F.J. 1977. Studies on m<strong>in</strong>eral and <strong>prote<strong>in</strong></strong> utilization byAtlantic salmon grown <strong>in</strong> sea water. Technical Reports Fish Mar<strong>in</strong>e Service ResearchDevelopment. No. 688, 1–16.Lambert, Y. and Dutil, J-D. (2001). Food <strong>in</strong>take and growth <strong>of</strong> adult Atlantic cod(Gadus morhua L.)reared under different conditions <strong>of</strong> stock<strong>in</strong>g density, <strong>feed</strong><strong>in</strong>gfrequency and size-grad<strong>in</strong>g. Aquaculture 192: 233-247.Lee, S.M. and Kim, K.D. 2001. Effects <strong>of</strong> dietary <strong>prote<strong>in</strong></strong> and energy levels on thegrowth, <strong>prote<strong>in</strong></strong> utilization and body composition <strong>of</strong> juvenile masu salmon(Oncorhynchus masou Brevoort). Aquaculture Research, Vol.32(Supplement 1), pp.39-45.Lemieux, H., P. Blier and J.-D. Dutil. Do digestive enzymes set a physiological limiton growth rate and food conversion efficiency <strong>in</strong> the Atlantic cod (Gadus morhua)?Fish Physiology and Biochemistry, 20: 293–303, 1999.Li, X. and Selle, P. 2002. Feed enzymes and am<strong>in</strong>o acid digestibility <strong>of</strong> <strong>feed</strong><strong>in</strong>gredients. Proceed<strong>in</strong>gs <strong>of</strong> Nutrition Society Australia 26:S259.Li, X., Kurko, K.; Huang, K. and Bryden, W. 2002. Per<strong>for</strong>mance <strong>of</strong> broilers fed diets<strong>for</strong>mulated us<strong>in</strong>g total or digestible am<strong>in</strong>o acid values. Proceed<strong>in</strong>gs AustralianPoultry Scientific Symposium. 14:179.Lim, C., S. Sukhawongs, and F. P. Pascual. 1979. A prelim<strong>in</strong>ary study on the <strong>prote<strong>in</strong></strong>requirements <strong>of</strong> (Chanos chanos) (Forskal) fry <strong>in</strong> a controlled environment.Aquaculture 17: 195-201.Lutz, C. 2000. Production economics and potential competitive dynamics <strong>of</strong>commercial tilapia culture <strong>in</strong> the Americas. Pages 119-132. In: B. A. Costa-Pierce andJ. E. Rakocy, eds. Tilapia Aquaculture <strong>in</strong> the Americas, Vol. 2. <strong>The</strong> WorldAquaculture Society, Baton Rouge, LA, USA.Mazid, M. A., Y. Tanaka, T. Katayama, M. A. Rahman, K. L. Simpson, and C. O.Chichester. 1979. Growth response <strong>of</strong> Tilapia zillii f<strong>in</strong>gerl<strong>in</strong>gs fed isocaloric dietswith variable <strong>prote<strong>in</strong></strong> levels. Aquaculture 18: 115-122.Michaelis, L. and Menten, L. 1913. K<strong>in</strong>etics enzymatic reaction. Biochem. Z. 49,333–369.Meyer, D. (Editor), 6 to Simposio Centroamericano de Acuacultura Proceed<strong>in</strong>gs:Tilapia Sessions, 22–24 August 2001. Tegucigalpa, Honduras, pp. 61–70.UNU - Fisheries Tra<strong>in</strong><strong>in</strong>g Programme 30


Dacosta-CalheirosMillik<strong>in</strong> M. R. 1983. Interactive effects <strong>of</strong> dietary <strong>prote<strong>in</strong></strong> and lipid on growth and<strong>prote<strong>in</strong></strong> utilization <strong>of</strong> age-0 striped bass. Transactions <strong>of</strong> the American FisheriesSociety Publication. 112: 185-193.Nose, T., and S. Arai. 1972. Optimum level <strong>of</strong> <strong>prote<strong>in</strong></strong> <strong>in</strong> purified test diet <strong>for</strong> eel(Anguilla japonica). Bullet<strong>in</strong> <strong>of</strong> the Freshwater Fisheries Research Laboratory, Tokyo22: 145-155.National Research Council (NRC). 1993. Nutrient Requirements <strong>of</strong> Fish. NationalAcademy Press, Wash<strong>in</strong>gton, DC.Og<strong>in</strong>o, C., and K. Saito. 1970. Prote<strong>in</strong> nutrition <strong>in</strong> <strong>fish</strong>. 1. <strong>The</strong> utilization <strong>of</strong> dietary<strong>prote<strong>in</strong></strong> by young carp. Bullet<strong>in</strong> <strong>of</strong> the Japanese Society <strong>of</strong> Scientific Fisheries. 36:250-254.Panagiotis A. Pantazis, Christos N. Ne<strong>of</strong>itou. 2003. Feed<strong>in</strong>g Frequency and <strong>feed</strong><strong>in</strong>take <strong>in</strong> the african cat<strong>fish</strong> Clarias gariep<strong>in</strong>us (Burchell 1822). <strong>The</strong> Israeli Journal <strong>of</strong>Aquaculture Volume 55 (3), pgs. 160-168.Perez-Maldonado, R.A., Mannion, P.F., Farrell, D.J. and James, A.T. 1999. RawSoybean Selected <strong>for</strong> Low Tryps<strong>in</strong> Inhibitor Activity For Poultry Diets. Proceed<strong>in</strong>gs<strong>of</strong> Queensland Poultry Science Symposium.Popma, T. and Michael, M. 1999. Tilapia Life History and Biology. SouthernRegional Aquaculture Center, SRAC Publication No. 283, March, 1999. [7-02-2004].Purchase, C.F., and J.A. Brown, 2000. Inter-population differences <strong>in</strong> growth ratesand food conversion efficiencies <strong>of</strong> young Grand Banks and Gulf <strong>of</strong> Ma<strong>in</strong>e Atlanticcod (Gadus morhua L.). Canadian Journal <strong>of</strong> Fisheries and Aquatic Sciences, 57:2223-2229.Rob<strong>in</strong>son, E. and Li, M. 1996. A practical guide to nutrition, <strong>feed</strong>, and <strong>feed</strong><strong>in</strong>g <strong>of</strong>cat<strong>fish</strong>: Revised. Technical Bullet<strong>in</strong> Mississippi Agriculture and Forest ExploitationState No. 1041. Mississippi State University, Mississippi, State, MS.Sabaut, J. J., and P. Luquet. 1973. Nutritional requirements <strong>of</strong> the gilthead bream(Chrysophyrys aurata), quantitative <strong>prote<strong>in</strong></strong> requirements. Mar<strong>in</strong>e Biology. 18: 50-54.Santiago, C., Aldaba, M., Aubuan, E. and Laron, M. 1985. <strong>The</strong> effects <strong>of</strong> artificialdiets on fry production and growth <strong>of</strong> Oreochromis niloticus breeders. Aquaculture,47:193.Satia, B. P. 1974. Quantitative <strong>prote<strong>in</strong></strong> requirements <strong>of</strong> ra<strong>in</strong>bow trout. <strong>The</strong> ProgressiveFish-Culturist. 36: 80-85.Shiau, S. 1997. Utilization <strong>of</strong> carbohydrates <strong>in</strong> warmwater <strong>fish</strong> - with particularreference to tilapia, Oreochromis niloticus x O. aureus. Aquaculture 151:79-96.UNU - Fisheries Tra<strong>in</strong><strong>in</strong>g Programme 31


Dacosta-CalheirosSugiura, S. H., Gabaudan, J., Dong, F. M., Hardy, R.W., 2001. Dietary microbialphytase supplementation and the utilization <strong>of</strong> phosphorus, trace m<strong>in</strong>erals and <strong>prote<strong>in</strong></strong>by ra<strong>in</strong>bow trout [Oncorhynchus mykiss (Walbaum)] fed soybean meal-based diets.Aquaculture Research, 32(7): 583-592Tabe, L.; Rav<strong>in</strong>dran, R.; Bryden, W and Higg<strong>in</strong>s, T. 2002. Poultry <strong>feed</strong>s fromrecomb<strong>in</strong>ant DNA technology. Procced<strong>in</strong>gs <strong>of</strong> the Jo<strong>in</strong>t 7th Western Political ScienceAssociation. Asian Pacific Federation Conference and 12th Australian Poultry andFeed Convention. P. 211. Bryden, W.L.Tacon, A. 1987. <strong>The</strong> Nutrition and Feed<strong>in</strong>g <strong>of</strong> Farmed Fish and Shrimp.GCP/RAL/075/ITA, Field Document 2/E. Food and Agriculture Organization <strong>of</strong> the<strong>United</strong> <strong>Nations</strong>, Brasilia.Tacon, A. 1994. Dependence <strong>of</strong> <strong>in</strong>tensive aquaculture systems on <strong>fish</strong>meal and other<strong>fish</strong>ery re<strong>sources</strong>. Food and Agriculture Organization Aquaculture Newsletter, 6: 10-16.Takeda, M., S. Shimeno, H. Hosokawa, H. Kajiyama, and T. Kaisyo. 1975. <strong>The</strong> effect<strong>of</strong> dietary calorie to <strong>prote<strong>in</strong></strong> ratio on the growth, <strong>feed</strong> conversion, and bodycomposition <strong>of</strong> young yellowtail. Bullet<strong>in</strong> <strong>of</strong> the Japanese Society <strong>of</strong> ScientificFisheries. 41:443-447.Takeuchi, T., T. Watanabe, and C. Og<strong>in</strong>o. 1979. Optimum ratio <strong>of</strong> dietary energy to<strong>prote<strong>in</strong></strong> <strong>for</strong> carp. Bullet<strong>in</strong> <strong>of</strong> the Japanese Society <strong>of</strong> Scientific Fisheries. 45: 983-987.Teng, S., T. Chua, and P. Lim. 1978. Prelim<strong>in</strong>ary observations on the dietary <strong>prote<strong>in</strong></strong>requirement <strong>of</strong> estuary grouper Ep<strong>in</strong>ephelus salmoides Maxwell, cultured <strong>in</strong> float<strong>in</strong>gnet-cages. Aquaculture 15: 257-271.<strong>The</strong> Cuban M<strong>in</strong>istry <strong>of</strong> Fisheries, 2001. In<strong>for</strong>mation Centre <strong>of</strong> the Cuban M<strong>in</strong>istry <strong>of</strong>Fisheries. 27 August 2001. [7-02-2004]<strong>The</strong> Icelandic M<strong>in</strong>istry <strong>of</strong> Fisheries, 2002. In<strong>for</strong>mation Centre <strong>of</strong> the IcelandicM<strong>in</strong>istry <strong>of</strong> Fisheries. 31 May 2003. [7-02-2004]Tibbetts, S., Lall S. and Milley, J. 2001. Effect <strong>of</strong> Dietary Prote<strong>in</strong>/Energy Ratio onGrowth, Nutrient Utilization and Hepatosomatic Index <strong>of</strong> Juvenile Haddock,Melanogrammus aeglef<strong>in</strong>us. Current Issues <strong>in</strong> Salmonid and Mar<strong>in</strong>e Fish Nutrition.10: 30-1230.Turano, M.J., D.A. Davis and C.R. Arnold. 2002. Optimization <strong>of</strong> growout diets <strong>for</strong>red drum, Sciaenops ocellatus. Aquaculture Nutrition. 8:95-101.van der Meer, M.B., Zampra, J.E. & Verdegem, M.C.J. 1997. Effect <strong>of</strong> dietary lipidlevel on <strong>prote<strong>in</strong></strong> utilisation and the size and proximate composition <strong>of</strong> bodycompartments <strong>of</strong> Colossoma macropomum (Cuvier). Aquacult. Res., 28, 405–417UNU - Fisheries Tra<strong>in</strong><strong>in</strong>g Programme 32


Dacosta-CalheirosWang, K. W., T. Takeuchi, and T. Watanabe. 1985. Effect <strong>of</strong> dietary <strong>prote<strong>in</strong></strong> levels ongrowth <strong>of</strong> Tilapia nilotica. Bullet<strong>in</strong> <strong>of</strong> the Japanese Society <strong>of</strong> Scientific Fisheries. 51:133-140.Webster, C. D., Tiu, L. G. and Tidwell, J. H. 1997. Effects <strong>of</strong> replac<strong>in</strong>g <strong>fish</strong> meal <strong>in</strong>diets on growth and body composition <strong>of</strong> palmetto bass (Morone saxatilis X M.chrysops). Journal <strong>of</strong> Applied Aquaculture. 7: 53-67.Wee, K. L., and A. G. J. Tacon. 1982. A prelim<strong>in</strong>ary study on the dietary <strong>prote<strong>in</strong></strong>requirement <strong>of</strong> juvenile snakehead. Bullet<strong>in</strong> <strong>of</strong> the Japanese Society <strong>of</strong> ScientificFisheries. 48: 1463-1468.Wilson, R. 1989. Prote<strong>in</strong> and am<strong>in</strong>o acid requirements <strong>of</strong> <strong>fish</strong>es. pp.51-76, In: S.Y.Shiau (ed.). Progress <strong>in</strong> <strong>fish</strong> nutrition. Mar<strong>in</strong>e Food Science Series No.9. NationalTaiwan Ocean University, Keelung, Taiwan.Wilson, R. and Halver, J. 1986. Prote<strong>in</strong> and Am<strong>in</strong>o Acid Requirements <strong>of</strong> FishesAnnual Review <strong>of</strong> Nutrition, Vol. 6: 225-244.W<strong>in</strong>free, R. A., and R. R. Stickney. 1981. Effects <strong>of</strong> dietary <strong>prote<strong>in</strong></strong> and energy ongrowth, <strong>feed</strong> conversion efficiency and body composition <strong>of</strong> Tilapia aurea. <strong>The</strong>Journal <strong>of</strong> Nutrition. 111: 1001-1012.Wong, T. 1975. K<strong>in</strong>etics <strong>of</strong> Enzyme Mechanisms. Academic Press, New York.Yone, Y. 1976. Nutritional studies <strong>of</strong> red sea bream. Pp. 39-64 <strong>in</strong> Proceed<strong>in</strong>gs <strong>of</strong> theFirst International Conference on Aquaculture Nutrition, K. S. Price, W. N. Shaw,and K. S. Danberg, eds. Lewes/Rehoboth: University <strong>of</strong> Delaware.Zeitoun, I.H., Ullrey, D.E., Magee, W.T., Gill, J.L. and Bergen, W.G. (1976)Quantify<strong>in</strong>g nutrient requirement <strong>of</strong> <strong>fish</strong>. Journal <strong>of</strong> the Fisheries Research Board <strong>of</strong>Canada, 33, 167-172.UNU - Fisheries Tra<strong>in</strong><strong>in</strong>g Programme 33

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!