10.07.2015 Views

Raven Corvus corax ecology in a primeval temperate forest

Raven Corvus corax ecology in a primeval temperate forest

Raven Corvus corax ecology in a primeval temperate forest

SHOW MORE
SHOW LESS
  • No tags were found...

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

386 Sascha Rösner, Nuria Selva, Thomas Müller, Eugeniusz Pugacewicz, Frédéric Laudetta<strong>in</strong>ed items obta<strong>in</strong>ed from scaveng<strong>in</strong>g. Adult ravens had a more diversified diet thanimmatures, which consumed more items related to scaveng<strong>in</strong>g than to predation. The proportionof squirrels <strong>in</strong> the diet of adult ravens was remarkably high. <strong>Raven</strong>s <strong>in</strong> BiałowieżaForest showed efficient strategies to exploit the resources available <strong>in</strong> the highly productive<strong>temperate</strong> <strong>forest</strong>s, where they did not depend on artificial food subsidies.KEY WORDS: <strong>Corvus</strong> <strong>corax</strong>, Białowieża Forest, habitat requirements, nest site selection,breed<strong>in</strong>g success, diet, territory size, scavengers, <strong>temperate</strong> <strong>forest</strong>sSTRESZCZENIE: Badania nad krukiem <strong>Corvus</strong> <strong>corax</strong> prowadzono w latach 1985–2004 na tereniePuszczy Białowieskiej, w jednym z najlepiej zachowanych kompleksów leśnych strefyumiarkowanej w Europie. Badania koncentrowały się na poznaniu aspektów ekologii przestrzennej(wybiórczość miejsc lęgowych, wielkość terytoriów, wykorzystania terytoriów),reprodukcji (sukces lęgowy) oraz odżywiania (miejsca żerowania, korzystanie z padl<strong>in</strong>y).Gniazda (N=87) były równomiernie rozmieszczone w całej puszczy i zlokalizowane w lesieiglastym. Ponad 90% gniazd było umieszczonych na sosnach P<strong>in</strong>us sylvestris. Średnio 61,5%(SD+15,4) lęgów kończyło się sukcesem i wyprowadzeniem średnio 2,8 (SD ± 0,18)młodych w ciągu roku. Terytoria zajmowane przez kruki miały powierzchnię ok. 14,1 km 2 .Wewnątrz swego terytorium kruki wykorzystywały ponad 76% wykładanej przynęty(n=57), nawet na obszarach z gęstym pokryciem koronami drzew. Dorosłe kruki są bardzowydajne w wyszukiwaniu padl<strong>in</strong>y: 79,2% wykładanej przynęty było wykrywanych i wykorzystywanychprzez kruki w ciągu 24 godz<strong>in</strong> od momentu wyłożenia. Kruki żerowały na tuszachzwierząt (n=214), głównie kopytnych, naj<strong>in</strong>tensywniej w zimne miesiące, z nagłymspadkiem za<strong>in</strong>teresowania padl<strong>in</strong>ą wraz z nadejściem wiosny, gdy <strong>in</strong>ne źródła pokarmu stająsię dostępne. Analiza pokarmu ukazała, że padl<strong>in</strong>a i materiał rośl<strong>in</strong>ny były dom<strong>in</strong>ującymskładnikiem u kruków z Puszczy Białowieskiej. 82% analizowanych wypluwek zawierałomateriał pochodzący z padl<strong>in</strong>y. Dorosłe kruki miały bardziej zróżnicowany pokarm niż ptakimłode), które bardziej koncentrowały się na padl<strong>in</strong>ie niż na polowaniach. Odsetek wiewiórekw składzie pokarmu dorosłych kruków był wyskoki. Kruki z terenu Puszczy Białowieskiejwykazywały wydajną strategię wykorzystania dostępnych zasobów pokarmu w wysoceproduktywnej puszczy, gdzie nie są zależne od pokarmu pochodzenia antropogenicznego.SŁOWA KLUCZOWE: <strong>Corvus</strong> <strong>corax</strong>, Puszcza Białowieska, wymagania siedliskowe, wybiórczośćmiejsc lęgowych, sukces lęgowy, pokarm, wielkość terytorium, żerowanie na śmieciach,naturalny las niz<strong>in</strong>ny strefy umiarkowanejIntroductionThe current knowledge on common ravens <strong>Corvus</strong> <strong>corax</strong> is ma<strong>in</strong>ly based uponstudies from agricultural, af<strong>forest</strong>ed or human-augmented environments (L<strong>in</strong>z etal. 1992, Ratcliffe 1997, Webb et al. 2004). In heavily transformed ecosystems,opportunistic ravens have adapted well to exploit artificial resources, which partiallyresulted <strong>in</strong> extremely high population densities and breed<strong>in</strong>g success. Inthe deserts of California, raven densities rose by 1,000% due to artificially <strong>in</strong>creasedfood and water resources (Boarman et al. 1995). <strong>Raven</strong>s even developedcompletely new habits and switched from their natural breed<strong>in</strong>g sites <strong>in</strong> trees tobuild<strong>in</strong>g nests <strong>in</strong> human-made structures (e.g. houses, car wrecks) (Boarman etal. 1995, Boarman & He<strong>in</strong>rich 1999). In Idaho and Oregon ravens actually colonisednew areas by us<strong>in</strong>g recently constructed electric pylons as nest<strong>in</strong>g substrate(Steenhof et al. 1993).


<strong>Raven</strong> <strong>Corvus</strong> <strong>corax</strong> <strong>ecology</strong> <strong>in</strong> a <strong>primeval</strong> <strong>temperate</strong> <strong>forest</strong> 387In contrast to ravens liv<strong>in</strong>g <strong>in</strong> natural ecosystems, ravens <strong>in</strong>habit<strong>in</strong>g human-shapedhabitats may have lost many of their ancestral habits. However, onlyfew studies have been conducted under natural conditions (Skarphèd<strong>in</strong>sson et al.1990, Andrén 1992, Stahler et al. 2002). In natural ecosystems, especially at highlatitudes, like North American Forests or the Canadian Arctic ravens preferentiallyassociate with large predators <strong>in</strong> order to feed on their kills (e.g. wolves Canis lupus,Gilchrist & Robertson 2000, Stahler et al. 2002). <strong>Raven</strong>s <strong>in</strong> boreal areas have beenreported to be <strong>forest</strong> specialists, be<strong>in</strong>g present exclusively <strong>in</strong> <strong>forest</strong>ed areas andwell adapted to exploit <strong>forest</strong> food resources (e.g. predation on <strong>forest</strong> bird nests,Andrén 1992).In Europe almost all ecosystems have been transformed by men. Thus, humanaffected landscapes are most abundant and only few natural habitats persisted. Especiallynatural woodlands have suffered strongly from heavy exploitation. Thispartly expla<strong>in</strong>s the lack of studies <strong>in</strong> natural <strong>forest</strong>s of Europe. The Białowieża PrimevalForest (E Poland) is regarded as the best preserved woodland of its size <strong>in</strong>lowland <strong>temperate</strong> Europe (Okarma et al. 1997, Jędrzejewska & Jędrzejewski1998). Here, several studies deal<strong>in</strong>g with different aspects of raven <strong>ecology</strong> havebeen conducted (Pugacewicz 1997, Müller 2001, Rösner 2002, Selva 2004, Rösner& Selva 2005). In this paper we attempt to summarize the exist<strong>in</strong>g data, both publishedand unpublished, on raven <strong>ecology</strong> <strong>in</strong> Białowieża Forest, and to provide ageneral picture of raven <strong>ecology</strong> <strong>in</strong> a <strong>primeval</strong> <strong>temperate</strong> <strong>forest</strong>.Study areaBiałowieża Forest is known as the best preserved lowland <strong>forest</strong> ecosystem <strong>in</strong> <strong>temperate</strong>Europe. Once used as strictly protected royal hunt<strong>in</strong>g ground, theBiałowieża Forest has lost only little of its prist<strong>in</strong>e character. Today, it provides liv<strong>in</strong>gspace for many species that are rare or ext<strong>in</strong>ct elsewhere <strong>in</strong> Europe (Tomiałojć& Wesołowski 2004).The <strong>forest</strong> is located on the Polish-Belarusian borderland, cover<strong>in</strong>g 1,450 km 2<strong>in</strong> total and connected with other large <strong>forest</strong>s <strong>in</strong> the north (Poland, Lithuania)and east (Belarus). S<strong>in</strong>ce 1945, the <strong>forest</strong> is divided by the Polish–Belarusian border.All studies were conducted <strong>in</strong> the Polish part (Fig. 1) which encompassesabout 600 km². It <strong>in</strong>cludes a protected area, the Białowieża National Park(100 km²), and the commercial <strong>forest</strong>, where timber exploitation and game hunt<strong>in</strong>gis practiced. The National Park was established <strong>in</strong> 1921. In the 1970s it wasdeclared as Man and Biosphere Reserve and World Heritage Site by UNESCO. Itprotects the most precious part of the <strong>forest</strong> as a Strict Reserve (47 km²), with amean tree age of 130 years (Fig. 1). About one third of the Polish part of the <strong>forest</strong>is old-growths. The mean tree age <strong>in</strong> the exploited part of the <strong>forest</strong> is 72 years(Fig. 1). Numerous <strong>forest</strong> reserves are spread over the area, cover<strong>in</strong>g a manifoldof <strong>forest</strong> types and ages.Structural characteristics of Białowieża Forest are the multi-storey profiles ofmost tree stands, <strong>in</strong>clud<strong>in</strong>g very high trees as well as high portions of woody debris(Tomiałojć & Wesołowski 2004). Many types of <strong>forest</strong> can be dist<strong>in</strong>guished. The


388 Sascha Rösner, Nuria Selva, Thomas Müller, Eugeniusz Pugacewicz, Frédéric LaudetFig. 1. Map of Białowieża Primeval Forest, Poland. Distribution of raven breed<strong>in</strong>g sites between1985–87 (after Pugacewicz 1997)Ryc. 1. Mapa Puszczy Białowieskiej. Rozmieszczenie miejsc lęgowych kruka w latach1985–1987 (Pugacewicz 1997)1 – obszary leśne w wieku starszym niż 100 lat, 2 – lasy młodsze niż 100 lat, 3 – miasta i wsie,4 – gniazda kruka, 5 – główne noclegowisko, 6 – granica państwowa, 7 – główne drogi, 8 – granicaBiałowieskiego Parku Narodowego


<strong>Raven</strong> <strong>Corvus</strong> <strong>corax</strong> <strong>ecology</strong> <strong>in</strong> a <strong>primeval</strong> <strong>temperate</strong> <strong>forest</strong> 389oak-lime-hornbeam (Quercus robur, Tilia cordata, Carp<strong>in</strong>us betulus) <strong>forest</strong> is the mostcommon association of Białowieża woodland (Jędrzejewska et al. 1994, Jędrzejewska& Jędrzejewski 1998). Coniferous <strong>forest</strong>s, dom<strong>in</strong>ated by spruce Picea abiesand p<strong>in</strong>e P<strong>in</strong>us sylvestris are also quite common. Wet areas are covered by ash-alder<strong>forest</strong> (Frax<strong>in</strong>us excelsior, Alnus glut<strong>in</strong>osa) and bog alderwoods. Open areas <strong>in</strong>side the<strong>forest</strong>, represented by river valleys and glades, cover about four percent of thestudy area. Only a few small villages are located <strong>in</strong> glades <strong>in</strong>side the <strong>forest</strong>, e.g.Białowieża (13 km²) or Masiewo (27 km²) glade. Compared to <strong>forest</strong>s elsewhere <strong>in</strong>Europe the number of vascular plant species (~1,000), lichens (~300) and mushrooms(~2,500) is extremely high; <strong>in</strong>dicat<strong>in</strong>g its <strong>primeval</strong> character (Faliński1986, 1994, Wesołowski & Tomiałojć 1995, Tomiałojć 1996). The area is sparselypopulated (2–3 people/km²) and just two public roads are penetrat<strong>in</strong>g the <strong>forest</strong>complex (Jędrzejewska & Jędrzejewski 1998). The <strong>forest</strong> and its surround<strong>in</strong>gs arecharacterised by a flat relief (mean height 165 m a.s.l.).Białowieża Forest still harbours a great diversity of life; its fauna currently <strong>in</strong>cludes12,000 species (Jaroszewicz 2004). The mammal community is very rich. Itcomprehends five ungulate species <strong>in</strong>clud<strong>in</strong>g wild boar Sus scrofa, roe deer Capreoluscapreolus, red deer Cervus elaphus and moose Alces alces. Moreover, about 300 freerang<strong>in</strong>g European bison Bison bonasus – once ext<strong>in</strong>ct <strong>in</strong> the wild – <strong>in</strong>habit the Polishside of Białowieża Forest (Jędrzejewska et al. 1994, Okarma 1995). Large predatorsare the lynx Lynx lynx and wolf Canis lupus (Jędrzejewska et al. 1994,Jędrzejewski et al. 2002). Furthermore, Białowieża is also famous for its diverseavifauna, compris<strong>in</strong>g 150 breed<strong>in</strong>g species (Tomiałojć & Wesołowski 2004), <strong>in</strong>clud<strong>in</strong>gthe corvid species nutcracker Nucifraga caryocatactes, jay Garrulus glandariusand raven (Wesołowski & Tomiałojć 1995). In Białowieża Forest the raven is acommon species and – <strong>in</strong> contrast to elsewhere <strong>in</strong> central Europe – was never ext<strong>in</strong>ctdur<strong>in</strong>g the last centuries (Bednorz 1991).The region is <strong>in</strong>fluenced by Cont<strong>in</strong>ental and Atlantic climate types, with clearlymarked warm (April–October) and cold (November–March) seasons. The latter ischaracterised by a mean temperature <strong>in</strong> January of –5.1°C and a mean snow depthof 10.0 cm (1.0–42.5 cm) (Wesołowski & Tomiałojć 1995, Jędrzejewska &Jędrzejewski 1998). More detailed <strong>in</strong>formation on climatic conditions, vertebratecommunity and vegetation are provided by Faliński (1986), Kwiatkowski (1994)and Jędrzejewska and Jędrzejewski (1998).Material and methodsThe period covered by the different studies summarised <strong>in</strong> this paper elapses from1985 to 2004. Intensive field surveys were conducted dur<strong>in</strong>g this time to estimateraven breed<strong>in</strong>g densities. Additionally, systematic censuses of raven nests weredone <strong>in</strong> plots and transects (see Pugacewicz 1997 for details). The breed<strong>in</strong>g performancewas assessed by controll<strong>in</strong>g known raven nests several times dur<strong>in</strong>g thebreed<strong>in</strong>g seasons of 1986, 1987, 2001 and 2004. At the end of the breed<strong>in</strong>g season2001 a habitat analysis of raven nest sites was conducted. We estimated tree compositionat 31 nest sites by register<strong>in</strong>g the tree species <strong>in</strong> the canopy (>32 cm di-


390 Sascha Rösner, Nuria Selva, Thomas Müller, Eugeniusz Pugacewicz, Frédéric Laudetameter at breast height DBH) <strong>in</strong> a 20 m radius around nest sites and theunderstorey trees (4–10 cm DBH) <strong>in</strong> a 10 m radius.To obta<strong>in</strong> <strong>in</strong>formation about carrion use and territory size of breed<strong>in</strong>g ravens,we modified the bait-mark<strong>in</strong>g method (for details see Rösner & Selva 2005). In2001 (January – May) we exposed 57 baits (ungulate <strong>in</strong>test<strong>in</strong>es and dead chickens)covered with small plastic markers specific for each bait and dist<strong>in</strong>guishable by colourand shape. Follow<strong>in</strong>g a fixed design, we exposed the baits at different distancesand directions from 13 occupied nests. Pellets and dropp<strong>in</strong>gs conta<strong>in</strong><strong>in</strong>g specificmarkers were recovered at different raven nests and at the communal roost <strong>in</strong> systematicvisits. This way, we could assess if a bait was used by a certa<strong>in</strong> raven pair ornot. Logistic regression analysis were used to calculate the territory size (Rösner &Selva 2005). Forty-eight baits were monitored daily to estimate the time requiredby ravens to discover the baits.We collected a total of 570 raven pellets between 1997 and 2000 from differentraven nests and from the ma<strong>in</strong> roost site close to the garbage dump (Fig. 1).For the diet analysis, we took a random sample of 100 pellets, <strong>in</strong>clud<strong>in</strong>g 50 pelletsfrom the nests and 50 from the roost. The sample conta<strong>in</strong>ed equal numbersof pellets from both the cold and warm seasons. The random sample from thenests <strong>in</strong>cluded pellets from 13 different nests; four of them were located close tovillages and/or at the <strong>forest</strong> edge. All pellets were dried, marked, separated <strong>in</strong> envelopesand later dissected. The material was analysed under 9–40× magnificationand the pellet contents identified with the help of reference material andidentification keys (Pucek 1981, Teer<strong>in</strong>k 1991). We used the frequency of occurrenceof the food items to <strong>in</strong>vestigate differences <strong>in</strong> the diet between pairs andimmature ravens.From the cold seasons 1997/1998 to 2001/2002 we <strong>in</strong>vestigated the use of carcassesby ravens. Atotal of 214 carcasses, ma<strong>in</strong>ly of ungulates, were monitored <strong>in</strong>systematic <strong>in</strong>spections (n = 1,784). Ungulate carcasses <strong>in</strong>cluded all ungulate species,as well as carcasses of different orig<strong>in</strong>: wolf and lynx kills; animals dead fromdisease, cold or starvation; hunted and later abandoned ungulates; and ungulateentrails discarded by hunters. Dur<strong>in</strong>g each <strong>in</strong>spection we recorded the presence ofravens at the carcass based on direct observations, tracks <strong>in</strong> the snow, and othersigns (pellets, feathers, dropp<strong>in</strong>gs and calls). When possible, we assessed thenumber of scaveng<strong>in</strong>g <strong>in</strong>dividuals by count<strong>in</strong>g observed birds. To <strong>in</strong>vestigate theseasonality of carcass use by ravens, the data from all the carcass <strong>in</strong>spections(n = 1,784) were pooled <strong>in</strong> bimonthly periods. The scaveng<strong>in</strong>g frequency dur<strong>in</strong>geach period was presented as the percentage of positive <strong>in</strong>spections, i.e. the proportionof <strong>in</strong>spections with ravens recorded from the total number of <strong>in</strong>spectionsof carcasses <strong>in</strong> that bimonthly period. The same procedure was followed to <strong>in</strong>vestigatethe temporal variation <strong>in</strong> the mean number of ravens observed at carcasses.The temporal variation <strong>in</strong> ravens’ scaveng<strong>in</strong>g frequency throughout the process ofcarcass exploitation is presented graphically (Fig. 4). The date of animal death orcarcass exposition was considered as day “0”. Each <strong>in</strong>spection was assigned to anumber of day, accord<strong>in</strong>g to the number of days elapsed s<strong>in</strong>ce death/exposition.The data (absence/presence) from <strong>in</strong>spections belong<strong>in</strong>g to the same number of


<strong>Raven</strong> <strong>Corvus</strong> <strong>corax</strong> <strong>ecology</strong> <strong>in</strong> a <strong>primeval</strong> <strong>temperate</strong> <strong>forest</strong> 391day were pooled and the scaveng<strong>in</strong>g frequency calculated (as the percentage of positive<strong>in</strong>spections) for each day.Distribution and numbersAtotal of 84–87 raven pairs <strong>in</strong>habited the study area <strong>in</strong> the period 1985–1994. <strong>Raven</strong>nests were uniformly distributed (Pugacewicz 1997) (Fig. 1). The breed<strong>in</strong>gdensity for the whole area <strong>in</strong> this period was 1.4 pairs /10 km². However, it waslower <strong>in</strong> the natural old growths of Białowieża National Park (1.3 pairs/ 10 km²)than <strong>in</strong> the commercial <strong>forest</strong> (1.8 pairs/10 km²) (Pugacewicz 1997).The ma<strong>in</strong> raven roost was located at a young p<strong>in</strong>e <strong>forest</strong> <strong>in</strong> the vic<strong>in</strong>ity of theHajnówka rubbish dump at the <strong>forest</strong> edge (Fig. 1). The maximum number of ravenscounted roost<strong>in</strong>g together was 74. However, the maximum number of ravensfeed<strong>in</strong>g at the dump was around 280 (July). Our observations on raven movementsaround the dump suggested the presence of other secondary roosts. We also documentedtemporary roosts <strong>in</strong> the adjacent trees of large carcasses located deep <strong>in</strong>sidethe <strong>forest</strong>. Amaximum of 50 ravens were observed <strong>in</strong> the vic<strong>in</strong>ity of bison carcasses(Selva et al. 2003). We often noted complete evacuations of the ma<strong>in</strong> roostfor several days. Dur<strong>in</strong>g one of these <strong>in</strong>cidences we observed more than 70 ravensfly<strong>in</strong>g <strong>in</strong> a long stretched flock to the Belarusian part of the <strong>forest</strong>.Territory size and useThe mean size of raven territories dur<strong>in</strong>g the breed<strong>in</strong>g season 2001 was 13.1 km 2 ,as estimated by the bait-mark<strong>in</strong>g method (Rösner & Selva 2005). Recoveries ofspecific markers support the idea that raven pairs have a perfect ”knowledge” oftheir territories. Up to a threshold distance of 2.04 km from their nests, i.e. <strong>in</strong>sidetheir territories, ravens detected at least 76% of the carrion, <strong>in</strong>dependently of thecharacteristics of the bait exposition sites. Inside their territory, no significant differences<strong>in</strong> tree density and canopy cover were found between baits used and notused by the raven pair (Mann-Whitney U-test, n 1= 17, n 2= 28, z = –0.025,p = 0.980 for canopy cover; z = –0.099, p = 0.921 for tree density) (Fig. 2). Baitsexposed outside their territory were more likely to be visited by the correspond<strong>in</strong>graven pair when they were located at open areas (Mann-Whitney U-test, n 1= 105,n 2= 9, z = –1.744, p = 0.081 for canopy cover; z = –1.576, p = 0.115 for tree density).These cases of pairs trespass<strong>in</strong>g territory borders were often related to thepresence of flocks of non breed<strong>in</strong>g birds (Rösner & Selva 2005). The snow cover atthe bait site also did not affect bait discover<strong>in</strong>g by the raven pair (Mann-WhitneyU-test, n 1= 12, n 2= 45, z = –0.152, p = 0.879).We documented territory overlap between neighbour<strong>in</strong>g pairs <strong>in</strong> two occasions.First, a territorial raven trespassed an occupied territory to forage on a cowcarcass 5.6 km far from their nest, permanently used by a flock of nonbreed<strong>in</strong>g ravens.Second, we recorded breed<strong>in</strong>g ravens feed<strong>in</strong>g on a fresh wolf kill <strong>in</strong>sidetheir neighbour<strong>in</strong>g territory together with 20 nonbreeders. The bait-mark<strong>in</strong>gmethod also provided <strong>in</strong>formation on movements of immatures. Non-breed<strong>in</strong>g


392 Sascha Rösner, Nuria Selva, Thomas Müller, Eugeniusz Pugacewicz, Frédéric LaudetFig. 2. Influence of habitat characteristics (canopy cover and number of trees) on bait use byadult ravens <strong>in</strong>side and outside their territory. Mean and standard deviations are shownRyc. 2. Wpływ cech siedliska (pokrycie koronami drzew i liczba drzew) na wykrywanieprzynęty przez dorosłe kruki wewnątrz i na zewnątrz ich terytoriów. Pokazano średnią iodchylenie standardoweravens us<strong>in</strong>g the ma<strong>in</strong> roost scavenged on carcasses located 14.5 km far <strong>in</strong>side the<strong>forest</strong>.Nest sites<strong>Raven</strong>s <strong>in</strong> Białowieża Forest strongly preferred p<strong>in</strong>es for build<strong>in</strong>g their nests. From98 raven nests found dur<strong>in</strong>g 1985 and 1994, 91.8% were build on p<strong>in</strong>es, 4.1% onspruce, 2.1% on triangulation towers and 1% on birch Betula sp. (Pugacewicz1997). Nests were usually found <strong>in</strong> coniferous old growth (mixed coniferous-deciduous,p<strong>in</strong>e-spruce and pure p<strong>in</strong>e <strong>forest</strong>s). The exceptional size of trees <strong>in</strong>Białowieża Forest resulted <strong>in</strong> extremely high nest locations. The highest raven nestwas found on a p<strong>in</strong>e at a height of 40 m.


<strong>Raven</strong> <strong>Corvus</strong> <strong>corax</strong> <strong>ecology</strong> <strong>in</strong> a <strong>primeval</strong> <strong>temperate</strong> <strong>forest</strong> 393Fig. 3. Comparison of tree composition between canopy and undergrowth at 31 nest<strong>in</strong>gplaces, Białowieża Forest, PolandRyc. 3. Porównanie składu gatunkowego drzew pomiędzy piętrem koron (A) i podszytu (B)dla 31 miejsc gniazdowania w Puszczy BiałowieskiejThe composition of canopy trees at nest sites was generally dom<strong>in</strong>ated by p<strong>in</strong>es(68%), followed by spruces (15%). The undergrowth was mostly dom<strong>in</strong>ated byspruces (34%) and hornbeams (28%), whereas p<strong>in</strong>es barely occurred (


394 Sascha Rösner, Nuria Selva, Thomas Müller, Eugeniusz Pugacewicz, Frédéric LaudetTable 1. Breed<strong>in</strong>g performance of ravens <strong>in</strong> 1986, 1987, 2001 and 2004, Białowieża Forest,PolandTabela 1. Sukces lęgowy kruków w Puszczy Białowieskiej w latach 1986, 1987, 2001 i 2004YearRokN breed<strong>in</strong>g pairs(nests found)Liczba par lęgowych(znalezione gniazda)Percentage ofsuccessful pairsOdestek par z lęgamizakończonymisukcesemMean numberyoung fledged persuccessful pairŚrednia liczbamłodych na parę zsukcesemMean number youngfledged per breed<strong>in</strong>gpairŚrednia liczbamłodych na paręprzystępującą do lęgu1986 31 74.2 2.6 2.01987 24 70.8 3.0 2.12001 31 61.0 2.9 1.82004 10 40.0 2.7 1.1Mean/średnia(± SD)24 (± 9.9) 61.5 (± 15.4) 2.8 (± 0.18) 1.8 (± 0.45)only 40% of the pairs bred successfully. Consequently, the mean number of youngfledged per breed<strong>in</strong>g pair decreased by two-fold, from a mean of 2.0 fledgl<strong>in</strong>gs perpair between 1986 and 2001 to 1.1 fledgl<strong>in</strong>gs <strong>in</strong> 2004. However, the mean productionof young per successful pair did not vary much among years (Table 1).In the course of all the <strong>in</strong>vestigations, 17 complete or partial losses of broodswere recorded. Complete losses were caused by extremely low temperatures(n=3), egg predation (probably by conspecifics) (n=1) and strong w<strong>in</strong>ds (n=4). Inone occasion, strong w<strong>in</strong>ds caused fell<strong>in</strong>g down of the nest<strong>in</strong>g tree (spruce), perish<strong>in</strong>gthe female and the three chicks. Among the losses of s<strong>in</strong>gle chickens, fourwere presumably attributed to p<strong>in</strong>e martens; two were confirmed to be due to goshawkAccipiter gentilis predation and one to predation by an unknown raptor. Twocases of death could not be determ<strong>in</strong>ed. Apart from the previously mentioned deadfemale, three other adult ravens where found dead. One was found under a nest,another <strong>in</strong>side the <strong>forest</strong>. The body of a third bird was found about 50 m far from anest at the beg<strong>in</strong>n<strong>in</strong>g of the breed<strong>in</strong>g season. Four weeks later we observed twoadults feed<strong>in</strong>g fledgl<strong>in</strong>gs <strong>in</strong> the respective nest.The majority of fledgl<strong>in</strong>gs <strong>in</strong> Białowieża Forest left nests <strong>in</strong> late May. Afteryoung ravens left the nests, raptor species used raven nests to breed. We documentedfour raven nests be<strong>in</strong>g subsequently occupied by hobbies Falco subbuteo andtwo nests by long-eared owls Asio otus.Food habitsCarrion from large mammals and plant material were the dom<strong>in</strong>ant items <strong>in</strong> thediet of ravens <strong>in</strong> Białowieża Forest (Table 2). The ma<strong>in</strong> constituents of the diet ofimmature ravens were livestock carcasses (ma<strong>in</strong>ly of pig) and domestic chickens,both discarded by farms <strong>in</strong> the vic<strong>in</strong>ity of the roost. More than 75% of the pelletsfrom immatures conta<strong>in</strong>ed carrion from large mammals. When chickens were also


<strong>Raven</strong> <strong>Corvus</strong> <strong>corax</strong> <strong>ecology</strong> <strong>in</strong> a <strong>primeval</strong> <strong>temperate</strong> <strong>forest</strong> 395Table 2. Composition of the raven pellets from roost (n = 50) and nests (n = 50), <strong>in</strong>dicat<strong>in</strong>gthe percentage of pellets conta<strong>in</strong><strong>in</strong>g each type of item, Białowieża Forest, PolandTabela 2. Skład wypluwek kruczych zebranych w Puszczy Białowieskiej na noclegowisku(n=50) i z gniazd (n=50); wykazano odsetek wypluwek zawierających każdy ze składnikówItem/Składnik Roost/Noclegowisko Nest/GniazdoShrews Soricidae/ryjówkowate 8 6Mole Talpa europaea/kret 2 2Insectivores total/owadożerne razem 10 6Lagomorphs total/zajęczaki razem 2 –Voles Microtidae/nornikowate 10 12Mice Muridae/myszowate 2 12Squirrels Sciuridae/wiewiórkowate – 12Undeterm<strong>in</strong>ed rodent/nieoznaczone gryzonie 2 16Rodents total/gryzonie razem 12 46Cervids Cervidae/jeleniowate – 4Wild boar Sus scrofa/dzik 14 12Livestock/zwierzęta domowe 60 30Carnivore/drapieżne 2 2Undeterm<strong>in</strong>ed large mammal/nieoznaczone duże ssaki 8 6Large mammals total/duże ssaki razem 76 46Undeterm<strong>in</strong>ed mammal/nieoznaczone ssaki 6 4Eggshells from wild birds/skorupki jaj dzikich ptaków – 12Eggshells from chicken/skorupki jaj kury 58 26Small bird/małe ptaki – 4Domestic chicken/kurczaki 28 2Undeterm<strong>in</strong>ed bird/nieoznaczone ptaki 2 16Birds total/ptaki razem 64 48Anura/płazy bezogonowe – 2Fish/ryby 4 10Beetle/chrząszcze 6 26Other <strong>in</strong>vertebrates/<strong>in</strong>ne bezkręgowce 2 6Invertebrates total/bezkręgowce razem 8 30Cereal/zboże 44 66Fruits and seeds/owoce i nasiona 6 26Other vegetal matter/<strong>in</strong>ny materiał rośl<strong>in</strong>ny 56 84Plant material total/materiał rośl<strong>in</strong>ny razem 76 92Refuse (plastic, paper, alum<strong>in</strong>ium foil)/śmieci (plastik, papier, folia alum<strong>in</strong>iowa)74 18


396 Sascha Rösner, Nuria Selva, Thomas Müller, Eugeniusz Pugacewicz, Frédéric Laudetconsidered as carrion, then at least 82% and 46% of the pellets of immatures andadults conta<strong>in</strong>ed scavenged material. Probably the rema<strong>in</strong>s of lagomorphs and fishfound <strong>in</strong> pellets came also from scaveng<strong>in</strong>g. The occurrence of chicken eggshells <strong>in</strong>pellets from the roost was, at least <strong>in</strong> part, the result of scaveng<strong>in</strong>g at the dump.Cereals were an important component of the diet of both adult and non-adult ravens.Adults consumed more fruits and seeds than immatures (Table 2).The frequency of occurrence of rodent and <strong>in</strong>vertebrate rema<strong>in</strong>s was quite differentbetween the sample from the nests and the roost (Table 2). <strong>Raven</strong> pairs consumedmore rodents and <strong>in</strong>vertebrates. Voles (bank vole Clethrionomys glareolus,common vole Microtus arvalis and root vole Microtus oeconomus) and shrews (Sorexaraneus and S. m<strong>in</strong>utus) had a similar contribution to the diet of adult and immatureravens. However, pairs consumed more mice and squirrels Sciurus vulgaris. RatsRattus norvegicus and squirrels were exclusively consumed by raven pairs; squirrelsconstituted the most frequent rodent species <strong>in</strong> the pellets of adults (Table 2). Beetles,anuran and fish were more common <strong>in</strong> samples from nests. Refuse was frequentlyrecorded <strong>in</strong> pellets from the roost (74% of the pellets), but rarely amongthose from nests (18%). The presence of other vegetal matter could be partly dueto <strong>in</strong>cidental <strong>in</strong>gestion (together with the animal or other rema<strong>in</strong>s, or from thenest) or have a secondary orig<strong>in</strong> (from the guts of dead animals). In general, thediet of adult ravens was more diversified (Table 2).The use of carcasses by ravens was significantly different among bimonthly periods(G-test for homogeneity of percentages, G = 62.78, p < 0.001) (Fig. 4). Theyscavenged <strong>in</strong>tensively dur<strong>in</strong>g the coldest months, abruptly decreas<strong>in</strong>g the use ofcarcasses when spr<strong>in</strong>g arrived and other food resources became available. Scaveng<strong>in</strong>gfrequency rema<strong>in</strong>ed low dur<strong>in</strong>g summertime and <strong>in</strong>creased rapidly aga<strong>in</strong> atthe beg<strong>in</strong>n<strong>in</strong>g of the cold season. The number of ravens recorded at carcasses followedthe same pattern as their scaveng<strong>in</strong>g frequency, be<strong>in</strong>g also significantly differentamong periods (one-way ANOVA, F 5, 535= 3.82, p < 0.005) (Fig. 4). Carcasseswere used ma<strong>in</strong>ly by raven pairs dur<strong>in</strong>g the breed<strong>in</strong>g season, whereas therest of the year was attended by larger groups. The scaveng<strong>in</strong>g frequency of ravenstended to decrease throughout carcass exploitation (r s= –0.41, p = 0.001); ravensbe<strong>in</strong>g less frequent at older carcasses (Fig. 4).The mean group size of ravens observed at carcasses was 5.7 (SD ± 5.98). Inthe case of bison carcasses, we observed a manifest difference <strong>in</strong> group size of ravensscaveng<strong>in</strong>g on carcasses exposed <strong>in</strong> <strong>forest</strong> and open<strong>in</strong>gs (Mann-WhitneyU-test, U = 1,105, n 1= 10, n 2= 130, p < 0.001, see Selva et al. 2004 for details).Bison carcasses exposed <strong>in</strong> clear<strong>in</strong>gs (more visible) were ma<strong>in</strong>ly consumed byflocks of immatures, while those under the <strong>forest</strong> canopy were utilised by the territorialpairs of ravens. Mean number of <strong>in</strong>dividuals observed at bison carcasses was1.5 (SE ± 0.17) <strong>in</strong> <strong>forest</strong> and 12.8 (SE ± 1.21) <strong>in</strong> clear<strong>in</strong>gs (Fig. 5).<strong>Raven</strong>s were highly efficient <strong>in</strong> discover<strong>in</strong>g carcasses. Dur<strong>in</strong>g the bait-mark<strong>in</strong>gexperiments, 79.2% of the baits were detected and used by ravens with<strong>in</strong> the first24 hours after exposition (Fig. 6). By day number four (> 72 h) all baits were alreadyvisited by ravens. In two cases, we could record ravens scaveng<strong>in</strong>g 30 and 50m<strong>in</strong>utes just after carrion exposition.


<strong>Raven</strong> <strong>Corvus</strong> <strong>corax</strong> <strong>ecology</strong> <strong>in</strong> a <strong>primeval</strong> <strong>temperate</strong> <strong>forest</strong> 397Fig. 4. <strong>Raven</strong> scaveng<strong>in</strong>g frequency throughout both the year and carcass exploitation process.(A) Bimonthly variation <strong>in</strong> the raven scaveng<strong>in</strong>g frequency and mean number(±SE) of ravens observed at carcasses; scaveng<strong>in</strong>g frequency expressed as mean percentageof <strong>in</strong>spection (±SE) with ravens recorded. (B) Variation <strong>in</strong> the raven scaveng<strong>in</strong>gfrequency, expressed as percentage of positive <strong>in</strong>spections <strong>in</strong> a given day of the carcassexploitation. Scatterplot data smoothed by the Distance Least Square MethodRyc. 4. Częstotliwość żerowania na padl<strong>in</strong>ie kruka zarówno w ciągu roku jak i sam proceswykorzystywania padl<strong>in</strong>y. (A) Zmienność w cyklu dwumiesięcznym częstotliwości żerowaniakruka na padl<strong>in</strong>ie i średnia liczba (±SE) obserwacji kruka na padl<strong>in</strong>ie; częstotliwośćżerowania na padl<strong>in</strong>ie wyrażono jako średni odsetek kontroli (±SE) ze stwierdzeniemobecności kruka. (B) Zmienność częstotliwości żerowania kruka na padl<strong>in</strong>ie,wyrażona jako odsetek pozytywnych kontroli w danym dniu korzystania z padl<strong>in</strong>y. Obszarrozrzutu danych wyrównano poprzez użycie metody Distance Least Square Method


398 Sascha Rösner, Nuria Selva, Thomas Müller, Eugeniusz Pugacewicz, Frédéric LaudetFig. 5. Mean group size of ravens (±SE) observedat bison carcasses located <strong>in</strong> <strong>forest</strong>and open areas <strong>in</strong> Białowieża ForestRyc. 5. Średnia wielkość grup kruków(±SE) obserwowanych na padl<strong>in</strong>ie żubraumieszczonej w lesie oraz na otwartymterenie w Puszczy BiałowieskiejFig. 6. Time required by ravens for bait discover<strong>in</strong>g,expressed as number of dayselapsed s<strong>in</strong>ce bait exposition. Barsshow the number of exposed baitsfound by ravens <strong>in</strong> each consecutive dayfrom expositionRyc. 6. Czas potrzebny krukom na wykrycieprzynęty, wyrażony przez liczbę dni,jakie upłynęły od momentu wyłożeniapadl<strong>in</strong>y. Słupki ukazują liczbę znalezionejprzez kruki (z całkowitej liczbywyłożonej) przynęty w każdym kolejnymdniu od dnia wyłożeniaDiscussion<strong>Raven</strong> nests <strong>in</strong> Białowieża were regularly distributed throughout the <strong>forest</strong>. This<strong>in</strong>dicates that the whole <strong>forest</strong> is both, suitable breed<strong>in</strong>g ground and forag<strong>in</strong>g habitatfor ravens. In contrast, surveys from other areas <strong>in</strong> Europe have reported that<strong>forest</strong> <strong>in</strong>teriors are rather avoided by ravens. In these areas, nests are predom<strong>in</strong>antlylocated at the <strong>forest</strong> edge and ravens are likely to forage ma<strong>in</strong>ly outside the<strong>forest</strong> (e.g. <strong>in</strong> farmlands and open areas) (Dunk et al. 1997, Ratcliffe 1997). Thus,transformed <strong>forest</strong>s might merely provide nest sites rather than forag<strong>in</strong>g habitats.Natural <strong>forest</strong>s, like Białowieża woodland, offer suitable habitats <strong>in</strong> terms of bothenough food supply and nest<strong>in</strong>g sites, as shown for ravens <strong>in</strong> North America(Boarman & He<strong>in</strong>rich 1999). F<strong>in</strong>d<strong>in</strong>gs from boreal <strong>forest</strong>s <strong>in</strong> Sweden have revealedravens as <strong>forest</strong> specialists, breed<strong>in</strong>g and forag<strong>in</strong>g <strong>in</strong>side large natural <strong>forest</strong>s(Andrén 1992). These <strong>forest</strong>s were uniformly occupied by ravens. Opposite, ravensliv<strong>in</strong>g <strong>in</strong> more transformed ecosystems (farmlands, urban areas) are morelikely to be distributed less regularly and rather clustered at places with abundantsupply of artificial food, as dumps and/or nest sites (Boarman et al. 1995, Boarman2003, Grünkorn 1999).


<strong>Raven</strong> <strong>Corvus</strong> <strong>corax</strong> <strong>ecology</strong> <strong>in</strong> a <strong>primeval</strong> <strong>temperate</strong> <strong>forest</strong> 399Nests <strong>in</strong> Białowieża Forest were predom<strong>in</strong>antly found <strong>in</strong> old p<strong>in</strong>es and the nestheights were the highest ever documented. This is probably due to the availability ofexceptionally high trees <strong>in</strong> the <strong>forest</strong>. Several authors have po<strong>in</strong>ted raven preferencefor high trees (or high cliffs) and widely spaced tree stands (Davis & Davis 1986,Dunk et al. 1997). Optimised breed<strong>in</strong>g conditions, namely easier approach to thenest for the raven itself and higher visibility of potentially approach<strong>in</strong>g predators(aerial or terrestrial) might be explanatory reasons (see Dunk et al. 1997). Additionally,old p<strong>in</strong>e trunks typically lack branches up to the crowns. This reduces theaccess to nests by terrestrial predators such as the p<strong>in</strong>e marten Martes martes.Thisispartly supported by the study by Davis and Davis (1986), who found a positive correlationbetween breed<strong>in</strong>g success of ravens and nest height above ground and atleast a slight tendency towards higher breed<strong>in</strong>g success of ravens <strong>in</strong> coniferous trees.The population density <strong>in</strong> Białowieża Forest (1.4 breed<strong>in</strong>g pairs per 10 km²) is<strong>in</strong>termediate among densities found <strong>in</strong> other <strong>forest</strong>s. Densities <strong>in</strong> <strong>forest</strong>ed areasranges from 0.3 pairs per 10km² <strong>in</strong> Virg<strong>in</strong>ia (Hooper 1977) or 0.6 pairs per 10km²<strong>in</strong> Brita<strong>in</strong> (Ratcliffe 1962) to the slightly higher value of 1.7 pairs per 10km² found<strong>in</strong> Wigry, also <strong>in</strong> eastern Poland (Zawadzka 1996). Data from agricultural landscapeswith <strong>in</strong>terspersed <strong>forest</strong> fragments (where ravens ma<strong>in</strong>ly forage <strong>in</strong> openmeadows and fields) showed markedly higher densities: 2.0 pairs per 10km²(Sell<strong>in</strong> 1991), 3.0–4.0 pairs per 10km² (both <strong>in</strong> Germany) (Grünkorn 1993) or 3.6pairs per 10 km² <strong>in</strong> the Canary Islands (Nogales 1994). In more transformed ecosystems(farmlands, af<strong>forest</strong>ed areas) ravens frequently gather around rich artificialfood resources (e.g. dumps, landfills, livestock), which, <strong>in</strong> turn, may result <strong>in</strong>higher abundance of ravens (Grünkorn 1999). Similarly, one of the highest ravendensities have been found <strong>in</strong> the heavily human-transformed landscape of theMojave Desert <strong>in</strong> California. There, raven densities have been additionally <strong>in</strong>creasedby a) water resources (Boarman et al. 1995, Boarman 2003) and/or b)man-made nest sites (Boarman et al. 1995, Bednorz 2000). Boarman et al. (1995)has suggested the presence of landfills as the ma<strong>in</strong> factor responsible for ravenpopulation <strong>in</strong>creases to over 1,000%. Food bonanzas may supply ravens with plentifulfood, which may result <strong>in</strong> very high breed<strong>in</strong>g densities, such as 10.0 pairs/10km², at least on a small spatial scale (Grünkorn 1999). Further support has beengiven to the fact that high food availability goes along with low <strong>in</strong>traspecific competition(Nogales 1994, Kochert et al. <strong>in</strong> Nogales 1994). In this sense, Dare (1986)found evidence for a chronological <strong>in</strong>crease of raven densities <strong>in</strong> Snowdonia causedby a simultaneous <strong>in</strong>crease <strong>in</strong> sheep stock<strong>in</strong>gs, which resulted <strong>in</strong> turn <strong>in</strong> a highercarrion availability. In addition, artificial nest<strong>in</strong>g substrates may enhance breed<strong>in</strong>gsuccess and thus promote an <strong>in</strong>crease <strong>in</strong> raven populations by a) provid<strong>in</strong>g moreavailable nest sites and b) decreas<strong>in</strong>g the predation risk at the nests (due to a reducedaccess to terrestrial predators) (Steenhof et al. 1993). Thus, it seems thathighest breed<strong>in</strong>g densities <strong>in</strong> common ravens might only be supported <strong>in</strong> stronglyhumanized landscapes with overabundance of food and nest<strong>in</strong>g substrates.To our knowledge, the territory size data presented here are the first for natural<strong>forest</strong> ecosystems <strong>in</strong> Europe (Rösner & Selva 2005). It is known, that territorysizes and breed<strong>in</strong>g densities are strongly connected with food availability and


400 Sascha Rösner, Nuria Selva, Thomas Müller, Eugeniusz Pugacewicz, Frédéric Laudet<strong>in</strong>traspecific competition. Thus, one can assume that the higher the food supplythe smaller the territory size or home range. Already Ratcliffe (1997) mentionedthat raven territory sizes vary <strong>in</strong> close relation to food availability. Thus, raven territorysize may vary strongly between habitats (Table 3). The value from Białowieżais the smallest compared to other <strong>forest</strong>s. Forests <strong>in</strong> Virg<strong>in</strong>ia are fragmented bypastures and urban areas (Hooper 1975, 1977); <strong>in</strong>dicat<strong>in</strong>g less natural conditions.The upland deer <strong>forest</strong> <strong>in</strong> Scotland is even more transformed (or rather af<strong>forest</strong>ed)with much larger territories of ravens although carrion is often plentiful. Ratcliffe(1997) expla<strong>in</strong>ed this due to a strong <strong>in</strong>terspecific competition with golden eaglesAquila chrysaetos, which are numerous and also feed on carrion. The values fromcliff breed<strong>in</strong>g raven populations <strong>in</strong> Ireland are comparable to those from <strong>forest</strong>s <strong>in</strong>Virg<strong>in</strong>ia (Table 3). However, the territory sizes <strong>in</strong> coastal California are extremelysmall (1.2 km²). This may be due to the high availability of nest sites (large cliffs)and food resources such as large sea bird colonies (L<strong>in</strong>z et al. 1992). Published dataconcern<strong>in</strong>g territory sizes are ma<strong>in</strong>ly gathered from agricultural landscapes. InWales (grass- and moorland, farmland) as well as <strong>in</strong> northern Germany (farmland),raven populations are strongly supported by additional food supply <strong>in</strong> formof sheep carcasses (Wales) or dump sites for organic material (Germany). Bothmay cause high breed<strong>in</strong>g densities which accord<strong>in</strong>gly lead to smaller territories.The bait-mark<strong>in</strong>g data <strong>in</strong>dicate that adult ravens <strong>in</strong> the Forest of Białowieżahave very good knowledge of their territories and are well adapted to f<strong>in</strong>d carrioneven under dense <strong>forest</strong> conditions. Already He<strong>in</strong>rich (1990), Promberger (1992)Table 3. <strong>Raven</strong> territory sizes <strong>in</strong> different ecosystems <strong>in</strong> Europe and North AmericaTabela 3. Wielkość terytoriów kruka w różnych ekosystemach Europy i Ameryki Północnej.A – las, B – wybrzeże, C – krajobraz rolniczyForest (A)Ecosystem typeTyp ekosystemuupland deer<strong>forest</strong>/wyżynny laschroniony dla zwierzynypłowej (trees/drzewa)Territory size (km 2 )Wielkość terytoriumLocationLokalizacja61.9–87.3 Scotland/Szkocja, UKSourceŹródłoRatcliffe (1997)<strong>forest</strong>/las (trees/drzewa) 30.6 Virg<strong>in</strong>ia, USAHooper et. al (1975)<strong>in</strong> Hooper (1977)lowland <strong>forest</strong>/las niz<strong>in</strong>ny (trees/drzewa)13.1 Białowieża, PL Rösner & Selva (2005)Coast (B) coast/wybrzeże(cliffs/klify)coast/wybrzeże(cliffs/klify)Farmland (C) gras/łąki, pastwiskamoorland/wrzosowiskafarmland/krajobraz rolniczyagricultural country/użytki rolnicze35.7 Ireland/Irlandia1.2 California/Kalifornia, USA23.9 Wales/Walia, UK9.5 Wales/Walia, UK>5.0 Germany/NiemcyNoonan <strong>in</strong> Ratcliffe(1997)L<strong>in</strong>z et al. (1992)Dare (1986)Dare (1986)Sell<strong>in</strong> (1991)


<strong>Raven</strong> <strong>Corvus</strong> <strong>corax</strong> <strong>ecology</strong> <strong>in</strong> a <strong>primeval</strong> <strong>temperate</strong> <strong>forest</strong> 401and Stahler et al. (2002) characterised ravens to be generally efficient <strong>in</strong> discover<strong>in</strong>gcarcasses and new food resources. This is an important attribute, especially <strong>in</strong>natural ecosystems where food is distributed randomly. Nevertheless, this attributeenable ravens to explore new and locally clustered food bonanzas also <strong>in</strong>heavily transformed landscapes.The breed<strong>in</strong>g performance documented for Białowieża (percentage of reproductivepairs and fledged chickens) is comparable to values from other <strong>forest</strong> ecosystems<strong>in</strong> Wyom<strong>in</strong>g and Virg<strong>in</strong>ia (see Dunk et al. 1997, Hooper 1977). Markedlylower breed<strong>in</strong>g success (0.2–0.5 fledgl<strong>in</strong>gs/pair) has been found <strong>in</strong> agriculturallandscapes where raven nests were built <strong>in</strong> small <strong>in</strong>sular woods (Lo & Müller2000, Grünkorn 1999). The low breed<strong>in</strong>g success has been discussed as a result of<strong>in</strong>creased <strong>in</strong>traspecific predation under conditions of high breed<strong>in</strong>g densities(Glandt 2003, Grünkorn 1999). However, <strong>in</strong> strongly transformed ecosystemswhere ravens switch from natural to (or even rely on) artificial nest<strong>in</strong>g substrateslike electric towers, breed<strong>in</strong>g success might be artificially <strong>in</strong>creased. The steely andhigh constructions provide secure nest places: reduced predation by terrestrialpredators, protection aga<strong>in</strong>st fire and anchor<strong>in</strong>g aga<strong>in</strong>st strong w<strong>in</strong>ds (Boarman &He<strong>in</strong>rich 1999). Anyhow, breed<strong>in</strong>g performance may fluctuate strongly amongyears. For example, Dunk et al. (1997) reported fluctuations of 238% <strong>in</strong> threeyears. Extreme weather conditions, shortage of food – especially at the beg<strong>in</strong>n<strong>in</strong>gof breed<strong>in</strong>g season – and nest predation are well known reasons for breed<strong>in</strong>g failure(Ratcliffe 1997). Observations of rapid remat<strong>in</strong>gs dur<strong>in</strong>g breed<strong>in</strong>g season,when “stepmothers or stepfathers” are recruited and look after the chicks havebeen also recoded by other authors (Stiehl 1985, Ratcliffe 1997).In Białowieża Forest, the predom<strong>in</strong>ant items <strong>in</strong> raven diet were carrion and cereal,as reported <strong>in</strong> other studies (Newton et al. 1982, Engel & Young 1989,Zawadzka 1996). <strong>Raven</strong>s <strong>in</strong> <strong>temperate</strong> <strong>forest</strong>s may depend heavily on carrion,ma<strong>in</strong>ly of ungulates, especially dur<strong>in</strong>g w<strong>in</strong>ter, when carrion is more abundant butother food resources are unavailable or depleted. The availability of wild ungulatecarrion dur<strong>in</strong>g w<strong>in</strong>ter may play a key role <strong>in</strong> the fitness of raven pairs for the breed<strong>in</strong>gseason. In Wales, raven breed<strong>in</strong>g performance clearly depended on sheep carrionsupplies (Newton et al. 1982). Recent studies have shown (Kristan et al.2004) that rubbish dumps may supply ravens constantly with carrion and may beimportant <strong>in</strong> ma<strong>in</strong>ta<strong>in</strong><strong>in</strong>g large numbers of ravens, especially non-breeders.We found clear differences between the food habits of territorial pairs andnon-breeders, as also found by Newton et al. (1982). Immature ravens roost<strong>in</strong>gclose to the city dump depended on collect<strong>in</strong>g and scaveng<strong>in</strong>g on discarded foodand rema<strong>in</strong>s from domestic animals, which has been shown by the high frequencyof refuse, livestock and chicken rema<strong>in</strong>s <strong>in</strong> their pellets. However, ravens pairs keptmore ancestral food habits, even though many of them nested close to villageglades or open<strong>in</strong>gs whenever possible. For these pairs nest<strong>in</strong>g at the <strong>forest</strong> edge,cereal constituted an important food item. The distance from the nests to po<strong>in</strong>ts offood subsidies (e.g. dumps, agricultural fields) seems to strongly <strong>in</strong>fluence dietcomposition (Kristan et al. 2004). Adults seemed to be more efficient <strong>in</strong> tak<strong>in</strong>galive prey or were forced to hunt more often <strong>in</strong>side the <strong>forest</strong>. This is supported by


402 Sascha Rösner, Nuria Selva, Thomas Müller, Eugeniusz Pugacewicz, Frédéric Laudetthe frequent occurrence of squirrels <strong>in</strong> the pellets of adult ravens, never reported <strong>in</strong>previous studies on diet. The diet of raven pairs also <strong>in</strong>cluded more items related topredation <strong>in</strong> a Mediterranean island, whereas raven flocks showed a pronouncedscaveng<strong>in</strong>g strategy and fed ma<strong>in</strong>ly on the dump (Sarà & Busalacchi 2003). Inagreement with our f<strong>in</strong>d<strong>in</strong>gs, Newton et al. (1982) found that adult ravens consumedmore sheep carrion, voles and <strong>in</strong>vertebrates, but much less refuse. With <strong>in</strong>creas<strong>in</strong>g<strong>forest</strong> cover, the amount of small mammals consumed also <strong>in</strong>creased.These differences between the food habits of immature and territorial ravensmay be a consequence, not only of different forag<strong>in</strong>g abilities, but also of us<strong>in</strong>g differentforag<strong>in</strong>g habitats. Even raven pairs have been shown to have different diets<strong>in</strong> different habitat types with<strong>in</strong> the same area (Stiehl & Trautwe<strong>in</strong> 1991,Zawadzka 1996, Kristan et al. 2004). Immature ravens may be relegated to lessproductive or low-quality areas. This hypothesis is supported also by raven flocksscaveng<strong>in</strong>g only on bison carcasses placed <strong>in</strong> open areas – more visible – whereasthose bison carcasses located <strong>in</strong>side the <strong>forest</strong> were exclusively used by territorialpairs (Selva et al. 2003). Similar habitat segregation has been described for otheravian scavengers forag<strong>in</strong>g <strong>in</strong> groups (Kirk & Houston 1995, Donázar et al. 1998).To sum up, the whole Białowieża Forest represents a suitable habitat for ravens,which are perfectly adapted to prist<strong>in</strong>e <strong>forest</strong> conditions. <strong>Raven</strong>s selected the bestbreed<strong>in</strong>g sites (secure old p<strong>in</strong>e stands) and showed efficient strategies to exploit<strong>forest</strong> food resources such as association with large predators, hunt<strong>in</strong>g of <strong>forest</strong> rodentsor fast location of ungulate carcasses. In this respect, their ecological requirementsdiffered much from those of raven populations <strong>in</strong> highly transformedecosystems of Europe and North America. <strong>Raven</strong> populations <strong>in</strong> these landscapes,fac<strong>in</strong>g the appearance of new conditions, have easily adapted to the exploitation ofhuman-provided resources, and thus loos<strong>in</strong>g most of their ancestral habits.AcknowledgementsWe are grateful to Adam Wajrak, Andreas Marten, Adam Karbowski, DanielaBergmann, N<strong>in</strong>a Farwig, Tamara Münkemüller, Wiebke Bauernfe<strong>in</strong>d and other volunteerswho assisted us dur<strong>in</strong>g the field work. Dr. L. Jerzak and Dr. P. Tryjanowskiproposed us to prepare this paper and gave us all facilities. Dom<strong>in</strong>ic Cimiottihelped with references and Holger Grub with the diet analysis.ReferencesAndrén H. 1992. Corvid density and nest predation <strong>in</strong> relation to <strong>forest</strong> fragmentation – alandscape perspective. Ecology 73: 794–804.Bednorz J. 1991. Die Wiederausbreitung des Kolkraben (<strong>Corvus</strong> <strong>corax</strong>) <strong>in</strong> Polen. MetelenerSchriftenreihe für Naturschutz 2: 29–35.Bednorz J. 2000. <strong>Raven</strong>s, <strong>Corvus</strong> <strong>corax</strong> L<strong>in</strong>naeus, 1758, nest<strong>in</strong>g on electricity pylons <strong>in</strong> theWielkopolska region. Acta Zool. Cracov. 43: 177–184.Boarman W.I. 2003. Manag<strong>in</strong>g a subsidized predator population: reduc<strong>in</strong>g common raven predationon desert tortoises. Environmental Management 32: 205–217.


<strong>Raven</strong> <strong>Corvus</strong> <strong>corax</strong> <strong>ecology</strong> <strong>in</strong> a <strong>primeval</strong> <strong>temperate</strong> <strong>forest</strong> 403Boarman W.I., Camp R.J., Hagan M., Deal W. 1995. <strong>Raven</strong> abundance at anthropogenic resources<strong>in</strong> the western Mojave Desert, California. Report to Edwards Air Force Base, Riverside,California.Boarman W.I., He<strong>in</strong>rich B. 1999. Common <strong>Raven</strong> <strong>Corvus</strong> <strong>corax</strong>. The Birds of North America476: 1–31.Dare P.J. 1986. <strong>Raven</strong> <strong>Corvus</strong> <strong>corax</strong> populations <strong>in</strong> two upland regions of north Wales. Bird Study33: 179–189.Davis P.E., Davis J.E. 1986. The breed<strong>in</strong>g biology of a raven population <strong>in</strong> central Wales. Nature<strong>in</strong> Wales 3: 44–54.Donázar J.A., Trava<strong>in</strong>i A., Cevallos O., Rodríguez A., Delibes M., Hiraldo F. 1998. Effects ofsex-associated competitive asymmetries on forag<strong>in</strong>g group structure and despotic distribution<strong>in</strong> Andean condors. Behav. Ecol. Sociobiol. 45: 55–65.Dunk J.R., Smith R.N., Ca<strong>in</strong>. S.L. 1997. Nest-site selection and reproductive success <strong>in</strong> commonravens. Auk 114: 116–120.Engel K.A., Young L.S. 1989. Spatial and temporal patterns <strong>in</strong> the diet of common ravens <strong>in</strong>southwestern Idaho. Condor 91: 372–378.Faliński J. 1986. Vegetation Dynamics <strong>in</strong> <strong>temperate</strong> lowland <strong>primeval</strong> <strong>forest</strong>s. Ecological Studies<strong>in</strong> Białowieża Forest 8.Faliński J. 1994. Concise Geobotanical Atlas of Białowieża Forest. Phytocoenosis 6: 3–34.Gilchrist H.G., Robertson G.J. 2000. Observations of mar<strong>in</strong>e birds and mammals w<strong>in</strong>ter<strong>in</strong>g atpolynyas and ice edges <strong>in</strong> the Belcher Islands, Nunavut, Canada. Arctic 53: 61–68.Grünkorn T. 1993. Brutbestandsentwicklung und Verbreitung des Kolkraben <strong>in</strong> Schleswig-Holste<strong>in</strong>.Corax 15: 203–210.Grünkorn T. 1999. Hohe Siedlungsdichte und ger<strong>in</strong>ger Bruterfolg des Kolkraben (<strong>Corvus</strong> <strong>corax</strong>)an e<strong>in</strong>er Mülldeponie. Corax 17: 363–364.He<strong>in</strong>rich B. 1990. <strong>Raven</strong>s <strong>in</strong> w<strong>in</strong>ter. Summit Books, New York.Hooper R.G. 1977. Nest<strong>in</strong>g habitat of common ravens <strong>in</strong> Virg<strong>in</strong>ia. Wilson Bull. 89: 233–242.Hooper R.G., Crawford S.H., Chamberla<strong>in</strong>, D.R., Harlow R.F. 1975. Nest<strong>in</strong>g density of Common<strong>Raven</strong>s <strong>in</strong> the Ridge-Valley Region <strong>in</strong> Virg<strong>in</strong>ia. Am. Birds 29: 931–935.Jaroszewicz B. 2004. Białowieża Primeval Forest – a treasure and a challenge. In: Jędrzejewska,B., Wójcik, J.M. (eds.). Essays on Mammals of Białowieża Forest. Mammal Research InstitutePAS, Białowieża, p. 3–12.Jędrzejewska B., Jędrzejewski W. 1998. Predation <strong>in</strong> Vertebrate Communities. Ecol. Stud. 135.Jędrzejewska B., Okarma H., Jędrzejewski W., Miłkowski L. 1994. Effect of exploitation andprotection on <strong>forest</strong> structure, ungulate density and wolf predation <strong>in</strong> Bialowieza Forest,Poland. J. Appl. Ecol. 31: 664–676.Jędrzejewski W., Jędrzejewska B., Okarma H., Schmidt K., Zub K., Musiani M. 2000. Prey selectionand predation by wolves <strong>in</strong> Białowieża Primeval Forest, Poland. J. Mammal. 81,197–212.Jędrzejewski W., Schmidt K., Theuerkauf J., Jędrzejewska B., Selva N., Zub K., Szymura L.2002. Kill rates and predation by wolves on ungulate populations <strong>in</strong> Białowieża Forest(Poland). Ecology 83: 1341–1356.Kirk D.A., Houston D.C. 1995. Social dom<strong>in</strong>ance <strong>in</strong> migrant and resident turkey vultures atcarcasses: evidence for a despotic distribution? Behav. Ecol. Sociobiol. 36: 323–332.Knight R., Call M. 1980. The Common <strong>Raven</strong>. Technical Note, US Department of Interior344.Kristan W.B., Boarman W.I., Crayon J.J. 2004. Diet composition of common ravens across theurban-wildland <strong>in</strong>terface of the West Mojave Desert. Wildl. Soc. Bull. 32: 244–253.Kwiatkowski W. 1994. Vegetation landscapes of Bialowieza Forest. Phytocoenosis 6: 35–88.L<strong>in</strong>z G.M., Knittle C.E., Johnson R.E. 1992. Home range of breed<strong>in</strong>g common ravens <strong>in</strong> coastalsouthern California. The Southwestern Naturalist 37: 199–202.


404 Sascha Rösner, Nuria Selva, Thomas Müller, Eugeniusz Pugacewicz, Frédéric LaudetLo L.-Ch., Müller P. 2000. Bruterfolg <strong>in</strong> Abhängigkeit von Territorialität, <strong>in</strong>tra- und <strong>in</strong>terspezifischerKonkurrenz bei Kolkraben (<strong>Corvus</strong> <strong>corax</strong>). Archiv für Naturschutz und Landschaftspflege39: 59–77.Müller T. 2001. Habitat Requirements and Nest Site Selection of the Common <strong>Raven</strong> (<strong>Corvus</strong><strong>corax</strong> L.) <strong>in</strong> Białowieża Forest (Poland). M.S. thesis. UM, Marburg.Newton I., Davis P.E., Davis J.E. 1982. <strong>Raven</strong>s and buzzards <strong>in</strong> relation to sheep-farm<strong>in</strong>g and<strong>forest</strong>ry <strong>in</strong> Wales. J. Appl. Ecol. 19: 681–706.Nogales, M. 1994. High density and distribution patterns of a <strong>Raven</strong> <strong>Corvus</strong> <strong>corax</strong> populationon an oceanic Island (El Hierro, Canary Islands). J. Avian Biol. 25: 80–84.Okarma H. 1995. The trophic <strong>ecology</strong> of wolves and their predatory role <strong>in</strong> ungulate communitiesof <strong>forest</strong> ecosystems <strong>in</strong> Europe. Acta Theriol. 40: 335–386.Prill H. 1981. Siedlungsdichte und Bestand des Kolkraben <strong>in</strong> Mecklenburg. Orn. Rundbr. Mecklenb.24: 12–15.Promberger C. 1992. Wölfe und Scavenger. M.S. thesis. UM, Munich.Pucek Z. (ed.) 1981. Keys to vertebrates of Poland. Mammals. PSP, Warsaw.Pugacewicz E. 1997. Ptaki lęgowe Puszczy Białowieskiej. PTOP, Białowieża.Ratcliffe D. 1962. Breed<strong>in</strong>g density <strong>in</strong> the peregr<strong>in</strong>e Falco peregr<strong>in</strong>us and raven <strong>Corvus</strong> <strong>corax</strong>. Ibis104: 13–39.Ratcliffe D. 1997. The <strong>Raven</strong>. T&AD Poyser, London.Rösner S. 2002. Räumliche Aspekte zur Aasnutzung von Kolkraben <strong>Corvus</strong> c. <strong>corax</strong> L. 1758 imWald von Białowieża (Nord-Ost Polen). M.S. thesis. UM, Marburg.Rösner S., Selva N. 2005. Use of the bait-mark<strong>in</strong>g method to estimate the territory size ofscaveng<strong>in</strong>g birds – a case study on ravens <strong>Corvus</strong> <strong>corax</strong>. Wildl. Biol. (<strong>in</strong> press).Roth J., Kelly J., Sydeman W., Colwell M. 2004. Sex differences <strong>in</strong> space use of breed<strong>in</strong>g commonravens <strong>in</strong> western Mar<strong>in</strong> County, California. Condor 106: 529–539.Sarà M., Busalacchi B. 2003. Diet and feed<strong>in</strong>g habits of nest<strong>in</strong>g and non-nest<strong>in</strong>g ravens(<strong>Corvus</strong> <strong>corax</strong>) on a Mediterranean island (Vulcano, Eolian archipielago). Ethology Ecology& Evolution 15: 119–131.Sell<strong>in</strong>, D. 1991. Die Bestandsentwicklung des Kolkraben (<strong>Corvus</strong> <strong>corax</strong>) <strong>in</strong> e<strong>in</strong>em Dichtezentrum<strong>in</strong> Vorpommern. Metelener Schriftenreihe für Naturschutz 2: 21–26.Selva N. 2004. The role of scaveng<strong>in</strong>g <strong>in</strong> the predator community of Białowieża Primeval Forest(Poland). Ph.D. thesis. US, Sevilla.Selva N., Jędrzejewska B., Jędrzejewski W., Wajrak A. 2003. Scaveng<strong>in</strong>g on Europaean bisoncaracasses <strong>in</strong> Bialowieza Primeval Forest (eastern Poland). Ecoscience 10: 303–311.Skarphèd<strong>in</strong>sson K., Nielsen Ò., Thòrisson S., Thorstensen S., Temple S. 1990. Breed<strong>in</strong>g biology,movements, and persecution of ravens <strong>in</strong> Iceland. Acta Natur. Islandica 33: 1–45.Smith. D.G., Murphy J.R. 1973. Breed<strong>in</strong>g <strong>ecology</strong> of raptors <strong>in</strong> the eastern Great Bas<strong>in</strong> ofUtah. Brigham Young Univ. Sci. Bull. Biol. Ser. 18: 1–76.Stahler, D, He<strong>in</strong>rich, B, Smith D. 2002. Common <strong>Raven</strong>s, <strong>Corvus</strong> <strong>corax</strong>, preferentially associatewith grey wolves, Canis lupus, as a forag<strong>in</strong>g strategy <strong>in</strong> w<strong>in</strong>ter. Anim. Behav. 64: 283–290.Steenhof K., Kochert M.N., Roppe J.A. 1993. Nest<strong>in</strong>g by raptors and common ravens on electricaltransmission l<strong>in</strong>e towers. J. Wildl. Manage. 57: 271–281.Stiehl R.B. 1985. Brood chronology of the Common <strong>Raven</strong>. Wilson Bull. 97: 78–87.Stiehl R.B., Trautwe<strong>in</strong> S.N. 1991. Variations <strong>in</strong> diets of nest<strong>in</strong>g common ravens. Wilson Bull.103: 83–92Teer<strong>in</strong>k B. 1991. Hair of west-European mammals: atlas and identification key. CambridgeUniversity Press.Tomiałojć L. 1996. Białowieża Forest Belarus/Poland. IUCN European Programme Newsletter5: 6–8.Tomiałojć L., Wesołowski T. 2004. Diversity of the Bialowieza Forest avifauna <strong>in</strong> space andtime. J. Orn. 145: 81–92.


<strong>Raven</strong> <strong>Corvus</strong> <strong>corax</strong> <strong>ecology</strong> <strong>in</strong> a <strong>primeval</strong> <strong>temperate</strong> <strong>forest</strong> 405Webb W., Boarman W., Rottenberry J. 2004. Common raven juvenile survival <strong>in</strong> a human-augmentedlandscape. Condor 106: 517–528.Wesołowski T., Tomiałojć L. 1995. Ornithologische Untersuchungen im Urwald von Bialowieza– e<strong>in</strong>e Übersicht. Orn. Beob. 92: 111–146.Wright J., Stone R.E., Brown N. 2003. Communal roosts as structured <strong>in</strong>formation centres <strong>in</strong>the raven, <strong>Corvus</strong> <strong>corax</strong>. J. Anim. Ecol. 72: 1003–1014.Zawadzka D. 1996. Rozmieszczenie, wybiórczość środowiskowa, pokarm i rozród kruka<strong>Corvus</strong> <strong>corax</strong> w Wigierskim Parku Narodowym. Not. Orn. 37: 225–245.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!