10.07.2015 Views

Relatório Anual 2010 - Fundação Champalimaud

Relatório Anual 2010 - Fundação Champalimaud

Relatório Anual 2010 - Fundação Champalimaud

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

documentação gráfica, em fotografias e em filme, que permite guardarmemórias fundamentais do nosso percurso. Este livro correspondea uma primeira utilização sistematizada desse acervo e permitiu-noscontar em imagens um pouco do que aconteceu.Do ponto de vista dos mercados financeiros e da gestão do nossopatrimónio, o ano de <strong>2010</strong> terminou de forma bastante positiva,apesar da irregularidade com que se foi desenvolvendo. Consolidadaa nossa determinação em nos tornarmos progressivamente menosdependentes do portefólio financeiro, agora que no nosso patrimóniose solidificaram bens que nos permitem uma mais eficaz diversificaçãode fontes de meios, trabalhámos para procurar essas outras fontes.E mantemos um enorme rigor na utilização de meios, fazendo uso damaior parcimónia na contratação, em termos de números, como emtermos de prazos.Finalmente, uma palavra de profundo reconhecimento a todos que, dedentro e de fora, nos ajudaram a chegar aqui. E uma ainda, de desejoprofundo de que nos não falte a força e o estímulo para realizar o sonhode António <strong>Champalimaud</strong>.FC Relatório <strong>Anual</strong> <strong>2010</strong>


Finalmente, foi produzida e instalada a sinalética exterior e interior dos edifícios,de acordo com o projecto da firma holandesa Studio Dumbar, em colaboraçãocom a empresa alemã Unit Design.Todos os trabalhos decorreram a um ritmo intenso, para serem respeitadosos prazos previstos, assegurando a inauguração do Centro de Investigação<strong>Champalimaud</strong> na data prevista de 5 de Outubro de <strong>2010</strong>, no âmbito dascomemorações do centenário da implantação da República.É digno de destaque o cuidado extremo com a segurança da obra, o quepermitiu que entre as largas centenas de trabalhadores envolvidos naconstrução do Centro, não fossem registados quaisquer acidentes durantetoda a obra.Edifício A, trabalhos de revestimentoem pedra2.1.2 Equipamento clínicoForam adjudicados e instalados equipamentos de diagnóstico por imagem ede radioterapia.Os equipamentos de imagiologia foram adjudicados à Philips e incluíramequipamentos de radiologia convencional e de ultra-sonografia, de tomografiaaxial computorizada (TAC), de ressonância magnética e de medicina nuclear,concretamente uma Câmara Gama e um PET-CT.O equipamento de radioterapia inclui um acelerador linear “Elekta”, de últimageração.Ainda durante o ano de <strong>2010</strong> foram iniciados os testes com vista aolicenciamento e ao commissioning dos equipamentos, que deverá estarconcluído no primeiro semestre de 2011.Celebração da conclusão da obra, Outubro <strong>2010</strong>FC Relatório <strong>Anual</strong> <strong>2010</strong>


Uma sessão solene foi realizada em palco montado na área central, queconstitui o “passeio público”, permitindo a todos os presentes ficar à alturado lago na parte superior. Aproveitando a ilusão de continuidade entre a águadesse lago e o Tejo e o mar, lá fora, bem como os elementos decorativosutilizados, todos parecíamos estar sobre a imensidão do rio e do mar, imbuídosdo espírito pioneiro e da coragem ilimitada dos nossos antepassados quede aqui partiram. O carácter nacional do dia e a presença de uma forterepresentação da ciência internacional ajudaram a caracterizar a cerimónia,bem com o projecto que o Centro de Investigação materializará.A cerimónia incluiu uma bênção das instalações pelo Cardeal-Patriarca deLisboa, D. José Policarpo, a inscrição numa das colunas que ladeiam olago, à mão, de referência ao momento, pela Presidente da Fundação, e,em seguida, intervenções da mesma, de Luísa <strong>Champalimaud</strong>, em nome dafamília do Fundador, do Presidente do Conselho Científico, James Watson,e do Arquitecto Charles Correa. Este definiu bem o pensamento subjacenteao projecto: “Este edifício utiliza os mais altos níveis de ciência e medicinacontemporânea para ajudar as pessoas a resolverem problemas verdadeiros:cancro, danos cerebrais, cegueira. E, para albergar estas funções, tentámoscriar uma peça arquitectónica. Arquitectura como Escultura. Arquitecturacomo Beleza. Beleza como Terapia.”Luísa <strong>Champalimaud</strong>, filha do FundadorA cerimónia fechou com a intervenção do Presidente da República, quefelicitou a Fundação e a incentivou a procurar os níveis científico, ético e cívicomais elevados.Durante o almoço que se seguiu, foi atribuído o Prémio António <strong>Champalimaud</strong>de Ciência de <strong>2010</strong>.Durante o dia, foram dadas a conhecer aos nossos convidados as instala-ções da clínica e dos laboratórios, através de visitas guiadas por investigadoresda Fundação.Prof. James Watson,Presidente do Conselho Científicoda Fundação <strong>Champalimaud</strong>Visita inaugural, auditórioFC Relatório <strong>Anual</strong> <strong>2010</strong> 12


Arquitecto Charles Correa,autor do projecto do Centroda Fundação <strong>Champalimaud</strong>2.1.6 O CentroO Centro agora inaugurado garante todas as condições para que investigadorese académicos, nacionais e estrangeiros, desenvolvam projectos deexcelência nas áreas das neurociências e da oncologia.O Centro dispõe de excelentes condições e das mais modernas tecnologiaspara investigação biomédica, bem como das infra-estruturas necessárias aoensino pós-graduado e a programas de mestrado e de doutoramento.Para prosseguir estes objectivos, a Fundação optou por um modelo deinvestigaçãotranslacional, ou seja, fazendo permanentemente a ponte entre ainvestigação básica e a investigação clínica, assegurando que as descobertascientíficas e as novas tecnologias se aplicam no desenvolvimento e no ensaiode soluções para os problemas clinicamente relevantes. Desta ligação íntimaentre cientistas e médicos, entre investigação e tratamento, nascerá maisrapidamente a resposta para os problemas que afligem as pessoas.O Centro <strong>Champalimaud</strong> será usado por todos. Os jardins e restantes áreaspúblicas ocupam uma parte substancial do espaço disponível. Jardinspanorâmicos com uma grande variedade de árvores e áreas verdes, umanfiteatro ao ar livre para a realização de espectáculos musicais, sessõescientíficas ou artísticas - tudo isto tendo como pano de fundo a água e o Tejo- estão à disposição da cidade.O seu complexo arquitectónico inclui dois edifícios dispostos de forma apromover o livre acesso:- Edifício A, que contém nos pisos inferiores as áreas de diagnóstico e detratamento, e nos pisos superiores os laboratórios de investigação.- Edifício B, que inclui nos seus espaços públicos um auditório, uma áreade exposições e um restaurante. No piso superior estão os escritórios daFundação, que comunicam com o Edifício A através de uma ponte em vidro.FC Relatório <strong>Anual</strong> <strong>2010</strong> 13


Um grande espaço aberto ao público, com jardins panorâmicos e um anfiteatroao ar livre completa o conjunto.A forma tomada pelo complexo arquitectónico dispõe-se numa suave fugapara a foz do rio Tejo, simbolizando uma procura de ”mundos desconhecidos”e um novo encontro com a gesta dos Descobrimentos portugueses, agorasimbolicamente renovada nas actividades a desenvolver neste Centro deInvestigação de excelência. Charles Correa, arquitecto de origem goesa eautor do projecto presta, desta forma inspirada, um tributo a Portugal e àabertura que realizámos a novos mundos.No coração da edifício A está localizada a actividade principal do centro,com os centros de diagnóstico,clínico e de tratamento, e com os laboratóriosoncológico e de neurociências nos pisos superiores.Entra-se no edifício através de um lóbi de duplo pé direito que dá para umjardim tropical coberto. No piso da entrada encontram-se as zonas de exames,ligadas ao apoio clínico e ao centro de bem-estar. A partir do lóbi há acessodirecto a uma área localizada no piso inferior, onde os utentes podem deixaros seus filhos pequenos, e com abertura directa para o jardim tropical, peçacentral do edifício. Neste piso estão o centro de imagiologia e o centro detratamento oncológico, sendo que este se abre para um outro jardim maiscalmo e reservado, na extremidade oeste e inteiramente dedicado a estesdoentes.No primeiro piso estão localizados laboratórios de investigação, distribuídosà volta do jardim tropical,e os gabinetes dos investigadores. Estes espaçosculminam numa biblioteca de dois pisos localizada numa posição fulcral naintersecção das duas alas, o que a torna num local de encontro de cientistase de utentes.O segundo piso é dedicado também a laboratórios, com aberturas para o pisoinferior que ligam os dois níveis, de modo a incentivar e facilitar a interacçãoentre os profissionais das várias áreas de actividade do Centro de Investigaçãoda Fundação.FC Relatório <strong>Anual</strong> <strong>2010</strong> 14


3 PROGRAMA CHAMPALIMAUDDE NEUROCIÊNCIAS3.1 Programa <strong>Champalimaud</strong> de Neurociênciasno Instituto Gulbenkian de Ciência3.2 Neuroscience Lecture


3 PROGRAMA CHAMPALIMAUDDE NEUROCIÊNCIAS3.1 Programa <strong>Champalimaud</strong> deNeurociências no InstitutoGulbenkian de CiênciaActividade de formação na áreadas NeurociênciasForam cumpridos os objectivos e as iniciativas previstas no Protocolo deColaboração com a Fundação Calouste Gulbenkian/Instituto Gulbenkian deCiência, nomeadamente o “Programa <strong>Champalimaud</strong> em Neurociências” e o“Programa Gulbenkian/<strong>Champalimaud</strong> de Doutoramento em Neurociências”.A gestão e a responsabilidade científica dos Programas cabem à Direcçãodo IGC e ao Coordenador do Programa de Neurociências, Doutor ZacharyMainen, cujo relatório de actividades desenvolvidas em <strong>2010</strong> se encontra naspáginas seguintes em língua inglesa.O acompanhamento do Protocolo foi feito pelas administrações dasFundações, que reuniram periodicamente com a Direcção do IGC.Programa Gulbenkian/<strong>Champalimaud</strong>de Doutoramento em NeurociênciasFC Relatório <strong>Anual</strong> <strong>2010</strong> 16


3.2 Neuroscience LectureA 6 de Outubro, teve lugar uma Lecture, organizada no âmbito do Programade Neurociências.A abertura esteve a cargo do Professor António Damásio, David DornsifeProfessor of Neuroscience e Director do Brain and Creativity Institute, naUniversidade da Califórnia do Sul, e Professor Adjunto no Salk Institute emLa Jolla, California, EUA., bem como membro do Conselho de Curadores daFundação <strong>Champalimaud</strong>.Seguiram-se as seguintes intervenções:J. Anthony Movshon, Director da New York University’s Center for NeuralStudies: “Encoding and decoding of visual information by corticalneurons”William T. Newsome, Investigador no The Howard Hughes Medical Institutee Professor de Neurobiologia na Standford University, EUA: “A dynamicsystems approach to visually based decision-making”Ambos os oradores receberam o Prémio António <strong>Champalimaud</strong> de Visão em<strong>2010</strong>.FC Relatório <strong>Anual</strong> <strong>2010</strong> 17


RESEARCH GROUPSMegan R. CareyNeural Circuits and BehaviorWe are interested in the neural basis of behavior – how activity in neuralcircuits enables us to interact appropriately with the world around us. Ourresearch focuses on the cerebellum, a brain area that plays a central rolein coordinated motor control and motor learning. Our goal is to understandhow cellular processes within the cerebellum contribute to specific aspectsof behavior. We use transgenic mice to specifically perturb cellular processesin identified neuronal populations and dissect cerebellar circuit function.Endocannabinoids in cerebellar learningCannabinoids are powerful neuromodulators that are responsible for thepsychotropic effects of marijuana and mediate several forms of synapticplasticity. In the cerebellum, both short- and long-term plasticity betweenparallel fibers and Purkinje cells depend on activation of cannabinoidreceptors (CB1Rs). Recently we have shown, using cell type-specific CB1knockout mice, that CB1Rs on cerebellar parallel fibers are required forthis plasticity. We are now using these mice to examine the behavioralconsequences of CB1R deletion from parallel fibers. Specifically, we aretesting the hypothesis that CB1-dependent long-term depression is requiredfor a simple form of learning, classical eyelid conditioning.Cerebellar circuit diagram.The known anatomy and connectivityof the cerebellar circuit allows us toperturb cellular and synaptic functionsof identified cell typesand assess the effects on behavior.Cellular and circuit analysis of genetic perturbationsWe take advantage of the molecular identifiability and known connectivitiesof cerebellar neurons to make targeted perturbations of the cerebellar circuit.Existing technologies allow us to knock out or selectively express individualmolecules in identified cell types. We will use in vitro electrophysiology andcalcium imaging to characterize the effects of these manipulations on neuralexcitability, synaptic transmission, and plasticity. Our goal is to acquirea detailed understanding of the contribution of individual molecular andcellular elements to overall circuit function.Development of new behavioral assaysThe cerebellum performs complex feats of motor coordination. Yet, behavioralassessments of cerebellar circuit function in mice are typically limited eitherto general measures of coordination or relatively simple forms of associativelearning. We are working to establish new, quantitative measures of cerebellarfunction. By comparing specific aspects of behavior across mice in which geneticperturbations have been targeted to different individual neuronal types,we hope to determine links between cellular and circuit function and behavior.FC Relatório <strong>Anual</strong> <strong>2010</strong> 18


Rui M. CostaNeurobiology of ActionGroup membersCristina Afonso (Postdoctoral Fellow)Fatuel Aguilar (Postdoctoral Fellow)Joana Almeida (Technician)John Burkhardt (Postdoctoral Fellow)Eduardo Ferreira (PhD Student)Pedro Ferreira (PhD Student)Catherine French (Postdoctoral Fellow)Rosalina Fonseca (Clinical Research Fellow)Albino Maia (Clinical Research Fellow)Gabriela Martins (Postdoctoral Fellow)Vítor Paixão (Postdoctoral Fellow)Fernando Santos (PhD Student)Ana Maria Vaz (Technician)Ana Mafalda Vicente (PhD Student)We study the neurobiology of action in health and disease.To study actions is to study the way we do things, which is different thanstudying how we remember stimuli, or facts and events. Some actions areinnate or pre-wired (like swallowing, breathing, even grooming). Othersare learned through trial and error throughout life. We currently focus onunderstanding the processes mediating the latter.Our overall goal is to understand how changes in molecular networks in thebrain modify neural circuits to produce experience-dependent changes inactions. In order to understand how actions are learned through trial anderror, we subdivided our experiments in different components, or specificgoals:Action initiation: how do we initiate and generate diverse actions (trial),Action improvement: how do we improve the accuracy and speed of actions(through trial and error)Actions and outcomes: how do we learn that particular actions lead to particularoutcomes (goal of the action) and how do we form habits.A growing body of evidence supports an important role of the basal ganglia inaction initiation and selection, in skill learning, and in learning goal-directedactions and habits. Therefore, we centered our efforts on investigating thecortico-basal ganglia mechanisms underlying these three processes usingan across-level approach, from molecules to circuits.Specificity of Cre expression in PVCreand ChATCre mice. (A) Montage ofimages from an adult brain sectionthrough the striatum demonstratingYFP colocalisation with PV in thePVCre mouse line crossed with aROSA26-YFP reporter mouse. Theinset in dorso-lateral striatum depictsthe location from where the smallerimages were obtained (B-G). (B-D)The first column demonstratesPV immuno-reactivity (in red; B),YFP expression (green; C), andcolocalisation of both (yellow; D)in the PVCre-ROSA-YFP mousestriatum. (E-G) The second panelshows ChAT immuno-reactivity (inred; E), YFP expression (green, F),and colocalisation of both (yellow;G) in a ChATCre-ROSA-YFP mousestriatum. Scale bars = (A) 500µm;(D) 125µm for (B-G).(Gabriela Martins)We chose to implement this integrative approach in mice because theycombine the power of genetics, a mammalian brain with canonical cortico-FC Relatório <strong>Anual</strong> <strong>2010</strong> 19


-basal ganglia loops that can generate and propagate oscillatory activity,and the possibility of accurately quantifying simple behaviours like actioninitiation (with EMG recordings or using inertial sensors) and stereotypicskill learning, and more elaborate behaviours like goal-directed actions.Our research programme will hopefully shed light on the mechanismsunderlying the diversity of actions we perform, the automatisation of actionsand the generalisation of rules or ways to carry them out. Our research mayalso have important implications for understanding the relation betweencorticostriatal dysfunction and the symptoms of different neurodegenerativeand psychiatric disorders.Neural mechanisms of skill and sequence learningUnderstanding how novel actions are learned and consolidated as sequencesof movements and skills are the main aims of this project.In the past year we have uncovered neural activity in nigrostriatal circuitsrelated to the initiation and termination of novel action sequences.Corticostriatal mechanisms underlying goal-directed actions and habitsOur goal is understanding the difference in the brain between intentionalactions and habits or routines.In <strong>2010</strong> we discovered that uncertainty increases the propensity for habitformation and investigated the relation between medial and lateral striatalcircuits in controlling goal-directed actions versus habits and found that SNcbut not VTA dopaminergic neurons are involved in habits.Neural mechanisms underlying the generation of novel actionsThis project aims to understand how new self-initiated actions are generatedand how this ability is hampered in Parkinson´s disease.In the last year we developed a new methodology to follow, in parallel, neuralactivity and the behaviour of mice with accelerometers.The role of different striatal circuitsin action learning. Top: Miceperforming a behaviour task–walkingon a rotating rod–which requiresaction learning that depends onstriatal circuits in the brain. Bottom:Identification of striatal mediumspiny neurons of the direct pathwayexpressing D1 dopamine receptor(in red) and striatal medium spinyneurons of the indirect pathwayexpressing D2 receptor (in green).Note the two populations do notoverlap..(Catherine French)FC Relatório <strong>Anual</strong> <strong>2010</strong> 20


Inbal IsraelyNeuronal Structure & FunctionGroup membersAli Argunsah (PhD Student)Yazmín Ramiro Cortés (Postdoctoral Fellow)Anna Hobbiss (PhD Student)We are interested in understanding how activity can lead to specificstructural changes in neurons that may be important for learning, and howsuch changes affect connectivity within neural circuits. We would alsolike to understand how the structural diversity among neurons contributesto connectivity in the brain. The current focus is on single neurons, evensingle spines, to understand the cellular mechanisms that are importantfor synaptic plasticity and learning. Using 2-photon uncaging of glutamatetogether with live imaging of neurons, we are able to directly probe thestructural consequences of activity at single inputs – as seen throughchanges in the size and shape of spines – as well as through changes insynaptic weights. Furthermore, by stimulating multiple neuronal inputs, wecan begin to understand how spines cooperate or compete for the expressionof plasticity within dendritic domains, and how local protein synthesis playsa role in these changes. Interestingly, several mental retardation disordersin humans are characterized by abnormal spine morphology together withalterations in protein translation. Studying neurons from animal modelsof these disorders may elucidate the mechanisms underlying the cognitivedysfunction, and shed light on the relationship between structure andfunction. By combining molecular and genetic tools together with imagingand electrophysiological methodologies, we investigate how information isphysically stored in the brain.Activating single dendriticspines. A fluorescent reporteris introduced into a subset ofpyramidal neurons in culturedhippocampal brain slices so thatindividual spines can be visualized.Using 2-photon microscopy andphotoactivation of caged glutamate,the neurotransmitter is releasedonly at the site of stimulation. Thisallows us to examine how neuronsmodify individual synapses at whichinformation is received. We can varythe type of stimulation delivered at agiven input in order to mimic differentforms of activity. Additionally, we canexamine how experience at multiplesynapses may become integrated,and what are the mechanisms whichunderlie such processing by theneuron.Dendritic compartmentalization of protein synthesis-dependent synapticplasticityWe aim to visualize structural changes that occur in living spines inresponse to protein synthesis dependent forms of activity. We will examinehow activity at multiple spines leads to structural changes and changesin synaptic weights within a dendritic branch.We found in <strong>2010</strong> that protein synthesis dependent stimulation of spines canfacilitate plasticity at neighbouring spines for up to an hour and over longdistances (70 um), using either cAMP agonists or through dopamine receptoractivity. Spines can also compete for cellular resources if stimulated tooclosely together in time, and later stimulated spines can join the competitiveprocess. These findings demonstrate that the spatial clustering of synapsesprovides greater computational power to a neuron.FC Relatório <strong>Anual</strong> <strong>2010</strong> 21


Structural correlates of bidirectional changes in synaptic efficacySynaptic potentiation leads to spine enlargement at individual synapses,and we aim to elucidate the structural consequences of synaptic depressionat single spines. We will determine how bidirectional changes in synapticstrength correlate with structural modifications at the modified inputs, andwhether these changes depend on new protein synthesis.In the past year we have induced long lasting synaptic depressionthrough the activation of metabotropic glutamate receptors (mGluRs) inhippocampal organotypic slice cultures. We have imaged subsets of spinesfrom these neurons for up to four hours. Additionally, we have initiatedelectrophysiological recordings from these cells in order to monitor thesynaptic responses.Structural correlates of naturalistic spike trains at single synapsesWe aim to mimic naturally occurring patterns of activity with glutamateuncaging at individual spines, in order to determine the structural andplasticity correlates of these forms of activity. We will use this informationto model neuronal information processing.Based on in vivo electrophysiological recordings from hippocampal CA3neurons, glutamate uncaging protocols will be designed and used to stimulateindividual spines on CA1 cells. We are developing software that will allow greaterprecision in the quantification of structural changes. Electrophysiologicalrecordings in hippocampal organotypic slice cultures are underway in orderto monitor the plasticity induced by the different stimulations.Adam KampffIntelligent SystemsThe neural systems that underlie human intelligent behavior have antecedentsin the brains of all animals. The Kampff lab develops conceptual and technicaltools for characterizing the behavioral strategies that brains (primarily thoseof rodents) use to learn about and interact with their environments, as well asnew techniques for recording neural activity from behaving animals. Thesetwo goals of the lab are briefly summarized below:How does the brain construct a model of the world?Before we can ask “how” brains encode information about their environment,we must first understand “what” information is encoded. The Kampff lab usesFC Relatório <strong>Anual</strong> <strong>2010</strong> 22


ehavioral assays in which the statistics and physics of the environment areunder experimental control (e.g. virtual worlds). By altering environmentalproperties and accurately monitoring animal behavior, we use these assaysto determine the environment model that an animal has learned. Currently,the lab is developing the new tools for behavioral tracking and virtual realitythat will be necessary to implement these systems. The first behavioralexperiments will begin at the CCU in the spring of 2011. Future lesionstudies, neural recordings, and optogenetic manipulations are planned;these experiments will involve collaborations with researchers throughoutthe CF.Developing high-performance microfabricated devices for recordingneural activityThe Kampff lab has initiated, and will coordinate, a collaboration betweenthe Center for Materials Research (CENIMAT) of the Universidade Nova deLisboa and neuroscientists of the <strong>Champalimaud</strong> Foundation. CENIMATresearchers are experts in the design and fabrication of nanoscaledevices; techniques with the potential to fundamentally change the wayneuroscientists record and manipulate activity in the brain. The collaborativeproject between CENIMAT and the Kampff lab involves two principle tasks:the rapid design and microfabrication of neural electrode variants usingadvances in nanoscale materials processing, and the evaluation of each newdevice’s performance for acute and chronic recordings from mammalianbrains. The fast development-evaluation cycle of new electrode designs(i.e. devices can be created at CENIMAT and tested at the CCU within thesame day) distinguishes this collaboration from past attempts to bringadvances in nano/micro-scale technology to neuroscience. Our abilityto test numerous variants, directly in the varied model systems that CFresearchers use, promises rapid advances in the performance and scale ofneural recording devices, and will establish the CF as a pioneer for advancedtechniques in neuroscience.FC Relatório <strong>Anual</strong> <strong>2010</strong> 23


Susana LimaNeuroethologyGroup membersKensaku Nomoto (Postdoctoral Fellow)Vanessa Urbano (Technician)Léa Zinck (Postdoctoral Fellow)We are interested in the brain mechanisms underlying female mate choice,sexual behaviour and the interaction between the two. As an animalmodel, we use wild-derived inbred house mice, which allow us to performexperiments that address evolutionarily-motivated questions in a controlledlaboratory setting. We are currently investigating how females assess thequality of prospective mates and what aspects of experience shapes femalechoices. We are also actively developing new behavioural paradigms tomeasure and manipulate the variables that affect female sexual arousal andreceptivity. To address our goal of understanding how patterns of neuralactivity give rise to these processes, we employ approaches ranging fromelectrophysiological recordings in behaving animals to genetic manipulationof neuronal networks.Neuronal mechanisms for mate choice in miceThe hybrid zone between Musmusculus musculus and Musmusculus domesticus in Europe.House mice in Europe are derivedfrom a common ancester originatingin the Indian subcontinent, whichspread through Europe withagriculture. Two subspecies havedeveloped in allopatry: Mus musculusmusculus and Mus musculusdomesticus. Starting 6800 years ago,these two subspecies establisheda contact zone, spanning fromDenmark to the Mediterranean.Thishybrid zone exhibits assymetric matechoice, which in part has contributedto the still current separation ofthe two subspecies: while musculusfemales prefer to mate withmusculus males, domesticus femalesmate indiscriminately. We havedeveloped a behavioural paradigmin the laboratory using inbred wildderived animals of the subspeciesmusculus (PWD and PWK) andlaboratory strains of mice (Black 6)as domesticus.Our main goal was to develop a behavioural paradigm of mate choice in miceto then investigate the neuronal mechanisms responsible for representingmates of different values and how comparison of competing alternativesare made. We have used a mate choice paradigm inspired by the naturalsituation observed in the hybrid zone between Mus musculus musculus andMus musculus domesticus in Europe.In <strong>2010</strong> we have established a mate choice paradigm with M. m. musculusand M. m. domesticus, where musculus females exhibit a strong and reliablepreference for their own subspecies. We have also established that thispreference is influenced by early imprinting mechanisms and it increaseswith multiple testing. Furthermore, the preference for a specific male isnot absolute, but rather flexible and dependent on the alternatives thatare available.Neuronal mechanisms underlying sex hormone-dependent switching ofsexual receptivityFemale sexual receptivity changes across the reproductive cycle, beingmaximal during the fertile phase. This represents an interestingFC Relatório <strong>Anual</strong> <strong>2010</strong> 24


state-dependent behavioural output, where the interaction of sexual hormonesand the physiology of neuronal circuits alters the way a female treatsthe same male stimulus. We are interested in understanding the role of theventromedial nucleus of the hypothalamus (VMH) in the control of this receptivityswitch. To this end, we are performing electrophysiological recordingsof this area in naturally cycling female mice exposed to male stimuli.During the past year we have developed and troubleshooted electrophysiologicalrecordings in the VMH of naturally cycling, freely moving females.We are able to record from well-isolated neurons from this area, and we canobserve stimulus triggered responses. We are currently testing other typesof electrodes in order to increase the yield of these experiments.Mus musculus musculus females(PWK) exhibit a strong and reliablepreference for their own subspecies.PWD females exhibit a stronghomosubspecific preference for PWKmales, resembling what we observein the wild. For 54 PWD femalestested, we observed a significant,reproducible and robust preferencefor PWK over B6 males. The overallPI for PWK is strong and reproducibleacross individuals. Paired t-test:***p


Thiago Gouvêa (PhD Student)Hope Johnson (Postdoctoral Fellow)Magor Lorincz (Postdoctoral Fellow)Sara Matias (PhD Student)André Mendonça (PhD Student)Masayoshi Murakami (Postdoctoral Fellow)Maria Inês Vicente (PhD Student)We are interested in understanding the principles underlying the complexadaptive behavior of organisms. Starting with quantitative observations ofanimal behavior, we aim to integrate quantitative cellular and systems levelexperimental analysis of underlying neural mechanisms with theoretical,ecological and evolutionary contexts. Rats and mice provide flexibleanimal models that allow us monitor and manipulate neural circuits usingelectrophysiological, optical and molecular techniques. We have madeprogress using highly controlled studies of a simple learned odor-cueddecision task and are extending our focus toward more complex behaviors.Projects in the lab are wide-ranging and continually evolving. Current topicsinclude (i) olfactory sensory decision-making, (ii) the function of the serotoninsystem, (iii) the role of uncertainty in brain function and behavior.Optogenetic identification and control of serotonin neurons in behavinganimalsSerotonin is an important neurotransmitter implicated in a wide varietyof physiological functions and psychopathologies, but whose function isnot well understood. Critically, very little is known about the activity ofserotonin-releasing neurons in the brain. To address this problem, we areusing optogenetic tools that target this class of cells via specific promotersto selectively monitor, stimulate and inhibit serotonin neurons. We aim totest specific hypotheses concerning the role of serotonin in brain functionand behavior.In the past year, we focused on validating and improving our techniquesfor expressing light-gated channel channelrhodopsin-2 (ChR2) in 5-HTneurons. We tested our custom adeno-associated virus (AAV) in rats andcompared it to a double-floxed inverted ORF (DiO) strategy in the mouse.With this improved tool in hand, we are now testing the behavioral effectsof stimulating 5-HT neurons.In parallel, we produced an AAV for specifically expressing the calciumsensor GCaMP3 in 5-HT neurons and developed a custom fiberoptic lightdetection system, which we will use to measure fluorescence changes infreely moving rats and mice.FC Relatório <strong>Anual</strong> <strong>2010</strong> 26


Olfactory objects and decisions: From psychophysics to neural computationThe overall aim of this line of work is to understand the neural computationsthat make olfactory object recognition possible. We hypothesize that complexodor stimuli are represented using a probabilistic population code andprocessed in a Bayesian optimal fashion by the nervous system. To link thesenormative ideas to specific neurophysiological and behavioral predictions,we are formalizing them using computational models. Experimentally,our primary goal is to monitor and perturb object representations in thefunctioning, computing brain. To this end, we deploy psychophysical tasks inrats, which formalize complex real-world olfactory problems and also allowus to operationalize cognitive processes such as attention and memory. Bycombining such quantitative paradigms with large-scale neural ensemblerecordings in the olfactory cortex, we can study how populations of neuronsencode and process complex odor scenes, attempt to account for behavioralperformance, and test the predictions of our theoretical models.Experimental setup of arat performing an olfactorycategorisation task, which is beingused to investigate the computationof decision uncertainty throughinactivation and electrophysiologicalrecordings on the olfactory system.Speed-accuracy tradeoffs (SATs) are well known in decision-making, and caninvolve large (>50%) changes in decision time, but are not always observed, aswe have previously shown in an odor mixture categorization task. Why sometasks benefit from more temporal processing than others is not well understood.Integration models, which capture a wide range of SAT phenomena, predict thatreaction times (RTs) and performance accuracy are jointly proportional to thesignal to noise ratio of incoming information, assuming the noise fluctuates ona rapid time scale.In <strong>2010</strong> we developed a new paradigm involving odor detection. We hypothesizedthat fast stimulus noise would dominate the detection task, allowing temporalintegration, while the categorization task would be dominated by slow, trialto-trialvariability. We found that SAT was much larger in the odor detectiontask than in the mixture categorization task, demonstrating that sensoryintegration and the amount of SAT are problem-specific and suggesting thatthe locus of performance--limiting noise is a critical variable.Action selection and action timing in the premotor cortexExecuting the right action at the right moment is important for adaptivebehavior.Our aims are to understand what features of future actions are represented inthe neuronal firing patterns in motor cortex, and how the interaction betweenneurons gives rise to the selection and timing of actions. To achieve this goal,we are using multiple single-unit recording techniques in behaving rodents. Bycorrelating the activity of neurons with the animal’s behavior, we are seeking tounderstand the internal representation of future actions in the motor cortex.In <strong>2010</strong>, we found 2 types of potential action timing signals in neural activityFC Relatório <strong>Anual</strong> <strong>2010</strong> 27


in the premotor cortex, one transient signal at the onset of waiting and asecond type showing a ramping of activity up to action initiation.We also have been developing a new task in which we can easily manipulatethe availability of potential action options. We plan to test the hypothesisthat competing representations may underlie action selection by performingmultiple single-unit recordings.Evaluating the reliability of knowledge: Neural mechanisms of confidenceestimationHumans and other animals must often make decisions on the basis of imperfectevidence. How does the brain compute confidence estimates about predictions,memories and judgments? Previously, we found that a population of neurons inthe orbitofrontal cortex (OFC) tracks the confidence in decision outcomes. Weaim to extend these observations by testing whether confidence-related neuralactivity in the OFC is causally related to confidence judgments and by testinghow uncertainty about a stimulus in the course of decision-making may berepresented and computed in olfactory sensory cortex.We hypothesize that the tubercle, an early olfactory structure that has bothcortical and striatal properties, is a key player in olfactory category decisionsand predict that both confidence and action values are represented andcomputed therein. To test this idea, in <strong>2010</strong> we have developed a modifiedconfidence reporting task that allows us to disambiguate key variables relatedto the decision process and are in the process of conducting electrophysiologicalrecordings from multiple single units in the olfactory tubercle and cortex.Marta MoitaBehavioural NeuroscienceGroup membersElizabeth Rickenbacker (PhD Student)Andreia Cruz (PhD Student)Ana Gregório (Research Technician)Marta Guimarães (PhD Student)Ana Pereira (PhD Student)Scott Rennie (PhD Student)We are interested in understanding the neural mechanisms underlyingbehavioral plasticity using a combination of behavioral, pharmacological,molecular and electrophysiological tools. We are particularly interested inDiagram of proposed circuit fortAFC. When a short trace intervalis used, a projection from the mPFCto the amygdala is involved. Whena long interval is used, the mPFC isrequired to communicate with thehippocampus, so that this structurecan convey a representation of theepisode, bridging tone and shock, tothe amygdala.FC Relatório <strong>Anual</strong> <strong>2010</strong> 28


studying the neural basis of memory formation. We chose to focus on fearlearning, where animals learn to fear cues that are predictive of aversiveevents or threats. Studying fear learning presents several advantages: it isconserved across species; it entails fast robust learning and very long lastingmemories; its neural circuitry is well described; it may bring insights into theneural mechanisms underlying anxiety disorders. More recently, we startedstudying learning and decision making in the context of social interactions.Our goal is to bridge the studies on fear learning and social behavior in anattempt to look at the fear system in all its complexities.Neural Mechanisms of trace auditory fear conditioningThis project focuses on the role of different memory systems in trace auditoryfear conditioning (tAFC). Our aim is to unravel how the association betweentwo stimuli separated in time is formed in the brain. Preliminary findings ledus to hypothesize that the strategy used by the rats to learn the associationbetween tone and shock depends on the length of the trace interval betweenthe two stimuli. In accordance with these results we found that temporaryinactivation of the hippocampus affects tAFC only when long trace intervals areused. In contrast, inactivation of either the medial prefrontal cortex (mPFC),thought to be important for working memory, or the amygdala, important forfear learning, disrupts learning irrespective of interval length. We have begunto test the role of mPFC –amygdala and mPFC-hippocampus connections inthe acquisition of tAFC with both short and long trace intervals.Neural Mechanisms of discriminative auditory fear conditioningThis project aims at elucidating the role of the different auditory input pathwaysto the amygdala, a crucial structure for the acquisition of auditory fearconditioning. To this end we are performing lesions to each of these pathwaysand testing their role in the acquisition and expression of discriminativeauditory fear. Previously we had found that both input pathways are necessaryfor intact auditory discrimination, in the context of fear learning. Thus,although either one alone is sufficient for the acquisition of fear of a sound,neither one can establish normal discrimination between a tone that is followedby shock and one that is not. Next, we tested the role of the two pathways in therecall of discriminative fear and found that only the direct thalamic, but notthe cortical, projection to the amygdala was important for normal expressionof discriminative fear. Finally, we found that the same thalamic pathway wasimportant for the recall of fear extinction, suggesting a role of this pathway inthe suppression of fear of neutral or safe auditory stimuli.Cooperation in social dilemmas in ratsGame theory has constituted a powerful tool in the study of the mechanismsof reciprocity. Having shown, in a Prisoner’s Dilemma game, that rats shapeFC Relatório <strong>Anual</strong> <strong>2010</strong> 29


their behaviour according to the opponent’s strategy and the relative sizeof the payoff resulting from cooperative or defective moves, we now aim atdissecting the mechanisms underlying the decision-making process duringsuch social dilemma games. We have designed and set-up an automatedmaze to study the behavior of rats in different social dilemma games, suchas the Stag Hunt and the Snow drift game, which allow for dissection of thefactors that govern cooperation between two rats.Mechanism of vicarious fearThis project aims at investigating the mechanisms underlying vicarious fearin rats. It has been shown that rats can learn from social interactions, howeverthe mechanisms underlying this form of learning are poorly understood.In this project we are focusing on social transmission of fear. In collaborationwith Dr. Christian Keysers, we have developed a paradigm for studyingvicarious fear in rats. We have found that a rat will show vicarious fearwhen observing a conspecific being shocked, provided that it has had priorexperience with shock. This finding suggests that vicarious freezing in ratsis empathic in nature. Furthermore, we found that the rat being shocked willfreeze more in the presence of an experienced observer than in the presenceof a naïve one and that the amount of freezing is correlated with the numberof alarm calls emitted by the two rats.Michael OrgerVision to ActionGroup membersClaudia Feierstein (Postdoctoral Fellow)João Marques (PhD Student)Our brains process and integrate sensory information,experience, and internal states to plan and executeappropriate behavioural responses. Understanding howthese processes are implemented in neural circuits isa major goal of contemporary science. We address thisquestion using visuomotor responses in zebrafish, whosebrain has the same basic vertebrate organization as ours,but is numerically about a million times less complicated.Small and transparent, zebrafish are uniquely well suitedto take advantage of recent advances in optical and geneticmethods for exploring neural function.Figure 2 – Structure and function of neural circuits in thezebrafisha) Projection of two photon image stack of motor controlneurons in the zebrafish brainstem. b) Optical section ofpanneural GCaMP fish with superimposed color map ofdirection preference recorded by functional imaging (seeinset look up table). c-d) Stable GFP expression driven inspecific neurons in the mid/hindbrain using conservedzebrafish enhancer sequencesFC Relatório <strong>Anual</strong> <strong>2010</strong> 30


Characterization of sensorimotor transformationsTo know how a circuit works, we need to know what it was meant to do.We study how the zebrafish brain transforms vision into action, by recordingwith high-speed cameras the behaviour of fish swimming freely in virtualreality environments where we can precisely control visual stimuluspresentation and sensory feedback. Zebrafish show an array of robust andcomplex visual responses even in the first days of life: they escape loomingpredators, hunt down and eat moving prey, chase smaller fish away fromfood and use eye and body movements to compensate for their motion relativeto the world. We aim to develop quantitative descriptions of each of thesebehaviours, using simple artificial stimuli, and study how the brain integratesinformation from multiple cues to drive appropriate motor responses.Whole brain functional imagingBehaviour depends on dynamic activity in neural circuits that span multipleareas throughout the brain. A key advantage provided by the small,transparent brain of the zebrafish is the ability to image non-invasively, invivo, activity in all neurons in an unbiased manner. We use a custom twophoton microscope to image fish expressing genetically encoded calciumindicators throughout the brain, while they respond to visual stimuli, to buildfunctional maps of a vertebrate brain with single cell resolution. We have aparticular interest in determining how the precise control of movementsexhibited during visually guided swimming activity is executed by projectionneurons in the brainstem motor control system, a small neural population,many of which can be uniquely identified from fish to fish (see Figure).Targeted PerturbationsWhile it is useful to correlate the activity of neurons with behaviour, wealso need to establish a causal link between the two. This has historicallybeen much more difficult, because 1) we have lacked ways to non-invasivelyand reversibly manipulate neural activity, and 2) the number of possiblemanipulations is intractably large. The development of sensitive, light-gatedion channels to up- and down-regulate activity has recently provided apowerful solution to the first problem. The second issue is dealt with by havinga comprehensive functional map of the brain to build strong prior hypothesesabout what neurons are doing. We are developing tools to express transgenesin targeted neuronal populations with spatial and temporal specificity.We will use these tools to manipulate spiking in identified neurons withincircuits to reveal how activity in individual cells contributes to behaviourof the whole organism.FC Relatório <strong>Anual</strong> <strong>2010</strong> 31


Joseph PatonDopamine in Action LearningGroup membersRui Azevedo (PhD student)Gustavo Mello (Technician)Sofia Soares (MSc student)The film director Elia Kazan once said that directing is “turning psychologyinto behavior”. Your brain is charged with the same task every momentyou are awake. Aside from reflexes, actions are almost always, at leastinitially, directed in nature. Disease states such as Parkinson’s disease,where voluntary action is inhibited, and obsessive compulsive disorderand drug addiction, where actions cannot be terminated, highlight theimportance of proper direction of action for normal functioning. The coreof my laboratory’s research is to advance our understanding of the neuralmechanisms by which the actions that make up adaptive behavior are learnedand generated. Taking a cue from Mr. Kazan, we begin by developing well--controlled behavioral tasks for the investigation of signals related to temporalprocessing in the brain of awake-behaving rodent model systems. Currently,we are particularly interested in understanding how the neurotransmitterdopamine (DA) modulates neural functioning within the basal ganglia, anevolutionarily aged collection of structures historically thought of as beingimportant for movement. In particular DA appears important for normaltiming of behavioral responses. Thus, we have developed simple cognitivetasks in rodents in which animals must learn to time intervals. Our approachemploys multi-site neurophysiological recordings, as well as theoretical,pharmacological, and molecular biological techniques.Neurophysiology of time encodingin the rodent striatum. A - Schemeof the Serial Fixed Interval (SFI)lever pressing task. Rats and miceadjust pressing times in responseto different fixed intervals (FI) ofreinforcement. We analyze behavioralmeasures that co-vary with the timeduration being sampled, such as thetime of the first lever press aftercollecting a reward, that we refer toas “post reinforcement pause”. Here(B - left) we calculated the medianpost reinforcement pause withinblocks of trials of the same FI in asingle session and on the right (B- right) we show the density functionof the pressing start times. We cansee that rats vary their pressingstart times in relation to the FI ofreinforcement.Neurophysiology of time encoding in the rodent striatumWe aim to identify neural correlates of time intervals that rats estimateduring performance of a novel timing task.In the past year, we continued this project by recording the spiking activityfrom single neurons while rats to press a lever in order to gain rewards atdefined intervals, classically called operant conditioning on a Fixed Interval(FI) reinforcement schedule. We have adapted the classical FI schedulein such a way that we can observe a behavioural readout that reflects theanimals’ changing knowledge about time until reward. We have recordedfrom hundreds of neurons in the striatum, a major input area of the BasalGanglia that has been implicated in timing. We find that the dynamics ofneuronal activity across a population of neurons can be used to encode timeFC Relatório <strong>Anual</strong> <strong>2010</strong> 32


over the range of tens of seconds to a minute. We developed decoding schemesto read out time relative to our task events on a moment by moment basis,and found that this moment by moment estimate covaried with a quantitativedescription of animals’ estimates of time until reward. These results shouldhave far-reaching impact on our understanding of time encoding in the brain,as well as the field of associative and reinforcement learning. In additionthis work provides a launching point for deeper investigation of the neuralmechanisms of time encoding that we are developing in mice, where we haveaccess to more molecular biological and genetic tools.Optogenetic manipulation of Dopamine during timing behaviorWe plan to test the hypothesis that manipulation of Dopamine throughphysiolo-gically realistic means alters timing performance and neuralsignals in the Striatum. In addition we plan to determine the genetic identityof neurons during neurophysiology experiments to build more informedcircuit models for how the Basal Ganglia functions during timing behavior.In the past year, we have continued a parallel set of timing studies in micein order to take advantage of the increased molecular power of the mouserelative to the rat. We have trained mice on a classic temporal reproductiontask, called the peak interval task, and the SFI task mentioned above. Bycombining viruses dependent on CRE recombinase activity for expression oftransgenes, with mouse lines expressing CRE in specific basal ganglia celltypes, we plan to express light sensitive channels and pumps in targetedlocations within the basal ganglia circuit. Stimulating these proteins withlight during experiments will provide us with two potentially powerful piecesof data. First, we will be able to ask what type of cell we are recording fromin vivo much more easily and in higher volume than was available with oldertechniques. Second, we can test hypotheses about the role of activity inspecific populations of neurons for timing behavior.Optogenetic identification of striatalcell-type during timing behavior.We are working on selective viralmediatedChR2 expression in striatalcell types. A – A fluorescent imagefrom a coronal section of a D2-Cremouse brain (left) compared to acoronal mouse brain schematic(right) shows striatal D2 mediumspiny neurons (MSNs) expressingChR2– YFP following injection ofCre-dependent AAV into D2-Cre BACtransgenic mice. CPu – Caudateputamen(striatum). B – Confocalimage of ChR2–YFP-expressingneurons in the striatum (Arrow). C– Confocal image of To-Pro-3 stainingin the same region as in panel B. D– Panels B and C merged. The whitebox indicates the region shown inpanel E. E – Example of a spinydendrite from a D2MSN expressingChR2-YFP. Scale bars = (B, C and D)15μm: (E) 5μm.FC Relatório <strong>Anual</strong> <strong>2010</strong> 33


Carlos RibeiroBehavior and MetabolismGroup membersCélia Modesto Baltazar (Research Assistant)Laura Napal Belmonte (Postdoctoral Fellow)Ana Carolina Doran (Research Assistant)Ana Paula Elias (Lab Manager and Research Assistant)Samantha Herbert (PhD Student)Teresa Montez (Postdoctoral Fellow)We are interested in understanding how molecular and cellular mechanismscontrol complex biological processes at the level of the whole organism.For this we are focusing on how the internal metabolic state of the fruit flyDrosophila melanogaster affects its behavioural decisions. Starting fromnovel behavioural paradigms we use molecular genetic techniques to identifyand characterize genes and neuronal populations involved in producing theappropriate behavioural response to a specific metabolic need of the fly.Molecular mechanisms of nutrient choiceWe want to understand how Drosophila knows what type of nutrients it needsand which are the molecular mechanisms used by the nervous system tochange the behaviour of the animal to allow it to find and eat the requirednutrients.Last year we showed that mating status is a critical modulator of nutritionaldecision-making in females, and that it relies on the action of the sex peptidereceptor (SPR) in ppk+ sensory neurons. Neuronal TOR/S6K function isanother critical input to this decision, possibly signaling the fly’s currentnutritional status. We are now looking into how this conserved pathway actsin the nervous system to control feeding. Furthermore we have continued toanalyze genes identified as being required for nutrient choice in a neuronalwhole-genome RNAi screen. Taken together these studies will provide amodel and an entry point for studying nutrient balancing and value-baseddecision making at the molecular level.Top What type of food should theanimal choose?Middle Drosophila adult brain (gold)with specific neuronal subsetsmarked by GFP (green).Bottom Automatically tracked path ofa foraging flyNeuronal mechanisms of nutrient choiceWe want to identify and analyze the neuronal networks used by Drosophilato change the behaviour of the animal to allow it to find and eat the requirednutrients.In the past year we have used genetic approaches to identify neuronalpopulations which are required for nutrient choices. Currently we areFC Relatório <strong>Anual</strong> <strong>2010</strong> 34


analyzing the identified neuronal substrates for nutrient homeostasis tounderstand how these neuronal populations act to guide feeding decisions.Quantitative analysis of feeding behavior in DrosophilaIn collaboration with the laboratory of Aldo Faisal at Imperial College Londonwe have developed a prototype setup which will allow us to use automatedvideo analysis to quantitatively link genetics to feeding behaviour in the fruitfly, the main aim of this project.Maria Luísa VasconcelosInstituto Gulbenkian de CiênciaInnate BehaviourGroup membersJoão Afonso (Research technician)Sophie Dias (Research technician)Dennis Hermann (PhD student)Nuno Martins (Masters Student)Ricardo Neto (Postdoctoral Fellow)Nélia Varela (Postdoctoral Fellow)Animals exhibit behavioural repertoires that are often innate and resultin stereotyped sexual and social responses to their environment. Innatebehaviours do not require learning or experience and are likely to reflect theactivation of developmentally programmed neural circuits. We are interestedin the nature of defined neural circuits: how activation of circuits elicitsspecific behaviours. In complex organisms it has been extremely difficultto study a circuit beyond the early stages of sensory processing. Drosophilamelanogaster is an attractive model system to understand a circuit becauseflies exhibit complex behaviours that are controlled by a nervous systemthat is numerically five orders of magnitude simpler than that of vertebrates.We use a combined behavioural, genetic, imaging and electrophysiologicalapproach to determine how defined neural circuits and their activation elicitspecific behaviours.V Glomerulus PhotoactivationThe figure shows the two antennallobes (ALs) of a Drosophilamelanogaster. The V glomerulus hasbeen photoactivated in the left AL andit is brighter than the V glomerulus inthe right AL (arrowheads). The cellbodies that are connected to the leftV glomerulus also became brighterafter its photoactivation (arrows).Female receptivityGenetic studies have elucidated how Drosophila male courtship behavioris specified and its circuit components are being dissected at a surprisingspeed. The circuit of female behavior on the other hand has been largelyuncharacterized. We use a behavioral protocol that allows us to selectivelyFC Relatório <strong>Anual</strong> <strong>2010</strong> 35


inactivate subsets of neurons in the adult flies only. We use this behavioralapproach and combine it with anatomical and functional dissectionof the circuit.In <strong>2010</strong> we have focused our research on the neurons that express apterous.Inactivation of apterous expressing neurons leads to a marked reduction ofreceptivity of the female to the male’s courtship efforts. It is unlikely that allneurons that express apterous are involved in female receptivity. We havebegun running experiments that allow us to zoom in on the apterous neuronsthat affect the behaviour of the female.Across species stress odor responseStressed Drosophila melanogaster release an aversive odorant that elicitsa robust avoidance response in test flies. Our data indicate that stress odoravoidance is not common to all Drosophilids. This behavioral differencebetween melanogaster and some of its sister-species provides a powerfulframework, amenable to genetic, developmental and anatomical dissection,to investigate how evolution has shaped distinct responses to an environmentalcue.T MazeIn the past year, we have characterised the response of four Drosophilids toCO2, the only identified active component of the Stress Odor. With this purposewe built a T-maze with odor flow to test flies to controlled concentrations ofCO2. We found that the responses vary across the tested species. We begancharacterizing the response of additional Drosophilids in order to understandthe full range of variation so that in the future we can find the anatomicaland genetic basis of the variation.We have also established a photoactivation protocol that allows visualisingall the neurons that innervate the V glomerulus that responds to CO2.We see the same number of cell bodies activated within different brains.Photoactivation is done in live brains so we can in the future characterisethe electrophysiological response of all the neurons that innervate the Vglomerulus.FC Relatório <strong>Anual</strong> <strong>2010</strong> 36


ASSOCIATED RESEARCH GROUPSDomingos HenriqueInstituto Medicina Molecular (IMM)& Instituto Gulbenkian de Ciência (IGC)Neural DevelopmentGroup membersElsa Abranches (Postdoctoral Fellow)Evguenia Bekman (Postdoctoral Fellow)Aida Costa (PhD Student)Ana Margarida Cristóvão (Research Technician)Cláudia Gaspar (Postdoctoral Fellow)Sara Ferreira (Research Technician)Catarina Ramos (Postdoctoral Fellow)Filipe Vilas-Boas (PhD Student)Our main interest is to understand the molecular mechanisms that regulatethe genesis of neurons in vertebrate embryos. We believe that a betterknowledge of these mechanisms is a pre-requisite for the development ofcellular replacement therapies to treat neurodegenerative diseases, with asignificant impact on human health. Our research focus on the molecularevents that control the generation of neural stem cells in the embryo, howthese cells are maintained, and how they give rise to the multitude of neuronsthat compose the adult CNS. We are using cellular and genetic approachesto dissect the genetic circuitry that regulates the production of neuronsduring embryonic development and have characterized in great detail themolecular roadmap from embryonic stem cells to differentiating neurons.Current projects are aimed at investigating the assembly and functionof the corticostriatal circuitry involved in motor control.Development and function of striatal organizationThe striatum is the main input structure from the cortex to the basal ganglia,and a central component of the corticobasal ganglia circuitry that is involvedin multiple neurological functions like motor learning and motor control,decision-making, and cognition. The importance of the striatum is reflectedin a number of neurological disorders, including Parkinson’s and Huntington’sdiseases, in which defective neurotransmission or neurodegeneration areassociated with the striatal system.The current model for the functional organization of the corticostriatalcircuitry is based on the “direct” and “indirect” pathways of the flow ofcortical information through the basal ganglia. The two pathways haveFC Relatório <strong>Anual</strong> <strong>2010</strong> 37


opposite influences in the output of the circuitry, with the direct pathwayreleasing and the indirect pathway inhibiting movement. Our first aim is toestablish a precise molecular neuroanatomical map of this corticostriatalcircuitry, using state-of-the-art mouse transgenic technology to generateand analyse a battery of transgenic mice carrying different reporter genesunder control of cell-specific promoters. This shall allow us to identify at themolecular level the various cellular components of the corticostriatal circuitryand their spatial organization. This work is in progress and BAC technologyis being used to build the necessary vectors for transgenic production.Using these tools, we shall next evaluate the functional contribution of thevarious identified circuitry components to the establishment of well-definedbehavioral corticostriatal outputs, like initiation of voluntary movement,skill learning and habit formation.Rui F. OliveiraInstituto Superiorde Psicologia Aplicada (ISPA)& Instituto Gulbenkian de Ciência (IGC)Animal BehaviourGroup membersAt IGC:Rodrigo Abreu (PhD Student)Ana Catarina Oliveira (Research technician / molecular biology)Joana Ferreira da Silva (M.Sc. Student)Miguel Simões (PhD Student)Magda Teles (PhD Student)The main research aim of our group is the understanding of the interrelationshipbetween neuroendocrine mechanisms and social behaviour,using an integrative approach (i.e. by integrating ecological/evolutionaryanalysis with physiological analysis of behavior). With our studies we hopeto contribute to the understanding of how complex social environmentalprocesses interact with biological systems. I have been developing two mainresearch lines: (1) to understand how the social environment modulateshormones and gene expression in order to affect the expression of subsequentbehaviors; and (2) the study of the neuroendocrine mechanisms underlyingbehavioral plasticity. Both research lines have been mainly focused inteleost fish as study models (tilapia, pecock blenny and zebrafish) but I havealso expanded my research to other vertebrate groups, including humans.In these research lines we combine neuroendocrinology and molecularbiology techniques with behavioural observations and we conduct studiesboth in the lab and in free-living subjects.FC Relatório <strong>Anual</strong> <strong>2010</strong> 38


PLATFORMS AND SERVICESHistology PlatformCoordinatorSusana LimaStaffMaurícia Vinhas (Research Technician)Ana Santos (Research Technician)The Histology Unit provides a wide range of services related to tissuepreparation to the neuroscience researchers. These include collection,fixation, processing, embedding, sectioning and staining of animal tissuesamples. The unit also provides microscopy assistance as well as training tonew users in sample preparation and sectioning. Specific services include:• Chemical and cold fixation of animal tissue• Processing of fixed tissue for light microscopy• Embedding (paraffin, etc)• Cryostat, vibratome and microtome sectioning• Histochemistry, immunohistochemistry and immunofluorescence stainingof tissue• Microscopy (fluorescence, bright field and confocal)Rat coronal brain sectionsomatosensory cortex.Neurons in layers 3 and 5 werelabeled by injecting a retrogradetraveling virus into the contralateralcortex. Brain slices were processedby immunohistochemistry methods toreveal the labeled neurons.Scientific Computing PlatformCoordinatorZachary MainenStaffPaula Santos (Systems Administrator)Jörg Löhken (Programmer)Eric DeWitt (Advisor)The Information Technology Unit (IT) manages the computer infrastructureof the neurosciences group, maintaining dedicated web and data backupservers and provides collaboration and communication tools for the program.In <strong>2010</strong> we migrated our Google Applications office tools package to thedomain neuro.fchampalimaud.org. We also applied, for and were approvedfor, Google Apps for Education which extends the number of users availableto us and provides additional education services in addition to Google email,mailing lists, web sites, calendars and collaborative documents. IT has alsoprovided support to the International Neuroscience Doctoral Programmewebsite and application process. We maintained the CNP internal wiki forFC Relatório <strong>Anual</strong> <strong>2010</strong> 39


information sharing and the external website. In <strong>2010</strong> all web-based servicespreviously hosted onsite have been migrated to Amazon Web Services, whichprovides robust, virtualized servers. We also added a web-based help deskrequest tracking application to handle the needs of the IT platform, the newscientific platforms and move related requests.Finally, a significant amount of effort in the second half of <strong>2010</strong> was devotedto planning and preparing for the migration of the CNP IT infrastructure toits new location and to accommodate the changing services and additionaldemands that will be created during that process.Gene Expression PlatformCoordinatorSusana LimaStaffTatiana Vassilevskaia (Virus Production)The Gene Expression unit was established in 2009 with the purpose ofdeveloping and producing genetic tools to manipulate the activity of neuralcircuits and making them more accessible to research teams. Ultimately,the goal is to offer the community a collection of different options in terms ofdelivery system (viral, electroporation, etc), expression pattern and specificity(for example, different cell type specific promoters) and expressible genes(light gated channels, RNA interference, etc).Recombinant adeno-associated viruses (rAAV) are an effective method ofdelivering genes to the mammalian neurvous system and have been theinitial focus of the unit since its establishment in April. Several batches ofrAAVs have been produced at mini-scale and successfully tested in vitro andtwo medium scale productions are being currently tested in vivo studies.Administrative Support ServicesCoordinatorZachary MainenStaffTeresa Carona (Projects manager)Raquel Gonçalves (Programme Administrator)Alexandra Piedade (Meetings and Courses Administrator)Deborah Rocha (Projects Coordinator)FC Relatório <strong>Anual</strong> <strong>2010</strong> 40


The Administrative Support unit (AS) manages all clerical proceduressuch as records keeping, budgets and accounting, form design, reportpreparation, and website information maintenance, among others. Themany basic informational requests received daily, from both internaland external sources, are handled in person, by phone, and by email. AsEnglish is the official language of the programme, members have very goodworking knowledge of it, as well as Portuguese.Visit schedules, transportation, and lodging for guests, including speakers andlecturers, who are so essential to the CNP programme are organized by AS.For people joining the CNP from outside Portugal, AS facilitates relocation.Current faculty, laboratory staff, and students receive ongoing support fromAS ensuring that the day to day needs of conducting research are met.In addition to daily activities, the AS facilitates large annual projects suchas INDP student recruitment, CNP group leader recruitment, and severalscientific workshops.RESEARCH FUNDINGFundação BialPortugal• Bial Science Research GrantNeuronal mechanisms underlying sex hormone-dependent switching ofsexual receptivity2009-<strong>2010</strong>Awarded to Susana Lima• Bial Science Research GrantAction selection and action timing in the premotor cortex2009-<strong>2010</strong>Awarded to Masayoshi Murakami• Bial Research Bursary GrantInvestigating the function of synaptic competition in memory formationand mental retardation2011-2014*Awarded to Inbal Israelly• Bial Science Research GrantElucidating the molecular mechanisms mediating feeding behavior2011-2013*Awarded to Carlos RibeiroFC Relatório <strong>Anual</strong> <strong>2010</strong> 41


Fundação para a Ciência e a Tecnologia (FCT)Portugal• Research Project GrantDissecção das bases moleculares e dos circuitos envolvidos na intenção2011-2014*Awarded to Rui Costa• Research Project GrantUnraveling the Neuronal Circuits Underlying Female Receptivity<strong>2010</strong>-2012Awarded to Maria Luisa Vasconcelos• Research Project GrantFrom genes to behaviour: dissecting the basis for CO2 response acrossDrosophilids<strong>2010</strong>-2012Awarded to Maria Luisa Vasconcelos• Research Project GrantNeuroendocrine mechanisms of reproductive polyphenisms in the blennySalaria pavo2008-2011Awarded to David Gonçalves• Research Project GrantAlternative reproductive tactics in teleost fish: the peacock blenny (Salariapavo) as a study model2008-2011Awarded to Rui F Oliveira• Research Project GrantNeuroendocrine control of reproductive behavior in the Mozambique tilapia:mechanisms and effects of the social environment2008-2011Awarded to Rui F Oliveira• Research Project GrantStem cell based therapy for inner ear hair cell regeneration2007-<strong>2010</strong>Awarded to Domingos HenriqueFC Relatório <strong>Anual</strong> <strong>2010</strong> 42


• Research Project GrantNotch signaling and regulatory mechanisms during mammalianneurogenesis2007-<strong>2010</strong>Awarded to Domingos Henrique• Research Project GrantNeural Talk - Scaffold-driven stem-cell regenerative therapy for the spinalcord injury. Biomimeting neurogenesis in the Central Nervous SystemJoint Project with Instituto Nacional de Engenharia Biomédica (INEB),Porto (Project Leader -Ana Paula Pêgo)2007-<strong>2010</strong>Awarded to Domingos Henrique• Research Project GrantNeural Mechanisms of trace auditory fear conditioning2007-<strong>2010</strong>Awarded to Marta Moita• Research Project GrantWinners and losers: social modulation of hormones, brain and behaviour2007-<strong>2010</strong>Awarded to Rui F Oliveira• Research Project GrantEffects of social competition and social context on hormones and behaviour:testing the challenge hypothesis in humans2007-<strong>2010</strong>Awarded to Rui F Oliveira• Research Associate Fellowship2008-2013Awarded to David Gonçalves• Postdoctoral Fellowship<strong>2010</strong>-2013Awarded to Hope Johnson• Postdoctoral Fellowship<strong>2010</strong>-2013Awarded to Teresa Montez• Postdoctoral Fellowship2009-2012Awarded to John BurkhardtFC Relatório <strong>Anual</strong> <strong>2010</strong> 43


• Postdoctoral Fellowship2009-2012Awarded to Masayoshi Murakami• Postdoctoral Fellowship2008-2012Awarded to Cristina Afonso• Postdoctoral Fellowship2008-2011Awarded to Marta Soares• Postdoctoral Fellowship2007-<strong>2010</strong>Awarded to Silvia Costa• PhD Fellowship2009-2013Awarded to Ana Rita Fonseca• PhD Fellowship2009-2013Awarded to Dennis Hermann• PhD Fellowship2009-2013Awarded to André Mendonça• PhD Fellowship2009-2013Awarded to Ana Pereira• PhD Fellowship2009-2013Awarded to Scott Rennie• PhD Fellowship2009-2013Awarded to Fernando Santos• PhD Fellowship2009-2013Awarded to Mafalda VicenteFC Relatório <strong>Anual</strong> <strong>2010</strong> 44


• PhD Fellowship2008-2012Awarded to Maria Inês Vicente• PhD Fellowship2008-2012Awarded to Magda Teles• PhD Fellowship2008-2012Awarded to Olinda Almeida• PhD Fellowship2008-2012Awarded to Pedro Ferreira• PhD Fellowship2008-2012Awarded to Miguel Simões• PhD Fellowship2007-2011Awarded to Gil Costa• PhD Fellowship2006-<strong>2010</strong>Awarded to Marta Guimarais* Awarded in <strong>2010</strong>European CommissionEuropean Union• ERC Advanced Grant, European Research CouncilOptogenetic Analysis of Serotonin Function in the Mammalian Brain<strong>2010</strong>-2015Awarded to Zachary Mainen• ERC Starting Grant, European Research CouncilNeural mechanisms of action learning and action selection: from intent tohabit2009-2014Awarded to Rui CostaFC Relatório <strong>Anual</strong> <strong>2010</strong> 45


• Marie Curie International Reintegration GrantNeural mechanisms of action learning in mouse models2009-2013Awarded to Rui Costa• Marie Curie International Reintegration GrantNeural mechanisms underlying mate preference and selection in mice2009-2013Awarded to Susana Lima• European Union GrantFemale receptivity2009-2013Awarded to Maria Luisa Vasconcelos• European Commission, Food, Agriculture and Fisheries, and Biotechnology.Project: CopewellA new integrative framework for the study of fish welfare based on theconcepts of allostasis, appraisal and coping styles2011-2015*Awarded to Rui Oliveira• Marie Curie Intra-European Fellowship for Career Development<strong>2010</strong>-2012Awarded to Magor Lorincz• Marie Curie Intra-European Fellowship for Career Development2009-2011Awarded to Léa Zinck• Marie Curie Intra-European Fellowship for Career Development2008-<strong>2010</strong>Awarded to Guillaume Dugué* Awarded in <strong>2010</strong>International Human Frontier Science ProgramOrganization (HFSPO)International• Human Frontier Science ProgramOlfactory objects and decisions: From psychophysics to neural computation<strong>2010</strong>-2013Awarded to Zachary Mainen, Alex Pouget and Matthieu Luis.FC Relatório <strong>Anual</strong> <strong>2010</strong> 46


Oeiras City CouncilPortugal• Research Project Grant“Começar em Oeiras”- Oeiras MunicipalityNeural Circuits of Innate Behavior2009Awarded to Maria Luisa VasconcelosPUBLICATIONS• Carey MR, Regehr WGPhosphatase activity controls the ups and downs of cerebellar learningNeuron 67:525-6• Jin X, Costa RMStart/stop signals emerge in nigrostriatal circuits during sequencelearningNature;466(7305):457-62• Koralek AC, Long JD, Costa RM, Carmena JMCorticostriatal dynamics during learning and performance of a neuroprosthetictaskConf Proc IEEE Eng Med Biol Soc.;1:2682-5• Derusso AL, Fan D, Gupta J, Shelest O, Costa RM, Yin HHInstrumental uncertainty as a determinant of behavior under intervalschedules of reinforcementFront Integr Neurosci. 28;4. pii: 17• Venkatraman S, Jin X, Costa RM, Carmena JMInvestigating neural correlates of behavior in freely behaving rodentsusing inertial sensorsJ. Neurophysiol.104(1):569-75• Yin HH, Costa RMStriatal dopamine and glutamate in action: the generation and modificationof adaptive behavior. in Frontiers in Neuroscience, The Role of Dopaminein the Basal Ganglia, ed. Susan JonesTaylor & Francis Group, Boca Raton, FL, US• Govindarajan A*, Israely I*, Huang SY, Tonegawa SThe dendritic branch is the preferred integrative unit for protein synthesisdependentLTPNeuron, 69:132-146 (Paper was in press in <strong>2010</strong>)FC Relatório <strong>Anual</strong> <strong>2010</strong> 47


• Feierstein CE, Mainen ZFListening to the crowd: neuronal ensembles rule.Neuron 66(3):334-6• Ribeiro C, Dickson BJSex Peptide Receptor and Neuronal TOR/S6K Signaling Modulate NutrientBalancing in DrosophilaCurrent Biology, 20(11), 1000-1005• Ruta V, Datta SR, Vasconcelos ML, Freeland J, Looger LL, Axel RA dimorphic pheromone circuit in Drosophila from sensory input todescending outputNature 468(7324):686-90• Gonçalves DM, Saraiva JL, Teles M, Teodósio R, Canário AVM, Oliveira RFBrain aromatase mRNA expression in two populations of the peacockblenny Salaria pavo with divergent mating systemsHormones and Behavior 57, 155-161• Saraiva JL, Gonçalves DM, Oliveira RFEnvironmental modulation of androgen levels and secondary sex charactersin two populations of the peacock blenny Salaria pavoHormones and Behavior 57, 192-197• Soares MC, Bshary R, Fusani L, Goymann W, Hau M, Hirschenhauser K,Oliveira RFHormonal mechanisms of cooperative behaviourPhilosophical Transactions of the Royal Society 365, 2737-2750• Gonçalves DM, Oliveira RFHormones and sexual behavior of teleost fishesIn: Norris D.O. (Ed.), Hormones and Reproduction in Vertebrates Volume 1– Fishes, pp. 119-147. Elsevier, New York, NY• Soares MC, Côté IM, Cardoso SC, Oliveira RF, Bshary RCaribbean cleaning gobies prefer client ectoparasites over mucusEthology 116, 1244–1248• Lacava RV, Brasileiro L, Maia R, Oliveira RF, Macedo RHenvironment affects testosterone level in captive male blue-black grassquitsHormones and Behavior, in press (doi:10.1016/j.yhbeh.<strong>2010</strong>.10.003)• Ros AFH, Lusa J, Meyer M, Soares MC, Oliveira RF, Brossard M, Bshary RDoes access to the bluestreak cleaner wrasse Labroides dimidiatus affectindicators of stress and health in resident reef fishes in the Red Sea?Hormones and Behavior, in press (doi:10.1016/j.yhbeh.<strong>2010</strong>.11.006)FC Relatório <strong>Anual</strong> <strong>2010</strong> 48


• Galhardo L, Vital J, Oliveira RFThe role of predictability in the stress response of a cichlid fishPhysiology and Behavior, in press (doi:10.1016/j.physbeh.<strong>2010</strong>.11.035)• Galhardo L, Almeida O, Oliveira RFMeasuring motivation in a cichlid fish: an adaptation of the push-doorparadigmApplied Animal Behaviour Science, in press (doi:10.1016/j.applanim.<strong>2010</strong>.12.008)• Costa SS, Andrade R, Carneiro LA, Gonçalves EJ, Kotrschal K, Oliveira RFSex differences in the dorso-lateral telencephalon correlate with homerange size in blenniid fishBrain Behavior and Evolution in press (doi: 10.1159/000323668)• Antunes R, Moita MADiscriminative auditory fear learning requires both tuned and nontunedauditory pathways to the amygdaleJ Neurosci. <strong>2010</strong> Jul 21;30(29):9782-7• Viana DS, Gordo I, Sucena E, Moita MACognitive and motivational requirements for the emergence of cooperationin a rat social gamePLoS One. <strong>2010</strong> Jan 13;5(1):e8483* Authors contributed equallyMEETINGS, COURSES, SEMINARSMeetings Organized• Imaging Structure and Function in the Zebrafish BrainEuropean Zebrafish SymposiumCS Vintage Hotel, Lisboa, PortugalDecember <strong>2010</strong>Co-Organizer: Michael OrgerFC Relatório <strong>Anual</strong> <strong>2010</strong> 49


Invited Seminars and Presentationsat International MeetingsRui Costa• Conference “Reward and Decision Making in the Brain”Jerusalem, Israel.February <strong>2010</strong>• Winter Plasticity Meeting,ArubaFebruary <strong>2010</strong>• 1 st Sao Paulo School of Translational ScienceAC Camargo Hospital, São Paulo, BrazilApril <strong>2010</strong>• University of Maryland Medical SchoolBaltimore, MD, USAApril <strong>2010</strong>• Institute du Fer à Moulin, Paris, FranceMay <strong>2010</strong>• Neuroethics ConferenceFundação Calouste Gulbenkian and French Embassy, Lisbon, PortugalMay <strong>2010</strong>• Porto CiênciaPorto, PortugalJune <strong>2010</strong>• EMCCS Summer SchoolVenice, ItalyOctober <strong>2010</strong>Magor Lorincz• Temporal framing of thalamic relay-mode firing by phasic inhibitionduring the alpha rhythmFENS, Amsterdam, NetherlandsJuly <strong>2010</strong>FC Relatório <strong>Anual</strong> <strong>2010</strong> 50


Zachary Mainen• Neural codes and computations underlying odor-guided decisionsin the ratBrain Circuits WorkshopEin Gedi, IsraelFebruary <strong>2010</strong>• Neural codes and computations underlying odor-guided decisionsin the ratWeizmann InstituteRechovot, IsraelFebruary <strong>2010</strong>• Targeting the 5-HT system using optogenetics: Towards a post--pharmacological viewCosyne WorkshopsSnowbird, Utah, USAMarch <strong>2010</strong>• Neural mechanisms underlying odor-guided decisions in the ratCosyne WorkshopsSnowbird, Utah, USAMarch <strong>2010</strong>• Neural codes and computations underlying odor-guided decisionsin the rat: Uncertainty in brain and behaviorTamagawa-Caltech Lecture Course on Decision-MakingTamagawa University, Tokyo, JapanMarch <strong>2010</strong>• Toward a Translational Science of Mental Illness: A Perspective on 5-HT from Systems Neuroscience1 st Sao Paulo School of Translational ScienceAC Camargo Hospital, São Paulo, BrazilApril <strong>2010</strong>• Translational Science of Mental Illness Two Perspectives from SystemsNeuroscience1 st Sao Paulo School of Translational ScienceAC Camargo Hospital, São Paulo, BrazilApril <strong>2010</strong>FC Relatório <strong>Anual</strong> <strong>2010</strong> 51


• Neural mechanisms underlying odor-guided decisionsForm and Function of the Olfactory System Workhop,Janelia Farm, Ashburn, USAMay <strong>2010</strong>• Neural mechanisms for decision making in the rat Variability &uncertainty in brain and behaviorOxford UniversityOxford, UKJune <strong>2010</strong>• Reading out neural circuits for decision-making in the ratRochester CVS SymposiumPhotons and Neurons, University of RochesterRochester, NYJune <strong>2010</strong>• Odor-guided decisions: Behavior and sensory representationsComputational and Cognitive Neuroscience Course, CSH AsiaSuzhou, ChinaJuly <strong>2010</strong>• Neural mechanisms for rapid perceptual decisionsEMBO|EMBL Symposium: Structure and Function of Neural CircuitsHeidelberg, GermanySeptember <strong>2010</strong>• Neural mechanisms for olfactory decision-makingInstituto de NeurocienciasAlicante, SpainDecember <strong>2010</strong>• Neural mechanisms for decision making in the rat Uncertainty inbrain and behaviorAdrian Seminar, University of CambridgeCambridge, UKDecember <strong>2010</strong>Masayoshi Murakami• Neural substrates of impulsive decision making and its withholdingWorkshop on the Computational Properties of the Prefrontal CortexWhistler, BC, CanadaSeptember <strong>2010</strong>FC Relatório <strong>Anual</strong> <strong>2010</strong> 52


Joseph Paton• Time and learning in the rodent striatumBatsheva Symposium on Reward and Decision-making in the Brain.Jerusalem, IsrealFebruary <strong>2010</strong>Carlos Ribeiro• The Molecular and Neuronal Control of Nutrient Choice in Drosophila1 st Nutritional Homeostasis WorkshopBonn, GermanyMay <strong>2010</strong>• Nutricional Value-Based Decisions in DrosophilaDepartment of Bioengineering Imperial College LondonLondon, UKAugust <strong>2010</strong>• The Molecular and Neuronal Control of Nutrient Choice in DrosophilaUniversity College LondonLondon, UKAugust <strong>2010</strong>• The Molecular and Neuronal Control of Nutrient Choice in DrosophilaESF-EMBO conference on “Functional Neurobiology in Minibrains: Fromflies to robots, and back again.”Sant Feliu de Guixols, SpainOctober <strong>2010</strong>• Drosophila, a model to study neuronal nutrient sensing pathwaysand how they control feeding behaviour14 th Portuguese Obesity Conference,Porto, PortugalNovember <strong>2010</strong>• The Molecular and Neuronal Control of Nutrient Choice in Drosophila14 th Portuguese Obesity Conference,Porto, PortugalNovember <strong>2010</strong>FC Relatório <strong>Anual</strong> <strong>2010</strong> 53


Nélia Varela• Characterizing the CO2 neuronal circuit: the initial stepsDrostugaLisbon, PortugalDecember <strong>2010</strong>GRADUATE TRAINING AND EDUCATIONInternational Neuroscience Doctoral Programme (INDP)Programme DirectorZachary MainenProgramme CoordinatorZachary MainenAdministrative AssistantAlexandra PiedadeThe International Neuroscience Doctoral Programme (INDP) aims to trainstudents to perform innovative and integrative research into the biologicalbases of behaviour. During the first year, students attend courses organizedby a combination of internal faculty and invited international researchers.This initial training phase aims at providing students with a broad backgroundand common language in biology and neuroscience. The curriculumemphasizes active participation, discussion and practical exercises. Thegoal is to develop critical and creative thought and to gain exposure to avariety of perspectives on the biology of the nervous system.Autumn courses, organized in conjunction with the in-house PIBS programme,focus on general biological principles. Spring courses concentrate onneuroscience, including physiology, development, sensory and motor systems,learning, social behaviour and cognition. There is a strong quantitativecomponent to the curriculum, including programming, data analysisand modeling.At the end of the first year, students choose a thesis laboratory guided byfaculty, the programme director and neuroscience core faculty. In <strong>2010</strong>, theINDP entered its fourth year. A total of 40 students were enrolled, including8 first-year students, 12 students performing thesis research abroad and20 developing their research in CNP laboratories at the IGC.FC Relatório <strong>Anual</strong> <strong>2010</strong> 54


• Anna HobbissClustered plasticity as a model for micro-rewiringLaboratory of I. Israely, CNP at the IGC• Diogo PeixotoDynamics of neural activity in LIP during decision-makingLaboratory of W. Newsome, Stanford Univ., USA• Elizabeth RickenbacherSocial modulation of fear extinctionLaboratory of M. Moita, CNP at the IGC• David RaposoThe integration of evidence across modalities in the brainLaboratory of A. Churchland, Cold Spring Harbor Laboratory, USA• Niccolò BonacchiContext dependent modulation of valueLaboratory of Z. Mainen, <strong>Champalimaud</strong> Neuroscience Programme,Instituto Gulbenkian de Ciência, Portugal• Pedro Garcia da SilvaNeuromodulatory enhancement of odor representations in the rodentolfactory bulbLaboratory of F. Albeanu, Cold Spring Harbor Laboratory, USA• Raquel AbreuSomatostatin-expressing neurons of the PreBötzinger Complexunderlying Central Sleep ApneaLaboratory of J. Feldman, UCLA, USA• Sevinç MutluCortical dynamics of excitation and inhibition during passive andactive perceptionLaboratory of Z. Mainen, <strong>Champalimaud</strong> Neuroscience Programme,Instituto Gulbenkian de Ciência, Portugal• Simone LatkolikModulation of striatal network activity by gap junctions and theirrole in interval timing behaviorLaboratory of J. Paton, <strong>Champalimaud</strong> Neuroscience Programme, InstitutoGulbenkian de Ciência, PortugalFC Relatório <strong>Anual</strong> <strong>2010</strong> 56


• Thiago GouvêaMotivational state modulation of decision making: reward expectation,phasic dopamine and choice accuracyLaboratory of Z. Mainen, <strong>Champalimaud</strong> Neuroscience Programme,Instituto Gulbenkian de Ciência, Portugal2008 Students• André MendonçaAttentional modulation of odor discrimination in rodentsLaboratory of Z. Mainen, <strong>Champalimaud</strong> Neuroscience Programme,Instituto Gulbenkian de Ciência, Portugal• Ana Rita FonsecaNeural Mechanisms of Action Inhibition and GenerationLaboratory of Z. Mainen, <strong>Champalimaud</strong> Neuroscience Programme, InstitutoGulbenkian de Ciência, Portugal• Clara FerreiraThe role of octopaminergic neurons in appetitive olfactory learningand memory in Drosophila melanogasterLaboratory of G. Miesenböck, University of Oxford, United Kingdom• Fernando SantosNeuronal ensemble selection and competition during motor skilllearningLaboratory of R. Costa, <strong>Champalimaud</strong> Neuroscience Programme, InstitutoGulbenkian de Ciência, Portugal• João MarquesUnderstanding the Neural Mechanisms that Control Speed in ZebrafishLarvaeLaboratory of M. Orger, <strong>Champalimaud</strong> Neuroscience Programme, InstitutoGulbenkian de Ciência, Portugal• Ana PereiraSound discrimination in fear conditioning: an interaction betweencortical and thalamic auditory structuresLaboratory of M. Moita, <strong>Champalimaud</strong> Neuroscience Programme, InstitutoGulbenkian de Ciência, Portugal• Ana Isabel AmaralA Bayesian approach to audio-hallucinatory perception using oddballparadigmLaboratory of D. Langers, Dep. of Otorhinolaryngology, University ofGroningen, The NederlandsFC Relatório <strong>Anual</strong> <strong>2010</strong> 57


• Scott RennieThe neural basis of social decision making, Rodents playing aniterated stag hunt gameLaboratory of M. Moita, <strong>Champalimaud</strong> Neuroscience Programme, InstitutoGulbenkian de Ciência, Portugal• Ana Mafalda VicenteNeural Mechanisms Underlying The Shift Between Goal-Directed andHabitual ActionsLaboratory of R. Costa, <strong>Champalimaud</strong> Neuroscience Programme, InstitutoGulbenkian de Ciência, Portugal• Dennis HerrmannFunctional Architecture of the Neural System Controlling FemaleReproductive Behavior in Drosophila melanogasterLaboratory of L. Vasconcelos, <strong>Champalimaud</strong> Neuroscience Programme,Instituto Gulbenkian de Ciência, Portugal2007 Students• Patrício SimõesThe Influence of Phase Change on Learning and Memory in DesertLocustsLaboratory of J. Niven, Department of Zoology, University of Cambridge, UK• Isabel HenriquesHydrogen Sulphide Mechanisms in Acute Cerebral IschemiaLaboratory of J. Ferro, Universidade Autónoma de Madrid, Spain• Rodrigo AbreuNeuronal and endocrine mechanisms underlying cognitive appraisaland social modulation of behaviour in zebrafish (Danio rerio)Laboratory of R. Oliveira, <strong>Champalimaud</strong> Neuroscience Programme,Instituto Gulbenkian de Ciência, Portugal• José Joaquim FernandesNeural correlates of hierarchical learningLaboratory of M. Botvinick, Neuroscience Institute, Princeton University,USA• Íris VilaresUncertainty and decision making in the human brain: economicsand motor controlLaboratory of K. Koerding, Rehabilitation Institute of Chicago, NorthwesternUniversity, USAFC Relatório <strong>Anual</strong> <strong>2010</strong> 58


• Patrícia CorreiaSerotonin function in behaviorLaboratory of Z. Mainen, <strong>Champalimaud</strong> Neuroscience Programme,Instituto Gulbenkian de Ciência, Portugal• Maria Inês VicenteNeural mechanisms of uncertainty in brain function and behaviorLaboratory of Z. Mainen, <strong>Champalimaud</strong> Neuroscience Programme,Instituto Gulbenkian de Ciência• Pedro FerreiraCircuit analysis of epigenetic changes during the consolidation of skillsLaboratory of R. Costa, <strong>Champalimaud</strong> Neuroscience Programme, InstitutoGulbenkian de Ciência, Portugal• Margarida AgrochãoTowards an ecological approach to vision: wireless recording fromrat V1Laboratory of M. Meister, Department of Molecular Cellular Biology,Harvard U. Uni. University, USA• Mariana CardosoTesting the Role of Cerebral Blood Flow on Neuronal Activity, in MiceOlfactory GlomeruliLaboratory of A. Das, Department of Neuroscience, Columbia University,College of Physicians and Surgeons, USA<strong>2010</strong> Individual coursesSpring Courses in Neurosciences11 to 16 JanuaryCore concepts IRui Costa, CNP at the IGC, Susana Lima, CNP at the IGC and Marta Moita,CNP at the IGC18 to 23 JanuaryCore concepts IIRui Costa, CNP at the IGC, Susana Lima, CNP at the IGC and Marta MoitaCNP at the IGC25 to 30 JanuaryEvolution & development ILuisa Vasconcelos CNPat theIGC, Joshua Corbin George WashingtonUniversityFC Relatório <strong>Anual</strong> <strong>2010</strong> 59


1 to 6 FebruaryEvolution & development IILuisa Vasconcelos, CNP at IGCChris Braun, Hunter College and Georg Striedter, University of California atIrvine8 to 13 FebruaryCellular physiologyJoe Paton, CNP at the IGCKevin Franks, Columbia, Josh Dudman, HHMI, JFRC and Guillaume Dugué,CNP at the IGC22 to 27 FebruaryLearning & plasticity IMarta Moita CNP at the IGC and Inbal Israely CNP at the IGCMartha Constantine-Paton, MIT and Steven Kushner, Erasmus MedicalCenter, Rotterdam1 to 6 MarchLearning & plasticity IIMarta Moita, CNP at the IGC and Inbal Israely, CNP at the IGCAllan Hobson, Harvard Medical School, Richard Morris, University ofEdinburgh and Bruno da Silva, University of Edinburgh8 to 13 MarchMetabolismCarlos Ribeiro, CNP at the IGCLeon Avery, University of Texas, Southwestern15 to 20 MarchForagingCarlos Ribeiro, CNP at the IGC and Rui Costa, CNP at the IGC22 to 27 MarchActionRui Costa, CNP at the IGCJose Carmena, University of California at Berkeley, Joseph McIntyre,Université Paris Descartes and Chris de Zeeuw, Erasmus University1 to 7 AprilSocial behaviorSusana Lima, CNP at the IGC and Zach Mainen, CNP at the IGCKen Harris, Imperial College and Marta Moita, CNP at the IGCFC Relatório <strong>Anual</strong> <strong>2010</strong> 60


12 to 17 AprilSense and SystemsJoe Paton, CNP at the IGC, Brian Lau, Columbia, and Kenway Louie, NYU,David Freedman, U. Chicago and Anitha Pasupathy, U. Washington19 to 24 AprilAttention and CognitionJoe Paton, CNP at the IGC, Leo Sugrue, Stanford and Greg Corrado Stanford/IBMMichael Goldberg, Columbia and Kacey Ballard, Stanford26 April to 1 MayThe Basics of Experimental NeuroscienceZach Mainen, CNP at the IGC.Adam Kampff, Florian Engert, Bence Ölveczky, and Rajesh Poddar, Harvard3 to 8 MayTechniques: Imaging, Ethology & PhysiologyZach Mainen, CNP at the IGC. Adam Kampff, Florian Engert, Bence Ölveczky,Rajesh Poddar, Michael Orger, Harvard10 to 15 MayImaging projectsZach Mainen CNP at the IGCAdam Kampff, Harvard and Brian Keeley, Pitzer College17 to 22 MayBayesian brainZach Mainen CNP at the IGCAlex Pouget, University of Rochester and Jeff Beck, UCL, GatsbyAutumn Courses in Integrative Biology13 September – 17 SeptemberArrival and orientation weekThiago Carvalho, IGC and Zachary Mainen, CNP at the IGCAntónio Coutinho, IGC, Zach Mainen CNP at the IGC, Élio Sucena, IGCPaul Bush and Rita Venturini, USA20 September – 24 SeptemberThe History of Biological ConceptsThiago Carvalho, IGCJonathan Howard, University of Cologne, Lars Jansen, IGC, Christen Mirth,IGC, Anthony Dean, Univ. of Minnesota, Alekos Athanasiadis, IGC, MónicaDias, IGC, José Leal, IGC, Joe Paton, CNP at the IGC, Fern Elsdon-Baker,British CouncilFC Relatório <strong>Anual</strong> <strong>2010</strong> 61


27 September – 8 OctoberBiology & Computation 101Christian Machens, ENS, ParisAlfonso Renart, CNP11 October – 15 OctoberWithin CellsLars Jansen, IGCRobin Allshire, Wellcome Trust, Edinburgh, Monica Dias, IGC, MiguelGodinho, IGC, Catarina Henriques, IGC, José Leal, IGC, Jon Pines, GurdonInstitute, Cambridge, Minoo Rassoulzadega, INSERM, Nice and Jagesh Shah,Harvard Medical School18 October – 22 OctoberBetween CellsAntónio Jacinto, IGCVassili Kostorou , Fleming Biomedical Research Center, Greece, SorenPrag, IMMChristos Zerva, Biomedical Research Foundation, Greece, Rita Fior, IMM,Florence Janody, IGC, Leonor Saude, IMM, Jerome Solon, EMBL, Heildelberg,Joaquin Leon, IGC, Catarina Certal, IGC, Susana Lopes, IMM1 November – 5 NovemberEvolution IIsabel Gordo, IGCGuillaume Martin, Montpellier, Patricia Brito, IGC, Lilia Perfeito, Universityof Cologne, Ana Margarida Sousa, IGC, Ivo Chelo, IGC.8 November – 12 NovemberEvolution IIPatricia Beldade, IGC and Christen Mirth, IGCMichael Akam, Cambridge, Élio Sucena, IGC, Johannes Jaeger, EMBL,Heidelberg,Christian Braendle, Nice University.15 November – 19 NovemberNeuro-Development IJoshua Corbin, CNRCarlos Ribeiro, CNP at IGC and Luisa Vasconcelos, CNP at IGC22 November – 26 NovemberNeuro-Development ICarlos Ribeiro, CNP at IGC and Luisa Vasconcelos CNP at IGCÉlio Sucena, IGCFC Relatório <strong>Anual</strong> <strong>2010</strong> 62


29 November – 10 DecemberHypothesis Driven ResearchRui Martinho, IGC and Vasco Barreto, IGCMichael Lynch, Indiana University, Donald Rio, University of California,Berkeley and Nina Papavasiliou, Rockefeller University13 December – 17 DecemberINDP ProjectsZach Mainen CNP at IGCChristian Machens, ENS, Paris and Alfonso Renart, CNPWORKSHOPS, MEETINGS AND SEMINARSImaging Structure and Function in the Zebrafish BrainEuropean Zebrafish Symposium13 December – 15 DecemberOrganizersRainer Friedrich, Friedrich Miescher Institute, Basel, SwitzerlandMichael Orger, <strong>Champalimaud</strong> Neuroscience Programme, Lisbon, PortugalThe zebrafish model was originally conceived as an ideal system to studyneural circuits underlying behaviour. That vision is bearing fruit nowmore than ever, as light has become one of the most important tools for theneuroscientist. Optical approaches are used not only to visualize neurons,but also to record and control their activity, and the small, transparentbrain of the zebrafish is the perfect place to exploit the potential of thesedevelopments.Europe is home to a rapidly growing number of groups that use opticalapproaches to study the anatomical and functional organization of thezebrafish nervous system. This symposium will bring new and establishedinvestigators together for a discussion of recent advances, current endeavors,and future challenges. Emphasis will be placed on opportunities for opendiscussion with the aim of fostering cooperation and collaborations betweenEuropean labs.SeminarsJanuary <strong>2010</strong>Domingos HenriqueFri 08/01/10Ionians, IGCWelcome to NotchlandFC Relatório <strong>Anual</strong> <strong>2010</strong> 63


Karel SvobodaFri 15/01/10Ionians, IGCThe neural circuits underlying somatosensationRui CostaTue 19/01/10Ionians, IGCGenerating and Sequencing ActionsCharles ZukerFri 22/01/10Ionians, IGCFrom the Tongue to the Brain: The Biology of Mammalian TasteBill HanssonWed 27/01/10Ionians, IGCEvolution of OlfactionFebruary <strong>2010</strong>Alexander FriedmanMon 15/02/10Ionians, IGCBehavioral “re-programming” through pattern stimulation of theneuronal tissueRobert HorvitzTue 23/02/10Ionians, IGCThe Genetic Control of Programmed Cell Death in C. elegansMarch <strong>2010</strong>Richard MorrisFri 05/03/10Ionians, IGCMemory Consolidation: Synaptic Tagging and SchemasLeon AveryThu 11/03/10Ionians, IGCBehavioral Strategies in C elegansFC Relatório <strong>Anual</strong> <strong>2010</strong> 64


Dinu Florin AlbeanuThu 25/03/10Ionians, IGCUnderstanding neuronal circuits in the mammalian olfactory bulbApril <strong>2010</strong>Andrew PoulosWed 07/04/10Ionians, IGCPathways to Fear, Memory & TraumaMichael GoldbergFri 23/04/10Ionians, IGCHering and Helmholtz were both right: two mechanisms for spatialaccuracy in the parietal cortexRobert MalinowTue 27/04/10Ionians, IGCSynapses in normal and diseased brain functionMay <strong>2010</strong>Dave LovingerMon 03/05/10Ionians, IGCSynaptic Plasticity in Striatum: Substrates for Action Learning?Cristina MarquezWed 05/05/10Ionians, IGCMad, Bad or Sad? Neural correlates of abnormal aggression followingperipubertal stress in ratsRainer FriedrichThu 06/05/10Ionians, IGCNeuronal circuits and computations in the olfactory systemJune <strong>2010</strong>Kamal SenFri 11/06/10Ionians, IGCNeural discrimination of complex natural sounds in songbirdsFC Relatório <strong>Anual</strong> <strong>2010</strong> 65


July <strong>2010</strong>Ekaterina VinnikMon 12/07/10Ionians, IGCHippocampal representation of sound-guided behaviorPavle ItskovMon 12/07/10Ionians, IGCTexture coding in rat brain: From the neuronal code for roughnessin the barrel cortex to persistent and independent traces of stimulusand reward location in hippocampusCarlos RibeiroTue 13/07/10Ionians, IGCThe Molecular and Neuronal Control of Nutrient Choice in DrosophilaStefan ThorFri 23/07/10Ionians, IGCFrom Progenitor to Unique Neuron: Cell Specification by theIntegration of Temporal and Positional CuesSeptember <strong>2010</strong>Laszlo TirianThu 30/09/10Ionians, IGCToward understanding the genetic control of male courtshipbehaviour in DrosophilaOctober <strong>2010</strong>Isabel CamposTue 12/10/10Ionians, IGCEmbryonic epithelia wound healing: a genetic approach in DrosophilaNovember <strong>2010</strong>Josh CorbinThu 18/11/10Ionians, IGCEmbryonic patterning mechanisms for constructing the mammalianlimbic systemFC Relatório <strong>Anual</strong> <strong>2010</strong> 66


Kathrin SteckMon 29/11/10Ionians, IGCSmells like home: Olfactory orientation in desert antsDecember <strong>2010</strong>Rui OliveiraTue 07/12/10Ionians, IGCFC Relatório <strong>Anual</strong> <strong>2010</strong> 67


4 PROGRAMA DE CANCRO4.1 Programa Doutoral para Médicos4.2 Simpósios e Reuniões4.2.1 <strong>2010</strong> <strong>Champalimaud</strong> Cancer Centre SymposiumFC Relatório <strong>Anual</strong> <strong>2010</strong> 68


4 PROGRAMA DE CANCROA Fundação deu continuidade em <strong>2010</strong> ao seu Programa em Cancro, comespecial ênfase no estudo, na prevenção e no tratamento das metástases.As colaborações com os responsáveis destes Programas encontram-sedetalhadas de seguida nos seus relatórios em língua inglesa.Prof. James Watson, Presidentedo Conselho Científico da Fundação<strong>Champalimaud</strong>, na abertura do <strong>2010</strong><strong>Champalimaud</strong> Cancer CentreSymposium4.1 Programa Doutoral para MédicosO Programa Gulbenkian de Formação Médica Avançada, da iniciativada Fundação Calouste Gulbenkian e com a colaboração da Fundação<strong>Champalimaud</strong>, iniciou em <strong>2010</strong> a sua terceira edição.Nesta edição, a Fundação <strong>Champalimaud</strong> atribuiu uma bolsa a uma médicaespecialista em gastrenterologia, que iniciou o programa de formaçãoem Setembro. Esta médica junta-se a outros bolseiros que receberam daFundação <strong>Champalimaud</strong> este programa.Em Maio de <strong>2010</strong> foi feita uma nova avaliação do Programa pelo ExternalAdvisory Board, que foi globalmente muito positiva, realçando a sua qualidadeexcepcional e o cumprimento dos seus objectivos, particularmente a promoçãode projectos de investigação de clínicos-investigadores para obtenção dograu de Doutor.FC Relatório <strong>Anual</strong> <strong>2010</strong> 69


4.2 Simpósios e Reuniões4.2.1 <strong>2010</strong> <strong>Champalimaud</strong> Cancer Centre SymposiumA 6 de Outubro, a Fundação acolheu figuras proeminentes nesta áreapara um debate sobre investigação oncológica e respectivos tratamentosnum encontro intitulado “Curing Cancer”, organizado pelo Prémio Nobel ePresidente do Conselho Científico da Fundação, James Watson. O Simpósioteve início com uma intervenção da Presidente da Fundação, Dra. LeonorBeleza, que recebeu os participantes no recém-inaugurado <strong>Champalimaud</strong>Centre for the Unknown. Expressou a importância deste encontro, referindoque representava a primeira actividade científica a ter lugar no novo centro.No seguimento das palavras de abertura da Dra. Leonor beleza, foraminiciados os trabalhos com as seguintes as intervenções:James D. Watson, Chancellor Emeritus, Cold Spring Harbor Laboratory,Nova Iorque, EUA: “Cancer Research - Past and Present”Susan Lindquist, Membro do Whitehead Institute, Massachusetts Instituteof Technology, Cambridge, MA, EUA: “Targeting protein homeostasis:a new strategy in cancer therapeutics”Raghu Kalluri, Professor de Medicina, Harvard Medical School, Boston, MA,EUA; “Mechanism and Therapy for Hypoxia Induced Metastasis”Alan Ashworth, Director do Breakthrough Breast Cancer Research Centre,Institute of Cancer Research, Londres, Reino Unido: “Hitting cancer whereit hurts: synthetic lethal approaches”Alan Ashworth, Director doBreakthrough Breast Cancer ResearchCentre, Institute of Cancer Research,Londres, Reino UnidoFC Relatório <strong>Anual</strong> <strong>2010</strong> 70


Paul A. Marks, Presidente Emérito do Memorial Sloan-Kettering CancerCenter, Nova Iorque, EUA: “Targeting Histone Deacetylases as Anti--Cancer Drugs”Este Simpósio realça o compromisso da Fundação <strong>Champalimaud</strong> nainvestigação em cancro e na organização de encontros e simpósios, queincluem já o “2009 <strong>Champalimaud</strong> Cancer Research Symposium”, o “73rdCold Spring Harbor Symposium”, patrocinado pela Fundação, um thinktankno prestigiado Banbury Center e a conferência proferida pelo ProfessorJames Watson, com o título “How to Cure Cancer”. Com início das actividadesno <strong>Champalimaud</strong> Centre for the Unknown, o programa de reuniões e cursoscontinuará a crescer e a desenvolver-se.FC Relatório <strong>Anual</strong> <strong>2010</strong> 71


<strong>Champalimaud</strong> Metastasis ProgrammesRESEARCH SUMMARYYibin KangMolecular Mechanism of Breast Cancer MetastasisGroup members (as of 03/2011)Yong Wei (Post-doc)Hanqiu Zheng (Post-doc)Rumela Chakrabarti (Post-doc)Mario Andres Blanco (PhD Student)Yuling Hua (PhD Student)Brian Ell (PhD Student)Liling Wan (PhD Student)Maša Alečković (Ph.D. Student)Min Yuan (Research Technician)Xiang Hang (Research Technician)Metastasis, the spread of cancer cells from the primary tumor to distantorgans, is the most dreadful development of neoplastic diseases. Themission of our laboratory is to apply modern molecular biology, genomics,and computational biology approaches to understand the molecular basisof cancer metastasis. Major areas of research in our laboratory includes:identification and functional characterization of metastasis genes,pre-clinical evaluation of anti-metastasis therapeutics, development ofadvanced imaging technology and non-invasive detection of tumor-stromainteraction during metastasis, the role of miRNA in cancer progressionand metastasis, molecular characterization of mammary gland stem cellsand their link to breast tumor stem cells.Our study on Jagged1-Notch Signalingwas highlighted in the cover ofthe February 2011 issue of CancerCell. This image shows a “viciouscycle” of tumor-stromal signalingevents mediated by TGF-β, Notchand IL-6 pathways in osteolyticbone metastasis of breast cancer.In the past year, with the support of the <strong>Champalimaud</strong> Foundation, wehave made several major breakthroughs that lead to publication of severalhigh impact papers in Cancer Cell, Cancer Research, etc. These studiesillustrate a novel role of Notch signaling in osteolytic bone metastasis, thedynamic function of hypoxia in organ-specific metastasis, the surprisingfunction of spontaneous ploidy duplication in promoting lung metastasis, andthe first metabolomic profiling of cancer cells with progressively increasingmetastatic abilities. We have also generated the first knockout mousemodel for MTDH, a dual functional chemoresistance/metastasis gene thatwe identified in 2009 in a high profile Cancer Cell cover article, to confirmFC Relatório <strong>Anual</strong> <strong>2010</strong> 72


its crucial role in tumor progression and metastasis, , and identified SND1as a novel MTDH interacting protein with metastasis-promoting functions.The following summarizes our major findings in the studies of molecularbasis of breast cancer progression and metastasis that we conductedin the past year.Jagged1-Notch signaling in osteolytic bone metastasis.Previous studies in our group and others have demonstrated a functionalrole of the TGFβ signaling pathway in promoting bone metastasis. However,the downstream target genes of TGFβ pathway that mediate bone metastasisremain poorly defined. We recently identified Jagged1, a Notch pathwayligand, as such a functional mediator for the pro-metastatic function ofTGFß. Beyond its well characterized functions in embryonic and postnataldevelopment, the Notch pathway has attracted increasing recognition forits aberrant activation in cancer. Despite evidence supporting an oncogenicrole, the mechanism underlying the pathway’s contribution to metastasisremains unknown. In this study, we show that elevated expression ofthe Notch pathway ligand Jagged1 in breast cancer is associated withaggressive metastatic ability of tumor cells and an increased incidence ofbone metastasis. Functional studies revealed that tumor-derived Jagged1promotes osteolytic bone metastasis by activating Notch signaling in thesupporting bone stromal components, including osteoblasts and osteoclasts.Jagged1-Notch signaling in the tumor-bone microenvironment confersgrowth advantage to tumor cells and stimulates osteolysis. Importantly,γ-secretase inhibitor treatment reverses Jagged1-mediated bone metastasisby disrupting the Notch pathway in bone stromal cells. These findingselucidate a stroma-dependent mechanism for the prometastatic functionof Notch signaling in breast cancer and provide preclinical evidence forγ-secretase inhibitors as therapeutic agents against bone metastasis.Rabconnectin-3 is a functional regulator of mammalian Notch signalingThe Notch signaling pathway is important for cell-fate decisions inembryonic development and adult life and has been recently shown to beinvolved in the development of metastasis. Defining the functional importanceof the Notch pathway in these contexts requires the elucidation of essentialsignal transduction components that have not been fully characterized.Here, we show that Rabconnectin-3B is required for the Notch pathwayin mammalian cells. siRNA-mediated silencing of Rabconnectin-3B inmammalian cells attenuated Notch signaling and disrupted the activationand nuclear accumulation of the Notch target Hes1. Rabconnectin-3Bknockdown also disrupted V-ATPase activity in mammalian cells, consistentwith previous observations in Drosophila. Pharmacological inhibition of theV-ATPase complex significantly reduced Notch signaling in mammalian cells.FC Relatório <strong>Anual</strong> <strong>2010</strong> 73


Finally, Rabconnectin-3B knockdown phenocopied functional disruption ofNotch signaling during osteoclast differentiation. Collectively, these findingsdefine an important role for Rabconnectin-3 and V-ATPase activity in theNotch signaling pathway in mammalian cells.In vivo dynamics and distinct functions of hypoxia in primary tumorgrowth and organotropic metastasis of breast cancerTumor hypoxia is known to activate angiogenesis, anaerobic glycolysis,invasion and metastasis. Hypoxic gene expression profile has been linkedto poor clinical outcomes. However, a comparative analysis of the potentiallydistinct functions of hypoxia in primary tumor growth and organ-specificmetastasis has not been reported. Here, we show distinct hypoxia kineticsin tumors generated by the MDA-MB-231 breast cancer sublines withcharacteristically different primary tumor growth rates and organotropicmetastasis potentials. Hypoxia-induced angiogenesis promotes both primarytumor growth and lung metastasis but is non-essential for bone metastasis.Microarray profiling revealed that hypoxia enhances the expression ofa significant number of genes in the lung metastasis signature, but onlyactivates a few bone metastasis genes, among which DUSP1 was functionallyvalidated in this study. Despite the different mechanisms by which hypoxiapromotes organ-specific metastasis, inhibition of HIF-1α with a dominantnegative form of HIF-1α or 2-methoxyestradiol reduced metastasis to bothlung and bone. Consistent with the extensive functional overlap of hypoxiain promoting primary tumor growth and lung metastasis, a 45-gene hypoxiaresponse signature efficiently stratifies breast cancer patients with lowor high risks of lung metastasis, but not for bone metastasis. Our studydemonstrates distinct functions of hypoxia in regulating angiogenesis andmetastasis in different organ microenvironments and establishes HIF-1α asa promising target for controlling organotropic metastasis of breast cancer.Metabolomic changes accompanying transformation and acquisition ofmetastatic potential in a syngeneic mouse mammary tumor model.Despite decades of research, the molecular processes associated with thebreast cancer progression are still inadequately defined. In particular,recent studies on breast cancer metastasis have focused on gene expressionchanges that are associated with metastatic phenotype while alteration ofmetabolic activities in metastatic cancer cells have not been analyzed in asystemic level. Here, we focus on the systematic alteration of metabolism byusing the state of the art metabolomic profiling techniques to investigatethe changes of 157 metabolites during the progression of normal mousemammary epithelial cells to an isogenic series of mammary tumor celllines with increasing metastatic potentials. Our results suggest a two-stepmetabolic progression hypothesis during the acquisition of tumorigenic andFC Relatório <strong>Anual</strong> <strong>2010</strong> 74


metastatic abilities. Metabolite changes accompanying tumor progressionare identified in the intracellular and secreted forms in several pathways,including glycolysis, tricarboxylic acid cycle, pentose phosphate pathway,fatty acid and nucleotide biosynthesis and the GSH-dependent anti-oxidativepathway. These results suggest possible biomarkers of breast cancerprogression as well as opportunities of interrupting tumor progressionthrough the targeting of metabolic pathways.Organ-specific enhancement of metastasis by spontaneous ploidyduplication and cell size enlargement.Aneuploidy is commonly observed in breast cancer and is associated withpoor prognosis. One frequent type of aneuploidy, hypertetraploidy, mayderive from ploidy duplication of hyperdiploid cells. However, the pathologicalconsequences of ploidy duplication in breast cancer progression have notbeen characterized. Here, we present an experimental system demonstratingspontaneous appearance of hypertetraploid cells from organ-specificmetastatic variants of the MDA-MB-231 breast cancer cell line throughploidy duplication in vitro and in vivo. The hypertetraploid progenies showedincreased metastatic potential to lung and brain, but not to bone, which maybe partially explained by the distinct capillary structures in these organsthat confer differential lodging advantages to tumor cells with enlargedsize. These results suggest a potential mechanistic link between ploidyduplication and enhancement of metastatic potentials, as was observed inprevious clinical studies of breast cancer.Genetic disruption of Metadherin suppresses mammary tumorprogression and metastasis in miceMetadherin is overexpressed in 40% of breast cancer patients andstrongly associated with poor prognosis. However, evidence supporting itsinvolvement in autochthonous cancer models was currently lacking andlittle is known about its function in normal development. Here we report thegeneration of Mtdh-deficient mice and demonstrate that Mtdh is dispensablefor embryogenesis but required for optimal mammary morphogenesis. Mtdhloss profoundly impairs tumorigenesis, tumor growth and metastasis, andthe contribution of Mtdh to mammary tumor progression may be partiallyaccounted by its suppression of apoptosis through potentiating the Aktpathway. In addition, a murine Mtdh-associated gene signature predictsclinical outcome in breast cancer patients in a manner consistent with thetumor-promoting function of Mtdh in mice.FC Relatório <strong>Anual</strong> <strong>2010</strong> 75


Identification of Staphylococcal nuclease domain containing 1 (SND1) asa Metadherin-interacting protein with metastasis-promoting functionsMetastasis is the deadliest and most poorly understood feature of malignantdiseases. Recent work has shown that Metadherin (MTDH) is overexpressedin over 40% of breast cancer patients and promotes metastasis andchemoresistance in experimental models of breast cancer progression. Herewe apply mass spectrometry-based screen to identify Staphylococcal nucleasedomain containing 1 (SND1) as a candidate MTDH interacting protein. Afterconfirming the interaction between SND1 and MTDH, we tested the role ofSND1 in breast cancer and found that it strongly promotes lung metastasis.SND1 was further shown to promote resistance to apoptosis and to repressexpression of the KiSS1 metastasis suppressor gene. Analyses of breastcancer clinical microarray data indicated that high expression of SND1 inprimary tumors is strongly associated with reduced metastasis-free survivalin multiple large scale datasets. Thus, we have uncovered SND1 as a novelMTDH-interacting protein and shown that it is a functionally and clinicallysignificant mediator of metastasis.Research FundingSource: NIH (NCI)Title: Metadherin in Metastasis and Chemoresistance of Breast CancerTotal Period: 9/1/08-8/31/13Source: NIHTitle: The Role of miRNAs in Epithelial Mesenchymal Transition andMetastasis Total Period: 4/1/10-3/30/15Source: DOD Era of Hope Scholar AwardTitle: Systems Biology of Breast Cancer MetastasisTotal Period: 7/1/06-6/30/11Source: <strong>Champalimaud</strong> FoundationTitle: <strong>Champalimaud</strong> Metastasis Program at Princeton UniversityTotal Period: 5/1/09-4/30/2014Source: New Jersey Commission on Cancer ResearchTitle: Targeting Notch Signaling in Breast Cancer MetastasisTotal Period: 6/26/09-6/25/11Source: Breast Cancer Alliance Exceptional Project GrantTitle: The role of VCAM1 in the activation of dormant breast cancer bonemicrometastasisTotal Period: 1/1/11-12/31/11FC Relatório <strong>Anual</strong> <strong>2010</strong> 76


PUBLICATIONSRefereed Journal Articles1. Lu X, Bennet B, Mu E, Rabinowitz J, and Kang Y. (<strong>2010</strong>) Metabolomicprofiling reveals a two-step metabolic progression model of metastaticbreast cancer. J. Biol. Chem., 285(13):9317-21.2. Lu X and Kang Y. (<strong>2010</strong>) Epidermal growth factor signaling and bonemetastasis. Br. J. Cancer, 102(3):457-61.3. Korpal M and Kang Y. (<strong>2010</strong>) Targeting the transforming growth factor-betasignaling pathway as in metastatic cancer. Eur J Cancer, 46(7):1232-40.4. Lu X, Yan C, Yuan M, Wei Y, Hu G, and Kang Y. (<strong>2010</strong>) In vivo dynamicsand distinct functions of hypoxia in primary tumor growth andorga-notropic metastasis of breast cancer. Cancer Res., 70(10):3905-14.(Cover highlight)5. Matveeva O, Kang Y, Nechipurenko YD, Nemtsov VA, Spiridonov ANand Shabalina SA. (<strong>2010</strong>) Optimization of duplex stability and terminalasymmetry for shRNA design. PLoS One, 5(4): e10180.6. Lu X, Lu X and Kang Y. (<strong>2010</strong>) Organ-specific enhancement of metastasisby spontaneous ploidy duplication and cell size enlargement. Cell Res.,20(9):1012-22.7. Ganapathy V, Ge R, Grazioli A, Xie W, Banach- Petrosky W, Kang Y,Lonning S, McPherson J, Yingling JM, Biswas S, Mundy GR, and ReissM. (<strong>2010</strong>) Targeting the transforming growth factor-β pathway inhibitshuman basal-like breast cancer metastasis. Mol. Cancer., 9(1):122.8. Sethi N and Kang Y. (<strong>2010</strong>) Dysregulation of developmental pathways inbone metastasis. Bone, 48(1):16-22.9. Sethi N, Yan Y, Quek D, Schupbach T, Kang Y. (<strong>2010</strong>) Rabconnectin3 isa functional regulator of mammalian Notch signaling. J. Biol. Chem.,285:34757-64.10. Lu X and Kang Y. (<strong>2010</strong>) Hypoxia and hypoxia-inducible factors (HIFs):master regulators of metastasis. Clin. Cancer Res., 16:5928-35.11. Tamasi J, Zhang X, Lu X, Zhu J, Chen H, Tian X, Lee T-C, Threadgill DW,Kream BE, Kang Y, Partridge NC, and Qin L. (<strong>2010</strong>) In vivo epidermalgrowth factor receptor plays an anabolic role in bone metabolism.J. Bone Miner. Res., Nov 18. [Epub ahead of print].FC Relatório <strong>Anual</strong> <strong>2010</strong> 77


12. Tiede B and Kang Y. (2011) From milk to malignancy: the role ofmammary stem cells in development, pregnancy and breast cancer.Cell Res., 21(2):245-57.13. Sethi N, Dai X, Winter CG, and Kang Y. (2011) Tumor-derived Jagged1promotes osteolytic bone metastasis of breast cancer by activatingstromal Notch signaling. Cancer Cell, 19(2):192-205. (Cover Article)Editorial by: Tao J, Erez A, Lee B. Cancer Cell, 19(2):192-205.14. Blanco MA and Kang Y. (2011) Signaling pathways in breast cancer metastasis– novel insights from functional genomics. Breast Cancer Res., in press.15. Shan J, Budjiono SJ, Hu G, Yao N, Kang Y, Ju Y, and Prud’homme RK.(2011) PEGylated composite nanoparticles containing upconvertingphosphors and meso-tetraphenyl porphine (TPP) for photodynamictherapy. Nano Letters, in press.16. Blanco MA, Alečković A, Hua Y, Li T, Wei Y, Xu Z, Cristea I, and Kang Y.(2011) Identification of Staphylococcal nuclease domain containing 1(SND1) as a Metadherin-interacting protein with metastasis-promotingfunctions. J. Biol. Chem., in press.17. Korpal M, Ell BJ, Buffa FM, Ibrahim T, Terrasa AC, Mercatali L, KhanZ, Blanco MA, Goodarzi H, Hua Y, Wei Y, Hu G, Garcia B, Ragoussis J,Amadori D, Harris AL, and Kang Y. (2011) Direct targeting of Sec23aby miR-200s influences cancer cell secretome and promotes metastaticcolonization. Nature Medicine, submitted.18. Wan L, Lu X, Yuan M, Blanco MA, Wei Y, Mellor H, and Kang Y. (2011)Genetic disruption of Metadherin suppresses mammary tumor progressionand metastasis in mice. Genes & Dev., submitted.19. Sethi N and Kang Y. (2011) Metastasis — from gene discovery to clinicalapplications. Nature Reviews Cancer (invited review), in preparation.Published Meeting AbstractsLu X, Yang Q, Yuan M, Mu E, Reiss M, Haffty B, Massagué J, Kang Y. (<strong>2010</strong>)VCAM1 mediates the aggressive conversion of dormant breast cancer bonemetastasis by promoting angiogenesis and osteoclastogenesis. AACR 100thAnnual Meeting Denver, Colorado, USASethi NS, Dai X, Winters C, Kang, Y. (<strong>2010</strong>) A Novel Role of Notch Signaling inBreast Cancer Bone Metastasis. AACR-MRS Joint Conference on Metastasisand the Tumor Microenvironment. Philadelphia, PA, USA.FC Relatório <strong>Anual</strong> <strong>2010</strong> 78


Sethi NS, Dai X, Winters C, Kang, Y. (<strong>2010</strong>) Jagged1 promotes osteolytic bonemetastasis via tumor-stroma interactions. 25th Annual MD-PhD StudentConference. Keystone, Colorado, USA.Sethi NS, Dai X, Winters C, Kang, Y. (<strong>2010</strong>) Tumor-derived Jagged1promotes osteolytic bone metastasis of breast cancer by enganging stromalNotch signaling. MGH-KI-Cell Press Days of Molecular Medicine: SystemsBiology Approaches to Cancer and Metabolic Disease. Karolinska Institute,Stockholm, Sweden.Sethi NS, Dai X, Winters C, Kang, Y. (<strong>2010</strong>) Tumor-derived Jagged1 promotesosteolytic bone metastasis of breast cancer by enganging stromal Notchsignaling. National Student Research Forum. UTMB, Galveston, Texas,USA.MEETINGS, COURSES, SEMINARSMeetings Organized<strong>2010</strong> Annual Meeting of the American Association for Cancer Research(AACR)Washington DC, USA April <strong>2010</strong>Yibin Kang, Member of the Education CommitteeChair of the Workshop on the Mouse Models of Invasion and Metastasis13 th International Symposium of the Society of Chinese Bioscientistsin AmericaGuangzhou, China, July 2011Yibin Kang, Co-organizer and Section Chair11 th Annual Conference of Cancer-Induced Bone DiseaseChicago, IL, November, 2011Yibin Kang, Co-organizer and member of scientific committeeInvited presentationsYibin Kang has given invited lectures on breast cancer metastasis inthe following meetings and seminars:1. University of Colorado Cancer Center, Denver, CO (2/10/<strong>2010</strong>)2. Emory University Winship Cancer Institute, Atlanta, GA (3/19/<strong>2010</strong>)3. Paterson Institute for Cancer Research and Manchester Breast Centre,University of Manchester, United Kingdoms (3/23/<strong>2010</strong>)FC Relatório <strong>Anual</strong> <strong>2010</strong> 79


4. 101 st Annual Meeting of American Association for Cancer Research,Washington, DC (4/18/<strong>2010</strong>)5. A. C. Camargo Cancer Hospital and Antonio Prudente Cancer ResearchCenter, São Paulo, Brazil (4/30/<strong>2010</strong>)6. Banbury Tumor Microenvironment and Metastasis Conference, ColdSpring Harbor Laboratory, Cold Spring Harbor, NY (5/7/<strong>2010</strong>)7. Rolanette and Berdon Lawrence Bone Disease Program, Baylor Collegeof Medicine and M.D. Anderson Cancer Center, Houston, TX (5/28/<strong>2010</strong>)8. 19 th Annual Meeting of Japanese Association of Metastasis Research,Kanazawa, Japan (6/16/<strong>2010</strong>)9. Xiamen University, Xiamen, China (6/22/<strong>2010</strong>)10. Zhejiang University, Zhejiang, China (6/25/<strong>2010</strong>)11. <strong>2010</strong> Bladder Cancer Think Tank Meeting, Traverse City, MI (8/6/<strong>2010</strong>)12. Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA(8/24/<strong>2010</strong>)13. McArdle Cancer Research Seminar Series, University of Wisconsinat Madison (9/8/<strong>2010</strong>)14. Joint Metastasis Research Society-AACR Conference, Philadelphia, PA(9/13/<strong>2010</strong>)15. Tianjin University General Hospital, Tianjin, China (10/19/<strong>2010</strong>)16. Ohdang Plenary Lecture , <strong>2010</strong> Annual Convention of the PharmaceuticalSociety of Korea, Cheongju, Republic of Korea (10/21/<strong>2010</strong>)17. Korea Advanced Institute of Science and Technology, Deajeon, Republicof Korea (10/22/<strong>2010</strong>)18. NSF workshop “Physics of Metastasis”, Washington DC (11/1/<strong>2010</strong>)19. Department of Biochemistry, State University of New York at Buffalo andRoswell Park Cancer Center, Buffalo, NY (11/9/<strong>2010</strong>)20. Breast Cancer Program, Karmanos Cancer Institute, Wayne StateUniversity, Detroit, MI (11/18/<strong>2010</strong>)21. Amgen Inc, Thousand Oaks, CA (12/10/<strong>2010</strong>)22. International symposium: “Breast cancer: today and tomorrow a multidisciplinaryapproach”, Forlì, Italy (12/16/<strong>2010</strong>)23. <strong>Champalimaud</strong> Cancer Centre Symposium, <strong>Champalimaud</strong> Foundation,Lisbon, Portugal (1/14/2011)24. Women’s Cancer Research Program, Fox Chase Cancer Center,Philadelphia, PA (1/27/2011)FC Relatório <strong>Anual</strong> <strong>2010</strong> 80


25. Department of Physiology, Tufts University School of Medicine, Boston,MA (3/8/2011)Yibin Kang has been invited to give lecture at the following upcomingmeetings and seminars:26. Mary Babb Randolph Cancer Center, West Virginia University, Morgantown,WV (5/11/<strong>2010</strong>)27. Department of Hematology and Oncology, University of Freiburg, Germany(5/20/2011)28. The Gordon Research Seminar (GRS) and Gordon Research Conference(GRC) on “Bones & Teeth”, Les Diablerets, Switzerland (6/18/2011)29. <strong>Champalimaud</strong>-TuMic Metastasis Research Meeting, Lisbon, Portugal(6/26/2011)30. 13 th International Symposium of the Society of Chinese Bioscientistsin America, Guangzhou, China (7/28/2011)31. The 9th Biannual Conference of Chinese Biological Investigator Society,ZhangJiaJie, China (7/31/2011)32. 2011 FASEB meeting on TGF-β Signaling in Development and Disease,Lucca, Italy (8/21/2011)33. Department of Pediatric Oncology, M.D. Anderson Cancer Center, Houston,TX (9/14/2011)34. 11 th Annual Conference of Cancer-Induced Bone Disease, Chicago, IL(11/29/2011)35. 2 nd International Conference: Translational Research in Oncology, Forlì,Italy (5/9-11/2012)36. Fourth International Conference on Osteoimmunology: Interactions ofthe Immune and Skeletal Systems, Corfu, Greece (6/18/2012)FC Relatório <strong>Anual</strong> <strong>2010</strong> 81


RESEARCH SUMMARYRaghu Kalluri M.D., Ph.D.Professor of MedicineHarvard Medical School<strong>Champalimaud</strong> Cancer Programme atBeth Israel Deaconess Medical Center and Harvard MedicalSchool, BostonGroup membersHikaru Sugimoto, MD, PhD (T32 NIH Trainee)Tahereh Ghaziani, MD (T32 NIH Trainee)Saila Ventrapragada, MD (T32 NIH Trainee)Vesselina Cooke, PhD (Post-Doctoral Fellow, NIH-NRSA Fellow)Akane Kizu, PhD (Post-Doctoral Fellow, Japanese EndocrineSociety Fellow)Ignacio Revuelta, MD (Post Doctoral Fellow, Spanish Societyof Nephrology Fellow)Targeting mesenchymal cells inbreast tumorsGenta Maeda, PhD (Post Doctoral Fellow, Japanese Cancer Society Fellow)Noritoshi Kato, MD, PhD (Post Doctoral Fellow, Japanese Societyof Nephrology Fellow)Gangadhar Taduri, MD (Post-Doctoral Fellow, International Societyof Nephrology Fellow)Valerie LeBleu, PhD (Instructor; T32 NIH Trainee)Sonia Melo, PhD (Post Doctoral Fellow, EMBO Fellow)Joyce Tse (Harvard PhD student; Department of Defense Trainee)Sylvia Vong (Harvard PhD student)Doruk Keskin (Harvard PhD student)Zainab Khan (Harvard PhD student)Annie Vo (Harvard PhD student)Cristina Espinosa Da Silva (Laboratory Manager)Overall Summary:The central mission of the champalimaud metastasis program at the BethIsrael Deaconess Medical Center and Harvard Medical School is cancerresearch and education. The goal of our laboratory is to determineFC Relatório <strong>Anual</strong> <strong>2010</strong> 82


the contribution of tumor microenvironment in cancer progression andmetastasis. This effort is coupled with our regenerative biology studies toevaluate the response our body to repair tissue damage, as also observedin tumor growth. The <strong>Champalimaud</strong> metastasis program at the Beth IsraelDeaconess Medical Center and Harvard Medical School specifically focuseson the elucidating role of fibroblasts and other stromal cells in metastasisassociated with breast, prostate, pancreatic and skin cancer. We use mousemodels coupled with human tumor samples to unravel new pathways andidentify new therapy targets against metastatic cancer. In addition to theresearch activity, our <strong>Champalimaud</strong> metastasis program serves as animportant base for education and scientific training of scientists, studentsand trainees from Portugal.Research Projects:1. To determine the role of Fibroblasts in Cancer Progression andMetastasis2. To determine the role of Metabolism in Cancer Progression andMetastasis3. To identify neew therapies for Metastasis and pre-clinical testing ingenetic mouse modelsCurrent Research Funding– EU-Indigo grant. This grant is for two years between <strong>Champalimaud</strong>Foundation (Lisbon, Portugal), German Cancer Foundation-DKFZ(Heidelberg, Germany) and MNJ Cancer Hospital (Hyderabad, India.The project will study Genetics of Stromal cells in Breast Cancer. Thisproject began in September of <strong>2010</strong>.– NIH RO1 DK 55001. Assembly of Type IV Collagen in Health and Disease.PI: Raghu Kalluri– NIH RO1 CA 125550. Role of fibroblasts in cancer. PI: Raghu Kalluri– NIH RO1 CA 155370. Targeting pericytes in cancer. PI: Raghu Kalluri– NIH RO1 CA 151925. Role of stromal cells in Pancreatic Ductal Adenocarcinoma.PI: Raghu Kalluri– NIH RO1 DK 81576. Epigenetics in Fibroblasts. PI: Raghu Kalluri– Infinity Pharmaceuticals. Role of Sonic Hedgehog Signaling in cancerPI: Raghu Kalluri– Genentech. Biomarkers of anti-angiogenic drugs. PI: Raghu Kalluri– Harvard Stem Cell Istitute. Stem cells in tissue regeneration. PI: RaghuKalluri– The also had 12 fellowship grants from different organizations to supportthe salaries and research/education activities of the trainees.FC Relatório <strong>Anual</strong> <strong>2010</strong> 83


PUBLICATIONS (<strong>2010</strong>-2011)1. Lee SB, Wong AP, Kanasaki K, Xu Y, Shenoy VK, McElrath TF,Whitesides GM, Kalluri R. Preeclampsia. 2-Methoxyestradiol InducesCytotrophoblast Invasion and Vas-cular Development Specifically underHypoxic Conditions. Am J Pathol. <strong>2010</strong>Jan 14.2. Flier SN, Tanjore H, Kokkotou EG, Sugimoto H, Zeisberg M, Kalluri R.,Identification of epithelial to mesenchymal transition as a novel sourceof fibroblasts in intestinal fibrosis. J Biol Chem. <strong>2010</strong> Apr 2.3. Bechtel W, McGoohan S, Zeisberg EM, Müller GA, Kalbacher H, SalantDJ, Müller CA, Kalluri R, Zeisberg M. Methylation determines fibroblastactivation and fibrogenesis in the kidney. Nat Med. <strong>2010</strong> Apr 25.4. Hamano Y, Okude T, Shirai R, Sato I, Kimura R, Ogawa M, Ueda Y,Yokosuka O, Kalluri R, Ueda S.Lack of Collagen XVIII/EndostatinExacerbates Immune-Mediated Glomerulonephritis. J Am Soc Nephrol.<strong>2010</strong> Jul 8.5. Lebleu V, Sund M, Sugimoto H, Birrane G, Kanasaki K, Finan E, Miller CA,Gattone VH 2nd, McLaughlin H, Shield CF 3rd, Kalluri R. Identificationof NC1 domain of {alpha}3 chain as critical for {alpha}3{alpha}4{alpha}5type IV collagen network assembly. J Biol Chem. <strong>2010</strong> Sep 16.6. Medici D, Shore EM, Lounev VY, Kaplan FS, Kalluri R, Olsen BR.Conversion of vascular endothelial cells into multipotent stem-like cells.Nat Med. <strong>2010</strong> Dec;16(12):1400-6.7. Bravo-Nuevo A, Sugimoto H, Iyer S, Fallon Z, Lucas JM, Kazerounian S,Prendergast GC, Kalluri R, Shapiro NI, Benjamin LE. RhoB Loss PreventsStreptozotocin-Induced Diabetes and Ameliorates Diabetic Complicationsin Mice. Am J Pathol. 2011 Jan;178(1):245-52.8. Melo S, Villanueva A, Moutinho C, Davalos V, Spizzo R, Ivan C, Rossi S,Setien F, Casanovas O, Simo-Riudalbas L, Carmona J, Carrere J, Vidal A,Aytes A, Puertas S, Ropero S, Kalluri R, Croce CM, Calin GA, Esteller M.Small molecule enoxacin is a cancer-specific growth inhibitor that acts byenhancing TAR RNA-binding protein 2-mediated microRNA processing.Proc Natl Acad Sci U S A. 2011 Feb 28. [Epub ahead of print]9. Teng Y, Kanasaki K, Bardeesy N, Sugimoto H, Kalluri R. Deletion ofSmad4 in Fibroblasts Leads to Defective Chondrocyte Maturation andCartilage Production in a TGF Type II Receptor Independent Manner.Biochem Biophys Res Commun. 2011 Mar 2. [Epub ahead of print]10. Ayala de la Pena F, Kanasaki K, Kanasaki M, Tangirala N, Maeda G, Kalluri R.Loss of p53 and acquisition of angiogenic microRNA profile is insufficientto facilitate progression of bladder urothelial carcinoma in situ to invasivecarcinoma. J Biol Chem. 2011 Mar 9. [Epub ahead of print]11. Xie l, Duncan, D, Lively, J, Hynes, RO, Hanahan, D, Kalluri R, SystemicAngiogenesis Balance Controls the Rate of Cancer Progression. Proc.Natl. Acad. Sci. USA (In Press).FC Relatório <strong>Anual</strong> <strong>2010</strong> 84


12. Polyak K, Kalluri R. The Role of the Microenvironment in MammaryGland Development and Cancer. Cold Spring Harb Perspect Biol. <strong>2010</strong>Jun 30.13. Krenning G, Zeisberg EM, Kalluri R. The origin of fibroblasts andmechanism of cardiac fibrosis. J Cell Physiol. <strong>2010</strong> Jul 15.14. Shenoy V, Kanasaki K, Kalluri R. Pre-eclampsia: connecting angiogenicand metabolic pathways. Trends Endocrinol Metab. <strong>2010</strong> Jun 18.15. Nataraj D, Ernst A, Kalluri R. Idiopathic pulmonary fibrosis is associatedwith endothelial to mesenchymal transition. Am J Respir Cell Mol Biol.<strong>2010</strong> Aug;43(2):129-30.16. Wiig H, Tenstad O, Iversen PO, Kalluri R, Bjerkvig R. Interstitial fluid:the overlooked component of the tumor microenvironment? FibrogenesisTissue Repair. <strong>2010</strong> Jul 23;3(1):12.17. Wiig H, Keskin, D and Kalluri R Lymphangiogenesis and the contributionof extracellular matrix. Matrix Biology epub ahead of print.18. Force T, Bonow RO, Houser SR, Solaro RJ, Hershberger RE, Adhikari B,Anderson ME, Boineau R, Byrne BJ, Cappola TP, Kalluri R, LeWinterMM, Maron MS, Molkentin JD, Ommen SR, Regnier M, Tang WH, Tian R,Konstam MA, Maron BJ, Seidman CE. Research priorities in hypertrophiccardiomyopathy: report of a Working Group of the National Heart, Lung,and Blood Institute Circulation. <strong>2010</strong> Sep 14;122(11):1130-3.19. Shenoy V, Kanasaki K, Kalluri R. Pre-eclampsia: connecting angiogenicand metabolic pathways Trends Endocrinol Metab. <strong>2010</strong> Sep;21(9):529-36.20. Keskin D, Kalluri R. NF-kappaB-induced chromatin remodeling regulatesangiogenesis. Blood <strong>2010</strong> Jul 22;116(3):312-3.21. Zeisberg EM, Kalluri R. Origins of cardiac fibroblasts. Circ Res. <strong>2010</strong>Nov 26;107(11):1304-12.22. Lee SB, Kalluri R. Mechanistic connection between inflammation andfibrosis. Kidney Int. <strong>2010</strong> Dec;78 Suppl 119:S22-6.23. Hertig A, Flier SN, Kalluri R. Contribution of epithelial plasticity to renaltrans-plantation-associated fibrosis. Transplant Proc. <strong>2010</strong> Nov;42(9Suppl):S7-12.FC Relatório <strong>Anual</strong> <strong>2010</strong> 85


MEETINGS, COURSES, SEMINARS (<strong>2010</strong>-2011)Meeting Organized/Co-organizedI<strong>Champalimaud</strong> Foundation Tumor Microenvironment and MetastasisMeetingThe Banbury Center, Cold Spring Harbor Laboratory, New York, USAMay 5-7, <strong>2010</strong>ISN Nexus Symposium on FibrosisCrowe Plaza Hotel, GenevaJune 30-July 2, <strong>2010</strong>4 th Mayo Clinic Angiogenesis Symposium: Bench-side Stimulusfor Translational Medicine.Mackinac Island, Michigan, USAAugust 27, <strong>2010</strong> - August 29, <strong>2010</strong>Inaugural <strong>Champalimaud</strong> Symposium on ‘Curing Cancer’Lisbon, PortugalMRS International Meeting on Metastasis, June 2011.Libson, Portugal5 th TEMTIA EMT MeetingSingaporeJune-July, 2011Courses– Harvard Medical School (HMS) Ethics course: The Conduct of Science– HMS 1 st Year pathology (IMP) course– HMS/BBS Micro 230, 1 st year graduate program course– HMS/MIT Renal pathophysiology course– HMS 1 st year Scholars in Medicine course. Tutor and course director– University of Coimbra oncobiology course for graduate studentsEducation and Scientific Training of Portuguese Scientists andStudents– Sergio Diaz, PhD: Dr. Diaz is a scientist at the Oncology Insitiute inLisbon. Dr. Diaz spent 4 months in our laboratory in <strong>2010</strong> as a visitingscientist and participated in cancer research being conducted as part ofthe <strong>Champalimaud</strong> Metastasis Program at BIDMC and HMS.FC Relatório <strong>Anual</strong> <strong>2010</strong> 86


– Sonia Melo, PhD: Dr. Melo is a graduate of the Porto GABBA graduateprogram and trained in Barcelona and recently joined our laboratory as aresearch fellow. She just received the prestigious EMBO fellowship for herresearch work.Awards<strong>2010</strong> Fellow, American Society for Clinical Investigation<strong>2010</strong> Folkman Award Lectureship, 4th Mayo Cinic Angiogenesis SymposiumSeminarsInvited Speaker<strong>2010</strong> NCI’s National Tumor Microenvironment Network Meeting, Nashville, TN<strong>2010</strong> Indian School of Business, Hyderabad, India<strong>2010</strong> Albert Einstein College of Medicine Cardiology Seminar Series,New York City, NY<strong>2010</strong> Lecture/Session Chairperson, AACR Special Conference: EMT andCancer Progression and Treatment, Arlington, VA<strong>2010</strong> Symposium on Current Topics in Fibrosis, Amersfoort, Netherlands<strong>2010</strong> International Transplant Symposium, Sorrento, Italy<strong>2010</strong> University of Goettingen, Goettingen, Germany<strong>2010</strong> Stower’s Institute for Biomedical Research, Kansas City, KS<strong>2010</strong> Meet the Expert/Lecture, <strong>2010</strong> AACR Annual Meeting, Washington DC<strong>2010</strong> First International Course on Advances in Cellular and MolecularBiology, Sao Paulo, Brazil<strong>2010</strong> Cold Spring Harbor Laboratory-Banbury Meeting on Tumor Micro--environment and Metastasis<strong>2010</strong> Korean Society of Nephrology, Seoul, Korea<strong>2010</strong> 2 nd EMBO Conference on Cellular Signaling and Molecular Medicine,Dubrovnik, Croatia<strong>2010</strong> Short Course in Cancer Biology, Eppley Institute for Research in Cancer,Omaha, Nebraska<strong>2010</strong> Canadian Society of Nephrology, Montreal, Canada<strong>2010</strong> ISN Nexus Symposium on Kidney Fibrosis, Geneva, Switzerland<strong>2010</strong> Roche Symposium on Angiogenesis Biomarkers, Vancouver, Canada<strong>2010</strong> 4 th Mayo Clinic Angiogenesis Symposium, Mackinac Island, MI, USA<strong>2010</strong> Karolinska Institute, Stockholm, Sweden<strong>2010</strong> Annual Meeting of Brazilian Society of Nephrology, Vitoria, Brazil<strong>2010</strong> Cancer Symposium, Eli Lily Pharmaceuticals, Indianapolis, IN, USA<strong>2010</strong> Special Lecture, Toronto Transplant Institute at University of Toronto,Toronto, CanadaFC Relatório <strong>Anual</strong> <strong>2010</strong> 87


<strong>2010</strong> Fibrosis Workshop Organized by Roche Pharmaceuticals, New York City,NY, USA<strong>2010</strong> 17 th Heidelberger Symposium on Cancer Research, Coimbra, Portugal<strong>2010</strong> American Society of Nephrology Annual Meeting, Denver, Colorado<strong>2010</strong> Inaugural <strong>Champalimaud</strong> Cancer Centre Symposium, Lisbon, Portugal<strong>2010</strong> Director’s Lecture, UCSD Cancer Center, La Jolla, California<strong>2010</strong> MITRAL meeting in Cardiovascular Research, Milan, Ital<strong>2010</strong> Amazon Project in Cancer, Palermo, Italy<strong>2010</strong> International Meeting on Tumor Microenvironment and Angiogenesis,Ascona, Switzerland<strong>2010</strong> University of Madrid Cancer Center and Institute for Cancer Research,Madrid, Spain2011 Co-organizer, Session Chair and Lecture, Folkman Memorial Symposium,Lisbon, Portugal2011 Keystone Meeting on Epithelial Plasticity and Epithelial to MesenchymalTransition, Vancouver, Canada2011 Faculty Lectureship, University of Coimbra, Coimbra, Portugal2011 Department of Biochemistry and the Cancer Center McGill University,Montreal, Canada2011 NCI Tumor Microenvironment Network Meeting Bethesda, MD2011 Mount Sinai School of Medicine, New York, NY2011 Division of Cardiology, Beth Israel Deaconess Medical Center, Boston, MA2011 Banbury Meeting on “Curing Melanoma and Others Cancers”, New YorkFuture Invited Lectures (Accepted Only)– March 30-April 1 FCVRI Seminar Series Northwestern University, Chicago– April 8-12 World Congress of Nephrology, Vancouver– April 11 OHRI Seminar Series Ottawa– April 14-16 Extracellular Matrix in Health and Disease A symposiumhonoring Bjorn R. Olsen HMS, Boston -April 26-30 Biology of Cancer:Microenvironment, Metastasis & Therapeutics Meeting Cold Spring HarborLaboratory, Cold Spring Harbor NY– May 11-12 TMEN’s Jr. Investigator Meeting, Boston– May 18-20 Meeting for the Swedish Society of Pathology and the SwedishSociety of Clinical Cytology Umea, Sweden– May 20-21 Seminar at Tsinghua, University in Beijing Beijing, China– May 24-28 CSH Asia Conference on Translational Approaches to CancerSuzhou, China– May 26-27 ICC on Metastasis and Angiogenesis Barcelona, Spain– June 2-3 32 th Annual Meeting ofthe Japanese Society of Inflammation andRegeneration Kyoto, Japan– June 25-28 MRS New Concepts in Cancer Metastasis Meeting, <strong>Champalimaud</strong>Cancer Centre, LisbonFC Relatório <strong>Anual</strong> <strong>2010</strong> 88


– June30-July 1 20 th Annual Meeting of the Japanese Association for MetastasisResearch Japan– July 18-21 Scientific Sessions, BCVS Conference 2011 New Orleans, Louisiana– August 21-26 Angiogenesis Gordon Research Conference Salve ReginaUniversity, Newport RI– September 13-16 Mechanisms of Organ Repair and Regeneration ConferenceWashington DC– October 10-13 EMT Meeting in Singapore– January 16-21 Keystone Symposia Snowbird, Utah– February, 17-22, Keystone Meeting on AngiogenesisFC Relatório <strong>Anual</strong> <strong>2010</strong> 89


RESEARCH SUMMARYDavid Lyden M.D., Ph.D.<strong>Champalimaud</strong> Metastasis Programme atWeill Cornell Medical CollegeGroup membersJeffrey Greenfield MD/PhD (Assistant Professor/Neurosurgery)Hector Peinado PhD (<strong>Champalimaud</strong> Foundation Instructor)Marianna Papaspyridonos PhD (Fulbright Foundation Post-Doc)Bethan Psaila MD (Fulbright Foundation Fellow)Helene Brazier PhD (Department of Defense Post-Doc)Till-Martin Theilen MD (Post-Doc)Yujie Huang PhD (Post-Doc)Haiying Yhang (Post-Doc)Irina Matei (Post-Doc)Irini Bournazou (Post-Doc)Ayuko Nitadori (Japanese Society for the Promotion of Science Post-Doc)Guillermo Garcia Santos (Clarin Ayudas Post-Doc, Principality of Asturias)William Cob MD, PhD (Neuro-Surgical Fellow)Maureen McEvoy MD (Pediatric Surgical Fellow)Simon Lavotshkin MD (General Surgical Fellow)Rosario Andre MD (American Portuguese Biomed. Res. Fund/<strong>Champalimaud</strong>Foundation PhD student)Jared Wels (PhD student)Selena Granitto (PhD student)Marta Hegueta (Visiting PhD scholar-Spanish Ministry of Science andInnovation)Bruno de Costa Silva (Visiting PhD scholar-Ludwig Cancer Institute,and will be Manning Fd. Post-Doc)Sumejja Baljevic (Visiting master’s student)Xueying Chen (Weill Cornell medical student)Vijay ramaswav (Weill Cornell medical student)Scott Kerns (Lab Manager)Caitlin Williams (technician)FC Relatório <strong>Anual</strong> <strong>2010</strong> 90


Overall SummaryOur laboratory investigates the cellular and molecular pathways thatcontribute to the tumor and metastatic microenvironments. In responseto tumor-derived secreted factors, we have determined that bone marrow--derived stem and progenitor cells initiate neovasculogeneis and promotethe formation of the “pre-metastatic niche” at future sites of metastasisproviding a favorable microenvironment for the growth of metastatic tumorcells. We have determined that key embryonic like molecules such as theinhibitor of differentiation gene or Id genes and essential extracellularmatrix proteins, such as fibronectin isoforms and matrix metalloproteinasescontribute to the support of the pre-metastatic niche. The release of solublecytokines and chemokines is currently recognized as the main mechanismunderlying cell-to-cell communication within the tumor microenvironmentas well as the generation of suitable niches in distant organs. Recently, wehave identified a new pathway of crosstalk between tumor cells and bonemarrow-derived progenitor cells called tumor-derived exosomes. Exosomesare small vesicles (40-100 nm) derived from the luminal membranes of thelate endosomes/multivesicular bodies (MVB), constitutively released via thefusion of MVBs with the cell membrane. Exosomes were originally consideredto be inert cellular debris. However, it is now accepted that exosomescan interact with target cells through specific receptor-ligand interactions.We have found that tumor-derived exosomes are abundantly secreted inhighly metastatic melanoma models compared to less metastatic or non--metastatic models. Melanoma-derived exosomes induced vascular leakinessat pre-metastatic sites and promoted bone marrow-derived cell mobilizationenhancing primary tumor growth and metastasis. Tumor-derived exosomespromoted a pro-vasculogenic phenotype, increasing the expression of ADAM10,THBS1, VEGFA, and VEGFR2 in BM precursors. Moreover, tumor-derivedexosomes increased c-Kit+Tie2+ and CD105+CD29+ progenitor cell populationsin the BM. We identified Rab1a, Rab5b, Rab7, and Rab27a to be highly expressedin primary melanoma samples. Rab27a interference decreased exosomeproduction in melanoma cells preventing mobilization of BM progenitor cells,tumor growth and metastasis. Finally, we identified a “melanoma signature”in exosomes isolated from melanoma patients, which consisted of Hsp70,VLA-4, TYRP2, and Hsp90 and, together with Rab proteins, representsexosome-specific proteins with prognostic and therapeutic potential.Circulating exosome-derived proteins are diagnostic markers inmelanoma patientsTo analyze the significance of circulating exosome levels in metastaticdisease, we have focused our research on melanoma, a highly metastatic formof cancer, and analyzed the protein level of exosomes isolated from the bloodplasma of melanoma patients. We found that protein levels were significantlyFC Relatório <strong>Anual</strong> <strong>2010</strong> 91


increased in the exosome fraction of plasma isolated from melanoma patientsby 5- to 10-fold compared to controls (Fig.1a, P=0.0099).We used electron microscopy to verify the purification of exosomes in patientplasma, which demonstrated the characteristic size (100 nm) and shape ofexosomes. In order to characterize the potential proteins found in melanomaexosomes, we examined the highly metastatic B16-F10 melanoma cell linemodel which produces exosomes that are heterogeneous in shape, with anaverage size less than 100 nm in diameter (Fig. 1b). Mass spectrometry ofB16-exosomes led to the identification of proteins related to melanomamarkers, including tyrosinase-related protein 1, melanoma cell adhesionprotein, heat-shock proteins, and integrin subunits. A subset of these proteinswere in turn analyzed in circulating exosomes isolated from melanomapatients in order to determine their potential as a new diagnostic “signature”for melanoma patients. We found that tyrosinase-related protein-2 (TYRP2),a melanoma specific protein, was increased 10-fold in the exosome fractionof melanoma patients compared to controls (Fig.1c). VLA- 4 (a.k.a, integrinα4β1 or fibronectin receptor) was upregulated 2-fold (Fig.1c).We also established that Hsp70 expression increased 7-fold in exosomesfrom melanoma patients compared to controls (Fig.1c). In contrast, Hsp90levels were not elevated, suggesting that Hsp90 is a general exosome marker.Interestingly, we found an Hsp90 isoform in 70% of the melanoma patientderived exosomes (Fig. 1c arrow), which may indicate the specific sheddingof Hsp90 isoforms in exosomes derived from melanoma patients.Fig. 1aFig. 1bTumor-released exosomes reach metastatic organsAnalysis of the exosome release rate in culture demonstrated that highlymalignant cell lines, such as B16-F10, SK-Mel28, and SK-Mel202, secreteexosomes at much higher levels (from 2-fold to 15-20-fold) than less metastaticcell lines, such as B16-F1 (Fig. 2a). In contrast, non-tumorigenic andnon-metastatic cells, such as melan-a, secreted very low levels of exosomes(Fig. 2a). We further confirmed that other tumor cell types, such as breastand colon cancer cells, secrete tumor-derived exosomes, but at about 2-foldlower levels than B16-Tail vein-injected B16-F10 exosomes in naïve micecirculate systemically within blood vessels and arrived within minutes atorgans that eventually served as metastatic sites, such as the lungs and BM.The arrival of tumor-derived exosomes in the lungs was confirmed withfluorescently labeled exosomes and staining for CD31 after five minutes(Fig. 2b). After 24 hours, we found B16 exosomes in the interstitium of theFig. 1cFig. 2aFig. 2bFC Relatório <strong>Anual</strong> <strong>2010</strong> 92


lung and in the BM (Fig. 2b), liver, and spleen. All of these organs are commonsites of metastases in melanoma. Vascular leakiness in the lungs is one ofthe main factors involved in pre-metastatic niche formation and metastasis.To analyze the influence of tumor exosomes in endothelial leakiness,we injected B16 exosomes followed by perfusion 24 hours later withfluorescently-labeled dextran (MW=70kDa). We demonstrated that B16exosomes increase lung endothelial permeability after 24 hours, as judgedby the presence of labeled dextran throughout the lung interstitum, whencompared to conditioned media, controls (Fig. 2c) and exosomes fromnon-metastatic cell lines.Fig. 2cTo investigate the molecular pathways in the lungs affected by exosomedelivery, we performed a gene expression profiling microarray of lungtissue 24 and 48 hours after B16-F10 exosome tail vein injection. We founda total of 130 genes were differentially expressed; analysis of these genesdemonstrated the upregulation of pathways related to ECM remodelingand tissue inflammation, such as the family of heat-shock proteins andS100a9, indicating enhanced expression of previously described effectorsof the pre-metastatic niche. We validated that both S100a9 and S100a8 wereupregulated in the lungs after exosome injection. TNF-α expression wasalso upregulated only 24 hours after injection, indicating that TNF-α couldbe responsible for the observed increase in vascular permeability.RESEARCH FUNDINGI) Susan G. Komen for the Cure“The prognostic and therapeutic implications of bone marrow-derivedprogenitor cells in breast cancer invasion and metastasis”9/1/08-8/31/11David Lyden PIII) The Hartwell Foundation“The role of stroma and microvesicles in recurrent pediatric brain tumormodels”7/1/09-6/30/12David Lyden PIFC Relatório <strong>Anual</strong> <strong>2010</strong> 93


III) Department of Defense, Breast Cancer Division“Unraveling the implication of the hematopoietic stem cells in bonemetastasis of breast cancer.”1/1/11-2/1/14David Lyden PIIV) Manning Foundation“The role of bone marrow-derived cells in cardiac valvular genesis”7/1/11-8-1-14David Lyden PIV) Malcolm Hewitt Wiener Foundation“The role of exosome-derived genomic transfer”4/1/11-5-1-14David PIVI) Beth C. Tortolani Foundation“The molecular signature of inflammatory breast cancer”6/1/11-7-1-14PIs: Lyden-Norton-Hudis-Bromberg-ChiosisPUBLICATIONSRefereed Journal ArticlesCross KJ, Bomsztyk BD, Weinstein AL, Teo EH, Spector JA, Lyden D. Anovel method for targeted gene therapy in ischemic tissues through viraltransfection of an expression cassette containing multiple repeats of hypoxiaresponse element. Plastic and Reconstructive Surgery 2009 123:72-82.Teo EH, Cross KJ, Bomsztyk ED, Lyden DC, Spector JA. Gene therapy inskin: choosing the optimal viral vector. Ann Plast Surg 2009 62(5): 576-580.Psaila B, Lyden D. “The metastatic niche: adapting the foreign soil”Nature Reviews Cancer 2009 9:285-293.Kaplan RN, Riba RD, Zacharoulis S, Bramley AH, Vincent L, Costa C,MacDonald DD, Jin DK, Shido K, Kerns SA, Zhu Z, Hicklin D, Wu Y, PortJL, Altorki N, Port ER, Ruggero D, Shmelkov SV, Jensen KK, Rafii S, LydenD, Wels J (corresponding author). VEGFR1 knock-down in myelomonocyticcells eradicates tumour seeding and metastasis in a non-amputation tumourmodel. Nature 2009 461:E5-E6.FC Relatório <strong>Anual</strong> <strong>2010</strong> 94


Chan AS, Jensen KK, Skokos D, Doty S, Lederman HK, Kaplan RN, RafiiS, Rivella S, Lyden D. Id1 represses osteoclast-dependent transcription andaffects haematopoiesis and bone formation. PLoS One 2009 4(11): 1-14.Podolanczuk A, Psaila B, Lyden D. “Role of Bone Microenvironment/Metastatic Niche in Cancer Progression” in Bone and Cancer. Springer--Verlag Press. 2009. Chapter 6, 89-101.James D, Nam H, Seandel M, Nolan D, Janovitz T, Tomishima M, Studer L,Lyden D, Benezra R, Zaninovic N, Rosenwaks Z, Rabbany SY, and Rafii S.Expansion and maintenance of human embryonic stem cellderived endothelialcells by TGFB inhibitions Id1. Nature Biotechnology <strong>2010</strong> 28(2):161-166.Greenfield JP, Cobb WS, Lyden D. Resisting arrest: A switch from angio--genesis to vasculogenesis in recurrent malignant gliomas. Journal ofClinical Investigation <strong>2010</strong> 120(3):663-667Dunkel IJ, Khakoo Y, Kernan NA, Gershon T, Gilheeney S, Lyden DC, WoldenSL, Orjuela M, Gardner SL, Abramson DH. Intensive multimodality therapyfor patients with stage 4a metastatic retinoblastoma. Pediatric Blood andCancer, <strong>2010</strong> 55(5):55-59.Ding B, Nolan DJ, Butler JM, James D, Babazadeh A, Rosenwaks Z, MittalV, Kobayashi H, Shido K, Lyden D, Sato TN, Rabbany SY, Rafii S. Inductiveangiocrine signals from sinusoidal endothelium are required for liverregeneration. Nature, <strong>2010</strong> 468:310-315.Acharya SS, Kaplan RN, MacDonald D, Fabiyi OT, DiMichele D, Lyden D.Neo-angiogenesis contributes to the development of hemophilic synovitis.Blood, 2011 117(8):2484-2493.Peinado H, Lavtoshkin S, Lyden D. “The secreted factors responsible forpre-metastatic niche formation: Old sayings and new thoughts” SeminCancer Biol. 2011 21(2):139-146.Peinado H, Lavothskin S, Costa da Silva B, Moreno-Bueno G, Chapman PB,Bromberg JF, Lyden D. Tumorderived exosomes educate bone marrowprogenitor cells leading to a pro-angiogenic and pro-metastatic behavior.Nature Medicine, In Review.FC Relatório <strong>Anual</strong> <strong>2010</strong> 95


MEETINGS, COURSES, SEMINARSMeetings Organized5 th International Symposium on Translational OncologyUniversity of BarcelonaBarcelona, SpainMarch 2009Co-organizerMetastasis Summer School MeetingEuropean Union Task Force, TuMICSesimbra, PortugalSeptember 2009Co-organizerGlobal Meeting of Translational ScienceA.C. Carmago HospitalSao Paolo, BrazilOrganizing Committee MemberNew Concepts in Cancer MetastasisTuMIC/European UnionLisbon, PortugalJune 2011Organizing Committee MemberInvited presentationsInvited Speaker“The metastatic niche: Adapting the foreign soil”Kaplan RN, Wels J, Lyden DMechanisms of migration, invasion and metastasisBeatson Cancer Institute/University of GlasgowGlasgow, ScotlandJuly 2009Keynote Speaker“Priming the soil for metastasis”Kaplan RN, Theilen T, Wels J, Lyden DProgenitor Cells, Microenvironment and Cell Fusion in Cancer ProgressionSwedish Research CouncilStockholm, SwedenOctober 2009FC Relatório <strong>Anual</strong> <strong>2010</strong> 96


Invited Speaker“The metastatic niche: Adapting the foreign soil”Kaplan RN, Theilen T, Wels J, Peinado H, Lyden D5 th International Conference on Tumor Microenvironment/AACRProgression, Therapy and PreventionVersailles, FranceOctober 2009Opening Address-Keynote Speaker“The metastatic niche” Adapting the Foreign Soil”Lyden DIX Symposium on Extracellular MatrixBuzios, BrazilNovember 2009Medical Grand Rounds Speaker“The contribution of bone marrow-derived cells in metastatic progression”Kaplan RN, Lyden DA. C. Carmago Cancer CenterSao Paolo, BrazilNovember 2009Inaugural Address-Keynote Speaker“The contribution of bone marrow-derived cells in metastatic progression”Kaplan RN, Lyden DOfficial opening of the University of Sao Paolo Cancer CenterSao Paolo, BrazilNovember 2009Invited Speaker“The pre-metastatic niche: Adapting the foreign soil”Kaplan RN, Lyden DMolecular Targets and Cancer Therapeutics: Discovery, Biology and ClinicalApplicationsAACRBoston, Mass.November 2009Featured Speaker (Introduced by Joan Massague)“The role of microvesicles in metastatic progression”Peinado H, Lavotshkin S, Lyden DMetastasis Theme for Translational Research at Memorial Sloan-KetteringCancer CenterNew York, NY.December 2009FC Relatório <strong>Anual</strong> <strong>2010</strong> 97


Keynote Speaker“Priming the soil: The pre-metastatic niche”Kaplan RN, Lyden DIrish Association for Cancer ResearchGalway, IrelandMarch <strong>2010</strong>Keynote Speaker“Priming the soil for the pre-metastatic niche”Lyden DBelgium Society of Cell Biology and Development/European Union TaskForce on MetastasisLiege, BelgiumMarch <strong>2010</strong>Invited Speaker/Session Chair (Dr. James Watson)Tumor Microenvironment and MetastasisThe Banbury Center, Cold Spring Harbor LaboratoryCold Spring Harbor, New YorkMay <strong>2010</strong>Invited SpeakerNCI Tumor Microenvironment Network/Junior Investigator MeetingNew York, New YorkMay <strong>2010</strong>Master of Ceremony/SpeakerDinner/Conference honoring Dr. Mina BissellBerkeley, CaliforniaMay <strong>2010</strong>Invited SpeakerNCI-The Molecular Bases of Radiation Resistance of Human CancersBethesda, MarylandSeptember <strong>2010</strong>Plenary Session ChairpersonThe Influence of the NicheMetastasis and The Tumor MicroenvironmentAACR/Metastasis Research SocietyPhiladelphia, PennsylvaniaSeptember <strong>2010</strong>FC Relatório <strong>Anual</strong> <strong>2010</strong> 98


Keynote SpeakerNational Spanish Oncology MeetingSalamanca, SpainNovember <strong>2010</strong>Honored LecturerMD Anderson Cancer CenterHouston, TexasFebruary 2011Session Chair/SpeakerKeystone Symposia on Stem Cells, Cancer and MetastasisKeystone, ColoradoMarch 2011Educational Committee ChairmanAACR“Emerging Role of Exosomes in Cancer Invasion and Metastasis”Orlando, FLApril 2011Visiting Lecturer/OrganizerStratCan Summer School (on metastasis) for Post-Doctoral FellowsKarolinska InstitutetStockholm, SwedenJune 2011Keynote Speaker11 th Annual Immunology ConferenceRoswell Park Cancer InstituteBuffalo, New YorkSeptember 2011Invited SpeakerThe Tumor-Vessel InterfaceKloster Seeon MeetingMunich, GermanySeptember 2011Grand Rounds SpeakerTulane Univ. Cancer CenterNew Orleans, La.FC Relatório <strong>Anual</strong> <strong>2010</strong> 99


5 PRÉMIO ANTÓNIO CHAMPALIMAUDDE VISÃO5.1 Reunião do Júri e selecção dos premiados5.2 Cerimónia de atribuição do Prémio5.3 Preparação do Prémio 20115.4 Conferência do Prémio António <strong>Champalimaud</strong> de Visão na ARVO5.5 ARVO Foundation Host-a-Researcher Programme


5 PRÉMIO ANTÓNIOCHAMPALIMAUD DE VISÃOOs premiados, Dr. Movshone Dr. NewsomeO Prémio visa estimular o que de melhor se faz no campo da ciência biomédica,apoiando, ao mesmo tempo, a transferência do conhecimento actualpara o terreno onde as descobertas cientificas devem ser aplicadas naquelesque mais precisam. É com este modelo que o Prémio se tem afirmadointernacionalmente.A Fundação já entregou o Prémio por quatro vezes: duas reconhecendo esforçosextraordinários na prestação de cuidados de saúde em oftalmologia àspopulações nos países em desenvolvimento, como é o caso do Aravind EyeCare System, em 2007 e da Helen Keller International, em 2009 e outras duas reconhecendoinvestigação médica fundamental para o conhecimento e compreensãodos mecanismos da visão, aos laboratórios do Dr. Nathans e do Dr. Yau,em 2008, e aos laboratórios do Dr. Movshon e do Dr. Newsome, em <strong>2010</strong>.No contexto do Prémio, a Fundação estabeleceu importantes parcerias comorganizações internacionais e com a comunidade científica, que tiveram comoresultado um aumento da nossa rede de contactos, bem como um alargadoreconhecimento internacional. A presença de representantes da Fundação emvárias conferências e encontros veio a traduzir-se num maior conhecimentosobre os objectivos do Prémio e do nosso trabalho em geral. O reforço e oalargamento destas iniciativas e a expansão da nossa rede de “nomeadores”continuam a desenvolver-se.FC Relatório <strong>Anual</strong> <strong>2010</strong> 101


5.1 Reunião do Júri e selecção dos premiadosEm Junho de <strong>2010</strong>, o painel do Júri reuniu para seleccionar o premiado ecompletar o complexo processo de selecção.O Prémio António <strong>Champalimaud</strong> de Visão contemplou o trabalho realizadonos últimos trinta anos por Anthony Movshon e William Newsome. Estes doiscientistas trabalharam juntos e individualmente em descobertas excepcionaissobre a forma como o cérebro reconstrói imagens, de maneira que os sereshumanos possam apreender, interpretar e actuar no mundo. Ao construir, porum lado, uma ponte entre a psicofísica e o comportamento humano e, poroutro lado, uma ligação entre a fisiologia dos neurónios individuais e aquilo queeles processam, estes dois cientistas conseguiram explicar a maneira como océrebro reconstrói imagens visuais.Leonor Beleza afirmou a propósito deste prémio: “a percepção visual começanos olhos, mas é compreendida no cérebro. Durante um período de 30 anos,o trabalho do Dr. Movshon e do Dr. Newsome levou este axioma para novosníveis de compreensão científica. Devido a estes dois neurocientistas, temosagora uma compreensão fundamental para o papel dos neurónios na formacomo vemos as coisas que se movem no mundo. O seu trabalho inovador, emconjunto e individualmente, criou as bases para a pesquisa continuada sobrecomo o cérebro processa a visão. Estamos, pois, muito orgulhosos com aescolha do júri”.Em estudos anteriores, o Dr. Movshon contribuiu para a compreensão sobrea maneira como o cérebro representa a forma e o movimento dos objectos,identificando, pela primeira vez, o processo de percepção de movimento queocorre nos circuitos neurais no lobo temporal médio do cérebro. Num estudoconjunto realizado em 1989, que é hoje considerado um estudo clássico, oscientistas demonstraram que os neurónios na região do lobo temporal médioda área de visão são responsáveis pelos julgamentos da percepção sobre aFC Relatório <strong>Anual</strong> <strong>2010</strong> 102


orientação. Ao monitorizar as respostas dos neurónios, conseguiram prever,com acuidade, as decisões sobre a percepção, ligando assim a percepçãoa padrões de actividade específicos nos circuitos neurais. O Dr. Newsomedemonstrou que, alterando especificamente a actividade nestes neurónios, odesempenho da percepção poderia ser melhorado ou diminuído.Estes estudos provaram que a actividade dos neurónios no lobo temporal médiodo cérebro é necessária para que os seres humanos possam ver objectos nomundo. Demonstrando inequivocamente este facto, os Doutores Movshon eNewsome prepararam o caminho para estudos sobre os processos mentais queligam a percepção à acção e para um maior entendimento sobre os complexosprocessos que estão na base da tomada de decisões e do comportamentohumano.Membros do Júri do PrémioAntónio <strong>Champalimaud</strong> de Visão5.2 Cerimónia de atribuição do PrémioDesta vez a cerimónia de entrega do Prémio não teve lugar no Mosteiro dosJerónimos, como em anos anteriores, mas sim no <strong>Champalimaud</strong> Centre forthe Unknown e durante a respectiva inauguração. Foi precedida por uma intervençãodo Professor António Damásio, curador da Fundação <strong>Champalimaud</strong>e Presidente do Brain and Creativity Institute da Universidade da Califórnia doSul, que falou sobre o extraordinário trabalho dos premiados, e introduzida pelaPresidente da Fundação <strong>Champalimaud</strong>, Dra. Leonor Beleza.Os premiados com o Presidentedo Júri, Prof. Alfred Sommere o Conselho de Administraçãoda Fundação <strong>Champalimaud</strong>5.3 Preparação do Prémio de 2011A preparação do Prémio 2011 teve início em <strong>2010</strong> e traduziu-se em múltiplosesforços para atrair uma vasta selecção de nomeações, incluindo uma novaedição da brochura com a regulamentação do Prémio para 2011, bem como aexpansão da rede de “nomeadores”.FC Relatório <strong>Anual</strong> <strong>2010</strong> 103


5.4 Conferência do Prémio António<strong>Champalimaud</strong> de Visão na ARVOEm colaboração com a Association for Research in Vision and Ophthalmology(ARVO), a Fundação organizou, no dia 5 de Maio, e pela terceira vez, umaconferência e recepção, no âmbito da reunião anual da ARVO, no Centro deConvenção de Fort Lauderdale, nos E.U.A.A terceira conferência ARVO/<strong>Champalimaud</strong> Vision Award Lecture foi proferidapor Kathy Spahn, Presidente e CEO da Helen Keller International (HKI),instituição galardoada com o Prémio António <strong>Champalimaud</strong> de Visão em 2009pelos seus programas em vários países do mundo, no combate à malnutrição,cataratas, tracoma, cegueira dos rios, entre outros. A HKI foi particularmenteinstrumental na criação de programas de controlo da deficiência de vitamina Aem crianças, e oferece actualmente estes programas em treze países africanose cinco países asiáticos. A HKI ajuda a salvar a visão de milhares de crianças,anualmente.A Fundação <strong>Champalimaud</strong> esteve representada pelo Professor António Borgesmembro da Administração. Elogiando a contribuição da HKI a nível mundial,afirmou “A filantropia continuará a alargar-se, porque cada vez mais pessoasprocuram formas de aplicar a sua responsabilidade social e financeira nanossa sociedade, procurando devolver a essa mesma sociedade, pelo menos,uma parte daquilo que a sociedade lhes deu. Para essas instituições e paraesses generosos indivíduos, o principal desafio está em como aplicar bem oseu dinheiro. É por isso que a Helen Keller International é tão importante paranós. Provam que isso pode ser feito; que o dinheiro será bem utilizado; queos resultados serão tangíveis e que terão um impacto alargado em milhõesde pessoas. É o seu sucesso, o seu mérito, a sua dedicação focalizada quealimenta a filantropia, motiva os doadores e nos ajuda a construir um mundomelhor”.Prof. António Borges, membrodo Conselho de Administraçãoda Fundação <strong>Champalimaud</strong>,discursando na conferência da ARVOA ARVO – The Association for Research in Vision and Ophthalmology é a maiororganização mundial na área da visão, com mais de 12.000 membros em 73países. A conferência ARVO/<strong>Champalimaud</strong> Lecture marca a continuaçãoda forte ligação entre a Fundação <strong>Champalimaud</strong> e a ARVO, que teve inícioem 2006 quando o Prémio de Visão foi, pela primeira vez, apresentado peloentão Presidente desta associação, Larry Takamoto.FC Relatório <strong>Anual</strong> <strong>2010</strong> 104


5.5 ARVO Foundation Host-a-ResearcherProgrammeA Fundação <strong>Champalimaud</strong> apoia o Host-a-Researcher programme da ARVOFoundation for Eye Research (AFER), agora denominado Developing CountryEye Researcher Fellowship. O programa desenvolvido em colaboração com aAFER, focaliza-se na identificação de participantes provenientes de países emdesenvolvimento e no estimulo ao contacto e colaboração com cientistas eorganizações que estão presentes na Conferência anual da ARVO. Além doapoio e acompanhamento do programa, a Fundação <strong>Champalimaud</strong> tem tidoum papel fundamental na identificação de estudantes, investigadores e/oumédicos na área da oftalmologia de países de expressão portuguesa.Trabalho da Fred Hollows FoundationNew Zealand em Timor LesteA partir deste programa, os participantes em anos anteriores têm desenvolvidocolaborações estreitas com resultados significativos, quer do pontovista científico, quer com acções no terreno. Um bom exemplo é o trabalhodesenvolvido por um participante da Fred Hollows Foundation New Zealand,em Timor Leste, em colaboração com a Harvard Medical School e o TilgangaEye Center no Nepal.Membros do Programa DevelopingCountry Eye Researcher Fellowshipna Conferência da ARVO em <strong>2010</strong>FC Relatório <strong>Anual</strong> <strong>2010</strong> 105


6 REDE C-TRACER6.1 C-TRACER – Índia6.2 C- TRACER – PortugalFC Relatório <strong>Anual</strong> <strong>2010</strong> 106


6 C-TRACERC-TRACER - Índia6.1 C-TRACER - ÍndiaEm <strong>2010</strong>, o C-TRACER – <strong>Champalimaud</strong> Translational Centre for Eye Research– entrou no seu terceiro ano de existência. O centro, oficialmente inauguradoem Hyderabad, Índia, em 30 de Janeiro de 2008, foi criado a partir deuma parceria histórica entre a Fundação <strong>Champalimaud</strong> e o LV Prasad EyeInstitute (LVPEI). O C-TRACER está focalizado na utilização de técnicas muitoavançadas com células estaminais, contrinuindo para soluções inovadoraspara o tratamento das doenças da visão. Em particular, a equipa de cientistasdo C-TRACER tem efectuado investigação nas áreas da genética molecular eda genética funcional das doenças da visão (cataratas, glaucoma, distrofiasda córnea e doenças da retina), na área da biologia celular com especialênfase na utilização de células estaminais para tratamento de problemasde visão, na microbiologia e na bioquímica. É especialmente importante otrabalho de actividade translacional de aplicação dos resultados laboratoriaisno tratamento e terapias aplicadas a doentes.O campo de actuação da biologia celular e terapia C-TRACER situa-se emtrês áreas principais:– Transplante de epitélio límbico de cultura (CLET), que se tornou nummodelo standard no tratamento de patologias da córnea em pacientes quesofreram de acidentes com químicos ou fogo. Até à data, mais de 700Prof. Gullapalli Rao membro fundadordo LV Prassad Eye Institute (LVPEI)e membro do Júri do Prémio António<strong>Champalimaud</strong> de VisãoFC Relatório <strong>Anual</strong> <strong>2010</strong> 107


tratamentos deste tipo foram completados, 42 dos quais em <strong>2010</strong>, e foramanalisados os resultados em mais de 405 pacientes. Estes resultados serão,em breve, publicados, e foram apresentados na <strong>2010</strong> Gordon ResearchConference em Ventura, EUA, e na conferência da ARVO em <strong>2010</strong> em FortLauderdale, EUA. A aplicação do processo CLET torna este trabalho num dosmaiores casos de sucesso na utilização de terapia com células estaminaisadultas, a nível mundial.– Quando este processo de transplante de epitélio límbico de cultura não épossível, a equipa do C-TRACER desenvolveu um tratamento alternativo combase no transplante de tecido da mucosa oral, cultivadas da mesma formaque no procedimento com células límbicas, e transplantados já em mais de30 pacientes. Alguns destes caso responderam muito bem, enquanto outrosestão ainda a ser estudados.– Preparação de Células Estaminais Pluripotentes induzidas (iPSCs inducedPluripotent Stem Cells): ao desenvolver a teoria de que as células estaminaispodem ser geradas a partir de outras células do corpo, através da introduçãode genes específicos (ou factores proteicos), a equipa do C-TRACER iniciouuma produção destas iPSCs, de forma a estudar e corrigir células em pacientescom formas de patologia de retinite pigmentar. Sendo este um projecto delongo curso, que poderá levar alguns anos, a equipa já conseguiu produziriPSCs de ratinhos e transferi-los para humanos.Prof. Balasubramanian,Director C-TRACER - ÍndiaDurante <strong>2010</strong>, o C-TRACER continuou a aumentar a sua reputação comoum dos centros mundiais lideres na investigação em células estaminais.Dirigido pelo Professor Balasubramanian, um dos investigadores indianosde maior reputação e ex-Presidente da Academia de Ciências da Índia, aequipa continuou o desenvolvimento dos seus tratamentos revolucionárioscom células estaminais, bem como a sua dedicação a outros projectosmuito inovadores. Estes incluem genética funcional induzida e genética doglaucoma. O seu trabalho continua a produzir resultados excepcionais queforam publicados em 15 artigos do sector científico durante <strong>2010</strong>.FC Relatório <strong>Anual</strong> <strong>2010</strong> 108


Cerimónia de inauguraçãoC-TRACER - Portugal,6 de Outubro de <strong>2010</strong>6.2 C- TRACER – PortugalFoi celebrado um acordo entre a Fundação <strong>Champalimaud</strong> e a AIBILI – Associaçãopara Investigação Biomédica e Inovação em Luz e Imagem, sediada emCoimbra, com o objectivo de estreitar a colaboração entre ambas as instituiçõese de atribuir à AIBILI a qualificação de C-TRACER, à semelhança doexistente em Hyderabad, na Índia. É particularmente importante a possibilidadede intercâmbio de investigadores entre a Índia e Portugal.Este acordo foi oficialmente anunciado no dia 6 de Outubro, com a presençado Prof. José Cunha Vaz, Presidente do AIBILI e membro do Júri do PrémioAntónio <strong>Champalimaud</strong> de Visão, da Presidente da Fundação <strong>Champalimaud</strong>,Dra. Leonor Beleza e do Dr. João Silveira Botelho, bem como do Prof. GullapalliRao, membro do Júri do Prémio e fundador do LV Prasad Institute e doProf. Balasubramanian, Director do C-TRACER – Índia.A AIBILI foi constituída em 1989 com o objectivo de apoiar a transferência detecnologia para a indústria da Saúde e é hoje reconhecida a nível nacionale internacional como instituição de referência em investigação na área dasciências da visão.A AIBILI tem capacidades de infra-estrutura central para a coordenação deinvestigação clínica de iniciativa do investigador, sendo o centro coordenadorda Rede Europeia de Centros de Ensaios em Oftalmologia (EVICR.net- European Vision Institute Clinical Research Network), composta por 71Centros de Ensaios Clínicos em Oftalmologia de 16 países da União Europeia.Leonor Beleza na aberturado C-TRACER - PortugalFC Relatório <strong>Anual</strong> <strong>2010</strong> 109


7 OUTRAS PARCERIAS7.1 Health Cluster Portugal


7 OUTRAS PARCERIAS7.1 Health Cluster PortugalFoi continuada em <strong>2010</strong> a participação activa da Fundação <strong>Champalimaud</strong>nas actividades do Health Cluster Portugal (HCP), que é o primeiro “Pólo deCompetitividade e Tecnologia” lançado em Portugal, sendo a Dra. LeonorBeleza a presidente do seu Conselho Fiscal.O HCP tem prosseguido o seu objectivo de transformar o nosso país numplayer competitivo na área da saúde, juntando “o que de melhor existe emPortugal na cadeia de valor da saúde”, contando já com mais de uma centenade associados (106 em <strong>2010</strong>) que representam mais de 70% dos doutoradosa trabalhar em Portugal para o sector da saúde e, na área clínica, maisde 20% das camas e dos médicos do país.Em <strong>2010</strong> foi criada a Comissão de Adesão, para promover o processo deangariação e de selecção dos novos associados.A Assembleia-Geral do HCP reuniu duas vezes em <strong>2010</strong>, sendo a de Marçoseguida de uma reunião de associados sobre o tema “As patentes na criaçãode valor na área da saúde”, e coincidindo a de Dezembro com a celebraçãoda I Conferência <strong>Anual</strong> do HCP, subordinada aos temas “Sustentabilidade eCompetitividade na Saúde” e “Evolução dos modelos de negócio no mercadoda Saúde”.O programa de acção do HCP está estruturado em Projectos-Âncora,Projectos-Bandeira e Outros Projectos, sendo que o Centro de Investigação<strong>Champalimaud</strong> é um dos seus Projectos-Bandeira.FC Relatório <strong>Anual</strong> <strong>2010</strong> 111


8 PROGRAMA CHAMPIMÓVEL8.1 Introdução8.2 Objectivos8.3 Protocolos8.4 Eventos8.5 Roteiro8.6 Sessões e visitas8.7 Reuniões8.8 Divulgação


8 PROGRAMA CHAMPIMOVELO Champimóvel na Expo8.1 IntroduçãoA Fundação <strong>Champalimaud</strong> acredita que o futuro da investigação científicaem Portugal passa pela motivação dos jovens para a ciência.A Fundação quer contribuir activamente para a promoção do conhecimentocientífico e para atrair as novas gerações para a ciência e para a investigação,e foi neste contexto que criou o Champimóvel.Em 2008 teve início a acção Champimóvel, que é um simulador transportávelem que é exibido um filme animado interactivo sobre o funcionamento docorpo humano, apresentado por um boneco de animação – o Champi.Desloca-se ao encontro do seu publico-alvo, por forma a garantia um acessogeneralizado.8.2 ObjectivosA Fundação <strong>Champalimaud</strong> pretende que o Champimóvel percorra as escolasde todo o país, com o objectivo de despertar a curiosidade dos estudantes do2º e 3º ciclo para a ciência e para a investigação científica.FC Relatório <strong>Anual</strong> <strong>2010</strong> 113


A acção tem como objectivos:– despertar o interesse dos jovens estudantes pelos temas científicos eincentivar talentos nessa área;– envolver activamente alunos e professores na acção, através de um conjuntode actividades que ultrapassem a apresentação do espectáculo, de maneiraa manter o interesse dos jovens pela ciência.É um espectáculo animado interactivo em 4D com cerca de 25 minutos: umaviagem através do corpo humano, apresentada pela personagem Champi.Este começa por explicar o mecanismo da visão, seguido da apresentaçãoda célula e do seu material genético, da acção dos vírus, da terapiagenética e finalmente das investigações recentes em células estaminais enanotecnologias.8.3 ProtocolosA Fundação <strong>Champalimaud</strong> estabeleceu um protocolo com o Ministério daEducação (ME), através da Direcção Geral de Investigação e DesenvolvimentoCurricular (DGIDC).A Fundação conta assim com o apoio das Direcções Regionais de Educaçãono contacto e envolvimento das escolas.A equipa do Champimóvel, actua em estreita colaboração com a DirecçãoRegional de Educação (DRE) e estabelece os contactos com as autoridadeslocais (Câmaras Municipais), para identificação do local de realização daacção e algum apoio.O Champimóvel na CastanheiraÉ da responsabilidade da Direcção Regional de Educação (DRE) efectuar osprimeiros contactos com os órgãos executivos das escolas para convidar àsua participação nas datas previstas em roteiro.Contamos também com o seu apoio na transmissão do programa da acçãoe requisitos de segurança, que deverão ser do conhecimento da escola,professores e alunos.8.4 EventosRealizaram-se 23 eventos (mais nove do que em 2009 e mais vinte do queem 2008), nos seguintes locais e instituições:Vila Nova da Barquinha – Parque do MunicípioFundação LIGATaça de Portugal de Futebol Feminino no Estádio do JamorFC Relatório <strong>Anual</strong> <strong>2010</strong> 114


Parque da Cidade de LouresTagus ParkFeira do Livro de LeiriaBatalha (Feira do Artesanato)Caldas da RainhaSalvaterra de Magos (Festas da Cidade)Pombal (Festas do Bodo)Dia Mundial da Criança e do Ambiente na SertãMação (Festas da Cidade)Ansião (Festas da Cidade)Parque da Cidade de Torres VedrasSIVA (Open Day)Portas Abertas <strong>2010</strong> (Grupo Luís Simões)Optimus Alive! <strong>2010</strong> (parceria com o Instituto Gulbenkian de Ciência, em Algés)Tábua XXIOurém (Prémio Eco Escolas)Paços de Ferreira (Verão Aberto)Centenário da Implantação da RepublicaAutódromo do Estoril (Ciência e Desporto)Universidade do Minho (Semana da Ciência e da Tecnologia)Em <strong>2010</strong> o Champimóvel esteve aberto ao público em geral nos centros deCiência Viva de Proença-a-Nova e no Pavilhão do Conhecimento.8.5 RoteiroO roteiro do Champimóvel vai sendo definido em articulação com o Ministérioda Educação e conforme diversos critérios.O Champimóvel em MontalegreFora dos períodos escolares são programadas outras visitas, como centrosde Ciência Viva, Câmaras Municipais, hospitais e outras instituições, eventosesses aberto ao público em geral.O sucesso do Champimóvel também se manifesta através de um maiornúmero de pedidos de visitasDurante o ano de <strong>2010</strong>, o Champimóvel esteve em 7 distritos - Santarém,Leiria, Porto, Coimbra, Lisboa, Castelo Branco e Braga (mais 2 distritos doque em 2009 e mais 3 distritos do que em 2008)-, percorreu 54 concelhos,nomeadamente 4 concelhos do distrito de Setúbal, 14 concelhos do distrito deSantarém, 16 concelhos do distrito de Leiria, 1 concelho do Porto, 1 concelhodo distrito de Braga, 6 concelhos do distrito de Lisboa e 11 concelhos dodistrito de Castelo Branco (mais 22 concelhos do que em 2009 e mais 33concelhos do que em 2008), 181 escolas (mais 68 escolas do que no ano de2009 e mais 141 do que no ano de 2008).FC Relatório <strong>Anual</strong> <strong>2010</strong> 115


Em <strong>2010</strong> o Champimóvel percorreu 8140 kms (mais 1390 kms do que no anode 2009 e mais 2914 Kms do que em 2008).8.6 Sessões e visitasDurante o ano de <strong>2010</strong> realizaram se 1421 sessões (mais 62 do que em 2009e mais 513 do que no ano de 2008), perfazendo um total de 31192 visitas(mais 6527 visitantes do que em 2009 e mais 16140 visitantes do que no anode 2008), sendo 26427 dos visitantes crianças (mais 5887 crianças do queem 2009 e mais 13025 crianças do que em 2008), <strong>2010</strong> professores (mais21 professores do que em 2009 e mais 1340 professores do que no ano de2008) e 2775 adultos/não docentes (mais 619 do que em 2009 e mais 1775do que em 2008).8.7 ReuniõesEm <strong>2010</strong> houve 79 reuniões em Câmaras Municipais (mais 38 reuniõesdo que no ano 2009 e mais 71 reuniões do que em 2008), reuniões essaspreparatórias para receberem o Champimóvel nos seus municípios. Para alémde um membro do executivo camarário, está também presente o director doagrupamento escolar, alguns professores e um representante da DirecçãoRegional de Educação da respectiva área.8.8 DivulgaçãoO roteiro e as actividades relacionadas com o Champimóvel estão disponíveisno site da Fundação <strong>Champalimaud</strong> (www.fchampalimaud.org) e nowww.parlamentoglobal.pt.A bordo do ChampimóvelFC Relatório <strong>Anual</strong> <strong>2010</strong> 116


9 REUNIÕES DA FUNDAÇÃO9.1 Conselho de Curadores9.2 Conselho Cientifico


9 REUNIÕES DA FUNDAÇÃO9.1 Conselho de CuradoresConcelho de Admistraçãoda Fundação <strong>Champalimaud</strong>,Dra. Leonor Beleza, Dr. João SilveiraBotelho e Prof. António BorgesEm <strong>2010</strong> foram organizadas duas reuniões do Conselho de Curadores,a primeira em 11 de Junho e a segunda logo após a inauguração do<strong>Champalimaud</strong> Centre for the Unknown, a 6 de Outubro.9.2 Conselho CientíficoEm <strong>2010</strong>, o Conselho Científico da Fundação <strong>Champalimaud</strong> continou aprestar a sua prestigiosa colaboração e orientação relativamente às nossasactividades. Neste contexto, a reunião anual teve lugar no dia 4 de Outubrocom a presença de James Watson, Presidente do Conselho, de AlanAshworth (Breakthrough Breast Cancer Research Centre, Reino Unido),Mark Bear (Massachusetts Institute of Technology, EUA), Ronald Blasberg(MSKCC – Memorial Sloan-Kettering Cancer Centre, EUA), Barry Dickson(Institute of Molecular Pathology, Áustria), Paul Marks (MSKCC – MemorialSloan-Kettering Cancer Centre, EUA), J. Anthony Movshon (New YorkUniversity, EUA), Sir Keith Peters, ( ex-Presidente da Academy of MedicalSciences, Reino Unido), Martin Raff (University College London, Reino Unido)e Susumu Tonegawa (Massachusetts Institute of Technology, EUA).FC Relatório <strong>Anual</strong> <strong>2010</strong> 118


Os trabalhos da reunião centraram-se, mais uma vez, no desenvolvimentoda investigação em neurociências, bem como na preparação da abertura daclínica oncológica e respectivo programa de investigação.Todos os membros assistiram, igualmente, à inauguração do <strong>Champalimaud</strong>Centre for the Unknown, que teve lugar a 5 de Outubro de <strong>2010</strong>.A Comissão científica continuará a reunir anualmente, cumprindo a sua funçãoorientadora dos assuntos científicos e médicos da Fundação.FC Relatório <strong>Anual</strong> <strong>2010</strong> 119


10 COMUNICAÇÃO E PATROCÍNIOS10.1 “730 Dias” num livro10.2 Fotografias10.3 Patrocínios


10 COMUNICAÇÃO E PATROCÍNIOS10.1 “730 Dias” num livroA Fundação <strong>Champalimaud</strong> promoveu a publicação de um livro de fotografias deRui Ochôa que retrata o processo de construção do Centro de Investigação.Esse processo está profusamente documentado em fotografia e em filme, naverdade desde antes de ter sido iniciado, porque foi recolhido e guardado umacervo abundante de registos da área da construção.Todo este material documenta para o futuro o que era o espaço que agoraocupamos, e como decorreram as obras que conduziram à sua configuraçãoactual.Rui Ochôa, foto jornalista de profissão e habitual colaborador da Fundação,esteve envolvido desde muito cedo neste esforço de documentação.Livro 730 Dias, de Rui OchôaO livro corresponde a uma primeira utilização sistematizada do grande acervodocumental de que dispomos.Chama-se 730 dias, é uma edição bilingue, e conta com uma descrição, peloArquitecto Charles Correa, o autor do projecto, do seu próprio envolvimento.O título refere-se ao tempo que foi necessário para demolir o que existia antes,e depois erguer, construir e completar o belíssimo complexo arquitectónicoque constitui um campus. Muito pouco tempo, na verdade, que conduziu dolançamento da primeira pedra, a 5 de Outubro de 2008, ao término da obra e àsua inauguração, no dia 5 de Outubro de <strong>2010</strong>, um dia histórico em Portugal.Percorrendo a obra, seguimos a par e passo como foi sendo, e acontecendo,uma extraordinária transformação de espaço. E nela ficam registados inúmerosprotagonistas anónimos que, todos juntos, contribuíram para que seja umarealidade o Centro de Investigação <strong>Champalimaud</strong>.10.2 FotografiasPara além do que já foi acima referido a propósito do livro 730 dias, a Fundaçãotomou a iniciativa, na fase final da construção, de solicitar a 10 fotógrafosseleccionados que retratassem momentos do processo de construção. Essasfotografias pertencem hoje também ao acervo da Fundação e estão expostasem áreas públicas.Fotografias expostas no foyerdo Auditório da FundaçãoFC Relatório <strong>Anual</strong> <strong>2010</strong> 121


10.3 PatrocíniosExposição: “Arte Médica e Imagem do Corpo. De Hipócrates ao Final doSéculo XVII”Esta exposição foi organizada pela Biblioteca Nacional de Portugal e inauguradaa 7 de Abril, e é representativa do riquíssimo acervo da BNP e da Bibliotecada Ajuda. Na selecção dos títulos houve a preocupação de evidenciar asobras de referência, que marcaram dois milénios de história da medicina.Estiveram em exposição obras das figuras mais eminentes que se ocuparamda arte médica. Numa sequência que combina a articulação temática e aprogressão histórica, puderam apreciar-se livros da autoria de Hipócrates,Galeno, Avicena, Averróis, Pedro Hispano, Mondino, Vesálio, FranciscoSanches, Harvey, Borelli, Boerhaave, Stahl, Ribeiro Sanches e Pinel.10.4 Exposição: “Corpo - Estado, Medicinae Sociedade no tempo da I República”Exposição da responsabilidade da Comissão Nacional para as Comemoraçõesdo Centenário da República, foi inaugurada a 23 de Julho e estevepatente ao público até final de Dezembro.Esta exposição pretendeu dar conta da história da medicina em Portugalnas décadas da consolidação do prestígio dos médicos, bem como dasrelações entre o saber destes, o poder político e os diversos grupos sociais.A mostra de objectos, documentos e fotografias visou, também, problematizaras relações do médico com o doente e com o corpo humano, individualou social, e questionar o saber científico da medicina e dos médicos no tempoda I República.A Fundação <strong>Champalimaud</strong> apoiou a realização destas duas mostras.FC Relatório <strong>Anual</strong> <strong>2010</strong> 122


11 GESTÃO DO PATRIMÓNIO FINANCEIROFC Relatório <strong>Anual</strong> <strong>2010</strong> 123


11 GESTÃO DO PATRIMÓNIO FINANCEIRO1. <strong>2010</strong> foi um ano de continuação da recuperação dos mercados financeiros àescala global. Depois de uma assinalável recuperação em 2009, quase todosas categorias de activos registaram retornos positivos em <strong>2010</strong>. O principalperíodo de ganhos no ano foi o quarto trimestre, altura em que ficou claroque as economias continuavam a crescer, afastando receios dum novoafundamento depois do de 2008. A carteira de investimentos da Fundaçãomanteve-se integralmente aplicada sem grandes alterações às alocações deactivos anteriores. Os ganhos da Fundação em <strong>2010</strong> foram de 44.779.917€o que elevou o valor do seu portfólio financeiro para 478.689.765€, a preçosde mercado.2. É bom recordar que a política de investimento da Fundação se assume passiva,não se alterando com base em oscilações de curto prazo que se verifiquemnos mercados financeiros. Uma política mais activa que reaja a variações decurto prazo comporta altos riscos, incluindo o de vender activos em alturas decotações baixas e recomprá-los depois a preços mais altos. A estruturação dacarteira de investimentos da Fundação foi concebida tendo em conta os seusobjectivos de longo prazo que são a maximização de resultados, combinadacom uma adequada diversificação do seu portfólio para reduzir a volatilidadeem termos globais. Essa orientação garante á Fundação a protecção dosseus capitais em ambientes desfavoráveis (como aconteceu em 2008) mastambém a participação nos ganhos nas conjunturas favoráveis - como nosdois últimos anos.3. Como já foi referido em anos anteriores a política geral de investimentosfinanceiros da Fundação é de crescimento do seu capital a longo prazo.Aceitando um nível mais elevado de risco, o que se reflecte na volatilidadedo portfólio de activos, será possível maximizar o seu valor total ao longo dotempo. Por isso, a concentração da carteira de investimentos no mercadoaccionista e de Investimentos Alternativos proporciona ganhos mais altosmas que trazem maior volatilidade. A Fundação tem também como objectivoultrapassar o desempenho do mercado para o que procura os gestores paracada classe de activos com reconhecidos registos de retornos ponderadospelo risco associado.4. Ao longo de <strong>2010</strong> gerou-se um grande debate a propósito do Euro tendo comopano de fundo o que sucedeu no segundo trimestre com a “crise da Grécia”.Os mercados accionistas em todo o mundo caíram entre 15 a 25% ao mesmotempo que a Grécia ficou debaixo de rigoroso escrutínio o que forçou a UniãoEuropeia a lançar o “Fundo Europeu de Estabilidade Financeira (FEEF)” em Maiode <strong>2010</strong>. Tratou-se dum “pacote de salvamento financeiro” para acudir aospaíses-membros da área do euro em caso de dificuldades de financiamento.FC Relatório <strong>Anual</strong> <strong>2010</strong> 124


A incerteza provocada no Euro levou-o a uma perda de 6,5% relativamente aodólar americano no fim do ano.5. O que aconteceu em 2009 é que vários Endowments e Fundações alteraramas suas políticas de alocações de activos para posturas conservadoras emalturas próximas do ponto mais baixo de cotações. É importante recordarque, reagir a situações de pânico nos mercados financeiros raramente é umaboa opção. A Fundação <strong>Champalimaud</strong> estabeleceu uma prudente políticapara resistir a diferentes ciclos de mercado e riscos exogéneos (tal comoos continuados riscos soberanos semelhantes aos da crise grega referidaatrás).6. Embora a recuperação económica estivesse em terreno firme desde que osmercados atingiram o seu ponto mais baixo em 2009, tornava-se cada vezmais evidente um abrandamento que haveria de dificultar uma recuperaçãoprolongada. Nos EUA, dados desanimadores de emprego e de vendas decasas, criaram o receio de que a economia recuaria a meio do ano. Emresposta a esta situação, o FED anunciou no fim de Agosto a intenção dumasegunda ajuda financeira substantiva, designada por “QE2”. Em Setembroo plano estava finalizado e o FED anunciou a intenção de comprar 600 milmilhões de obrigações do tesouro americano.7. Esta iniciativa trouxe as taxas de juro para níveis muito baixos o que ajudouà recuperação económica e, simultaneamente encorajou os investidoresa procurarem grandes retornos em investimentos de maior risco (acçõese obrigações privadas). Com o abaixamento das taxas de juro e com asfacilidades criadas de acesso a crédito, as acções acabaram o ano comuma valorização de 11% (MSCI World), as Obrigações de Taxa Fixa, entre 8%a 15%, as Commodities 17% e os 6%.8. Em 2011, a tendência muito positiva dos mercados que vinha desde o início doIV trimestre de <strong>2010</strong>, abrandou em Março com os tumultos do Médio Orientee Norte de África e, a seguir, com o terramoto do Japão e a situação nucleardesencadeada. O Médio Oriente e o Norte de África representam 35% daoferta mundial de petróleo e a actual corrente democrática que varre estasregiões poderá pôr pressão nalguns dos mais importantes produtores (comoa Arabia Saudita). Os tumultos actuais na Líbia, Iémen, Bahrein e Síria, depoisdos exemplos bem-sucedidos de derrubes de governos como no Egipto e naTunísia, parecem não vir a abrandar.9. No Japão, 3ª economia mundial e uma força dominante na economia global, ascontínuas repercussões do desastre dos reactores nucleares poderão causaruma séria contracção na economia da região. Mas por agora parece que asituação está controlada.FC Relatório <strong>Anual</strong> <strong>2010</strong> 125


10. A Fundação tomou medidas substanciais de redução de risco em Fevereiroe Março com a diminuição de exposição no mercado accionista - venda de5 a 15% da maioria do portfólio de acções -, evitando-se perdas maiores.A 14 de Março os activos da Fundação estavam avaliados em 449.120.430€depois da liquidação de 19 milhões de euros de empréstimos contraídospara a construção do Centro <strong>Champalimaud</strong>, com o objectivo da redução daalavancagem da sua carteira de investimentos.Lisboa, 8 de Abril de 2011.A Administração,FC Relatório <strong>Anual</strong> <strong>2010</strong> 126


FUNDAÇÃO D. ANNA DE SOMMER CHAMPALIMAUD E DR. CARLOSMONTEZ CHAMPALIMAUDBALANÇO EM 31 DE DEZEMBRO DE <strong>2010</strong> E 2009(Montantes expressos em euros)ACTIVO Notas <strong>2010</strong> 2009ACTIVO NÃO CORRENTE:Activos fixos tangiveis 5 146.296.558 50.206.878Propriedades de investimentoActivos intangíveis 7 33.746 34.752Outras contas a receber - -Activos biológicosParticipações financeiras 8 348.870.798 348.964.957Participações financeiras - outros métodosAccionistas / sóciosOutros activos financeirosActivos por impostos diferidos - -Outros activos não correntesTotal do activo não corrente 495.201.102 399.206.587ACTIVO CORRENTE:InventáriosActivos biológicosClientes 9 639 -Adiantamentos a fornecedores 14 805.025 9.930.721Estado e outros entes públicos - -Accionistas / sócios - -Outras contas a receber 9 457.804 274.224Diferimentos 10 33.573 45.220Activos financeiros detidos para negociação - -Activos financeiros disponíveis para venda 9 56.031.467 57.754.058Activos não correntes detidos para vendaCaixa e depósitos bancários 9 6.009.888 3.931.099Total do activo corrente 63.338.396 71.935.321Total do activo 558.539.498 471.141.908CAPITAL PRÓPRIO E PASSIVOCAPITAL PRÓPRIO:Capital realizado 11 389.669.400 389.669.400Acções (quotas) própriasOutros instrumentos de capital próprioPrémios de emissão - -Reservas legais - -Outras reservas 11 5.010.594 4.648.897Resultados transitados 11 (22.594.003) (14.018.659)Ajustamentos em activos financeirosExcedentes de revalorizaçãoOutras variações no capital próprio 11 176.618 161.778372.262.609 380.461.416Resultado líquido do período (2.545.901) (8.575.344)Total do capital próprio 369.716.708 371.886.072PASSIVO:PASSIVO NÃO CORRENTE:ProvisõesAccionistas / sócios - -Financiamentos obtidos -Responsabilidades por benefícios pós-empregoPassivos por impostos diferidos - -Outras contas a pagar 12 43.120.543 43.120.543Total do passivo não corrente 43.120.543 43.120.543PASSIVO CORRENTE:Fornecedores 13 43.383 30.940Adiantamentos de clientesEstado e outros entes publicos 15 3.437.048 2.722.159Accionistas / sócios 13 118.462.959 50.400.105Financiamentos obtidos 13 22.917.625 2.000.073Outras contas a pagar 14 672.715 916.716DiferimentosPassivos financeiros detidos para negociação 13 168.517 65.300Outros passivos financeirosPassivos não correntes detidos para vendaTotal do passivo corrente 145.702.247 56.135.293Total do passivo 188.822.790 99.255.836Total do capital próprio e do passivo 558.539.498 471.141.908O anexo faz parte integrante do balanço em 31 de Dezembro de <strong>2010</strong>Técnico Oficial de ContasO Conselho de Administração


FUNDAÇÃO D. ANNA DE SOMMER CHAMPALIMAUD E DR. CARLOS MONTEZCHAMPALIMAUDDEMONSTRAÇÃO DOS RESULTADOS POR NATUREZASDO EXERCÍCIO FINDO EM 31 DE DEZEMBRO DE <strong>2010</strong> E 2009(Montantes expressos em euros)RENDIMENTOS E GASTOS Notas <strong>2010</strong> 2009Vendas e serviços prestadosSubsídios à exploraçãoGanhos / perdas imputados de subsidiárias, associadas e empreendimentos conjuntos 22 (44.161) (50.114)Variação nos inventários da produçãoTrabalhos para a própria entidadeCusto das mercadorias vendidas e das matérias consumidasFornecimentos e serviços externos 17 (2.464.135) (1.713.573)Gastos com o pessoal 18 (147.833) (5.349)Imparidade de inventários (perdas / reversões)Imparidade de dívidas a receber (perdas / reversões)Provisões (aumentos / reduções)Imparidade de investimentos não depreciáveis / amortizáveis (perdas / reversões)Aumentos / reduções de justo valor 9 (103.217) 965.132Outros rendimentos e ganhos 20 7.566.852 2.149.905Outros gastos e perdas 21 (7.139.931) (9.712.686)Resultado antes de depreciações, gastos de financiamento e impostos (2.332.427) (8.366.686)Gastos / reversões de depreciação e de amortização 19 (213.474) (208.659)Imparidade de investimentos depreciáveis / amortizáveis (perdas / reversões)Resultado operacional (antes de gastos de financiamento e impostos) (2.545.901) (8.575.344)Juros e rendimentos similares obtidosJuros e gastos similares suportados - -Resultado antes de impostos (2.545.901) (8.575.344)Imposto sobre o rendimento do período - -Resultado líquido do período (2.545.901) (8.575.344)Resultado das actividades descontinuadas (líquido de impostos) incluído no resultado líquido doperíodoResultado por acção básicoO anexo faz parte integrante da demonstração dos resultados por naturezas do exercício findo em 31 de Dezembro de <strong>2010</strong>Técnico Oficial de ContasO Conselho de Administração

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!