10.07.2015 Views

Overtone spectroscopy of H2O clusters in the vOH - UCI Aerosol ...

Overtone spectroscopy of H2O clusters in the vOH - UCI Aerosol ...

Overtone spectroscopy of H2O clusters in the vOH - UCI Aerosol ...

SHOW MORE
SHOW LESS
  • No tags were found...

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

THE JOURNAL OF CHEMICAL PHYSICS 122, 194316 2005<strong>Overtone</strong> <strong>spectroscopy</strong> <strong>of</strong> H 2 O <strong>clusters</strong> <strong>in</strong> <strong>the</strong> v OH =2 manifold:Infrared-ultraviolet vibrationally mediated dissociation studiesSergey A. Nizkorodov, a Michael Ziemkiewicz, and David J. Nesbitt bJILA, University <strong>of</strong> Colorado, Boulder, Colorado 80309; National Institute <strong>of</strong> Standardsand Technology, Boulder, Colorado 80309; and Department <strong>of</strong> Chemistry and Biochemistry, University<strong>of</strong> Colorado, Boulder, Colorado 80309Alan E. W. KnightFaculty <strong>of</strong> Science and Technology, Griffith University, Nathan Campus, Brisbane,Queensland 4111, AustraliaReceived 24 September 2004; accepted 8 March 2005; published onl<strong>in</strong>e 18 May 2005Spectroscopy and predissociation dynamics <strong>of</strong> H 2 O 2 and Ar–H 2 O are <strong>in</strong>vestigated withvibrationally mediated dissociation VMD techniques, where<strong>in</strong> v OH =2 overtones <strong>of</strong> <strong>the</strong> complexesare selectively prepared with direct <strong>in</strong>frared pump<strong>in</strong>g, followed by 193 nm photolysis <strong>of</strong> <strong>the</strong> excitedH 2 O molecules. As a function <strong>of</strong> relative laser tim<strong>in</strong>g, <strong>the</strong> photolysis breaks H 2 O <strong>in</strong>to OH and Hfragments ei<strong>the</strong>r i directly <strong>in</strong>side <strong>the</strong> complex or ii after <strong>the</strong> complex undergoes vibrationalpredissociation, with <strong>the</strong> nascent quantum state distribution <strong>of</strong> <strong>the</strong> OH phot<strong>of</strong>ragment probed vialaser-<strong>in</strong>duced fluorescence. This capability provides <strong>the</strong> first rotationally resolved spectroscopicanalysis <strong>of</strong> H 2 O 2 <strong>in</strong> <strong>the</strong> first overtone region and vibrational predissociation dynamics <strong>of</strong> waterdimer and Ar–water <strong>clusters</strong>. The sensitivity <strong>of</strong> <strong>the</strong> VMD approach permits several v OH =2 overtonebands to be observed, <strong>the</strong> spectroscopic assignment <strong>of</strong> which is discussed <strong>in</strong> <strong>the</strong> context <strong>of</strong> recentanharmonic <strong>the</strong>oretical calculations. © 2005 American Institute <strong>of</strong> Physics.DOI: 10.1063/1.1899157I. INTRODUCTIONa Present address: Department <strong>of</strong> Chemistry, University <strong>of</strong> California, Irv<strong>in</strong>e,CA 92697.b Author to whom correspondence should be addressed; Electronic mail:djn@jila.colorado.eduWater dimer, H 2 O 2 , is arguably one <strong>of</strong> <strong>the</strong> most importantb<strong>in</strong>ary complexes <strong>in</strong> nature. It has been <strong>in</strong>tensively studiedever s<strong>in</strong>ce its first spectroscopic observation <strong>in</strong> a solidnitrogen matrix 1 and <strong>in</strong> gas phase. 2,3 The most significantspectroscopic studies <strong>of</strong> H 2 O 2 <strong>in</strong>clude a comprehensivesymmetry classification <strong>of</strong> its tunnel<strong>in</strong>g-rotational energylevels, 4 observation <strong>of</strong> low-resolution <strong>in</strong>frared, 5–7 and coherentanti-Stokes Raman scatter<strong>in</strong>g 8 spectra <strong>of</strong> jet-cooled watercomplexes as well as observation <strong>of</strong> high-resolution<strong>in</strong>frared, 9–12 far-<strong>in</strong>frared, 13–15 cavity r<strong>in</strong>g down, 12 andmicrowave 16,17 spectra <strong>of</strong> water dimer. This, <strong>in</strong> turn, has ledto determ<strong>in</strong>ation <strong>of</strong> a reliable water pair potential 18–20 andelegant <strong>in</strong>frared spectra <strong>of</strong> size-selected water <strong>clusters</strong>, 21 resolv<strong>in</strong>gmany discrepancies <strong>in</strong> previous spectroscopic assignment<strong>of</strong> H 2 O 2 fundamental transitions.In spite <strong>of</strong> <strong>the</strong> impressive roster <strong>of</strong> spectroscopic studies<strong>of</strong> H 2 O 2 and larger water <strong>clusters</strong>, relatively little is knownabout <strong>the</strong>ir OH stretch<strong>in</strong>g overtones. <strong>Overtone</strong> excitations <strong>in</strong>H 2 O 2 are especially <strong>in</strong>terest<strong>in</strong>g because <strong>of</strong> <strong>the</strong>ir potentialeffect on <strong>the</strong> dynamics <strong>of</strong> donor-acceptor switch<strong>in</strong>g and o<strong>the</strong>rhydrogen bond tunnel<strong>in</strong>g-<strong>in</strong>terchange motions <strong>in</strong> <strong>the</strong> complex.There have been just a few <strong>the</strong>oretical studies <strong>of</strong> <strong>the</strong>positions and transition strengths <strong>of</strong> H 2 O n overtonebands. 22–25 Matrix isolation vibrational spectra <strong>of</strong> H 2 O polymers<strong>in</strong> <strong>the</strong> OH-overtone range have been reported onlyrecently. 26,27 No gas-phase spectra <strong>of</strong> H 2 O 2 overtone bandsare presently available.Additional <strong>in</strong>terest <strong>in</strong> <strong>the</strong> overtone <strong>spectroscopy</strong> <strong>of</strong>H 2 O 2 stems from <strong>the</strong> potential atmospheric importance <strong>of</strong>water <strong>clusters</strong>. 19,28,29 Atmospheric H 2 O 2 <strong>in</strong>fluences <strong>the</strong> radiationbalance <strong>of</strong> <strong>the</strong> planet, 28 homogeneous nucleation dynamics<strong>of</strong> aerosol formation, 30 and even rates and mechanisms<strong>of</strong> certa<strong>in</strong> chemical reactions. 31–34 <strong>Overtone</strong><strong>spectroscopy</strong> is a powerful potential tool for quantitativecharacterization <strong>of</strong> H 2 O 2 column abundances <strong>in</strong> <strong>the</strong> atmosphere.Indeed, a weak band at 749.5 nm recently detected 35<strong>in</strong> long-pass atmospheric spectra has been tentatively assignedto <strong>the</strong> bound OH v OH =4 third overtone transition <strong>of</strong>H 2 O 2 based on comparison with <strong>the</strong> exist<strong>in</strong>g <strong>the</strong>oreticalpredictions. 24,25 Lower order overtones <strong>of</strong> H 2 O 2 , such asv OH =2 bands described here, may be more convenient forobservational work on atmospheric H 2 O 2 because <strong>of</strong> <strong>the</strong>irless ambiguous spectroscopic assignments.This manuscript exam<strong>in</strong>es v OH =2 vibrational states <strong>of</strong>H 2 O 2 us<strong>in</strong>g an approach <strong>of</strong> vibrationally mediateddissociation, 36–40 where<strong>in</strong> selectively prepared rovibrationalstates <strong>of</strong> H 2 O complexes are photolyzed and <strong>the</strong> result<strong>in</strong>gOH phot<strong>of</strong>ragments are detected with full quantum stateresolution Fig. 1. This method provides detailed <strong>in</strong>formationnot only about overtone <strong>spectroscopy</strong>, but also aboutmolecular energy transfer dynamics <strong>in</strong> H 2 O and its complexes.Specifically, this paper presents <strong>the</strong> first observation<strong>of</strong> <strong>the</strong> v OH =2 overtones <strong>in</strong> H 2 O 2 with partial rotational0021-9606/2005/12219/194316/11/$22.50122, 194316-1© 2005 American Institute <strong>of</strong> PhysicsDownloaded 26 May 2005 to 128.200.198.26. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp


194316-2 Nizkorodov et al. J. Chem. Phys. 122, 194316 2005FIG. 1. Experimental approach. Complexes are excited <strong>in</strong> v OH =2 state followedby photodissociation <strong>of</strong> H 2 Ov OH =2 directly <strong>in</strong>side <strong>the</strong> complexeswith a UV laser pulse left. Alternatively, <strong>the</strong> excited complexes first predissociateon time scale pd generat<strong>in</strong>g H 2 O molecules <strong>in</strong> a different vibrationalstate v, which are <strong>the</strong>n photodissociated by <strong>the</strong> photolysis laserright. In ei<strong>the</strong>r case, <strong>the</strong> result<strong>in</strong>g OH fragments are detected <strong>in</strong> specificf<strong>in</strong>al quantum states by laser-<strong>in</strong>duced fluorescence.resolution and provides <strong>in</strong>formation about <strong>the</strong> dynamics <strong>of</strong>H 2 O 2 predissociation at <strong>the</strong> v OH =2 excitation energies7000 cm −1 .By way <strong>of</strong> contrast, <strong>the</strong> much simpler complex betweenAr and H 2 O provides a useful juxtaposition with H 2 O 2 . 40,41Compared to <strong>the</strong> water dimer, Ar–H 2 O has a substantiallysmaller potential energy well depth 140 cm −1 <strong>in</strong> Ar–H 2 Ovs1700 cm −1 <strong>in</strong> H 2 O 2 Refs. 18 and 42 and considerablyweaker <strong>in</strong>teractions between <strong>in</strong>termolecular and <strong>in</strong>tramolecularmodes. This makes Ar–H 2 O a convenient system forstudy<strong>in</strong>g photodissociation dynamics <strong>of</strong> H 2 O <strong>in</strong> <strong>the</strong> presence<strong>of</strong> a weakly perturb<strong>in</strong>g rare gas “solvent” as opposed to <strong>the</strong>strongly hydrogen-bonded <strong>in</strong>teractions present <strong>in</strong> H 2 O 2 .Vibrationallymediated dissociation studies <strong>of</strong> Ar–H 2 O <strong>in</strong> <strong>the</strong>v OH =3 manifold have been reported 40 but none <strong>in</strong> <strong>the</strong> firstovertone region correspond<strong>in</strong>g to <strong>the</strong> present study <strong>of</strong> H 2 Odimer. To establish a suitable experimental perspective for<strong>the</strong> more complicated spectra <strong>of</strong> H 2 O 2 , this study <strong>the</strong>reforealso briefly considers vibrationally mediated <strong>spectroscopy</strong>and dynamics out <strong>of</strong> selected v OH =2 vibrational states <strong>of</strong>Ar–H 2 O.II. EXPERIMENTPert<strong>in</strong>ent experimental <strong>in</strong>formation has been summarized<strong>in</strong> recent work deal<strong>in</strong>g with <strong>the</strong> dynamics <strong>of</strong> vibrationallymediated dissociation <strong>of</strong> H 2 O monomer <strong>in</strong> <strong>the</strong> v OH=2 polyad; 43 thus only <strong>the</strong> most relevant details are summarizedhere. Ar–H 2 O and H 2 O 2 complexes are produced <strong>in</strong>a supersonic expansion <strong>of</strong> 1% H 2 O <strong>in</strong> 30% Ar/70% He mixturethrough a pulsed slit valve 4 cm125 m, 10 Hz,0.5 ms. The best yields <strong>of</strong> Ar–H 2 O and H 2 O 2 complexesare achieved at a total stagnation pressure <strong>of</strong> 300–500 Torr,with <strong>the</strong> yield <strong>of</strong> dimer decreas<strong>in</strong>g at higher pressures orat larger Ar fractions presumably because <strong>of</strong> preferentialformation <strong>of</strong> larger <strong>clusters</strong>. The v OH =2 overtone vibrations<strong>of</strong> jet-cooled molecules are excited with a tunablenear-<strong>in</strong>frared pump laser =7100 cm −1 –7300 cm −1 ,upto20–30 mJ/pulse, 0.2 cm −1 resolution, 5 ns pulse width. Acounterpropagat<strong>in</strong>g ArF excimer photolysis laser pulse193 nm, 5 mJ/pulse, 7 ns pulse width follows after a variabletime delay 0–1000 ns with respect to <strong>the</strong> pump, dissociat<strong>in</strong>ga fraction <strong>of</strong> vibrationally exited water moleculesFig. 1. F<strong>in</strong>ally, a probe laser pulse 30 J/pulse, 0.1 cm −1 ,5ns excites <strong>the</strong> nascent OH on <strong>the</strong> <strong>of</strong>f-diagonal A 2 ←X 2 v=1←0 band some 20 ns after <strong>the</strong> photolysis pulse,with <strong>the</strong> result<strong>in</strong>g OH fluorescence collected from <strong>the</strong> diagonalA 2 ←X 2 v=1←0 band at 310 nm. Both excitationand detection take place 2 cm downstream from <strong>the</strong> expansionslit. To discrim<strong>in</strong>ate between i vibrationally mediatedand ii direct 193 nm photolysis <strong>of</strong> H 2 O and its complexes,<strong>the</strong> near-<strong>in</strong>frared pump laser is operated at half <strong>the</strong> repetitionrate, with <strong>the</strong> data from alternate laser shots subtracted togenerate a background-free signal.The result<strong>in</strong>g OH fluorescence signal is found to be l<strong>in</strong>ear<strong>in</strong> <strong>the</strong> 193 nm photolysis laser power, <strong>in</strong>dicat<strong>in</strong>g thatmultiphoton photodissociation processes <strong>in</strong> <strong>the</strong> parent moleculeare not relevant. The OH transitions are <strong>the</strong>n probed <strong>in</strong><strong>the</strong> weak saturation limit and calibrated aga<strong>in</strong>st fluorescenceexcitation spectra under fully <strong>the</strong>rmalized conditions. On <strong>the</strong>o<strong>the</strong>r hand, <strong>the</strong> IR pump transitions can be saturated significantly,despite <strong>the</strong> decrease <strong>in</strong> absorption strength with successiveovertone excitation. Indeed, for <strong>the</strong> strongest overtonetransitions, it proves necessary to attenuate <strong>the</strong> pumplaser power by as much as two orders <strong>of</strong> magnitude to avoidpower-broaden<strong>in</strong>g <strong>of</strong> spectral l<strong>in</strong>es beyond <strong>the</strong> specified laserresolution <strong>of</strong> 0.2 cm −1 . For optimal sensitivity, <strong>the</strong>refore,overview scans are taken under full near-IR pump laserpower, with scans <strong>of</strong> <strong>in</strong>dividual overtone bands taken underreduced power conditions.III. RESULTS AND DISCUSSIONA. Spectroscopic notationWe use mn ± local mode notation 44 for label<strong>in</strong>g OHstretch<strong>in</strong>gvibrations <strong>of</strong> free H 2 O, Ar–H 2 O, and <strong>the</strong> monomerproton acceptor subunit <strong>in</strong> H 2 O 2 , where m and n are<strong>the</strong> local mode-stretch<strong>in</strong>g quanta. 45 In this notation, one canapproximately correlate 1 + 3 and 2 1 normal mode states<strong>of</strong> H 2 O with 02 − and 02 + local mode states, respectively.For <strong>the</strong> proton-donor unit <strong>of</strong> H 2 O 2 , <strong>the</strong> states are labeled byspecify<strong>in</strong>g <strong>the</strong> number <strong>of</strong> local mode excitations <strong>in</strong> <strong>the</strong>bound-OH and free-OH bonds. 24 For example, 0 f 1 b designates<strong>the</strong> v OH =1 hydrogen-bonded OH stretch fundamentalvibration <strong>of</strong> H 2 O 2 .We use <strong>the</strong> notation <strong>of</strong> Ref. 10 for label<strong>in</strong>g rotationalstates <strong>of</strong> H 2 O 2 . Briefly, each rotational level <strong>of</strong> H 2 O 2 issplit <strong>in</strong>to sextets by three <strong>in</strong>ternal motions: acceptor <strong>in</strong>ternalrotation, acceptor-donor <strong>in</strong>terchange, and donor proton <strong>in</strong>terchangeFig. 2. Internal rotation <strong>of</strong> <strong>the</strong> proton acceptor subunitis extremely facile, splitt<strong>in</strong>g each J,K state <strong>in</strong>to widelyseparated “upper” and “lower” K manifolds e.g., 10 cm −1between K lower =0 and K upper =0, with acceptor-donor <strong>in</strong>terchangeand donor switch<strong>in</strong>g result<strong>in</strong>g <strong>in</strong> more modest additionalsplitt<strong>in</strong>gs <strong>of</strong> each K level <strong>in</strong>to A 1,2 , E, and B 1,2 sublevelse.g., A 2 − and B 2 − are separated by 0.65 cm −1 <strong>in</strong> J=0,K upper =0. Fur<strong>the</strong>rmore, all K0 levels are split <strong>in</strong>to dou-Downloaded 26 May 2005 to 128.200.198.26. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp


194316-3 <strong>Overtone</strong> <strong>spectroscopy</strong> <strong>of</strong> H 2 O <strong>clusters</strong> J. Chem. Phys. 122, 194316 2005FIG. 2. Schematic diagram <strong>of</strong> H 2 O 2 energy levels not to scale and pr<strong>in</strong>cipal<strong>in</strong>ertial axes for H 2 O 2 . Only K levels appreciably populated at jettemperatures are shown. Each K level is split <strong>in</strong>to K lower and K upper componentsby proton acceptor <strong>in</strong>ternal rotation. Fur<strong>the</strong>r splitt<strong>in</strong>g arises because <strong>of</strong>donor-acceptor <strong>in</strong>terchange. For K0, <strong>the</strong>re is an additional doubl<strong>in</strong>g <strong>of</strong> alllevels. The total symmetry <strong>in</strong>clud<strong>in</strong>g rotation <strong>in</strong> permutation-<strong>in</strong>versiongroup isomorphic to D 4h and nuclear weights for each level are given for atotally symmetric vibration <strong>of</strong> H 2 O 2 .blets by conventional asymmetry considerations. The K lower=1 and K upper =0 manifolds are close <strong>in</strong> energy because <strong>of</strong><strong>the</strong> comparable tunnel<strong>in</strong>g and K a =1 rotational pathwaysaround <strong>the</strong> A axis. F<strong>in</strong>ally, H 2 O 2 molecules under supersonicconditions cool down to <strong>the</strong> lowest levels with<strong>in</strong> itsfive nuclear sp<strong>in</strong> symmetry subgroups A 1 , E, B 1 , A 2 , and B 2 with a fairly large spac<strong>in</strong>g 10 cm −1 between <strong>the</strong> A 1 , E, B 1and A 2 , B 2 manifolds. To <strong>the</strong> extent that all <strong>in</strong>ternal motion <strong>in</strong>H 2 O dimer is maximally cooled, one would quite simplyexpect comparable 7:9 populations <strong>in</strong> <strong>the</strong> K lower =0 vsK upper =0/K lower =1 manifolds.The energy levels <strong>of</strong> Ar–H 2 O are much more simplyrepresented <strong>in</strong> <strong>the</strong> framework <strong>of</strong> nearly freely rotat<strong>in</strong>g H 2 O<strong>in</strong> <strong>the</strong> slightly anisotropic potential result<strong>in</strong>g from <strong>the</strong> Aratom. Specifically, ortho and para nuclear sp<strong>in</strong> designationsare still good, and <strong>the</strong> energy levels <strong>of</strong> <strong>the</strong> complex can beconveniently labeled by quantum numbers <strong>of</strong> <strong>the</strong> free H 2 Orotational states J Ka K c with which <strong>the</strong>y correlate. Ar–H 2 Olevels are additionally characterized by <strong>the</strong> projection <strong>of</strong> <strong>the</strong>total angular momentum on <strong>the</strong> <strong>in</strong>termolecular axis and by<strong>the</strong> number <strong>of</strong> quanta <strong>in</strong> <strong>the</strong> <strong>in</strong>termolecular stretch<strong>in</strong>g mode s , as expla<strong>in</strong>ed <strong>in</strong> Refs. 46 and 47. Figure 3 displays aschematic diagram <strong>of</strong> <strong>the</strong> lowest energy levels <strong>of</strong> Ar–H 2 Oadopted from far-<strong>in</strong>frared and near-<strong>in</strong>frared studies 11,42,47,48along with allowed transitions for 02 − band.B. Overview spectrumFigure 4 shows an overview spectrum recorded underconditions optimized for <strong>the</strong> maximal yield <strong>of</strong> Ar–H 2 O complexes.The spectrum is obta<strong>in</strong>ed by tun<strong>in</strong>g <strong>the</strong> UV probelaser on <strong>the</strong> Q 11 8 l<strong>in</strong>e <strong>of</strong> <strong>the</strong> A 2 ←X 2 v=1←0 band thatprobes <strong>the</strong> 2 −3/2 N=8 rotational state <strong>of</strong> OH v=0 and <strong>the</strong>ncont<strong>in</strong>uously scann<strong>in</strong>g <strong>the</strong> near-<strong>in</strong>frared pump laser frequencyover <strong>the</strong> characteristic first OH-stretch<strong>in</strong>g overtoneregion. As will be elucidated below, <strong>the</strong> choice <strong>of</strong> a relativelyhigh-N state <strong>of</strong> OH for detection e.g., N=8 vs N=1 is usedto maximize action spectral <strong>in</strong>tensities from complexes relativeto those from H 2 O monomer. In addition to a strongFIG. 3. Correlation between <strong>the</strong> Ar–H 2 O and H 2 O energy levels. The grid<strong>of</strong> <strong>the</strong> Ar–H 2 O levels is shifted with respect to that <strong>of</strong> H 2 O by <strong>the</strong> b<strong>in</strong>d<strong>in</strong>genergy <strong>of</strong> <strong>the</strong> complex. For 02 − vibrational state, <strong>the</strong> ortho and para labelsare <strong>in</strong>terchanged compared to 00 + on <strong>the</strong> account <strong>of</strong> <strong>the</strong> asymmetry <strong>of</strong> <strong>the</strong>vibration, with <strong>the</strong> 02 − ←00 + transitions follow<strong>in</strong>g a-type selection rules:K a =even, K c =odd.dependence on OH probe state, band <strong>in</strong>tensities <strong>in</strong> <strong>the</strong> spectrumare also affected by time delay between <strong>the</strong> pump andphotolysis laser pulses, because vibrationally excited complexescan undergo <strong>in</strong>termolecular predissociation beforeH 2 O molecules <strong>in</strong>side <strong>the</strong>m are photolyzed Fig. 1. Indeed,this will serve as a basis for direct measurement <strong>of</strong> vibrationalpredissociation lifetimes for Ar–H 2 O and H 2 O 2 ,asdescribed later. The spectra <strong>in</strong> Fig. 4 are obta<strong>in</strong>ed with apump-photolysis delay chosen to be 500 ns; this effectivelyensures that all complexes predissociate prior to photolysisby <strong>the</strong> excimer laser pulse.As <strong>the</strong> first stage <strong>in</strong> <strong>the</strong> spectral assignment, only threerovibrational transitions <strong>of</strong> jet-cooled H 2 O appear <strong>in</strong> thisspectral range and with appreciable <strong>in</strong>tensity; <strong>the</strong>se correspondto J Ka K c=1 01 ←0 00 para and 0 00 ←1 01 and 2 02←1 01 ortho transitions <strong>in</strong> <strong>the</strong> 02 − vibrational overtoneband. A few H 2 O monomer transitions <strong>in</strong>to 02 + state alsooccur <strong>in</strong> this spectral range but are considerably weaker and<strong>in</strong>deed undetectable at <strong>the</strong> current S/N <strong>in</strong> Fig. 4. The rema<strong>in</strong><strong>in</strong>gbands <strong>in</strong> <strong>the</strong> spectrum cannot be attributed to free H 2 Ol<strong>in</strong>es and, <strong>the</strong>refore, must belong to complexes conta<strong>in</strong><strong>in</strong>gH 2 O. Note that <strong>the</strong>se bands are <strong>of</strong> comparable <strong>in</strong>tensity tovibrationally mediated water monomer l<strong>in</strong>es. This is not areflection <strong>of</strong> water cluster<strong>in</strong>g efficiency but ra<strong>the</strong>r that detectionon high OHN states provides an enormous discrim<strong>in</strong>ationaga<strong>in</strong>st water monomer, obviously present <strong>in</strong> muchhigher concentrations.Many bands <strong>in</strong> <strong>the</strong> action spectrum are strongly correlatedwith fractional Ar content <strong>in</strong> <strong>the</strong> expansion mixture,suggest<strong>in</strong>g complexes between H 2 O and Ar Table I and Fig.Downloaded 26 May 2005 to 128.200.198.26. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp


194316-4 Nizkorodov et al. J. Chem. Phys. 122, 194316 2005FIG. 4. Survey action spectrum. The probe laser is tuned to <strong>the</strong> 2 − 3/2 8 rotational state <strong>of</strong> OHv=0, while <strong>the</strong> pump laser is scanned <strong>in</strong> frequency. The timedelay between <strong>the</strong> IR pump and UV photolysis laser is sufficiently long to allow all vibrationally exited complexes to predissociate. Apart from a few easilyidentifiable H 2 O monomer l<strong>in</strong>es, all <strong>the</strong> structure <strong>in</strong> <strong>the</strong> spectrum is due to Ar–H 2 O and H 2 O 2 . The bands labeled with asterisks almost certa<strong>in</strong>ly belong toAr–H 2 O but require fur<strong>the</strong>r studies for def<strong>in</strong>itive assignment.4. Indeed, some <strong>of</strong> <strong>the</strong>se bands display partially resolvedrotational structure consistent with <strong>the</strong> Ar–H 2 O b<strong>in</strong>ary complex.A significant number <strong>of</strong> bands <strong>in</strong> <strong>the</strong> spectrum rema<strong>in</strong>even if Ar is completely replaced by He <strong>in</strong> <strong>the</strong> carrier gasmixture. However, <strong>the</strong>ir signal <strong>in</strong>tensities are reduced because<strong>of</strong> much smaller cluster<strong>in</strong>g efficiency <strong>in</strong> pure He jets.S<strong>in</strong>ce He–H 2 O cluster<strong>in</strong>g is expected to be negligible underroom temperature stagnation conditions, <strong>the</strong>se can be assignedto overtone spectra <strong>of</strong> H 2 O n complexes Table I.To<strong>the</strong> best <strong>of</strong> our knowledge, this represents <strong>the</strong> first such overtonespectra for neutral H 2 O <strong>clusters</strong>, specifically made possibleby <strong>the</strong> enhanced sensitivity <strong>of</strong> vibrationally mediatedphotodissociation methods. Indeed, at least one <strong>of</strong> <strong>the</strong>sebands at 7193 cm −1 even exhibits partially resolved rotationalstructure characteristic <strong>of</strong> H 2 O dimer, to which wenext direct our attention.C. First overtone „v OH =2… spectra <strong>of</strong> H 2 O dimerVibrational assignment <strong>of</strong> <strong>the</strong> OH-stretch<strong>in</strong>g bands <strong>of</strong>H 2 O 2 has historically proven to be a challeng<strong>in</strong>g task, evenat <strong>the</strong> fundamental level. Indeed, <strong>the</strong> four OH-stretch<strong>in</strong>g fundamentalshave been reassigned several times and only moreTABLE I. Positions and assignments <strong>of</strong> <strong>the</strong> observed overtone bands <strong>of</strong>Ar–H 2 O and H 2 O n . Positions are accurate to with<strong>in</strong> 0.2 cm −1 . WhereasAr–H 2 O assignments are relatively certa<strong>in</strong>, H 2 O 2 assignments should beconsidered speculative and a source <strong>of</strong> stimulation for fur<strong>the</strong>r <strong>the</strong>oreticalefforts.Positions cm −1 Carrier Band shape Assignment7193 a H 2 O 2 02 + a or 1 f 1 b7218.45 b Ar–H 2 O 02 − 0 00 ←1 01 7230.05 c Ar–H 2 O 02 − 0 00 ←1 01 7240 b H 2 O 2 d Most likely 2 f 0 b7249.8 b H 2 O 2 d Most likely 2 f 0 b7263.7 a Ar–H 2 O 02 − 1 01 ←0 00 7275.0 b Ar–H 2 O 02 − 1 01 ←0 00 7282 a H 2 O 2 da Approximate band center.b Q-branch position.c Band orig<strong>in</strong> from fitt<strong>in</strong>g.d Poorly def<strong>in</strong>ed band shape.or less def<strong>in</strong>itively understood from recent cluster sizeselectivespectroscopic work <strong>of</strong> Huisken et al. 21 Table IIsummarizes <strong>the</strong> presently accepted assignments at <strong>the</strong> v OH=1 level. With two quanta <strong>of</strong> OH-stretch<strong>in</strong>g excitation, <strong>the</strong>overtone spectral region is certa<strong>in</strong> to be significantly morecomplex; for example, <strong>the</strong>re are as many as ten differentpossibilities to distribute <strong>the</strong>m among <strong>the</strong> four OH bonds <strong>in</strong>H 2 O 2 .Fortunately, <strong>the</strong>ory predicts only a few <strong>of</strong> <strong>the</strong>se comb<strong>in</strong>ationstates to be efficiently produced from <strong>the</strong> ground state<strong>of</strong> H 2 O 2 via direct overtone pump<strong>in</strong>g. Harmonicallycoupled anharmonic oscillator HCAO calculations byKjaergaard and co-workers 24,25 predict that <strong>the</strong> strongest OHovertone transitions <strong>in</strong> H 2 O 2 should be 02 − a , 2 f 0 b ,02 + a , and 1 f 1 b listed <strong>in</strong> <strong>the</strong> order <strong>of</strong> decreas<strong>in</strong>g transitionstrengths, where a, f, and b refer to proton acceptor, freeproton donor, and bound proton donor OH stretches, respectively.Calculations by Chaban and Gerber done at CC-VSCFlevel 22 predict a somewhat different order <strong>of</strong> <strong>in</strong>tensities:02 − a , 1 f 1 b , 2 f 0 b , 02 + a , but both studies agree that <strong>the</strong>sefour transitions should dom<strong>in</strong>ate <strong>the</strong> v OH =2 spectrum <strong>of</strong>H 2 O 2 . The strongest v OH =2 bands <strong>in</strong> <strong>the</strong> cyclic water trimerspectrum are predicted to be <strong>of</strong> <strong>the</strong> type 2 f 0 b by calculation<strong>of</strong> Ref. 24. Chaban and Gerber predict that transitions<strong>of</strong> 1 f 1 b and 0 f 2 b types should be just as strong.Figure 5 shows simulated low-resolution spectra <strong>of</strong> H 2 O 2TABLE II. Currently accepted gas-phase positions <strong>of</strong> H 2 O 2 stretch<strong>in</strong>g fundamentals.The positions are taken from Ref. 10 with 01 a + reassigned to0 f 1 b based on <strong>the</strong> results <strong>of</strong> Ref. 21. The 01 a + transition has only beenobserved <strong>in</strong> Ar matrices Ref. 26, where it is quite weak. Calculationssuggest that it should occur at around 3650 cm −1 <strong>in</strong> gas phase.Mode K←K Position cm −1 01 a−0 lower ←1 lower 3738.41 upper ←0 upper and 1 lower ←0 lower 37532 upper ←1 lower 37771 f 0 b 0 upper ←1 lower and 1 lower ←0 upper 3731.7+01 a Not observed3633 a0 f 1 b 0 upper ←1 lower and 1 lower ←0 upper 3601a Ar matrix.Downloaded 26 May 2005 to 128.200.198.26. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp


194316-5 <strong>Overtone</strong> <strong>spectroscopy</strong> <strong>of</strong> H 2 O <strong>clusters</strong> J. Chem. Phys. 122, 194316 2005FIG. 5. Predicted band positions and <strong>in</strong>tensities <strong>of</strong> v OH =2 bands <strong>of</strong> H 2 O 2 .a CC-VSCF calculation by Chaban and Gerber Ref. 22. b HCAO calculationby Sch<strong>of</strong>ield and Kjaergaard Ref. 25. For better representation <strong>of</strong><strong>in</strong>tegrated band <strong>in</strong>tensities, <strong>the</strong> transitions are convoluted over a Gaussianwith half-width at half-maximum HWHM=7 cm −1 .based on <strong>the</strong> prediction <strong>of</strong> Refs. 22, 24, and 25. Despite apromis<strong>in</strong>g concurrence <strong>in</strong> general <strong>the</strong>oretical predictions for<strong>the</strong> overtone <strong>in</strong>tensities, <strong>the</strong>se studies fail to agree on <strong>the</strong>more detailed relative frequency order<strong>in</strong>g <strong>of</strong> <strong>the</strong> H 2 O 2bands, mak<strong>in</strong>g spectroscopic assignment <strong>of</strong> <strong>the</strong> observedH 2 O n overtones quite difficult. The most significant disagreementappears to exist for <strong>the</strong> relative frequencies <strong>of</strong> <strong>the</strong>1 f 1 b and 2 f 0 b overtone bands <strong>in</strong> both <strong>the</strong> dimer andtrimer species.The analysis <strong>of</strong> <strong>the</strong> H 2 O n band centered at 7193 cm −1may help shed some light on this issue. At higher sensitivityand lower IR pump powers to avoid saturation, this bandclearly reveals a partially resolved rotational structure seeFig. 6, with a characteristic spac<strong>in</strong>g between adjacent l<strong>in</strong>es<strong>of</strong> roughly 0.4 cm −1 . Though not fully resolved, this isnever<strong>the</strong>less consistent with an a-type band for H 2 O 2 ,which is known to have a near-prolate symmetric top structurewith B0.2 cm −1 , 2,10,13,16 and is clearly <strong>in</strong>consistentwith any cluster larger than dimer. Simulations <strong>of</strong> this bandpr<strong>of</strong>ile us<strong>in</strong>g <strong>the</strong> fundamental spectroscopic constants forH 2 O 2 quickly reveals it to be composed <strong>of</strong> at least twooverlapp<strong>in</strong>g a-type transitions. Most relevantly to <strong>the</strong> abovediscussion, <strong>the</strong> pr<strong>of</strong>ile cannot be satisfactorily modeled withoverlapp<strong>in</strong>g b- orc-type transitions, s<strong>in</strong>ce such bands wouldbe dom<strong>in</strong>ated by prom<strong>in</strong>ent Q-branch features not observed<strong>in</strong> <strong>the</strong> experimental spectrum.This lack <strong>of</strong> strong Q-branch transitions rules out assignmentto <strong>the</strong> overtone vibration <strong>of</strong> <strong>the</strong> hydrogen bond accep-FIG. 6. A slow scan over <strong>the</strong> H 2 O 2 band at 7193 cm −1 . This band has apartially resolved rotational structure characteristic <strong>of</strong> a parallel transition <strong>in</strong>H 2 O 2 complex. The band is simulated as a superposition <strong>of</strong> three K=0←0 subbands with orig<strong>in</strong>s at 7192.5 cm −1 B 2 − subband; odd J: evenJ=3:6, 7191.3 cm −1 E subband; no alternation, 7193.3 cm −1 A 2 − subband;odd J: even J=6:3 with a l<strong>in</strong>ewidth <strong>of</strong> 0.25 cm −1 . The band orig<strong>in</strong>s are notuniquely determ<strong>in</strong>ed by <strong>the</strong> simulation, though a B0.2 cm −1 rotationalconstant for water dimer is clearly consistent with <strong>the</strong> observed structure.tor, 02 − a , s<strong>in</strong>ce this transition moment would be predom<strong>in</strong>antlyalong <strong>the</strong> b axis <strong>of</strong> H 2 O 2 . In support <strong>of</strong> this, Huangand Miller 10 only observe b-type transitions for <strong>the</strong> correspond<strong>in</strong>g01 − a fundamental <strong>in</strong> H 2 O dimer see Table II.Indeed, H 2 O dimer exhibits considerable perpendicularstructure <strong>in</strong> <strong>the</strong> 01 −a fundamental region due to i K=0 lower ←1 lower , ii K=1 upper ←0 upper /K=1 lower ←0 lower , andiii K=2 upper ←1 lower subbands, which are observed−18 cm −1 ,−3cm −1 , and −22 cm −1 away from <strong>the</strong> 01 − a bandorig<strong>in</strong>, respectively. By way <strong>of</strong> contrast, we do not observeadditional H 2 O 2 features <strong>in</strong> this spectral region out to atleast ±40 cm −1 away from <strong>the</strong> 7193 cm −1 band. In summary,both <strong>the</strong> 7193 cm −1 band shape as well as lack <strong>of</strong> H 2 O 2transitions <strong>in</strong> <strong>the</strong> vic<strong>in</strong>ity make assignment to 02 − a unlikely.In light <strong>of</strong> <strong>the</strong> a-type rotational contour, a more plausibleassignment for <strong>the</strong> 7193 cm −1 band is <strong>the</strong> 1 f 1 b vibrationcentered on <strong>the</strong> proton donor unit <strong>of</strong> H 2 O 2 . This vibrationalmotion promotes a dipole transition moment along <strong>the</strong> a axis<strong>of</strong> H 2 O 2 , which is more consistent with <strong>the</strong> observed bandpr<strong>of</strong>ile. In addition, <strong>the</strong>re is a strong similarity between <strong>the</strong>band observed here and <strong>the</strong> a-type transition pr<strong>of</strong>ile fromHuang and Miller, 10 which has been assigned to 0 f 1 b , 21i.e., one quantum <strong>of</strong> <strong>the</strong> bound OH stretch. Fur<strong>the</strong>rmore, <strong>the</strong>1 f 1 b vibration is predicted to be <strong>the</strong> second strongest OHstretch<strong>in</strong>govertone <strong>in</strong> H 2 O 2 by Chaban and Gerber 22 andexecutes a motion that correlates with <strong>the</strong> strong 02 − overtone<strong>in</strong> H 2 O monomer. Also, <strong>the</strong> 1 f 1 b vibrational prediction<strong>of</strong> 7110 cm −1 by Chaban and Gerber see Fig. 5 is <strong>in</strong>relatively good agreement with experiment. We note that <strong>the</strong>02 + a acceptor overtone is yet ano<strong>the</strong>r possibility for achiev<strong>in</strong>gsuch a strong a-type transition moment, with predictedband orig<strong>in</strong>s 7170 cm −1 Ref. 22 and 7200 cm −1 Ref. 25<strong>in</strong> even closer agreement with experiment; however, <strong>the</strong> predictedovertone <strong>in</strong>tensities are relatively weak <strong>in</strong> both sets <strong>of</strong><strong>the</strong>oretical calculations. 22,25 In this regard, however, it isworth remember<strong>in</strong>g <strong>the</strong> “action” nature <strong>of</strong> <strong>the</strong>se spectra, <strong>in</strong>tensities<strong>of</strong> which rely on vibrationally mediated UV photolysis<strong>of</strong> <strong>the</strong> result<strong>in</strong>g predissociated complex. For example,excitation <strong>of</strong> <strong>the</strong> symmetric 02 + a could well predissociatepreferentially <strong>in</strong>to H 2 O<strong>in</strong>v OH =1, which, <strong>in</strong> turn, photodissociatesefficiently at 193 nm to yield OH. We will return tothis po<strong>in</strong>t later <strong>in</strong> <strong>the</strong> discussion but stress <strong>the</strong> importance <strong>of</strong>vibrational overtone dynamics <strong>in</strong> <strong>in</strong>terpret<strong>in</strong>g <strong>the</strong> spectra.Clearly a predictive understand<strong>in</strong>g <strong>of</strong> overtone frequencies,<strong>in</strong>tensities, and dynamics <strong>in</strong> hydrogen-bonded systems rema<strong>in</strong>sa challeng<strong>in</strong>g area for future progress, which <strong>the</strong>present work hopes to fur<strong>the</strong>r stimulate.With a suggested assignment <strong>of</strong> <strong>the</strong> 7193 cm −1 bandstructure to ei<strong>the</strong>r 1 f 1 b or 02 + a , we next address whe<strong>the</strong>rone can reproduce <strong>the</strong> observed rotational pr<strong>of</strong>ile withknown spectroscopic constants <strong>of</strong> H 2 O 2 . Any a-type transition<strong>in</strong> H 2 O 2 can, <strong>in</strong> pr<strong>in</strong>ciple, exhibit complicated f<strong>in</strong>estructure because <strong>of</strong> <strong>the</strong> presence <strong>of</strong> five uncoolable nuclearsp<strong>in</strong> symmetry species, specifically three K=1←1 lower subbandsA − 2 ,E − ,B − 2 ; three K=0←0 upper subbands A − 2 ,E − ,B − 2 ;and three K=0←0 lower subbands A + 1 ,E + ,B + 1 . Note that <strong>the</strong>specified subband symmetries do not <strong>in</strong>clude rotational symmetriesunlike <strong>the</strong> labels shown <strong>in</strong> Fig. 2. For example, all<strong>of</strong> <strong>the</strong>se a-type subbands appear <strong>in</strong> close proximity to eachDownloaded 26 May 2005 to 128.200.198.26. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp


194316-6 Nizkorodov et al. J. Chem. Phys. 122, 194316 2005o<strong>the</strong>r <strong>in</strong> far-<strong>in</strong>frared spectra <strong>of</strong> acceptor-wag vibration <strong>in</strong>H 2 O 2 and D 2 O 2 . 13,49 In practice, <strong>the</strong> A + 1 and B + 1 subbandsfrom K=0 lower are weak because <strong>of</strong> low statistical weightsFig. 2. The E subbands from K=1 lower and K=0 upper arealso weak because <strong>the</strong>se levels can relax all <strong>the</strong> way down toK=0 lower under supersonic jet conditions. F<strong>in</strong>ally, based onv OH =1 fundamental transitions <strong>in</strong> H 2 O 2 , 10 <strong>the</strong> K=1←1bands are likely to be significantly broadened by predissociation.Therefore, <strong>the</strong> dom<strong>in</strong>ant a-type contributions to <strong>the</strong> rotationalstructure should come from i K=0←0 upper A − 2 andB − 2 and ii K=0←0 lower E + subbands.The K=0 upper states <strong>in</strong> <strong>the</strong> vibrationless H 2 O 2 are wellunderstood: <strong>the</strong> donor-acceptor <strong>in</strong>terchange splitt<strong>in</strong>g betweenK=0 upper A − 2 and B − 2 states is 0.65 cm −1 . 13,16,50 Althoughthis splitt<strong>in</strong>g is known to <strong>in</strong>crease for some <strong>in</strong>termolecularmodes <strong>of</strong> H 2 O 2 that encourage <strong>the</strong> donor-acceptor<strong>in</strong>terchange, 13 excitation <strong>of</strong> <strong>the</strong> OH-stretch<strong>in</strong>g states is expectedto reduce it significantly. For example, <strong>the</strong> <strong>in</strong>terchangeA − 2 /B − 2 splitt<strong>in</strong>g is just 0.061 cm −1 <strong>in</strong> <strong>the</strong> 01 − a K=0 lower state. 10 S<strong>in</strong>ce H 2 O 2 reta<strong>in</strong>s its plane <strong>of</strong> symmetry <strong>in</strong>both 1 f 1 b and 02 + a states, <strong>the</strong> orig<strong>in</strong> difference <strong>of</strong> <strong>the</strong> K=0←0 upper A − 2 and B − 2 subbands should equal <strong>the</strong> sum <strong>of</strong> <strong>the</strong>K=0 A − 2 /B − 2 <strong>in</strong>terchange splitt<strong>in</strong>gs between lower and uppervibrational states, i.e., on <strong>the</strong> order <strong>of</strong> 0.7–0.8 cm −1 . Indeed,at our modest resolution, a0.8 cm −1 −separation <strong>of</strong> <strong>the</strong> A 2and B − 2 subband orig<strong>in</strong>s would nicely, albeit fortuitously, expla<strong>in</strong><strong>the</strong> lack <strong>of</strong> <strong>in</strong>tensity alternation <strong>in</strong> <strong>the</strong> spectrum especiallyevident <strong>in</strong> <strong>the</strong> R-branch region, because <strong>of</strong> cancellationat low J <strong>of</strong> <strong>the</strong> predicted B −−2 J even /J odd =6/3 vs A 2J even /J odd =3/6 nuclear sp<strong>in</strong> statistical ratios.In <strong>the</strong> <strong>in</strong>terest <strong>of</strong> simplicity, <strong>the</strong>refore, we have modeled<strong>the</strong> observed transition pr<strong>of</strong>ile as a comb<strong>in</strong>ation <strong>of</strong> i twoK=0←0 upper A − 2 and B − 2 subbands, separated by 0.8 cm −1and ii one K=0←0 lower E + subband, with <strong>the</strong> relative location<strong>of</strong> <strong>the</strong> K=0←0 lower and K=0←0 upper subbands treatedas an adjustable parameter. Each H 2 O 2 subband is calculatedas a near prolate symmetric top with rotational parameterstaken from Ref. 10, with <strong>the</strong> result shown <strong>in</strong> Fig. 6. Thesimulation is consistent with a 7±3 K rotational temperaturesame as for Ar–H 2 O bands discussed below and readilyreproduces several salient features <strong>of</strong> <strong>the</strong> observed band,namely, i parallel structure, ii absence <strong>of</strong> a band gap, andiii no obvious <strong>in</strong>tensity alternation. However, with <strong>the</strong>present <strong>in</strong>strumental resolution, <strong>the</strong> simulation is not verysensitive to <strong>the</strong> transition band orig<strong>in</strong>s, which thus rema<strong>in</strong>poorly determ<strong>in</strong>ed. Never<strong>the</strong>less, <strong>the</strong> rotational structureclearly confirms <strong>the</strong> carrier <strong>of</strong> <strong>the</strong> observed band to beH 2 O 2 that we can tentatively assign to ei<strong>the</strong>r <strong>the</strong> 1 f 1 b or02 + a overtone vibration.Inspection <strong>of</strong> <strong>the</strong> spectrum <strong>in</strong> Fig. 4 <strong>in</strong>dicates <strong>the</strong> potentialpresence <strong>of</strong> several o<strong>the</strong>r H 2 O n bands, <strong>the</strong> assignment<strong>of</strong> which requires identification or suppression <strong>of</strong> <strong>the</strong> muchstronger Ar–H 2 O transitions. S<strong>in</strong>ce <strong>the</strong> water complexes predissociatemuch faster than <strong>the</strong> laser pulse duration see below,<strong>the</strong> Ar–H 2 O bands can be largely suppressed by record<strong>in</strong>g<strong>the</strong> spectrum us<strong>in</strong>g very small IR pump–UVphotolysis delays. This procedure reveals that <strong>the</strong> bands at7240, 7250, and 7282 cm −1 can be ascribed to H 2 O n complexesthat, based on both <strong>the</strong>oretical predictions and matrixstudies, most likely correspond to 2 f 0 b transitions <strong>in</strong> waterdimer Table I. Specifically, Perchard reported a strong bandat 7236 cm −1 <strong>in</strong> argon matrix 26 and a correspond<strong>in</strong>g band at7220 cm −1 <strong>in</strong> nitrogen matrix, 27 which he assigned to 2 f 0 bovertone <strong>of</strong> <strong>the</strong> proton donor unit as well. His assignmentswere recently corroborated by HCAO calculations. 25 CC-VSCF calculations <strong>of</strong> Chaban and Gerber place this bandhigher <strong>in</strong> frequency but also predict a large transitionstrength for 2 f 0 b . 22 The present gas-phase studies providesome additional <strong>in</strong>formation; <strong>in</strong> particular, <strong>the</strong> 7240 and7250 cm −1 bands appear perpendicular which is consistentwith 2 f 0 b vibrational motion predom<strong>in</strong>antly along <strong>the</strong> caxis. The subband spac<strong>in</strong>gs and rotational contours are consistentwith a 2 f 0 b overtone band assignment, but basedon <strong>the</strong>oretical predictions, it could, <strong>in</strong> pr<strong>in</strong>ciple, arise from<strong>the</strong> acceptor 02 − a band. Fur<strong>the</strong>r <strong>the</strong>oretical efforts <strong>in</strong> thisovertone region would be extremely useful to settle <strong>the</strong>seissues.There has been a lot <strong>of</strong> <strong>in</strong>terest <strong>in</strong> <strong>the</strong> spectroscopicquantification <strong>of</strong> H 2 O 2 <strong>in</strong> <strong>the</strong> atmosphere via its overtonetransitions. 35 In view <strong>of</strong> <strong>the</strong> difficulties associated with precise<strong>the</strong>oretical predictions <strong>of</strong> H 2 O 2 overtone frequenciesand <strong>in</strong>tensities, it is challeng<strong>in</strong>g to assign features observed<strong>in</strong> atmospheric transmission spectra to H 2 O 2 withcerta<strong>in</strong>ty. 26 Present observation <strong>of</strong> a rotationally resolvedovertone <strong>of</strong> H 2 O 2 is an important step towards resolv<strong>in</strong>gthis problem. Although <strong>the</strong> proximity <strong>of</strong> <strong>the</strong> 1 f 1 b band <strong>of</strong>H 2 O 2 to free H 2 O transitions reduces its potential usefulnessfor observational work on H 2 O 2 <strong>in</strong> <strong>the</strong> atmosphere, itis <strong>the</strong> only known rotationally resolved overtone transitionrigorously assigned to H 2 O 2 . High-resolution spectra <strong>of</strong>H 2 O 2 overtones, such as v OH =3, should be even more usefulfor <strong>the</strong> observational studies, and this is where futureefforts <strong>of</strong> spectroscopists study<strong>in</strong>g H 2 O 2 should be directed.D. <strong>Overtone</strong> „v OH =2… spectra <strong>of</strong> Ar–H 2 OThe vibrationally mediated IR spectra <strong>in</strong> Fig. 4 areclearly dom<strong>in</strong>ated by transitions <strong>of</strong> Ar–H 2 O van der Waals<strong>clusters</strong>, to which we now turn our attention. Indeed, a questionworth rais<strong>in</strong>g is why <strong>the</strong> spectra <strong>of</strong> such weakly boundvan der Waals complexes can be so prom<strong>in</strong>ent over <strong>the</strong> muchmore strongly bound H 2 O n species, even though <strong>the</strong> latterare likely present <strong>in</strong> much higher concentrations. The answeralmost certa<strong>in</strong>ly has to do with <strong>the</strong> vibrationally mediatednature <strong>of</strong> <strong>the</strong> action <strong>spectroscopy</strong> that requires <strong>the</strong> IR photonto enhance <strong>the</strong> subsequent 193 nm photodissociation <strong>of</strong> H 2 O,ei<strong>the</strong>r <strong>in</strong> <strong>the</strong> complex or its predissociated fragments. Thisenhancement, <strong>in</strong> turn, depends very sensitively on <strong>the</strong> number<strong>of</strong> quanta <strong>in</strong> OH stretch excitation <strong>in</strong> <strong>the</strong> H 2 O subunit, asbeautifully elucidated by Crim co-workers. 36,44,51 For anatom-polyatom species such as Ar–H 2 O, predissociation at<strong>the</strong> first overtone level occurs on a relatively slow time scale10–100 ns, depend<strong>in</strong>g on <strong>the</strong> specific <strong>in</strong>ternal rotor quantumstate excited that, with 7 ns laser time resolution, readilypermits efficient photolysis <strong>of</strong> H 2 O <strong>in</strong> <strong>the</strong> v OH =2 manifold.Fur<strong>the</strong>rmore, v OH =−1 predissociation <strong>of</strong> <strong>the</strong> weakly boundAr–H 2 O complex D 0 140 cm −1 Ref. 42 most likelyDownloaded 26 May 2005 to 128.200.198.26. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp


194316-7 <strong>Overtone</strong> <strong>spectroscopy</strong> <strong>of</strong> H 2 O <strong>clusters</strong> J. Chem. Phys. 122, 194316 2005yields H 2 O <strong>in</strong> a near resonant vibrational state with v OH =1,and thus still exhibit<strong>in</strong>g <strong>the</strong> necessary photolysis enhancement.H 2 O dimer, on <strong>the</strong> o<strong>the</strong>r hand, is more strongly boundD 0 1700 cm −1 , 18 predissociates rapidly vide <strong>in</strong>fra, andhas more channels with which to deposit <strong>the</strong> excess overtoneenergy. The net effect is a decreased efficiency for detect<strong>in</strong>gH 2 O dimer by first overtone vibrationally mediated photolysis;this effect expla<strong>in</strong>s preferential sensitivity to weaklybound species such as Ar–H 2 O, H 2 –H 2 O, etc. Fur<strong>the</strong>rmore,it also rationalizes <strong>the</strong> absence <strong>in</strong> our spectra <strong>of</strong> <strong>clusters</strong> beyondH 2 O 2 , s<strong>in</strong>ce predissociation is statistically less likelyto deposit sufficient OH-stretch<strong>in</strong>g <strong>in</strong>ternal energy <strong>in</strong> <strong>the</strong>H 2 O fragments required for subsequent phot<strong>of</strong>ragmentation.Interest<strong>in</strong>gly, this also bodes well for vibrationally mediatedaction <strong>spectroscopy</strong> <strong>of</strong> H 2 O dimer and larger <strong>clusters</strong> <strong>in</strong> <strong>the</strong>second region overtone region for which a significant ga<strong>in</strong> <strong>in</strong>detection sensitivity would be predicted.High-resolution rovibrational <strong>spectroscopy</strong> <strong>of</strong> Ar–H 2 Ohas been well studied at <strong>the</strong> ground state v OH =0 and firstexcited state v OH =1 levels <strong>of</strong> H 2 O, 11,40,42,47,48,52 reveal<strong>in</strong>g aweakly anisotropic potential and states best described byH 2 O quantum numbers <strong>in</strong> <strong>the</strong> free rotor limit. Under jetcooledconditions, one <strong>the</strong>refore expects to observe onlytransitions orig<strong>in</strong>at<strong>in</strong>g from <strong>the</strong> lowest para 0 00 and ortho1 01 states <strong>of</strong> <strong>the</strong> complex, with weaker transitions alsopossible from <strong>the</strong> <strong>in</strong>completely cooled ortho 1 01 statewhich lies 11.4 cm −1 above 1 01 . Transitions built upon<strong>the</strong> stronger 02 − band <strong>of</strong> H 2 O monomer should dom<strong>in</strong>atethose derived from <strong>the</strong> weaker 02 + and 11 + overtonebands. Based on <strong>the</strong>se expectations and on analogy withspectra <strong>of</strong> Ar–H 2 O <strong>in</strong> <strong>the</strong> v OH =1 Refs. 11 and 47 andv OH =3 spectral ranges, 40 it is relatively straightforward toassign many <strong>of</strong> <strong>the</strong> bands to Ar–H 2 O Table I.As predicted, <strong>the</strong> most prom<strong>in</strong>ent Ar–H 2 O bands correlatewith <strong>the</strong> 02 − 0 00 ←1 01 and 02 − 1 01 ←0 00 l<strong>in</strong>es <strong>of</strong> H 2 Omonomer, just as seen <strong>in</strong> previous studies <strong>of</strong> fundamental01 − Refs. 11 and 47 and second overtone 03 − Ref. 40Fig. 4. Due to weak potential anisotropy contributions from<strong>the</strong> Ar atom, <strong>the</strong> threefold spatial degeneracy <strong>of</strong> <strong>the</strong> 1 01 <strong>in</strong>ternalrotor state <strong>of</strong> H 2 O splits <strong>in</strong>to and components,yield<strong>in</strong>g 0 00 ←1 01 7218.45 cm −1 and 0 00 ←1 01 7230.05 cm −1 subbands “flank<strong>in</strong>g” <strong>the</strong> 02 − 0 00←1 01 monomer transition. As this lift<strong>in</strong>g <strong>of</strong> spatial degeneracyby Ar also occurs <strong>in</strong> <strong>the</strong> 02 − 1 01 upper state, onesimilarly predicts two Ar–H 2 O bands surround<strong>in</strong>g <strong>the</strong>02 − 1 01 ←0 00 monomer l<strong>in</strong>e, as is <strong>in</strong>deed observed at7263.7 cm −1 1 01 ←0 00 and 7275.0 cm −1 1 01 ←0 00 . Fur<strong>the</strong>r confirmation <strong>of</strong> <strong>the</strong>se assignments can beobta<strong>in</strong>ed from <strong>the</strong> presence or absence <strong>of</strong> sharp central Qbranches <strong>in</strong> <strong>the</strong>se bands, respectively, <strong>in</strong> agreement with <strong>the</strong>predicted perpendicular and parallel nature <strong>of</strong> <strong>the</strong> ← and← transition moments see Table I.Similar to what was previously demonstrated for H 2 Odimer, <strong>the</strong> rotational constants <strong>of</strong> this van der Waals complexare sufficiently large to permit rotational analysis <strong>of</strong> favorablebands, provid<strong>in</strong>g unambiguous additional confirmation<strong>of</strong> <strong>the</strong> species as Ar–H 2 O. For example, a higher resolutionscan <strong>of</strong> <strong>the</strong> 0 00 ←1 01 band at 7230.05 cm −1 is shown<strong>in</strong> Fig. 7, which can be well modeled us<strong>in</strong>g known rotationalFIG. 7. Sample scan over <strong>the</strong> Ar–H 2 O 02 − 0 00 ←00 + 1 01 band.The pr<strong>of</strong>ile is best described by a rotational temperature <strong>of</strong> 7 K, with arotational l<strong>in</strong>e number<strong>in</strong>g certa<strong>in</strong> to ±1J. Simulation l<strong>in</strong>ewidth is 0.15 cm −1 ,which is <strong>the</strong> laser resolution limit.constants <strong>of</strong> Ar– H 2 O Refs. 11 and 48 and a typical rotationaltemperature <strong>of</strong> 7 K. From <strong>the</strong> observed splitt<strong>in</strong>g between02 − 0 00 ←1 01 and 02 − 0 00 ←1 01 bands, we can derive <strong>the</strong> energy separation <strong>of</strong> 11.6±0.3 cm −1between J=1 1 01 and J=1 1 01 <strong>in</strong> 00 + state, <strong>in</strong> goodagreement with <strong>the</strong> value <strong>of</strong> 11.333 cm −1 obta<strong>in</strong>ed fromhigh-resolution study <strong>of</strong> Ar–H 2 O fundamentals by Lascolaand Nesbitt. 11 From <strong>the</strong> 02 − 1 01 ←0 00 and02 − 1 01 ←0 00 band positions, one can also <strong>in</strong>fer <strong>the</strong>correspond<strong>in</strong>g splitt<strong>in</strong>g <strong>in</strong> <strong>the</strong> upper 02 − state to be11.3±0.3 cm −1 , i.e., consistent with only m<strong>in</strong>or changes <strong>in</strong><strong>the</strong> anisotropy <strong>of</strong> <strong>the</strong> Ar–H 2 O <strong>in</strong>termolecular potential uponOH stretch excitation.The effect <strong>of</strong> <strong>the</strong> H 2 O vibration on <strong>the</strong> Ar–H 2 O potentialwell depth is similarly small as evidenced by a redshift <strong>of</strong>only 2.9±0.3 cm −1 between <strong>the</strong> 02 − 0 00 ,J=0←00 + 0 00 ,J=0 band orig<strong>in</strong>s <strong>in</strong> free H 2 O and <strong>in</strong>Ar–H 2 O. The sign <strong>of</strong> <strong>the</strong> frequency shift is consistent with aslightly stronger van der Waals bond <strong>in</strong> <strong>the</strong> 02 − state. Themagnitude <strong>of</strong> <strong>the</strong> frequency shift is <strong>in</strong>termediate between thatfor <strong>the</strong> 01 − transition =1.32 cm −1 Ref. 11 and 03 −transition =3.06 cm −1 Ref. 40 <strong>in</strong>dicat<strong>in</strong>g a systematic<strong>in</strong>crease <strong>in</strong> <strong>the</strong> Ar–H 2 O <strong>in</strong>termolecular bond strength withv OH . This behavior is qualitatively consistent with observationson o<strong>the</strong>r atom-polyatom van der Waals complexes suchas Ar–HF. 53The strong set <strong>of</strong> bands near 7293 cm −1 can also beassigned to Ar–H 2 O that, by proximity to <strong>the</strong> 02 − 2 02←1 01 monomer transition at 7294.14 cm −1 , probably arisesfrom one or more projection components, , , <strong>of</strong> <strong>the</strong><strong>in</strong>ternal H 2 O rotor subunit along <strong>the</strong> <strong>in</strong>termolecular axis. Detailedassignment <strong>of</strong> <strong>the</strong> much weaker band structures forexample, near 7234, 7254, and 7258 cm −1 is less certa<strong>in</strong>.However, proximity to <strong>the</strong> 02 + 1 11 ←0 00 and 02 + 2 12←1 01 l<strong>in</strong>es <strong>of</strong> water monomer clearly suggests that <strong>the</strong>y arebuilt on <strong>the</strong>se transitions. What would make this dynamically<strong>in</strong>terest<strong>in</strong>g is that <strong>the</strong> 02 + overtone band <strong>in</strong> <strong>the</strong> monomer isextremely weak, i.e., <strong>the</strong> 02 + 1 11 ←0 00 and 02 − 1 01 ←0 00l<strong>in</strong>e <strong>in</strong>tensities differ by more than two orders <strong>of</strong> magnitude,yet <strong>the</strong> correspond<strong>in</strong>g Ar–H 2 O bands built on 02 + and02 − vibrations have much more comparable <strong>in</strong>tensities <strong>in</strong>action spectrum. In fact, this effect appears to be so strongfor 02 + 1 11 ←0 00 that we see <strong>in</strong> Fig. 4 vibrationally mediatedphotodissociation <strong>of</strong> <strong>the</strong> Ar–H 2 O cluster but not <strong>of</strong> bareDownloaded 26 May 2005 to 128.200.198.26. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp


194316-8 Nizkorodov et al. J. Chem. Phys. 122, 194316 2005H 2 O monomer. One can attribute this unusual <strong>in</strong>tensity patternto <strong>the</strong> difference <strong>in</strong> predissociation dynamics <strong>of</strong>Ar–H 2 O from 02 + and 02 − states. Indeed, if <strong>the</strong> actionspectrum is recorded us<strong>in</strong>g 2 − 3/2 N=2 rotational state <strong>of</strong>OH <strong>in</strong>stead <strong>of</strong> N=8, <strong>the</strong> <strong>in</strong>tensity <strong>of</strong> Ar–H 2 O 02 + bandsrelative to that <strong>of</strong> 02 − bands is substantially reduced, suggest<strong>in</strong>gthat predissociation <strong>of</strong> Ar–H 2 O 02 + states producesmore rotational and bend<strong>in</strong>g excitation <strong>in</strong> <strong>the</strong> watermonomer. 43 Experimental efforts to fur<strong>the</strong>r elucidate <strong>the</strong>seweaker band assignments are currently be<strong>in</strong>g pursued, basedon product state distributions and predissociation lifetimesand will be presented elsewhere. 54E. Vibrational predissociation dynamicsVibrationally mediated <strong>spectroscopy</strong> also permits one todirectly measure predissociation lifetimes <strong>of</strong> complexes bymonitor<strong>in</strong>g <strong>the</strong> f<strong>in</strong>al phot<strong>of</strong>ragment OH as a function <strong>of</strong> <strong>the</strong>time delay between <strong>the</strong> near-<strong>in</strong>frared pump and UV photolysislasers. The UV photodissociation <strong>of</strong> H 2 O takes place on afemtosecond time scale, so <strong>the</strong> rise time for OH formationfollow<strong>in</strong>g <strong>the</strong> UV pulse can be completely neglected on <strong>the</strong>nanosecond time scale <strong>of</strong> our experiment. For typical laserpulse durations, molecular jet velocities <strong>of</strong> 10 5 cm/s, andlaser beam sizes <strong>of</strong> 1–3 mm, this technique can <strong>the</strong>reforestraightforwardly access <strong>the</strong> time w<strong>in</strong>dow between t7and 1000 ns. The lower limit is determ<strong>in</strong>ed by <strong>the</strong> f<strong>in</strong>itepulse duration 5–7 ns, whereas <strong>the</strong> upper limit correspondsto <strong>the</strong> “flyout” time for excited molecules to exit <strong>the</strong> probevolume. The Ar–H 2 O overtone states observed here convenientlyresult <strong>in</strong> predissociation with<strong>in</strong> this time w<strong>in</strong>dow.By way <strong>of</strong> illustration, we consider <strong>the</strong> 02 − 0 00 ←1 01 transition <strong>in</strong> Ar–H 2 O see Fig. 8. If <strong>the</strong> <strong>in</strong>itiallyprepared Ar–H 2 O complex 02 − 0 00 photodissociates<strong>in</strong>to different OH states than photolysis <strong>of</strong> <strong>the</strong> predissociatedH 2 O monomer distribution, <strong>the</strong> OH distributions will dependon <strong>the</strong> pump-photolysis delay. If photolysis occurs beforepredissociation, <strong>the</strong> OH distribution reflects <strong>the</strong> break up <strong>of</strong><strong>the</strong> Ar–H 2 O cluster. At <strong>the</strong> o<strong>the</strong>r extreme, if photolysis occurslong after predissociation, <strong>the</strong> OH distributions reflectdynamics <strong>of</strong> <strong>the</strong> H 2 Ov predissociation product. Signalsprobed on a s<strong>in</strong>gle quantum state <strong>of</strong> OH reflect <strong>the</strong> superposition<strong>of</strong> both <strong>in</strong>tracluster and predissociated cluster photolysisdynamics as function <strong>of</strong> time delay. S<strong>in</strong>ce Ar–H 2 O predissociationtends to produce bend-excited H 2 O see below,which <strong>the</strong>n phot<strong>of</strong>ragments to form rotationally hotter OHdistributions, one expects OH LIF signal to <strong>in</strong>crease for highN and decrease for low N with pump-photolysis delay.These trends are nicely verified <strong>in</strong> Fig. 8, which showsOH 2 − 3/2 N=8 and 2 − 3/2 N=2 populations after <strong>the</strong>02 − 0 00 ←1 01 overtone excitation <strong>of</strong> Ar–H 2 O. TheN=2 signal rises quickly at t=0, as this state is produced <strong>in</strong>direct vibrationally mediated dissociation <strong>of</strong> Ar–H 2 O, but<strong>the</strong>n decays to a constant level characteristic <strong>of</strong> <strong>the</strong> photolysis<strong>of</strong> <strong>the</strong> H 2 O predissociation product. The N=8 signal startsout at zero because direct dissociation <strong>of</strong> Ar–H 2 O <strong>in</strong>02 − 0 00 state does not produce such hot OH states, but it<strong>the</strong>n rises to a steady level also determ<strong>in</strong>ed by <strong>the</strong> H 2 O predissociationproduct. Both sets <strong>of</strong> data can be least squares fitFIG. 8. Predissociation lifetimes <strong>of</strong> Ar–H 2 O and H 2 O 2 . The observed OHN signal comes from two <strong>in</strong>dependent channels: vibrationally mediatedphotodissociation and predissociation followed by photodissociation seeFig. 1. a Only predissociation/photodissociation channel contributes to <strong>the</strong>rise <strong>of</strong> high-N states <strong>of</strong> OH <strong>in</strong> <strong>the</strong> Ar–H 2 O case. b Vibrationally mediatedphotodissociation is responsible for <strong>the</strong> rapid rise and <strong>the</strong> predissociation/photodissociation for <strong>the</strong> slower decay <strong>of</strong> <strong>the</strong> signal for low-N states <strong>of</strong> OH<strong>in</strong> <strong>the</strong> Ar–H 2 O case. c Rapid predissociation <strong>of</strong> H 2 O 2 followed by directphotolysis <strong>of</strong> <strong>the</strong> vibrationally excited H 2 O predissociation fragments results<strong>in</strong> appearance <strong>of</strong> OH on a time scale <strong>of</strong> 7 ns.to an exponential rise or decay, clearly demonstrat<strong>in</strong>g that <strong>the</strong>complexes undergo predissociation on a 18±5 ns time scale.Note that this is essentially identical to <strong>the</strong> 16±5 ns predissociationlifetime for 03 − 0 00 states 55 observed <strong>in</strong> asimilar real time measurement. Also relevant <strong>in</strong> this regardare high-resolution measurements on <strong>the</strong> 01 − 0 00 state<strong>of</strong> Ar–H 2 O from which a lower limit <strong>of</strong> 16 ns is extractedfrom l<strong>in</strong>ewidth studies. 11 At first this seems dynamically surpris<strong>in</strong>g;from Fermi’s golden rule, one might anticipate rapidly<strong>in</strong>creas<strong>in</strong>g predissociation rates with <strong>in</strong>creas<strong>in</strong>g <strong>in</strong>ternalenergy. However, <strong>the</strong> vibrational density <strong>of</strong> states at <strong>the</strong>seenergies is still extremely sparse, and thus <strong>the</strong> predissociationdynamics <strong>in</strong> Ar–H 2 O are likely to be highly nonstatistical,result<strong>in</strong>g <strong>in</strong> long lifetimes sensitive to local resonancesbetween <strong>the</strong> <strong>in</strong>itial cluster and f<strong>in</strong>al H 2 O distributions. Insupport <strong>of</strong> this picture, a more complete study currently underwayRef. 43 <strong>of</strong> <strong>the</strong> o<strong>the</strong>r Ar–H 2 O bands <strong>in</strong> <strong>the</strong> v OH =2region exhibit lifetimes that vary more or less erratically withvibration and <strong>in</strong>ternal rotor quantum state.By way <strong>of</strong> comparison, Fig. 8c shows <strong>the</strong> correspond<strong>in</strong>gtime-delay dependence for <strong>the</strong> 7193 cm −1 band <strong>of</strong>H 2 O 2 . In contrast to Ar–H 2 O, <strong>the</strong> v OH =2 excitation <strong>of</strong>H 2 O 2 results <strong>in</strong> an <strong>in</strong>strumentally limited appearance <strong>of</strong>OH for all N. Indeed, this dynamical difference was exploited<strong>in</strong> <strong>the</strong> preced<strong>in</strong>g section to selectively discrim<strong>in</strong>ate <strong>in</strong><strong>the</strong> action spectra between long lived Ar–H 2 O excitationsfrom shorter lived H 2 O 2 ones and is consistent with a rapidpredissociation <strong>of</strong> <strong>the</strong> complex on a time scale 7 ns. TheDownloaded 26 May 2005 to 128.200.198.26. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp


194316-9 <strong>Overtone</strong> <strong>spectroscopy</strong> <strong>of</strong> H 2 O <strong>clusters</strong> J. Chem. Phys. 122, 194316 2005FIG. 9. Quantum-state distribution <strong>of</strong> all sp<strong>in</strong>-orbit, lambda-doublet, androtational OH states result<strong>in</strong>g from vibrationally mediated dissociation <strong>of</strong>Ar–H 2 O follow<strong>in</strong>g excitation <strong>in</strong> <strong>the</strong> 02 − 0 00 ←1 01 band filledsquares. Compared to <strong>the</strong> results for 02 − 0 00 ←1 01 excitation <strong>in</strong> free H 2 Oopen circles, dissociation <strong>in</strong>side <strong>the</strong> complex produces slightly hotter andmore statistical OH.observations could also be expla<strong>in</strong>ed by postulat<strong>in</strong>g a verylong 1 s predissociation lifetime, but this scenario ishighly unlikely <strong>in</strong> view <strong>of</strong> <strong>the</strong> rapid predissociation rates <strong>of</strong>H 2 O 2 <strong>in</strong> <strong>the</strong> v OH =1 manifold. 10For pump-photolysis time delays much shorter than <strong>the</strong>predissociation lifetime, <strong>the</strong>se vibrationally mediated photolysismethods permit one to <strong>in</strong>vestigate <strong>in</strong>tramolecular collisiondynamics <strong>in</strong> a s<strong>in</strong>gle size-selected and quantum-stateselectedcluster. For example, dissociation <strong>of</strong> free H 2 O<strong>in</strong>02 − states is known to result <strong>in</strong> rotationally cold OH seeFig. 9 with <strong>the</strong> distribution peaked at N=1–3. 43 Indeed, <strong>the</strong>action spectrum Fig. 4 would be dom<strong>in</strong>ated by free H 2 Ol<strong>in</strong>es if a rotationally cold state <strong>of</strong> OH e.g., N=2 was used<strong>in</strong> <strong>the</strong> prob<strong>in</strong>g step <strong>in</strong>stead <strong>of</strong> N=8. With vibrationally mediatedphotolysis, one can measure <strong>the</strong> distribution <strong>of</strong> OHproduced via dissociation <strong>of</strong> Ar–H 2 O complexes via <strong>the</strong>02 − 0 00 ←1 01 transition and directly compare withphotolysis <strong>of</strong> <strong>the</strong> “bare” <strong>in</strong>ternal rotor 02 − 0 00 excitedH 2 O monomer <strong>in</strong> <strong>the</strong> absence <strong>of</strong> <strong>the</strong> Ar atom. This data issummarized <strong>in</strong> Fig. 9 for each <strong>of</strong> <strong>the</strong> sp<strong>in</strong>-orbit and lambdadoubletstates and reveals two <strong>in</strong>terest<strong>in</strong>g features. First <strong>of</strong>all, <strong>the</strong>re are considerably higher populations <strong>in</strong> each electronicsublevel at high N, consistent with <strong>in</strong>tracluster rotationalexcitation <strong>of</strong> <strong>the</strong> recoil<strong>in</strong>g OH prior to exit<strong>in</strong>g <strong>the</strong> cluster.Second, <strong>the</strong> strong oscillations <strong>in</strong> N for <strong>the</strong> variouselectronic sublevels most apparent <strong>in</strong> <strong>the</strong> 2 − 3/2/1/2 manifoldshave much lower contrast ratios for <strong>the</strong> cluster vs freemonomer photodissociation processes. This implies lessspecificity <strong>in</strong> branch<strong>in</strong>g ratio <strong>in</strong>to a given electronic manifoldthat is consistent with partial scrambl<strong>in</strong>g <strong>of</strong> <strong>the</strong> nascent electronicstate distributions, but this time reflect<strong>in</strong>g nonadiabaticcollisional dynamics <strong>in</strong>side <strong>the</strong> cluster. These resultsconfirm those obta<strong>in</strong>ed on Ar–H 2 O <strong>clusters</strong> <strong>in</strong> <strong>the</strong> secondovertone region 40 and which has been nicely modeled by<strong>in</strong>elastic rotational and electronic state chang<strong>in</strong>g collisionsbetween <strong>the</strong> recoil<strong>in</strong>g OH and Ar atom with<strong>in</strong> <strong>the</strong>complex. 40,41For pump-photolysis delays 200–500 ns much longerthan <strong>the</strong> vibrational predissociation lifetime 18±5 ns, aFIG. 10. Rotational distribution <strong>of</strong> 2 −3/2 N states <strong>of</strong> OH result<strong>in</strong>g from UVphotolysis <strong>of</strong> H 2 Ov produced <strong>in</strong> predissociation <strong>of</strong> Ar–H 2 O 02 − 0 00 state; large circles and H 2 O 2 7193 cm −1 band; large triangles. Alsoshown are <strong>the</strong> correspond<strong>in</strong>g OH state distributions result<strong>in</strong>g from directphotolysis <strong>of</strong> <strong>in</strong>dividual quantum states <strong>of</strong> free H 2 O J=0,1,2 <strong>in</strong> 02 − statetop panel and 01 − 2 state bottom panel Ref. 43. Explicit comparisonsuggests that H 2 Ov OH =0,1;v bend =2 is <strong>the</strong> dom<strong>in</strong>ant product <strong>of</strong> predissociation<strong>of</strong> Ar–H 2 O and H 2 O 2 .completely different picture <strong>of</strong> <strong>the</strong> OH quantum state distributionsemerges see Fig. 10. By this time, all <strong>in</strong>itially excitedAr–H 2 O complexes 02 − 0 00 have predissociated,and <strong>the</strong> OH products are generated by UV photolysis fromnascent H 2 Ov molecules. As clearly evident <strong>in</strong> Fig. 10shown for <strong>the</strong> 2 − 3/2 manifold, <strong>the</strong> OH distribution is nowdramatically hotter, peak<strong>in</strong>g at around N=6. Interest<strong>in</strong>gly, aqualitatively similar distribution is also seen for vibrationallymediated photolysis on <strong>the</strong> H 2 O dimer bands, aga<strong>in</strong> show<strong>in</strong>ga strong preference for highly rotationally excited OH andsuggest<strong>in</strong>g a qualitatively similar predissociation pathway.Although our experiment does not probe <strong>the</strong>se H 2 Ov distributiondirectly, we can never<strong>the</strong>less glean some <strong>in</strong>sight<strong>in</strong>to <strong>the</strong> nature <strong>of</strong> <strong>the</strong> states formed from <strong>the</strong> predissociationevent by comparison with systematic vibrationally mediatedphotolysis studies <strong>of</strong> H 2 O rotational and vibrational quantumstates. Specifically, Fig. 10a displays 193 nm photolysisOH product state distributions 2 − 3/2 from J Ka K c=0 00 ,1 01 ,and 2 02 rotational states <strong>of</strong> H 2 O, each excited to <strong>the</strong> 02 −overtone level. Consistent with similar results by Crim andco-workers for 04 − excited H 2 O, 51 <strong>the</strong>se results <strong>in</strong>dicate aslight, but systematic, warm<strong>in</strong>g <strong>of</strong> <strong>the</strong> OH distributions with<strong>in</strong>itial H 2 O rotation. However, <strong>the</strong> shape <strong>of</strong> <strong>the</strong>se distributionsis qualitatively much colder than observed experimentally.In marked contrast, Fig. 10b exhibits OH distributionsfrom vibrationally mediated photolysis <strong>of</strong> H 2 O for <strong>the</strong> sameseries <strong>of</strong> rotational levels, but now <strong>in</strong> 01 − 2, i.e., a nearlyisoenergetic comb<strong>in</strong>ation state correspond<strong>in</strong>g to i OHstretch fundamental plus ii two quanta <strong>of</strong> HOH bend<strong>in</strong>gexcitation. These OH distributions are now substantially hot-Downloaded 26 May 2005 to 128.200.198.26. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp


194316-10 Nizkorodov et al. J. Chem. Phys. 122, 194316 2005ter, peak<strong>in</strong>g at N5–6, and qualitatively much more consistentwith <strong>the</strong> Ar–H 2 O dimer results. Although fur<strong>the</strong>r experimentswill be necessary to establish this def<strong>in</strong>itively, <strong>the</strong>results plausibly suggest that vibrational predissociation <strong>of</strong>Ar–H 2 O from 02 − 0 00 has strong contributions from <strong>the</strong>near resonant V-V pathway:Ar – H 2 O02 − 0 00 → H 2 Ov OH =1;v bend =2;J+ Ar, E released 240 cm −1 ,which would <strong>the</strong>n phot<strong>of</strong>ragment <strong>in</strong>to <strong>the</strong> high-N OH distributionsobserved <strong>in</strong> Fig. 10. The smoothness <strong>of</strong> <strong>the</strong> result<strong>in</strong>gOH state distribution would also be consistent with severaldifferent J states produced <strong>in</strong> Eq. 4, s<strong>in</strong>ce photolysis <strong>of</strong>s<strong>in</strong>gle J states <strong>of</strong> H 2 O generally result <strong>in</strong> much more structuredOH quantum state distributions for example, see Figs.9 and 10. As a f<strong>in</strong>al comment, it is worth not<strong>in</strong>g that <strong>the</strong> OHstate distributions result<strong>in</strong>g from <strong>the</strong> photolysis <strong>of</strong> overtoneexcited H 2 O 2 i.e., 7193 cm −1 band are remarkably similarto <strong>the</strong> above results for Ar–H 2 O. This might aga<strong>in</strong> suggestsubstantial bend<strong>in</strong>g excitation <strong>in</strong> one or more <strong>of</strong> <strong>the</strong> HOHproducts. Because <strong>of</strong> <strong>the</strong> higher b<strong>in</strong>d<strong>in</strong>g energy <strong>of</strong> H 2 O 2 vsAr–H 2 O D 0 1700 cm −1 vs 140 cm −1 , however, predissociation<strong>in</strong>to same H 2 Ov OH =1;v bend =2;J states is now notenergetically possible. Never<strong>the</strong>less, several bend-excitedchannels rema<strong>in</strong> energetically open such as formation <strong>of</strong>H 2 Ov OH =0;v bend 3 and H 2 Ov OH =1;v bend 1. Basedon <strong>the</strong> requirement <strong>of</strong> vibrationally enhanced photodissociationcross section at 193 nm, <strong>the</strong> observed distributions plausiblyarise from photolysis <strong>of</strong> H 2 Ov OH =1;v bend 1,J.However, it is worth not<strong>in</strong>g that s<strong>in</strong>ce <strong>the</strong> action spectra deriveboth <strong>the</strong>ir sensitivity and specificity from strong vibrationallymediated skew<strong>in</strong>g <strong>of</strong> <strong>the</strong> photodissociation cross sections,this need not be representative <strong>of</strong> <strong>the</strong> full distribution<strong>of</strong> predissociated H 2 O. Never<strong>the</strong>less, <strong>the</strong>se studies makesimple predictions and highlight some <strong>in</strong>terest<strong>in</strong>g directionsfor fur<strong>the</strong>r exploration with quantum state resolution <strong>in</strong> <strong>the</strong>ejected H 2 O, as perhaps could be studied by IR phot<strong>of</strong>ragmentationrecoil <strong>spectroscopy</strong>. 56,57IV. CONCLUSION AND SUMMARYThe comb<strong>in</strong>ation <strong>of</strong> slit jet expansions with i IR pumpvibrational excitation, ii vibrationally selective excimerphotolysis, followed by iii state-resolved laser-<strong>in</strong>ducedfluorescence prob<strong>in</strong>g <strong>of</strong> fragments, reveals itself as a powerfulspectroscopic tool for extend<strong>in</strong>g traditional vibrationallymediated photodissociation methods <strong>in</strong>to <strong>the</strong> overtone region<strong>of</strong> <strong>the</strong> water <strong>clusters</strong>. Rich vibrational structure has been observed<strong>in</strong> vibrationally mediated dissociation spectra <strong>of</strong>H 2 O/Ar mixtures under supersonically cooled conditions <strong>in</strong><strong>the</strong> vic<strong>in</strong>ity <strong>of</strong> <strong>the</strong> first OH-stretch<strong>in</strong>g overtones <strong>of</strong> H 2 O. Theobserved resonances can be assigned to overtone transitions<strong>of</strong> Ar–H 2 O and H 2 O 2 based on <strong>the</strong>ir spectral structure andphotodissociation dynamics and, <strong>in</strong> favorable cases, evenpermitt<strong>in</strong>g direct detection <strong>of</strong> resolved rotational structure.Indeed, this is <strong>the</strong> first reported gas-phase spectra <strong>of</strong> H 2 O4dimer overtone <strong>in</strong> <strong>the</strong> gas phase that reveals both agreementand disagreement with currently available <strong>the</strong>oretical models.The use <strong>of</strong> time delayed IR pump and photolysis lasersallows direct observation <strong>of</strong> predissociation dynamics <strong>of</strong>H 2 O complexes on <strong>the</strong> 10 ns 1 s time scale, as demonstratedon v OH =2 <strong>of</strong> Ar–H 2 O <strong>clusters</strong>. For sufficiently longlived vibrational states, this method provides a novel schemefor <strong>in</strong>itiat<strong>in</strong>g photochemical events <strong>in</strong>side size-selected andquantum-state-selected <strong>clusters</strong>. In conjunction with parallelstudies <strong>of</strong> <strong>the</strong> isolated monomer, solvent effects on <strong>the</strong>phot<strong>of</strong>ragmentation dynamics <strong>of</strong> H 2 O can be directly probedby comparison with vibrationally mediated photodissociation<strong>of</strong> <strong>the</strong> same free rotor state H 2 O state <strong>in</strong> <strong>the</strong> absence <strong>of</strong> <strong>the</strong>perturb<strong>in</strong>g Ar atom. Specifically, vibrationally mediated dissociation<strong>of</strong> H 2 O with<strong>in</strong> Ar–H 2 O complex clearly produceshotter rotational OH distributions as well as promot<strong>in</strong>g partialnonadiabatic energy transfer between 3/2,1/2 andlambda-doublet electronic levels. A simple physical modelfor this would be <strong>in</strong>tracluster collisions between <strong>the</strong> recoil<strong>in</strong>gOH phot<strong>of</strong>ragment and Ar atom. 40,41 At a more challeng<strong>in</strong>glevel, however, <strong>the</strong>se data reflect <strong>the</strong> detailed phot<strong>of</strong>ragmentationdynamics <strong>of</strong> H 2 O <strong>in</strong> <strong>the</strong> presence <strong>of</strong> a s<strong>in</strong>gle solventatom, yet with <strong>the</strong> considerable spectroscopic simplification<strong>of</strong> aligned, fully quantum-state-selected reagents as well as<strong>the</strong> special <strong>in</strong>tracluster advantage <strong>of</strong> well-determ<strong>in</strong>ed impactparameter and total angular momentum.ACKNOWLEDGMENTSF<strong>in</strong>ancial support by <strong>the</strong> National Science Foundationand Air Force Office <strong>of</strong> Scientific Research is gratefully acknowledged.A.E.W.K. wishes to acknowledge gratitude toJILA for Visit<strong>in</strong>g Fellowship support dur<strong>in</strong>g <strong>the</strong> time <strong>of</strong> thisresearch.1 M. Van Thiel, E. D. Becker, and G. C. Pimentel, J. Chem. Phys. 27, 4861957.2 T. R. Dyke and J. S. Muenter, J. Chem. Phys. 60, 2929 1974.3 T. R. Dyke, K. M. Mack, and J. S. Muenter, J. Chem. Phys. 66, 4981977.4 T. R. Dyke, J. Chem. Phys. 66, 492 1977.5 R. H. Page, J. G. Frey, Y. R. Shen, and Y. T. Lee, Chem. Phys. Lett. 106,373 1984.6 M. F. Vernon, D. J. Krajnovich, H. S. Kwok, J. M. Lisy, Y. R. Shen, andY. T. Lee, J. Chem. Phys. 77, 471982.7 D. F. Coker, R. E. Miller, and R. O. Watts, J. Chem. Phys. 82, 35541985.8 S. Wuelfert, D. Herren, and S. Leutwyler, J. Chem. Phys. 86, 37511987.9 Z. S. Huang and R. E. Miller, J. Chem. Phys. 88, 8008 1988.10 Z. S. Huang and R. E. Miller, J. Chem. Phys. 91, 6613 1989.11 R. Lascola and D. J. Nesbitt, J. Chem. Phys. 95, 7917 1991.12 J. B. Paul, R. A. Provencal, and R. J. Saykally, J. Phys. Chem. A 102,3279 1998.13 L. B. Braly, K. Liu, M. G. Brown, F. N. Keutsch, R. S. Fellers, and R. J.Saykally, J. Chem. Phys. 112, 10314 2000.14 K. L. Busarow, R. C. Cohen, G. A. Blake, K. B. Laughl<strong>in</strong>, Y. T. Lee, andR. J. Saykally, J. Chem. Phys. 90, 3937 1989.15 R. C. Cohen and R. J. Saykally, J. Phys. Chem. 96, 1024 1992.16 L. H. Coudert and J. T. Hougen, J. Mol. Spectrosc. 139, 2591990.17 G. T. Fraser, R. D. Suenram, and L. H. Coudert, J. Chem. Phys. 90, 60771989.18 R. S. Fellers, C. Leforestier, L. B. Braly, M. G. Brown, and R. J. Saykally,Science 284, 945 1999.Downloaded 26 May 2005 to 128.200.198.26. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp


194316-11 <strong>Overtone</strong> <strong>spectroscopy</strong> <strong>of</strong> H 2 O <strong>clusters</strong> J. Chem. Phys. 122, 194316 200519 N. Goldman, R. S. Fellers, C. Leforestier, and R. J. Saykally, J. Phys.Chem. A 105, 5152001.20 G. C. Groenenboom, E. M. Mas, R. Bukowski, K. Szalewicz, P. E. S.Wormer, and A. van der Avoird, Phys. Rev. Lett. 84, 4072 2000.21 F. Huisken, M. Kaloudis, and A. Kulcke, J. Chem. Phys. 104, 171996.22 G. Chaban and R. Gerber private communication.23 H. C. W. Tso, D. J. W. Geldart, and P. Chylek, J. Chem. Phys. 108, 53191998.24 G. R. Low and H. G. Kjaergaard, J. Chem. Phys. 110, 9104 1999.25 D. P. Sch<strong>of</strong>ield and H. G. Kjaergaard, Phys. Chem. Chem. Phys. 5, 31002003.26 J. P. Perchard, Chem. Phys. 273, 2172001.27 J. P. Perchard, Chem. Phys. 266, 1092001.28 V. Vaida and J. E. Headrick, J. Phys. Chem. A 104, 5401 2000.29 G. T. Evans and V. Vaida, J. Chem. Phys. 113, 6652 2000.30 S. M. Kathmann, G. K. Schenter, and B. C. Garrett, J. Chem. Phys. 111,4688 1999.31 C. E. Kolb, J. T. Jayne, D. R. Worsnop, M. J. Mol<strong>in</strong>a, R. F. Meads, and A.A. Viggiano, J. Am. Chem. Soc. 116, 10314 1994.32 A. B. Ryzhkov and P. A. Ariya, Chem. Phys. Lett. 367, 423 2002.33 P. M. Pawlowski, S. R. Okimoto, and F.-M. Tao, J. Phys. Chem. A 107,5327 2003.34 L. E. Christensen, M. Okumura, S. P. Sander, R. J. Salawitch, G. C. Toon,B. Sen, J. F. Blavier, and K. W. Jucks, Geophys. Res. Lett. 29, 13/12002.35 K. Pfeilsticker, A. Lotter, C. Peters, and H. Boesch, Science 300, 20782003.36 R. L. Vanderwal, J. L. Scott, and F. F. Crim, J. Chem. Phys. 94, 18591991.37 R. L. Vanderwal and F. F. Crim, J. Phys. Chem. 93, 5331 1989.38 P. Andresen, V. Beushausen, D. Hausler, H. W. Lulf, and E. W. Ro<strong>the</strong>, J.Chem. Phys. 83, 1429 1985.39 D. F. Plusquellic, O. Votava, and D. J. Nesbitt, J. Chem. Phys. 101, 63561994.40 O. Votava, D. F. Plusquellic, T. L. Myers, and D. J. Nesbitt, J. Chem. Phys.112, 7449 2000.41 K. M. Christ<strong>of</strong>fel and J. M. Bowman, J. Chem. Phys. 104, 8348 1996.42 R. C. Cohen and R. J. Saykally, J. Chem. Phys. 98, 6007 1993.43 S. A. Nizkorodov, M. Ziemkiewicz, T. L. Myers, and D. J. Nesbitt, J.Chem. Phys. 119, 10158 2003.44 R. Sch<strong>in</strong>ke, R. L. Vanderwal, J. L. Scott, and F. F. Crim, J. Chem. Phys.94, 2831991.45 M. S. Child and L. Halonen, Adv. Chem. Phys. 57, 11984.46 R. C. Cohen and R. J. Saykally, Annu. Rev. Phys. Chem. 42, 3691991.47 D. J. Nesbitt and R. Lascola, J. Chem. Phys. 97, 8096 1992.48 R. C. Cohen, K. L. Busarow, K. B. Laughl<strong>in</strong>, G. A. Blake, M. Havenith, Y.T. Lee, and R. J. Saykally, J. Chem. Phys. 89, 4494 1988.49 L. B. Braly, J. D. Cruzan, K. Liu, R. S. Fellers, and R. J. Saykally, J.Chem. Phys. 112, 10293 2000.50 L. H. Coudert, F. J. Lovas, R. D. Suenram, and J. T. Hougen, J. Chem.Phys. 87, 6290 1987.51 V. Engel, V. Staemmler, R. L. Vanderwal et al., J. Phys. Chem. 96, 32011992.52 M. J. Weida and D. J. Nesbitt, J. Chem. Phys. 106, 3078 1997.53 C. M. Lovejoy and D. J. Nesbitt, J. Chem. Phys. 91, 2790 1989.54 M. Ziemkiewicz, C. Pluetzer, and D. J. Nesbitt unpublished.55 O. Votava, Ph.D. <strong>the</strong>sis, University <strong>of</strong> Colorado, 1999.56 L. Oudejans and R. E. Miller, J. Chem. Phys. 113, 45812000.57 L. Oudejans and R. E. Miller, Annu. Rev. Phys. Chem. 52, 6072001.Downloaded 26 May 2005 to 128.200.198.26. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!