11.07.2015 Views

Modulation and Stabilization of Silk Fibroin-Coated Oil-in-Water ...

Modulation and Stabilization of Silk Fibroin-Coated Oil-in-Water ...

Modulation and Stabilization of Silk Fibroin-Coated Oil-in-Water ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

416 J.J. RAO et al.: <strong>Stabilization</strong> <strong>of</strong> <strong>Silk</strong> <strong>Fibro<strong>in</strong></strong>-<strong>Coated</strong> O/W Emulsions, Food Technol. Biotechnol. 47 (4) 413–420 (2009)Cream<strong>in</strong>g stability measurementA mass <strong>of</strong> 10 g <strong>of</strong> emulsions was transferred <strong>in</strong>to aglass test tube (<strong>in</strong>ternal diameter 15 mm, height 125 mm),tightly sealed with a plastic cap, <strong>and</strong> then stored at roomtemperature for 7 days. After storage, some <strong>of</strong> the emulsionswere separated <strong>in</strong>to a number <strong>of</strong> layers: a 'cream'layer at the top, a 'suspension' layer <strong>in</strong> the middle, <strong>and</strong> a'serum' layer at the bottom. These layers could be dist<strong>in</strong>guishedby their visual appearance: the cream layer wasoptically opaque <strong>and</strong> whiter than the orig<strong>in</strong>al emulsion,the suspension layer had the same appearance as the orig<strong>in</strong>alemulsion, <strong>and</strong> the serum layer was either slightlyturbid or transparent. The total height <strong>of</strong> the emulsion(H T ), the height <strong>of</strong> the serum layer (H SL ), <strong>and</strong> the height<strong>of</strong> the cream layer (H CL ) were measured. The extent <strong>of</strong>cream<strong>in</strong>g was characterized by cream<strong>in</strong>g <strong>in</strong>dices (CI),which were def<strong>in</strong>ed for the serum <strong>and</strong> cream layers respectively,as follows:CI SL =100·(H SL /H T ) /4/CI CL =100·(H CL /H T ) /5/The cream<strong>in</strong>g <strong>in</strong>dices provided <strong>in</strong>direct <strong>in</strong>formationabout the extent <strong>of</strong> droplet aggregation <strong>in</strong> an emulsion,for example, the higher the cream<strong>in</strong>g <strong>in</strong>dices, the greaterthe particle aggregation.Statistical analysisExperiments were performed at least twice us<strong>in</strong>gfreshly prepared samples. Average <strong>and</strong> st<strong>and</strong>ard deviationswere calculated from these duplicate measurements.Results <strong>and</strong> DiscussionOptimum conditions to form silkfibro<strong>in</strong>-coated dropletsThe purpose <strong>of</strong> these experiments was to establishthe optimum silk fibro<strong>in</strong> concentration required to formstable emulsions. The electrical charge (z-potential), particlesize distribution, cream<strong>in</strong>g stability, microstructure,amount <strong>of</strong> destabilized oil <strong>and</strong> mean particle diameter(d 32 ) <strong>of</strong> emulsions (10 % corn oil, by mass; 10 mM phosphatebuffer, pH=7.0) conta<strong>in</strong><strong>in</strong>g different silk fibro<strong>in</strong>mass fractions (0.2–3 %) were measured 24 h after preparation.The electrical charge <strong>of</strong> the emulsion droplets wasnegative at pH=7.0 because this pH was above the pI <strong>of</strong>the absorbed silk fibro<strong>in</strong>s. There was no significant change<strong>in</strong> z-potential with<strong>in</strong> the range <strong>of</strong> silk fibro<strong>in</strong> mass fraction(0.2–3.0 %), with the average be<strong>in</strong>g (–30.7±1.4) mV.S<strong>in</strong>ce the emulsion droplets are coated with a chargedbiopolymer, electrostatic repulsion is expected to play animportant role to prevent aggregation (13,14).The mean particle diameter (d 32 ) <strong>of</strong> emulsion decreasedas the mass fraction <strong>of</strong> silk fibro<strong>in</strong> <strong>in</strong>creasedfrom0.2to1%,itsm<strong>in</strong>imumbe<strong>in</strong>g(0.47±0.05) mm conta<strong>in</strong><strong>in</strong>g1 % (by mass) <strong>of</strong> silk fibro<strong>in</strong> (Fig. 1). The largeaggregates were observed under the microscope (d 32 >10mm), <strong>and</strong> rapid cream<strong>in</strong>g (CI CL >40 %) was observed <strong>in</strong>d 32 / m m3.53.02.52.01.51.00.50.00.00.50.2% 0.5% 1% 1.5%1.0 1.5 2.0 2.5w(silk fibro<strong>in</strong>)/%Fig. 1. Influence <strong>of</strong> silk fibro<strong>in</strong> mass fraction on the mean particlediameter (d 32 ) <strong>of</strong> corn oil-<strong>in</strong>-water emulsions. Inserted isthe morphology <strong>of</strong> relevant emulsions under microscope 400´;more sta<strong>in</strong><strong>in</strong>g means worse dispersionthe emulsions conta<strong>in</strong><strong>in</strong>g 0.2 <strong>and</strong> 0.5 % (by mass) <strong>of</strong> silkfibro<strong>in</strong>, whereas no aggregation or cream<strong>in</strong>g were observedat 1%(bymass)silk fibro<strong>in</strong>. These results can beattributed to the follow<strong>in</strong>g reasons: (i) the total dropletsurface area that can be stabilized by the <strong>in</strong>creased massfraction <strong>of</strong> silk fibro<strong>in</strong>; (ii) the rate at which the dropletsurfaces were covered with <strong>in</strong>creased mass fraction <strong>of</strong>silk fibro<strong>in</strong>; (iii) the frequency <strong>of</strong> droplet collisions decreaseddue to the <strong>in</strong>crease <strong>in</strong> aqueous phase viscosity.All <strong>of</strong> these factors should facilitate droplet disruption<strong>and</strong> prevent droplet coalescence with<strong>in</strong> the homogenizer,therefore lead<strong>in</strong>g to the formation <strong>of</strong> smaller droplet sizes.However, the mean particle diameter (d 32 ) <strong>of</strong> theemulsion <strong>in</strong>creased aga<strong>in</strong> when the mass fraction <strong>of</strong> silkfibro<strong>in</strong> was over 1.5 %. Apart from this, the foam wasobserved after homogeniz<strong>in</strong>g. Therefore, the foam capacity<strong>of</strong> the silk fibro<strong>in</strong> was measured (Fig. 2). There wasno foam capacity when the silk fibro<strong>in</strong> mass fractionwas very low (i.e. 0.2 or 0.5 %), after which it <strong>in</strong>creasedwith the <strong>in</strong>crease <strong>of</strong> silk fibro<strong>in</strong> mass fraction. The highestfoam capacity was 136 % at the silk fibro<strong>in</strong> mass fraction<strong>of</strong> 3 %. This observation suggests that higher silkfibro<strong>in</strong> mass fraction enhances foam<strong>in</strong>g capacity, whichcan be attributed to the above conclusion that the averageparticle diameter <strong>in</strong>creased with the higher silk fibro<strong>in</strong>mass fraction. In addition, oil destabilization mea-Foam capacity/%160140120100806040203.03.500.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5w(silk fibro<strong>in</strong>)/%Fig. 2. Influence <strong>of</strong> silk fibro<strong>in</strong> mass fraction on the foam capacity<strong>of</strong> corn oil-<strong>in</strong>-water emulsions


J.J. RAO et al.: <strong>Stabilization</strong> <strong>of</strong> <strong>Silk</strong> <strong>Fibro<strong>in</strong></strong>-<strong>Coated</strong> O/W Emulsions, Food Technol. Biotechnol. 47 (4) 413–420 (2009)417surements (Fig. 3) confirmed that there was appreciable'oil<strong>in</strong>g-<strong>of</strong>f' <strong>in</strong> the emulsion with higher silk fibro<strong>in</strong> massfraction. At high silk fibro<strong>in</strong> mass fraction (³1.5 %), therewas more than 15 % <strong>of</strong> destabilized oil <strong>in</strong> the emulsions.All these results <strong>in</strong>dicate that O/W emulsions can be preparedus<strong>in</strong>g silk fibro<strong>in</strong> concentration. However, <strong>in</strong> orderto avoid the formation <strong>of</strong> foam dur<strong>in</strong>g homogeniz<strong>in</strong>g,1%(bymass)<strong>of</strong>silkfibro<strong>in</strong> was used to preparethe emulsion (i.e. silk fibro<strong>in</strong>-to-oil mass ratio <strong>of</strong> 1:10) <strong>in</strong>all subsequent experiments, because this mass fractionenabled the production <strong>of</strong> emulsions conta<strong>in</strong><strong>in</strong>g relativelysmall droplets that were stable to cream<strong>in</strong>g.Destabilized oil/%4030201000.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5w(silk fibro<strong>in</strong>)/%Fig. 3. Influence <strong>of</strong> silk fibro<strong>in</strong> mass fraction on the amount <strong>of</strong>destabilized oil <strong>in</strong> 10 % (by mass) corn oil-<strong>in</strong>-water emulsionsSurface activity <strong>of</strong> silk fibro<strong>in</strong>The ability <strong>of</strong> prote<strong>in</strong> to form <strong>and</strong> stabilize emulsionsis dependent on their ability to adsorb to <strong>in</strong>terfaces<strong>and</strong> on the amount <strong>of</strong> prote<strong>in</strong> required to saturatethe <strong>in</strong>terface (15). The foam capacity is also dependenton it. In an attempt to expla<strong>in</strong> the emulsify<strong>in</strong>g ability<strong>and</strong> foam capacity <strong>of</strong> silk fibro<strong>in</strong>, the surface activity <strong>of</strong>silk fibro<strong>in</strong> was measured.The dependence <strong>of</strong> surface tension (g) <strong>of</strong> silk fibro<strong>in</strong>mass fraction <strong>in</strong> 10 mM phosphate buffer solution wastested (Fig. 4). As the silk fibro<strong>in</strong> mass fraction <strong>in</strong>creased,the surface tension decreased from 71.5 mN/m<strong>in</strong> the absence <strong>of</strong> silk fibro<strong>in</strong> to a constant value <strong>of</strong> 58.8g/(mN /m )807570656055500.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5w(silk fibro<strong>in</strong>)/%Fig. 4. Influence <strong>of</strong> silk fibro<strong>in</strong> mass fraction on the surface tension<strong>of</strong> silk fibro<strong>in</strong> solutions at 30 °CmN/m when the <strong>in</strong>terface became saturated with silkfibro<strong>in</strong> <strong>of</strong> 1.5 %, then sharply dropped to 54.9 mN/mwith the cont<strong>in</strong>ued <strong>in</strong>crease <strong>in</strong> silk fibro<strong>in</strong> mass fractionto 3 %. The surface activity <strong>of</strong> silk fibro<strong>in</strong> was relativelylow when concentrations were lower. This can be attributedto its relatively high hydrophobic properties.Generation <strong>of</strong> foam <strong>in</strong>volves the development <strong>of</strong> aprote<strong>in</strong> film surround<strong>in</strong>g a gas bubble <strong>and</strong> the pack<strong>in</strong>g<strong>of</strong> gas bubbles <strong>in</strong>to an overall structure. The spontaneousadsorption <strong>of</strong> prote<strong>in</strong>s from the solution to theair/aqueous <strong>in</strong>terface is <strong>of</strong> central importance for theirfoam<strong>in</strong>g performance. This phenomenon is thermodynamicallyfavourable due to the simultaneous dehydration<strong>of</strong> the hydrophobic <strong>in</strong>terface <strong>and</strong> hydrophobic portions<strong>of</strong> the prote<strong>in</strong>. Hydrophobic patches on the surface <strong>of</strong> aprote<strong>in</strong> <strong>in</strong>itially drive this process, <strong>and</strong> surface hydrophobicityhas been correlated with improved foam<strong>in</strong>gproperties (16). Once contacts are made with the <strong>in</strong>terface,flexibility with<strong>in</strong> the molecules can expose previouslyburied hydrophobic portions <strong>in</strong>to the <strong>in</strong>terface,potentially lead<strong>in</strong>g to <strong>in</strong>terfacial denaturation <strong>of</strong> the molecules<strong>and</strong> subsequent reduction <strong>in</strong> surface tension (17).This has been correlated with improved foamability. Inorder to avoid its foamability dur<strong>in</strong>g emulsion process<strong>in</strong>g,silk fibro<strong>in</strong> mass fraction <strong>of</strong> 1%<strong>in</strong>theemulsionsystem was selected.Influence <strong>of</strong> pH on the emulsion stabilityThe <strong>in</strong>fluence <strong>of</strong> storage pH (2–8) on the droplet charge(z-potential), mean particle diameter (d 32 ), <strong>and</strong> cream<strong>in</strong>gstability <strong>of</strong> 10 % (by mass) <strong>of</strong> corn oil-<strong>in</strong>-water emulsionsstabilized with silk fibro<strong>in</strong> was measured (Figs. 5–7).z-potential/mV4020012 3 4 5 6 7 8 9-20-40-60Fig. 5. Influence <strong>of</strong> pH on z-potential <strong>of</strong> corn oil-<strong>in</strong>-water emulsionsstabilized with silk fibro<strong>in</strong> (1 %, by mass)d 32 / m m2.52.01.51.00.5pH0.01 2 3 4 5 6 7 8 9pHFig. 6. Influence <strong>of</strong> pH on the mean particle size <strong>of</strong> corn oil-<strong>in</strong>--water emulsions stabilized with silk fibro<strong>in</strong> (1 %, by mass)


418 J.J. RAO et al.: <strong>Stabilization</strong> <strong>of</strong> <strong>Silk</strong> <strong>Fibro<strong>in</strong></strong>-<strong>Coated</strong> O/W Emulsions, Food Technol. Biotechnol. 47 (4) 413–420 (2009)8060CI SLCI CL1.00.8pH=3pH=7CI/%4020d 32/ m m0.60.40.202 3 4 5pH6 7 8Fig. 7. Influence <strong>of</strong> pH on the cream stability <strong>of</strong> corn oil-<strong>in</strong>--water emulsions stabilized with silk fibro<strong>in</strong> (1 %, by mass). Insertedis the cream stability <strong>of</strong> emulsions at various pH, separationsignifies unstability0.0unheated60 90t/°CFig. 8. Influence <strong>of</strong> thermal process<strong>in</strong>g on the mean particle size<strong>of</strong> corn oil-<strong>in</strong>-water emulsions stabilized with silk fibro<strong>in</strong> (1 %,by mass)The z-potential was relatively high (25.7 mV) atpH=2.0, but it became less positive with <strong>in</strong>creas<strong>in</strong>g pHuntil it reached a value <strong>of</strong> zero at around pH=4.0, <strong>and</strong>then became <strong>in</strong>creas<strong>in</strong>gly negative as the pH <strong>in</strong>creasedfurther, until it reached a value <strong>of</strong> –35.4 mV at pH=8.0.The droplets <strong>in</strong> prote<strong>in</strong>-stabilized emulsions have zeronet charge around the isoelectric po<strong>in</strong>t (IEP) <strong>of</strong> the adsorbedprote<strong>in</strong>s. Our z-potential vs. pHmeasurementssuggested that the pI values <strong>of</strong> the silk fibro<strong>in</strong> werearound pH=4.0. This value is quite similar to the pIvalue reported by the other researchers (18).The mean particle diameter (d 32 ) rema<strong>in</strong>ed relativelysmall (


J.J. RAO et al.: <strong>Stabilization</strong> <strong>of</strong> <strong>Silk</strong> <strong>Fibro<strong>in</strong></strong>-<strong>Coated</strong> O/W Emulsions, Food Technol. Biotechnol. 47 (4) 413–420 (2009)419z-potential/mV201000 50 100 150 200 250-10-20-30-40pH=3pH=7c(NaCl)/mMFig. 10. Influence <strong>of</strong> NaCl on z-potential <strong>of</strong> corn oil-<strong>in</strong>-wateremulsions stabilized with silk fibro<strong>in</strong> (1 %, by mass)d 32 / m m54321pH=3pH=700 50 100 150 200 250c(NaCl)/mMFig. 11. Influence <strong>of</strong> NaCl on the mean particle size <strong>of</strong> corn oil--<strong>in</strong>-water emulsions stabilized with silk fibro<strong>in</strong> (1 %, by mass)with <strong>in</strong>creas<strong>in</strong>g NaCl concentration at pH=7.0 than atpH=3.0. The most likely reason for this difference is thatthe monovalent Na + ions are counterions for the anionicdroplets <strong>in</strong> the emulsion, whereas the monovalent Cl –ions are counterions for the cationic droplets <strong>in</strong> the emulsion.Also, the Na + ions are more sensitive to b<strong>in</strong>d<strong>in</strong>g tothe droplets coated with silk fibro<strong>in</strong> at pH=3.0. This wasalso confirmed by the mean droplet diameter (d 32 )measurements,which showed that the magnitude <strong>of</strong> d 32 <strong>in</strong>creaseat pH=7.0 was smaller than that at pH=3.0 with<strong>in</strong>creas<strong>in</strong>g NaCl concentration, presumably because electrostaticscreen<strong>in</strong>g <strong>and</strong> ion b<strong>in</strong>d<strong>in</strong>g effects reduced moreelectrostatic repulsion at pH=3.0 than at pH=7.0 betweenthe oil droplets. It was also found that the meanparticle diameters (d 32 ) at pH=3.0 <strong>and</strong> 7.0 sharply <strong>in</strong>creasedeven when 50 mM <strong>of</strong> sodium chloride were added.This would account for the fact that lower amount<strong>of</strong> NaCl was needed to promote droplet aggregation <strong>in</strong>the emulsion. The cream<strong>in</strong>g stability (data not shown) <strong>of</strong>emulsion was relatively high (CI SL >50 %) even at lowerconcentration <strong>of</strong> salt. All these results suggest that silkfibro<strong>in</strong>-stabilized emulsions were unstable aga<strong>in</strong>st dropletaggregation even at lower ionic strength, when electrostatic<strong>in</strong>teractions would be screened. Hence, it can beconcluded that polymeric steric repulsion plays a lessimportant role than electrostatic repulsion <strong>in</strong> prevent<strong>in</strong>gthe droplets from aggregat<strong>in</strong>g.ConclusionsThis study has shown that silk fibro<strong>in</strong>, which can beisolated from silkworm cocoon, is very effective <strong>in</strong> stabiliz<strong>in</strong>goil-<strong>in</strong>-water emulsion by absorb<strong>in</strong>g to the surface<strong>of</strong> lipid droplets. It has also helped to identify optimummass ratio <strong>of</strong> corn oil <strong>and</strong> silk fibro<strong>in</strong> (corn oil/silk fibro<strong>in</strong>=10:1)for the preparation <strong>of</strong> O/W emulsions. Theelectrical properties <strong>and</strong> aggregation stability <strong>of</strong> the silkfibro<strong>in</strong>-coated O/W emulsions were determ<strong>in</strong>ed as a function<strong>of</strong> pH, ionic strength, <strong>and</strong> thermal process<strong>in</strong>g becausethese environmental stresses are commonly encountered<strong>in</strong> the food <strong>in</strong>dustry. The silk fibro<strong>in</strong>-coatedO/W emulsions proved to be stable to aggregation at pHvalues sufficiently far from their isoelectric po<strong>in</strong>t (pH=4.0)at relatively low salt concentrations (


420 J.J. RAO et al.: <strong>Stabilization</strong> <strong>of</strong> <strong>Silk</strong> <strong>Fibro<strong>in</strong></strong>-<strong>Coated</strong> O/W Emulsions, Food Technol. Biotechnol. 47 (4) 413–420 (2009)8. A.S. Gob<strong>in</strong>, R. Rhea, R.A. Newman, A.B. Mathur, <strong>Silk</strong>--fibro<strong>in</strong>-coated liposomes for long-term <strong>and</strong> targeted drugdelivery, Int. J. Nanomedic<strong>in</strong>e, 1 (2006) 81–87.9. M. Lovett, C. Cannizzaro, L. Daheron, B. Messmer, G. Vunjak-Novakovic,D.L. Kaplan, <strong>Silk</strong> fibro<strong>in</strong> microtubes forblood vessel eng<strong>in</strong>eer<strong>in</strong>g, Biomaterials, 28 (2007) 5271–5279.10. X.Q. Wang, E. Wenk, A. Matsumoto, L. Me<strong>in</strong>el, C.M. Li,D.L. Kaplan, <strong>Silk</strong> microspheres for encapsulation <strong>and</strong> controlledrelease, J. Control. Release, 117 (2007) 360–370.11. J. Palanuwech, R. Pot<strong>in</strong>eni, R.F. Roberts, J.N. Coupl<strong>and</strong>, Amethod to determ<strong>in</strong>e free fat <strong>in</strong> emulsions, Food Hydrocolloids,17 (2003) 55–62.12. C.W. C<strong>of</strong>fman, V.V. Garcia, Functional properties <strong>and</strong> am<strong>in</strong>o--acid content <strong>of</strong> a prote<strong>in</strong> isolate from mung bean flour, J.Food. Technol. 12 (1977) 473–484.13. M.E. Leunissen, J. Zwanikken, R. van Roij, P.M. Chaik<strong>in</strong>,A. van Blaaderen, Ion partition<strong>in</strong>g at the oil-water <strong>in</strong>terfaceas a source <strong>of</strong> tunable electrostatic effects <strong>in</strong> emulsionswith colloids, Phys. Chem. Chem. Phys. 9 (2007) 6405–6414.14. J. Surh, E.A. Decker, D.J. McClements, Properties <strong>and</strong> stability<strong>of</strong> oil-<strong>in</strong>-water emulsions stabilized by fish gelat<strong>in</strong>,Food Hydrocolloids, 20 (2006) 596–606.15. O. Lawal, M. Dawodu, Maleic anhydride derivatives <strong>of</strong> aprote<strong>in</strong> isolate: Preparation <strong>and</strong> functional evaluation, Eur.Food. Res. Technol. 226 (2007) 187–198.16. H.Y. Sung, H.J. Chen, T.Y. Liu, J.C. Su, Improvement <strong>of</strong> thefunctionalities <strong>of</strong> soy prote<strong>in</strong> isolate through chemicalphosphorylation, J. Food Sci. 48 (1983) 716–721.17. J.R. Wagner, J. Guéguen, Surface functional properties <strong>of</strong>native, acid-treated, <strong>and</strong> reduced soy glyc<strong>in</strong><strong>in</strong>. 1. Foam<strong>in</strong>gproperties, J. Agric. Food. Chem. 47 (1999) 2173–2180.18. S. Tcholakova, N.D. Denkov, D. Sidzhakova, B. Campbell,Effect <strong>of</strong> thermal treatment, ionic strength, <strong>and</strong> pH on theshort-term <strong>and</strong> long-term coalescence stability <strong>of</strong> b-lactoglobul<strong>in</strong>emulsions, Langmuir, 22 (2006) 6042–6052.


FTB 47 (4) 413-420.(FTB-2183)Moduliranje i stabilizacija emulzija ulja u vodi pomoću fibro<strong>in</strong>a svileSažetakSvrha je ovoga rada bila pripremiti i okarakterizirati stabilnu emulziju ulja u vodi,koja sadrži kapljice obložene fibro<strong>in</strong>om svile. <strong>Fibro<strong>in</strong></strong> svile, prirodni jestivi vlaknasti prote<strong>in</strong>dobiven iz čahura dudova svilca, upotrijebljen je za pripremu emulzije kukuruznog ulja uvodi (masenog udjela od 10 %) na sobnoj temperaturi (pH=7, 10 mM fosfatni pufer).Primjenom fibro<strong>in</strong>a svile masene koncentracije od 1 % dobivene su emulzije relativno malogpromjera čestica (d 32 =0,47 µm) i vrlo dobre stabilnosti (dulje od 7 dana). Ispitan je utjecajpH-vrijednosti (pH=2–8), topl<strong>in</strong>ske obrade (60–90 °C, 20 m<strong>in</strong>) i koncentracije soli(c(NaCl)=0–250 mM) na svojstva i stabilnost emulzije (ζ-potencijal, velič<strong>in</strong>a čestica iraslojavanje emulzije). Izoelektrična točka kapljica stabiliziranih pomoću fibro<strong>in</strong>a svilepostignuta je pri pH~4. Emulzije skladištene na sobnoj temperaturi bile su stabilne pri svimpH-vrijednostima, osim pri srednjoj (pH=4,0) kada su imale relativno nizak ζ-potencijal.Povećanjem pH-vrijednosti s 2 na 8 povećao se ζ-potencijal emulzija (s 25 na -35 mV).Uočena je stabilnost emulzija i nakon topl<strong>in</strong>ske obrade (tijekom 20 m<strong>in</strong>uta na 60 i 90 °C, pripH=3 i 7), a pri temperaturama višim od 60 °C ζ-potencijal se neznatno smanjio. Zbog uč<strong>in</strong>kaelektrostatskog odbijanja emulzije su bile nestabilne čak i pri neznatnim koncentracijama soli(c(NaCl)=0-250 mM, pH=3 i 7). Rezultati upućuju na to da stabilizacija emulzija pomoćufibro<strong>in</strong>a svile omogućuje proizvodnju funkcionalnih proizvoda na bazi ulja.Ključne riječi: fibro<strong>in</strong> svile, kukuruzno ulje, emulzija, stabilnost, pH

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!