11.07.2015 Views

Feynman Path Integral Formulation

Feynman Path Integral Formulation

Feynman Path Integral Formulation

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

7.3 Lattice Diffeomorphism Invariance 241A similar calculation can be done for the curvature associated with vertex 0. Onehas for the deficit angle at 0δ = δ 0 (q)+ 13 3/2 [δl 2 01 (3 − 2q 06 − q 01 − 2q 02 + q 16 + q 12 )+ δl02 2 (3 − 2q 01 − q 02 − 2q 03 + q 12 + q 23 )]+ ··· + O(δl 4 ) ,(7.56)and therefore for the variation of the sum of the deficit angles surrounding 0( )Δ ∑δ h = ∑ Δδ (7.57)hP 0 ...P 6and∑ δ = ∑ δ 0 (q)+v R (q) · δl 2 + O(δl 4 ) (7.58)P 0 ...P 6 P 0 ...P 6with in this case, as expected, v R (q) ≡ 0.Finally for the curvature squared associated with vertex 0 one computesδ 2A = δ 2 0A 0(q)+ 43 3/2 [δl 2 01(q01 +q 02 + q 03 + q 04 + q 05 + q 06− q 12 −q 23 − q 34 − q 45 − q 56 − q 16)+δl 2 02(q01 +q 02 + q 03 + q 04 + q 05 + q 06− q 12 −q 23 − q 34 − q 45 − q 56 − q 16)+ ···]+ O(δl 4 ) .(7.59)Adding up all seven contributions one gets( )Δ ∑δh 2 /A h = ∑ Δ(δ 2 /A) , (7.60)hP 0 ...P 6and therefore∑ δ 2 (/A = ∑ δ 2 /A ) 0 + v R 2(q) · δl2 + O(δl 4 ) . (7.61)P 0 ...P 6 P 0 ...P 6In this case the curvature squared associated with the vertex 0 will remain unchanged,provided the variations in the squared edge lengths meeting at 0 satisfythe constraintv R 2(q) · δl 2 = 0 , (7.62)

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!