23.11.2012 Views

The Effect of Moisture on Heating Values - Oak Ridge National ...

The Effect of Moisture on Heating Values - Oak Ridge National ...

The Effect of Moisture on Heating Values - Oak Ridge National ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Effect</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Moisture</str<strong>on</strong>g> <strong>on</strong> <strong>Heating</strong> <strong>Values</strong><br />

Definiti<strong>on</strong>s for heating value <str<strong>on</strong>g>of</str<strong>on</strong>g> a biomass<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> heating value <str<strong>on</strong>g>of</str<strong>on</strong>g> any fuel is the energy released per unit mass or per unit volume <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

fuel when the fuel is completely burned (ANSI/ASABE S593.1 2011). <str<strong>on</strong>g>The</str<strong>on</strong>g> term calorific<br />

value is syn<strong>on</strong>ymous to the heating value. Typical units for expressing calorific or heating<br />

value are MJ/kg in SI units or Btu/lb in English units. <str<strong>on</strong>g>The</str<strong>on</strong>g> heating value <str<strong>on</strong>g>of</str<strong>on</strong>g> a fuel depends <strong>on</strong><br />

the assumpti<strong>on</strong> made <strong>on</strong> the c<strong>on</strong>diti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> water molecules in the final combusti<strong>on</strong> products.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> higher heating value (HHV) refers to a c<strong>on</strong>diti<strong>on</strong> in which the water is c<strong>on</strong>densed out <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the combusti<strong>on</strong> products. Because <str<strong>on</strong>g>of</str<strong>on</strong>g> this c<strong>on</strong>densati<strong>on</strong> all <str<strong>on</strong>g>of</str<strong>on</strong>g> the heating value <str<strong>on</strong>g>of</str<strong>on</strong>g> the fuel<br />

including sensible heat and latent heat are accounted for. <str<strong>on</strong>g>The</str<strong>on</strong>g> lower heating value (LHV), <strong>on</strong><br />

the other hand refers to the c<strong>on</strong>diti<strong>on</strong> in which water in the final combusti<strong>on</strong> products remains<br />

as vapor (or steam); i.e. the steam is not c<strong>on</strong>densed into liquid water and thus the latent heat<br />

is not accounted for. <str<strong>on</strong>g>The</str<strong>on</strong>g> term net heating value (NHV) refers to LHV (ANSI/ASABE S593.1<br />

2011). <str<strong>on</strong>g>The</str<strong>on</strong>g> term gross heating value (GHV) refers to HHV.<br />

Determinati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> heating value <str<strong>on</strong>g>of</str<strong>on</strong>g> a biomass<br />

<strong>Heating</strong> value <str<strong>on</strong>g>of</str<strong>on</strong>g> a biomass is measured experimentally in terms <str<strong>on</strong>g>of</str<strong>on</strong>g> the high heating value<br />

(HHV). <str<strong>on</strong>g>The</str<strong>on</strong>g> standard method uses a device called bomb calorimeter. <str<strong>on</strong>g>The</str<strong>on</strong>g> device burns a<br />

small mass <str<strong>on</strong>g>of</str<strong>on</strong>g> biomass in the presence <str<strong>on</strong>g>of</str<strong>on</strong>g> oxygen inside a sealed c<strong>on</strong>tainer (or bomb). <str<strong>on</strong>g>The</str<strong>on</strong>g><br />

heat released from combusti<strong>on</strong> is transferred to a mass <str<strong>on</strong>g>of</str<strong>on</strong>g> fluid (air or water) that surrounds<br />

the c<strong>on</strong>tainer. <str<strong>on</strong>g>The</str<strong>on</strong>g> heating value is calculated from the product <str<strong>on</strong>g>of</str<strong>on</strong>g> mass <str<strong>on</strong>g>of</str<strong>on</strong>g> fluid x specific<br />

heat <str<strong>on</strong>g>of</str<strong>on</strong>g> fluid x net temperature increase. <str<strong>on</strong>g>The</str<strong>on</strong>g> calculated heating value must be corrected for<br />

heat losses to the mass <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>tainer, heat c<strong>on</strong>ducti<strong>on</strong> through the c<strong>on</strong>tainer wall, and heat<br />

losses to the surrounding <str<strong>on</strong>g>of</str<strong>on</strong>g> the device. In modern calorimeters the correcti<strong>on</strong>s are made<br />

automatically using sensors and c<strong>on</strong>trollers. <str<strong>on</strong>g>The</str<strong>on</strong>g> resulting measured heating value is<br />

c<strong>on</strong>sidered gross heating value (high heating value) at c<strong>on</strong>stant volume because the<br />

biomass combusti<strong>on</strong> in the c<strong>on</strong>tainer has taken place inside the fixed volume <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

c<strong>on</strong>tainer. <str<strong>on</strong>g>The</str<strong>on</strong>g> resulting gross heating value can be expressed based <strong>on</strong> dry mass c<strong>on</strong>tent <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the sample biomass,<br />

HHV<br />

HHVd � (Eq. 1)<br />

1 � M<br />

where HHVd is the gross heating value <str<strong>on</strong>g>of</str<strong>on</strong>g> the biomass in MJ/kg <str<strong>on</strong>g>of</str<strong>on</strong>g> b<strong>on</strong>e dry biomass, HHV is<br />

the gross heating value determined by the calorimeter. M is the moisture c<strong>on</strong>tent <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

biomass in decimal wet mass fracti<strong>on</strong>.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> high heating value can be estimated from the compositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the fuel (Gaur and<br />

Reed 1995),<br />

HHVd � 0.<br />

35X<br />

C � 1.<br />

18X<br />

H � 0.<br />

10X<br />

S �0.<br />

02X<br />

N �0.<br />

10X<br />

O �0.<br />

02X<br />

ash (Eq. 2)<br />

where X is the mass fracti<strong>on</strong>s (percent mass dry basis) for Carb<strong>on</strong> (C), Hydrogen (H), Sulfur<br />

(S), Nitrogen (N), Oxygen (O), and ash c<strong>on</strong>tent (ash). <str<strong>on</strong>g>The</str<strong>on</strong>g> unit <str<strong>on</strong>g>of</str<strong>on</strong>g> HHV in Equati<strong>on</strong> 2 is in<br />

Biomass Energy Data Book -- 2011 -- http://cta.ornl.gov/bedb


MJ/kg dry mass. Equati<strong>on</strong> 2 shows that the elements Carb<strong>on</strong>, Hydrogen, Sulfur increase the<br />

heating value whereas the elements Nitrogen, Oxygen, and ash suppress the heating value.<br />

Net heating value <str<strong>on</strong>g>of</str<strong>on</strong>g> biomass<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> HHV or GHV for woody biomass (including bark) that is determined experimentally is<br />

around 20 MJ/kg (8600 Btu/ lb) dry mass basis and for herbaceous biomass it is around<br />

18.8 MJ/kg (8080 Btu/ lb) dry mass basis (Oberberger and <str<strong>on</strong>g>The</str<strong>on</strong>g>k 2010). For a moist fuel, the<br />

heating value decreases because a porti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the combusti<strong>on</strong> heat is used up to evaporate<br />

moisture in the biomass and this evaporated moisture has not been c<strong>on</strong>densed to return the<br />

heat back to the system. An estimate <str<strong>on</strong>g>of</str<strong>on</strong>g> the LHV or net heating value (NHV) is obtained from<br />

the measured HHV by subtracting the heat <str<strong>on</strong>g>of</str<strong>on</strong>g> vaporizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> water in the products.<br />

LHV � HHV 1�<br />

M � 2.<br />

447<br />

(Eq. 3)<br />

� � M<br />

where LHV is the gross (or lower) heating value MJ/kg, M is the wet basis moisture c<strong>on</strong>tent<br />

(mass fracti<strong>on</strong> decimal). <str<strong>on</strong>g>The</str<strong>on</strong>g> c<strong>on</strong>stant 2.447 is the latent heat <str<strong>on</strong>g>of</str<strong>on</strong>g> vaporizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> water in<br />

MJ/kg at 25 o C. A more accurate estimate <str<strong>on</strong>g>of</str<strong>on</strong>g> the net heating value from equati<strong>on</strong> 3 can be<br />

obtained by including the heat released by the combusti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the hydrogen c<strong>on</strong>tent <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

biomass.<br />

High and low heating value at c<strong>on</strong>stant pressure<br />

In practice, the gases evolving from combusti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a biomass are expanded without much<br />

c<strong>on</strong>straints. In other words during combusti<strong>on</strong> the volume expands but the pressure in the<br />

combusti<strong>on</strong> z<strong>on</strong>e does not change much. This situati<strong>on</strong> is <str<strong>on</strong>g>of</str<strong>on</strong>g>ten present in a boiler<br />

combusti<strong>on</strong> chamber with unrestricted exhaust system. For these cases equati<strong>on</strong> 3<br />

developed from c<strong>on</strong>stant volume measurement is c<strong>on</strong>verted to heating value at c<strong>on</strong>stant<br />

pressure according to equati<strong>on</strong> 4,<br />

HHV � HHV �0.<br />

212X<br />

�0.<br />

0008 X � X<br />

(Eq. 4)<br />

p<br />

H<br />

� �<br />

where HHVp is the high heating value at c<strong>on</strong>stant pressure for dry biomass. XH, XO, and XN<br />

are the mass fracti<strong>on</strong> (percent dry mass) <str<strong>on</strong>g>of</str<strong>on</strong>g> the biomass. For wet biomass, the net heating<br />

value at c<strong>on</strong>stant pressure is calculated from<br />

� HHV 1.<br />

0 � M � 2.<br />

443<br />

(Eq. 5)<br />

LHVp, w<br />

p<br />

O<br />

� � M<br />

M is the wet basis moisture c<strong>on</strong>tent (mass fracti<strong>on</strong> decimal). LHVp,w is the net heating value<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> biomass at c<strong>on</strong>stant pressure per unit <str<strong>on</strong>g>of</str<strong>on</strong>g> wet biomass.<br />

Example <str<strong>on</strong>g>of</str<strong>on</strong>g> using equati<strong>on</strong>s 1-5<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> high heating values <str<strong>on</strong>g>of</str<strong>on</strong>g> two biomass species poplar and stover al<strong>on</strong>g with their ultimate<br />

analysis were measured. <str<strong>on</strong>g>The</str<strong>on</strong>g> moisture c<strong>on</strong>tent <str<strong>on</strong>g>of</str<strong>on</strong>g> the samples was 35% wet mass basis.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> table below lists the measured data.<br />

Biomass Energy Data Book -- 2011 -- http://cta.ornl.gov/bedb<br />

N


Measured <str<strong>on</strong>g>Moisture</str<strong>on</strong>g>, Elements, and High <strong>Heating</strong> Value <str<strong>on</strong>g>of</str<strong>on</strong>g> Biomass<br />

M (%) Ash (%) C (%) H (%) O (%) N (%) S (%)<br />

HHVd<br />

(MJ/kg)<br />

Poplar 35 0.65 51.64 6.26 41.45 0.00 0.00 20.75<br />

Stover 35 11.27 44.80 5.35 39.55 0.38 0.01 17.33<br />

Estimati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> HHVd (c<strong>on</strong>stant volume)<br />

Equati<strong>on</strong> 2 is used to calculate high heating value<br />

HHV � 0.<br />

35X<br />

� 1.<br />

18X<br />

� 0.<br />

10X<br />

�0.<br />

02X<br />

�0.<br />

10X<br />

�0.<br />

02X<br />

d<br />

Substituting from compositi<strong>on</strong>s listed in the table above<br />

for poplar<br />

HHV d<br />

�<br />

�<br />

21.<br />

3 MJ/kg<br />

0.<br />

35(<br />

51.<br />

64 )<br />

�<br />

C<br />

1.<br />

18(<br />

6.<br />

26<br />

H<br />

S<br />

N<br />

) � 0.<br />

10(<br />

0.<br />

00 ) � 0.<br />

02(<br />

0.<br />

00 ) � 0.<br />

10(<br />

41.<br />

45 ) � 0.<br />

02(<br />

0.<br />

65 )<br />

and for stover,<br />

� 0.<br />

35(<br />

44.<br />

80 ) � 1.<br />

18(<br />

5.<br />

35 ) � 0.<br />

10(<br />

0.<br />

01)<br />

� 0.<br />

02(<br />

0.<br />

38 ) � 0.<br />

10(<br />

39.<br />

55 ) � 0.<br />

02(<br />

11.<br />

27 )<br />

HHV d<br />

�<br />

17.<br />

8<br />

MJ/kg<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> calculated HHVd for both species are slightly higher than measured HHVd in the table<br />

above.<br />

Estimati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> LHV (c<strong>on</strong>stant volume)<br />

Equati<strong>on</strong> 3 is used to calculate low heating value<br />

LHV � HHVd<br />

1�<br />

M � 2.<br />

447<br />

Substituting for HHV and moisture c<strong>on</strong>tent,<br />

for poplar,<br />

LHV � ( 20.<br />

8 ) 1 � 0.<br />

35 �<br />

and for stover,<br />

�<br />

12.<br />

7<br />

LHV �<br />

�<br />

10.<br />

4<br />

MJ/kg<br />

( 17.<br />

3<br />

MJ/kg<br />

� � M<br />

� �<br />

�1 � 0.<br />

35�<br />

)<br />

�<br />

2.<br />

447(<br />

0.<br />

35 )<br />

2.<br />

447(<br />

0.<br />

35 )<br />

Calculati<strong>on</strong>s for <str<strong>on</strong>g>of</str<strong>on</strong>g> HHVp (c<strong>on</strong>stant pressure)<br />

Equati<strong>on</strong> 3 is used to calculate low heating value (or net calorific value) at c<strong>on</strong>stant pressure<br />

HHV � HHV �0.<br />

212X<br />

�0.<br />

0008 X � X<br />

p<br />

d<br />

H<br />

O<br />

� �<br />

Substituting from the table above for HHVd (for c<strong>on</strong>stant volume) and c<strong>on</strong>centrati<strong>on</strong>s,<br />

for poplar,<br />

� ( 20.<br />

8 ) � 0.<br />

212(<br />

6.<br />

26 ) � 0.<br />

0008 41.<br />

45 � 0.<br />

00<br />

HHV p<br />

�<br />

19.<br />

4<br />

MJ/kg<br />

O<br />

N<br />

� �<br />

Biomass Energy Data Book -- 2011 -- http://cta.ornl.gov/bedb<br />

ash


and for stover,<br />

HHV p<br />

�<br />

� ( 17.<br />

3 ) � 0.<br />

212(<br />

5.<br />

35 ) � 0.<br />

0008<br />

16.<br />

1 MJ/kg<br />

Calculati<strong>on</strong>s for <str<strong>on</strong>g>of</str<strong>on</strong>g> LHVp (c<strong>on</strong>stant pressure)<br />

Equati<strong>on</strong> 5 is used to calculate low heating value,<br />

� HHV 1.<br />

0 � M<br />

�<br />

LHVp p<br />

Substituting for HHVp and moisture c<strong>on</strong>tent,<br />

for poplar,<br />

LHV � ( 19.<br />

4 ) 1 � 0.<br />

35 �<br />

and for stover,<br />

11.<br />

8<br />

LHV �<br />

�<br />

9.<br />

6<br />

MJ/kg<br />

( 16.<br />

1<br />

MJ/kg<br />

� �� 2.<br />

443M<br />

� �<br />

�1 � 0.<br />

35�<br />

)<br />

�<br />

�39. 55 � 0.<br />

38�<br />

2.<br />

443(<br />

0.<br />

35 )<br />

2.<br />

443(<br />

0.<br />

35 )<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> table below shows the applicati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> equati<strong>on</strong> 5 to calculate the net heating value<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> biomass at various levels <str<strong>on</strong>g>of</str<strong>on</strong>g> moisture c<strong>on</strong>tent. Increasing moisture c<strong>on</strong>tent diminished the<br />

net heat value <str<strong>on</strong>g>of</str<strong>on</strong>g> biomass to the point that at slightly higher than 80% moisture c<strong>on</strong>tent, much<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the heat c<strong>on</strong>tent <str<strong>on</strong>g>of</str<strong>on</strong>g> the biomass is used up to evaporate its moisture.<br />

<str<strong>on</strong>g>Effect</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Moisture</str<strong>on</strong>g> C<strong>on</strong>tent <strong>on</strong> the Net <strong>Heating</strong> Value <str<strong>on</strong>g>of</str<strong>on</strong>g> Biomass at<br />

C<strong>on</strong>stant Pressure<br />

<str<strong>on</strong>g>Moisture</str<strong>on</strong>g> c<strong>on</strong>tent percent wet mass basis<br />

Biomass<br />

0 10 20 30 40 50 60 70 80<br />

Poplar 19.4 17.3 15.1 12.9 10.7 8.5 6.3 4.1 1.9<br />

Stover 16.1 14.3 12.4 10.6 8.7 6.8 5.0 3.1 1.3<br />

Biomass Energy Data Book -- 2011 -- http://cta.ornl.gov/bedb


List and Definiti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Symbols<br />

Symbol Definiti<strong>on</strong><br />

LHV Lower heating value<br />

HHV Higher heating value<br />

GHV Gross heating value<br />

NHV<br />

HHVp<br />

Net heating value<br />

High heating value at c<strong>on</strong>stant pressure<br />

HHVd<br />

B<strong>on</strong>e dry gross heating value <str<strong>on</strong>g>of</str<strong>on</strong>g> the biomass<br />

M <str<strong>on</strong>g>Moisture</str<strong>on</strong>g> c<strong>on</strong>tent wet mass basis<br />

X<br />

Subscripts<br />

Mass fracti<strong>on</strong> percent dry mass basis<br />

ash Ash<br />

C Carb<strong>on</strong><br />

d Dry mass basis<br />

H Hydrogen<br />

N Nitrogen<br />

O Oxygen<br />

p C<strong>on</strong>stant pressure<br />

w<br />

Units<br />

Moist biomass<br />

Btu British thermal unit<br />

°C Degrees Celsius<br />

MJ Mega (10 6 ) Joule (SI unit)<br />

kg Kilogram<br />

lb Pound mass<br />

References<br />

ASABE Standards. 2011. American Society for Agricultural & Biological Engineers, St.<br />

Joseph, MI: ASABE.<br />

ASTM E870 - 82(2006) Standard Test Methods for Analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> Wood Fuels.<br />

http://www.astm.org/Standards/E870.htm<br />

Gaur, S., T. Reed. 1995. An atlas <str<strong>on</strong>g>of</str<strong>on</strong>g> thermal data for biomass and other fuels. NREL/TB-<br />

433-7965, UC Category: 1310, DE95009212, Nati<strong>on</strong>al Renewable laboratory, Golden<br />

Colorado, USA.<br />

Obenberger, I. and G. <str<strong>on</strong>g>The</str<strong>on</strong>g>k. 2010. <str<strong>on</strong>g>The</str<strong>on</strong>g> Pellet Handbook. IEA Bioenergy. Earthscan LLC,<br />

Washingt<strong>on</strong>, DC.<br />

SIS-CENéTS14918:2005. Solid bi<str<strong>on</strong>g>of</str<strong>on</strong>g>uels. Method <str<strong>on</strong>g>of</str<strong>on</strong>g> determinati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> calorific value.<br />

http://www.biomassenergycentre.org.uk/portal/page?_pageid=77,19836&_dad=portal&_sc<br />

hema=PORTAL<br />

Sjaak, Van Loo, Jaap Koppejan. 2008. <str<strong>on</strong>g>The</str<strong>on</strong>g> handbook <str<strong>on</strong>g>of</str<strong>on</strong>g> biomass combusti<strong>on</strong> and co-firing.<br />

Earthsacn, Washingt<strong>on</strong>, DC.<br />

TAPPI Gross heating value <str<strong>on</strong>g>of</str<strong>on</strong>g> black liquor, Test Method T 684 om-<br />

11http://www.tappi.org/Bookstore/Standards--TIPs/Standards.aspx<br />

Written by Shahab Sokhansanj, <strong>Oak</strong> <strong>Ridge</strong> Nati<strong>on</strong>al Laboratory, September 2011.<br />

Biomass Energy Data Book -- 2011 -- http://cta.ornl.gov/bedb

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!