11.07.2015 Views

Impact of Cage Culture on Sediment Chemistry A Case Study in ...

Impact of Cage Culture on Sediment Chemistry A Case Study in ...

Impact of Cage Culture on Sediment Chemistry A Case Study in ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

F<strong>in</strong>al Project 2003<str<strong>on</strong>g>Impact</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Cage</str<strong>on</strong>g> <str<strong>on</strong>g>Culture</str<strong>on</strong>g> <strong>on</strong> <strong>Sediment</strong> <strong>Chemistry</strong>A <strong>Case</strong> <strong>Study</strong> <strong>in</strong> MjoifjordurMehdi Shakouri, M.Sc., Shrimp AquaculturistFisheries Co. <str<strong>on</strong>g>of</str<strong>on</strong>g> Iran (SHILAT)No. 250, Fatemi Ave., Tehran, Iran.shakouri@shilat.net and mehdishakouri@yahoo.comSupervisor: Dr. Guðjón Atli Auðunss<strong>on</strong>, Icelandic Fisheries Laboratories,gudj<strong>on</strong>@rf.isABSTRACT<str<strong>on</strong>g>Impact</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> Atlantic salm<strong>on</strong> (Salmo salar) cage culture <strong>in</strong> Mjoifjordur, Eastern Iceland <strong>on</strong>the chemistry <str<strong>on</strong>g>of</str<strong>on</strong>g> the sediment was <strong>in</strong>vestigated. <strong>Sediment</strong> samples were collected us<strong>in</strong>g aShipek grab <strong>on</strong> 29.12.2003. A core sub-sample has taken from each grab for analyz<strong>in</strong>gtotal organic matter, total organic carb<strong>on</strong>, total nitrogen and phosphorus <strong>in</strong> differentdepths <str<strong>on</strong>g>of</str<strong>on</strong>g> samples from three stati<strong>on</strong>s at various distances from the cage. Theseparameters were analyzed <strong>in</strong> the top layer <str<strong>on</strong>g>of</str<strong>on</strong>g> additi<strong>on</strong>al four stati<strong>on</strong>s. The results show asignificant <strong>in</strong>crease <strong>in</strong> all analyzed parameters <strong>in</strong> stati<strong>on</strong> 1, at 5 m from the cage (P>0.05).The difference between reference stati<strong>on</strong> (600 m from the cage) and stati<strong>on</strong> 2 at 95 m tothe cage was <strong>in</strong>significant, <strong>in</strong>dicat<strong>in</strong>g localized impact <str<strong>on</strong>g>of</str<strong>on</strong>g> cage farm<strong>in</strong>g to the vic<strong>in</strong>ity <str<strong>on</strong>g>of</str<strong>on</strong>g>cage (P


ShakouriTABLE OF CONTENTSLIST OF TABLES.............................................................................................................. 3TABLE OF FIGURES........................................................................................................ 31 INTRODUCTION ...................................................................................................... 42 REVIEW ON IMPACTS OF SALMON CAGE CULTURE..................................... 62.1 Waste materials <strong>in</strong> salm<strong>on</strong> cage culture and their envir<strong>on</strong>mental....................... 72.1.1 Solid waste.................................................................................................. 72.1.2 Dissolved waste ........................................................................................ 172.2 Evaluati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> impacts <strong>on</strong> sediment................................................................... 253 CASE STUDY: IMPACT OF ATLANTIC SALMON CAGE CULTURE ONSEDIMENT CHEMISTRY IN MJOIFJORDUR, ICELAND ......................................... 263.1 Materials and methods ...................................................................................... 273.2 Sampl<strong>in</strong>g ........................................................................................................... 273.3 Sample chemistry analysis................................................................................ 283.3.1 Dry weight and total organic matter (TOM)............................................. 293.3.2 Total organic carb<strong>on</strong> (TOC)...................................................................... 293.3.3 Total phosphorus and nitrogen.................................................................. 293.3.4 Statistical analysis..................................................................................... 303.4 Results............................................................................................................... 303.4.1 Top layer <str<strong>on</strong>g>of</str<strong>on</strong>g> sediments.............................................................................. 303.4.2 Stati<strong>on</strong>s 1, 2 and 7..................................................................................... 303.5 Discussi<strong>on</strong> and c<strong>on</strong>clusi<strong>on</strong>................................................................................ 333.6 Recommendati<strong>on</strong> .............................................................................................. 36ACKNOWLEDGMENT................................................................................................... 36LIST OF REFERENCE .................................................................................................... 37APPENDIX....................................................................................................................... 44Appendix 1: Geographical positi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the sampl<strong>in</strong>g stati<strong>on</strong>s ...................................... 44UNU-Fisheries Tra<strong>in</strong><strong>in</strong>g Programme 2


ShakouriLIST OF TABLESTable 1: Mean c<strong>on</strong>tents <str<strong>on</strong>g>of</str<strong>on</strong>g> organic material <strong>in</strong> feed and waste solids <strong>in</strong> Atlantic salm<strong>on</strong>cage farm<strong>in</strong>g (based <strong>on</strong> average quantity and quality <str<strong>on</strong>g>of</str<strong>on</strong>g> solid wastes <strong>in</strong> a salm<strong>on</strong>cage farm, FCR=1.1)................................................................................................. 10Table 2: Descriptive model <str<strong>on</strong>g>of</str<strong>on</strong>g> benthic faunal successi<strong>on</strong> dur<strong>in</strong>g sediment recovery fromload<strong>in</strong>g with fish farm wastes (Pears<strong>on</strong> and Black 2001)......................................... 16Table 3: Shaann<strong>in</strong>g polluti<strong>on</strong> <strong>in</strong>dex <str<strong>on</strong>g>of</str<strong>on</strong>g> sediment ( Carroll et al. 2003) ............................ 26Table 4 : Depth <str<strong>on</strong>g>of</str<strong>on</strong>g> water and distance from the coast at sampl<strong>in</strong>g stati<strong>on</strong>s...................... 28Table 5: Mean and standard deviati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> analyzed compounds <strong>in</strong> different layer <str<strong>on</strong>g>of</str<strong>on</strong>g>sediments <strong>in</strong> 3 stati<strong>on</strong>s .............................................................................................. 32Table 6: Mean and standard deviati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> analyzed compounds <strong>in</strong> different stati<strong>on</strong> ........ 32Table 7: Pears<strong>on</strong>, 2 tailed analysis for correlati<strong>on</strong> between variables (N=18) ................. 32TABLE OF FIGURESFigure 1: World producti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> farmed salm<strong>on</strong>id fish (FAO 2002). .................................. 4Figure 2: Aquaculture producti<strong>on</strong> <strong>in</strong> Iceland (FAO 2002). ................................................ 5Figure 3: Diagram <str<strong>on</strong>g>of</str<strong>on</strong>g> geochemical and biological changes <strong>in</strong> sediments......................... 14Figure 4: Z<strong>on</strong><strong>in</strong>g <str<strong>on</strong>g>of</str<strong>on</strong>g> organic enrichment and spatial impact <str<strong>on</strong>g>of</str<strong>on</strong>g> fish cage culture ............. 16Figure 5: Positi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the farm and sampl<strong>in</strong>g stati<strong>on</strong> <strong>in</strong> Mjoifjordur (not <strong>in</strong> scale) ........... 28Figure 6: Analysed parameters <strong>in</strong> top layers <str<strong>on</strong>g>of</str<strong>on</strong>g> different stati<strong>on</strong>s .................................... 30Figure 7: Variati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> analyzed compounds <strong>in</strong> different depth at stati<strong>on</strong> 1, 2 and 7........ 31Figure 8: Correlati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> analyzed compounds <strong>in</strong> various layer <str<strong>on</strong>g>of</str<strong>on</strong>g> sediment <strong>in</strong> differentstati<strong>on</strong>........................................................................................................................ 33UNU-Fisheries Tra<strong>in</strong><strong>in</strong>g Programme 3


Shakouri1 INTRODUCTIONAquaculture has grown rapidly <strong>in</strong> the past two decades. Several techniques and newspecies have c<strong>on</strong>tributed to the <strong>in</strong>crease <strong>in</strong> world aquaculture producti<strong>on</strong> from less than10 milli<strong>on</strong> t<strong>on</strong>s <strong>in</strong> 1989 to more than 24 milli<strong>on</strong> t<strong>on</strong>s <strong>in</strong> 2001 (exclud<strong>in</strong>g aquatic plants)(FAO 2002). <str<strong>on</strong>g>Cage</str<strong>on</strong>g> culture, the practice <str<strong>on</strong>g>of</str<strong>on</strong>g> farm<strong>in</strong>g <str<strong>on</strong>g>of</str<strong>on</strong>g> aquatics <strong>in</strong> cages and nets, iswidespread around the world.<str<strong>on</strong>g>Cage</str<strong>on</strong>g> aquaculture is an old practice. It dates back to early 10 th century when Ch<strong>in</strong>esefishermen used to fatten fish fries <strong>in</strong> cages made <str<strong>on</strong>g>of</str<strong>on</strong>g> bamboo sticks (Beveridge 1996).However, expansi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> cage aquaculture has taken place <strong>in</strong> the past three decades,particularly s<strong>in</strong>ce the late 1980s. The growth is attributed to several factors (Eng andTech 2002): High market value and demand for mar<strong>in</strong>e fishes Improvement <str<strong>on</strong>g>of</str<strong>on</strong>g> technology for cage culture <strong>in</strong> various oceanographic c<strong>on</strong>diti<strong>on</strong>and go<strong>in</strong>g to <str<strong>on</strong>g>of</str<strong>on</strong>g>fshore area Availability <str<strong>on</strong>g>of</str<strong>on</strong>g> suitable coastal area for cage culture around the world Availability <str<strong>on</strong>g>of</str<strong>on</strong>g> technical support and good quality <strong>in</strong>put (feed, fry, etc.)Tens <str<strong>on</strong>g>of</str<strong>on</strong>g> f<strong>in</strong>fish species have been cultivated <strong>in</strong> various cage systems all around the world.Tilapia and carps are predom<strong>in</strong>ant <strong>in</strong> freshwater <strong>in</strong> Asia while salm<strong>on</strong>ids are comm<strong>on</strong>lyfarmed <strong>in</strong> Europe and America (Eng and Tech 2002). Total producti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> seabass and seabream, milkfish, grouper, halibut, Atlantic cod, red drum, cobia and tuna is notcomparable with the above menti<strong>on</strong>ed groups (Weber 2003).Salm<strong>on</strong> is the most important group <str<strong>on</strong>g>of</str<strong>on</strong>g> cage farmed species, cultivated <strong>in</strong> variousenvir<strong>on</strong>ments from freshwater lakes to <str<strong>on</strong>g>of</str<strong>on</strong>g>fshore oceanic areas. Atlantic salm<strong>on</strong> (Salmosalar), with annual producti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> more than 1 milli<strong>on</strong> t<strong>on</strong>s has the greatest c<strong>on</strong>tributi<strong>on</strong>(Figure 1). major part <str<strong>on</strong>g>of</str<strong>on</strong>g> the producti<strong>on</strong> comes from cage culture.mt2000000180000016000001400000120000010000008000006000004000002000000OthersTroutsA. Salm<strong>on</strong>1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001Figure 1: World producti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> farmed salm<strong>on</strong>id fish (FAO 2002).UNU-Fisheries Tra<strong>in</strong><strong>in</strong>g Programme 4


ShakouriIceland is a new entry to the world <str<strong>on</strong>g>of</str<strong>on</strong>g> aquaculture. Atlantic salm<strong>on</strong> with annualproducti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> some 2500 t<strong>on</strong>s c<strong>on</strong>tributes to more than 50% <str<strong>on</strong>g>of</str<strong>on</strong>g> total aquaculture products<str<strong>on</strong>g>of</str<strong>on</strong>g> the country (FAO 2002, Figure 2). Producti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> cage farmed salm<strong>on</strong> is expected toreach to 40000 t<strong>on</strong>s by 2005-2006 (Johanss<strong>on</strong> 2001).mt5000450040003500300025002000150010005000OthersA.Salm<strong>on</strong>1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001Figure 2: Aquaculture producti<strong>on</strong> <strong>in</strong> Iceland (FAO 2002).On the other hand, <strong>in</strong> the I.R <str<strong>on</strong>g>of</str<strong>on</strong>g> Iran the annual producti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> aquaculture sub-sector isabout 70000 t<strong>on</strong>s and commercial cage culture is a new activity. Studies show that thereis a good potential for development <str<strong>on</strong>g>of</str<strong>on</strong>g> the <strong>in</strong>dustry <strong>in</strong> the country. At present, a smallnumber <str<strong>on</strong>g>of</str<strong>on</strong>g> companies have begun to experiment with cage culture <strong>in</strong> the Persian Gulf andCaspian Sea. The envir<strong>on</strong>mental impact <str<strong>on</strong>g>of</str<strong>on</strong>g> cage culture has been <str<strong>on</strong>g>of</str<strong>on</strong>g> some c<strong>on</strong>cern,especially the impact <str<strong>on</strong>g>of</str<strong>on</strong>g> waste material <strong>on</strong> the seabed and chemistry <str<strong>on</strong>g>of</str<strong>on</strong>g> the sediment.The present work reviews major impacts <str<strong>on</strong>g>of</str<strong>on</strong>g> cage culture <strong>on</strong> the sediment with theemphasis <strong>on</strong> salm<strong>on</strong> cage culture. The f<strong>in</strong>d<strong>in</strong>gs will strengthen the pers<strong>on</strong>alunderstand<strong>in</strong>g <str<strong>on</strong>g>of</str<strong>on</strong>g> the c<strong>on</strong>cepts, pr<strong>in</strong>ciples and processes <str<strong>on</strong>g>of</str<strong>on</strong>g> the impacts <str<strong>on</strong>g>of</str<strong>on</strong>g> cage culture.The case study “impact <str<strong>on</strong>g>of</str<strong>on</strong>g> salm<strong>on</strong> farm<strong>in</strong>g <strong>on</strong> sediment chemistry <strong>in</strong> Mjoifjordur (Narrowfjord), east <str<strong>on</strong>g>of</str<strong>on</strong>g> Iceland” provided an opportunity for both field and laboratory work, aproper approach for objective analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> the impact.UNU-Fisheries Tra<strong>in</strong><strong>in</strong>g Programme 5


Shakouri2 REVIEW ON IMPACTS OF SALMON CAGE CULTURE<str<strong>on</strong>g>Impact</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> salm<strong>on</strong> aquaculture is well studied due to its expansi<strong>on</strong> <strong>in</strong> developed countriesor with the f<strong>in</strong>ancial <strong>in</strong>vestment <str<strong>on</strong>g>of</str<strong>on</strong>g> developed countries <strong>in</strong> develop<strong>in</strong>g countries likeChile. Number <str<strong>on</strong>g>of</str<strong>on</strong>g> reports <strong>on</strong> envir<strong>on</strong>mental impact assessment <str<strong>on</strong>g>of</str<strong>on</strong>g> salm<strong>on</strong> cage farm<strong>in</strong>g <strong>in</strong>several countries are available, am<strong>on</strong>g them studies <strong>in</strong> Australia, Canada, Chile, Norway,United K<strong>in</strong>gdom and the United State could be po<strong>in</strong>ted out (EAO 1996, W<strong>in</strong>sby et al.1996, ASI 1999, He<strong>in</strong><strong>in</strong>g 2000, Nash 2001, Buschmann 2002, Crawford et al. 2002,SECRU 2002, Brooks and Mahnken 2003 a Carroll et al. 2003, Weber 2003).Although the risks and degree <str<strong>on</strong>g>of</str<strong>on</strong>g> effects are site specific and may vary from place toplace, all <str<strong>on</strong>g>of</str<strong>on</strong>g> these studies have po<strong>in</strong>ted out similar risks and impacts. Nash (2001) haslisted the risks <str<strong>on</strong>g>of</str<strong>on</strong>g> salm<strong>on</strong> cage culture <strong>in</strong> the Pacific Northwest <strong>in</strong> three major categories:A. High risk1. <str<strong>on</strong>g>Impact</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> bio-deposits (fish faeces and uneaten feed) <strong>on</strong> sediment and c<strong>on</strong>sequenteffects.2. The impact <str<strong>on</strong>g>of</str<strong>on</strong>g> accumulati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> heavy metals <strong>in</strong> the sediment <strong>on</strong> benthiccommunities.3. The impact <str<strong>on</strong>g>of</str<strong>on</strong>g> therapeutic compounds <strong>on</strong> n<strong>on</strong>-target organisms.B. Low risk1. Physiological effect <str<strong>on</strong>g>of</str<strong>on</strong>g> low dissolved oxygen levels <strong>in</strong> the water column.2. Toxic effect <str<strong>on</strong>g>of</str<strong>on</strong>g> H 2 S and amm<strong>on</strong>ia from bio-deposit.3. Toxic effects <str<strong>on</strong>g>of</str<strong>on</strong>g> algal bloom.4. Changes <strong>in</strong> epifaunal communities <strong>in</strong> the seabed.5. Proliferati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> human pathogens <strong>in</strong> the aquatic envir<strong>on</strong>ment.6. Proliferati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> fish and shellfish pathogens <strong>in</strong> the aquatic envir<strong>on</strong>ment.7. Increase <strong>in</strong> <strong>in</strong>cidences <str<strong>on</strong>g>of</str<strong>on</strong>g> disease am<strong>on</strong>g wild fish.8. Displacement <str<strong>on</strong>g>of</str<strong>on</strong>g> wild salm<strong>on</strong> <strong>in</strong> the marketplace by farmed salm<strong>on</strong>ids.C. Little or no risk1. Escape <str<strong>on</strong>g>of</str<strong>on</strong>g> n<strong>on</strong>-native species and subsequent effects <strong>on</strong> endemic salm<strong>on</strong> and troutspecies.2. <str<strong>on</strong>g>Impact</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> antibiotic resistance bacteria <strong>on</strong> native salm<strong>on</strong>ids.3. <str<strong>on</strong>g>Impact</str<strong>on</strong>g> <strong>on</strong> human health and safety.Other studies did not present such a straight order<strong>in</strong>g <str<strong>on</strong>g>of</str<strong>on</strong>g> risks. However, they c<strong>on</strong>cur withNash (2001) to some extent. The ma<strong>in</strong> difference lies <strong>in</strong> the last group <str<strong>on</strong>g>of</str<strong>on</strong>g> risks,particularly with regard to escaped fish and its potential effects <strong>on</strong> wild stocks.EAO (1996) <strong>in</strong> a comprehensive survey has presented impacts <str<strong>on</strong>g>of</str<strong>on</strong>g> salm<strong>on</strong> culture <strong>in</strong> theregi<strong>on</strong>. In the list <str<strong>on</strong>g>of</str<strong>on</strong>g> risks <str<strong>on</strong>g>of</str<strong>on</strong>g> the <strong>in</strong>dustry, organic overload<strong>in</strong>g <str<strong>on</strong>g>of</str<strong>on</strong>g> sediments andc<strong>on</strong>sequential impacts <strong>on</strong> benthic biota is deemed to be <str<strong>on</strong>g>of</str<strong>on</strong>g> the greatest importance.Meanwhile, effects <strong>on</strong> water chemistry and eutrophicati<strong>on</strong> have been identified asmoderate or low risk impacts. W<strong>in</strong>sby et al. (1996) <strong>in</strong> a complementary review c<strong>on</strong>cludedthat waste material from farms br<strong>in</strong>g about highly important effects <strong>on</strong> physical andchemical properties <str<strong>on</strong>g>of</str<strong>on</strong>g> British Colombia’s mar<strong>in</strong>e ecosystems. The sediment and benthicUNU-Fisheries Tra<strong>in</strong><strong>in</strong>g Programme 6


Shakouricommunities near salm<strong>on</strong> cages receive the major impacts <str<strong>on</strong>g>of</str<strong>on</strong>g> the activity. Other impactssuch as those associated with escapees either have lower priorities or need furtherevaluati<strong>on</strong>. ASI (1999) <strong>in</strong> a short review <strong>on</strong> cage farm<strong>in</strong>g elicited general impacts <str<strong>on</strong>g>of</str<strong>on</strong>g> cageaquaculture <strong>on</strong> envir<strong>on</strong>ment with emphasize <strong>on</strong> water polluti<strong>on</strong> [eutrophicati<strong>on</strong>] andliv<strong>in</strong>g organisms <strong>in</strong> the water column. However, risk or magnitude <str<strong>on</strong>g>of</str<strong>on</strong>g> predicted impactswas not presented. The field survey <str<strong>on</strong>g>of</str<strong>on</strong>g> envir<strong>on</strong>mental impact <str<strong>on</strong>g>of</str<strong>on</strong>g> Chilean salm<strong>on</strong> farm<strong>in</strong>g<strong>in</strong> lakes and coastal water ecosystems, has underl<strong>in</strong>ed the impacts <strong>on</strong> water and sedimentchemistry and benthic community (Buschmann 2002). He<strong>in</strong><strong>in</strong>g (2000) gave a review <strong>on</strong>effects <str<strong>on</strong>g>of</str<strong>on</strong>g> salm<strong>on</strong> aquaculture <strong>in</strong> Ma<strong>in</strong>e, USA. He has focused <strong>on</strong> difficulties <str<strong>on</strong>g>of</str<strong>on</strong>g>standardizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the activity <strong>in</strong> order to decrease impacts <strong>on</strong> envir<strong>on</strong>ment.In an extensive review <str<strong>on</strong>g>of</str<strong>on</strong>g> envir<strong>on</strong>mental impact <str<strong>on</strong>g>of</str<strong>on</strong>g> aquaculture <strong>in</strong> Scotland, it wasc<strong>on</strong>cluded that impact <strong>on</strong> seabed is the most obvious polluti<strong>on</strong> effect from fish farms, andthe particulate organic waste has a pr<str<strong>on</strong>g>of</str<strong>on</strong>g>ound effect <strong>on</strong> the benthic envir<strong>on</strong>ment. Otherimpacts, for <strong>in</strong>stance eutrophicati<strong>on</strong> and algal blooms were given a low risk value, whileescape <str<strong>on</strong>g>of</str<strong>on</strong>g> farmed fish has c<strong>on</strong>sidered as a high risk impact (SECRU 2002). Carroll et al.(2003) presented the result <str<strong>on</strong>g>of</str<strong>on</strong>g> analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> 168 sediment samples taken <strong>in</strong> the vic<strong>in</strong>ity <str<strong>on</strong>g>of</str<strong>on</strong>g>Norwegian salm<strong>on</strong> cages. They reported a heavy impact <str<strong>on</strong>g>of</str<strong>on</strong>g> organic waste materials fromthe farms. This agree with a review by Weber (2003) <strong>on</strong> the impact <str<strong>on</strong>g>of</str<strong>on</strong>g> carnivorous fishfarm<strong>in</strong>g who stressed <strong>on</strong> effects <str<strong>on</strong>g>of</str<strong>on</strong>g> aquaculture wastes <strong>on</strong> water and sediment quality.Brooks and Mahnken (2003a) have recently published the results <str<strong>on</strong>g>of</str<strong>on</strong>g> a l<strong>on</strong>g term study <strong>on</strong>impacts <str<strong>on</strong>g>of</str<strong>on</strong>g> salm<strong>on</strong> cage farm<strong>in</strong>g <strong>in</strong> the United States. They reported major impacts <str<strong>on</strong>g>of</str<strong>on</strong>g>organic waste materials, <strong>in</strong> particular caus<strong>in</strong>g seabed deteriorati<strong>on</strong> and chemical changes<strong>in</strong> the sediment. The most comm<strong>on</strong>, high risk impact cited <strong>in</strong> the literature is the effect <str<strong>on</strong>g>of</str<strong>on</strong>g>waste material <strong>on</strong> ecosystem comp<strong>on</strong>ents, particularly the sediment and the effects <strong>on</strong>benthic fauna and flora, which will be discussed <strong>in</strong> detail <strong>in</strong> the next chapter.2.1 Waste materials <strong>in</strong> salm<strong>on</strong> cage culture and their envir<strong>on</strong>mentalThe procedure <str<strong>on</strong>g>of</str<strong>on</strong>g> salm<strong>on</strong> cage culture is almost similar all around the world. The major<strong>in</strong>puts directly <strong>in</strong>volved <strong>in</strong> farm<strong>in</strong>g process are feed, juvenile, chemicals and drugs. Deadfish, residuals <str<strong>on</strong>g>of</str<strong>on</strong>g> chemicals, uneaten feed and fish faeces are various types <str<strong>on</strong>g>of</str<strong>on</strong>g> wastecom<strong>in</strong>g from salm<strong>on</strong> farms, which enter the ecosystem <strong>in</strong> solid and/or dissolved form.2.1.1 Solid wasteUneaten feed and faecal pellets are the major sources <str<strong>on</strong>g>of</str<strong>on</strong>g> suspended solids <strong>in</strong> cage culture<str<strong>on</strong>g>of</str<strong>on</strong>g> Atlantic salm<strong>on</strong> and other f<strong>in</strong>fish (EAO 1996, W<strong>in</strong>sby et al. 1996 and Nash 2001).Solid waste is dispersed through either the water column or it accumulates <strong>on</strong> the seabed(EAO 1996, W<strong>in</strong>sby et al. 1996 and Nash 2001) and /or wild fish may feed <strong>on</strong> it (Barg1992). The quality and quantity <str<strong>on</strong>g>of</str<strong>on</strong>g> sediments and the rate <str<strong>on</strong>g>of</str<strong>on</strong>g> sedimentati<strong>on</strong> - <strong>in</strong> terms <str<strong>on</strong>g>of</str<strong>on</strong>g>organic matters c<strong>on</strong>tent - varies depend<strong>in</strong>g <strong>on</strong> several factors.‣ Quality <str<strong>on</strong>g>of</str<strong>on</strong>g> solids:Quality <str<strong>on</strong>g>of</str<strong>on</strong>g> solid waste is str<strong>on</strong>gly correlated to feed quality (EAO 1996, Nash 2001, Chenet al. 1999 and 2003). Feed compositi<strong>on</strong> varies depend<strong>in</strong>g <strong>on</strong> various factors such asUNU-Fisheries Tra<strong>in</strong><strong>in</strong>g Programme 7


Shakour<strong>in</strong>utriti<strong>on</strong>al requirements, life stage <str<strong>on</strong>g>of</str<strong>on</strong>g> the animal, fish health and envir<strong>on</strong>mentalc<strong>on</strong>diti<strong>on</strong>s, and level <str<strong>on</strong>g>of</str<strong>on</strong>g> applied technology for feed producti<strong>on</strong>. Digestibility <str<strong>on</strong>g>of</str<strong>on</strong>g> feed<strong>in</strong>fluences the quality <str<strong>on</strong>g>of</str<strong>on</strong>g> the solid waste as well.Salm<strong>on</strong> feed has high level prote<strong>in</strong> c<strong>on</strong>tent and may c<strong>on</strong>ta<strong>in</strong> up to 50% prote<strong>in</strong>, 35%lipids and 30% carbohydrates depend<strong>in</strong>g <strong>on</strong> diet formulati<strong>on</strong> (W<strong>in</strong>sby et al. 1996, Nash2001 and Crawford et al. 2002). That means the diet feed may have up to 8.5% nitrogen,2% phosphorus and 30-50% carb<strong>on</strong>. Prote<strong>in</strong> c<strong>on</strong>tent <strong>in</strong> recent feeds, produced by newtechnologies has decreased to less than 40% and the amount <str<strong>on</strong>g>of</str<strong>on</strong>g> nitrogen and phosphorusis significantly lower than <strong>in</strong> older formulated feed, even less than 6.5% and 1%respectively (EAO 1996, W<strong>in</strong>sby et al. 1996, SECRU 2003).The quality <str<strong>on</strong>g>of</str<strong>on</strong>g> faecal material is quiet different from the feed particles <strong>in</strong> terms <str<strong>on</strong>g>of</str<strong>on</strong>g> energy,organic matters c<strong>on</strong>tents and degradati<strong>on</strong> rate (Chen et al. 1999, 2003, Pears<strong>on</strong> and Black2001, Nash 2001). Higher digestibility <str<strong>on</strong>g>of</str<strong>on</strong>g> feed br<strong>in</strong>gs about less faecal matter and N andC waste. Digestibility <str<strong>on</strong>g>of</str<strong>on</strong>g> high quality salm<strong>on</strong> feed is around 87 - 88%. In low qualityfeed, 25-33% <str<strong>on</strong>g>of</str<strong>on</strong>g> feed may eject as faeces (Nash 2001).High energy feeds are more envir<strong>on</strong>mental friendly due to lower carb<strong>on</strong> and nitrogenc<strong>on</strong>tents <str<strong>on</strong>g>of</str<strong>on</strong>g> faecal matter. Chen et al. (2000) showed that high energy (lipid) feed <str<strong>on</strong>g>of</str<strong>on</strong>g>Atlantic salm<strong>on</strong> reduces the carb<strong>on</strong> and nitrogen c<strong>on</strong>tent <str<strong>on</strong>g>of</str<strong>on</strong>g> faeces by 12 and 8%respectively <strong>in</strong> comparis<strong>on</strong> with standard feed. It might be due to higher digestibility <str<strong>on</strong>g>of</str<strong>on</strong>g>high energy diet. Nitrogen and carb<strong>on</strong> c<strong>on</strong>tents <str<strong>on</strong>g>of</str<strong>on</strong>g> Atlantic salm<strong>on</strong>’s faeces are 2.3- 3.7%and 27- 32% respectively, depend<strong>in</strong>g <strong>on</strong> feed quality (Chen et al. 1999,. 2003). InTasmania, high prote<strong>in</strong> (45%) feed c<strong>on</strong>ta<strong>in</strong><strong>in</strong>g relatively high level <str<strong>on</strong>g>of</str<strong>on</strong>g> nitrogen (8.13%)and carb<strong>on</strong> (~ 45%) have produced faeces c<strong>on</strong>ta<strong>in</strong><strong>in</strong>g 3.9-4.9% N and 31.8-40.3% C(Crawford et al. 2002). E<strong>in</strong>en et al 1995, has reported 15% and 66% loss <str<strong>on</strong>g>of</str<strong>on</strong>g> nitrogen andphosphorus <str<strong>on</strong>g>of</str<strong>on</strong>g> feed <strong>in</strong> faeces <str<strong>on</strong>g>of</str<strong>on</strong>g>, respectively (EAO 1996).‣ Quantity <str<strong>on</strong>g>of</str<strong>on</strong>g> solids:Physical properties <str<strong>on</strong>g>of</str<strong>on</strong>g> feed, farm<strong>in</strong>g systems and management practices, scale <str<strong>on</strong>g>of</str<strong>on</strong>g> activityand growth rate <str<strong>on</strong>g>of</str<strong>on</strong>g> fish <strong>in</strong>fluence the quantity <str<strong>on</strong>g>of</str<strong>on</strong>g> solid waste.Stability <str<strong>on</strong>g>of</str<strong>on</strong>g> feed <strong>in</strong> water is an important factor <strong>in</strong> feed wastage. In wet feed, the stabilityis lower than <strong>in</strong> dry feed. On the other hand, s<strong>in</strong>k<strong>in</strong>g rate <str<strong>on</strong>g>of</str<strong>on</strong>g> wet feeds is usually less thandry <strong>on</strong>es. It gives fish more chance to feed <strong>on</strong> feed particles (EAO 1996, Nash 2001).Stability, s<strong>in</strong>k<strong>in</strong>g rate and dust level <str<strong>on</strong>g>of</str<strong>on</strong>g> dry feeds vary with producti<strong>on</strong> technology(W<strong>in</strong>sby et al. 1996).Feed<strong>in</strong>g rate <strong>in</strong> a cage farms, like land based cultures, is usually accord<strong>in</strong>g to feed<strong>in</strong>gtables provided by feed producers. Precise estimates <str<strong>on</strong>g>of</str<strong>on</strong>g> average body weight and survivalrate <str<strong>on</strong>g>of</str<strong>on</strong>g> fish are <str<strong>on</strong>g>of</str<strong>on</strong>g> great importance <strong>in</strong> evaluat<strong>in</strong>g daily feed requirements. Feed<strong>in</strong>g rateshould be modified accord<strong>in</strong>g to fish and envir<strong>on</strong>mental c<strong>on</strong>diti<strong>on</strong>s (<strong>in</strong> particulartemperature) <strong>in</strong> order to prevent overfeed<strong>in</strong>g. Due to feed adjustment, a seas<strong>on</strong>al variati<strong>on</strong><strong>in</strong> sedimentati<strong>on</strong> rate is observed <strong>in</strong> cage farm<strong>in</strong>g <str<strong>on</strong>g>of</str<strong>on</strong>g> Atlantic salm<strong>on</strong>. Feed<strong>in</strong>g <strong>in</strong> excessUNU-Fisheries Tra<strong>in</strong><strong>in</strong>g Programme 8


Shakouri<str<strong>on</strong>g>of</str<strong>on</strong>g> sufficient level or any c<strong>on</strong>diti<strong>on</strong> where the animal can not feed efficiently will <strong>in</strong>creasethe quantity <str<strong>on</strong>g>of</str<strong>on</strong>g> waste materials.A practical approach for adjustment <str<strong>on</strong>g>of</str<strong>on</strong>g> daily feed <strong>in</strong> cage culture is video m<strong>on</strong>itor<strong>in</strong>g,which is becom<strong>in</strong>g <strong>in</strong>creas<strong>in</strong>gly comm<strong>on</strong> <strong>in</strong> large, modern farms <str<strong>on</strong>g>of</str<strong>on</strong>g> Atlantic salm<strong>on</strong> <strong>in</strong>many countries.Feed is always associated with some losses. In manual feed<strong>in</strong>g loss <str<strong>on</strong>g>of</str<strong>on</strong>g> feed is 3.6%,which is significantly lower than automatic feed<strong>in</strong>g with 8.8% wastage. Hand feed<strong>in</strong>gpermits the farmers to evaluate the feed<strong>in</strong>g behavior <str<strong>on</strong>g>of</str<strong>on</strong>g> fish and prevents excess feed<strong>in</strong>g(EAO 1996, Nash 2001).High loss <strong>in</strong> automatic feed<strong>in</strong>g is correlated to feed abrasi<strong>on</strong> andoverfeed<strong>in</strong>g. Some producers <str<strong>on</strong>g>of</str<strong>on</strong>g> modern feeders declare that their products decreasefeed<strong>in</strong>g waste to less than 0.5% (Nash 2001).Stock<strong>in</strong>g density has great impact <strong>on</strong> growth rate. Feed c<strong>on</strong>versi<strong>on</strong> ratio (FCR: appliedfeed (Kg)/ fish weight ga<strong>in</strong>ed (kg)) <strong>in</strong> <strong>in</strong>tensive culture is higher than <strong>in</strong> low densityfarms (ASI 1999, Tac<strong>on</strong> and Forster 2003). Therefore, the risk <str<strong>on</strong>g>of</str<strong>on</strong>g> deteriorati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> theenvir<strong>on</strong>ment <strong>in</strong> high density farms would be higher.The amount <str<strong>on</strong>g>of</str<strong>on</strong>g> uneaten feed <strong>in</strong> Atlantic salm<strong>on</strong> cage farm<strong>in</strong>g varies from 1% <strong>in</strong> dry feedup to more than 30% <strong>in</strong> wet feeds (Barg 1992, EAO 1996, W<strong>in</strong>sby et al. 1996, Pears<strong>on</strong>and Black 2001, Nash 2001). Nowadays, Atlantic salm<strong>on</strong> farmers mostly use dry feed atthe grow out stage. Average loss <str<strong>on</strong>g>of</str<strong>on</strong>g> good quality salm<strong>on</strong> feeds produced by newtechnologies is as low as 5% (EAO 1996, W<strong>in</strong>sby et al. 1996, Pears<strong>on</strong> and Black 2001,Nash 2001, SECRU 2002).FCR is a reliable <strong>in</strong>dicator, which <strong>in</strong>tegrates all farm<strong>in</strong>g c<strong>on</strong>diti<strong>on</strong> <strong>in</strong>to a quantitativescale. Dur<strong>in</strong>g the past 3 decades, FCR <strong>in</strong> salm<strong>on</strong> farms has decl<strong>in</strong>ed significantly from2.5 <strong>in</strong> 1974 to 1.0 to 1.2 <strong>in</strong> recent years (EAO 1996, Pears<strong>on</strong> and Black 2001).LowerFCR means less <strong>in</strong>put <str<strong>on</strong>g>of</str<strong>on</strong>g> organic matter and c<strong>on</strong>sequently less waste. Holmer et al.(2002) found a general <strong>in</strong>crease <str<strong>on</strong>g>of</str<strong>on</strong>g> sedimentati<strong>on</strong> rate and total organic carb<strong>on</strong> andnitrogen <str<strong>on</strong>g>of</str<strong>on</strong>g> deposited materials with the <strong>in</strong>creased <strong>in</strong>put <str<strong>on</strong>g>of</str<strong>on</strong>g> fish feed.Based <strong>on</strong> quantitative and qualitative criteria <str<strong>on</strong>g>of</str<strong>on</strong>g> solid waste, it might be c<strong>on</strong>cluded that0.186 kg <str<strong>on</strong>g>of</str<strong>on</strong>g> solid waste will rema<strong>in</strong> for every kilogram <str<strong>on</strong>g>of</str<strong>on</strong>g> fish produced by us<strong>in</strong>g moderndry feed and implementati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> good management practices <strong>in</strong> the farm (Table 1). Thisamount is approximately 40% less than estimated waste <strong>in</strong> salm<strong>on</strong> cage farm<strong>in</strong>g <strong>in</strong>British Colombia <strong>in</strong> 1995 (Nash 2001). Progress <strong>in</strong> both feed quality and feed<strong>in</strong>gmanagement are essential to decrease waste.Debris released by net clean<strong>in</strong>g orig<strong>in</strong>ated from bio-foul<strong>in</strong>g, as mussels, barnacles,ascidians, bryozoans and seaweeds sited <strong>on</strong> the nets could also be a source <str<strong>on</strong>g>of</str<strong>on</strong>g> solid wastes(GESAMP 1991, Nash 2001, Weber 2003).UNU-Fisheries Tra<strong>in</strong><strong>in</strong>g Programme 9


ShakouriTable 1: Mean c<strong>on</strong>tents <str<strong>on</strong>g>of</str<strong>on</strong>g> organic material <strong>in</strong> feed and waste solids <strong>in</strong> Atlantic salm<strong>on</strong>cage farm<strong>in</strong>g (based <strong>on</strong> average quantity and quality <str<strong>on</strong>g>of</str<strong>on</strong>g> solid wastes <strong>in</strong> a salm<strong>on</strong> cagefarm, FCR=1.1)Carb<strong>on</strong> Nitrogen PhosphorusMean c<strong>on</strong>tent <strong>in</strong> feed (%) 40 7.5 1Mean c<strong>on</strong>tent <strong>in</strong> eaten feed(95%) g /kg fish 418 78.4 10.45Mean c<strong>on</strong>tent <strong>in</strong> faeces (%) 30 3 5.3Mean c<strong>on</strong>tent <strong>in</strong> faeces(12.5%) g /kg fish 39.19 3.92 6.9Mean c<strong>on</strong>tent <strong>in</strong> uneaten feed (%) 40 7.5 1Mean c<strong>on</strong>tent <strong>in</strong> uneaten feed (5%) g/kg fish 2.75 0.52 0.07Total solid waste produced g/kg fish 41.9 4.4 7As net clean<strong>in</strong>g is a periodic activity (<strong>on</strong>ce a year or every two years) or nets will becleaned <strong>on</strong> land, bio-foul<strong>in</strong>g is c<strong>on</strong>sidered a low risk source <str<strong>on</strong>g>of</str<strong>on</strong>g> impact. Fish mortality isanother m<strong>in</strong>or source <str<strong>on</strong>g>of</str<strong>on</strong>g> solid material. It is estimated that <strong>in</strong> 1994 some 2000 t<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g>salm<strong>on</strong> died <strong>in</strong> British Colombia’s cages, approximately 9% <str<strong>on</strong>g>of</str<strong>on</strong>g> total harvested biomass(EAO 1996,). Usually dead fish are collected and disposed <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>on</strong> land (Nash 2001),Otherwise, it would be a significant source <str<strong>on</strong>g>of</str<strong>on</strong>g> polluti<strong>on</strong>.‣ <strong>Sediment</strong>ati<strong>on</strong> rate and spatial dispersi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> solid wastesHoriz<strong>on</strong>tal distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a solid particles <strong>in</strong> seawater is a functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> depth, watercurrent and s<strong>in</strong>k<strong>in</strong>g rate <str<strong>on</strong>g>of</str<strong>on</strong>g> particles. On this base a simple model has developed forspatial dispersi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> solid wastes <str<strong>on</strong>g>of</str<strong>on</strong>g> f<strong>in</strong>fish aquaculture (Silveret and Cromey 2001, Barg1992):D=V . d / vWhere: “D” = spatial dispersi<strong>on</strong> (m),”V”= current velocity (ms -1 ), “d”= depth<str<strong>on</strong>g>of</str<strong>on</strong>g> water (m) and “v” = s<strong>in</strong>k<strong>in</strong>g rate <str<strong>on</strong>g>of</str<strong>on</strong>g> particle (ms -1 ).Depth <str<strong>on</strong>g>of</str<strong>on</strong>g> water and s<strong>in</strong>k<strong>in</strong>g rate determ<strong>in</strong>e available time for particle transfer by currents.Density and size <str<strong>on</strong>g>of</str<strong>on</strong>g> the solids <strong>in</strong>fluence settl<strong>in</strong>g velocity <str<strong>on</strong>g>of</str<strong>on</strong>g> particles. S<strong>in</strong>k<strong>in</strong>g rate <str<strong>on</strong>g>of</str<strong>on</strong>g> alarger salm<strong>on</strong> feed pellet (10 mm) is approximately two times <str<strong>on</strong>g>of</str<strong>on</strong>g> smaller <strong>on</strong>e (6 mm)(Chen et al. 1999).The correlati<strong>on</strong> between velocity and size <str<strong>on</strong>g>of</str<strong>on</strong>g> faecal pellet is<strong>in</strong>significant. Chen et al. (1999) c<strong>on</strong>cluded that s<strong>in</strong>k<strong>in</strong>g rate <str<strong>on</strong>g>of</str<strong>on</strong>g> faecal pellet <str<strong>on</strong>g>of</str<strong>on</strong>g> Atlanticsalm<strong>on</strong> is 5.3 -6.6 cms -1 , while feed particles settle at the speed <str<strong>on</strong>g>of</str<strong>on</strong>g> 6-14 cms -1 depend<strong>in</strong>g<strong>on</strong> sal<strong>in</strong>ity and temperature.Elberiz<strong>on</strong> and Kelly (1998) have <strong>in</strong>vestigated the s<strong>in</strong>k<strong>in</strong>g rate <str<strong>on</strong>g>of</str<strong>on</strong>g> solid waste <str<strong>on</strong>g>of</str<strong>on</strong>g> freshwater trout feed <strong>in</strong> the laboratory. The estimated s<strong>in</strong>k<strong>in</strong>g speed <str<strong>on</strong>g>of</str<strong>on</strong>g> particles bigger than2000 micr<strong>on</strong> and between 500- 1000 micr<strong>on</strong> were 0.029± 0.01 ms -1 and 0.015± 0.01 ms -1respectively. W<strong>on</strong>g and Piedrahita (2000) reported that the s<strong>in</strong>k<strong>in</strong>g rate <str<strong>on</strong>g>of</str<strong>on</strong>g> manuallystripped faecal matter <str<strong>on</strong>g>of</str<strong>on</strong>g> ra<strong>in</strong>bow trout is 0.7 cms -1 and it will change with currentvelocity. Topography <str<strong>on</strong>g>of</str<strong>on</strong>g> the seabed affects the spatial depositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the waste. Wastematerial will be transport further, where the bottom is steep than where it is more flatUNU-Fisheries Tra<strong>in</strong><strong>in</strong>g Programme 10


Shakouri(W<strong>in</strong>sby et al. 1996). Rocks and deep dips <strong>in</strong> the seabed change sedimentati<strong>on</strong> patterns aswell (Pears<strong>on</strong> and Black 2001).Gowen and Bradbury (1987) estimated the organic sedimentati<strong>on</strong> rate to be 27.4 gm - ²day -1 under Irish salm<strong>on</strong> farms and <str<strong>on</strong>g>of</str<strong>on</strong>g> 8.2 gm - ²day -1 at <strong>on</strong> average the cage perimeter.Morrisey et al.(2000) reported that underneath the New Zealand’s salm<strong>on</strong> cages thesedimentati<strong>on</strong> rate <str<strong>on</strong>g>of</str<strong>on</strong>g> total volatile solids (TVS) is between 8.84 and 18.5 m - ²day -1(Brooks et al. 2003a).In a review, EAO (1966) reported that <strong>in</strong> the state <str<strong>on</strong>g>of</str<strong>on</strong>g> Ma<strong>in</strong>e, USA, 5-11% <str<strong>on</strong>g>of</str<strong>on</strong>g> solid wastesactually settled. Gowen et al (1991) cited. Particles may loss some nutrients dur<strong>in</strong>gs<strong>in</strong>k<strong>in</strong>g period. Chen et al. (2003) showed that Atlantic salm<strong>on</strong> faecal pellets lost 4-14%<str<strong>on</strong>g>of</str<strong>on</strong>g> carb<strong>on</strong> and 9 - 16% <str<strong>on</strong>g>of</str<strong>on</strong>g> nitrogen <strong>in</strong> the first 2.5 m<strong>in</strong>utes <str<strong>on</strong>g>of</str<strong>on</strong>g> s<strong>in</strong>k<strong>in</strong>g. After 5 m<strong>in</strong>utes, theleach<strong>in</strong>g <str<strong>on</strong>g>of</str<strong>on</strong>g> carb<strong>on</strong> and nitrogen had <strong>in</strong>creases to 22% and 24%, respectively. Leach<strong>in</strong>g <str<strong>on</strong>g>of</str<strong>on</strong>g>nutrients <strong>in</strong>creases dissolved organic material and decreases organic load <str<strong>on</strong>g>of</str<strong>on</strong>g> depositedsolids. Therefore, <strong>in</strong> deep water bodies waste material will lose more nutrients than <strong>in</strong>shallower <strong>on</strong>es. It will <strong>in</strong>crease risk <str<strong>on</strong>g>of</str<strong>on</strong>g> sediment enrichment <strong>in</strong> shallow ecosystems.Changes <strong>in</strong> nutrient c<strong>on</strong>tents should be c<strong>on</strong>sidered <strong>in</strong> theoretical calculati<strong>on</strong> whenlaboratory experiments are used to quantify degree <str<strong>on</strong>g>of</str<strong>on</strong>g> enrichment.‣ Envir<strong>on</strong>mental impact <str<strong>on</strong>g>of</str<strong>on</strong>g> solid wastesEnvir<strong>on</strong>mental impact <str<strong>on</strong>g>of</str<strong>on</strong>g> sedimentati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> salm<strong>on</strong> cage farm<strong>in</strong>g is mostly limited towith<strong>in</strong> 50 meters <str<strong>on</strong>g>of</str<strong>on</strong>g> the perimeter <str<strong>on</strong>g>of</str<strong>on</strong>g> the cage (Barg 1992, EAO 1996, W<strong>in</strong>sby et al. 1996,ASI 1999, Pears<strong>on</strong> and Black 2001, Nash 2001, Carroll et al. 2003). At further distancesfootpr<strong>in</strong>t <str<strong>on</strong>g>of</str<strong>on</strong>g> organic waste will become <strong>in</strong>significant. Hall et al. (1992) found thatsedimentati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> nitrogen and carb<strong>on</strong> at 200 meter from the farm was 10 and 22 timeslower than below the cage, respectively (ASI 1999). Less severe envir<strong>on</strong>mental effectsmay be spread over a large area (Carroll et al. 2003). Sara et al. (2004) found small traces<str<strong>on</strong>g>of</str<strong>on</strong>g> marked nitrogen (δ 14 N) at 1000 m from the cage. It is reported that waste depositi<strong>on</strong> islimited to 1 km <str<strong>on</strong>g>of</str<strong>on</strong>g> the cage operati<strong>on</strong> (ASI 1999).• Effects <strong>on</strong> <strong>Sediment</strong>s<strong>Sediment</strong>ati<strong>on</strong> results <strong>in</strong> physico-chemical changes <strong>in</strong> seabed substrate and overlay<strong>in</strong>gwater <strong>on</strong> sea bottom. The magnitude <str<strong>on</strong>g>of</str<strong>on</strong>g> envir<strong>on</strong>mental impacts is site and farm specific(W<strong>in</strong>sby et al. 1996). Major changes associated with sedimentati<strong>on</strong> may classified <strong>in</strong>tophysical, geo- and biochemical, and biological effects.o Physical changes:Changes <strong>in</strong> sediment particle size and texture are the most comm<strong>on</strong> physical changes dueto solid waste depositi<strong>on</strong>.Dur<strong>in</strong>g farm operati<strong>on</strong>s, a f<strong>in</strong>e, flocculent layer or organic material will overlay thenatural substrate (EAO 1996, W<strong>in</strong>sby et al. 1996). The color <str<strong>on</strong>g>of</str<strong>on</strong>g> this layer ranges fromUNU-Fisheries Tra<strong>in</strong><strong>in</strong>g Programme 11


Shakourigreenish to black (EAO 1996) and its thickness is different depend<strong>in</strong>g <strong>on</strong> sedimentati<strong>on</strong>rate and the horiz<strong>on</strong>tal transportati<strong>on</strong> model <str<strong>on</strong>g>of</str<strong>on</strong>g> particles. Accord<strong>in</strong>g to this model, lighterbio-deposit (faecal material, <strong>in</strong> particular) would be settl<strong>in</strong>g <strong>in</strong> a more distant area. Resuspensi<strong>on</strong>and displacement <str<strong>on</strong>g>of</str<strong>on</strong>g> the sediment due to tidal turbulence, w<strong>in</strong>d driven currentsand storms may change this pattern (EAO 1996, W<strong>in</strong>sby et al. 1996).o <strong>Sediment</strong> geochemistry• Organic carb<strong>on</strong>Increased organic carb<strong>on</strong> c<strong>on</strong>centrati<strong>on</strong> <strong>in</strong> the sediments is a comm<strong>on</strong> effect <str<strong>on</strong>g>of</str<strong>on</strong>g> cageculture. Hargrave et al (1997) found that total organic carb<strong>on</strong> under salm<strong>on</strong> cages <strong>in</strong>Atlantic Canada was 40% higher than at reference sites. He and his co-workers reported<strong>in</strong> 1993 that the carb<strong>on</strong> accumulati<strong>on</strong> rate under salm<strong>on</strong> cage culture ranges from 17 to 35molC m - ²day -1 . In a recent study <strong>in</strong> Ma<strong>in</strong>e, US, TOC sedimentati<strong>on</strong> was found to be 1.0 to1.6 gm - ²day -1 (Green et al. 2002). Accumulati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> carb<strong>on</strong> depends <strong>on</strong> the compositi<strong>on</strong>and quantity <str<strong>on</strong>g>of</str<strong>on</strong>g> waste material, sedimentati<strong>on</strong> rate and site characteristics (EAO 1996,W<strong>in</strong>sby et al. 1996, Crawford et al. 2002) and is estimated at 18 to 23% <str<strong>on</strong>g>of</str<strong>on</strong>g> the <strong>in</strong>put <strong>in</strong>cage farm<strong>in</strong>g (ASI 1999). Depositi<strong>on</strong> rates for optimal selected sites for fish cage <strong>in</strong>British Colombia ranged between 7 to 13 gCm -2 day -1 or 50 to 10 kgm - ²year -1 (EAO1996). Therefore, organic carb<strong>on</strong> could be <strong>in</strong>dicative for impact assessment <str<strong>on</strong>g>of</str<strong>on</strong>g> cageculture, <strong>in</strong> particular where sediments are heavily impacted. Low <strong>in</strong>put <str<strong>on</strong>g>of</str<strong>on</strong>g> carb<strong>on</strong> could bec<strong>on</strong>sumed by the sediment <strong>in</strong>habitants and would not be reflected <strong>in</strong> any significantchanges <strong>in</strong> TOC (Pears<strong>on</strong> and Black 2001, Crawford et al. 2002).• Oxygen c<strong>on</strong>centrati<strong>on</strong> and redox potentialOxygen supply to the sediments is by diffusi<strong>on</strong> from the water column and by mechanical<strong>in</strong>fusi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> water <strong>in</strong>to sediments where it will be c<strong>on</strong>sumed through respirati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> liv<strong>in</strong>gorganisms or through chemical oxidati<strong>on</strong> <strong>in</strong> sediments. Bioturbati<strong>on</strong> <strong>in</strong>creases gasexchange between water and sediments and supply <str<strong>on</strong>g>of</str<strong>on</strong>g> oxygen to the sediments as well(EAO 1996, Brooks et al. 2003a). Accumulati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> organic matter <strong>in</strong> sediments<strong>in</strong>creases both biological and chemical oxygen demands (BOD & COD) (Brooks et al.2003a). Increase <str<strong>on</strong>g>of</str<strong>on</strong>g> BOD is predom<strong>in</strong>antly due to aerobic, heterotrophic bacterial activity(EAO 1996). Oxygen uptake by sediments under different Danish fish farms was 5 to 15times higher than at c<strong>on</strong>trol sites (W<strong>in</strong>sby et al. 1996). ASI (1999) <strong>in</strong>dicated that due tobiological activities, demand for oxygen <strong>in</strong> sediment underneath the cages was 2 to 5times higher than at c<strong>on</strong>trol site. High demand is dom<strong>in</strong>antly due to <strong>in</strong>crease <str<strong>on</strong>g>of</str<strong>on</strong>g> biologicaldemands. In c<strong>on</strong>trast, Hargrave et al. (1993) <strong>in</strong>dicated that BOD represents <strong>on</strong>ly 20% <str<strong>on</strong>g>of</str<strong>on</strong>g>total oxygen demand. For heavily affected sediments, BOD may reach 400mgm - ²hr -1 .C<strong>on</strong>tributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> biological demand may depend <strong>on</strong> size <str<strong>on</strong>g>of</str<strong>on</strong>g> animals and availability <str<strong>on</strong>g>of</str<strong>on</strong>g>oxygen <strong>in</strong> the sediment. Small animals are more metabolically active per unit <str<strong>on</strong>g>of</str<strong>on</strong>g> biomassthan large <strong>on</strong>es. Nickell et al. (2003) found oxygen uptake beneath a salm<strong>on</strong> cage <strong>in</strong> LochCreran, Scotland was 434.9± 139.7 mmolm - ²day -1 , where oxygen was available because<str<strong>on</strong>g>of</str<strong>on</strong>g> deep-water currents.UNU-Fisheries Tra<strong>in</strong><strong>in</strong>g Programme 12


ShakouriWhile oxygen demand is equal to <strong>in</strong>flux <str<strong>on</strong>g>of</str<strong>on</strong>g> oxygen, the sediments have the capacity toassimilate organic matter (Brooks et al. 2003a) and its productivity will <strong>in</strong>crease (Pears<strong>on</strong>and Black 2001). If demand for oxygen exceeds the oxygen diffusi<strong>on</strong> rate, sedimentsbecome anoxic and anaerobic processes will predom<strong>in</strong>ate (Redox Disc<strong>on</strong>t<strong>in</strong>uity Level,RDL). In this c<strong>on</strong>diti<strong>on</strong>, anaerobic bacterial activity <strong>in</strong>creases which are <strong>in</strong>clud<strong>in</strong>g threetypes <str<strong>on</strong>g>of</str<strong>on</strong>g> bacterial metabolisms, nitrate reducti<strong>on</strong>, sulfate reducti<strong>on</strong> and methanogensis(EAO 1996). Beggiatoa spp. is comm<strong>on</strong>ly found <strong>in</strong> sulfade reducti<strong>on</strong> level, as it needsH 2 S and a little oxygen, which it gets from overlay<strong>in</strong>g water. White colored mat <str<strong>on</strong>g>of</str<strong>on</strong>g>bacterial excreted mucus is visible <strong>in</strong> this layer (EAO 1996, Pears<strong>on</strong> and Black 2001,Brooks et al. 2003a). Dark color <str<strong>on</strong>g>of</str<strong>on</strong>g> sediments is due to <strong>in</strong>teracti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> ir<strong>on</strong> and sulfadeand producti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> ir<strong>on</strong> sulfade (Brooks et al. 2003a). Organic enrichment andmicrobiological process <strong>in</strong> the sediment could be summarized as follows ( EAO 1996,Pears<strong>on</strong> and Black 2001, Brooks et al. 2003a): Aerobic respirati<strong>on</strong>, amm<strong>on</strong>ium oxidati<strong>on</strong> (to nitrite) and nitrite oxidati<strong>on</strong> t<strong>on</strong>itrate. <strong>Sediment</strong>s are <strong>in</strong> oxic c<strong>on</strong>diti<strong>on</strong>. Denitrificati<strong>on</strong> (producti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> N 2 from nitrate by aerobic bacteria). Nitrogen reducti<strong>on</strong> (produc<strong>in</strong>g amm<strong>on</strong>ium from nitrate) and manganese reducti<strong>on</strong>.Release <str<strong>on</strong>g>of</str<strong>on</strong>g> amm<strong>on</strong>ium from the sediment under cages may range from 0.5 to 13mmolm - ²hr -1 (W<strong>in</strong>sby et al. 1996). Ir<strong>on</strong> reducti<strong>on</strong>. Sulfate reducti<strong>on</strong> and producti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> H 2 S. The sediment is anaerobic/ aerobic. Methanogensis, produc<strong>in</strong>g <str<strong>on</strong>g>of</str<strong>on</strong>g> methane by fermentative bacteria. The sediment isextremely anoxic.In extreme anoxic c<strong>on</strong>diti<strong>on</strong> outgas<strong>in</strong>g <str<strong>on</strong>g>of</str<strong>on</strong>g> carb<strong>on</strong> dioxide, hydrogen sulfide and methanewould occur. The gas bubbles c<strong>on</strong>ta<strong>in</strong> about 70% methane, 28% CO 2 and 2% H 2 S (EAO1996, Nash 2001). The latter <strong>on</strong>e is toxic to fauna and flora (Nash 2001). It is highlysoluble <strong>in</strong> seawater and quickly breaks downs <strong>in</strong> the presence <str<strong>on</strong>g>of</str<strong>on</strong>g> oxygen (EAO 1996,W<strong>in</strong>sby et al. 1996). It has been found that H 2 S c<strong>on</strong>centrati<strong>on</strong> dropped from 17000 ppmat the seabed to 20ppm at 9m above the bottom (EAO 1996, W<strong>in</strong>sby et al. 1996, Pears<strong>on</strong>and Black 2001). Bacteria c<strong>on</strong>tributes substantially <strong>in</strong> sulfate reducti<strong>on</strong>. Desulfovibrioand desulfomaculum are two major sulfate reducti<strong>on</strong> bacteria found <strong>in</strong> sedimentsunderneath fish cages (EAO 1996, W<strong>in</strong>sby et al. 1996, Pears<strong>on</strong> and Black 2001).This process is the usual trend <strong>in</strong> cage farm<strong>in</strong>g system. Where, as depositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> wastematerial c<strong>on</strong>t<strong>in</strong>ues oxygen demand <strong>in</strong>creases and the sediment eventually enter an anoxicphase and the impacts will be visible as biological changes. Decrease <strong>in</strong> <strong>in</strong>put <str<strong>on</strong>g>of</str<strong>on</strong>g> wastematerial from the farm or a rest<strong>in</strong>g period (fallow<strong>in</strong>g) <strong>in</strong> between producti<strong>on</strong> seas<strong>on</strong>s willpostp<strong>on</strong>e the anaerobic phase <strong>in</strong> the sediment. Oxidati<strong>on</strong>-reducti<strong>on</strong> potential (Redoxpotential) <str<strong>on</strong>g>of</str<strong>on</strong>g> sediment has been identified as a suitable <strong>in</strong>dicator <str<strong>on</strong>g>of</str<strong>on</strong>g> organic accumulati<strong>on</strong><strong>in</strong> sediments (EAO 1996, Pears<strong>on</strong> and Black 2001, Crawford et al. 2002) represent<strong>in</strong>goxygen demand (Telfer and Rob<strong>in</strong>s<strong>on</strong> 2003). Redox level is str<strong>on</strong>gly correlated withsediment gra<strong>in</strong> size (EAO 1996, W<strong>in</strong>sby et al. 1996). In coarse sediments, redox potentialwill be higher than <strong>in</strong> f<strong>in</strong>e <strong>on</strong>es because <str<strong>on</strong>g>of</str<strong>on</strong>g> higher diffusi<strong>on</strong> rate <str<strong>on</strong>g>of</str<strong>on</strong>g> oxygen <strong>in</strong>to theUNU-Fisheries Tra<strong>in</strong><strong>in</strong>g Programme 13


Shakourisediment. Karakassis et al. (2000) have observed this correlati<strong>on</strong> <strong>in</strong> impact <str<strong>on</strong>g>of</str<strong>on</strong>g> cagefarm<strong>in</strong>g <strong>in</strong> the Mediterranean.A positive redox <strong>in</strong>dicates that some oxygen is still <strong>in</strong> the sediments (EAO 1996). Inundisturbed sediments, surface Eh is about 300 to 400 mV. (W<strong>in</strong>sby et al. 1996).Negative redox potential value (Eh) is generally <strong>in</strong>dicative <str<strong>on</strong>g>of</str<strong>on</strong>g> organic matter enriched,f<strong>in</strong>e size gra<strong>in</strong>s and/or poorly oxygenated, anoxic sediments (W<strong>in</strong>sby et al. 1996). Themaximum acceptable level <str<strong>on</strong>g>of</str<strong>on</strong>g> redox <strong>in</strong> a pr<str<strong>on</strong>g>of</str<strong>on</strong>g>ile <str<strong>on</strong>g>of</str<strong>on</strong>g> a core sample from salm<strong>on</strong> cages <strong>in</strong>Scotland is less than -150mV. The Eh should not be lower than -125mV at 0-3 cm depth<str<strong>on</strong>g>of</str<strong>on</strong>g> sediments (He<strong>in</strong><strong>in</strong>g 2000). Eh -150mV is <strong>in</strong>dicative <str<strong>on</strong>g>of</str<strong>on</strong>g> anaerobic c<strong>on</strong>diti<strong>on</strong>s <strong>in</strong> manysalm<strong>on</strong> cage farms (EAO 1996). Figure 3 elicits the correlati<strong>on</strong> between bio- andgeochemical changes with<strong>in</strong> the sediments.Figure 3: Diagram <str<strong>on</strong>g>of</str<strong>on</strong>g> geochemical and biological changes <strong>in</strong> sediments• Biological <str<strong>on</strong>g>Impact</str<strong>on</strong>g>sNatural <strong>in</strong>put <str<strong>on</strong>g>of</str<strong>on</strong>g> organic matter provides c<strong>on</strong>diti<strong>on</strong>s for various groups <str<strong>on</strong>g>of</str<strong>on</strong>g> organisms <strong>in</strong>/<strong>on</strong>sea bottom, such as macroalgae and benthic algae, bacteria, mei<str<strong>on</strong>g>of</str<strong>on</strong>g>auna (8 to 500 µ<strong>in</strong>vertebrates) and macr<str<strong>on</strong>g>of</str<strong>on</strong>g>auna (larger than 500µ <strong>in</strong>vertebrates). As <strong>in</strong>put <str<strong>on</strong>g>of</str<strong>on</strong>g> detritus<strong>in</strong>creases, it will impose some changes <strong>on</strong> the biological characteristics <str<strong>on</strong>g>of</str<strong>on</strong>g> the habitat.These changes are site specific. However, typical process <str<strong>on</strong>g>of</str<strong>on</strong>g> impact and modificati<strong>on</strong> isas follow<strong>in</strong>g (EAO 1996, Pears<strong>on</strong> and Black 2001):a. Normal , unpolluted envir<strong>on</strong>ment with no impacts :Number <str<strong>on</strong>g>of</str<strong>on</strong>g> species (species richness) is highDensity is moderately lowSpecies mostly bel<strong>on</strong>g to higher taxa with larger body size and <str<strong>on</strong>g>of</str<strong>on</strong>g> highfuncti<strong>on</strong>al typeUNU-Fisheries Tra<strong>in</strong><strong>in</strong>g Programme 14


ShakouriThere are no or few opportunistic speciesb. Slightly enriched with low impacts:Biodiversity <strong>in</strong>creasesDensity <strong>in</strong>creasesSome mobile epifauna and demersal fish immigrate to the disturbed areaNumber <str<strong>on</strong>g>of</str<strong>on</strong>g> opportunistic species <strong>in</strong>creasec. Moderately enriched with moderate impacts:Decrease <strong>in</strong> biodiversityDecrease <strong>in</strong> larger body size animals (macr<str<strong>on</strong>g>of</str<strong>on</strong>g>auna and mei<str<strong>on</strong>g>of</str<strong>on</strong>g>auna)Elim<strong>in</strong>ati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> n<strong>on</strong>-specified speciesPresence <str<strong>on</strong>g>of</str<strong>on</strong>g> opportunistic mei<str<strong>on</strong>g>of</str<strong>on</strong>g>aunad. Highly enriched with sever impacts <strong>on</strong> sediment and overlay<strong>in</strong>g water:Elim<strong>in</strong>ati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> all macr<str<strong>on</strong>g>of</str<strong>on</strong>g>aunaPresence <str<strong>on</strong>g>of</str<strong>on</strong>g> small mei<str<strong>on</strong>g>of</str<strong>on</strong>g>aunaElim<strong>in</strong>ati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>in</strong>faunal metazoansAbundance <str<strong>on</strong>g>of</str<strong>on</strong>g> Capitella capitata spp.Changes <strong>in</strong> benthos communities depend <strong>on</strong> the geochemistry <str<strong>on</strong>g>of</str<strong>on</strong>g> the sediments.Karakassis et al. (2000) found that <strong>in</strong> coarse sediment with high redox the impact <strong>on</strong>fauna is less than <strong>in</strong> f<strong>in</strong>e sediments.As a general trend, larger and <strong>in</strong>faunal animals start to disappear at first, when sedimentsbecome too enriched. In anaerobic c<strong>on</strong>diti<strong>on</strong>, smaller species, which live close tosediment-water <strong>in</strong>terface, will exist and <strong>in</strong> extremely enriched sediments, almost all lifedisappears from the sediment habitat and <strong>on</strong>ly a limited number <str<strong>on</strong>g>of</str<strong>on</strong>g> well-adopted speciescan survive. Mazzola et al. (2000) Reported that 75% <str<strong>on</strong>g>of</str<strong>on</strong>g> total number <str<strong>on</strong>g>of</str<strong>on</strong>g> organisms underfish cage <strong>in</strong>habited the top 1 cm layer <str<strong>on</strong>g>of</str<strong>on</strong>g> the sediments. Kempf et al. (2002) studied bioandgeochemistry <str<strong>on</strong>g>of</str<strong>on</strong>g> sediments under brown trout cage <strong>in</strong> a well-flushed mar<strong>in</strong>e site <strong>in</strong>the English Channel. They found a reducti<strong>on</strong> <strong>in</strong> the number <str<strong>on</strong>g>of</str<strong>on</strong>g> species, an <strong>in</strong>creased <strong>in</strong>migrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> mobile fauna (like scavengers and carnivorous <strong>in</strong>vertebrates) with meanbiomass <str<strong>on</strong>g>of</str<strong>on</strong>g> 11.4 gm - ². Small bivalves, crustaceans and polychaetes c<strong>on</strong>tributed 36%, 26%and 14% to the total biomass. Few <strong>in</strong>vertebrates were found. Based <strong>on</strong> the slight changes<strong>in</strong> the geochemistry <str<strong>on</strong>g>of</str<strong>on</strong>g> the sediment, they c<strong>on</strong>cluded that the seabed was slightlyenriched and the farm had little impact <strong>on</strong> the seabed. Pears<strong>on</strong> and Black (2001) reportedthat producti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>in</strong>faunal benthos close to a cage to be 4- 6 times the background level,caus<strong>in</strong>g a 50% <strong>in</strong>crease <strong>in</strong> epibenthic predator productivity.Table 2 shows list <str<strong>on</strong>g>of</str<strong>on</strong>g> species, which are generally found <strong>in</strong> various levels <str<strong>on</strong>g>of</str<strong>on</strong>g> sedimentc<strong>on</strong>tam<strong>in</strong>ati<strong>on</strong>. Although there are some specific organisms or groups <str<strong>on</strong>g>of</str<strong>on</strong>g> organismsassociated with particular level <str<strong>on</strong>g>of</str<strong>on</strong>g> enrichment, there is no universal <strong>in</strong>dicator for moderateto low levels <str<strong>on</strong>g>of</str<strong>on</strong>g> impacts. Capitella capitata Sp. (an opportunistic polychaete) is aworldwide <strong>in</strong>dicator <str<strong>on</strong>g>of</str<strong>on</strong>g> highly enriched, anaerobic, heavily impacted sediments under fishcages (EAO 1996, Pears<strong>on</strong> and Black 2001, Crawford et al. 2002). Sulfide c<strong>on</strong>centrati<strong>on</strong>sbetween 100 and 1000 mmol is optimal for Capitella Spp. (Macleod et al. 2002). Underthese c<strong>on</strong>diti<strong>on</strong>s the animal grows well and it may be get 3 to 5 times larger than <strong>in</strong>undisturbed sediments ( EAO 1996).UNU-Fisheries Tra<strong>in</strong><strong>in</strong>g Programme 15


ShakouriTable 2: Descriptive model <str<strong>on</strong>g>of</str<strong>on</strong>g> benthic faunal successi<strong>on</strong> dur<strong>in</strong>g sediment recovery fromload<strong>in</strong>g with fish farm wastes (Pears<strong>on</strong> and Black 2001)Degree<str<strong>on</strong>g>of</str<strong>on</strong>g>enrichmentCharacteristicspeciesHighly enrichedCapitella capittataMalacocerousfulig<strong>in</strong>atusNematodaOphryotrocoda sp.PseudoploydorapaucibranchiataModerately enrichedApistobranchus tullibergiSpio decorataMediomastus fulig<strong>in</strong>itusProtodervillea kefereste<strong>in</strong>iMicrospio sp.Pri<strong>on</strong>ospio fallaxCossura sp.Caulleriella sp.Me<strong>in</strong>na palmataPoloe <strong>in</strong>ornataLightlyEnrichedScoloplos sp.Thyasira ferrug<strong>in</strong>eaDiplocirrus glaucusSphaerosyllis tetralixAbra albaGlycera albaLepthognatiabrevirostrisNormalGlycera albaMigga wahbergiOphel<strong>in</strong>a sp.Perugia caecaSynelmis KlattiOwenia fusiformMagel<strong>on</strong>a sp.Eumida sp.Lanice c<strong>on</strong>chilegaAmphiura filiformisC<strong>on</strong>sider<strong>in</strong>g the spatial distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> organic wasted from fish cages, a gradient <str<strong>on</strong>g>of</str<strong>on</strong>g>enrichment and impacts may be observed <strong>in</strong> the farm<strong>in</strong>g site. EAO (1996) reported suchz<strong>on</strong><strong>in</strong>g <strong>in</strong> salm<strong>on</strong> cage culture, where there is an azoic z<strong>on</strong>e underneath the cage (D),highly enriched z<strong>on</strong>e from cage edge to 8m distance (C), slightly enriched area <strong>in</strong> 8 to25m distance (B) and normal z<strong>on</strong>e bey<strong>on</strong>d 25m with no significant impacts (A). Thez<strong>on</strong><strong>in</strong>g is site and farm management specific and it will alter depend<strong>in</strong>g <strong>on</strong> hydrography,topography, etc. Karakassis et al. (2000) have not observed the azoic z<strong>on</strong>e underneath thefish cages <strong>in</strong> the Mediterranean.Any farm<strong>in</strong>g activity that <strong>in</strong>creases waste materials will be promot<strong>in</strong>g azoic c<strong>on</strong>diti<strong>on</strong>s <strong>in</strong>the sediment. In c<strong>on</strong>trast, water currents may disperse or carry away waste particles anddecrease the risk <str<strong>on</strong>g>of</str<strong>on</strong>g> anoxic c<strong>on</strong>diti<strong>on</strong>s. In an area with high assimilative capacity, the risk<str<strong>on</strong>g>of</str<strong>on</strong>g> creati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> azoic z<strong>on</strong>e would be lower. This <strong>in</strong>dicates the importance <str<strong>on</strong>g>of</str<strong>on</strong>g> site selecti<strong>on</strong>.Figure 4: Z<strong>on</strong><strong>in</strong>g <str<strong>on</strong>g>of</str<strong>on</strong>g> organic enrichment and spatial impact <str<strong>on</strong>g>of</str<strong>on</strong>g> fish cage cultureUNU-Fisheries Tra<strong>in</strong><strong>in</strong>g Programme 16


Shakouri2.1.2 Dissolved wasteSoluble nutrients <strong>in</strong> feed and faeces (EAO 1996, ASI 1999, Chen et al. 1999, Nash 2001,Pawar et al. 2002), fish respirati<strong>on</strong> and metabolites and re-released nutrients from thesedimented wastes (EAO 1996, ASI 1999, Nash 2001) are major sources <str<strong>on</strong>g>of</str<strong>on</strong>g> dissolvednutrients from cage farm<strong>in</strong>g. Residuals <str<strong>on</strong>g>of</str<strong>on</strong>g> chemicals used for ma<strong>in</strong>tenance <str<strong>on</strong>g>of</str<strong>on</strong>g> nets andother physical structures <strong>in</strong> the farms, chemotherapeutics and additives <strong>in</strong> the feed mightbe c<strong>on</strong>sidered as the sec<strong>on</strong>d group <str<strong>on</strong>g>of</str<strong>on</strong>g> dissolved waste materials. Fertilizers are rarely usedand <strong>on</strong>ly <strong>in</strong> extensive and herbivorous fish farms.‣ Nutrients• PhosphorusA large proporti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> phosphorus <strong>in</strong> the feed is released <strong>in</strong>to the envir<strong>on</strong>ment, rang<strong>in</strong>gfrom 66% to 88% <strong>in</strong> salm<strong>on</strong> cage. It is estimated that for every kilogram <str<strong>on</strong>g>of</str<strong>on</strong>g> salm<strong>on</strong>produced 7.8 to 12.2 grams <str<strong>on</strong>g>of</str<strong>on</strong>g> phosphorus are released <strong>in</strong>to the mar<strong>in</strong>e envir<strong>on</strong>ment,(EAO 1996, Nordrum et al 1997, ASI 1999, Rouh<strong>on</strong>en et al. 1999, Storebakken et al.2000, Nash 2001).That means <strong>on</strong>ly a little amount <str<strong>on</strong>g>of</str<strong>on</strong>g> phosphorus is reta<strong>in</strong>ed <strong>in</strong> fish.C<strong>on</strong>tributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> dissolved wasted phosphorous <strong>in</strong> salm<strong>on</strong> cage culture varies from 15%to 85% <str<strong>on</strong>g>of</str<strong>on</strong>g> total phosphorous <strong>in</strong> feed depend<strong>in</strong>g <strong>on</strong> feed quality, size <str<strong>on</strong>g>of</str<strong>on</strong>g> fish and alsoexperiment c<strong>on</strong>diti<strong>on</strong>. (ASI 1999, Nash 2001). Storebakken et al. 2000, Sumagaysay andChavoso (2003) <strong>in</strong> their study <strong>on</strong> feed<strong>in</strong>g <str<strong>on</strong>g>of</str<strong>on</strong>g> milkfish (Chanos chanos) found thatexcreti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> nitrogen, phosphorus and digestibility <str<strong>on</strong>g>of</str<strong>on</strong>g> feed depended <strong>on</strong> feed quality andfish weight. Excreti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> phosphorus <strong>in</strong> small fish was higher than big <strong>on</strong>es, rang<strong>in</strong>g from1.2 to 3.2 mmol PO 4 -Pkg -1 day -1 . Guo and Li (2003), reported that for every kilogram <str<strong>on</strong>g>of</str<strong>on</strong>g>fish 35 g (89%) <str<strong>on</strong>g>of</str<strong>on</strong>g> feed’s phosphorus was lost <strong>in</strong> cage polyculture <str<strong>on</strong>g>of</str<strong>on</strong>g> mandar<strong>in</strong> fish(S<strong>in</strong>iperca chuatsi), freshwater bream (Megalobrama amblycephala) and catfish(Ictalurus punctatus) fed <strong>on</strong> dry and fresh feeds.Fish excrete soluble, <strong>in</strong>organic phosphorus via ur<strong>in</strong>e (Green et al. 2002). Atlantic salm<strong>on</strong>ur<strong>in</strong>e 3-6 hours after feed<strong>in</strong>g is estimated 234-255 µlkg -1 c<strong>on</strong>ta<strong>in</strong><strong>in</strong>g 1mmoll -1 <str<strong>on</strong>g>of</str<strong>on</strong>g><strong>in</strong>organic phosphate (Roy and Lall 2004). In anoxic c<strong>on</strong>diti<strong>on</strong>s, the sediment releasesphosphorus to the water (EAO 1996, ASI 1999). Follow<strong>in</strong>g a period <str<strong>on</strong>g>of</str<strong>on</strong>g> anoxia, an 18%<strong>in</strong>crease <strong>in</strong> dissolved phosphorus <strong>in</strong> freshwater lake is reported (ASI 1999). Re-release <str<strong>on</strong>g>of</str<strong>on</strong>g>phosphorus <strong>in</strong> anoxic c<strong>on</strong>diti<strong>on</strong>s from depositi<strong>on</strong> z<strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> cage farm<strong>in</strong>g is 7 mmol PO 4 -Pm - ²day -1 . This is 2.5 to 5 times more than from oxic sediments <strong>in</strong> undisturbed substrate(EAO 1996).• NitrogenTotal nitrogen loss <strong>in</strong> fish cage culture ranges from 72% to 79% <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>in</strong>put (ASI 1999).Ruoh<strong>on</strong>en and co-workers (1999) estimated that for every kilogram <str<strong>on</strong>g>of</str<strong>on</strong>g> Atlantic salm<strong>on</strong>produced, 53.4 to 68g <str<strong>on</strong>g>of</str<strong>on</strong>g> nitrogen were released. Storebakken et al. (2000) found <strong>in</strong> 200gUNU-Fisheries Tra<strong>in</strong><strong>in</strong>g Programme 17


ShakouriAtlantic salm<strong>on</strong> the nitrogen loss was 54% <str<strong>on</strong>g>of</str<strong>on</strong>g> total nitrogen <strong>in</strong>take. Some 82% <str<strong>on</strong>g>of</str<strong>on</strong>g> thewaste was excreted <strong>in</strong> soluble form.Amm<strong>on</strong>ia and amm<strong>on</strong>ium are the most comm<strong>on</strong> types <str<strong>on</strong>g>of</str<strong>on</strong>g> nitrogen waste which may<strong>in</strong>clude 65% to 90% <str<strong>on</strong>g>of</str<strong>on</strong>g> total nitrogen loss <strong>in</strong> fish, which is ma<strong>in</strong>ly <strong>in</strong> un-i<strong>on</strong>ized form(EAO 1996, ASI 1999, Storebakken et al. 2000).Salm<strong>on</strong> fish excretes metabolites viagills and ur<strong>in</strong>e (Rouh<strong>on</strong>en et al. 1999). Sockeye salm<strong>on</strong> (Oncorhynchus nerka) excretes8.2 (m<strong>in</strong>.) to 35 (max.) mg N kg -1 h -1 . Ur<strong>in</strong>e excreti<strong>on</strong> is relatively c<strong>on</strong>stant at 2.2mgN kg -1 (EAO 1996, Nash 2001). Total amm<strong>on</strong>ia nitrogen excreted from the milkfish underlaboratory c<strong>on</strong>diti<strong>on</strong> varied from 333 <strong>in</strong> small fish to 60.8 mgkg -1 day -1 <strong>in</strong> bigger<strong>in</strong>dividuals and was affected by quality <str<strong>on</strong>g>of</str<strong>on</strong>g> feed (Sumagasay and Chavoso 2003).Re-release <str<strong>on</strong>g>of</str<strong>on</strong>g> nitrogen from bio-deposits <strong>in</strong> sediments is negligible. The amount <str<strong>on</strong>g>of</str<strong>on</strong>g>amm<strong>on</strong>ium and amm<strong>on</strong>ia enter<strong>in</strong>g the water column from m<strong>in</strong>eralizati<strong>on</strong> is very little.Release <str<strong>on</strong>g>of</str<strong>on</strong>g> amm<strong>on</strong>ium from Norwegian salm<strong>on</strong> farms ranges from 0.5 to 13 mmol NH 4 -Nm - ²day -1 and may exceed <str<strong>on</strong>g>of</str<strong>on</strong>g> 62mmol NH 4 -Nday -1 m - ² depend<strong>in</strong>g <strong>on</strong> managementpractices and envir<strong>on</strong>mental c<strong>on</strong>diti<strong>on</strong>s (EAO 1996, W<strong>in</strong>sby et al. 1996).• <str<strong>on</strong>g>Impact</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> nutrientoWater enrichment and phytoplankt<strong>on</strong> growthLight, nutrients (phosphorus and nitrogen), temperature and sal<strong>in</strong>ity are the mostimportant parameters affect<strong>in</strong>g the growth <str<strong>on</strong>g>of</str<strong>on</strong>g> algae. Aquaculture effluents usually carryhigh c<strong>on</strong>centrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> nutrients. In freshwater systems, where phosphorus is a limit<strong>in</strong>gfactor (EAO 1996, ASI 1999), aquaculture discharges will <strong>in</strong>crease phytoplankt<strong>on</strong>. Diazet al. (2001) c<strong>on</strong>cluded that an <strong>in</strong>crease <strong>in</strong> density and biomass <str<strong>on</strong>g>of</str<strong>on</strong>g> phytoplankt<strong>on</strong> <strong>in</strong> afreshwater reservoir, Alicura, Argent<strong>in</strong>a was correlated to phosphorus orig<strong>in</strong>at<strong>in</strong>g fromsalm<strong>on</strong> cages and natural <strong>in</strong>puts. In c<strong>on</strong>trast, Buschmann (2002) did not report any<strong>in</strong>crease <strong>in</strong> abundance <str<strong>on</strong>g>of</str<strong>on</strong>g> phytoplankt<strong>on</strong> <strong>in</strong> southern lakes <str<strong>on</strong>g>of</str<strong>on</strong>g> Chile.N:P ratio <str<strong>on</strong>g>of</str<strong>on</strong>g> 16:1 is required for optimal growth <str<strong>on</strong>g>of</str<strong>on</strong>g> phytoplankt<strong>on</strong> (Burford andRothlisberg 1999). Phosphorus is generally available <strong>in</strong> a mar<strong>in</strong>e envir<strong>on</strong>ment <strong>in</strong> highc<strong>on</strong>centrati<strong>on</strong>s and nitrogen c<strong>on</strong>trols the growth <str<strong>on</strong>g>of</str<strong>on</strong>g> phytoplankt<strong>on</strong>. Nitrogen <strong>in</strong> the form<str<strong>on</strong>g>of</str<strong>on</strong>g> amm<strong>on</strong>ia and amm<strong>on</strong>ium. (comm<strong>on</strong> types <str<strong>on</strong>g>of</str<strong>on</strong>g> nitrogen <strong>in</strong> salm<strong>on</strong> cage sewage) isreadily available for uptake by phytoplankt<strong>on</strong> (W<strong>in</strong>sby et al. 1996, ASI 1999, Nash 2001).S<strong>in</strong>ce the denitrificati<strong>on</strong> process is <str<strong>on</strong>g>of</str<strong>on</strong>g>ten slow <strong>in</strong> cage farm<strong>in</strong>g areas, it can promotephytoplankt<strong>on</strong> growth (ASI 1999). However, significant <strong>in</strong>creases <strong>in</strong> nitrogen andc<strong>on</strong>sequent algal blooms can take place <strong>in</strong> areas <str<strong>on</strong>g>of</str<strong>on</strong>g> poor flush<strong>in</strong>g. In fact, c<strong>on</strong>centrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g>dissolved <strong>in</strong>organic nitrogen is very low at the perimeter <str<strong>on</strong>g>of</str<strong>on</strong>g> cages and nitrogen will bediluted to an undetectable level at distances greater than 9 meters from the perimeter(Nash 2001).On the other hand, amm<strong>on</strong>ium is released <strong>in</strong>to the upper layers <str<strong>on</strong>g>of</str<strong>on</strong>g> the water column whilephosphorus is largely rem<strong>in</strong>eralized <strong>in</strong> anoxic sediments below the cage and it will beUNU-Fisheries Tra<strong>in</strong><strong>in</strong>g Programme 18


Shakourireleased dur<strong>in</strong>g w<strong>in</strong>ter or fall turnovers, reduc<strong>in</strong>g the chance <str<strong>on</strong>g>of</str<strong>on</strong>g> proper nutrient ratio andenvir<strong>on</strong>mental c<strong>on</strong>diti<strong>on</strong> for rapid growth <str<strong>on</strong>g>of</str<strong>on</strong>g> the phytoplankt<strong>on</strong> (EAO 1996, W<strong>in</strong>sby et al.1996). In high latitude areas where salm<strong>on</strong> farm<strong>in</strong>g is most comm<strong>on</strong>, light would be alimit<strong>in</strong>g factor for phytoplankt<strong>on</strong> growth <strong>in</strong> the deeper layers. In additi<strong>on</strong>, cloud<strong>in</strong>essreduces the light <strong>in</strong>tensity as well (Nash 2001).The rule <str<strong>on</strong>g>of</str<strong>on</strong>g> currents <strong>in</strong> reduc<strong>in</strong>g phytoplankt<strong>on</strong> bloom <strong>in</strong> cage culture areas is wellunderstood. At 10-15°C, it takes 1-2 days for algal cells to reproduce. In algal blooms,cell density <strong>in</strong>creases from a few thousand to more than milli<strong>on</strong> cells per liter. It will takeeight to n<strong>in</strong>e generati<strong>on</strong>s requir<strong>in</strong>g 8 to 16 days. In an open water body with currentvelocity <str<strong>on</strong>g>of</str<strong>on</strong>g> 2 cms -1 - like most <str<strong>on</strong>g>of</str<strong>on</strong>g> the coastal area- algal cells will move <strong>on</strong> 14 km <strong>in</strong> thisperiod, while nitrogen will be diluted with <strong>in</strong> a few tens <str<strong>on</strong>g>of</str<strong>on</strong>g> meters from the cage. (Nashand Nahnken 2001, Brooks 2003a) Burford and Rothlisberg (1999) did not f<strong>in</strong>d acorrelati<strong>on</strong> between nutrient c<strong>on</strong>centrati<strong>on</strong>s and chlorophyll a <strong>in</strong> the Gulf <str<strong>on</strong>g>of</str<strong>on</strong>g> Carpenteria,a tropical c<strong>on</strong>t<strong>in</strong>ental shelf ecosystem. Additi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> nitrogen, phosphorus and silicate towater samples had little or no effect <strong>on</strong> primary producti<strong>on</strong> and light was more likely tostimulate producti<strong>on</strong>, except <strong>in</strong> shallow coastal water <strong>in</strong> which light is not a limit<strong>in</strong>gfactor. Arzul et al. (2002) <strong>in</strong> an <strong>in</strong> vitro study found that excess feed did not affect thegrowth rate <str<strong>on</strong>g>of</str<strong>on</strong>g> micro algae significantly. Al<strong>on</strong>gi et al. (2003) reported no significant<strong>in</strong>crease <strong>in</strong> phytoplankt<strong>on</strong> producti<strong>on</strong> <strong>in</strong> the vic<strong>in</strong>ity <str<strong>on</strong>g>of</str<strong>on</strong>g> fish cages <strong>in</strong> mangrove estuaries<strong>in</strong> Malaysia. They found light to be a limit<strong>in</strong>g factor <strong>in</strong> phytoplankt<strong>on</strong> growth as it iscomm<strong>on</strong>ly found <strong>in</strong> most mangrove waterways.In a review <str<strong>on</strong>g>of</str<strong>on</strong>g> phytoplankt<strong>on</strong> blooms <strong>in</strong> British Colombia the EAO (1996) c<strong>on</strong>cluded thatsalm<strong>on</strong> cage culture does not have a significant impact <strong>on</strong> productivity. However, risk <str<strong>on</strong>g>of</str<strong>on</strong>g>impacts for semi-closed, poor flush<strong>in</strong>g and shallow areas like fjords and lago<strong>on</strong>s, shouldnot be neglected (GESAMP 1991, EAO 1996). Although the cage culture and otheraquaculture systems may be affected by phytoplankt<strong>on</strong> or harmful algal bloom, there isno evidence that it causes toxic blooms (GESAMP 1991, EAO 1996, SECRU 2002).Laboratory studies (<strong>in</strong> absence <str<strong>on</strong>g>of</str<strong>on</strong>g> grazers) show a correlati<strong>on</strong> between nutrientenrichment and algae associated with eutrophicati<strong>on</strong>, red tides and substantial blooms <strong>in</strong>Scotland. However, a correlati<strong>on</strong> between harmful algal bloom (HAB) species andnutrient level has not been reported under natural c<strong>on</strong>diti<strong>on</strong>. In additi<strong>on</strong>, <strong>in</strong> vitro study<strong>in</strong>dicated that imbalance <strong>in</strong> nutrients can result <strong>in</strong> an <strong>in</strong>crease <strong>in</strong> the toxic c<strong>on</strong>tent <str<strong>on</strong>g>of</str<strong>on</strong>g> algalcells (SECRU 2002). However N:P ratio <strong>in</strong> salm<strong>on</strong> cage farm<strong>in</strong>g is close to optimal foralgal growth. More research is needed for better understand<strong>in</strong>g <str<strong>on</strong>g>of</str<strong>on</strong>g> the impact <str<strong>on</strong>g>of</str<strong>on</strong>g> cageculture waste <strong>on</strong> HAB.o <str<strong>on</strong>g>Impact</str<strong>on</strong>g> <strong>on</strong> dissolved oxygenSuspended and dissolved solids, re-release <str<strong>on</strong>g>of</str<strong>on</strong>g> chemicals from the sediments and fishrespirati<strong>on</strong> may affect water chemistry. Oxygen c<strong>on</strong>sumpti<strong>on</strong> by a mass <str<strong>on</strong>g>of</str<strong>on</strong>g> fish <strong>in</strong> a cagecould be significant. A 4 kg Atlantic salm<strong>on</strong> c<strong>on</strong>sumes about 20 g O 2 per day. In <strong>on</strong>ecubic meter <str<strong>on</strong>g>of</str<strong>on</strong>g> a cage the demand would be 500g O 2 day -1 (EAO 1996). In areas withgood circulati<strong>on</strong>s this amount would be easily supplied by water currents. Brooks andUNU-Fisheries Tra<strong>in</strong><strong>in</strong>g Programme 19


ShakouriMahnken (2003) reported a 2 ppm decrease <strong>in</strong> dissolved oxygen (DO) level <str<strong>on</strong>g>of</str<strong>on</strong>g> the waterpass<strong>in</strong>g through a large, poorly flushed farm. ASI (1999) suggested that 64% to 74% <str<strong>on</strong>g>of</str<strong>on</strong>g>this demand occurred due to fish respirati<strong>on</strong>. DO depleti<strong>on</strong> <strong>in</strong> the farm with high waterexchange rate is not a c<strong>on</strong>cern. M<strong>on</strong>itor<strong>in</strong>g <str<strong>on</strong>g>of</str<strong>on</strong>g> DO levels <strong>in</strong> Ma<strong>in</strong>e, USA, did not show asignificant difference between DO c<strong>on</strong>centrati<strong>on</strong>s <strong>in</strong> down current and up current <str<strong>on</strong>g>of</str<strong>on</strong>g>salm<strong>on</strong> cages and they were close to saturati<strong>on</strong> level (He<strong>in</strong><strong>in</strong>g 2000). In general, risk andimpact <str<strong>on</strong>g>of</str<strong>on</strong>g> salm<strong>on</strong> cage culture <strong>on</strong> DO level <strong>in</strong> the water column is very low. However,due to severe <strong>in</strong>crease <str<strong>on</strong>g>of</str<strong>on</strong>g> biological and chemical processes <strong>in</strong> enriched sediments, thewater next to the bottom may be affected, particularly <strong>in</strong> deep and stagnant waters withlow exchange rates (GESAMP 1991, EAO 1996, Nash 2001). Under such c<strong>on</strong>diti<strong>on</strong>s, DOc<strong>on</strong>centrati<strong>on</strong>s may decl<strong>in</strong>e to 2.2 mgl -1 , a critical level for benthic fauna (Nash 2001).However, it is usually at a higher level. DO depleti<strong>on</strong> at the overlay<strong>in</strong>g water <strong>in</strong> vic<strong>in</strong>ity<str<strong>on</strong>g>of</str<strong>on</strong>g> the Norwegian salm<strong>on</strong> cages was <strong>on</strong>ly 30% lower than the DO level <strong>in</strong> an undisturbedarea but still above 50% <str<strong>on</strong>g>of</str<strong>on</strong>g> saturati<strong>on</strong> level (W<strong>in</strong>sby et al. 1996).‣ Chemicals and drugsSeveral chemical compounds are used <strong>in</strong> aquaculture to c<strong>on</strong>trol pests and diseases,improve flesh quality or to promote growth. Some compounds are adm<strong>in</strong>istered throughthe feed and the other <strong>on</strong>es via a bath or <strong>in</strong>jecti<strong>on</strong>. Depend<strong>in</strong>g <strong>on</strong> the purpose <str<strong>on</strong>g>of</str<strong>on</strong>g> chemicaland drug treatments these compounds enter to envir<strong>on</strong>ment through uneaten feed, faecesor water (Cannavan et al. 2000, Weber 2003).• Antibiotics and synthetic antibioticsFarmed salm<strong>on</strong> are vulnerable to bacterial <strong>in</strong>fecti<strong>on</strong>s such as bacterial kidney disease,furunclosis and bacterial septicemia (Weber 2003). Various antibiotics and antimicrobialcompounds are adm<strong>in</strong>istered <strong>in</strong> order to c<strong>on</strong>trol outbreaks <str<strong>on</strong>g>of</str<strong>on</strong>g> diseases <strong>in</strong> salm<strong>on</strong> cagefarms (EAO 1996, W<strong>in</strong>sby et al. 1996 and SECRU 2002 for a comprehensive list <str<strong>on</strong>g>of</str<strong>on</strong>g>antibiotics and their applicati<strong>on</strong>). Oxytetracycl<strong>in</strong> (OTC), Erythromyc<strong>in</strong>, Oxol<strong>in</strong>ic Acid,Sulfadimethox<strong>in</strong>e+ ormetoprim and some sulf<strong>on</strong>amide compounds are the most comm<strong>on</strong>antibiotics used <strong>in</strong> salm<strong>on</strong> culture (EAO 1996, ASI 1999, W<strong>in</strong>sby et al. 1996, Cannavanet al. 2000 and Nash 2001). In 1987, 48000kg <str<strong>on</strong>g>of</str<strong>on</strong>g> antibiotics were adm<strong>in</strong>istered <strong>in</strong> thesalm<strong>on</strong> aquaculture <strong>in</strong>dustry <strong>in</strong> Norway. It decl<strong>in</strong>ed to 680kg <strong>in</strong> 1998 (Weber 2003).Antibiotics are usually applied orally <strong>in</strong>corporated <strong>in</strong>to feed. Uneaten feed, faeces andleach<strong>in</strong>g from these particles and feed carry the chemicals to the surround<strong>in</strong>genvir<strong>on</strong>ment (W<strong>in</strong>sby et al. 1996, Weber 2003). About 62-86% <str<strong>on</strong>g>of</str<strong>on</strong>g> oxol<strong>in</strong>ic acid <strong>in</strong>gestedby ra<strong>in</strong>bow trout is excreted through the faeces (EAO 1996). The situati<strong>on</strong> for OTC isalmost the same as W<strong>in</strong>sby et al. (1996) reported 70% to 80% loss <str<strong>on</strong>g>of</str<strong>on</strong>g> the OTCadm<strong>in</strong>istered <strong>in</strong> Norwegian fish farm. S<strong>in</strong>ce antibiotics b<strong>in</strong>d with particles, they willaccumulate <strong>in</strong> the sediment beneath the fish cages (Chelossi et al. 2003, Weber 2003).The residual is mostly found <strong>in</strong> the top 4 cm (W<strong>in</strong>sby et al. 1996). Several studies havereported that c<strong>on</strong>centrati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> OTC between 1- 4 mgkg -1 <strong>in</strong> sediments under salm<strong>on</strong>cages (EAO 1996, Kerry et al.1996). It may even reach 11 mgkg -1 . However, it shouldbe harmless as it makes complexes with magnesium and calcium (EAO 1996).UNU-Fisheries Tra<strong>in</strong><strong>in</strong>g Programme 20


ShakouriAntibiotics may persist <strong>in</strong> the envir<strong>on</strong>ment from a day to 15 or even 18 m<strong>on</strong>ths,depend<strong>in</strong>g <strong>on</strong> type <str<strong>on</strong>g>of</str<strong>on</strong>g> comp<strong>on</strong>ents and site c<strong>on</strong>diti<strong>on</strong> (W<strong>in</strong>sby et al. 1996, Weber 2003).For <strong>in</strong>stance, <strong>in</strong> seawater and under exposure <str<strong>on</strong>g>of</str<strong>on</strong>g> light, OTC degrades <strong>in</strong> 30 hours.However, <strong>in</strong> darkness and fresh water its degradati<strong>on</strong> will take 2 m<strong>on</strong>th. Removal <str<strong>on</strong>g>of</str<strong>on</strong>g>antibiotics from the sediments depends ma<strong>in</strong>ly <strong>on</strong>: re-suspensi<strong>on</strong> and replacement <str<strong>on</strong>g>of</str<strong>on</strong>g>sediment, diluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> sediment with additi<strong>on</strong>al antibiotics free sediments and thedissoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> antibiotics (W<strong>in</strong>sby et al. 1996) or deactivati<strong>on</strong> by form<strong>in</strong>g complexes withcalcium and magnesium (EAO 1996).Depend<strong>in</strong>g <strong>on</strong> envir<strong>on</strong>mental c<strong>on</strong>diti<strong>on</strong>s, type and level <str<strong>on</strong>g>of</str<strong>on</strong>g> accumulated antibiotics,several changes may take place <strong>in</strong> the microbial structure <str<strong>on</strong>g>of</str<strong>on</strong>g> the sediment. Major cha<strong>in</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g>impact is the follow<strong>in</strong>g (W<strong>in</strong>sby et al. 1996, Chelossi et al. 2003, Weber 2003): A dramatic reducti<strong>on</strong> <strong>in</strong> the total number <str<strong>on</strong>g>of</str<strong>on</strong>g> bacteria and elim<strong>in</strong>ati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> sensitivespecies. An <strong>in</strong>crease <strong>in</strong> populati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> resistant bacteria. Elim<strong>in</strong>ati<strong>on</strong> or decrease <str<strong>on</strong>g>of</str<strong>on</strong>g> aerobic bacteria <strong>in</strong>volved <strong>in</strong> the biodegradati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g>organic matter, which may foster anaerobic c<strong>on</strong>diti<strong>on</strong>.Some studies <strong>in</strong>dicate that antibiotics do not <strong>in</strong>fluence the rate <str<strong>on</strong>g>of</str<strong>on</strong>g> microbial degradati<strong>on</strong>(EAO 1996, W<strong>in</strong>sby et al. 1996). Chelossi et al. (2003) has depicted changes <strong>in</strong> bacterialstructure <strong>in</strong> sediments <strong>in</strong> a fish farm<strong>in</strong>g area <strong>in</strong> Italy. They found bacteria <strong>in</strong> impactedsites to be more resistant to antibiotics. This resistance was transmitted to the bacteria <strong>in</strong>unpolluted area, which suggests widespread antibiotic resistance <strong>in</strong> areas surround<strong>in</strong>gfish farms. Their f<strong>in</strong>d<strong>in</strong>g c<strong>on</strong>curs with those <str<strong>on</strong>g>of</str<strong>on</strong>g> Miranda and Zemelman (2002), whoreported antimicrobial multiresistance <str<strong>on</strong>g>of</str<strong>on</strong>g> bacteria <strong>in</strong> Chilean salm<strong>on</strong> farms. An <strong>in</strong>crease<strong>in</strong> resistance <str<strong>on</strong>g>of</str<strong>on</strong>g> bacteria to OTC is reported <strong>in</strong> several studies (Kerry et al. 1996, W<strong>in</strong>sbyet al. 1996).Some human bacterial pathogens occur <strong>in</strong> aquatic envir<strong>on</strong>ment. Many <str<strong>on</strong>g>of</str<strong>on</strong>g> the antibioticsapplied <strong>in</strong> aquaculture are the same as those used <strong>in</strong> human disease c<strong>on</strong>trol. C<strong>on</strong>sider<strong>in</strong>gthe ability <str<strong>on</strong>g>of</str<strong>on</strong>g> bacteria to transmit their resistance to other bacterial stra<strong>in</strong>s, that may be arisk <str<strong>on</strong>g>of</str<strong>on</strong>g> resistance transmissi<strong>on</strong> to human pathogens (GESAMP 1991, W<strong>in</strong>sby et al. 1996).Some antibiotics are toxic to <strong>in</strong>vertebrates. Daphnia magna nauplius is sensitive toerythromyc<strong>in</strong> (W<strong>in</strong>sby et al. 1996). In additi<strong>on</strong>, degradati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> antibiotics may producesome tox<strong>in</strong>s (ASI 1999). Residuals <str<strong>on</strong>g>of</str<strong>on</strong>g> antibiotics are found <strong>in</strong> tissues <str<strong>on</strong>g>of</str<strong>on</strong>g> fish, crab,mussels, oyster and some other <strong>in</strong>vertebrates (EAO 1996, W<strong>in</strong>sby et al. 1996, Coyne etal. 1997, Chelossi et al. 2003, Weber 2003). Residuals <str<strong>on</strong>g>of</str<strong>on</strong>g> OTC have been found <strong>in</strong>oysters (Crassostrea gigas), Dungeness crab (cancer magister) <strong>in</strong> less than 0.1 µgg -1(Cap<strong>on</strong>e et al. 1996, EAO 1996). Coyne et al. (1997) detected significant Oxytetracycl<strong>in</strong>ec<strong>on</strong>centrati<strong>on</strong>s <strong>in</strong> blue mussel (Mytilus edulis) near an Atlantic salm<strong>on</strong> farm, both dur<strong>in</strong>gand after applicati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> OTC. The half-life was less than 2 days.Risk <str<strong>on</strong>g>of</str<strong>on</strong>g> transmissi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> deposited antibiotics to humans and subsequent effects <strong>on</strong> humanhealth and rejecti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>tam<strong>in</strong>ated products by strict markets should be c<strong>on</strong>sidered <strong>in</strong>UNU-Fisheries Tra<strong>in</strong><strong>in</strong>g Programme 21


Shakouriapplicati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> antibiotics <strong>in</strong> fish farm<strong>in</strong>g. C<strong>on</strong>sider<strong>in</strong>g the short half life <str<strong>on</strong>g>of</str<strong>on</strong>g> antibiotics, itis very easy to reduce this risk.• ParasitesSea lice (Caligus elangatus, Leptophtherius salm<strong>on</strong>is, and Ergasilus labracis) arecomm<strong>on</strong> ecto-parasites <strong>in</strong> salm<strong>on</strong> cage culture (W<strong>in</strong>sby et al. 1996, Nash 2001, Weber2003). Infested fish fetch up to 20% lower price <strong>in</strong> the market (Weber 2003). Ivermict<strong>in</strong>,cypermethr<strong>in</strong> (dichlorvos), azamethiphos, calicide (teflubenzurn) and several differentchemicals are used for sea lice treatment all around the world. Almost all <str<strong>on</strong>g>of</str<strong>on</strong>g> thesecompounds are broad spectrum biocides that can to affect many aquatic species, <strong>in</strong>particular crustaceans (Nash 2001, Weber 2003). For <strong>in</strong>stance, ivermect<strong>in</strong> (22,23-dihydroarermect<strong>in</strong> β 1 ) is a pesticide widely used <strong>in</strong> salm<strong>on</strong> farms (Nash 2001). Lethalc<strong>on</strong>centrati<strong>on</strong>s for mar<strong>in</strong>e organisms range from 0.022 µgl -1 for Mysidopsis bahia(LC 50 ,96 hrs) to more than 10000 µgl -1 for nematodes. Ivermect<strong>in</strong> that is not absorbed byfish is <strong>in</strong>corporated <strong>in</strong>to sediment (Nash 2001). Therefore, benthic organisms are mostlikely to be affected by this chemical (SECRU 2002). Residuals <str<strong>on</strong>g>of</str<strong>on</strong>g> ivermect<strong>in</strong> have beenfound <strong>in</strong> sediments 22.5 m from salm<strong>on</strong> cage (Cannavan et al 2000). Mean c<strong>on</strong>centrati<strong>on</strong><strong>in</strong> the top 3cm was 5ngg -1 . In general, significant c<strong>on</strong>centrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> this chemical is limitedto a 10-20 m perimeter <str<strong>on</strong>g>of</str<strong>on</strong>g> a farm. Degradati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> ivermect<strong>in</strong> <strong>in</strong> the sediments is very slowand depends <strong>on</strong> light and temperature; its half-life may be more than 100 days (Nash2001).An organophosphate <strong>in</strong>secticide, dichlorvos, is an approved chemical <strong>in</strong> Europe, which istoxic to mar<strong>in</strong>e <strong>in</strong>vertebrates (W<strong>in</strong>sby et al. 1996). High mortality <str<strong>on</strong>g>of</str<strong>on</strong>g> shrimp and lobsterhas been observed when they were exposed to a bath <str<strong>on</strong>g>of</str<strong>on</strong>g> dichlorvos soluti<strong>on</strong>, but the effecthas not been observed outside cages. Dichlorvos is toxic to crustaceans <strong>in</strong> c<strong>on</strong>centrati<strong>on</strong>sgreater than 10 ngl -1 , while the c<strong>on</strong>centrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> this chemical can rise up to 187 ngl -1 , 25m downstream <str<strong>on</strong>g>of</str<strong>on</strong>g> a salm<strong>on</strong> cage (Nash 2001). Med<strong>in</strong>a et al. (2004), found a decrease <strong>in</strong>the density and biodiversity <str<strong>on</strong>g>of</str<strong>on</strong>g> 19 taxa <str<strong>on</strong>g>of</str<strong>on</strong>g> zooplankt<strong>on</strong> exposed to 5 µgl -1 cypermethr<strong>in</strong>.The total number <str<strong>on</strong>g>of</str<strong>on</strong>g> rotifers however <strong>in</strong>creased significantly. Phytoplankt<strong>on</strong> densitymeasure <strong>on</strong> chlorophyll a, did not change significantly. Like other vermicides, dichlorvosis deposited <strong>in</strong> sediments around the farm area. The functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> other compounds likeemamect<strong>in</strong> and calicide <strong>in</strong> the envir<strong>on</strong>ment are similar to ivermect<strong>in</strong> and dichlorvos(Nash 2001).• Dis<strong>in</strong>fectantsVarieties <str<strong>on</strong>g>of</str<strong>on</strong>g> chemical compounds are used for dis<strong>in</strong>fecti<strong>on</strong> or treat<strong>in</strong>g external pathogens.Benzalk<strong>on</strong>ium chloride, iodophore, chlor<strong>in</strong>e and formal<strong>in</strong> are the most comm<strong>on</strong>dis<strong>in</strong>fectants <strong>in</strong> salm<strong>on</strong> aquaculture. They are very toxic to aquatic organisms. However,they are usually applied <strong>in</strong> small quantity under c<strong>on</strong>trolled c<strong>on</strong>diti<strong>on</strong>s (EAO 1996, Nash2001). As a matter <str<strong>on</strong>g>of</str<strong>on</strong>g> fact, applicati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> antibiotics and some other chemicals <strong>in</strong> cagecultured can not be easily elim<strong>in</strong>ates from the farm<strong>in</strong>g practices, <strong>in</strong> particular <strong>in</strong> <strong>in</strong>tensiveUNU-Fisheries Tra<strong>in</strong><strong>in</strong>g Programme 22


Shakourisystems. Optimal site selecti<strong>on</strong> and resp<strong>on</strong>sible farm management are the practicalapproaches to reduce risk and impacts <str<strong>on</strong>g>of</str<strong>on</strong>g> chemicals <strong>on</strong> the envir<strong>on</strong>ment.‣ Heavy metals• CopperAntifoul<strong>in</strong>g agents are widely used to prevent growth <strong>on</strong> nets and cages. Copperc<strong>on</strong>ta<strong>in</strong><strong>in</strong>g compounds are the most comm<strong>on</strong> chemicals used <strong>in</strong> net clean<strong>in</strong>g. In 1985 theaquaculture <strong>in</strong>dustry <strong>in</strong> Norway used 47 t<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> copper <strong>in</strong> antifoul<strong>in</strong>g agents. This amount<strong>in</strong>creased to 180 t<strong>on</strong> <strong>in</strong> 1998 (Solberg et al. 2002). 25 antifoul<strong>in</strong>gs are licensed by SEPAfor applicati<strong>on</strong> <strong>in</strong> the UK. The primary active <strong>in</strong>gredient <strong>in</strong> all but five <str<strong>on</strong>g>of</str<strong>on</strong>g> these productsis copper, copper sulfate and copper oxide (SEPA 2003). However, the envir<strong>on</strong>mentalimpact <str<strong>on</strong>g>of</str<strong>on</strong>g> copper <strong>in</strong> aquaculture is not sever. W<strong>in</strong>sby (1996) reported a c<strong>on</strong>centrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g>copper <strong>in</strong>side a treated net as no different from a c<strong>on</strong>trol 700 m away. Buschmann (2002)found that the <strong>in</strong>crease <strong>in</strong> c<strong>on</strong>centrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> dissolved copper <strong>in</strong> Chilean mar<strong>in</strong>e salm<strong>on</strong>farms is not correlated with aquaculture activity. Solberg and co-workers (2002) found nosignificant difference between copper c<strong>on</strong>centrati<strong>on</strong> <strong>in</strong> samples <str<strong>on</strong>g>of</str<strong>on</strong>g> blue mussel (Mytilusedulis), brown seaweed (Ascophyllum nodosum), saithe (Pollacius virens), farmedAtlantic salm<strong>on</strong> and sediments from sampl<strong>in</strong>g stati<strong>on</strong>s <strong>in</strong> five copper treated nets and anuntreated reference net.Despite <str<strong>on</strong>g>of</str<strong>on</strong>g> the use <str<strong>on</strong>g>of</str<strong>on</strong>g> copper <strong>in</strong> antifoul<strong>in</strong>g agents and feed, high c<strong>on</strong>centrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> thismetal was not reported <strong>in</strong> sediments <strong>in</strong> British Colombia (EAO 1996). Copper, <strong>in</strong> certa<strong>in</strong>c<strong>on</strong>centrati<strong>on</strong>s, is toxic to algae and some other aquatic organisms, <strong>in</strong> particularembry<strong>on</strong>ic and larval stages <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>in</strong>vertebrates (Nash 2001, Brooks and Mahnken 2003b).Embryos <str<strong>on</strong>g>of</str<strong>on</strong>g> Crassostrea gigas are very sensitive to the Cu i<strong>on</strong> (LC 50 = 10 µgl -1 ) whileherr<strong>in</strong>g larvae have a very low sensitivity (LC 50 = 10-2000 µgl -1 ) (Brooks and Mahnken .2003b). In the United States, the maximum approved level <str<strong>on</strong>g>of</str<strong>on</strong>g> copper <strong>in</strong> the mar<strong>in</strong>eenvir<strong>on</strong>ment is 3.1 µgl -1 . Various studies have shown the levels <str<strong>on</strong>g>of</str<strong>on</strong>g> copper <strong>in</strong> fish cages tobe less than standard norms (Nash 2001).Copper is added to the feed <strong>in</strong> 1-4 gkg -1 dry feed, depend<strong>in</strong>g <strong>on</strong> fish species andenvir<strong>on</strong>mental c<strong>on</strong>diti<strong>on</strong> (Berntssen et al. 1999, Brooks.and Mahnken 2003b). Berntssenand co-workers (1999) <strong>in</strong> their laboratory study added copper to the diet <str<strong>on</strong>g>of</str<strong>on</strong>g> Atlanticsalm<strong>on</strong> parr <strong>in</strong> 3 different c<strong>on</strong>centrati<strong>on</strong>, 5, 35 and 700 mgkg -1 dry feed. They reported no<strong>in</strong>crease <str<strong>on</strong>g>of</str<strong>on</strong>g> copper <strong>in</strong> the water column <strong>in</strong> their 4 week experiment. High rate <str<strong>on</strong>g>of</str<strong>on</strong>g> diluti<strong>on</strong><str<strong>on</strong>g>of</str<strong>on</strong>g> copper and flush<strong>in</strong>g out <str<strong>on</strong>g>of</str<strong>on</strong>g> residue by current or b<strong>in</strong>d<strong>in</strong>g <str<strong>on</strong>g>of</str<strong>on</strong>g> copper with organic and<strong>in</strong>organic material <strong>in</strong> the water column, which precipitates the metal <strong>in</strong>to the sedimentwill reduce risk <str<strong>on</strong>g>of</str<strong>on</strong>g> envir<strong>on</strong>mental impacts.UNU-Fisheries Tra<strong>in</strong><strong>in</strong>g Programme 23


Shakouri• Z<strong>in</strong>cZ<strong>in</strong>c is an essential element added to salm<strong>on</strong> feed at 30 to 100 mgkg -1 to prevent impairedgrowth, <strong>in</strong>creased mortality, eyes cataract, short body dwarfism and low tissue z<strong>in</strong>c(Maage et al. 2001).In fish culture, z<strong>in</strong>c may accumulate <strong>in</strong> the sediments via faeces and uneaten feed. Highc<strong>on</strong>centrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> z<strong>in</strong>c <strong>in</strong> the sediments <str<strong>on</strong>g>of</str<strong>on</strong>g> salm<strong>on</strong> farms has been found <strong>in</strong> Canada and theUS. The c<strong>on</strong>centrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> z<strong>in</strong>c <strong>in</strong> the sediments at the perimeter <str<strong>on</strong>g>of</str<strong>on</strong>g> the fish cages <strong>in</strong>British Columbia measured at 200 mgZn g -1 ( Brooks and Mahnken 2003b). Chou et al.(2002) studied trace metals <strong>in</strong> the sediments around a salm<strong>on</strong> cage <strong>in</strong> New Brunswick,Canada. They found a drastic <strong>in</strong>crease <strong>in</strong> both copper and z<strong>in</strong>c c<strong>on</strong>centrati<strong>on</strong> <strong>in</strong> a heavilysedimented area. In anoxic c<strong>on</strong>diti<strong>on</strong>s, z<strong>in</strong>c and copper c<strong>on</strong>centrati<strong>on</strong>s <strong>in</strong>creased to253±85.7 µgg -1 and 54.5± 5.1 µgg -1 respectively, while <strong>in</strong> normal c<strong>on</strong>diti<strong>on</strong>s bey<strong>on</strong>d 50m from the cage the c<strong>on</strong>centrati<strong>on</strong>s were 2 to 3 times lower.Toxicity <str<strong>on</strong>g>of</str<strong>on</strong>g> z<strong>in</strong>c is correlated to c<strong>on</strong>centrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> sulfide (H 2 S, S -2 and HS - ) and TVS.Interacti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the metal and sulfide renders the z<strong>in</strong>c harmless to benthos (EAO 1996,Pears<strong>on</strong> and Black 2001, Brooks and Mahnken 2003b). Studies show the z<strong>in</strong>c does notaccumulate <strong>in</strong> aquatic organisms or the food cha<strong>in</strong>s (Brooks and Mahnken 2003b). Risk<str<strong>on</strong>g>of</str<strong>on</strong>g> high accumulati<strong>on</strong> <strong>in</strong> semi closed water bodies with low water exchange should bec<strong>on</strong>sidered <strong>in</strong> site selecti<strong>on</strong> and farm management practices. In the past few years z<strong>in</strong>csulphate <strong>in</strong> salm<strong>on</strong> feed has been successfully substituted with organic source <str<strong>on</strong>g>of</str<strong>on</strong>g> z<strong>in</strong>c asmethi<strong>on</strong><strong>in</strong>e analog and Zn-gluc<strong>on</strong>ate to reduce the risk <str<strong>on</strong>g>of</str<strong>on</strong>g> envir<strong>on</strong>mental impacts( Maage et al. 2001, Brooks and Mahnken 2003b).‣ Feed additivesAntioxidants, pigments and horm<strong>on</strong>es may be added to formulated feed as preservati<strong>on</strong>,to give red colour to the flesh <str<strong>on</strong>g>of</str<strong>on</strong>g> fish and <strong>in</strong> order to promote growth. Applicati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> thesematerials is usually well organized and regulated <strong>in</strong> various countries and they carry littleenvir<strong>on</strong>mental risk.In the last few years presence <str<strong>on</strong>g>of</str<strong>on</strong>g> diox<strong>in</strong>s <strong>in</strong> farmed salm<strong>on</strong> has ga<strong>in</strong>ed c<strong>on</strong>siderableattenti<strong>on</strong> because <str<strong>on</strong>g>of</str<strong>on</strong>g> potential effects <strong>on</strong> the immune, endocr<strong>in</strong>e and reproductvefuncti<strong>on</strong>s and development <str<strong>on</strong>g>of</str<strong>on</strong>g> fatal tumors <strong>in</strong> humans (Nash 2001, EU 2001). Basic feed<strong>in</strong>gredients are virtually all c<strong>on</strong>tam<strong>in</strong>ated with diox<strong>in</strong> to vary<strong>in</strong>g degrees (Nash 2001). For<strong>in</strong>stance, a typical diet for carnivorous fish c<strong>on</strong>ta<strong>in</strong><strong>in</strong>g 50% fish meal and 2.5% fish oilorig<strong>in</strong>at<strong>in</strong>g from Europe c<strong>on</strong>ta<strong>in</strong>s 1.82ngWHO-TEQkg -1 dry matter. At least 60% <str<strong>on</strong>g>of</str<strong>on</strong>g> totaldiox<strong>in</strong> <strong>in</strong> fish feed is likely to be transferred to the fish (Nash 2001) which is less thanthe diox<strong>in</strong> c<strong>on</strong>centrati<strong>on</strong> <strong>in</strong> wild fish (EU 2001).C<strong>on</strong>sider<strong>in</strong>g feed wastage <strong>in</strong> salm<strong>on</strong> farms, a huge amount <str<strong>on</strong>g>of</str<strong>on</strong>g> diox<strong>in</strong> is released <strong>in</strong>to theoceans. Diox<strong>in</strong> accumulates <strong>in</strong> the food cha<strong>in</strong> and is likely transferred to human as thef<strong>in</strong>al l<strong>in</strong>k. Some vitam<strong>in</strong>s are known as growth promoters <str<strong>on</strong>g>of</str<strong>on</strong>g> algae. W<strong>in</strong>sby ( 1996) andUNU-Fisheries Tra<strong>in</strong><strong>in</strong>g Programme 24


ShakouriASI (1999) reported phytoplankt<strong>on</strong> growth promoti<strong>on</strong> due to biot<strong>in</strong> <strong>in</strong> fish feed and faecalmatter. However, further <strong>in</strong>vestigati<strong>on</strong> is needed before firm c<strong>on</strong>clusi<strong>on</strong> can be drawn.2.2 Evaluati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> impacts <strong>on</strong> sediment<str<strong>on</strong>g>Impact</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> cage culture <strong>on</strong> sediments is much greater than its effects <strong>on</strong> water quality.Analyses <str<strong>on</strong>g>of</str<strong>on</strong>g> physical, geochemical and biological characteristics <str<strong>on</strong>g>of</str<strong>on</strong>g> the sediment aresensible approaches to evaluate impacts <strong>on</strong> sediments and the surround<strong>in</strong>g envir<strong>on</strong>ment.There are several methods and <strong>in</strong>dicators for estimati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> envir<strong>on</strong>mental impact <strong>on</strong>sediments from simple visual analysis to sophisticated methods. Some criteria likelegislati<strong>on</strong>, durati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the farm operati<strong>on</strong> and site specificati<strong>on</strong> (depth, currents, seabedstructure, etc.) might be c<strong>on</strong>sidered <strong>in</strong> selecti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the methods and <strong>in</strong>dicators (Carroll etal. 2003). The most comm<strong>on</strong> <strong>in</strong>dicators for analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> impact <strong>on</strong> sediments are thefollow<strong>in</strong>g: Biological <strong>in</strong>dicators like species richness, abundance, etc. <strong>in</strong> and <strong>on</strong> the sediment Organic materials (<strong>in</strong> terms <str<strong>on</strong>g>of</str<strong>on</strong>g> total organic material, organic carb<strong>on</strong>, totalvolatile solids, organic phosphorus and organic nitrogen <strong>in</strong> sediment) <strong>Sediment</strong> gra<strong>in</strong> size Redox potential and RDL <strong>in</strong> sediment Benthic oxygen uptake <str<strong>on</strong>g>of</str<strong>on</strong>g> the sediment Free sediment sulfides C<strong>on</strong>centrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> heavy metals <strong>in</strong> the sediment C<strong>on</strong>centrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> antibiotics <strong>in</strong> the sediment Visual and organolepthic analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> sedimentEach method has some advantages and disadvantages. Biological <strong>in</strong>dexes (compositi<strong>on</strong>,abundance and species richness) are generally c<strong>on</strong>sidered to be the most sensitive,accurate and reliable method to evaluate the level <str<strong>on</strong>g>of</str<strong>on</strong>g> organic enrichment and disturbanceassociated with cage farm<strong>in</strong>g practices. It reflects the <strong>in</strong>tegrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the impact <str<strong>on</strong>g>of</str<strong>on</strong>g> allfactors, <strong>in</strong>clud<strong>in</strong>g chemical and physical changes <strong>in</strong> the envir<strong>on</strong>ment. On the other hand,this method is expensive and time c<strong>on</strong>sum<strong>in</strong>g (Nash 2001, Crawford et al. 2002, Carrollet al. 2003). It could be <strong>in</strong>accurate <strong>in</strong> sediments, which have been exposed for a shorttime to severe natural or unnatural polluti<strong>on</strong>. In this c<strong>on</strong>diti<strong>on</strong> carb<strong>on</strong> could be a good<strong>in</strong>dicator to use to assess the impacts (Pears<strong>on</strong> and Black 2001).Crawford et al. (2002) <strong>in</strong> their study <strong>on</strong> the impact <str<strong>on</strong>g>of</str<strong>on</strong>g> cage culture <strong>in</strong> Tasmania found thatcarb<strong>on</strong> c<strong>on</strong>tent is a good <strong>in</strong>dicator <strong>in</strong> heavily enriched sediments. It may be less accurateat further distances from the cage farm (Carroll et al. 2003). Low level <str<strong>on</strong>g>of</str<strong>on</strong>g> carb<strong>on</strong> <strong>in</strong>putmight be c<strong>on</strong>sumed by the detrivorous organisms and would not show the effect <str<strong>on</strong>g>of</str<strong>on</strong>g> thefarm<strong>in</strong>g practices (Crawford et al. 2002, Carroll et al. 2003). ASI (1999) suggested thatdue to fast decompositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> carb<strong>on</strong> and nitrogen <strong>in</strong> mar<strong>in</strong>e sediments, phosphorus is amore accurate <strong>in</strong>dex for impact assessment. Organic carb<strong>on</strong> c<strong>on</strong>tents will be moreaccurate <strong>in</strong>dicator if C:N ratio is taken to account (W<strong>in</strong>sby et al. 1996). The ratio showsthe age <str<strong>on</strong>g>of</str<strong>on</strong>g> the sediment, its digestibility for the benthic fauna (EAO 1996) and its possibleUNU-Fisheries Tra<strong>in</strong><strong>in</strong>g Programme 25


Shakouriorig<strong>in</strong> (CSIRO 2000). <strong>Sediment</strong> particle size is a good <strong>in</strong>dicator when comb<strong>in</strong>ed withorganic carb<strong>on</strong> c<strong>on</strong>tents and <strong>in</strong>faunal community structure (Crawford et al. 2002).Almost all studies refer to redox potential as a quick, simple and <strong>in</strong>expensive <strong>in</strong>dicator <str<strong>on</strong>g>of</str<strong>on</strong>g>enrichment <str<strong>on</strong>g>of</str<strong>on</strong>g> the sediment. (EAO 1996, Nash 2001, Pears<strong>on</strong> and Black 2001, Crawfordet al. 2002). However, its efficiency is low <strong>in</strong> very f<strong>in</strong>e sediments where RDL is close tothe surface <str<strong>on</strong>g>of</str<strong>on</strong>g> the sediment (EAO 1996). In additi<strong>on</strong>, improper calibrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>in</strong>strumentsmay cause an error <strong>in</strong> measurements. Sensor <str<strong>on</strong>g>of</str<strong>on</strong>g> the <strong>in</strong>strument may also not be able topenetrate <strong>in</strong>to all k<strong>in</strong>ds <str<strong>on</strong>g>of</str<strong>on</strong>g> sediments (Crawford et al. 2002, Carroll et al. 2003). Benthicoxygen uptake and H 2 S c<strong>on</strong>centrati<strong>on</strong> reflects bio- and geochemical activities <strong>in</strong> thesediments. Chemical <strong>in</strong>dicators have been <strong>in</strong>tegrated and a polluti<strong>on</strong> <strong>in</strong>dex for the degree<str<strong>on</strong>g>of</str<strong>on</strong>g> sediment polluti<strong>on</strong> developed (Table 3) (Carroll et al. 2003).Visual analyses <strong>in</strong>clud<strong>in</strong>g scuba div<strong>in</strong>g and sediment pr<str<strong>on</strong>g>of</str<strong>on</strong>g>ile imagery (SPI) are somedirect methods to analyze sediments. Photographs and moti<strong>on</strong> pictures give a permanentand readily <strong>in</strong>terpretable record. Availability <str<strong>on</strong>g>of</str<strong>on</strong>g> s<str<strong>on</strong>g>of</str<strong>on</strong>g>tware maximizes the benefit <str<strong>on</strong>g>of</str<strong>on</strong>g> digitalimages and makes it a quantifiable parameter (Crawford et al. 2002, Carroll et al. 2003).However its sensitivity is low and usually <strong>on</strong>ly reflects major impacts (Crawford et al.2002). In additi<strong>on</strong>, required equipment expensive (Carroll et al. 2003). In rocky bottomareas is the imag<strong>in</strong>ary methods are <strong>in</strong>efficient. Applicati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> remote sens<strong>in</strong>g and GIS <strong>in</strong>evaluati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the impact <str<strong>on</strong>g>of</str<strong>on</strong>g> cage culture has been po<strong>in</strong>ted out <strong>in</strong> several recent studies( Perez et al. 2002).Table 3: Shaann<strong>in</strong>g polluti<strong>on</strong> <strong>in</strong>dex <str<strong>on</strong>g>of</str<strong>on</strong>g> sediment (Carroll et al. 2003)Degree Index pH pS pE N(mgg -1 ) P(mg g -1 ) Zn(µg g -1 ) Cu(µg g -1 )Large 3 650 >150Moderate 2 6.9-7.2 2-4 -2 – 0 8-16 2-10 150-650 25-150Small 1 7.21-7.7 4-7 0-2 2-8 0.5-2 5-150 5-35No 0 > 7.7 >7 >2


ShakouriThe farm is composed <str<strong>on</strong>g>of</str<strong>on</strong>g> 14 circular cages moored <strong>in</strong> two rows. The operati<strong>on</strong> started <strong>in</strong>late July 2002 when the cages were stocked with Atlantic salm<strong>on</strong> smolts. The farm is at65° 12’ 027’’ N and 13° 46’ 632’’ W (coord<strong>in</strong>ate <str<strong>on</strong>g>of</str<strong>on</strong>g> farm’s center) close to the open<strong>in</strong>g<str<strong>on</strong>g>of</str<strong>on</strong>g> the fjord (Figure 5).The m<strong>in</strong>imum distance <str<strong>on</strong>g>of</str<strong>on</strong>g> the farm from the northern coast isapproximately 300m. Total carb<strong>on</strong> and nitrogen <strong>in</strong>put from the feed was estimated 2625and 278 t<strong>on</strong>s, respectively. Based <strong>on</strong> m<strong>in</strong>imum rate <str<strong>on</strong>g>of</str<strong>on</strong>g> feed waste (Table 1), some 305t<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> carb<strong>on</strong> and 31.4 t<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> nitrogen have been released <strong>in</strong> to the fjord as faecalmatter and uneaten feed.3.1 Materials and methods<str<strong>on</strong>g>Cage</str<strong>on</strong>g> No. 6, <strong>in</strong> the middle <str<strong>on</strong>g>of</str<strong>on</strong>g> the block <str<strong>on</strong>g>of</str<strong>on</strong>g> cages was selected as the target cage. Sevensampl<strong>in</strong>g stati<strong>on</strong>s were selected based <strong>on</strong> depth, prevail<strong>in</strong>g current <strong>in</strong> the fjord,specificati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the waste materials and distances <str<strong>on</strong>g>of</str<strong>on</strong>g> the cage from the coast and the nextfarm. The farthest stati<strong>on</strong> (S7) upstream <str<strong>on</strong>g>of</str<strong>on</strong>g> the cages was chosen as the reference stati<strong>on</strong>.Depth <str<strong>on</strong>g>of</str<strong>on</strong>g> water and positi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the sampl<strong>in</strong>g stati<strong>on</strong> were read <strong>on</strong> the GPS screen <str<strong>on</strong>g>of</str<strong>on</strong>g> thesampl<strong>in</strong>g vessel (Figure 5 and Table 4 and Appendix 1).3.2 Sampl<strong>in</strong>g<strong>Sediment</strong> samples were collected 29.12.2003 us<strong>in</strong>g a Shipek grab sampler with afootpr<strong>in</strong>t <str<strong>on</strong>g>of</str<strong>on</strong>g> 0.044 m². Almost all the grabs were <str<strong>on</strong>g>of</str<strong>on</strong>g> good quality with m<strong>in</strong>imum leakageor flush<strong>in</strong>g out <str<strong>on</strong>g>of</str<strong>on</strong>g> sediment. Low quality samples were discarded. The weather was calm,partly cloudy and temperature about -5.7 °C at the time <str<strong>on</strong>g>of</str<strong>on</strong>g> sampl<strong>in</strong>g. The w<strong>in</strong>d speedvaried between 2.5 <strong>in</strong> early morn<strong>in</strong>g to 4.1 at the end <str<strong>on</strong>g>of</str<strong>on</strong>g> sampl<strong>in</strong>g period. W<strong>in</strong>d directi<strong>on</strong>changed from 340° to 250° dur<strong>in</strong>g the same period (IMO 2004).A sub-sample was taken from each grab us<strong>in</strong>g plexiglas corers (<strong>in</strong>ner diameter: 6 cm).The length <str<strong>on</strong>g>of</str<strong>on</strong>g> the sediment <strong>in</strong> cores was 9 to 10 cm. The cores were packed immediatelyand kept at – 0°C <strong>on</strong> deck. When at shore the cores were frozen at – 20°C (Karakassis etal. 2000, Zitko 2001, and Carroll et al. 2003) until transported to the Icelandic FisheriesLaboratories <strong>in</strong> Reykjavik by air.UNU-Fisheries Tra<strong>in</strong><strong>in</strong>g Programme 27


ShakouriFigure 5: Positi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the farm and sampl<strong>in</strong>g stati<strong>on</strong> <strong>in</strong> Mjoifjordur (not <strong>in</strong> scale)In the laboratory, the top 0.5 cm layers <str<strong>on</strong>g>of</str<strong>on</strong>g> all the core samples were cut by sta<strong>in</strong>less steelsaw and placed <strong>in</strong> plastic bags. Three cores from stati<strong>on</strong> No. 1 (at the edge <str<strong>on</strong>g>of</str<strong>on</strong>g> cage), No.2(at 95 meter <str<strong>on</strong>g>of</str<strong>on</strong>g> cage) and No.7 (reference, at 600m from the cage) were selected forcomplete layer analysis and those cores were dissected <strong>in</strong> 1 cm thick slices. Sub-sampleswere placed <strong>in</strong> plastic bags and kept frozen (at – 20 °C) until analysis.Table 4 : Depth <str<strong>on</strong>g>of</str<strong>on</strong>g> water and distance from the coast at sampl<strong>in</strong>g stati<strong>on</strong>sStati<strong>on</strong>To the edge <str<strong>on</strong>g>of</str<strong>on</strong>g>cageApproximate distance <strong>in</strong> meterTo the referencestati<strong>on</strong> (No.7)To the NorthcoastDepth, m1 85.5 5 600 4102 88.1 95 650 4703 85 320 900 3804 88 350 930 4005 74 150 570 2706 66 200 580 4507 87.3 600 0 4803.3 Sample chemistry analysisThe appearance <str<strong>on</strong>g>of</str<strong>on</strong>g> the samples was exam<strong>in</strong>ed and they analyzed for total dry weight,organic matter, total organic carb<strong>on</strong>, total phosphorus and total nitrogen. Organic matterwas calculated as a percentage <str<strong>on</strong>g>of</str<strong>on</strong>g> dry weight (% DW) <str<strong>on</strong>g>of</str<strong>on</strong>g> the sediment.UNU-Fisheries Tra<strong>in</strong><strong>in</strong>g Programme 28


Shakouri3.3.1 Dry weight and total organic matter (TOM)TOM was determ<strong>in</strong>ed by loss <strong>on</strong> igniti<strong>on</strong>. A 500 mg sample from each dissected layerwas oven dried for two hrs. at 105 °C, weighed and subsequently placed <strong>in</strong> a furnace at550 °C for 2 hrs. then reweighed. Dry weight was determ<strong>in</strong>ed as the difference betweenweight <str<strong>on</strong>g>of</str<strong>on</strong>g> wet sample and oven dried <strong>on</strong>e. TOM was calculated from the differencebetween the oven dried weight and weight after be<strong>in</strong>g <strong>in</strong> the furnace. TOM is expressedas the percentage <str<strong>on</strong>g>of</str<strong>on</strong>g> the oven dried weight.3.3.2 Total organic carb<strong>on</strong> (TOC)The determ<strong>in</strong>ati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> TOC was based <strong>on</strong> chemical oxygen demand (COD). Two samples,approximately 100 and 200 mg wet weight from each layer were digested <strong>in</strong> 250 ml flaskc<strong>on</strong>ta<strong>in</strong><strong>in</strong>g 10ml dichromate 4M, 30 ml sulphuric acid (95-97%) and 20 ml Milli-RO/Milli-Q water for 2 hours. Some 200 mg <str<strong>on</strong>g>of</str<strong>on</strong>g> mercury sulphate was added to the flask<strong>in</strong> order to prevent <strong>in</strong>terference <str<strong>on</strong>g>of</str<strong>on</strong>g> natural chloride <strong>in</strong> the sediment. COD was calculatedbased <strong>on</strong> volume <str<strong>on</strong>g>of</str<strong>on</strong>g> standardized FAS used <strong>in</strong> the titrati<strong>on</strong> and then c<strong>on</strong>verted topercentage <str<strong>on</strong>g>of</str<strong>on</strong>g> organic carb<strong>on</strong> c<strong>on</strong>tent based <strong>on</strong> the chemical balance <str<strong>on</strong>g>of</str<strong>on</strong>g> carb<strong>on</strong> oxidati<strong>on</strong>.3.3.3 Total phosphorus and nitrogen‣ Sample preparati<strong>on</strong>200 and 400 mg wet weight <str<strong>on</strong>g>of</str<strong>on</strong>g> samples were digested <strong>in</strong> 6 ml sulphuric acid (36M) for 5m<strong>in</strong>utes and then oxidized by add<strong>in</strong>g 15 ml hydrogen peroxide (30%) us<strong>in</strong>g HACHDigestdal <strong>in</strong>strument. The soluti<strong>on</strong> was diluted to 100 ml and left overnight forprecipitati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> suspended material.• Total phosphorus (TP)Exact volume <str<strong>on</strong>g>of</str<strong>on</strong>g> 0.5 ml <str<strong>on</strong>g>of</str<strong>on</strong>g> prepared sample soluti<strong>on</strong> was pipetted <strong>in</strong>to 50ml flask anddiluted to 25 ml with water. TP was determ<strong>in</strong>ed by spectrophotometery (Cary 1E, 880 nm)after formati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the molibdate complex and reducti<strong>on</strong> by ascorbic acid.• Total nitrogen (TN)Due to low c<strong>on</strong>centrati<strong>on</strong> when us<strong>in</strong>g 0.5 ml <str<strong>on</strong>g>of</str<strong>on</strong>g> the soluti<strong>on</strong>, the <strong>in</strong>itial volume <str<strong>on</strong>g>of</str<strong>on</strong>g> samplewas <strong>in</strong>creased 10 times and 5 ml <str<strong>on</strong>g>of</str<strong>on</strong>g> processed sample were pipetted to 50 ml flask. 3ml <str<strong>on</strong>g>of</str<strong>on</strong>g>NaOH (4M) was added to adjust the pH. TN determ<strong>in</strong>ed by spectrophotometery (Cary 1E,630nm) by the phenate method.UNU-Fisheries Tra<strong>in</strong><strong>in</strong>g Programme 29


Shakouri3.3.4 Statistical analysisTo determ<strong>in</strong>e the significance between the stati<strong>on</strong>s, and between the layers with<strong>in</strong> astati<strong>on</strong> <strong>on</strong>e way analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> variance (ANOVA) and ANOVA s<strong>in</strong>gle factor was usedrespectively. Duncan multiple range test (DMRT) applied for comparis<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the meansbetween three stati<strong>on</strong>s at 95% level <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>fidence us<strong>in</strong>g SPSS versi<strong>on</strong> 10 and Excels<str<strong>on</strong>g>of</str<strong>on</strong>g>tware. Correlati<strong>on</strong> between variables were analyzed us<strong>in</strong>g Pears<strong>on</strong> 2 tailed test <strong>in</strong> twolevel <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>fidence (a=1% and 5%).3.4 Results3.4.1 Top layer <str<strong>on</strong>g>of</str<strong>on</strong>g> sedimentsPercentage <str<strong>on</strong>g>of</str<strong>on</strong>g> all analytes studied <strong>in</strong> top layers (0- 0.5 cm depth) was the highest at <strong>in</strong>stati<strong>on</strong> 1. ANOVA s<strong>in</strong>gle factor analysis shows TN and TOC at this stati<strong>on</strong> wassignificantly different from the other stati<strong>on</strong>s. Total phosphorus and TOM does nothowever show any significant differences <strong>in</strong> the top layer <str<strong>on</strong>g>of</str<strong>on</strong>g> stati<strong>on</strong> 1 as compared withthe other stati<strong>on</strong>s (a=5%).TOMTCTPTN1 2 3 4 5 6 7Stati<strong>on</strong>9876543210%TNTPTCTOMFigure 6: Analysed parameters <strong>in</strong> top layers <str<strong>on</strong>g>of</str<strong>on</strong>g> different stati<strong>on</strong>s3.4.2 Stati<strong>on</strong>s 1, 2 and 7One way analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> variance (Table 5) revealed no significant difference between means<str<strong>on</strong>g>of</str<strong>on</strong>g> analyzed parameters <strong>in</strong> different depths <str<strong>on</strong>g>of</str<strong>on</strong>g> sediments at stati<strong>on</strong> 1, 2 and 7 (P0.05). DMRT shows thatdifference <str<strong>on</strong>g>of</str<strong>on</strong>g> mean <str<strong>on</strong>g>of</str<strong>on</strong>g> analyzed parameters at stati<strong>on</strong> 7 and 2 are <strong>in</strong>significant (P


ShakouriHowever, stati<strong>on</strong> 7 and 1 are significantly different, except <strong>in</strong> the mean <str<strong>on</strong>g>of</str<strong>on</strong>g> TOC. Mean <str<strong>on</strong>g>of</str<strong>on</strong>g>TOC at stati<strong>on</strong> 7 is higher than S2. Stati<strong>on</strong> 1 and 2 shows significant differences <strong>in</strong> TOC,TN and TP. Difference <str<strong>on</strong>g>of</str<strong>on</strong>g> the mean <str<strong>on</strong>g>of</str<strong>on</strong>g> TOM between two stati<strong>on</strong>s is <strong>in</strong>significant. TOMvalue is the highest at the stati<strong>on</strong> closest to the cage.(C:N) ratio found at stati<strong>on</strong> 1 is significantly different from other two stati<strong>on</strong>s (P>0.05).However, carb<strong>on</strong>, phosphorus (C:P) ratio <strong>in</strong> all three stati<strong>on</strong> is very similar and does notshow significant differences (P0.05) correlati<strong>on</strong> between theparameters analyzed. Total organic matter, carb<strong>on</strong> and phosphorus show highercorrelati<strong>on</strong>s (P>0.01) (Table 7).1,4% <str<strong>on</strong>g>of</str<strong>on</strong>g> DW0,60,50,40,30,2S1S2S7% <str<strong>on</strong>g>of</str<strong>on</strong>g> DW1,210,80,60,40,20,100 - 0,5 0,5-1,5 1,5-2,5 2,5-3,5 3,5-4,5 4,5-5,50TP0 - 0,5 0,5-1,5 1,5-2,5 2,5-3,5 3,5-4,5 4,5-5,5Depth, cmTNDepth, cm310,02,58,0% <str<strong>on</strong>g>of</str<strong>on</strong>g> DW21,510,500 - 0,5 0,5-1,5 1,5-2,5 2,5-3,5 3,5-4,5 4,5-5,5TOCDepth, cm% <str<strong>on</strong>g>of</str<strong>on</strong>g> DW6,04,02,00,00 - 0,5 0,5-1,5 1,5-2,5 2,5-3,5 3,5-4,5 4,5-5,5TOMDepth, cmFigure 7: Variati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> analyzed compounds <strong>in</strong> different depth at stati<strong>on</strong> 1, 2 and 7UNU-Fisheries Tra<strong>in</strong><strong>in</strong>g Programme 31


ShakouriTable 5: Mean and standard deviati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> analyzed compounds <strong>in</strong> different layer <str<strong>on</strong>g>of</str<strong>on</strong>g> sediments <strong>in</strong> 3 stati<strong>on</strong>s<strong>Sediment</strong> Nitrogen TOC Phosphorus TOM C:N ratio C:P ratiodepth (cm)0- 0.5 0.1735± 0.1146 1.5588±0.8543 0.8377± 0.3285 6.7930±1.7099 9.4053± 1.0389 1.8047±0.30730.5- 1.5 0.2243± 0.1653 1.4748±0.4996 0.7706± 0.2326 5.8667±1.0788 8.0872±4.0306 1.9009±0.25751.5- 2.5 0.1253± 0.0116 1.309±0.1085 0.6777± 0.08427 6.1137±0.05816 10.4584±0.3125 1.9416±0.074922.5- 3.5 0.1162±0.215 1.3718±.103 0.6503± 0.0379 5.8593±0.3185 12.125±2.7470 2.117±0.25243.5- 4.5 0.2444±0.2133 1.2756±0.1453 0.6675± 0.0601 5.8193±0.3304 11.5310±6.6527 1.9191±0.19354.5- 5.5 0.1762±0.1214 1.3986±0.0866 0.6395± 0.06627 5.1637±1.0512 9.8587±3.6113 2.2118±0.2181Table 6: Mean and standard deviati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> analyzed compounds <strong>in</strong> different stati<strong>on</strong>Sampl<strong>in</strong>g NitrogenTOC Phosphorus TOM C:N ratio C:P ratiostati<strong>on</strong>S1 0.3014±0.1460a1.6646±0,5016a0.8475± 0.2236a*6.6743±1.1007a6.7182±3.2058a1.9594±0.1090aS2 0.1181± 0.0191b1.2327±0,2082b0.6393±0.0 4402b5.7827±0.4114ab10.7968±3.2149b1.9217±0.2518aReference(S7)0.109± 0.01142b1.2969±0,1417ab0.6349± 0.05315b5.9359±0.7214b12.0612±2.2397b2.0664±0.3257a* The same letter <strong>in</strong>dicate <strong>in</strong>significant difference (P


Shakouri%TP1,401,201,000,800,600,400,20y = 0,4071x + 0,1381R 2 = 0,81810,000,00 0,50 1,00 1,50 2,00 2,50 3,00%TOC%TP1,401,201,000,800,600,400,20y = 0,1479x - 0,171R 2 = 0,72670,000,00 2,00 4,00 6,00 8,00 10,00%TOM% TOM10,009,008,007,006,005,004,003,002,001,000,00y = 0,0196x + 0,0319R 2 = 0,57380,00 0,50 1,00 1,50 2,00 2,50 3,00% TOC%TN0,600,500,400,300,200,10y = 0,0629x - 0,1974R 2 = 0,23690,000,00 2,004,00 6,00 8,00 10,00%TOM%TP1,401,201,000,800,600,400,20y = 0,7581x + 0,5737R 2 = 0,3190,000,00 0,10 0,20 0,30 0,40 0,50 0,60%TNN%T0,600,500,400,300,200,10y = 0,1719x - 0, 0642R 2 = 0,26290,000,00 0,501,00 1,50 2,00 2,50 3,00%TOCFigure 8: Correlati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> analyzed compounds <strong>in</strong> various layer <str<strong>on</strong>g>of</str<strong>on</strong>g> sediment <strong>in</strong> differentstati<strong>on</strong>3.5 Discussi<strong>on</strong> and c<strong>on</strong>clusi<strong>on</strong>Based <strong>on</strong> the feed quality and site characteristics, spatial dispersi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the major part <str<strong>on</strong>g>of</str<strong>on</strong>g>uneaten feed and faecal matter <strong>in</strong> the studied area <strong>in</strong> Mjoifjordur should be restricted to55 m downstream from the edge <str<strong>on</strong>g>of</str<strong>on</strong>g> cage. Uneaten feed accumulates at closer distances tothe cage than faecal mater, s<strong>in</strong>ce faeces have a lower s<strong>in</strong>k<strong>in</strong>g rate and should thereforesettle further away. The current at the farm area will probably <strong>in</strong>terfere with thesedimentati<strong>on</strong> behavior <str<strong>on</strong>g>of</str<strong>on</strong>g> solid wastes.The nitrogen c<strong>on</strong>tent <str<strong>on</strong>g>of</str<strong>on</strong>g> the sediment is <str<strong>on</strong>g>of</str<strong>on</strong>g>ten used as a good <strong>in</strong>dicator <str<strong>on</strong>g>of</str<strong>on</strong>g> sedimentenrichment, due to the fact that this is mostly derived from external <strong>in</strong>puts (CSIRO 2000,Telfer and Rob<strong>in</strong>s<strong>on</strong> 2003). At stati<strong>on</strong> 1, total nitrogen <strong>in</strong> the surface layer and the mean<str<strong>on</strong>g>of</str<strong>on</strong>g> TN <strong>in</strong> the whole sediment exceeds 0.3%, which is <strong>in</strong> accordance with the results <str<strong>on</strong>g>of</str<strong>on</strong>g>other studies. Karakassis et al. (2000) and Kempf et al. (2002) reported c<strong>on</strong>centrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g>organic nitrogen as low as 0.3% <strong>in</strong> sediments <strong>in</strong> close vic<strong>in</strong>ity <str<strong>on</strong>g>of</str<strong>on</strong>g> the mar<strong>in</strong>e fish cages <strong>in</strong>both shallow, slow current and steep bottom, str<strong>on</strong>g current areas. McGhie et al. (2000)<strong>in</strong>dicated higher value <str<strong>on</strong>g>of</str<strong>on</strong>g> TN <strong>in</strong> Hut<strong>on</strong> Estuary, Tasmania as great as 1.3%. They foundUNU-Fisheries Tra<strong>in</strong><strong>in</strong>g Programme 33


Shakourithat TN did not decrease to less than 0.4% after 12 m<strong>on</strong>th after farm<strong>in</strong>g had ceased. Onthe other hand, Crawford et al. (2003) reported very low nitrogen c<strong>on</strong>tent (0.15 to 0.4%)<strong>in</strong> the sediment <strong>in</strong> the vic<strong>in</strong>ity <str<strong>on</strong>g>of</str<strong>on</strong>g> salm<strong>on</strong> farms <strong>in</strong> Nubeena, Tasmania. In Mulroy Bay,UK, nitrogen showed the same range from 0.14 to 1.73% <strong>in</strong> different sites and distancesfrom salm<strong>on</strong> farms (Telfer and Rob<strong>in</strong>s<strong>on</strong> 2003).These result po<strong>in</strong>t to the <strong>in</strong>fluence <str<strong>on</strong>g>of</str<strong>on</strong>g> bothsite and farm c<strong>on</strong>diti<strong>on</strong>s <strong>on</strong> the magnitude <str<strong>on</strong>g>of</str<strong>on</strong>g> accumulati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> waste material and theirimpact <strong>on</strong> the envir<strong>on</strong>ment.Crawford et al. (2002), <strong>in</strong> their evaluati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> techniques for envir<strong>on</strong>mental m<strong>on</strong>itor<strong>in</strong>g <str<strong>on</strong>g>of</str<strong>on</strong>g>salm<strong>on</strong> farms, c<strong>on</strong>cluded that nitrogen is a proper <strong>in</strong>dicator <strong>in</strong> highly impacted sediments.In our case, where the water is deep and the moderate current may flush out the wastematerials, nitrogen might be a less qualified <strong>in</strong>dex. Accord<strong>in</strong>g to the Shaann<strong>in</strong>g polluti<strong>on</strong><strong>in</strong>dex (Table 3) and c<strong>on</strong>sider<strong>in</strong>g the mean nitrogen c<strong>on</strong>centrati<strong>on</strong> at stati<strong>on</strong> 1 (0.314 ±0.146 mgg -1 ), this stati<strong>on</strong> would be classified as a slightly impacted area. By the samecriteria stati<strong>on</strong>s 2 and 7 should be regarded as undisturbed sites ( less than 2 mgg -1 N).Total organic carb<strong>on</strong> <strong>in</strong> the surface layer <str<strong>on</strong>g>of</str<strong>on</strong>g> the sediment at stati<strong>on</strong> 1 was c<strong>on</strong>siderablyhigher than at the other six stati<strong>on</strong>s (Figure 6), <strong>in</strong>dicat<strong>in</strong>g an external <strong>in</strong>put <str<strong>on</strong>g>of</str<strong>on</strong>g> carb<strong>on</strong> andaccumulati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> organic matter <strong>on</strong> the seabed. The mean <str<strong>on</strong>g>of</str<strong>on</strong>g> TOC <strong>in</strong> Stati<strong>on</strong> 1 was 1.66%,some 28% greater than at the reference site 600 meter from the cage. However, thedifference between the two stati<strong>on</strong>s is <strong>in</strong>significant. McGhie et al. (2000) reported highTOC value (4.05%) at a reference site <strong>in</strong> the Hut<strong>on</strong> Estuary, Tasmania, where TOC wasalmost 30% lower than underneath the cage. Hargrave et al. (1997) obta<strong>in</strong>ed a similarresult <strong>in</strong> their study <strong>on</strong> cage farm<strong>in</strong>g <strong>in</strong> New Brunswick. Carroll et al. (2003) <strong>in</strong> theirstudy <strong>on</strong> Norwegian salm<strong>on</strong> cage farm<strong>in</strong>g c<strong>on</strong>cluded that <strong>in</strong> approximately 10% <str<strong>on</strong>g>of</str<strong>on</strong>g> 168samples, TOC values had <strong>in</strong>creased because <str<strong>on</strong>g>of</str<strong>on</strong>g> natural processes. Sara et al. (2004) foundthat 47.9% <str<strong>on</strong>g>of</str<strong>on</strong>g> carb<strong>on</strong> <strong>in</strong> sedimentary organic matter <strong>in</strong> Mediterranean area orig<strong>in</strong>atedfrom cage farm<strong>in</strong>g and the rest was <str<strong>on</strong>g>of</str<strong>on</strong>g> terrigenous (about 33%) and autochth<strong>on</strong>ous (about19%) orig<strong>in</strong>s.C:N ratio can be a useful <strong>in</strong>dicator <str<strong>on</strong>g>of</str<strong>on</strong>g> the source and age <str<strong>on</strong>g>of</str<strong>on</strong>g> organic matter <strong>in</strong> estuariesand coastal areas (W<strong>in</strong>sby et al 1996, CSIRO 2000, Telfer and Rob<strong>in</strong>s<strong>on</strong> 2003). C:Nratio <str<strong>on</strong>g>of</str<strong>on</strong>g> 6 to 10 is generally reported for autochth<strong>on</strong>ous mar<strong>in</strong>e- derived organic matter(CSIRO 2000, Sutherland et al. 2001) whereas values greater than 11 (Telfer andRob<strong>in</strong>s<strong>on</strong> 2003) and/ or 12 (CSIRO 2000) are usually found <strong>in</strong> terrestrially derivedorganic matter and external <strong>in</strong>put <str<strong>on</strong>g>of</str<strong>on</strong>g> nitrogen.In our study, mean <str<strong>on</strong>g>of</str<strong>on</strong>g> C:N ratio <strong>in</strong> different depths at stati<strong>on</strong> 1 was 6.7182 ± 3.2058,show<strong>in</strong>g accumulati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> highly labile material. This is lower than calculated C:N ratio <str<strong>on</strong>g>of</str<strong>on</strong>g>the feed (9.4). Deep water at this stati<strong>on</strong> provides a c<strong>on</strong>diti<strong>on</strong> for leach<strong>in</strong>g <str<strong>on</strong>g>of</str<strong>on</strong>g> nitrogendur<strong>in</strong>g s<strong>in</strong>k<strong>in</strong>g (Secti<strong>on</strong> 2.1.1) and decompositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> uneaten feed results <strong>in</strong> the <strong>in</strong>crease<strong>in</strong> C:N ratios. It is as high as 8.32 <strong>in</strong> the top layer at this stati<strong>on</strong>. High C:N ratio at stati<strong>on</strong>2 and the reference site <strong>in</strong>dicates the presence <str<strong>on</strong>g>of</str<strong>on</strong>g> poorer quality organic material.Numbers <str<strong>on</strong>g>of</str<strong>on</strong>g> studies show a wide range <str<strong>on</strong>g>of</str<strong>on</strong>g> TOC value <strong>in</strong> vic<strong>in</strong>ity <str<strong>on</strong>g>of</str<strong>on</strong>g> cage farms. Heliskovand Holmer (2001) report values for organic carb<strong>on</strong> as 1.2 to 2.2% <str<strong>on</strong>g>of</str<strong>on</strong>g> dry weight <strong>in</strong>UNU-Fisheries Tra<strong>in</strong><strong>in</strong>g Programme 34


Shakouriaffected sediments near a trout cage farm <strong>in</strong> shallow coastal waters <str<strong>on</strong>g>of</str<strong>on</strong>g> Denmark. InTasmania, organic carb<strong>on</strong> c<strong>on</strong>tents <strong>in</strong> the sediments around the salm<strong>on</strong> cage farms variesfrom less than 1% to more than 6%, depend<strong>in</strong>g <strong>on</strong> the site and farm c<strong>on</strong>diti<strong>on</strong> (Crawfordet al 2002). The variability <str<strong>on</strong>g>of</str<strong>on</strong>g> TOC can be accounted for the vary<strong>in</strong>g proporti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> f<strong>in</strong>eclays and silts (CSIRO 2000). Svavars<strong>on</strong> and Helgas<strong>on</strong> (2002) reported that sedimentgra<strong>in</strong> size <strong>in</strong> Mjoifjordur varies al<strong>on</strong>g the fjord. The fracti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> f<strong>in</strong>e particle (< 0.063 mm)changes from 47.5% 1300 m upstream from our reference site (S7) to 27.9% 1300 mdownstream. However, the organic carb<strong>on</strong> was very high (5.7 - 5.9%) and did not showc<strong>on</strong>siderable changes <strong>in</strong> different places. The results <str<strong>on</strong>g>of</str<strong>on</strong>g> the present study are closer to theaverage organic carb<strong>on</strong> c<strong>on</strong>tent <strong>in</strong> the sediment <str<strong>on</strong>g>of</str<strong>on</strong>g> the coastal area <str<strong>on</strong>g>of</str<strong>on</strong>g> Iceland.Microscopic exam<strong>in</strong>ati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the sediment showed a difference <strong>in</strong> gra<strong>in</strong> size between thethree stati<strong>on</strong>s 1, 2 and 7. The sec<strong>on</strong>d stati<strong>on</strong> looks more silty than stati<strong>on</strong> 1 whilereference stati<strong>on</strong> had f<strong>in</strong>er gra<strong>in</strong>s. Total phosphorus at stati<strong>on</strong> 1 was significantly higherthan at stati<strong>on</strong>s 2 and 7, reflect<strong>in</strong>g the disturbance <str<strong>on</strong>g>of</str<strong>on</strong>g> the sediment at this stati<strong>on</strong>. Thereference stati<strong>on</strong> and stati<strong>on</strong> 2 are not significantly different which means that the impact<str<strong>on</strong>g>of</str<strong>on</strong>g> the cage culture is restricted to a short distance from the cage. TP shows highcorrelati<strong>on</strong> with total organic carb<strong>on</strong> (r² = 0.904). Carb<strong>on</strong>: phosphorus ratio <strong>in</strong> the feed isalmost 56.5, while the C:P ratio <strong>in</strong> the sediments is approximately two and the differencebetween the three stati<strong>on</strong>s is <strong>in</strong>significant. Nickell et al. (2003) <strong>in</strong> their study <str<strong>on</strong>g>of</str<strong>on</strong>g> impact <str<strong>on</strong>g>of</str<strong>on</strong>g>salm<strong>on</strong> cage culture <strong>in</strong> moderately deep (25 m) water <str<strong>on</strong>g>of</str<strong>on</strong>g> Loch Creran, Scotland, foundthat C:P ratio describes the quality <str<strong>on</strong>g>of</str<strong>on</strong>g> carb<strong>on</strong> <strong>in</strong> the sediment as phosphorus is moresensitive to degradati<strong>on</strong>. The result <str<strong>on</strong>g>of</str<strong>on</strong>g> this study does not show such a corresp<strong>on</strong>dence.Holmer et al. (2002) found large accumulati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> phosphorus <strong>in</strong> the sediment nearby amilkfish cage farm <strong>in</strong> moderately shallow water. They suggested that phosphorus waseither buried with the organic matter or bound to carb<strong>on</strong>ates. In our study, we observedhigh level <str<strong>on</strong>g>of</str<strong>on</strong>g> phosphorus <strong>in</strong> surface layers <str<strong>on</strong>g>of</str<strong>on</strong>g> all samples. Therefore, the probability forbury<strong>in</strong>g <str<strong>on</strong>g>of</str<strong>on</strong>g> phosphorus is very low. Available <strong>in</strong>formati<strong>on</strong> is not sufficient to discuss theb<strong>in</strong>d<strong>in</strong>g capacity <str<strong>on</strong>g>of</str<strong>on</strong>g> the sediment <strong>in</strong> this area. Guo and Li (2003) found that solid wastes<str<strong>on</strong>g>of</str<strong>on</strong>g> cage farm<strong>in</strong>g lose their phosphorus c<strong>on</strong>tent <strong>in</strong> the first 50m depth <str<strong>on</strong>g>of</str<strong>on</strong>g> water. Leach<strong>in</strong>gand decompositi<strong>on</strong> rate depends <strong>on</strong> temperature, sal<strong>in</strong>ity and envir<strong>on</strong>mental parameters.So it might be c<strong>on</strong>cluded that the difference between the average phosphorus c<strong>on</strong>tentorig<strong>in</strong>ated from other source <str<strong>on</strong>g>of</str<strong>on</strong>g> polluti<strong>on</strong> and waste materials from the farm do notsignificantly impact phosphorus <strong>in</strong> the sediments. Accord<strong>in</strong>g to the Shaann<strong>in</strong>g polluti<strong>on</strong><strong>in</strong>dex (Table 3), stati<strong>on</strong> 1 would be classified as slightly impacted group and two otherstati<strong>on</strong>s are very close to be<strong>in</strong>g <strong>in</strong> the undisturbed category.TOM <strong>in</strong> stati<strong>on</strong> 1 is significantly different from reference stati<strong>on</strong>. Higher TOM at stati<strong>on</strong>1 shows an accumulati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> organic material nearby the cage. The reference site andstati<strong>on</strong> 2 do not show c<strong>on</strong>siderable differences. Several researchers have found organicmatter measurements by loss <strong>on</strong> igniti<strong>on</strong> to be accurate <strong>on</strong>ly if the sediments are highlyenriched or the carb<strong>on</strong>ates and clay c<strong>on</strong>centrati<strong>on</strong> are <strong>in</strong> low levels (Crawford et al.2003). That is because <str<strong>on</strong>g>of</str<strong>on</strong>g> igniti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> carb<strong>on</strong>ate and <strong>in</strong>terference with the loss <str<strong>on</strong>g>of</str<strong>on</strong>g> organiccarb<strong>on</strong>.UNU-Fisheries Tra<strong>in</strong><strong>in</strong>g Programme 35


ShakouriKarakassis et al. (1998) found no significant difference between sites 5m, 10m, and 25mfrom the cage and the reference site. In our study, the magnitude <str<strong>on</strong>g>of</str<strong>on</strong>g> enrichment is lowhigh. The results show a high correlati<strong>on</strong> between TOC and TOM <strong>in</strong>dicat<strong>in</strong>g a similarsource <str<strong>on</strong>g>of</str<strong>on</strong>g> carb<strong>on</strong> and organic material.In summary, the results show the Atlantic salm<strong>on</strong> cage farm<strong>in</strong>g <strong>in</strong> Mjoifjordur hasaffected the chemistry <str<strong>on</strong>g>of</str<strong>on</strong>g> the sediment close to the farm. However, the magnitude <str<strong>on</strong>g>of</str<strong>on</strong>g>impact is low. It might be due to moderate current velocity and great depth <str<strong>on</strong>g>of</str<strong>on</strong>g> the fjord,which provides a suitable c<strong>on</strong>diti<strong>on</strong> for leach<strong>in</strong>g and decompositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> organic materialdur<strong>in</strong>g the s<strong>in</strong>k<strong>in</strong>g period and flush<strong>in</strong>g out <str<strong>on</strong>g>of</str<strong>on</strong>g> the deposited waste from the fjord as well. Itc<strong>on</strong>curs with the other studies (Barg 1992, EAO 1996, W<strong>in</strong>sby et al. 1996, ASI 1999,McGhie et al. 2000, Pears<strong>on</strong> and Black 2001, Nash 2001, Carroll et al. 2003 andCrawford et al. 2003) and the results <strong>in</strong>dicate localized impact <str<strong>on</strong>g>of</str<strong>on</strong>g> cage culture , restrictedto few tens <str<strong>on</strong>g>of</str<strong>on</strong>g> meters from the cage. It should be noted that samples were not taken fromunderneath the cage. The impact <strong>on</strong> the sediment below the cage might be higher thanobserved at the stati<strong>on</strong> nearby the cage.3.6 Recommendati<strong>on</strong> This study was d<strong>on</strong>e <strong>in</strong> the autumn, 1.5 years after <strong>in</strong>stallati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the cage <strong>in</strong> this areawhen the biomass was close to the maximum level. Samples could not be takendirectly under the cage. These po<strong>in</strong>ts should be c<strong>on</strong>sidered <strong>in</strong> <strong>in</strong>terpretati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> theresults. <strong>Study</strong> <strong>on</strong> local water current nearby the farm and prevail<strong>in</strong>g sea current <strong>in</strong> the fjordwould be helpful for dem<strong>on</strong>strati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the sedimentati<strong>on</strong> behavior <strong>in</strong> the vic<strong>in</strong>ity <str<strong>on</strong>g>of</str<strong>on</strong>g>the farm. Applicati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> some other <strong>in</strong>dicator such as redox potential or trace elements willprovide <strong>in</strong>formati<strong>on</strong> for draw<strong>in</strong>g a precise picture <str<strong>on</strong>g>of</str<strong>on</strong>g> accumulati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> organic wastesfrom the cage. The results <strong>in</strong>dicated a high c<strong>on</strong>centrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> phosphorus <strong>in</strong> the sediment. Furtherstudy <strong>on</strong> the source <str<strong>on</strong>g>of</str<strong>on</strong>g> phosphorus is recommended.ACKNOWLEDGMENTI am thankful to UNU-FTP <strong>in</strong> Iceland for provid<strong>in</strong>g this opportunity for tak<strong>in</strong>g part <strong>in</strong> thecourse, organiz<strong>in</strong>g the project and their support. This project was led by Dr. Guðjón AtliAuðunss<strong>on</strong>. My special thank was to him and his laboratory assistant, ÞuríðurRagnarsdóttir for technical guidance dur<strong>in</strong>g the lab work and Icelandic FisheriesLaboratories for provid<strong>in</strong>g the chemical analysis facilities. Magnus Danielsen and staff <str<strong>on</strong>g>of</str<strong>on</strong>g>Samherji hf. with the sampl<strong>in</strong>g procedure. I’m grateful to Dr. Tumi Tomass<strong>on</strong> for histechnical comments and correcti<strong>on</strong>s to the draft <str<strong>on</strong>g>of</str<strong>on</strong>g> this report.UNU-Fisheries Tra<strong>in</strong><strong>in</strong>g Programme 36


ShakouriLIST OF REFERENCEAl<strong>on</strong>gi, D.M., Ch<strong>on</strong>g, V.C., Dix<strong>on</strong>, P., Saskumar, A. and Tirendi, F. 2003. The <strong>in</strong>fluence<str<strong>on</strong>g>of</str<strong>on</strong>g> fish cage aquaculture <strong>on</strong> pelagic carb<strong>on</strong> flow and water chemistry <strong>in</strong> tidally dom<strong>in</strong>atedmangrove estuaries <str<strong>on</strong>g>of</str<strong>on</strong>g> pen<strong>in</strong>sular Malaysia. Mar<strong>in</strong>e Envir<strong>on</strong>ment Research 55: 313-333.ASI (Aquatic Science Inc) 1999. Literature review <str<strong>on</strong>g>of</str<strong>on</strong>g> the envir<strong>on</strong>mental impacts <str<strong>on</strong>g>of</str<strong>on</strong>g> cagedaquaculture, ASI project E9708. G.B.A. Foundati<strong>on</strong>. 22p.Arzul, G., Bodennec, G., Youenou, A. and Crassous, MP. 2002. Effect <str<strong>on</strong>g>of</str<strong>on</strong>g> uneaten fishfeed <strong>on</strong> the phytoplankt<strong>on</strong> growth: <strong>in</strong>vitro tests <strong>on</strong> fish feed elutriates. Aquaculture ,Envir<strong>on</strong>ment and Mar<strong>in</strong>e Phytoplankt<strong>on</strong>. Proceed<strong>in</strong>gs <str<strong>on</strong>g>of</str<strong>on</strong>g> a symposium held <strong>in</strong> Brest, 21-23 may 2001. No. 34, pp. 135-144. [Actes Colloq. IFREMER]. ( Abstract).Barg,, U.C. 1992. Guidel<strong>in</strong>es for the promoti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> envir<strong>on</strong>mental management <str<strong>on</strong>g>of</str<strong>on</strong>g> coastalaquaculture development. Fisheries Technical Paper, FAO, Rome.Berntssen, M.H.G., Hylland, K., B<strong>on</strong>ga, S.E.W. and Maage, A. 1999. Toxic level <str<strong>on</strong>g>of</str<strong>on</strong>g>dietary copper <strong>in</strong> Atlantic salm<strong>on</strong> (Salm<strong>on</strong> salar L.) parr. Aquatic Toxicology 46: 87-99.Beveridge, M. 1996. <str<strong>on</strong>g>Cage</str<strong>on</strong>g> Aquaculture. (2 nd editi<strong>on</strong>). Fish<strong>in</strong>g News Book.Brooks, K.M. and Mahnken C.V.W. 2003a. Interacti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Atlantic salm<strong>on</strong> <strong>in</strong> the PacificNorthwest envir<strong>on</strong>ment, II. Organic wastes. Fisheries Research 62: 255-293.Brooks, M.K. and Mahnken, C.V.W. 2003b. Interacti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Atlantic pacific salm<strong>on</strong> <strong>in</strong> thePacific Northwest envir<strong>on</strong>ment, III. Accumulati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> z<strong>in</strong>c and copper. Fisheries Research62: 295-305.Burford, M.A. and Rothlisberg, P.C. 1999. factors limit<strong>in</strong>g phytoplankt<strong>on</strong> producti<strong>on</strong> <strong>in</strong>tropical c<strong>on</strong>t<strong>in</strong>ental shelf ecosystem. Estuar<strong>in</strong>e, Coastal and shelf Science 48: 541-549.Buschmann, A. 2002. Envir<strong>on</strong>mental impact <str<strong>on</strong>g>of</str<strong>on</strong>g> Chilean salm<strong>on</strong> farm<strong>in</strong>g: The situati<strong>on</strong> <strong>in</strong>the Tenth regi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the lakes. Terram. www.terram.ch/publicati<strong>on</strong> 22.12.2003Cannavan, A., Coyne, R., Kennedy, D.G. and Smith, P., 2000. C<strong>on</strong>centrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> 22,23-dihydroavermect<strong>in</strong> B 1a detected <strong>in</strong> sediments at an Atlantic salm<strong>on</strong> farm us<strong>in</strong>g orallyadm<strong>in</strong>istered ivermect<strong>in</strong> to c<strong>on</strong>trol sea-lice <strong>in</strong>festati<strong>on</strong>. Aquaculture 182: 229-240.Carroll, M.L., Cochrane, S.,Fieler, R.. Velv<strong>in</strong>, R. and White, P. 2003. Organic enrichment<str<strong>on</strong>g>of</str<strong>on</strong>g> sediments from salm<strong>on</strong> farm<strong>in</strong>g <strong>in</strong> Norway: Envir<strong>on</strong>mental factors, managementpractices and m<strong>on</strong>itor<strong>in</strong>g techniques. Aquaculture 226: 165-180.UNU-Fisheries Tra<strong>in</strong><strong>in</strong>g Programme 37


ShakouriChelossi, E., Vezzuli, L., Milano, A., Branz<strong>on</strong>i, M., Fabiano, M., Riccardi, G. and Banat,I.M. 2003. Antibiotic resistance <str<strong>on</strong>g>of</str<strong>on</strong>g> bacteria <strong>in</strong> fish-farm and c<strong>on</strong>trol sediments <str<strong>on</strong>g>of</str<strong>on</strong>g> theWestern Mediterranean. Aquaculture 219: 83-97.Chen, Y.S., Beveridge, M.C.M. and Telfer, T.C. 1999. Physical characteristics <str<strong>on</strong>g>of</str<strong>on</strong>g>commercial pelleted Atlantic salm<strong>on</strong> feeds and c<strong>on</strong>siderati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> implicati<strong>on</strong>s formodel<strong>in</strong>g <str<strong>on</strong>g>of</str<strong>on</strong>g> waste dispersi<strong>on</strong> through sedimentati<strong>on</strong>. Aquaculture Internati<strong>on</strong>al 7: 89-100.Chen,Y.S., Beveridge, M.C.M. and Telfer, T.C. 2000. Settl<strong>in</strong>g rate characteristics andnutrient c<strong>on</strong>tent <str<strong>on</strong>g>of</str<strong>on</strong>g> the faeces <str<strong>on</strong>g>of</str<strong>on</strong>g> Atlantic salm<strong>on</strong>, Salmo salar L., and the implicati<strong>on</strong>s formodel<strong>in</strong>g <str<strong>on</strong>g>of</str<strong>on</strong>g> solid waste dispersi<strong>on</strong>. Aquaculture Research 30: 395-398.Chen,Y.S., Beveridge, M.C.M., Telfer, T.C. and Roy, W.J. 2003. Nutrient leach<strong>in</strong>g andsettl<strong>in</strong>g rate characteristics <str<strong>on</strong>g>of</str<strong>on</strong>g> the faeces <str<strong>on</strong>g>of</str<strong>on</strong>g> Atlantic salm<strong>on</strong> (Salmo salar L.,) and theimplicati<strong>on</strong>s for model<strong>in</strong>g <str<strong>on</strong>g>of</str<strong>on</strong>g> solid waste dispersi<strong>on</strong>. J. Appl. Ichthyol. 19: 114-117.Chou, C.L., Haya, K., Pa<strong>on</strong>, L.A., Burridge, L. and M<str<strong>on</strong>g>of</str<strong>on</strong>g>fatt, J.D. 2002. Aquaculturerelated metals <strong>in</strong> sediments and lobsters and relevance to envir<strong>on</strong>mental m<strong>on</strong>itor<strong>in</strong>gprogram rat<strong>in</strong>g for near-field effects. Mar<strong>in</strong>e Polluti<strong>on</strong> Bullet<strong>in</strong> 44: 1259-1268.Coyne, R., H<strong>in</strong>ey, M. and Simth, P. 1997. Transient presence <str<strong>on</strong>g>of</str<strong>on</strong>g> Oxytetracycl<strong>in</strong> <strong>in</strong> bluemussel (Mytilus edulis) follow<strong>in</strong>g its therapeutic use at a mar<strong>in</strong>e Atlantic salm<strong>on</strong> farm.Aquaculture 149: 175-181.Crawford, C., Macd<strong>on</strong>ald, C. and Mitchell, I. 2002. Evaluati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> techniques forenvir<strong>on</strong>mental m<strong>on</strong>itor<strong>in</strong>g <str<strong>on</strong>g>of</str<strong>on</strong>g> salm<strong>on</strong> farms <strong>in</strong> Tasmania. Tasmanian Aquaculture andFisheries Institute, University <str<strong>on</strong>g>of</str<strong>on</strong>g> Tasmania, Australia.CSIRO Hut<strong>on</strong> Estuary <strong>Study</strong> Team, 2000. Hut<strong>on</strong> Estuary <strong>Study</strong>. F<strong>in</strong>al report to FisheriesResearch and Development Corporati<strong>on</strong>. Project No. 96/28. CSIRO Divisi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Mar<strong>in</strong>eResearch, Mar<strong>in</strong>e Laboratories, Hobart, Tasmania.http://www.mar<strong>in</strong>e.csiro.au/ResProj/CoasEnvMarPol/hu<strong>on</strong>est/hesreport_pdf/ 01.02.2004Diaz, M.M., Temporetti, P.F. and Pedrozo, F.L. 2001. Resp<strong>on</strong>cse <str<strong>on</strong>g>of</str<strong>on</strong>g> phytoplankt<strong>on</strong> toenrichment from cage fish farm waste <strong>in</strong> Alicura Reservior (Patag<strong>on</strong>ia, Argent<strong>in</strong>a). Lakeand Reservoirs: Research and Management 6:EAO (Envir<strong>on</strong>mental Assessment Office <str<strong>on</strong>g>of</str<strong>on</strong>g> the British Colombia , Canada) 1996. Thesalm<strong>on</strong> aquaculture review, f<strong>in</strong>al report. http://www.<strong>in</strong>terafish.com/laws-andregulati<strong>on</strong>s/report_bc14.11.2003.UNU-Fisheries Tra<strong>in</strong><strong>in</strong>g Programme 38


ShakouriElberiz<strong>on</strong>, I.R. and Kelly, L.A. 1998. Empirical measurements <str<strong>on</strong>g>of</str<strong>on</strong>g> parameters critical tomodel<strong>in</strong>g benthic impacts <str<strong>on</strong>g>of</str<strong>on</strong>g> freshwater salm<strong>on</strong>id cage aquaculture. AquacultureResearch 29: 669-677.Eng, C.T. and Tech, E. 2002. History <str<strong>on</strong>g>of</str<strong>on</strong>g> cage culture. In Woo, P.T.K. (editor). Diseaseand disorders <str<strong>on</strong>g>of</str<strong>on</strong>g> f<strong>in</strong>fish <strong>in</strong> cage culture. CABI Publish<strong>in</strong>g..EU 2001. Fact sheet <strong>on</strong> dioxi <strong>in</strong> feed and food.http://www.europea.eu.<strong>in</strong>t/comm/dgs/health_c<strong>on</strong>sumer/library/press/press170_en.pdf,Jan.8.2004.FAO 2002. Fishstat plus. S<str<strong>on</strong>g>of</str<strong>on</strong>g>tware. Rome, Italy.GESAMP(IMO/FAO/Unesco/WMO/IAEA/UN/UNEP Jo<strong>in</strong>t Group <str<strong>on</strong>g>of</str<strong>on</strong>g> Experts <strong>on</strong> theScientific Aspects <str<strong>on</strong>g>of</str<strong>on</strong>g> Mar<strong>in</strong>e Polluti<strong>on</strong>), 1991. Reduc<strong>in</strong>g envir<strong>on</strong>mental impacts <str<strong>on</strong>g>of</str<strong>on</strong>g>coastal aquaculture. Rep. Stud. GESAMP, 47: 35p.http://www.fao.org/DOCREP/006/u3100e/u3100e00.HTM. Nov.10,2003.Gowen, RJ., Bradbury, NB 1987. The ecological impact <str<strong>on</strong>g>of</str<strong>on</strong>g> salm<strong>on</strong>id farm<strong>in</strong>g <strong>in</strong> coastalwaters: A review. Oceanography and Mar<strong>in</strong>e Biology: An annual Review., AberdeenUniversity Press, Aberdeen (UK), 1987, pp. 563-575, vol.25.Gowen, RJ, DePauw, N,Joyce, J (comps) 1991. Aquaculture and the natural envir<strong>on</strong>ment.Aquaculture and the envir<strong>on</strong>ment, p.129, Special Publicati<strong>on</strong>, European AquacultureSociety [SPEC.PUBL.EUR.AQUACULT.SOC.], no.14.Green, J.A., Hardy, R.W. and Brann<strong>on</strong>, E.L. 2002. Effect <str<strong>on</strong>g>of</str<strong>on</strong>g> dietary phosphorus and lipidlevels <strong>on</strong> utilizati<strong>on</strong> and excreti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> phosphorus and nitrogen by ra<strong>in</strong>bow troutOncorhynchus mykiss. 1. Laboratory scale study. Aquaculture Nutriti<strong>on</strong> 8: 279-290.Guo, L. and Li, Z. 2003. Effect <str<strong>on</strong>g>of</str<strong>on</strong>g> nitrogen and phosphorus from fish cage <strong>on</strong> thecommunities <str<strong>on</strong>g>of</str<strong>on</strong>g> shallow lake <strong>in</strong> middle Yangtze River bas<strong>in</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Ch<strong>in</strong>a. Aquaculture 226:201-212.Hargrave, B.T., Duplisea. D.E., Pfeiffer, E. and Wildish, D.J. 1993. Seas<strong>on</strong>al changes <strong>in</strong>benthic fluxes <str<strong>on</strong>g>of</str<strong>on</strong>g> dissolved oxygen and amm<strong>on</strong>iumassociated with mar<strong>in</strong>e culturedAtlantic salm<strong>on</strong>. Mar<strong>in</strong>e Ecology Progress Series, 96: 249-257Hargrave, B.T., Philips, G.A., Doucette, L.I., White, M.J., Milligan, T.G., Wildish, D.J.and Cranst<strong>on</strong>, R.E. 1997. Assess<strong>in</strong>g benthic impacts <str<strong>on</strong>g>of</str<strong>on</strong>g> organic enrichment from mar<strong>in</strong>eaquaculture. Water, Air and Soil Polluti<strong>on</strong> 99: 641-650.UNU-Fisheries Tra<strong>in</strong><strong>in</strong>g Programme 39


ShakouriHe<strong>in</strong>ig, C.S. 2000. The impact <str<strong>on</strong>g>of</str<strong>on</strong>g> salm<strong>on</strong> aquaculture: The difficulties <str<strong>on</strong>g>of</str<strong>on</strong>g> establish<strong>in</strong>gacceptability limits and standards. Report presented to Aquaculture/Envir<strong>on</strong>mentWorkshop. University <str<strong>on</strong>g>of</str<strong>on</strong>g> Massachusetts, Bost<strong>on</strong>, USA. Jan. 11-13,2001.Heliskov, A.C. and Holmer, M. 2001. Effect <str<strong>on</strong>g>of</str<strong>on</strong>g> benthic fauna <strong>on</strong> organic matterm<strong>in</strong>eralizati<strong>on</strong> <strong>in</strong> fish farm sediments: importance <str<strong>on</strong>g>of</str<strong>on</strong>g> size and abundance. ICES Journal<str<strong>on</strong>g>of</str<strong>on</strong>g> Mar<strong>in</strong>e Science 58: 427-434.Holmer, M., Marba, N., Duarte, C.M., Terrados, J. and Fortes, M.D. 2002. <str<strong>on</strong>g>Impact</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g>milkfish (Chanos chanos) aquaculture <strong>on</strong> carb<strong>on</strong> and nutrient fluxes <strong>in</strong> the Bol<strong>on</strong>ao area,Philipp<strong>in</strong>es. Mar<strong>in</strong>e Polluti<strong>on</strong> Bullet<strong>in</strong> 44: 685-696.IMO. The Icelandic Meteorological Office 2004.http://www.vedur.is/ur/yfirlit/medaltalst<str<strong>on</strong>g>of</str<strong>on</strong>g>lur/Stod_620_Dalatangi.ManMedal.txt.20.01.2004Johanssen, V. 2001. An <strong>in</strong>terview <str<strong>on</strong>g>of</str<strong>on</strong>g> president <str<strong>on</strong>g>of</str<strong>on</strong>g> Salm<strong>on</strong> <str<strong>on</strong>g>Culture</str<strong>on</strong>g> Associati<strong>on</strong> <strong>in</strong> Icelandwith Intrafish. http://www.<strong>in</strong>trafish.com/<strong>in</strong>trafish- analysis/review_2000_ eng/<strong>in</strong>dex.php3? thepage8 , 9.12.2003Karakassis, I., Tsapakis, M., Hatziyanni, E., Papadopoulou, K.N., and Plaiti, W. 2000.<str<strong>on</strong>g>Impact</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> cage farm<strong>in</strong>g <str<strong>on</strong>g>of</str<strong>on</strong>g> fish <strong>on</strong> the seabed <strong>in</strong> three Mediterranean coastal areas. ICES J.Mar<strong>in</strong>e Science 57: 1462-1471.Kempf, M., Mercer<strong>on</strong>, M., Cadour, G., Jeanneret, H., Mear, Y. and Mirmand, P. 2002.Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Applied Ichthyology 18: 51-60.Kerry, J., Coyne, R.,Gilory, D., H<strong>in</strong>ey, M. and Smith, P. 1996. Spatial distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g>oxytetracycl<strong>in</strong>e and elevated frequencies <str<strong>on</strong>g>of</str<strong>on</strong>g> oxytetracycl<strong>in</strong>e resistance <strong>in</strong> sedimentsbeneath a mar<strong>in</strong>e salm<strong>on</strong> farm follow<strong>in</strong>g oxytetacycl<strong>in</strong>e therapy. Aquaculture 145: 31-39.Maage, A., Julshamn, K. and Berg, G.K. 2001. Z<strong>in</strong>c gluc<strong>on</strong>ate and z<strong>in</strong>c sulphate asdietary z<strong>in</strong>c source for Atlantic salm<strong>on</strong>. Aquaculture Nutriti<strong>on</strong> 7: 183-187.Macleod, C.K., Mitchell, I.M., Crawford, C.M. and C<strong>on</strong>nell, D. 2002. Evaluati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g>sediment recovery after removal <str<strong>on</strong>g>of</str<strong>on</strong>g> f<strong>in</strong>fish cages from mar<strong>in</strong>e farm lease No.76( Gunpowder jetty), Northwest bay. Tasmanian Aquaculture and Fisheries Institute,University <str<strong>on</strong>g>of</str<strong>on</strong>g> Tasmania, Australia.Mazzola, A., Mirto, S., La Rosa, T., Fabiano, M. And Danovaro, R. 2000. Fish farm<strong>in</strong>geffects <strong>on</strong> benthic community structure <strong>in</strong> coastal sediments: analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> micr<str<strong>on</strong>g>of</str<strong>on</strong>g>aunalrecovery. ICES J. Mar<strong>in</strong>e Science 57: 1454-1461.UNU-Fisheries Tra<strong>in</strong><strong>in</strong>g Programme 40


ShakouriMcGhie, T.K., Crawford C.M., Mitchell, I.M. and O’Brien, D. 2000. the degradati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g>fish cage waste <strong>in</strong> sediments dur<strong>in</strong>g fallow<strong>in</strong>g. Aquaculture 187: 351- 366.Med<strong>in</strong>a, M., Barata, C., Telfer, T. And Baird, D.J. 2004. Effect <str<strong>on</strong>g>of</str<strong>on</strong>g> cypermethr<strong>in</strong> <strong>on</strong>mar<strong>in</strong>e plankt<strong>on</strong> communities: a simulated field study us<strong>in</strong>g mesocosm. Ecotoxicologyand Envir<strong>on</strong>mental Safety. In pressMiranda, C.D. and Zemelman R., 2002. Antimicrobial multiresistance <strong>in</strong> bacteria isolatedfrom freshwater Chilean salm<strong>on</strong> farms. The Science <str<strong>on</strong>g>of</str<strong>on</strong>g> The Total Envir<strong>on</strong>ment 293: 207-218.MRI, (Mar<strong>in</strong>e Research Institute, Iceland). .Sea surface temperature records.http://www.hafro.is/Sjora/ 20.01.2004Nash, C.E.(editor). 2001. The net-pen salm<strong>on</strong> farm<strong>in</strong>g <strong>in</strong>dustry <strong>in</strong> the Pacific Northwest.U.S. Dept. <str<strong>on</strong>g>of</str<strong>on</strong>g> Commer., NOAA Tech. Memo. NMFS-NWFSC-46.Nickell, L.A., Black, K.D., Hughes, J.D., Overnell, J., Brand, T.,Nickell, T.D., Breuer, E.and Harvey, S.M. 2003. Bioturbati<strong>on</strong>, sediment flux and benthic community structurearound a salm<strong>on</strong> cage farm <strong>in</strong> Loch Creran, Scotland. Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Experimental Mar<strong>in</strong>eBiology and Ecology 285-286: 221-223.Nordrum, S., Asgard, T., Shearer, K.D. and Arnessen, P. 1997. Availability <str<strong>on</strong>g>of</str<strong>on</strong>g>phosphorus <strong>in</strong> fish b<strong>on</strong>e meal and <strong>in</strong>organic salts to Atlantic salm<strong>on</strong> Salmo salar asdeterm<strong>in</strong>ed by retenti<strong>on</strong>. Aquaculture 157: 51-61.Pawar, V., Matsuda, O. and Fujisaki N. 2002. Relati<strong>on</strong>ship between feed <strong>in</strong>put andsediment quality <str<strong>on</strong>g>of</str<strong>on</strong>g> fish cage farms. Fisheries Science 68: 894-903.Pears<strong>on</strong>, T.H. and Black, K.D. 2001. In Black. K.D.,ed. Envir<strong>on</strong>mental impact <str<strong>on</strong>g>of</str<strong>on</strong>g>aquaculture. Sheffield Academic Press, UK.Perez, O.M., Telfer, T.C., Beveridge, M.C.M. and Ross, L.G. 2002. Geographical<strong>in</strong>formati<strong>on</strong> system (GIS) as a simple tool to aid model<strong>in</strong>g <str<strong>on</strong>g>of</str<strong>on</strong>g> particulate wastedistributi<strong>on</strong> at mar<strong>in</strong>e fish cage sites. Estuar<strong>in</strong>e, Coastal and Shelf Science 54: 761-768.Roy, P.K., Lall, S.P. 2004. Ur<strong>in</strong>ary phosphorus excreti<strong>on</strong> <strong>in</strong> haddock, Melanogrammusaeglef<strong>in</strong>us (L.) and Atlantic salm<strong>on</strong>, Salmo salar (L.). Aquaculture <strong>in</strong> press.Ruoh<strong>on</strong>en, K., Vielma, J and Grove, D.J. 1999. Low prote<strong>in</strong> supplement <strong>in</strong>crease prote<strong>in</strong>retenti<strong>on</strong> and reduce the amount <str<strong>on</strong>g>of</str<strong>on</strong>g> nitrogen and phosphorus wasted by ra<strong>in</strong> bow trout fed<strong>on</strong> low fat herr<strong>in</strong>g. Aquaculture Nutriti<strong>on</strong> 5: 83-91.UNU-Fisheries Tra<strong>in</strong><strong>in</strong>g Programme 41


ShakouriSara, G., Scilipoti, D., Mazzola, A., and Modica A. 2004. Effect <str<strong>on</strong>g>of</str<strong>on</strong>g> fish farm<strong>in</strong>g waste tosedimentary and particulate organic matter <strong>in</strong> southern Mediterranean are (Gulf <str<strong>on</strong>g>of</str<strong>on</strong>g>Castellammare, Sicily): a multiple stable isotope study. Aquaculture, <strong>in</strong> press.SECRU, 2002. Review and synthesis <str<strong>on</strong>g>of</str<strong>on</strong>g> the envir<strong>on</strong>mental impacts <str<strong>on</strong>g>of</str<strong>on</strong>g> aquaculture.Scottish Executive Central Research Unit, Ed<strong>in</strong>burgh, Scotland.SEPA, (Scottish Envir<strong>on</strong>ment Protecti<strong>on</strong> Agency) 2003. regulati<strong>on</strong> and m<strong>on</strong>itor<strong>in</strong>g <str<strong>on</strong>g>of</str<strong>on</strong>g>mar<strong>in</strong>e cage fish farm<strong>in</strong>g <strong>in</strong> Scotland, . A manual <str<strong>on</strong>g>of</str<strong>on</strong>g> procedures.http://www.sepa.org.uk/publicati<strong>on</strong>s 18.12.2003Silveret, W. and Cromey, C.J. 2001. In Black, K.D.,ed. Envir<strong>on</strong>mental impact <str<strong>on</strong>g>of</str<strong>on</strong>g>aquaculture. Sheffield Academic Press, UK.Solberg, C.B., Saether, L. and Julshamn, K. 2002. The effect <str<strong>on</strong>g>of</str<strong>on</strong>g> copper treated net pens<strong>on</strong> farmed salm<strong>on</strong> (Salmo salar) and other mar<strong>in</strong>e organisms and sediments. Mar<strong>in</strong>ePolluti<strong>on</strong> Bullet<strong>in</strong> 45: 126-132.Storebakken, T., Shearer, K.D. and Roem,A.J. 2000. Growth, uptake and retenti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g>nitrogen and phosphorus, and absorbti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> other m<strong>in</strong>erals <strong>in</strong> Atlantic salm<strong>on</strong> Salmosalar fed diets with fish meal and soy-prote<strong>in</strong> c<strong>on</strong>centrate as ma<strong>in</strong> source <str<strong>on</strong>g>of</str<strong>on</strong>g> prote<strong>in</strong>.Aquaculture Nutriti<strong>on</strong> 6: 103-108.Sumagaysay, N.S. and Chavoso, 2003. Nitrogen and phosphorus digestibility andexcreti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> different-sized groups <str<strong>on</strong>g>of</str<strong>on</strong>g> milkfish (Chanos chanos Forsskal) fed formulatedand natural food-based diets. Aquaculture research 34: 407-418.Sutherland, F.T., Mart<strong>in</strong>, J.A. and Lev<strong>in</strong>gs, C.D. 2001. Characterizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> suspendedparticulate matter surround<strong>in</strong>g a salm<strong>on</strong>id net-pen <strong>in</strong> Brought<strong>on</strong> Archiplago, BritishColombia. ICES Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Mar<strong>in</strong>e Science 58: 404-410.Svavars<strong>on</strong>, J. and Helgas<strong>on</strong>, G.V. 2002. Lifriki a Botni Mjoifjordur. Haskoli Islands,Reykjavik 2002.Tac<strong>on</strong>, A.G.J. and Forster, I.P., 2003. Aquafeeds and the envir<strong>on</strong>ment: policy implicati<strong>on</strong>.Aquaculture 226: 181-189.Telfer, T. and Rob<strong>in</strong>s<strong>on</strong>, K. 2003. Envir<strong>on</strong>mental quality and carry<strong>in</strong>g capacity foraquaculture <strong>in</strong> Mulory Bay Co. D<strong>on</strong>gegal. Envir<strong>on</strong>mental Services, Institute <str<strong>on</strong>g>of</str<strong>on</strong>g>Aquaculture, University <str<strong>on</strong>g>of</str<strong>on</strong>g> Sterl<strong>in</strong>g, Sterl<strong>in</strong>g , FK9 4LA, UK. http://www.mar<strong>in</strong>e.ie01.02.04UNU-Fisheries Tra<strong>in</strong><strong>in</strong>g Programme 42


ShakouriWeber, M.L. 2003. What price farmed fish: A review <str<strong>on</strong>g>of</str<strong>on</strong>g> the envir<strong>on</strong>mental and socialcosts <str<strong>on</strong>g>of</str<strong>on</strong>g> farm<strong>in</strong>g carnivorous fish.http://www.seaweb.org/resources/sac/pdf/ExecSum.pdf 14.12.2003W<strong>in</strong>sby, M., Sander, B., Archibald, D., Dayk<strong>in</strong>, M., Nix, P., Taylor, F.J.R. and Mundy, D.1996. The envir<strong>on</strong>mental effects <str<strong>on</strong>g>of</str<strong>on</strong>g> salm<strong>on</strong> net-cage culture <strong>in</strong> British Colombia. M<strong>in</strong>sitry<str<strong>on</strong>g>of</str<strong>on</strong>g> Envir<strong>on</strong>ment, Lands and Parks, Envir<strong>on</strong>mental Protecti<strong>on</strong> Dept. IndustrialWaste/Hazardous C<strong>on</strong>tam<strong>in</strong>ants Branch, Victoria, BC. Canada.W<strong>on</strong>g, K.B. and Piedrahita, R.H. 2000. Settl<strong>in</strong>g velocity characterizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> aquaculturesolids. Aquaculture 21: 233-246.Zitko, V. 2001. Analytical chemistry <strong>in</strong> m<strong>on</strong>itor<strong>in</strong>g the effect <str<strong>on</strong>g>of</str<strong>on</strong>g> aquaculture: <strong>on</strong>elaboratory's perspective. ICES Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Mar<strong>in</strong>e Science 58: 486-491.UNU-Fisheries Tra<strong>in</strong><strong>in</strong>g Programme 43


ShakouriAPPENDIXAppendix 1: Geographical positi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the sampl<strong>in</strong>g stati<strong>on</strong>sStati<strong>on</strong>LatitudeNorthL<strong>on</strong>gitudeWestDepthmApproximate distance <strong>in</strong> meterTo the edge <str<strong>on</strong>g>of</str<strong>on</strong>g>cageTo the referencestati<strong>on</strong> (No.8)1 6511926 -1346781 85.5 5 6002 6511885 -1346847 88.1 95 6503 6511917 -1347018 85 320 9004 6511904 -1347211 88 350 9305 6512008 -1346733 74 150 5706 6512028 -1346732 66 200 5807 6511932 -1346027 87.3 600 0UNU-Fisheries Tra<strong>in</strong><strong>in</strong>g Programme 44

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!