24.11.2012 Views

AEB Presentation - Thatcham Motor Insurance Repair Research ...

AEB Presentation - Thatcham Motor Insurance Repair Research ...

AEB Presentation - Thatcham Motor Insurance Repair Research ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>AEB</strong><br />

TTest t Development<br />

D l t<br />

Autonomous Emergency Braking


Agenda g<br />

� <strong>AEB</strong> Test T t Group G<br />

� CCar-to-Pedestrian t P d t i (CP) (CP):<br />

– Accidentology<br />

– Test Scenarios<br />

– Test Target & Propulsion<br />

� Car-to-Car Rear (CCR):<br />

– Accidentology<br />

– Test Scenarios<br />

– Test Target g & Propulsion p<br />

� Car-to-Car Head-On (CHO):<br />

– Accidentology<br />

� Metrics & Ratings<br />

� Conclusions<br />

2


Agenda g<br />

� <strong>AEB</strong> TTest t GGroup<br />

� CCar-to-Pedestrian t P d t i (CP) (CP):<br />

– Accidentology<br />

– Test Scenarios<br />

– Test Target & Propulsion<br />

� Car-to-Car Rear (CCR):<br />

– Accidentology<br />

– Test Scenarios<br />

– Test Target g & Propulsion p<br />

� Car-to-Car Head-On (CHO):<br />

– Accidentology<br />

� Metrics & Ratings<br />

� Conclusions<br />

3


<strong>AEB</strong> Test Group<br />

Rationale for Group<br />

� <strong>AEB</strong> systems are becoming more widely available<br />

� Pedestrian protection is a significant issue<br />

�� Technology is available to address pedestrian casualties<br />

� Definition of standardised test procedures to encourage<br />

and d control t l such h systems t<br />

– to cover all aspects of societal impact: repair and material<br />

damage costs, costs injury and fatality costs<br />

4


<strong>AEB</strong> Test Group<br />

Terms of reference<br />

� IInternational t ti l group<br />

� Insurer and consumer perspective<br />

� Two year initial project (2009-2011)<br />

– Interrogate detailed accident data<br />

– Id Identify tif pre-crash h situations it ti relevant l t ffor current t <strong>AEB</strong> technology t h l<br />

� Focus on injury reduction – including whiplash and<br />

pedestrian collisions<br />

� Also covering<br />

– Material damage cost reduction<br />

– Appropriate positioning and<br />

mounting requirements for sensors<br />

to prevent increase in insurer costs<br />

following minor crash damage<br />

5


<strong>AEB</strong> Test Group<br />

Scope and aims<br />

� “To design and implement test procedures reflecting real<br />

world data that can encourage the development of<br />

autonomous braking technology that can help prevent or<br />

mitigate the effects of car-to-pedestrian and car-to-car<br />

crashes”<br />

CCar-to-Pedestrian t P d t i CCar-to-Car t C RRear CCar-to-Car t C HHead-On d O<br />

(CP)<br />

(CCR)<br />

(CHO)<br />

6


<strong>AEB</strong> Test Group<br />

Phase 1 Project Partners<br />

� Supported by:<br />

– Loughborough<br />

University<br />

(Vehicle Safety<br />

<strong>Research</strong> Centre)<br />

– 1 x OEM<br />

– 1 x Tier 1 supplier<br />

7


<strong>AEB</strong> Test Group<br />

Development and Implementation of Procedures<br />

� Incorporate provisional results from real world accident<br />

data to define test conditions<br />

� Define and specify test measurement equipment<br />

� Define test metrics<br />

� Define rating process<br />

� Author test procedures<br />

� Publish initial results/ratings to inform<br />

consumers/stakeholders of technology capability<br />

� Integrate into existing Consumer Test Programs (RCAR)<br />

� Off Offer to Euro NCAP C P-NCAP C ffor consideration for f future f<br />

test program<br />

8


<strong>AEB</strong> Test Group<br />

Milestones & Publications<br />

� Mil Milestones: t<br />

– Publish initial test concept early 2011<br />

– Feedback from industry<br />

– Validate with physical testing 2011<br />

– Finalise test procedures and equipment end 2011<br />

– Aim of undertaking full tests during 2012<br />

� Publications:<br />

– Test procedures<br />

p<br />

– Current status updates at technical conferences and industry<br />

meetings<br />

– SSupporting ti materials t i l will ill iinclude l d presentations, t ti ttest t<br />

documentation, test videos and others<br />

– www.thatcham.org/<strong>AEB</strong><br />

t atc a o g/<br />

9


Agenda g<br />

� <strong>AEB</strong> Test T t Group G<br />

� CCar-to-Pedestrian t P d t i (CP): (CP)<br />

– Accidentology<br />

– Test Scenarios<br />

– Test Target & Propulsion<br />

� Car-to-Car Rear (CCR):<br />

– Accidentology<br />

– Test Scenarios<br />

– Test Target g & Propulsion p<br />

� Car-to-Car Head-On (CHO):<br />

– Accidentology<br />

� Metrics & Ratings<br />

� Conclusions<br />

10


Accidentology Study<br />

Introduction<br />

� DData t analysis l i and d report t authoring th i ffrom LLoughborough hb h UUniversity i it<br />

using GB accident data:<br />

– OTS<br />

– STATS 19<br />

� Data analysis from the German Insurers Accident <strong>Research</strong> (UDV)<br />

and <strong>Insurance</strong> Institute for Highway Safety (IIHS)<br />

� Review of other worldwide data and accidentology studies<br />

– Japan, p , Australia, , China<br />

� Examples of factors under investigation:<br />

– Frequency of collisions<br />

– Road layouts<br />

– Speeds<br />

– Typical pre-accident pre accident causation factors<br />

– Sight lines<br />

– Mitigating factors (parked cars, complex intersections etc.)<br />

11


Accidentology gy<br />

Introduction: UK data study<br />

� Aim to define common accident scenarios<br />

– pedestrian accidents<br />

– rear-end impacts<br />

– head-on impacts<br />

� Source materials<br />

– STATS 19 national accident database<br />

– On-the-Spot in-depth accident database<br />

STATS 19<br />

2008<br />

Great Britain<br />

National statistics<br />

Police<br />

Police reports<br />

All casualty accidents<br />

170,000+ accidents<br />

On-the-Spot (OTS)<br />

2000–2009<br />

South Notts and Thames Valley<br />

2010 casualty reduction targets<br />

<strong>Research</strong> teams<br />

At-scene investigations<br />

Police Police-attended attended accidents (8 hours daily)<br />

500 accidents per year<br />

12


Accidentology gy<br />

Introduction<br />

� Overlap of cases in STATS 19 and OTS<br />

– STATS 19 wider region for shorter period (2008)<br />

– OTS narrower region for wider period (2000–09)<br />

– Limited overlap of cases<br />

Region<br />

South Notts<br />

Thames Valley<br />

PPeriod i d<br />

STATS 19<br />

OTS<br />

13


Accidentology gy<br />

Introduction<br />

� Flow of work<br />

STATS 19<br />

OTS<br />

Source<br />

databases<br />

Computer<br />

logic<br />

stats19<br />

Cluster<br />

analysis<br />

Detailed<br />

Cluster<br />

case<br />

ots analysis<br />

reviews<br />

Preparation<br />

Summary<br />

datasets<br />

Clusters<br />

Scenarios<br />

14


Accidentology gy<br />

Methodology<br />

� Cluster analysis<br />

– mathematical grouping of data points<br />

1<br />

2<br />

3<br />

4 5<br />

2-dimensional space<br />

Dendrogram<br />

15


Accidentology gy<br />

Methodology<br />

� Distance between accident records (dissimilarity)<br />

– numerical values<br />

– nominal, ordinal and scalar types<br />

nominal<br />

nominal<br />

ordinal<br />

ordinal<br />

scalar<br />

scalar<br />

Record eco d 1 Record eco d 2 Distance sta ce<br />

1<br />

3<br />

0.0<br />

1.00<br />

0.2<br />

1.0<br />

Daylight<br />

Turning*<br />

10–30mph 10 30mph<br />

Adult male<br />

50km/h<br />

11m<br />

1<br />

1<br />

1.0<br />

0.67<br />

0.8<br />

0.0<br />

Daylight<br />

Going ahead<br />

60–70mph 60 70mph<br />

Adult female<br />

80km/h<br />

3m<br />

Pedestrian age-sex age sex (ordinal)<br />

Vehicle speed km/h (scale)<br />

0–7 y 8–15 y Female Male 40 50 80 90<br />

0 0.33 0.67 1.0 0 0.2 0.8 1.0<br />

0.00<br />

1.00<br />

1.00<br />

0.33<br />

0.60<br />

1.00<br />

3.93<br />

16


Accidentology gy<br />

Methodology<br />

� Distance between clusters<br />

– ‘Average of distances’ used<br />

Closest points Farthest points points Average of distances<br />

17


Accidentology gy<br />

STATS 19 — Pedestrian clusters<br />

Aim for 4-6<br />

clusters<br />

≥75% of cases<br />

Example<br />

Cluster 1<br />

• 39% of cases<br />

• Lower speeds<br />

• Daylight<br />

• Fine weather<br />

• Going ahead<br />

• Children<br />

Green cells:<br />

over-represented<br />

• Crossing from left<br />

99 5% in χ • Not masked<br />

2 99.5% in χ test<br />

• Not masked<br />

18


Accidentology gy<br />

OTS — Pedestrian location (1 sec) N=175<br />

Lateral disstance<br />

(m)<br />

5.0<br />

4.0<br />

3.0<br />

2.0<br />

1.0<br />

-1.0<br />

Visible<br />

Not visible<br />

00 0.0<br />

0 5 10 15 20 25 30<br />

-2.0<br />

-3.0<br />

-4.0<br />

-5.0<br />

Forward distance (m)<br />

19


Accidentology gy<br />

OTS — Pedestrian clusters<br />

20


Accidentology gy<br />

Pedestrian scenario 1<br />

21


Accidentology gy<br />

Pedestrian scenario 2<br />

22


Accidentology gy<br />

� Direct link between accident data and clusters<br />

– mathematical computation<br />

– objective and reproducible<br />

– representativeness clearly defined<br />

� Remarkable parallels in STATS 19 and OTS<br />

– pedestrian baseline and obscured scenarios<br />

– rear-end stationary and moving scenarios<br />

– estimate of representativeness<br />

� Innovative approach and fresh results<br />

23


Simulation Example: p Collision<br />

Car-to-Pedestrian Case 1<br />

� Ub Urban road d<br />

environment:<br />

– Residential area area,<br />

daylight, fine weather<br />

� VW Golf:<br />

– Travel speed 50km/h<br />

– Impact speed 50km/h<br />

� Pedestrian:<br />

– Walking; no sight<br />

obstruction<br />

– 22 year old male<br />

– Height 1.8m, weight<br />

80 kg<br />

– Serious injury<br />

24


Simulation Example: p <strong>AEB</strong><br />

Car-to-Pedestrian Case 1<br />

� AAssume <strong>AEB</strong> <strong>AEB</strong> fitt fitted: d<br />

– Activation at time to<br />

collision (TTC) 1.6<br />

seconds (this is the<br />

time before the actual<br />

impact)<br />

� VW Golf:<br />

– Travel speed 50km/h<br />

– Braking 0.8g<br />

� Pedestrian:<br />

– Walking 5km/h<br />

� Vehicle stops 0.3m<br />

bbefore f impact i<br />

25


Simulation Example: p Collision<br />

Car-to-Pedestrian Case 2<br />

� Ub Urban road d<br />

environment:<br />

– Residential area area,<br />

daylight, fine weather<br />

� Ford Focus:<br />

– Travel speed 50km/h<br />

– Impact speed 50km/h<br />

� Pedestrian:<br />

– Walking—parked cars<br />

on side of road<br />

– 12 year old male<br />

– Height 1.67m, weight,<br />

61 kg<br />

– Serious injury<br />

26


Simulation Example: p <strong>AEB</strong><br />

Car-to-Pedestrian Case 2<br />

� AAssume <strong>AEB</strong> <strong>AEB</strong> fitt fitted: d<br />

– Activation at time to<br />

collision (TTC) 1.6<br />

seconds (this is the<br />

time before the actual<br />

impact)<br />

� Ford Focus:<br />

– Travel speed 50km/h<br />

– Braking 0.8g<br />

� Pedestrian:<br />

– Walking 5km/h<br />

� Vehicle stops 0.3m<br />

bbefore f impact i<br />

27


Simulation Example: p Collision<br />

Car-to-Pedestrian Case 3<br />

� Ub Urban road d<br />

environment:<br />

– Residential area area,<br />

daylight, fine weather<br />

� VW Golf:<br />

– Travel speed 50km/h<br />

– Impact speed 35km/h<br />

� Pedestrian:<br />

– Running on pavement;<br />

no sight obstructions<br />

– Crosses road<br />

diagonally<br />

– 21 year old male<br />

– Height 1.9m, weight<br />

80 kg<br />

– Injured<br />

28


Simulation Example: p <strong>AEB</strong><br />

Car-to-Pedestrian Case 3<br />

� AAssume <strong>AEB</strong> <strong>AEB</strong> fitt fitted: d<br />

– Activation at time to<br />

collision (TTC) 1.6<br />

seconds (this is the<br />

time before the actual<br />

impact)<br />

� MINI:<br />

– Travel speed 50km/h<br />

– Braking 0.8g<br />

� Pedestrian:<br />

– Running 12km/h<br />

� Vehicle stops 0.2m<br />

bbefore f impact i<br />

29


Simulation Example: p Collision<br />

Car-to-Pedestrian Case 4<br />

� Ub Urban road d<br />

environment:<br />

– Residential area area, dark dark,<br />

raining<br />

� Peugeot 306:<br />

– Travel speed 50km/h<br />

– Impact speed 23km/h<br />

� Pedestrian:<br />

– Walking—obscured by<br />

moving vehicle<br />

– 28 year old female<br />

– Height 1.6m, weight<br />

64 kg<br />

– Serious injury<br />

30


Simulation Example: p <strong>AEB</strong><br />

Car-to-Pedestrian Case 4<br />

� AAssume <strong>AEB</strong> <strong>AEB</strong> fitt fitted: d<br />

– Activation at time to<br />

collision (TTC) 1.0<br />

seconds (this is the<br />

time before the actual<br />

impact)<br />

� Peugeot 306:<br />

– Travel speed 50km/h<br />

– Braking 0.8g<br />

� Pedestrian:<br />

– Walking 6km/h<br />

� Vehicle stops 0.6m<br />

bbefore f impact i<br />

31


<strong>AEB</strong> Test Concepts p<br />

Car to Pedestrian (CP)<br />

� Pedestrian walks from<br />

nearside pavement into<br />

path of car travelling along<br />

road<br />

� Pedestrian walks from<br />

nearside id pavement t ffrom<br />

behind an obstruction into<br />

path of car travelling along<br />

road<br />

Provisional/DRAFT only<br />

32


<strong>AEB</strong> Test Concepts p<br />

Car to Pedestrian (CP)<br />

� PPedestrian d t i runs ffrom ffar<br />

side pavement into path of<br />

car travelling g along g road<br />

� Pedestrian walking along<br />

near side of carriageway in<br />

path of car travelling along<br />

road<br />

Provisional/DRAFT only<br />

33


<strong>AEB</strong> Test Concepts p<br />

Car to Pedestrian (CP)<br />

� Pedestrian walks across<br />

junction from near side<br />

pavement into path of car<br />

turning towards far side<br />

into junction<br />

Provisional/DRAFT only<br />

34


<strong>AEB</strong> Test Example p<br />

Car to Pedestrian (CP)<br />

� WWalking lki pedestrian d t i approaching hi ffrom near side id<br />

� Range of test speeds from 10 to 60km/h<br />

� SSpeed d iincreased d iin 10k 10km/h /h increments i t if<br />

system avoids collision with pedestrian<br />

� Speed increased in 5km/h increments if<br />

collision occurs<br />

� Quarter car width and half car width impact p<br />

positions between test car and pedestrian with<br />

no <strong>AEB</strong><br />

� GGoal l – obtain bt i <strong>AEB</strong> system t performance f curve<br />

at multiple impact positions over a range of<br />

speeds to quantify system performance<br />

� Then perform additional scenarios at a reduced<br />

number of speeds to investigate system<br />

robustness<br />

Provisional/DRAFT only<br />

35


Test Target g and Propulsion p<br />

Car-to-Pedestrian (CP) initial development<br />

36


Test Target g and Propulsion p<br />

Car-to-Pedestrian (CP)<br />

� Adult 50th percentile male<br />

� ~12 year y old child<br />

� 3 dimensional<br />

� Easily recognisable as a walking human<br />

�� Human proportions<br />

� Travel speed up to 15km/h<br />

� Appropriate pp p whole body y radar cross section<br />

� Appropriate thermal signature<br />

� Minimal foot to ground separation<br />

�� Typical clothing – shirt and trousers<br />

� Repeatedly impactable at up to 50km/h<br />

� Considerations for vision systems y<br />

– Colour of clothing and contrast with background<br />

– Motion of leg and/or arm<br />

� Autonomously controlled rather than suspended from gantry<br />

37


Agenda g<br />

� <strong>AEB</strong> Test T t Group G<br />

� CCar-to-Pedestrian t P d t i (CP) (CP):<br />

– Accidentology<br />

– Test Scenarios<br />

– Test Target & Propulsion<br />

� Car-to-Car Rear (CCR):<br />

– Accidentology<br />

– Test Scenarios<br />

– Test Target g & Propulsion p<br />

� Car-to-Car Head-On (CHO):<br />

– Accidentology<br />

� Metrics & Ratings<br />

� Conclusions<br />

38


Accidentology gy<br />

STATS 19 — Rear-end clusters<br />

Aim for 4-6<br />

clusters<br />

≥75% of cases<br />

Example<br />

Cluster 1<br />

• 30% of cases<br />

• Lower speeds<br />

• At junction<br />

•Daylight yg<br />

• Fine weather<br />

• Veh A going ahead<br />

Green cells:<br />

over-represented<br />

• Veh B stop/starting<br />

99 5% in χ • Following traffic<br />

2 99.5% in χ test<br />

• Following traffic<br />

39


Accidentology gy<br />

OTS — Rear-end vehicle speeds N=50<br />

40


Accidentology gy<br />

OTS — Rear-end clusters<br />

41


Accidentology gy<br />

Car-to-Car Rear Scenario 1<br />

42


Accidentology gy<br />

Car-to-Car Rear Scenario 2<br />

43


Simulation Example: p Collision<br />

Car-to-Car Rear Case 1<br />

� RRural l road d<br />

environment:<br />

– Crossroad junction, junction<br />

daylight, fine<br />

� Volvo S70 (striking):<br />

– Too close behind;<br />

driver does not react<br />

in time<br />

– Travel speed 30km/h<br />

– Impact speed 26km/h<br />

� Audi A4 (struck):<br />

– Slowing on approach<br />

tto junction j ti<br />

– Travel speed 30km/h<br />

– Impact speed 20km/h<br />

44


Simulation Example: p <strong>AEB</strong><br />

Car-to-Car Rear Case 1<br />

� AAssume <strong>AEB</strong> <strong>AEB</strong> fitt fitted: d<br />

– Activation at time to<br />

collision (TTC) 1.0<br />

seconds (this is the<br />

time before the actual<br />

impact)<br />

� Volvo S70 (striking):<br />

– Travel speed 50km/h<br />

– Braking 0.8g<br />

– Impact speed 20km/h<br />

� Audi A4 (struck):<br />

– Travel speed 50km/h<br />

– Braking 0.35g<br />

– Speed at impact<br />

3km/h<br />

� Mitigation of impact<br />

severity 45


Simulation Example: p Collision<br />

Car-to-Car Rear Case 2<br />

� RRoad d environment: i t<br />

– T-junction, daylight,<br />

fine<br />

� VW Passat (striking):<br />

– Approaching g row of<br />

cars at junction<br />

– Travel speed 80km/h<br />

– IImpact t speed d 55km/h 55k /h<br />

� Toyota Yaris (struck):<br />

– Travel speed 50km/h<br />

– Impact speed 11km/h<br />

� Ford Focus & BMW 1<br />

Series (secondary):<br />

– Travel speed 50km/h<br />

– Impact speed 0km/h<br />

46


Simulation Example: p <strong>AEB</strong><br />

Car-to-Car Rear Case 2<br />

� AAssume <strong>AEB</strong> <strong>AEB</strong> fitt fitted: d<br />

– Activation at time to<br />

collision (TTC) 1.6<br />

seconds at 0.4g<br />

– Activation at time to<br />

collision lli i (TTC) 0.6 0 6<br />

seconds at 0.8g<br />

� VW Passat (striking):<br />

– Travel speed 50km/h<br />

� Other vehicles<br />

unchanged:<br />

– Travel speed 50km/h<br />

– BBraking ki 00.35g 35<br />

� VW Passat stops 0.3m<br />

behind Toyota Yaris<br />

47


Simulation Example: p Collision<br />

Car-to-Car Rear Case 3<br />

� Ub Urban road denvironment: i t<br />

– T-junction, daylight, fine<br />

�� Honda Accord (striking):<br />

– Following too close<br />

behind BMW<br />

– Travel speed 50km/h<br />

– Impact speed 45km/h<br />

� BMW 3 Series (struck):<br />

– Travel speed 50km/h<br />

– Impact speed 28km/h<br />

� Ford Focus & Audi A4<br />

(secondary):<br />

– Travel speed 45km/h<br />

– Impact speed 0km/h<br />

48


Simulation Example: p <strong>AEB</strong><br />

Car-to-Car Rear Case 3<br />

� AAssume <strong>AEB</strong> <strong>AEB</strong> fitt fitted: d<br />

– Activation at time to<br />

collision (TTC) 1.6<br />

seconds at 0.4g<br />

– Activation at time to<br />

collision lli i (TTC) 0.6 0 6<br />

seconds at 0.8g<br />

� Honda Accord<br />

(striking):<br />

– Travel speed 50km/h<br />

� BMW 3 Series (struck):<br />

– Travel speed 50km/h<br />

– BBraking ki 00.35g 35<br />

� Honda stops 0.3m<br />

behind BMW<br />

49


<strong>AEB</strong> Test Concepts p<br />

Car to Car Rear (CCR)<br />

� Car drives longitudinally<br />

toward rear of proceeding<br />

car which is stationary<br />

� Car drives longitudinally<br />

toward rear of proceeding<br />

car which is travelling at a<br />

slower speed<br />

Provisional/DRAFT only<br />

50


<strong>AEB</strong> Test Concepts p<br />

Car-to-Car Rear (CCR)<br />

� Car drives longitudinally<br />

toward rear of proceeding<br />

car which brakes<br />

� Car drives toward rear of<br />

proceeding car which is<br />

stationary and obscured<br />

around a bend<br />

Provisional/DRAFT only<br />

51


<strong>AEB</strong> Test Example p<br />

Car-to-Car Rear (CCR)<br />

� RRange of f ttest t speeds d from f 10 to t 60km/h 60k /h<br />

� Speed increased in 10km/h increments if<br />

system avoids collision with car target<br />

� Speed increased in 5km/h increments if<br />

collision occurs<br />

� 100% overlap, possibly repeat test with smaller<br />

overlap<br />

� Goal – obtain <strong>AEB</strong> system performance curve<br />

at multiple impact positions over a range of<br />

speeds to quantify system performance<br />

� Then perform additional scenarios at a reduced<br />

number of speeds to investigate system<br />

robustness<br />

Provisional/DRAFT only<br />

52


Test Target g and Propulsion p<br />

Car-to-Car Rear (CCR) initial development<br />

53


Test target g and propulsion<br />

p p<br />

Car-to-Car Rear (CCR)<br />

� Representative of typical passenger car<br />

� 3 dimensional<br />

� Appropriate whole body radar cross section<br />

� Appropriate pp p pproperties p for vision systems y<br />

– Body structure, windows, lights, license plate etc.<br />

– Under body shadow<br />

� TTravel l speed d up tto 80k 80km/h /h<br />

� Control to follow defined path and modulate speed appropriately<br />

� Instrumentation communicating with test vehicle and data acquisition<br />

� Repeatedly impactable at speeds up to 50km/h<br />

� Operational p for a day y of testing g or capable p of fast charge g to top-up p p<br />

54


Test Target g and Propulsion p<br />

Car Crash Target<br />

55


Agenda g<br />

� <strong>AEB</strong> Test T t Group G<br />

� CCar-to-Pedestrian t P d t i (CP) (CP):<br />

– Accidentology<br />

– Test Scenarios<br />

– Test Target & Propulsion<br />

� Car-to-Car Rear (CCR):<br />

– Accidentology<br />

– Test Scenarios<br />

– Test Target g & Propulsion p<br />

� Car-to-Car Head-On (CHO):<br />

– Accidentology<br />

� Metrics & Ratings<br />

� Conclusions<br />

56


Car-to-Car Head-On<br />

� Accidentology survey of UK data complete for head-on<br />

collisions<br />

� Simulation examples provided<br />

� Current vehicle technology gy does not address this type yp of<br />

collision, but is expected in near future<br />

� Car-to-Car Head-On test scenarios and procedure p will be<br />

developed after completion of work on CP and CCR<br />

– CHO planned p for 2012-2014<br />

57


Accidentology gy<br />

STATS 19 — Head-on clusters<br />

Aim for 4-6<br />

clusters<br />

≥75% of cases<br />

Green cells:<br />

over-represented<br />

99 5% in χ2 99.5% in χ test<br />

Example<br />

Cluster 1<br />

• 30% of cases<br />

• Lower speeds<br />

• At junction<br />

•Daylight yg<br />

• Fine weather<br />

• Veh A going ahead<br />

• Veh B turning<br />

58


Accidentology gy<br />

OTS — Accident Configuration and type<br />

59


Accidentology gy<br />

OTS — Head-on clusters<br />

60


Simulation Example: p Collision<br />

Car-to-Car Head-On Case 1<br />

� RRural l road d<br />

environment:<br />

– Left hand bend bend,<br />

daylight, fine<br />

� Renault Clio (striking):<br />

– Speeding on bend,<br />

drifts out of lane<br />

– Travel speed 65km/h<br />

– Impact speed 40km/h<br />

� Vauxhall Astra (struck):<br />

– Travel speed 30km/h<br />

– Impact speed 18km/h<br />

61


Simulation Example: p <strong>AEB</strong><br />

Car-to-Car Head-On Case 1<br />

� AAssume <strong>AEB</strong> <strong>AEB</strong> fitt fitted: d<br />

– Activation at time to<br />

collision (TTC) 1.3<br />

seconds (this is the<br />

time before the actual<br />

impact)<br />

� Renault Clio (striking):<br />

– Travel speed 65km/h<br />

– Braking 0.8g<br />

– Impact speed 28km/h<br />

� Vauxhall Astra (struck):<br />

– Travel speed 30km/h<br />

– Braking 0.3g<br />

– Impact speed 18km/h<br />

�� Mitigation of impact<br />

severity<br />

62


Simulation Example: p Collision<br />

Car-to-Car Head-On Case 2<br />

� Ub Urban road d<br />

environment:<br />

– Daylight Daylight, fine<br />

� VW Golf (striking):<br />

– Overtaking g Mazda<br />

– Travel speed 75km/h<br />

– Impact speed 54km/h<br />

� Nissan X-Trail (struck):<br />

– Travel speed 50km/h<br />

– IImpact t speed d 31km/h 31k /h<br />

� Mazda 6 (overtaken):<br />

– Travel speed 40km/h<br />

– Impact speed 34km/h<br />

63


Simulation Example: p <strong>AEB</strong><br />

Car-to-Car Head-On Case 2<br />

� AAssume <strong>AEB</strong> <strong>AEB</strong> fitt fitted: d<br />

– Activation at time to<br />

collision (TTC) 1.0<br />

seconds (this is the<br />

time before the actual<br />

impact)<br />

� VW Golf (striking):<br />

– Travel speed 65km/h<br />

– Braking 0.8g<br />

– Impact speed 34km/h<br />

� Nissan X-Trail (struck):<br />

– Travel speed 50km/h<br />

– Braking 0.35g<br />

– Impact speed 29km/h<br />

�� Mitigation of impact<br />

severity<br />

64


Simulation Example: p Collision<br />

Car-to-Car Head-On Case 3<br />

� RRural l road d<br />

environment:<br />

– Dark Dark, raining<br />

� Ford Ka (striking):<br />

– Lost control on bend<br />

at speed and crossed<br />

carriageway<br />

– Travel speed 98km/h<br />

– Impact speed 48km/h<br />

� Audi A3 (struck):<br />

– Travel speed 50km/h<br />

– Impact speed 30km/h<br />

65


Simulation Example: p <strong>AEB</strong><br />

Car-to-Car Head-On Case 3<br />

� AAssume <strong>AEB</strong> <strong>AEB</strong> fitt fitted: d<br />

– Activation at time to<br />

collision (TTC) 1.6<br />

seconds at 0.4g<br />

– Activation at time to<br />

collision lli i (TTC) 0.6 0 6<br />

seconds at 0.8g<br />

� Ford Ka (striking):<br />

– Travel speed 98km/h<br />

– Impact speed 33km/h<br />

� Audi A3 (struck):<br />

– Travel speed 50km/h<br />

– Braking 0.3g<br />

– Impact speed 30km/h<br />

�� Mitigation of impact<br />

severity<br />

66


Agenda g<br />

� <strong>AEB</strong> Test T t Group G<br />

� CCar-to-Pedestrian t P d t i (CP) (CP):<br />

– Accidentology<br />

– Test Scenarios<br />

– Test Target & Propulsion<br />

� Car-to-Car Rear (CCR):<br />

– Accidentology<br />

– Test Scenarios<br />

– Test Target g & Propulsion p<br />

� Car-to-Car Head-On (CHO):<br />

– Accidentology<br />

� Metrics & Ratings<br />

� Conclusions<br />

67


Metrics & Ratings g<br />

� Wh Whether th or not t the th collision lli i was avoided id d<br />

� The speed reduction prior to collision<br />

� When (if present) a warning is given<br />

� How an appropriate driver braking response at the time<br />

of f warning i (if present) t) could ld have h affected ff t d the th outcome t<br />

� Identify system performance curve for avoidance and<br />

mitigation<br />

� Correlate with injury risk curves to estimate potential<br />

bbenefit fit<br />

68


Agenda g<br />

� <strong>AEB</strong> Test T t Group G<br />

� CCar-to-Pedestrian t P d t i (CP) (CP):<br />

– Accidentology<br />

– Test Scenarios<br />

– Test Target & Propulsion<br />

� Car-to-Car Rear (CCR):<br />

– Accidentology<br />

– Test Scenarios<br />

– Test Target g & Propulsion p<br />

� Car-to-Car Head-On (CHO):<br />

– Accidentology<br />

� Metrics & Ratings<br />

� Conclusions<br />

69


Conclusions<br />

� <strong>AEB</strong> Test Group formed to address the need for <strong>AEB</strong><br />

test procedures<br />

� Small dynamic y ggroup p initially, y with consultation and<br />

feedback from industry<br />

� Representing p g consumer and insurer needs<br />

� Collaborating with other projects (vFSS, ASSESS etc.)<br />

– Development of pedestrian and car test targets<br />

– Soft Crash Target Vehicle?<br />

– Robust pedestrian?<br />

� Euro NCAP road map for inclusion of <strong>AEB</strong> test within<br />

vehicle rating system in 2013<br />

� <strong>AEB</strong> Test Group output defining reference<br />

70


Conclusions<br />

� Test procedures developed from real world data<br />

� Initial development tests undertaken proving concept and<br />

assessment<br />

� Test concepts published early 2011<br />

� Finalise testing and development throughout 2011<br />

� Undertake full tests in 2012 and publish p results<br />

71


<strong>AEB</strong><br />

TTest t Development<br />

D l t<br />

www.thatcham.org/<strong>AEB</strong>

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!