11.07.2015 Views

Malcev presentations for subsemigroups of direct products of ...

Malcev presentations for subsemigroups of direct products of ...

Malcev presentations for subsemigroups of direct products of ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Malcev</strong> <strong>presentations</strong> <strong>for</strong> <strong>subsemigroups</strong><strong>of</strong> <strong>direct</strong> <strong>products</strong> <strong>of</strong> coherent groupsAlan J. CainSchool <strong>of</strong> Mathematics and Statistics, University <strong>of</strong> St AndrewsNorth Haugh, St Andrews, Fife KY SS, United KingdomEmail: alanc@mcs.st-andrews.ac.ukWeb page: www-groups.mcs.st-andrews.ac.uk/~alanc/This is a preprint <strong>of</strong> the article published as: Journal <strong>of</strong> Pure and AppliedAlgebra (), no. , pp. –. doi: ./j.jpaa....: . : ..The <strong>direct</strong> product <strong>of</strong> a free group and a polycyclic group is knownto be coherent. This paper shows that every finitely generatedsubsemigroup <strong>of</strong> the <strong>direct</strong> product <strong>of</strong> a virtually free group andan abelian group admits a finite <strong>Malcev</strong> presentation. (A <strong>Malcev</strong>presentation is a presentation <strong>of</strong> a special type <strong>for</strong> a semigroupthat embeds into a group. A group is virtually free if it containsa free subgroup <strong>of</strong> finite index.) By considering the <strong>direct</strong> product<strong>of</strong> two free semigroups, it is also shown that polycyclic groups,unlike nilpotent groups, can contain finitely generated <strong>subsemigroups</strong>that do not admit finite <strong>Malcev</strong> <strong>presentations</strong>. <strong>Malcev</strong> <strong>presentations</strong> are <strong>presentations</strong> <strong>of</strong> a special type <strong>for</strong> semigroupsembeddable into groups. They were introduced by Spehner [Spe],who later proved that all finitely generated submonoids <strong>of</strong> free monoids admitfinite <strong>Malcev</strong> <strong>presentations</strong> [Spe]. These two articles by Spehner <strong>for</strong>medthe whole <strong>of</strong> the literature on <strong>Malcev</strong> <strong>presentations</strong> until recent work <strong>of</strong> Cain,Robertson & Ruškuc [CRRa, CRRb] and Cain [Cai]. The present paper continuesthis research into <strong>Malcev</strong> <strong>presentations</strong>.Call a group — or more generally a group-embeddable semigroup — <strong>Malcev</strong>coherent if all <strong>of</strong> its finitely generated <strong>subsemigroups</strong> admit finite <strong>Malcev</strong><strong>presentations</strong>. (Recall that a group is coherent if all <strong>of</strong> its finitely generated subgroupsare finitely presented [Ser].) The class <strong>of</strong> <strong>Malcev</strong> coherent groups isproperly contained in the class <strong>of</strong> coherent groups [CRRa, Theorem ].The <strong>direct</strong> product <strong>of</strong> two free non-abelian groups is not coherent [Gru].This does not immediately preclude the <strong>Malcev</strong> coherence <strong>of</strong> the <strong>direct</strong> product


<strong>of</strong> two free semigroups, but Theorem shows that such <strong>direct</strong> <strong>products</strong> are notin general <strong>Malcev</strong> coherent: the <strong>direct</strong> product <strong>of</strong> two free semigroups <strong>of</strong> rankat least 2 is not <strong>Malcev</strong> coherent.The <strong>Malcev</strong> coherence <strong>of</strong> nilpotent groups was established by [CRRa, Theorem]. Polycyclic groups <strong>for</strong>m a more general class than finitely generatednilpotent groups whilst retaining the property <strong>of</strong> coherence [Sim, §§ .–.].One there<strong>for</strong>e naturally asks whether polycyclic groups are <strong>Malcev</strong> coherent.From Theorem and a result <strong>of</strong> Rosenblatt [Ros], one obtains a negative answer:polycyclic groups are not in general <strong>Malcev</strong> coherent.The <strong>direct</strong> product <strong>of</strong> a free group and an abelian group is coherent. (Aslight modification <strong>of</strong> the reasoning <strong>of</strong> [Mil] proves this assertion and, moregenerally, establishes the coherence <strong>of</strong> the <strong>direct</strong> product <strong>of</strong> a free group and apolycyclic group.) Both virtually free groups [CRRb, Theorem ] and abeliangroups are known to be <strong>Malcev</strong> coherent. [Every finitely generated subsemigroup<strong>of</strong> an abelian group — and more generally every finitely generated commutativesemigroup — admits a finite ‘ordinary’ presentation as a consequence<strong>of</strong> Rédei’s Theorem [Réd].] Most <strong>of</strong> this paper is dedicated to the pro<strong>of</strong> <strong>of</strong> itssecond main result, Theorem , which asserts that every <strong>direct</strong> product <strong>of</strong> avirtually free group and an abelian group is <strong>Malcev</strong> coherent.[This paper is based on Chapter <strong>of</strong> the author’s Ph.D. thesis [Cai].] Following [ECH + ], the notation used in this paper distinguishesa word from the element <strong>of</strong> the semigroup or group it represents. Let A be analphabet representing a set <strong>of</strong> generators <strong>for</strong> a semigroup S. For any word w ∈A + , denote by w the element <strong>of</strong> S represented by w. Similarly, if A representsa set <strong>of</strong> generators <strong>for</strong> a group G, let w be the element <strong>of</strong> G represented byw ∈ (A ∪ A −1 ) ∗ . In both cases, <strong>for</strong> any set <strong>of</strong> words W, W is the set <strong>of</strong> allelements represented by at least one word in W.The theory <strong>of</strong> <strong>Malcev</strong> <strong>presentations</strong> was introduced by Spehner [Spe], thoughthey are based on <strong>Malcev</strong>’s necessary and sufficient condition <strong>for</strong> the embeddability<strong>of</strong> a semigroup in a group [Mal, Mal]. (Details <strong>of</strong> the embeddabilitycondition can also be found in [CP, Chapter ].) Although this sectioncontains the definitions and results about <strong>Malcev</strong> <strong>presentations</strong> required <strong>for</strong> therest <strong>of</strong> the paper, the reader is assumed to be familiar with the basic theory <strong>of</strong>[ordinary] semigroup <strong>presentations</strong>. For a fuller exposition <strong>of</strong> the foundations<strong>of</strong> the theory <strong>of</strong> <strong>Malcev</strong> <strong>presentations</strong>, see [Cai, Chapter ]. . Let S be any semigroup. A congruence σ on S is a <strong>Malcev</strong>congruence if S/σ is embeddable in a group.If {σ i : i ∈ I} is a set <strong>of</strong> <strong>Malcev</strong> congruences on S, then σ = ∩ i∈I σ i is alsoa <strong>Malcev</strong> congruence on S. This is true because S/σ i embeds in a group G i <strong>for</strong>each i ∈ I, so S/σ embeds in ∏ i∈I S/σ i, which in turn embeds in ∏ i∈I G i. Thefollowing definition there<strong>for</strong>e makes sense. . Let A + be a free semigroup; let ρ ⊆ A + × A + be any binaryrelation on A + . Denote by ρ M the smallest <strong>Malcev</strong> congruence containing ρ —namely,ρ M = ∩ {σ : σ ⊇ ρ, σ is a <strong>Malcev</strong> congruence on A+ } .


Then SgM⟨A | ρ⟩ is a <strong>Malcev</strong> presentation <strong>for</strong> [any semigroup isomorphic to]A + /ρ M . If both A and ρ are finite, the the <strong>Malcev</strong> presentation SgM⟨A | ρ⟩ issaid to be finite.Let SgM⟨A | R⟩ be a <strong>Malcev</strong> presentation <strong>for</strong> a semigroup S. If S has a finite<strong>Malcev</strong> presentation, then it admits one <strong>of</strong> the <strong>for</strong>m SgM⟨A | Q⟩, where Q is afinite subset <strong>of</strong> R.The notation SgM⟨A | ρ⟩ distinguishes the <strong>Malcev</strong> presentation with generatorsA and defining relations ρ from the ordinary semigroup presentationSg⟨A | ρ⟩, which defines A + /ρ # . (Recall that ρ # denotes the smallest congruencecontaining ρ.) Similarly, Gp⟨A|ρ⟩ denotes the group presentation with the sameset <strong>of</strong> generators and defining relations. Let X be a subset <strong>of</strong> a group G. Denoteby Sg⟨X⟩ the subsemigroup generated by X, by Mon⟨X⟩ the submonoid generatedby X, and by Gp⟨X⟩ the subgroup generated by X. The free group withbasis A is denoted FG(A).Fix A + and ρ as in the Definition and let S = A + /ρ M . Let A L , A R be twosets in bijection with A under the mappings a ↦→ a L , a ↦→ a R , respectively, withA, A L , A R being pairwise disjoint. Extend the mappings a ↦→ a L , a ↦→ a R toanti-isomorphisms from A ∗ to (A L ) ∗ and (A R ) ∗ , respectively. Letτ = ρ ∪ { (bb R a, a), (abb R , a), (b L ba, a), (ab L b, a) : a ∈ A ∪ A L ∪ A R , b ∈ A } .Let G = Sg⟨A ∪ A L ∪ A R | τ⟩. The semigroup G is actually the universal group<strong>of</strong> S, with G ≃ Gp⟨A | ρ⟩. (See [CP, Chapter ] <strong>for</strong> background in<strong>for</strong>mationon universal groups.) There<strong>for</strong>e a <strong>Malcev</strong> presentation <strong>for</strong> a semigroup is effectivelya presentation <strong>for</strong> its universal group, with all defining relations confinedto A + × A + . It can be shown thator equivalently thatρ M = τ # ∩ (A + × A + ),ρ M = {(u, v) : u, v ∈ A + represent the same element <strong>of</strong> Gp⟨A | ρ⟩}.()There<strong>for</strong>e, two words u, v ∈ A + represent the same element <strong>of</strong> S if and only ifthere is a sequenceu = u 0 → u 1 → . . . → u n = v,with n ⩾ 0, where, <strong>for</strong> each i ∈ {0, . . . , n − 1}, there exist p i , q i , q ′ i , r i ∈ (A ∪A L ∪ A R ) ∗ such that u i = p i q i r i , u i+1 = p i q ′ i r i, and (q i , q ′ i ) ∈ τ or (q′ i , q i) ∈ τ.In fact, it can be shown that u, v ∈ A + represent the same element <strong>of</strong> S if anyonly if there exists such a sequence with p i ∈ (A ∪ A L ) ∗ and r i ∈ (A ∪ A R ) ∗ .This restriction on the letters that can appear in p i and r i simply means that nochanges can occur to the left <strong>of</strong> an a L or to the right <strong>of</strong> an a R . Such a sequenceis called a <strong>Malcev</strong> ρ-chain (or simply a <strong>Malcev</strong> chain) from u to v. If (u, v) ∈ ρ M ,then (u, v) is said to be a <strong>Malcev</strong> consequence <strong>of</strong> ρ. The first part <strong>of</strong> the present section is devoted to a pro<strong>of</strong> that the<strong>direct</strong> product <strong>of</strong> two free semigroups <strong>of</strong> rank at least 2 is not <strong>Malcev</strong> coherent.This contrasts with Spehner’s pro<strong>of</strong> <strong>of</strong> the <strong>Malcev</strong> coherent <strong>of</strong> free monoids


[Spe]. This in turn contrasts the fact that free semigroups admit finitely generated<strong>subsemigroups</strong> that do not admit finite ‘ordinary’ <strong>presentations</strong>. [However,all <strong>subsemigroups</strong> <strong>of</strong> rank at most 3 <strong>of</strong> free semigroups do admit finite ordinary<strong>presentations</strong> [BMa]. Rank-4 <strong>subsemigroups</strong> <strong>of</strong> free semigroups maynot be finitely presented [Mar, p.].]The following example exhibits a finitely generated subsemigroup <strong>of</strong> a <strong>direct</strong>product <strong>of</strong> two free semigroups that does not admit a finite <strong>Malcev</strong> presentation. . Let A = {a, b, c, d, e, f, g, h, i, j} be an alphabet representing elements<strong>of</strong> {x, y, p, q, r, s} + × {x, y, p, q, r, s} + as follows:a = (x 2 pqrs, x),b = (pqrspqrs, p),c = (pqr, q),d = (spqr, r),e = (sy 2 , s),f = (x 2 pq, x),g = (rspq, p),h = (rsp, q),i = (qrspqrsp, r),j = (qrsy 2 , s).Let S be the subsemigroup <strong>of</strong> {x, y, p, q, r, s} + ×{x, y, p, q, r, s} + generated by A. . The semigroup S is presented by Sg⟨A | R⟩, whereR = {(ab α cd α e, fg α hi α j) : α ∈ N ∪ {0}} .[Observe in passing that (A, R) is a complete (i.e. confluent and noetherian)rewriting system. This fact is not essential <strong>for</strong> any <strong>of</strong> the subsequent reasoningin the paper.]Pro<strong>of</strong> <strong>of</strong> 4. Every relation in R holds in S:ab α cd α e = (x 2 pqrs(pqrspqrs) α pqr(spqr) α sy 2 , xp α qr α s)= (x 2 (pqrs) 3α+2 y 2 , xp α qr α s)= (x 2 pq(rspq) α rsp(qrspqrsp) α qrsy 2 , xp α qr α s)= fg α hi α j<strong>for</strong> all α ∈ N ∪ {0}.Define a set N <strong>of</strong> normal <strong>for</strong>ms to be the set <strong>of</strong> all words in A + that do notcontain subwords <strong>of</strong> the <strong>for</strong>m fg α hi α j <strong>for</strong> any α ∈ N ∪ {0}. Clearly, since thereare no overlaps between these <strong>for</strong>bidden words and words ab α cd α e, every element<strong>of</strong> S is represented by at least one element <strong>of</strong> N.Let u = u 1 · · · u ξ and v = v 1 · · · v η (u i , v i ∈ A <strong>for</strong> all i) be distinct words inthe set <strong>of</strong> normal <strong>for</strong>ms N, and suppose they represent the same element <strong>of</strong> S.Without loss <strong>of</strong> generality, suppose that u 1 ≠ v 1 and that u precedes v in thelexicographic ordering based on a ≺ b ≺ c ≺ . . . ≺ j. Consider the secondcomponent <strong>of</strong> u 1 and v 1 to see that(u 1 , v 1 ) ∈ {(a, f), (b, g), (c, h), (d, i), (e, j)}.Examining the first component <strong>for</strong>ces u 1 = a and v 1 = f. Sou = (x 2 pqrs · · · , x · · · ),v = (x 2 pq · · · , x · · · ).


The first component <strong>of</strong> v 2 must begin with r, which shows that the letter v 2 iseither g or h, and consideration <strong>of</strong> second components then <strong>for</strong>ces u 2 = b oru 2 = c, respectively. Without loss <strong>of</strong> generality, assume that the next α ∈ N∪{0}letters <strong>of</strong> v are letters g and v α+2 ≠ g. The case α > 0 is explained fully below;the case α = 0 is similar.So suppose v 2 · · · v α+1 = g α and v α+2 ≠ g with α > 0. Thenor, rearranging parentheses,u = (x 2 pqrs · · · , x · · · ),v = (x 2 pq(rspq) α · · · , xp α · · · ).u = (x 2 pqrs · · · , x · · · ),v = (x 2 (pqrs) α pq · · · , xp α · · · ).[In the remainder <strong>of</strong> the present pro<strong>of</strong>, parentheses will be rearranged withoutcomment.] In order to match the p α in the second component <strong>of</strong> v, the lettersu 2 , …u α+1 all lie in {b, g}. Since the first component <strong>of</strong> u 2 must begin with p(because α > 0), u 2 = b. So u begins ab β u β+2 · · · , where u β+2 ≠ b, withβ > 0.Suppose β < α/2. Then the first component <strong>of</strong> u β+2 must begin with p,and so u β+2 = c. The second component <strong>of</strong> u is then xp β q · · · and that <strong>of</strong> v isxp α · · · . However, this contradicts the equality <strong>of</strong> u and v since α > 2β > β.There<strong>for</strong>e β ⩾ α/2 and the first component <strong>of</strong> v α+2 begins with rs, whencev α+2 = h (since v α+2 ≠ g). Sou = (x 2 (pqrs) 2β+1 · · · , xp β · · · ),v = (x 2 (pqrs) α+1 p · · · , xp α q · · · ).This <strong>for</strong>ces β ⩽ α, and either u β+2 = c or u β+2 = h.Suppose β = α/2. Then the first component <strong>of</strong> u β+2 begins with p and sou β+2 = c. Consideration <strong>of</strong> the second components <strong>of</strong> u and v again leads to acontradiction.There<strong>for</strong>e β > α/2. Assume that 2β = α + γ, where γ > 0. Sou = (x 2 (pqrs) α+γ+1 · · · , xp (α+γ)/2 · · · ),v = (x 2 (pqrs) α+1 p · · · , xp α q · · · ).Consideration <strong>of</strong> first components requires that all <strong>of</strong> the letters v α+3 , …, v α+δ+2must be i, where δ ⩾ ⌊γ/2⌋. Assume without loss <strong>of</strong> generality that v α+δ+3 ≠ i.There<strong>for</strong>eu = (x 2 (pqrs) α+γ+1 · · · , xp (α+γ)/2 · · · ),v = (x 2 (pqrs) α+2δ+1 p · · · , xp α qr δ · · · ).Suppose first that γ is odd and that δ = (γ − 1)/2.Then the first component<strong>of</strong> v α+δ+3 would begin with qrs, <strong>for</strong>cing v α+δ+3 = j. Thenu = (x 2 (pqrs) α+γ+1 · · · , xp (α+γ)/2 · · · ),v = (x 2 (pqrs) α+γ+1 y 2 · · · , xp α qr γ−1 s · · · ).So the first component <strong>of</strong> u β+2 begins with y 2 , which is a contradiction.


There<strong>for</strong>e δ > (γ − 1)/2. Assume that 2δ = γ − 1 + ϵ, where ϵ > 0. Then thefirst component <strong>of</strong> u β+2 begins with p, <strong>for</strong>cing u β+2 = c. Thenu = (x 2 (pqrs) α+γ+1 pqr · · · , xp (α+γ)/2 q · · · ),v = (x 2 (pqrs) α+γ+ϵ p · · · , xp α qr δ · · · ).Suppose ϵ = 1. Since v α+δ+3 begins with q and v α+δ+3 ≠ i, it must holdthat v α+δ+3 = j, which <strong>for</strong>ces u β+3 = e. Considering second componentsthen requires δ = 0, which is impossible. So ϵ ⩾ 2 and the first component <strong>of</strong>u β+3 · · · u ξ must begin (spqr) ϵ−2 sp. So the letter u β+3 must begin a string <strong>of</strong>ϵ − 1 letters d. That is, u β+3 , …, u β+ϵ+1 must all be d. This givesu = (x 2 (pqrs) α+γ+ϵ pqr · · · , xp (α+γ)/2 qr ϵ−1 · · · ),v = (x 2 (pqrs) α+γ+ϵ p · · · , xp α qr δ · · · ).The first component <strong>of</strong> v α+δ+3 must begin qr, which <strong>for</strong>ces v α+δ+3 = j. Thefirst component <strong>of</strong> u β+ϵ+2 must begin sy 2 , which <strong>for</strong>ces u β+ϵ+2 = e. Sou = (x 2 (pqrs) α+γ+ϵ+1 y 2 · · · , xp (α+γ)/2 qr ϵ−1 s · · · ),v = (x 2 (pqrs) α+γ+ϵ+1 y 2 · · · , xp α qr δ s · · · ).Examine the second components <strong>of</strong> u and v to get (α+γ)/2 = α and ϵ−1 = δ.Since 2δ = γ − 1 + ϵ, it follows that α = γ = δ. Sov = v 1 (v 2 · · · v α+1 )v α+2 (v α+3 · · · v α+δ+2 )v α+δ+3 · · ·= fg α hi α j · · · ,which contradicts v’s membership <strong>of</strong> the set <strong>of</strong> normal <strong>for</strong>ms N. 4The semigroup S is there<strong>for</strong>e isomorphic to that <strong>of</strong> [CRRa, § ], which doesnot admit a finite <strong>Malcev</strong> presentation. To see this, observe that the universalgroup <strong>of</strong> S iswhereG = Gp⟨A | R⟩ ≃ FG(a, b, c, d, e) ∗ K FG(f, g, h, i, j) ,K = Gp⟨ab α cd α e : α ∈ N ∪ {0}⟩ ≃ Gp⟨fg α hi α j : α ∈ N ∪ {0}⟩ .The generating set {ab α cd α e : α ∈ N ∪ {0}} <strong>for</strong>ms a basis <strong>for</strong> the amalgamatedsubgroup K by [LS, Proposition I..]. So K is not finitely generated, and soa theorem <strong>of</strong> Baumslag [Bau] shows that the free product G is not finitelypresented. Thus, as its universal group is not finitely presented, S cannot admita finite <strong>Malcev</strong> presentation. . The <strong>direct</strong> product <strong>of</strong> two free semigroups <strong>of</strong> rank at least 2 is not <strong>Malcev</strong>coherent.Pro<strong>of</strong> <strong>of</strong> 5. Let D be the <strong>direct</strong> product <strong>of</strong> two free semigroups <strong>of</strong> rank at least2. The free semigroup <strong>of</strong> rank 2 contains isomorphic copies <strong>of</strong> free semigroups<strong>of</strong> every rank; D there<strong>for</strong>e contains a subsemigroup isomorphic to the <strong>direct</strong>product {x, y, p, q, r, s} + × {x, y, p, q, r, s} + . The semigroup D thus contains thefinitely generated subsemigroup S <strong>of</strong> Example , which does not admit a finite<strong>Malcev</strong> presentation. There<strong>for</strong>e D is not <strong>Malcev</strong> coherent. 5


Every finitely generated nilpotent group is polycyclic [Sim, Proposition ..].Whilst the class <strong>of</strong> polycyclic groups is strictly larger than the class <strong>of</strong> finitelygenerated nilpotent groups, the <strong>for</strong>mer class retains many <strong>of</strong> the pleasant properties<strong>of</strong> the latter [Sim, § .]. In particular, polycyclic groups are coherent.This remainder <strong>of</strong> this section is dedicated to proving that polycyclic groups arenot in general <strong>Malcev</strong> coherent, which contrasts with the <strong>Malcev</strong> coherence <strong>of</strong>virtually nilpotent groups [CRRa, Theorem ].The following two results are needed: ([Sim, Proposition ..]). Every extension <strong>of</strong> a polycyclic groupby a polycyclic group if itself polycyclic. That is, if E is an extension <strong>of</strong> G, and G andE/G are both polycyclic, then E is polycyclic. In particular, the <strong>direct</strong> product <strong>of</strong> twopolycyclic groups is polycyclic. ([Ros, Theorem .]). Let G be a polycyclic group. Then exactlyone <strong>of</strong> the following two statements is true:1. The group G is virtually nilpotent.2. The group G contains a free subsemigroup <strong>of</strong> rank 2.The fact that polycyclic groups are not in general <strong>Malcev</strong> coherent followsas a consequence <strong>of</strong> these results and Theorem : . The <strong>direct</strong> product <strong>of</strong> two polycyclic groups that are not virtuallynilpotent is not <strong>Malcev</strong> coherent. There<strong>for</strong>e polycyclic groups are not in general <strong>Malcev</strong>coherent.Pro<strong>of</strong> <strong>of</strong> 8. Let G and H be polycyclic groups that are not virtually nilpotent. LetP = G × H. Theorem shows that G and H both contain a free subsemigroup<strong>of</strong> rank 2. There<strong>for</strong>e P contains the <strong>direct</strong> product <strong>of</strong> two free semigroups <strong>of</strong>rank 2, which is not <strong>Malcev</strong> coherent by Theorem . Ergo, P itself is not <strong>Malcev</strong>coherent. By Proposition , P is a polycyclic group. 8 . Every <strong>direct</strong> product <strong>of</strong> a virtually free group and an abelian group is<strong>Malcev</strong> coherent.Pro<strong>of</strong> <strong>of</strong> 9. Let F be a virtually free group and let H be an abelian group. LetA be a finite alphabet representing elements <strong>of</strong> G = F × H. Let ρ : A ∗ → Gbe the standard representation mapping. Let S = Sg⟨Aρ⟩. The semigroup S isobviously presented by Sg⟨A | ker ρ⟩.Let π F : G → F and π H : G → H be the projection mappings to F and H,respectively. Define ρ F : A ∗ → F and ρ H : A ∗ → H by ρπ F and ρπ H , respectively.Notice that ker ρ = ker ρ F ∩ ker ρ H .The strategy <strong>of</strong> the pro<strong>of</strong> is based on the observation that any relation (u, v) ∈ker ρ can be decomposed as(u, v) = (c 1 , d 1 )(c 2 , d 2 ) · · · (c k , d k ),()where u = c 1 c 2 · · · c k , v = d 1 d 2 · · · d k , and each (c i , d i ) is in ker ρ F but notnecessarily in ker ρ H . The first stage <strong>of</strong> the pro<strong>of</strong> involves showing that every


elation in ker ρ is a <strong>Malcev</strong> consequence <strong>of</strong> relations that have a decomposition() where each pair (c i , d i ) is drawn from a particular finite set. However, theset <strong>of</strong> such relations is manifestly infinite. The second — rather technical —stage involves showing that all these relations are <strong>Malcev</strong> consequences <strong>of</strong> thosein a different, but still infinite, set. The reader — although perhaps beginning toempathize with Sisyphus — should be reassured by the fairly simple structure<strong>of</strong> this new set <strong>of</strong> relations. The third stage is an easy pro<strong>of</strong> that a finite subset<strong>of</strong> these relations suffices <strong>for</strong> a <strong>Malcev</strong> presentation.Preliminaries. Let S F = Sπ F ⊆ F. Notice that S F is not in general a subset <strong>of</strong> Sand that Aρ F is a finite generating set <strong>for</strong> S F . LetJ(A) = {uv −1 : u, v ∈ A + , (u, v) ∈ ker ρ F }.Using the results <strong>of</strong> [MS], one can easily show that J(A) is a context-free languageover A∪A −1 . (See [CRRb] <strong>for</strong> the reasoning in full.) Let Γ be a contextfreegrammar recognizing J(A). For (u, v) ∈ ker ρ F , define n(u, v) to be theminimum number <strong>of</strong> internal vertices in a Γ-derivation tree <strong>for</strong> uv −1 ∈ J(A).(See [HU, § .] <strong>for</strong> in<strong>for</strong>mation on derivation trees.) For the purposes <strong>of</strong> thispro<strong>of</strong>, a path from the root <strong>of</strong> a Γ-derivation tree to an external vertex (labelledby an element <strong>of</strong> A ∪ A −1 ) is called a derivation path.Let R be the subset <strong>of</strong> ker ρ F consisting <strong>of</strong> all relations (u, v) such that uv −1admits a Γ-derivation tree in which every derivation path contains at most twovertices labelled by the same non-terminal. The set R is finite. (Theorem <strong>of</strong>[CRRb] shows that subsemigroup S F has a finite <strong>Malcev</strong> presentation SgM⟨A|R⟩.)Assume R is symmetrized, so that (u, v) ∈ R implies that (v, u) ∈ R. SupposethatR = {(u 1 , v 1 ), (v 1 , u 1 ), . . . , (u n , v n ), (v n , u n )} ,where u i , v i ∈ A + . The set <strong>of</strong> relations R is contained in ker ρ F . Fix these pairs(u i , v i ) throughout the pro<strong>of</strong>.Define δ : A + × A + → H by (u, v)δ = (uρ H ) − (vρ H ). Let D = Rδ ⊆ H.Observe that (u, v)δ = −(v, u)δ. Throughout this pro<strong>of</strong>, δ is used as a measure<strong>of</strong> the ‘difference’ in the H-components <strong>of</strong> the elements represented by the twosides <strong>of</strong> a relation in ker ρ F .Each (u, v) ∈ ker ρ can be decomposed (possibly in many ways) as a product(u, v) = (c 1 , d 1 )(c 2 , d 2 ) · · · (c k , d k ),where u = c 1 c 2 · · · c k , v = d 1 d 2 · · · d k , and (c i , d i ) ∈ ker ρ F .Define, <strong>for</strong> each decomposition (c 1 , d 1 )(c 2 , d 2 ) · · · (c k , d k ),andn ′ ((c 1 , d 1 )(c 2 , d 2 ) · · · (c k , d k )) = max{n(c i , d i ) : i = 1, . . . , k}.p ′ ((c 1 , d 1 )(c 2 , d 2 ) · · · (c k , d k )) =∣ {i : n(ci , d i ) = n ′ ((c 1 , d 1 )(c 2 , d 2 ) · · · (c k , d k ))} ∣ ∣ .So n ′ is the maximum n-value <strong>of</strong> any <strong>of</strong> the (c i , d i ), and p ′ is the number <strong>of</strong>times this maximum is achieved.Fix a canonical decomposition <strong>of</strong> each relation (u, v) ∈ ker ρ by selecting thedecompositions that minimize n ′ and from these selecting one that minimizesp ′ . Definen ′′ (u, v) = n ′ ((c 1 , d 1 )(c 2 , d 2 ) · · · (c k , d k ))


andp ′′ (u, v) = p ′ ((c 1 , d 1 )(c 2 , d 2 ) · · · (c k , d k )),where (c 1 , d 1 )(c 2 , d 2 ) · · · (c k , d k ) is the canonical decomposition <strong>of</strong> (u, v).First stage. Let S be the subset <strong>of</strong> ker ρ consisting <strong>of</strong> those relations whose canonicaldecompositions are <strong>for</strong>med by concatenating elements <strong>of</strong> R. LetQ = {(u i wv i , v i wu i ) : w ∈ A ∗ and i = 1, . . . , n}.Notice that Q ∈ R # , and furthermore that if (p, q) ∈ R + and w ∈ A ∗ , then(pwq, qwp) is a consequence <strong>of</strong> Q. (The set R + consists <strong>of</strong> all relations <strong>for</strong>medby concatenating elements <strong>of</strong> R.)Define an ordering ≪ <strong>of</strong> the set ker ρ as follows:(u, v) ≪ (u ′ , v ′ ) ⇐⇒ n ′′ (u, v) < n ′′ (u ′ , v ′ ) or(n ′′ (u, v) = n ′′ (u ′ , v ′ ) and p ′′ (u, v) < p ′′ (u ′ , v ′ ) ) .The line <strong>of</strong> reasoning in this first stage owes much to the pro<strong>of</strong> <strong>of</strong> [CRRb,Theorem ]. To show that each (u, v) is a <strong>Malcev</strong> consequence <strong>of</strong> ≪-precedingelements <strong>of</strong> ker ρ, one follows the basic outline <strong>of</strong> that earlier pro<strong>of</strong> to obtain ≪-preceding elements <strong>of</strong> ker ρ F ; one ‘compensates’ <strong>for</strong> the fact that these relationsmay not lie in ker ρ H by inserting pairs u i u R i , v iv R i , uL i u i, or v L i v i; and one usesthese newly-found relations and those in Q in a <strong>Malcev</strong> chain yielding (u, v). . Let (u, v) ∈ ker ρ − S. Then (u, v) is a <strong>Malcev</strong> consequence <strong>of</strong> relationsin Q and ≪-preceding elements <strong>of</strong> ker ρ.The following technical result will be needed in the pro<strong>of</strong> <strong>of</strong> Theorem .In<strong>for</strong>mally, it is this result that allows the ‘compensation’ mentioned above. . Let (u, v) ∈ ker ρ F . Then (u, v)δ is a positive (that is, semigroup) sum<strong>of</strong> elements <strong>of</strong> D.Pro<strong>of</strong> <strong>of</strong> 11. This result is obviously true <strong>for</strong> elements <strong>of</strong> R ⊆ ker ρ F . Proceedby induction on n(u, v). Suppose (u, v) ∈ ker ρ F − R. Then any Γ-derivationtree fro uv −1 contains a derivation path with at least three vertices labelled bythe same non-terminal. Distinguish such a path with m > 2 repetitions <strong>of</strong> thenon-terminal M. SupposeO ∗ ⇒ xMy, M ∗ ⇒ α i Mβ i <strong>for</strong> each i ∈ {1, . . . , m − 1}, M ∗ ⇒ w,where O is the start symbol <strong>of</strong> Γ and uv −1 = xα 1 · · · α m−1 wβ m−1 · · · β 1 y.The point in the word uv −1 where the subword u ∈ A + ends and the subwordv −1 ∈ (A −1 ) + begins is called the u–v −1 boundary. . The u–v −1 boundary is in either x, w, or y (possibly at the end <strong>of</strong> x orw or the start <strong>of</strong> w or y).Pro<strong>of</strong> <strong>of</strong> 12. Suppose the u–v −1 boundary is in α i <strong>for</strong> some i ∈ {1, . . . , m − 1}(not at the start <strong>of</strong> α 1 or the end <strong>of</strong> α m−1 ). Then there exist s, t ∈ A + such thatα 1 · · · α m−1 = st −1 . By pumping derivation from M, it can be seen thatJ(A) ∋ x(α 1 · · · α m−1 ) 2 w(β m−1 · · · β 1 ) 2 y= xst −1 st −1 wβ m−1 · · · β 1 β m−1 · · · β 1 y,which is a contradiction, because this word is not in A + (A −1 ) + . A similar contradictionarises should the u–v −1 boundary be in some β i , thus proving thelemma. 12


The relation (u, v) there<strong>for</strong>e takes one <strong>of</strong> the following three <strong>for</strong>ms:. (xα 1 · · · α m−1 w ′ , y −1 β −11 · · · β−1 m−1 w′′ ), where w = w ′ (w ′′ ) −1 , if the u–v −1boundary is in w;. (xα 1 · · · α m−1 wβ m−1 · · · β 1 y ′ , y ′′ ), where y = y ′ (y ′′ ) −1 , if the u–v −1 boundaryis in y;. (x ′ , y −1 β −11 · · · β−1 m−1 w−1 α −1m−1 · · · α−1 1 x′′ ), where x = x ′ (x ′′ ) −1 , if the u–v −1 boundary is in x.The second and third cases are symmetrical. It shall there<strong>for</strong>e suffice to provethe result <strong>for</strong> the first two cases.Observe that in Γ, since m > 2, O ∗ ⇒ xMy, M ∗ ⇒ α 1 · · · α m−2 Mβ m−2 · · · β 1 ,M ∗ ⇒ α m−1 Mβ m−1 and M ∗ ⇒ w, and there<strong>for</strong>exα 1 · · · α m−2 wβ m−2 · · · β 1 y,xα m−1 wβ m−1 y, xwy ∈ J(A).()Furthermore, derivation trees with fewer than n(u, v) internal vertices exist <strong>for</strong>each <strong>of</strong> these words, as the following three derivations show:O ∗ ⇒ xMy ∗ ⇒ xα 1 · · · α m−2 Mβ m−2 · · · β 1 y ∗ ⇒ xα 1 · · · α m−2 wβ m−2 · · · β 1 y,O ∗ ⇒ xMy ∗ ⇒ xα m−1 Mβ m−1 y ∗ ⇒ xα m−1 wβ m−1 y,O ∗ ⇒ xMy ∗ ⇒ xwy.. Supposeu = xα 1 · · · α m−1 w ′ and v = y −1 β −11 · · · β−1 m−1 w′′ .Then, by (), the relations(xα 1 · · · α m−2 w ′ , y −1 β −11 · · · β−1 m−2 w′′ ),(xα m−1 w ′ , y −1 β −1m−1 w′′ ), and (xw ′ , y −1 w ′′ )are in ker ρ F and have n-values less than n(u, v). Assume that δ applied toeach <strong>of</strong> these relations () gives a positive sum <strong>of</strong> elements <strong>of</strong> D. Now,(u, v)δ = (uρ H ) − (vρ H )= (xα 1 · · · α m−1 w ′ )ρ H − (y −1 β −11 · · · β−1 m−1 w′′ )ρ H= (xα 1 · · · α m−2 w ′ )ρ H + (α m−1 )ρ H− (y −1 β −11 · · · β−1 m−2 w′′ )ρ H − (β m−1 )ρ H= (xα 1 · · · α m−2 w ′ , y −1 β −11 · · · β−1 m−2 w′′ )δ + (α m−1 )ρ H − (β m−1 )ρ H= (xα 1 · · · α m−2 w ′ , y −1 β −11 · · · β−1 m−2 w′′ )δ + (α m−1 )ρ H − (β m−1 )ρ H+ (x)ρ H + (w ′ )ρ H − (y −1 )ρ H − (w ′′ )ρ H− (x)ρ H − (w ′ )ρ H + (y −1 )ρ H + (w ′′ )ρ H= (xα 1 · · · α m−2 w ′ , y −1 β −11 · · · β−1 m−2 w′′ )δ+ (xα m−1 w ′ )ρ H − (y −1 β m−1 w ′′ )ρ H− (xw ′ )ρ H + (y −1 w ′′ )ρ H= (xα 1 · · · α m−2 w ′ , y −1 β −11 · · · β−1 m−2 w′′ )δ+ (xα m−1 w ′ , y −1 β m−1 w ′′ )δ + (y −1 w ′′ , xw ′ )δ.The assumption then shows that (u, v)δ is a positive sum <strong>of</strong> elements <strong>of</strong> D.()


. SupposeThen, by (), the relationsu = xα 1 · · · α m−1 wβ m−1 · · · β 1 y ′ and v = y ′′ .(xα 1 · · · α m−2 wβ m−2 · · · β 1 y ′ , y ′′ ),(xα m−1 wβ m−1 y ′ , y ′′ ), and (xwy ′ , y ′′ )are in ker ρ F and have n-values less than n(u, v). Again assume that δ appliedto each <strong>of</strong> these relations () gives a positive sum <strong>of</strong> elements <strong>of</strong> D.Then(u, v)δ = (uρ H ) − (vρ H )= (xα 1 · · · α m−1 wβ m−1 · · · β 1 y ′ )ρ H − (y ′′ )ρ H= (xα 1 · · · α m−2 wβ m−2 · · · β 1 y ′ )ρ H − (y ′′ )ρ H+ (α m−1 )ρ H + (β m−1 )ρ H= (xα 1 · · · α m−2 wβ m−2 · · · β 1 y ′ , y ′′ )δ + (α m−1 )ρ H + (β m−1 )ρ H+ (xwy ′ )ρ H − (y ′′ )ρ H − (xwy ′ )ρ H + (y ′′ )ρ H= (xα 1 · · · α m−2 wβ m−2 · · · β 1 y ′ , y ′′ )δ+ (xα m−1 wβ m−1 y ′ )ρ H − (y ′′ )ρ H − (xwy ′ )ρ H + (y ′′ )ρ H= (xα 1 · · · α m−2 wβ m−2 · · · β 1 y ′ , y ′′ )δ+ (xα m−1 wβ m−1 y ′ , y ′′ )δ + (y ′′ , xwy ′ )δ.Again, the assumption shows that(u, v)δ is a positive sum <strong>of</strong> elements <strong>of</strong> D.There<strong>for</strong>e, by induction on n(u, v), the image under δ <strong>of</strong> each (u, v) ∈ ker ρ Fcan be expressed as a positive sum <strong>of</strong> elements <strong>of</strong> D. 114.2. Let (c 1 , d 1 ) · · · (c k , d k ) be the canonical decomposition <strong>of</strong> (u, v). Since (u, v) ∈ker ρ − S, there exists (c j , d j ) ∈ ker ρ F − R. Reasoning as in the pro<strong>of</strong> <strong>of</strong>Lemma , there are three cases, two <strong>of</strong> which are parallel. For brevity, lets = c 1 · · · c j−1 , t = c j+1 · · · c k , s ′ = d 1 · · · d j−1 , and t ′ = d j+1 · · · d k .. Supposec j = xα 1 · · · α m−1 w ′ and d j = y −1 β −11 · · · β−1 m−1 w′′where x, α i , w ′ , w ′′ , β i , y as in the pro<strong>of</strong> <strong>of</strong> Lemma . Then the relations(xα 1 · · · α m−2 w ′ , y −1 β −11 · · · β−1 m−2 w′′ ),are in ker ρ F . The relations(sxα 1 · · · α m−2 w ′ t, s ′ y −1 β −11 · · · β−1 m−2 w′′ t ′ ),(xα m−1 w ′ , y −1 β −1m−1 w′′ ), and (xw ′ , y −1 w ′′ )(sxα m−1 w ′ t, s ′ y −1 β −1m−1 w′′ t ′ ), and (sxw ′ , s ′ y −1 w ′′ t ′ )are thus also in ker ρ F . Now, since (u, v)δ = 0 H ,(sxα 1 · · · α m−2 w ′ t, s ′ y −1 β −11 · · · β−1 m−2 w′′ t ′ )δ = −(α m−1 )ρ H + (β −1m−1 )ρ H,(sxα m−1 w ′ t, s ′ y −1 β −1m−1 w′′ t ′ )δ = −(α 1 · · · α m−2 )ρ H+ (β −1m−2 · · · β−1 1 )ρ H,(sxw ′ t, s ′ y −1 w ′′ t ′ )δ = −(α 1 · · · α m−1 )ρ H+ (β −1m−1 · · · β−1 1 )ρ H.()


Lemma asserts that there are positive sums <strong>of</strong> elements <strong>of</strong> D thatequal the left-hand sides <strong>of</strong> the above equations. That is, one can chooseelements <strong>of</strong> R, concatenate them, and get a relation in ker ρ F whose imageunder δ takes one <strong>of</strong> these three values. By switching the two sides <strong>of</strong> sucha relation, one can invert the image under δ. There<strong>for</strong>e choose (p, q) and(p ′ , q ′ ) in R + such that (p, q)δ = (α m−1 )ρ H − (β −1m−1 )ρ H and (p ′ , q ′ )δ =(α 1 · · · α m−2 )ρ H −(β −1m−2 · · · β−1 1 )ρ H. Observe that the relations (pwq, qwp)and (p ′ wq ′ , q ′ wp ′ ) are consequences <strong>of</strong> Q, and that(p ′ p, q ′ q)δ = (p, q)δ + (p ′ , q ′ )δ = (α 1 · · · α m−1 )ρ H − (β −1m−1 · · · β−1 1 )ρ H.Using these relations (p, q) and (p ′ , q ′ ) as ‘compensation’, one obtainsthe relations(psxα 1 · · · α m−2 w ′ t, qs ′ y −1 β −11 · · · β−1 m−2 w′′ t ′ ),(sxα m−1 w ′ tp ′ , s ′ y −1 β −1m−1 w′′ t ′ q ′ ), and (q ′ qsxw ′ , p ′ ps ′ y −1 w ′′ t ′ ),()which lie in ker ρ since their images under δ are 0 H . By the choice <strong>of</strong> (p, q)and (p ′ , q ′ ), the relations () precede (u, v) in the ≪-ordering: <strong>for</strong> example,the decomposition <strong>of</strong> the first relation(p, q)(s, s ′ )(xα 1 · · · α m−2 w ′ , y −1 β −11 · · · β−1 m−2 w′′ )(t, t ′ )has a lesser value <strong>of</strong> n ′′ , or the same n ′′ -value and a smaller p ′′ -value, thanthe canonical decomposition <strong>of</strong> (u, v), so certainly the canonical decomposition<strong>of</strong> the first relation must have the same property.The following <strong>Malcev</strong> chain shows that (u, v) is a <strong>Malcev</strong> consequence<strong>of</strong> the relations () and those in Q:sxα 1 · · · α m−1 w ′ t→ p L psxα 1 · · · α m−2 w ′ tt R (w ′ ) R α m−1 w ′ t→ p L qs ′ y −1 β −11 · · · β−1 m−2 w′′ t ′ t R (w ′ ) R α m−1 w ′ tby ()→ p L qs ′ y −1 β −11 · · · β−1 m−2 (y−1 ) L (s ′ ) L q L (q ′ ) L q ′ qs ′ y −1 w ′′ t ′ t R (w ′ ) R α m−1 w ′ t→ p L qs ′ y −1 β −11 · · · β−1 m−2 (y−1 ) L (s ′ ) L q L (q ′ ) L p ′ psxw ′ tt R (w ′ ) R α m−1 w ′ t by ()→ p L qs ′ y −1 β −11 · · · β−1 m−2 (y−1 ) L (s ′ ) L q L (q ′ ) L p ′ psxα m−1 w ′ t→ p L qs ′ y −1 β −11 · · · β−1 m−2 (y−1 ) L (s ′ ) L q L (q ′ ) L p ′ psxα m−1 w ′ tq ′ (q ′ ) R→ p L qs ′ y −1 β −11 · · · β−1 m−2 (y−1 ) L (s ′ ) L q L (q ′ ) L q ′ psxα m−1 w ′ tp ′ (q ′ ) R by Q #→ p L qs ′ y −1 β −11 · · · β−1 m−2 (y−1 ) L (s ′ ) L q L psxα m−1 w ′ tp ′ (q ′ ) R→ p L qs ′ y −1 β −11 · · · β−1 m−2 (y−1 ) L (s ′ ) L q L ps ′ y −1 β −1m−1 w′′ t ′ q ′ (q ′ ) Rby ()→ p L qs ′ y −1 β −11 · · · β−1 m−2 (y−1 ) L (s ′ ) L q L ps ′ y −1 β −1m−1 w′′ t ′→ p L qs ′ y −1 β −11 · · · β−1 m−2 (y−1 ) L (s ′ ) L q L ps ′ y −1 β −1m−1 w′′ t ′ qq R→ p L qs ′ y −1 β −11 · · · β−1 m−2 (y−1 ) L (s ′ ) L q L qs ′ y −1 β −1m−1 w′′ t ′ pq R by Q #→ p L qs ′ y −1 β −11 · · · β−1 m−1 w′′ t ′ pq R→ p L ps ′ y −1 β1 −1 · · · β−1 m−1 w′′ t ′ qq R→ s ′ y −1 β −11 · · · β−1 m−1 w′′ t ′ .. Supposec j = xα 1 · · · α m−1 wβ m−1 · · · β 1 y ′ and d j = y ′′


where x, α i , w, β i , y ′ , y ′′ are as in the pro<strong>of</strong> <strong>of</strong> Lemma . Then the relations(xα 1 · · · α m−2 wβ m−2 · · · β 1 y ′ , y ′′ ),(xα m−1 wβ m−1 y ′ , y ′′ ), and (xwy ′ , y ′′ )()are in ker ρ F . There<strong>for</strong>e the relations:(sxα 1 · · · α m−2 wβ m−2 · · · β 1 y ′ t, s ′ y ′′ t ′ ), (sxα m−1 wβ m−1 y ′ t, s ′ y ′′ t ′ ),are also in ker ρ F . Since (u, v)δ = 0 H ,and (sxwy ′ t, s ′ y ′′ t ′ )(sxα 1 · · · α m−2 wβ m−2 · · · β 1 y ′ t, s ′ y ′′ t ′ )δ = −(α m−1 )ρ H − (β m−1 )ρ H ,(sxα m−1 wβ m−1 y ′ t, s ′ y ′′ t ′ )δ = −(α 1 · · · α m−2 )ρ H − (β m−2 · · · β 1 )ρ H ,(sxwy ′ t, s ′ y ′′ t ′ )δ = −(α 1 · · · α m−1 )ρ H − (β m−1 · · · β 1 )ρ H .Choose ‘compensation’ relations (p, q) and (p ′ , q ′ ) in R + such that (p, q)δ =(α m−1 )ρ H +(β m−1 )ρ H and (p ′ , q ′ )δ = (α 1 · · · α m−2 )ρ H +(β −1m−2 · · · β 1)ρ H .The relations(sxα 1 · · · α m−2 wβ m−2 · · · β 1 y ′ tp, s ′ y ′′ t ′ q),(p ′ sxα m−1 wβ m−1 y ′ t, q ′ s ′ y ′′ t ′ ), and (pp ′ sxwy ′ t, qq ′ s ′ y ′′ t ′ ) ()are in ker ρ and precede (u, v) in the ≪-ordering. The following <strong>Malcev</strong>chain shows that the relation (u, v) is a <strong>Malcev</strong> consequence <strong>of</strong> the relations() and those in Q:sxα 1 · · · α m−1 wβ m−1 · · · β 1 y ′ t→ sxα 1 · · · α m−2 x L s L (p ′ ) L p ′ sxα m−1 wβ m−1 y ′ tt R (y ′ ) R β m−2 · · · β 1 y ′ t→ sxα 1 · · · α m−2 x L s L (p ′ ) L q ′ s ′ y ′′ t ′ t R (y ′ ) R β m−2 · · · β 1 y ′ t→ sxα 1 · · · α m−2 x L s L (p ′ ) L q L qq ′ s ′ y ′′ t ′ t R (y ′ ) R β m−2 · · · β 1 y ′ t→ sxα 1 · · · α m−2 x L s L (p ′ ) L q L pp ′ sxwy ′ tt R (y ′ ) R β m−2 · · · β 1 y ′ t→ sxα 1 · · · α m−2 x L s L (p ′ ) L q L pp ′ sxwβ m−2 · · · β 1 y ′ tqq R()by ()by ()→ sxα 1 · · · α m−2 x L s L (p ′ ) L q L qp ′ sxwβ m−2 · · · β 1 y ′ tpq R by Q #→ sxα 1 · · · α m−2 wβ m−2 · · · β 1 y ′ tpq R→ s ′ y ′′ t ′ qq R→ s ′ y ′′ t ′In either case, (u, v) ∈ ker ρ − S is a <strong>Malcev</strong> consequence <strong>of</strong> ≪-precedingelements <strong>of</strong> ker ρ plus relations from Q. There<strong>for</strong>e, by induction on n(u, v), thesemigroup S has a <strong>Malcev</strong> presentation SgM⟨A | S ∪ Q⟩. 12Second stage. The reasoning thus far has reduced the ‘ordinary’ presentationSg⟨A | ker ρ⟩ <strong>for</strong> S to the <strong>Malcev</strong> presentation SgM⟨A | S ∪ Q⟩. However, the set<strong>of</strong> relations S ∪ Q is infinite. The next stage is to show that all relations in S ∪ Qare <strong>Malcev</strong> consequences <strong>of</strong> those in a still infinite — but simpler — set T.This section is rather technical, so a few motivational remarks will be madeimmediately after some definitions required later.by ()


Let K = (N ∪ {0}) 2n and N = Z n . Define δ ′ : K → K byn∑(a 1 , a 1 ′ , . . . , a n, a n) ′ [↦→ ai (u i , v i )δ + a i ′ (v i, u i )δ ] .i=1(Recall that R = {(u 1 , v 1 ), (v 1 , u 1 ), . . . , (u n , v n ), (v n , u n )}.)Define σ : K → N byLet δ ′′ : N → H be given by(a 1 , a ′ 1 , . . . , a n, a ′ n) ↦→ (a 1 − a ′ 1 , . . . , a n − a ′ n).(b 1 , . . . , b n ) ↦→n∑b i (u i , v i )δ.Recall that every relation in S is a concatenation <strong>of</strong> elements <strong>of</strong> R. It is obvious,there<strong>for</strong>e, that S ⊆ R # . However, although all elements <strong>of</strong> R lie in ker ρ F ,they may have non-zero image under δ. (Recall that (u, v)δ = uρ H −vρ H .) Suppose(u, v) = (c 1 , d 1 ) · · · (c k , d k ), with (c j , d j ) ∈ R and that this decompositioncontains a i instances <strong>of</strong> (u i , v i ) and ai ′ instances <strong>of</strong> (v i, u i ) <strong>for</strong> each i. Recordthis fact using a tuple T = (a 1 , a1 ′ , a 2, a2 ′ , . . . , a n, a n) ′ ∈ K. Notice that theimage <strong>of</strong> T under δ ′ coincides with the image <strong>of</strong> (u, v) under δ. So the tuple correspondingto any relation in ker ρ must also have image 0 H under δ ′ . Now, asthe contributions <strong>of</strong> each a i and ai ′ to the sum () are mutually inverse, one maypass to a tuple (a 1 −a1 ′ , . . . , a n−a n) ′ in N (using the mapping σ) and still be ableto obtain the image <strong>of</strong> T under δ ′ using the mapping δ ′′ . (Lemma <strong>for</strong>malizesthis notion.) The kernel <strong>of</strong> δ ′′ (in the group-theoretical sense) is a subgroup <strong>of</strong>the finitely generated abelian group N and is there<strong>for</strong>e itself finitely generated.The strategy is to pick a finite [semigroup] generating set <strong>for</strong> this kernel, pullthis set back to a set <strong>of</strong> tuples Y in K, and thus to find a particular set T consisting<strong>of</strong> relations <strong>for</strong>med by concatenating relations from R and trivial relations(a, a) such that the number <strong>of</strong> (u i , v i ) and (v i , u i ) is described by a tuple in Y.(Thus each relation in T has image 0 H under δ.) The aim is to express the tupleT as a positive (semigroup) sum <strong>of</strong> tuples ∑ j∈J y j with y j ∈ Y. The definition<strong>of</strong> the relations in T then allows the construction <strong>of</strong> a <strong>Malcev</strong> chain from u tov in which there is a one-to-one correspondence between the steps <strong>of</strong> the chainand the y j in the sum <strong>of</strong> tuples.The details <strong>of</strong> the reasoning are, however, quite delicate: a number <strong>of</strong> technicaldifficulties arise in pulling back the generators <strong>of</strong> the kernel <strong>of</strong> δ ′′ to tuplesin K. Lemmata – show how to surmount these problems. . σδ ′′ = δ ′ .i=1Pro<strong>of</strong> <strong>of</strong> 13. Let (a 1 , a ′ 1 , . . . , a n, a ′ n) ∈ K. Then(a 1 , a 1 ′ , . . . , a n, a n)σδ ′ ′′ = (a 1 − a 1 ′ , . . . , a n − a n)δ ′ ′′n∑= (a i − a i ′ )(u i, v i )δ==i=1n∑[a i (u i , v i )δ − a i ′ (u i, v i )δ]i=1n∑[a i (u i , v i )δ + a i ′ (v i, u i )δ]i=1= (a 1 , a ′ 1 , . . . , a n, a ′ n)δ ′ .


There<strong>for</strong>e σδ ′′ = δ ′ . 13Now, Ker δ ′′ is a subgroup <strong>of</strong> N = Z n and so is finitely generated. Let X be afinite semigroup generating set <strong>for</strong> Ker δ ′′ . [This pro<strong>of</strong> adheres to a notationaldistinction between ker ϕ, which denotes a congruence on the domain <strong>of</strong> ahomomorphism ϕ, and Ker ψ, which is a normal subgroup <strong>of</strong> the domain <strong>of</strong> agroup homomorphism ψ.]Let τ : N → K be defined by(b 1 , . . . , b n ) ↦→ (max{b 1 , 0}, max{−b 1 , 0}, . . . , max{b n , 0}, max{−b n , 0}).Observe that τσ = id N . This observation and Lemma will together showthat τ is ‘almost’ an inverse <strong>of</strong> σ. Use τ to pull back X into K as follows: LetY ′ = Xτ. Let Y ′′ ⊆ K be the set{(1, 1, 0, 0, . . . , 0, 0), (0, 0, 1, 1, . . . , 0, 0), . . . , (0, 0, 0, 0, . . . , 1, 1)},and let Y = Y ′ ∪ Y ′′ .Un<strong>for</strong>tunately, the composition στ is not the identity mapping. However, itis close enough <strong>for</strong> the purposes <strong>of</strong> this pro<strong>of</strong>, in a sense made precise by thefollowing lemma: . For (a 1 , a ′ 1 , . . . , a n, a ′ n) ∈ K,(a 1 , a ′ 1 , . . . , a n, a ′ n) − (a 1 , a ′ 1 , . . . , a n, a ′ n)στ ∈ Mon ⟨ Y ′′⟩ .Pro<strong>of</strong> <strong>of</strong> 14. Let (. . . , a i , ai ′ , . . .) ∈ K. Then(. . . , a i , a ′ i , . . .)στ = (. . . , a i − a ′ i , . . .)τ= (. . . , max{a i − a ′ i , 0}, max{a′ i − a i, 0}, . . .).If a i ⩾ ai ′, then this gives (. . . , a i − ai ′ , 0, . . .), and(. . . , a i , a i ′ , . . .) − (. . . , a i − a i ′ , 0, . . .) = a′ i (. . . , 1, 1, . . .) + . . . .If a i ⩽ a ′ i , then this gives (. . . , 0, a′ i − a i, . . .), and(. . . , a i , a ′ i , . . .) − (. . . , 0, a′ i − a i, . . .) = a i (. . . , 1, 1, . . .) + . . . .Reasoning thus <strong>for</strong> each i gives the result. 14Similarly, τ is ‘close’ to being a homomorphism: . For (b 1 , . . . , b n ) and (c 1 , . . . , c n ) in N,(b 1 , . . . , b n )τ + (c 1 , . . . , c n )τ − (b 1 + c 1 , . . . , b n + c n )τ ∈ Mon ⟨ Y ′′⟩ .Pro<strong>of</strong> <strong>of</strong> 15. Let (. . . , b i , . . .) and (. . . , c i , . . .) be members <strong>of</strong> N. Then(. . . , b i , . . .)τ + (. . . , c i , . . .)τ= (. . . , max{b i , 0}, max{−b i , 0}, . . .) + (. . . , max{c i , 0}, max{−c i , 0}, . . .)= (. . . , max{b i , 0} + max{c i , 0}, max{−b i , 0} + max{−c i , 0}, . . .).Consider the following four cases:


. b i , c i ⩾ 0. This gives (. . . , b i , . . .)τ + (. . . , c i , . . .)τ = (. . . , b i + c i , 0, . . .), and(. . . , b i + c i , 0, . . .) − (. . . , b i + c i , . . .)τ= (. . . , b i + c i , 0, . . .) − (. . . , b i + c i , 0, . . .)= (. . . , 0, 0, . . .).. b i , c i ⩽ 0. This gives (. . . , b i , . . .)τ + (. . . , c i , . . .)τ = (. . . , 0, −b i − c i , . . .),and(. . . , 0, −b i − c i , 0, . . .) − (. . . , b i + c i , . . .)τ= (. . . , 0, −b i − c i , 0, . . .) − (. . . , 0, −b i − c i , . . .)= (. . . , 0, 0, . . .).. b i ⩾ 0, c i ⩽ 0. Now split into two sub-cases:(a) |b i | ⩾ |c i |. This gives (. . . , b i , . . .)τ + (. . . , c i , . . .)τ = (. . . , b i , −c i , . . .),and(. . . , b i , −c i , 0, . . .) − (. . . , b i + c i , . . .)τ= (. . . , b i , −c i , 0, . . .) − (. . . , b i + c i , 0, . . .)= (. . . , b i − b i − c i , −c i . . .)= (. . . , −c i , −c i , . . .).(Observe that −c i ⩾ 0.)(b) |b i | ⩽ |c i |. This gives (. . . , b i , . . .)τ + (. . . , c i , . . .)τ = (. . . , b i , −c i , . . .),and(. . . , b i , −c i , 0, . . .) − (. . . , b i + c i , . . .)τ= (. . . , b i , −c i , 0, . . .) − (. . . , 0, −(b i + c i ), . . .)= (. . . , b i , −c i + b i + c i . . .)= (. . . , b i , b i , . . .).. b i ⩽ 0, c i ⩾ 0. This is symmetric to case iii.Apply the four cases above to each i to complete the pro<strong>of</strong>. 15Finally, although Ker δ ′ is not guaranteed to be a subset <strong>of</strong> Mon⟨Y⟩, anyelement <strong>of</strong> Ker δ ′ differs from some element <strong>of</strong> Mon⟨Y⟩ only by an element <strong>of</strong>Mon⟨Y ′′ ⟩: . If (a 1 , a ′ 1 , . . . , a n, a ′ n)δ ′ = 0 H , then there exists y ∈ Mon⟨Y ′′ ⟩ suchthat (a 1 , a ′ 1 , . . . , a n, a ′ n) + y ∈ Mon⟨Y⟩.Pro<strong>of</strong> <strong>of</strong> 16. Let (a 1 , a ′ 1 , . . . , a n, a ′ n)δ ′ = 0 H . Lemma shows that the image <strong>of</strong>(a 1 , a ′ 1 , . . . , a n, a ′ n) under σ lies in Ker δ ′′ . So(a 1 , a ′ 1 , . . . , a n, a ′ n)σ = ∑ j∈Jx j <strong>for</strong> some x j ∈ X,((a 1 , a 1 ′ , . . . , a ∑n, a n)στ ′ = x j)τ,j∈J(a 1 , a ′ 1 , . . . , a n, a ′ n)στ + y = ∑ j∈J(x j τ) where y ∈ Mon ⟨ Y ′′⟩ , by Lemma ,(a 1 , a ′ 1 , . . . , a n, a ′ n) + y = ∑ j∈J(x j τ) + z where z ∈ Mon ⟨ Y ′′⟩ , by Lemma ,∈ Mon⟨Y⟩ ,


and this completes the pro<strong>of</strong>. 16Let T consist <strong>of</strong> all relations in (R ∪ {(a, a) : a ∈ A}) + , containing, <strong>for</strong> some(a 1 , a1 ′ , . . . , a n, a n) ′ ∈ Y, exactly a i instances <strong>of</strong> (u i , v i ) and ai ′ instances <strong>of</strong>(v i , u i ), <strong>for</strong> each i. Observe that T contains Q since Y contains Y ′′ . Notice thatthe definition <strong>of</strong> T makes no mention <strong>of</strong> canonical decompositions. When a relationin T used to rewrite a word over A, these a i instance <strong>of</strong> u i change to v i ,and the ai ′ instances <strong>of</strong> v i change to u i , and no other letters alter. Call theseunchanged intermediate letters ‘padding’.Suppose (u, v) ∈ T. Then obviously (u, v) ∈ ker ρ F . Also, (u, v) ∈ ker ρ H ,since(u, v)δ = (a 1 , a 1 ′ , . . . , a n, a n)δ ′ ′ = 0 H ,where (a 1 , a1 ′ , . . . , a n, a n) ′ ∈ Y. So T ⊆ ker ρ.Define χ : S → K as follows: w ∈ S maps to (a 1 , a1 ′ , . . . , a n, a n), ′ wherea i is the number <strong>of</strong> (u i , v i ) in the canonical decomposition <strong>of</strong> w, and ai ′ is thenumber <strong>of</strong> (v i , u i ). . Every relation in S is a <strong>Malcev</strong> consequence <strong>of</strong> those in T.Pro<strong>of</strong> <strong>of</strong> 17. Let (u, v) ∈ S. Then (u, v) ∈ ker ρ F ∩ker ρ H , so (u, v)χ ∈ Ker δ ′ . Lety ∈ Mon⟨Y ′′ ⟩ be such that (u, v)χ+y ∈ Mon⟨Y⟩. Suppose y = (b 1 , b 1 , . . . , b n , b n ).Let(s, t) = (u 1 , v 1 ) b 1(v 1 , u 1 ) b1 · · · (u n , v n ) b n(v n , u n ) b n. ()Observe that (s, t) ∈ Q # .Suppose that (u, v)χ + y = ∑ pj=1 y j, where y j ∈ Y. Construct a <strong>Malcev</strong> T-chain from u to v as follows. First <strong>of</strong> all, insert t and trans<strong>for</strong>m it to s usingrelations from Q ⊆ T:u → utt R → ust R .()The component a i <strong>of</strong> the tuple (u, v)χ + y describes the number <strong>of</strong> (u i , v i )that appear in the canonical decomposition <strong>of</strong> (u, v) concatenated with the decomposition() <strong>of</strong> (s, t). A similar statement applies to ai ′ and (v i, u i ). Putanother way, the components a i and ai ′ <strong>of</strong> the tuple (u, v)χ + y describes thenumber <strong>of</strong> subwords u i and v i <strong>of</strong> us that must be changed to v i and u i , respectively,in order to trans<strong>for</strong>m us to vt. As (u, v)χ + y = ∑ pj=1 y j, the sum <strong>of</strong> thea i and ai ′ components <strong>of</strong> the y j also gives the number subwords <strong>of</strong> each typethat must be changed.Construct a <strong>Malcev</strong> chain from us to vt by defining the jth step in the chain(where j = 1, . . . , p) as follows. Suppose y j = (a 1 , a1 ′ , . . . , a n, a n) ′ and that thefirst j − 1 steps have trans<strong>for</strong>med us to w. For each i, find a i subwords u i andai ′ subwords v i <strong>of</strong> w that have not been changed in the chain thus far. The jthstep consists <strong>of</strong> changing those words u i to v i and v i to u i . By the definition <strong>of</strong>T, a relation exists that permits this step. Furthermore, by the comments in thelast paragraph, the word left after the pth step is vt.Concatenate the <strong>Malcev</strong> chain () with the one just constructed and appendvtt R → vto obtain a <strong>Malcev</strong> T-chain from u to v. 17Third stage. The pro<strong>of</strong> thus far has shown that S has a <strong>Malcev</strong> presentationSgM⟨A | T⟩. The set T is still infinite. This third and final stage shows that afinite subset U <strong>of</strong> T will suffice in a <strong>Malcev</strong> presentation <strong>for</strong> S.


Let U be the subset <strong>of</strong> T where each padding string is either empty or oneletter long — elements <strong>of</strong> R are either adjacent or separated by a single (a, a)<strong>for</strong> some a ∈ A. Observe that the set U is finite because Y — which dictates howmany elements <strong>of</strong> R can appear — is finite. . Every relation in T is a <strong>Malcev</strong> consequence <strong>of</strong> those in U.Pro<strong>of</strong> <strong>of</strong> 18. Let (αwβ, γwζ) be a relation in T, with (w, w) being padding. Suppose(w, w) = (a, a)(w ′ , w ′ ) <strong>for</strong> a ∈ A. Since0 H = (αwβ, γwζ)δ= (αwβ)ρ H − (γwζ)ρ H= (αβ)ρ H − (γζ)ρ H + (w)ρ H − (w)ρ H= (αβ)ρ H − (γζ)ρ H= (αβ, γζ)δ,the relations(αaβ, γaζ), (αw ′ β, γw ′ ζ), (αβ, γζ)()are all in ker ρ. They are all clearly in T.The following <strong>Malcev</strong> chain shows that (αwβ, γwζ) is a <strong>Malcev</strong> consequence<strong>of</strong> the relations ():αwβ→ αaw ′ β→ αaββ R w ′ β→ γaζβ R w ′ β→ γaγ L γζβ R w ′ β→ γaγ L αββ R w ′ β→ γaγ L αw ′ β→ γaγ L γw ′ ζ→ γaw ′ ζ= γwζ.by induction on |w|Apply such reasoning to every padding string in the relation to show that it isa <strong>Malcev</strong> consequence <strong>of</strong> U. 18Conclusion. By Lemmata , , and ,ker ρ = S M = T M = U M .There<strong>for</strong>e S admits the finite <strong>Malcev</strong> presentation SgM⟨A|U⟩. Since S was an arbitraryfinite generated subsemigroup G, the group G — which was an arbitrary<strong>direct</strong> product <strong>of</strong> a free group and an abelian group — is <strong>Malcev</strong> coherent. 9 The <strong>direct</strong> product <strong>of</strong> a free group and a polycyclic group is coherent.Of course, Corollary implies that such <strong>direct</strong> <strong>products</strong> are not in general<strong>Malcev</strong> coherent. This leaves the following question unanswered:


. Is every <strong>direct</strong> product <strong>of</strong> a free group and a nilpotent group<strong>Malcev</strong> coherent?The class <strong>of</strong> coherent groups is closed under <strong>for</strong>ming finite extensions. There<strong>for</strong>ethe <strong>direct</strong> product <strong>of</strong> a free group and a virtually polycyclic group is alsocoherent. This immediately provokes the following question: . Is every <strong>direct</strong> product <strong>of</strong> a free group and a virtually abeliangroup <strong>Malcev</strong> coherent?It is not yet known whether the class <strong>of</strong> <strong>Malcev</strong> coherent groups is closed under<strong>for</strong>ming finite extensions. [The author opines that this is the most importantunsolved problem in the theory <strong>of</strong> <strong>Malcev</strong> <strong>presentations</strong>.] Thus it is conceiveablethat these two questions may have different answers if one replaces ‘free’by ‘virtually free’.For a general survey <strong>of</strong> the current state <strong>of</strong> knowledge <strong>of</strong> <strong>Malcev</strong> <strong>presentations</strong>,see [Cai].The author gratefully acknowledges the support <strong>of</strong> the CarnegieTrust <strong>for</strong> the Universities <strong>of</strong> Scotland. The author thanks the anonymous referee<strong>for</strong> many constructive comments, especially regarding the exposition <strong>of</strong>the pro<strong>of</strong> <strong>of</strong> Propostion . [Bau] G. Baumslag. ‘A remark on generalized free <strong>products</strong>’. Proc. Amer. Math.Soc., (), pp. –. doi: ./.[BMa] L. G. Budkina & A. A. Markov. ‘F-semigroups with three generators’.Mat. Zametki, (), pp. –. [In Russian. See [BMb] <strong>for</strong> a translation.].[BMb] L. G. Budkina & A. A. Markov. ‘F-semigroups with three generators’.Math. Notes, (), pp. –. [Translated from the Russian.].[Cai] A. J. Cain. ‘Automatic structures <strong>for</strong> <strong>subsemigroups</strong> <strong>of</strong> Baumslag–Solitarsemigroups’.[Cai] A. J. Cain. Presentations <strong>for</strong> Subsemigroups <strong>of</strong> Groups. Ph.D. Thesis, University<strong>of</strong> St Andrews, . Available from: www-groups.mcs.st-and.ac.uk/~alanc/publications/c_phdthesis/c_phdthesis.pdf.[Cai] A. J. Cain. ‘<strong>Malcev</strong> <strong>presentations</strong> <strong>for</strong> <strong>subsemigroups</strong> <strong>of</strong> groups — a survey’.In C. M. Campbell, M. Quick, E. F. Robertson, & G. C. Smith, eds,Groups St Andrews 2005 (Vol. ), no. in London Mathematical SocietyLecture Note Series, pp. –, Cambridge, . Cambridge UniversityPress.[CP] A. H. Clif<strong>for</strong>d & G. B. Preston. The Algebraic Theory <strong>of</strong> Semigroups (Vol. II).No. in Mathematical Surveys. Amer. Math. Soc., Providence, R.I., .[CRRa] A. J. Cain, E. F. Robertson, & N. Ruškuc. ‘Subsemigroups <strong>of</strong> groups: <strong>presentations</strong>,<strong>Malcev</strong> <strong>presentations</strong>, and automatic structures’. J. Group Theory,, no. (), pp. –. doi: ./jgt...[CRRb] A. J. Cain, E. F. Robertson, & N. Ruškuc. ‘Subsemigroups <strong>of</strong> virtuallyfree groups: finite <strong>Malcev</strong> <strong>presentations</strong> and testing <strong>for</strong> freeness’.


Math. Proc. Cambridge Philos. Soc., , no. (), pp. –../s.[ECH + ] D. B. A. Epstein, J. W. Cannon, D. F. Holt, S. V. F. Levy, M. S. Paterson,& W. P. Thurston. Word Processing in Groups. Jones & Bartlett, Boston,Mass., .[Gru] F. J. Grunewald. ‘On some groups which cannot be finitely presented’. J.London Math. Soc. (2), , no. (), pp. –. doi: ./jlms/s-...[HU] J. E. Hopcr<strong>of</strong>t & J. D. Ullman. Introduction to Automata Theory, Languages,and Computation. Addison–Wesley Publishing Co., Reading, Mass., .[LS] R. C. Lyndon & P. E. Schupp. Combinatorial Group Theory, vol. <strong>of</strong> Ergebnisseder Mathematik und ihrer Grenzgebiete. Springer-Verlag, Berlin, .[Mal] A. I. <strong>Malcev</strong>. ‘On the immersion <strong>of</strong> associative systems in groups’. Mat.Sbornik, , no. (), pp. –. [In Russian.].[Mal] A. I. <strong>Malcev</strong>. ‘On the immersion <strong>of</strong> associative systems in groups II’. Mat.Sbornik, , no. (), pp. –. [In Russian.].[Mar] A. A. Markov. ‘On finitely generated <strong>subsemigroups</strong> <strong>of</strong> a free semigroup’.Semigroup Forum, , no. (/), pp. –. doi:./BF.[Mil] C. F. Miller, III. ‘Subgroups <strong>of</strong> <strong>direct</strong> <strong>products</strong> with a free group’. Q. J.Math., , no. (), pp. –.[MS] D. E. Muller & P. E. Schupp. ‘Groups, the theory <strong>of</strong> ends, and contextfreelanguages’. J. Comput. System Sci., , no. (), pp. –. doi:./-()-X.[Réd] L. Rédei. Theorie der Endlich Erzeugbaren Kommutativen Halbgruppen,vol. <strong>of</strong> Hamburger Mathematische Einzelschriften. Physica-Verlag,Würzburg, . [In German. See [Réd] <strong>for</strong> a translation.].[Réd] L. Rédei. The Theory <strong>of</strong> Finitely Generated Commutative Semigroups. PergamonPress, Ox<strong>for</strong>d, . [Translated from the German. Edited byN. Reilly.].[Ros] J. M. Rosenblatt. ‘Invariant measures and growth conditions’. Trans.Amer. Math. Soc., (), pp. –. doi: ./.[Ser] J. P. Serre. ‘Problem section’. In J. Cossey, ed., Proceedings <strong>of</strong> the SecondInternational Conference on the Theory <strong>of</strong> Groups (Australian Nat. Univ., Canberra,1973), vol. <strong>of</strong> Lecture Notes in Math., pp. –, Berlin, .Springer.[Sim] C. C. Sims. Computation with Finitely Presented Groups, vol. <strong>of</strong> Encyclopedia<strong>of</strong> Mathematics and its Applications. Cambridge University Press,Cambridge, .[Spe] J. C. Spehner. ‘Présentations et présentations simplifiables d’un monoïdesimplifiable’. Semigroup Forum, , no. (), pp. –. [In French.].doi: ./BF.[Spe] J. C. Spehner. ‘Every finitely generated submonoid <strong>of</strong> a free monoid hasa finite <strong>Malcev</strong>’s presentation’. J. Pure Appl. Algebra, , no. (), pp.–. doi: ./-()-.doi:

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!