11.07.2015 Views

Thin Liquid Film Modeling in OpenFOAM

Thin Liquid Film Modeling in OpenFOAM

Thin Liquid Film Modeling in OpenFOAM

SHOW MORE
SHOW LESS
  • No tags were found...

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Th<strong>in</strong></strong> <strong>Liquid</strong> <strong>Film</strong><strong>Model<strong>in</strong>g</strong> <strong>in</strong><strong>OpenFOAM</strong>Karl MeredithJune 23, 2010


BackgroundFM Global◮ Commercial property<strong>in</strong>surance◮ Water-based firesuppression (spr<strong>in</strong>klers)◮ Test<strong>in</strong>g evaluates spr<strong>in</strong>klerprotection requirements◮ Reduce the number ofexperimental testsJune 23, 2010 <strong>Th<strong>in</strong></strong> <strong>Liquid</strong> <strong>Film</strong> <strong>Model<strong>in</strong>g</strong> <strong>in</strong> <strong>OpenFOAM</strong> 2 / 21


Current <strong>Model<strong>in</strong>g</strong> FrameworkFireFOAM◮ http://code.google.com/p/firefoam-dev/◮ http://fmglobal.com/model<strong>in</strong>g◮ A new <strong>OpenFOAM</strong>based solver◮ Components for firegrowth◮ Buoyancy◮ Turbulence (LES)◮ Combustion(Mixture fraction)◮ Soot/Radiation (FV)◮ Pyrolysis (1D)June 23, 2010 <strong>Th<strong>in</strong></strong> <strong>Liquid</strong> <strong>Film</strong> <strong>Model<strong>in</strong>g</strong> <strong>in</strong> <strong>OpenFOAM</strong> 3 / 21


Miss<strong>in</strong>g ComponentsFire suppression modelsneed to be developed◮ Spr<strong>in</strong>kler SprayPatternation◮ Flame/Spray Interaction◮ Water <strong>Film</strong> TransportJune 23, 2010 <strong>Th<strong>in</strong></strong> <strong>Liquid</strong> <strong>Film</strong> <strong>Model<strong>in</strong>g</strong> <strong>in</strong> <strong>OpenFOAM</strong> 4 / 21


<strong>Liquid</strong>-<strong>Film</strong> ScopeJune 23, 2010 <strong>Th<strong>in</strong></strong> <strong>Liquid</strong> <strong>Film</strong> <strong>Model<strong>in</strong>g</strong> <strong>in</strong> <strong>OpenFOAM</strong> 5 / 21


<strong>Liquid</strong>-<strong>Film</strong> PhenomenaJune 23, 2010 <strong>Th<strong>in</strong></strong> <strong>Liquid</strong> <strong>Film</strong> <strong>Model<strong>in</strong>g</strong> <strong>in</strong> <strong>OpenFOAM</strong> 6 / 21


<strong>Model<strong>in</strong>g</strong> Approach‘<strong>Th<strong>in</strong></strong>-film’ assumptions1 wall-normal velocity is zero2 wall-tangential diffusion (momentum, energy) negligiblecompared to wall-normal diffusionResult: Transport equations can be <strong>in</strong>tegrated <strong>in</strong> wall-normal directionJune 23, 2010 <strong>Th<strong>in</strong></strong> <strong>Liquid</strong> <strong>Film</strong> <strong>Model<strong>in</strong>g</strong> <strong>in</strong> <strong>OpenFOAM</strong> 7 / 21


Integrated <strong>Film</strong>-Transport EquationsCont<strong>in</strong>uityMomentum∂ρδU∂t∂ρδ∂t + ∇ s · (ρδU) = S ρδ+ ∇ s · (ρδUU) = −δ∇ s p + S ρδUEnergy∂ρδh∂t+ ∇ s · (ρδUh) = S ρδhEquations implemented <strong>in</strong> conjuction with Andy Heather of OpenCFDJune 23, 2010 <strong>Th<strong>in</strong></strong> <strong>Liquid</strong> <strong>Film</strong> <strong>Model<strong>in</strong>g</strong> <strong>in</strong> <strong>OpenFOAM</strong> 8 / 21


Source TermsPhase <strong>in</strong>teractionsMassMomentumEnergyS ρδ = S ρδ,imp + S ρδ,splash + S ρδ,vap + S ρδ,abs + S ρδ,sepNormalTangentialp =p imp + p splash + p vap + p σ + p δ + p gS ρδU =τ g − τ w + τ mar + ρgδ + F θ+ S ρδU,imp + S ρδU,splash + S ρδU,sepS ρδh =q ′′g − q ′′ w + S ρδh,vap + S ρδh,rad+ S ρδh,imp + S ρδh,splash + S ρδh,sep + S ρδh,absJune 23, 2010 <strong>Th<strong>in</strong></strong> <strong>Liquid</strong> <strong>Film</strong> <strong>Model<strong>in</strong>g</strong> <strong>in</strong> <strong>OpenFOAM</strong> 9 / 21


Momentum Source TermsJune 23, 2010 <strong>Th<strong>in</strong></strong> <strong>Liquid</strong> <strong>Film</strong> <strong>Model<strong>in</strong>g</strong> <strong>in</strong> <strong>OpenFOAM</strong> 10 / 21


Solution <strong>in</strong> <strong>OpenFOAM</strong>◮ Extruded, 2.5D Mesh◮ Uses 3D FVoperations◮ Solution variablesmapped to/from gasphase mesh◮ Source terms handle<strong>in</strong>terfacial transport◮ Can be solve <strong>in</strong>’stand-alone’ modeJune 23, 2010 <strong>Th<strong>in</strong></strong> <strong>Liquid</strong> <strong>Film</strong> <strong>Model<strong>in</strong>g</strong> <strong>in</strong> <strong>OpenFOAM</strong> 11 / 21


Implementation StatusCompletedimp<strong>in</strong>gementcapillary pressurehydrostatic pressuregas-phase pressureshear stressthermocapillary stressgravity body forcecontact-angle forceconvective heat fluxPartialfilm separationconvective heat fluxPend<strong>in</strong>gsplash<strong>in</strong>gvaporization/boil<strong>in</strong>gmass absorptionseparationratiative absorptionJune 23, 2010 <strong>Th<strong>in</strong></strong> <strong>Liquid</strong> <strong>Film</strong> <strong>Model<strong>in</strong>g</strong> <strong>in</strong> <strong>OpenFOAM</strong> 12 / 21


VerificationComparison to Nusselt Solution( )δ= 3ν2 1/3Re (1/3 νg s<strong>in</strong> θ<strong>in</strong>cU=g s<strong>in</strong> θ <strong>in</strong>c 3) 1/3Re2/3 Re=δU/νJune 23, 2010 <strong>Th<strong>in</strong></strong> <strong>Liquid</strong> <strong>Film</strong> <strong>Model<strong>in</strong>g</strong> <strong>in</strong> <strong>OpenFOAM</strong> 13 / 21


Flow over Vertical PlateJune 23, 2010 <strong>Th<strong>in</strong></strong> <strong>Liquid</strong> <strong>Film</strong> <strong>Model<strong>in</strong>g</strong> <strong>in</strong> <strong>OpenFOAM</strong> 14 / 21


Flow over Vertical PlateAnimationJune 23, 2010 <strong>Th<strong>in</strong></strong> <strong>Liquid</strong> <strong>Film</strong> <strong>Model<strong>in</strong>g</strong> <strong>in</strong> <strong>OpenFOAM</strong> 15 / 21


<strong>Film</strong> Transport over Boxes2x3x2 array◮ Spray <strong>in</strong>jected from8x6 array of nozzles◮ Three waterapplication ratestestedJune 23, 2010 <strong>Th<strong>in</strong></strong> <strong>Liquid</strong> <strong>Film</strong> <strong>Model<strong>in</strong>g</strong> <strong>in</strong> <strong>OpenFOAM</strong> 16 / 21


2x3x2 Array Results0.1 gpm/m 2 0.6 gpm/m 2June 23, 2010 <strong>Th<strong>in</strong></strong> <strong>Liquid</strong> <strong>Film</strong> <strong>Model<strong>in</strong>g</strong> <strong>in</strong> <strong>OpenFOAM</strong> 17 / 21


Mass Flow Rate per TierJune 23, 2010 <strong>Th<strong>in</strong></strong> <strong>Liquid</strong> <strong>Film</strong> <strong>Model<strong>in</strong>g</strong> <strong>in</strong> <strong>OpenFOAM</strong> 18 / 21


2x3x2 Array Animation0.1 gpm/ft 2June 23, 2010 <strong>Th<strong>in</strong></strong> <strong>Liquid</strong> <strong>Film</strong> <strong>Model<strong>in</strong>g</strong> <strong>in</strong> <strong>OpenFOAM</strong> 19 / 21


2x3x2 Array Animation0.6 gpm/ft 2June 23, 2010 <strong>Th<strong>in</strong></strong> <strong>Liquid</strong> <strong>Film</strong> <strong>Model<strong>in</strong>g</strong> <strong>in</strong> <strong>OpenFOAM</strong> 20 / 21


Summary◮ Fire-suppressionmodel<strong>in</strong>g mustcapture filmtransport behavior◮ <strong>Th<strong>in</strong></strong> film assumptionsimplifies tranportequations◮ Initial th<strong>in</strong> film modelimplemented <strong>in</strong><strong>OpenFOAM</strong>June 23, 2010 <strong>Th<strong>in</strong></strong> <strong>Liquid</strong> <strong>Film</strong> <strong>Model<strong>in</strong>g</strong> <strong>in</strong> <strong>OpenFOAM</strong> 21 / 21

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!