27.11.2012 Views

Small-angle x-ray scattering...

Small-angle x-ray scattering...

Small-angle x-ray scattering...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Rudolf Winter<br />

Daniel Le Messurier<br />

Andy Lyons<br />

Kristin Høydalsvik<br />

Chris Martin 1<br />

Graham Clark 1<br />

Armin Hoell 2<br />

Dragomir Tatchev 2<br />

Sylvio Haas 2<br />

<strong>Small</strong>-<strong>angle</strong> x-<strong>ray</strong> <strong>scattering</strong>...<br />

...and crystallisation processes<br />

Materials Physics<br />

Ffiseg Defnyddiau<br />

1 STFC Daresbury Laboratory<br />

2 Hahn-Meitner Institut Berlin


<strong>Small</strong>-<strong>angle</strong> x-<strong>ray</strong> <strong>scattering</strong><br />

Anomalous SAXS<br />

Nanoscale refractory analogue<br />

- Gelation & Calcination<br />

- Sintering


flight tube<br />

sample<br />

position<br />

x-<strong>ray</strong>s from<br />

storage ring<br />

A small-<strong>angle</strong> x-<strong>ray</strong> <strong>scattering</strong> camera<br />

e.g.: HMI SAXS beamline at Bessy, Berlin<br />

detector


<strong>Small</strong>-<strong>angle</strong> <strong>scattering</strong> vs. diffraction<br />

k<br />

��<br />

k'<br />

q=k'-k<br />

q = (4���� sin�<br />

x-<strong>ray</strong>s scatter from electrons<br />

neutrons scatter from nuclei<br />

and magnetic moments<br />

diffraction small-<strong>angle</strong> <strong>scattering</strong><br />

- <strong>scattering</strong> from atomic structures<br />

- size of objects ~ �<br />

- small length scale -> large <strong>angle</strong><br />

- <strong>scattering</strong> from interfaces<br />

- size of objects >> �<br />

- large length scale -> small <strong>angle</strong>


SAXS and particle size


SAXS and particle size


Guinier regime<br />

What can we learn from a SAXS pattern?<br />

Porod slope<br />

at larger q<br />

q -n where n<br />

represents the<br />

surface morphology<br />

n=4: smooth<br />

3


<strong>Small</strong>-<strong>angle</strong> x-<strong>ray</strong> <strong>scattering</strong><br />

Anomalous SAXS<br />

Nanoscale refractory analogue<br />

- Gelation & Calcination<br />

- Sintering


Anomalous SAXS<br />

Resonant <strong>scattering</strong> and absorption<br />

atomic <strong>scattering</strong> factor:<br />

f(q,E) = f 0 (q) + f '(q,E) + jf ”(q,E)<br />

scattered intensity ~ f 2 2<br />

= f + 2f0f ' + (f '<br />

0<br />

2 +f ” 2 )<br />

normal SAXS<br />

correlations btw. edge element & others<br />

correlations between labelled phases only<br />

Side effects...<br />

... not entirely unwanted!<br />

● experiment at 18keV<br />

-> compressed q scale<br />

● difference patterns reveal<br />

which features are due to edge<br />

element even if partial <strong>scattering</strong><br />

functions cannot be computed


● photon energy calibrated to<br />

Zr foil at 17.993keV<br />

● 8eV chemical shift of edge in<br />

unreacted sample<br />

● edge shifts by several eV as<br />

reaction progresses<br />

Chemical contrast<br />

ASAXS:<br />

3 energies below the edge<br />

=> determine partial<br />

structure factors<br />

but: chemical edge shift


● photon energy calibrated to<br />

Zr foil at 17.993keV<br />

● 8eV chemical shift of edge in<br />

unreacted sample<br />

● edge shifts by several eV as<br />

reaction progresses<br />

Chemical contrast<br />

Energy-dependent SAXS:<br />

compare above/below edge<br />

=> maximum contrast with<br />

little uncertainty w.r.t. chemical<br />

shifts<br />

but: fluorescence


1. Absorption measurement<br />

gives f":<br />

f"(E) ~ E µ(E)<br />

2. Extend the measured range<br />

according to tabulated data<br />

3. Kramers-Kronig transform<br />

gives f':<br />

Finding the resonance


<strong>Small</strong>-<strong>angle</strong> x-<strong>ray</strong> <strong>scattering</strong><br />

Anomalous SAXS<br />

Nanoscale refractory analogue<br />

- Gelation & Calcination<br />

- Sintering


Precursors and ceramics under heat load<br />

How do particles in a ceramic<br />

bond to the matrix?<br />

annealing<br />

reactive<br />

sintering


<strong>Small</strong>-<strong>angle</strong> x-<strong>ray</strong> <strong>scattering</strong><br />

Anomalous SAXS<br />

Nanoscale refractory analogue<br />

- Gelation & Calcination<br />

- Sintering


1. Gelation.<br />

Zr(OiPr) 4 + 4 H 2 O = Zr(OH) 4 + 4 iPrOH<br />

In-situ SAXS experiment<br />

at Daresbury - 6.2<br />

0.1 1. q / nm 10.<br />

-1<br />

Making a sol-gel ceramic


1. Gelation.<br />

Zr(OiPr) 4 + 4 H 2 O = Zr(OH) 4 + 4 iPrOH<br />

beamstop<br />

0.1 1. q / nm 10.<br />

-1<br />

2. Drying.<br />

structure<br />

factor<br />

macro<br />

scatterers<br />

Making a sol-gel ceramic<br />

individual<br />

scatterers<br />

Zr(OH) 4 = ZrO 2 ∙ 2 H 2 O and polymerisation<br />

3. Calcination.<br />

ZrO 2 ∙ 2 H 2 O = ZrO 2 + 2 H 2 O and crystallisation<br />

10. q / nm 50.<br />

-1<br />

Polymerisation precedes crystallisation.<br />

Nuclei form at room temperature,<br />

crystallisation requires ~800 o C to activate.


<strong>Small</strong>-<strong>angle</strong> x-<strong>ray</strong> <strong>scattering</strong><br />

Anomalous SAXS<br />

Nanoscale refractory analogue<br />

- Gelation & Calcination<br />

- Sintering


In-situ sintering experiments at Daresbury-6.2<br />

● fast tunable monochromator<br />

● energy up to 18keV (Zr-K edge)<br />

● Rapid detector family<br />

● pellet furnace (to 1100 o C)<br />

Fig. from CC Tang et al., Nucl. Instr. Meth.<br />

Phys. Res. B222 (2004) 659<br />

T/ o C<br />

300<br />

275<br />

250<br />

0 2 5 10 1517<br />

time<br />

each temperature step (17min) comprises:<br />

ramp at 12.5K/min (2min)<br />

equilibration (3min)<br />

18.02keV experiment (5min)<br />

18.05keV experiment (5min)<br />

17.98eV experiment (90s)


In-situ sintering experiments at Daresbury-6.2<br />

0.1 1 4<br />

350C<br />

725C


Guinier regime<br />

What can we learn from a SAXS pattern?<br />

Porod slope<br />

at larger q<br />

q -n where n<br />

represents the<br />

surface morphology<br />

n=4: smooth<br />

3


Guinier radius: matrix softening & agglomeration<br />

Littleton<br />

softening<br />

point<br />

agglomeration<br />

& densification<br />

slow<br />

growth


Porod slope: matrix softening & agglomeration<br />

below edge:<br />

zirconia-air<br />

contrast<br />

above edge:<br />

glass-air<br />

contrast<br />

above<br />

edge<br />

below<br />

edge<br />

high-T:<br />

zirconia-glass<br />

contrast


<strong>Small</strong>-<strong>angle</strong> x-<strong>ray</strong> <strong>scattering</strong><br />

Anomalous SAXS<br />

Nanoscale refractory analogue<br />

- Gelation & Calcination<br />

- Sintering


Summary: Energy-dependent SAXS<br />

Standard SAXS<br />

- characteristic length scales<br />

- interface morphology<br />

- but: messy in complex systems<br />

Difference SAXS above/below edge<br />

- chemical contrast<br />

- but: fluorescence<br />

Anomalous SAXS<br />

- partial structure factors<br />

- but: very sensitive to chemical shifts


Summary: Refractory ceramics<br />

Gelation Calcination Sintering<br />

Initial formation of a<br />

polymer network<br />

Corrosion<br />

ZrO2 component of<br />

the refractory is less<br />

prone to corrosion<br />

by K + than by Na +<br />

Polymerisation, then<br />

crystallisation<br />

glass grain surfaces<br />

becomes smoother near<br />

the softening point<br />

pores consolidate<br />

ZrO2 particles agglomerate<br />

inside the pores


Rudolf Winter<br />

Daniel Le Messurier<br />

Andy Lyons<br />

Kristin Høydalsvik<br />

Chris Martin 1<br />

Graham Clark 1<br />

Armin Hoell 2<br />

Dragomir Tatchev 2<br />

Sylvio Haas 2<br />

<strong>Small</strong>-<strong>angle</strong> x-<strong>ray</strong> <strong>scattering</strong>...<br />

...and crystallisation processes<br />

Materials Physics<br />

Ffiseg Defnyddiau<br />

1 STFC Daresbury Laboratory<br />

2 Hahn-Meitner Institut Berlin

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!