11.07.2015 Views

Study on the chemical constituents of the essential oil of the leaves ...

Study on the chemical constituents of the essential oil of the leaves ...

Study on the chemical constituents of the essential oil of the leaves ...

SHOW MORE
SHOW LESS
  • No tags were found...

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<str<strong>on</strong>g>Study</str<strong>on</strong>g> <strong>on</strong> <strong>the</strong> <strong>chemical</strong> c<strong>on</strong>stituents <strong>of</strong> <strong>the</strong> <strong>essential</strong> <strong>oil</strong> <strong>of</strong> <strong>the</strong> <strong>leaves</strong> <strong>of</strong> Eucalyptus globulus Labill / Asian Journal <strong>of</strong>Traditi<strong>on</strong>al Medicines, 2009, 4 (4)The <strong>leaves</strong> <strong>of</strong> Eucalyptus globulus Labill werecollected from <strong>the</strong> Cangshan mountain regi<strong>on</strong> in <strong>the</strong>Yunnan Province <strong>of</strong> China in May <strong>of</strong> 2007. Thespecimen was botanically identified by Pr<strong>of</strong>essor JingmingJIA (School <strong>of</strong> Traditi<strong>on</strong>al Chinese MateriaMedica, Shenyang Pharmaceutical University,Shenyang). All solvents and reagents were <strong>of</strong>analytical grade.Extracti<strong>on</strong> and isolati<strong>on</strong> <strong>of</strong> <strong>essential</strong> <strong>oil</strong>The fresh <strong>leaves</strong> were completely immersed inwater overnight, <strong>the</strong>n water-distilled in a full glassClevenger-type apparatus to giving greenish-yellow<strong>oil</strong>. The extracti<strong>on</strong> was carried out for 6 h and<strong>the</strong> <strong>essential</strong> <strong>oil</strong> was dried over anhydrous sodiumsulphate and stored at 4 ºC before being analyzed.The extracti<strong>on</strong> yield <strong>of</strong> this <strong>essential</strong> <strong>oil</strong> was 0.18 %(w/w).GC-MS analysis and identificati<strong>on</strong>A Shimadzu GC-17A gas chromatographequipped with a GCMS-QP5050 column was used.This was coupled to a Mass spectrometer operated innegative <strong>chemical</strong> i<strong>on</strong>izati<strong>on</strong> mode. A fused-silicacapillarity column (30 m, 0.25 mm I.D., 0.25 mm filmthickness) with <strong>chemical</strong>ly b<strong>on</strong>ded phases DB-1(J&WScientific) was used for <strong>the</strong> GC separati<strong>on</strong>. The initialoven temperature was 60 ºC , this was held for 4 min<strong>the</strong>n raised at <strong>the</strong> rate <strong>of</strong> 4 ºC/min to 220 ºC, and <strong>the</strong>nheld for 15 min. O<strong>the</strong>r operating c<strong>on</strong>diti<strong>on</strong>s were asfollows: carrier gas, He (99.999 %), with a flow rate<strong>of</strong> 1 ml/min; injector temperature, 280 ºC; split ratio,10:1. Mass spectra were recorded at 70 eV and <strong>the</strong>mass range was from m/z 33 to 500 amu.The c<strong>on</strong>stituents were identified by comparis<strong>on</strong> <strong>of</strong><strong>the</strong>ir mass spectra with those <strong>of</strong> NIST02 library datafor <strong>the</strong> GC-MS system (Fig. 2-5). The results werefur<strong>the</strong>r c<strong>on</strong>firmed by comparis<strong>on</strong> <strong>of</strong> <strong>the</strong>ir retenti<strong>on</strong>indices <strong>of</strong> <strong>the</strong> compounds with literature data [10, 11] .Results and discussi<strong>on</strong>The total i<strong>on</strong> chromatogram <strong>of</strong> <strong>the</strong> <strong>essential</strong> <strong>oil</strong> isdisplayed in Fig. 1. The amounts <strong>of</strong> <strong>the</strong> comp<strong>on</strong>entsfrom <strong>the</strong> volatile <strong>oil</strong> were determinated by <strong>the</strong>peak area normalizati<strong>on</strong> method. This presence <strong>of</strong>several overlapping peaks shows <strong>the</strong> complexity<strong>of</strong> <strong>the</strong> mixture. The <strong>chemical</strong> c<strong>on</strong>stituents <strong>of</strong> <strong>the</strong><strong>essential</strong> <strong>oil</strong> are listed in Table 1. The <strong>essential</strong> <strong>oil</strong>c<strong>on</strong>sisted mainly <strong>of</strong> oxygenated m<strong>on</strong>oterpenes,m<strong>on</strong>oterpenes and oxygenated sesquiterpenes. Of<strong>the</strong>se, 1, 8-eucalyptol (72.71 %), α-terpineol (2.54 %),terpinen-4-ol (0.34 %), and linalool (0.24 %) were<strong>the</strong> main oxygenated m<strong>on</strong>oterpenes, while α-pinene(9.22 %), and β-pinene (0.4 %) were <strong>the</strong> mainm<strong>on</strong>oterpenes and α-eudesmol (0.39 %), (-)-globulol(2.77 %), and epiglobulol (0.44 %) were <strong>the</strong> mainsesquiterpene. Several significant compounds wereFig. 1. TIC <strong>of</strong> <strong>essential</strong> <strong>oil</strong> <strong>of</strong> Eucalyptus globulus Labill <strong>leaves</strong>Fig.1 TIC <strong>of</strong> <strong>essential</strong> <strong>oil</strong> <strong>of</strong> Eucalyptus globulus Labill <strong>leaves</strong>135


<str<strong>on</strong>g>Study</str<strong>on</strong>g> <strong>on</strong> <strong>the</strong> <strong>chemical</strong> c<strong>on</strong>stituents <strong>of</strong> <strong>the</strong> <strong>essential</strong> <strong>oil</strong> <strong>of</strong> <strong>the</strong> <strong>leaves</strong> <strong>of</strong> Eucalyptus globulus Labill / Asian Journal <strong>of</strong>Traditi<strong>on</strong>al Medicines, 2009, 4 (4)Table 1. Chemical c<strong>on</strong>stituents <strong>of</strong> <strong>the</strong> <strong>leaves</strong> <strong>essential</strong> <strong>oil</strong> <strong>of</strong> Eucalyptus globulus LabillNo. Retenti<strong>on</strong> time Molecular formula Compound Relative c<strong>on</strong>tent (%)1 6.993 C 10H 16α-pinene 9.222 7.237 C 10H 16camphene 0.053 8.150 C 10H 16β-pinene 0.44 8.679 C 10H 16β-sabinene 0.255 9.113 C 10H 16lim<strong>on</strong>ene 0.046 10.785 C 10H 18O 1, 8-eucalyptol 72.717 11.012 C 10H 16cis-β-ocimene 0.038 11.324 C 10H 16γ-terpinene 0.119 11.595 - unidentified 0.0710 12.151 - unidentified 0.0711 12.362 C 10H 16terpinolene 0.1912 12.674 C 10H 18O linalool 0.2413 13.084 C 10H 18O fenchol 0.0514 13.282 C 10H 16O1, 7, 7-trimethylbicyclo [2.2.1] hept-5-en-2-ol0.0315 14.020 C 10H 16O pinocarveol 0.3616 14.563 C 10H 14O5, 5-dimethylene-3-hylenebicyclo [2.2.1]heptan-2-<strong>on</strong>e0.1117 14.727 C 10H 18O 2, 6-dimethyl-1, 5, 7-octatrien-3-ol 0.0618 14.991 C 11H 18O 2isobornyl formate 0.1419 15.533 C 10H 18O terpien-4-ol 0.3420 16.156 C 10H 18O α-terpineol 2.5421 17.013 C 10H 16O trans-carveol 0.0922 17.258 C 10H 16O2-methylene-5-(1-methyle<strong>the</strong>nyl)cyclohexanol0.0823 18.463 C 10H 18O 3, 7-dimethyl-2, 6-octadien-1-ol 0.1324 21.493 C 12H 20O 3exo-2-hydroxycineole 0.0425 22.073 C 12H 20O 2α-terpineol acetate 3.126 23.061 C 12H 20O 2geranyl acetate 0.7127 23.210 C 15H 24isoledene 0.0628 23.927 C 12H 20O 2isopulegol acetate 0.0429 24.443 C 15H 24α-gurjunene 0.130 24.685 C 12H 18O 2(-)-cis-carvyl acetate 0.0331 24.925 C 15H 24β-panasinsene 0.0332 25.158 C 15H 24β-gurjunene 0.0733 25.534 C 15H 24alloaromadendrene 2.4734 26.127 C 15H 24aromadendrene 0.6135 26.444 C 13H 18O 22-phenylethyl isovalerate 0.0936 26.850 C 15H 24eudesma-4(14), 11-diene 0.0537 26.999 C 15H 24α-guaiene 0.0738 27.235 C 15H 24(+)-ledene 0.2439 27.872 C 15H 22dehydroaromadendrene 0.0940 29.171 C 15H 26O epiglobulol 0.44136


<str<strong>on</strong>g>Study</str<strong>on</strong>g> <strong>on</strong> <strong>the</strong> <strong>chemical</strong> c<strong>on</strong>stituents <strong>of</strong> <strong>the</strong> <strong>essential</strong> <strong>oil</strong> <strong>of</strong> <strong>the</strong> <strong>leaves</strong> <strong>of</strong> Eucalyptus globulus Labill / Asian Journal <strong>of</strong>Traditi<strong>on</strong>al Medicines, 2009, 4 (4)C<strong>on</strong>tinued table 141 29.311 C 15H 26O cubenol 0.0842 29.422 C 15H 26O ledol 0.0643 29.621 C 15H 24O spathulenol 0.1144 30.068 C 15H 26O (-)-globulol 2.7745 44 30.261 30.068 C 15 H 26 CO 15H 26O α-cadinol (-)-globulol 2.77 0.5746 30.490 C 15H 26O γ-eudesmol 0.2245 30.261 C 15 H 26 O -cadinol 0.5747 30.595 - unidentified 0.1248 44 31.084 30.068 15 26 C 15H 26O α-eudesmol (-)-globulol 2.7746 30.490 C 0.3915 H 26 O -eudesmol 0.2249 31.766 C 15H 26O β-eudesmol 0.0445 30.261 C 15 H 26 O -cadinol 0.5750 47 31.886 30.595 - C 15H 26O 1, unidentified 2, 3, 3a, 4, 5, 6, 7-octahyfro-α, 3, 8-t-5- 0.12 0.07azulenemethanol46 30.490 15 26 -eudesmol 0.2248 31.084 C 15 H 26 O -eudesmol 0.3947 30.595 - unidentified 0.12α-terpineol 49 acetate 31.766 (3.1 %), geranyl C 15 H 26 Oacetate (0.71 %), -eudesmol c<strong>on</strong>stituents are similar to those given 0.04 in <strong>the</strong> literature[10, 11]L-pinocarveol 48 (0.36 31.084 %), β-sabinene C 15 H 26 O (0.25 %), and -eudesmol . Some c<strong>on</strong>stituents, such as β-sabinene, 0.39 linalool,1,2,3,3a,4,5,6,7-octahyfro-,3,8-t-5-azulenemetterpinolene 50 (0.1931.886 %). A porti<strong>on</strong> C (0.26 %) <strong>of</strong> <strong>the</strong> total isoledene, ledene, epiglobulol, and cubenol had no49 31.766 15 Hc<strong>on</strong>stituents remains unidentified. 15 26 O0.0726 -eudesmol 0.04literature hanol data [10, 11] . This possibly may be due to <strong>the</strong>The yield <strong>of</strong> <strong>essential</strong> <strong>oil</strong> and <strong>the</strong> c<strong>on</strong>tent 1,2,3,3a,4,5,6,7-octahyfro-,3,8-t-5-azulenemet<strong>of</strong> fact that <strong>the</strong> trees grown in different regi<strong>on</strong>s may exhibit8-eucalyptol 50 are 31.886 within <strong>the</strong> C 15 values H 26 O reported in <strong>the</strong> differences in <strong>the</strong>ir <strong>chemical</strong> c<strong>on</strong>stituents. 0.07literature [12] and <strong>the</strong> percentage c<strong>on</strong>tents <strong>of</strong> <strong>the</strong> mainhanolAFig.2 The MS <strong>of</strong> - pinene in <strong>the</strong> <strong>essential</strong> <strong>oil</strong> <strong>of</strong> Eucalyptus globulus Labill <strong>leaves</strong>BFig.2 The MS <strong>of</strong> - pinene in <strong>the</strong> <strong>essential</strong> <strong>oil</strong> <strong>of</strong> Eucalyptus globulus Labill <strong>leaves</strong>Fig. 2. A. The Fig.3 MS <strong>of</strong> The α-pinene MS <strong>of</strong> in - <strong>the</strong> <strong>essential</strong> pinene in <strong>oil</strong> NIST02 <strong>of</strong> Eucalyptus library globulus data <strong>of</strong> Labill <strong>the</strong> GC-MS leave; B. system The MS <strong>of</strong> α-pinene in NIST02 librarydata <strong>of</strong> <strong>the</strong> GC-MS systemFig.3 The MS <strong>of</strong> - pinene in NIST02 library data <strong>of</strong> <strong>the</strong> GC-MS system137


<str<strong>on</strong>g>Study</str<strong>on</strong>g> <strong>on</strong> <strong>the</strong> <strong>chemical</strong> c<strong>on</strong>stituents <strong>of</strong> <strong>the</strong> <strong>essential</strong> <strong>oil</strong> <strong>of</strong> <strong>the</strong> <strong>leaves</strong> <strong>of</strong> Eucalyptus globulus Labill / Asian Journal <strong>of</strong>Traditi<strong>on</strong>al Medicines, 2009, 4 (4)AFig.4 The MS <strong>of</strong> 1,8-eucalyptol in <strong>the</strong> <strong>essential</strong> <strong>oil</strong> <strong>of</strong> Eucalyptus globulus Labill <strong>leaves</strong>Fig.4 The MS <strong>of</strong> 1,8-eucalyptol in <strong>the</strong> <strong>essential</strong> <strong>oil</strong> <strong>of</strong> Eucalyptus globulus Labill <strong>leaves</strong>Fig.4 The MS <strong>of</strong> 1,8-eucalyptol in <strong>the</strong> <strong>essential</strong> <strong>oil</strong> <strong>of</strong> Eucalyptus globulus Labill <strong>leaves</strong>BFig.4 The MS <strong>of</strong> 1,8-eucalyptol in <strong>the</strong> <strong>essential</strong> <strong>oil</strong> <strong>of</strong> Eucalyptus globulus Labill <strong>leaves</strong>Fig.5 The MS <strong>of</strong> <strong>the</strong> 1,8-eucalyptol in NIST02 library data <strong>of</strong> <strong>the</strong> GC-MS systemFig. 3. A. The MS <strong>of</strong> 1, 8-eucalyptol in <strong>the</strong> <strong>essential</strong> <strong>oil</strong> <strong>of</strong> Eucalyptus globulus Labill <strong>leaves</strong>; B. The MS <strong>of</strong> <strong>the</strong> 1, 8-eucalyptol inFig.5 The MS <strong>of</strong> <strong>the</strong> 1,8-eucalyptol in NIST02 library data <strong>of</strong> <strong>the</strong> GC-MS systemNIST02 library data <strong>of</strong> <strong>the</strong> GC-MS systemFig.5 The MS <strong>of</strong> <strong>the</strong> 1,8-eucalyptol in NIST02 library data <strong>of</strong> <strong>the</strong> GC-MS systemAFig.5 The MS <strong>of</strong> <strong>the</strong> 1,8-eucalyptol in NIST02 library data <strong>of</strong> <strong>the</strong> GC-MS systemFig.6 The MS <strong>of</strong> alloaromadendrene in <strong>the</strong> <strong>essential</strong> <strong>oil</strong> <strong>of</strong> Eucalyptus globulus Labill <strong>leaves</strong>Fig.6 The MS <strong>of</strong> alloaromadendrene in <strong>the</strong> <strong>essential</strong> <strong>oil</strong> <strong>of</strong> Eucalyptus globulus Labill <strong>leaves</strong>BFig.6 The MS <strong>of</strong> alloaromadendrene in <strong>the</strong> <strong>essential</strong> <strong>oil</strong> <strong>of</strong> Eucalyptus globulus Labill <strong>leaves</strong>Fig.6 The MS <strong>of</strong> alloaromadendrene in <strong>the</strong> <strong>essential</strong> <strong>oil</strong> <strong>of</strong> Eucalyptus globulus Labill <strong>leaves</strong>Fig.7 The MS <strong>of</strong> <strong>the</strong> alloaromadendrene in NIST02 library data <strong>of</strong> <strong>the</strong> GC-MS systemFig. 4. A. The MS <strong>of</strong> alloaromadendrene in <strong>the</strong> <strong>essential</strong> <strong>oil</strong> <strong>of</strong> Eucalyptus globulus Labill <strong>leaves</strong>; B. The MS <strong>of</strong> <strong>the</strong>alloaromadendrene in NIST02 library data <strong>of</strong> <strong>the</strong> GC-MS systemFig.7 The MS <strong>of</strong> <strong>the</strong> alloaromadendrene in NIST02 library data <strong>of</strong> <strong>the</strong> GC-MS systemFig.7 The MS <strong>of</strong> <strong>the</strong> alloaromadendrene in NIST02 library data <strong>of</strong> <strong>the</strong> GC-MS system138Fig.7 The MS <strong>of</strong> <strong>the</strong> alloaromadendrene in NIST02 library data <strong>of</strong> <strong>the</strong> GC-MS system


<str<strong>on</strong>g>Study</str<strong>on</strong>g> <strong>on</strong> <strong>the</strong> <strong>chemical</strong> c<strong>on</strong>stituents <strong>of</strong> <strong>the</strong> <strong>essential</strong> <strong>oil</strong> <strong>of</strong> <strong>the</strong> <strong>leaves</strong> <strong>of</strong> Eucalyptus globulus Labill / Asian Journal <strong>of</strong>Traditi<strong>on</strong>al Medicines, 2009, 4 (4)AFig.8 The MS <strong>of</strong> (-)-globulol in <strong>the</strong> <strong>essential</strong> <strong>oil</strong> <strong>of</strong> Eucalyptus globulus Labill <strong>leaves</strong>BFig.8 The MS <strong>of</strong> (-)-globulol in <strong>the</strong> <strong>essential</strong> <strong>oil</strong> <strong>of</strong> Eucalyptus globulus Labill <strong>leaves</strong>Fig. 5. A. The MS Fig.9 <strong>of</strong> (-)-globulol The MS <strong>of</strong> in (-)-globulol <strong>the</strong> <strong>essential</strong> in <strong>oil</strong> NIST02 <strong>of</strong> Eucalyptus library globulus data <strong>of</strong> Labill <strong>the</strong> GC-MS <strong>leaves</strong>; B. system The MS <strong>of</strong> (-)-globulol in NIST02library data <strong>of</strong> <strong>the</strong> GC-MS systemResults and Discussi<strong>on</strong>C<strong>on</strong>clusi<strong>on</strong> Fig.9 The MS <strong>of</strong> (-)-globulol in NIST02 library [3] data Gray <strong>of</strong> AM, <strong>the</strong> Abdel-Wahab GC-MS system YHA, Flatt PR. The traditi<strong>on</strong>alplant treatment, sambucus nigra (elder), exhibits insulinlikeand insulin-releasingIn <strong>the</strong> The present total i<strong>on</strong> work, chromatogram 47 c<strong>on</strong>stituents <strong>of</strong> <strong>the</strong> <strong>of</strong> <strong>essential</strong> <strong>the</strong> <strong>oil</strong> is displayed in Fig.1. Theacti<strong>on</strong>samountsin vitro.<strong>of</strong> <strong>the</strong>J Nutr, 2000,<strong>essential</strong> <strong>oil</strong> from Eucalyptus globulus Labill grown in 130(1): 15-20.comp<strong>on</strong>ents from <strong>the</strong> volatile <strong>oil</strong> were determinated by <strong>the</strong> peak area normalizati<strong>on</strong> method. This<strong>the</strong> Cangshan Results and mountain Discussi<strong>on</strong> regi<strong>on</strong> in <strong>the</strong> Yunnan Province [4] Ikawati Z, Wahyu<strong>on</strong>o S, Maeyama K. Screening <strong>of</strong>several Ind<strong>on</strong>esian medicinal plants for <strong>the</strong>ir inhibitory<strong>of</strong> China presence were successfully <strong>of</strong> several overlapping identified and peaks determined. shows <strong>the</strong> complexity <strong>of</strong> <strong>the</strong> mixture. The <strong>chemical</strong>The total i<strong>on</strong> chromatogram <strong>of</strong> <strong>the</strong> <strong>essential</strong> <strong>oil</strong> is displayed effects <strong>on</strong> histamine in Fig.1. The release amounts from RBL-2H3 <strong>of</strong> <strong>the</strong> cells. JA comparis<strong>on</strong> with literature data showed that <strong>the</strong> Ethnopharmacol, 2001, 75(2-3): 249-56.c<strong>on</strong>stituents <strong>of</strong> <strong>the</strong> <strong>essential</strong> <strong>oil</strong> are listed in Table 1. The <strong>essential</strong> <strong>oil</strong> c<strong>on</strong>sisted mainly <strong>of</strong>major comp<strong>on</strong>ents c<strong>on</strong>stituents from in <strong>the</strong> <strong>essential</strong> volatile <strong>oil</strong> <strong>oil</strong> were determinated similar by [5] <strong>the</strong> Cimanga peak area K, Kambu normalizati<strong>on</strong> K, T<strong>on</strong>a L, method. Apers S, This De Bruyne T,to those oxygenated reported m<strong>on</strong>oterpenes, elsewhere, although m<strong>on</strong>oterpenes <strong>the</strong>re and were oxygenated sesquiterpenes.Hermans N, TottéOfJ,<strong>the</strong>se,Pieters1,8-eucalyptolL, Vlietinck AJ. Correlati<strong>on</strong>presence <strong>of</strong> several overlapping peaks shows <strong>the</strong> complexity between <strong>chemical</strong> <strong>of</strong> <strong>the</strong> mixture. compositi<strong>on</strong> The and <strong>chemical</strong> antibacterial activitydifferences in <strong>the</strong> percentage compositi<strong>on</strong>. Some trace(72.71%), α-terpineol (2.54%), terpinen-4-ol (0.34%), and <strong>of</strong> <strong>essential</strong> linalool <strong>oil</strong>s <strong>of</strong> (0.24%) some aromatic were medicinal <strong>the</strong> main plants growingor minor c<strong>on</strong>stituents <strong>chemical</strong> <strong>of</strong> c<strong>on</strong>stituents <strong>the</strong> <strong>essential</strong> have <strong>oil</strong> not are reported listed in in Table 1. in The <strong>the</strong> <strong>essential</strong> democratic <strong>oil</strong> republic c<strong>on</strong>sisted <strong>of</strong> C<strong>on</strong>go. mainly J Ethnophamacol, <strong>of</strong><strong>the</strong> literature. oxygenated m<strong>on</strong>oterpenes, while α-pinene (9.22%), and 2002, β-pinene 79(2): 213-20. (0.4%) were <strong>the</strong> mainoxygenated m<strong>on</strong>oterpenes, m<strong>on</strong>oterpenes and oxygenated [6] Osawa sesquiterpenes. K, Yasuda Of H. Macrocarpals <strong>the</strong>se, 1,8-eucalyptol H, I and J from <strong>the</strong>m<strong>on</strong>oterpenes and α-eudesmol (0.39%), (-)-globulol (2.77%), <strong>leaves</strong> and <strong>of</strong> Eucalyptus epiglobulol(0.44%) globulus. J Nat were Prod, <strong>the</strong> 1996, 59(9):References (72.71%), α-terpineol (2.54%), terpinen-4-ol (0.34%), 823-7. and linalool (0.24%) were <strong>the</strong> main[1] Liu main YM, sesquiterpene. Li SF, Wu YT. Several Advances significant in <strong>the</strong> study compounds <strong>of</strong> [7] were Dessi α-terpineol MA, Deiana acetate M, Rosa (3.1%), A, Piredda geranyl M, CottigliaEucalyptus oxygenated globulus m<strong>on</strong>oterpenes, Labill. J Chin while Med Materials, α-pinene 2003, (9.22%), and F, B<strong>on</strong>signore β-pinene L, (0.4%) Deidda were D, Pompei <strong>the</strong> R, main Cor<strong>on</strong>giu FP.26(6): acetate 461-3. (0.71%), L-pinocarveol(0.36%), β-sabinene (0.25%), Antioxidant and terpinolene activity <strong>of</strong> (0.19%). extracts A from porti<strong>on</strong> plants growing in[2] Swanst<strong>on</strong>-Flatt m<strong>on</strong>oterpenes SK, Day and C, α-eudesmol Bailey CJ, Flatt (0.39%), PR. Traditi<strong>on</strong>al (-)-globulol (2.77%), Sardinia. and Phyto<strong>the</strong>r epiglobulol(0.44%) Res, 2001, 15(6): were 511-8. <strong>the</strong>plant (0.26%) treatments <strong>of</strong> <strong>the</strong> total for diabetes. c<strong>on</strong>stituents Studies remains normal unidentified. and [8] Yun BS, Lee IK, Kim JP, Chung SH, Shim GS, Yoo ID.streptozotocin main sesquiterpene. diabetic mice. Several Diabetologia, significant 1990, compounds 33(8): were Lipid α-terpineol peroxidati<strong>on</strong> acetate inhibitory (3.1%), activity <strong>of</strong> geranyl some c<strong>on</strong>stituents462-4. The yield <strong>of</strong> <strong>essential</strong> <strong>oil</strong> and <strong>the</strong> c<strong>on</strong>tent <strong>of</strong> 1,8-eucalyptol isolated are from within <strong>the</strong> stem <strong>the</strong> bark values <strong>of</strong> Eucalyptus reported in globulus. Archacetate (0.71%), L-pinocarveol(0.36%), β-sabinene (0.25%), and terpinolene (0.19%). A porti<strong>on</strong><strong>the</strong> literature [12] and <strong>the</strong> percentage c<strong>on</strong>tents <strong>of</strong> <strong>the</strong> main c<strong>on</strong>stituents are similar to those given in(0.26%) <strong>of</strong> <strong>the</strong> total c<strong>on</strong>stituents remains unidentified.The yield <strong>of</strong> <strong>essential</strong> <strong>oil</strong> and <strong>the</strong> c<strong>on</strong>tent <strong>of</strong> 139 1,8-eucalyptol are within <strong>the</strong> values reported in


<str<strong>on</strong>g>Study</str<strong>on</strong>g> <strong>on</strong> <strong>the</strong> <strong>chemical</strong> c<strong>on</strong>stituents <strong>of</strong> <strong>the</strong> <strong>essential</strong> <strong>oil</strong> <strong>of</strong> <strong>the</strong> <strong>leaves</strong> <strong>of</strong> Eucalyptus globulus Labill / Asian Journal <strong>of</strong>Traditi<strong>on</strong>al Medicines, 2009, 4 (4)Pharm Res, 2000, 23(2): 147-50.[9] Luo JL, S<strong>on</strong>g YF. Chemical c<strong>on</strong>stituents <strong>of</strong> <strong>the</strong> <strong>essential</strong> <strong>oil</strong>from <strong>the</strong> <strong>leaves</strong> <strong>of</strong> three species <strong>of</strong> Eucalyptus. Nat ProdRes Dev, 1991, 3(3), 79-83.[10] Li H, Madden JL. Analysis <strong>of</strong> Leaves Oils from aEucalyptus Species Trial. Biochem Syst Ecol, 1995,23(2): 167-77.[11] Silvestre AJD, Cavaleiro JAS, Delm<strong>on</strong>d B, Filliatre C,Bourgeois G. Analysis <strong>of</strong> <strong>the</strong> variati<strong>on</strong> <strong>of</strong> <strong>the</strong> <strong>essential</strong> <strong>oil</strong>compositi<strong>on</strong> <strong>of</strong> Eucalyptus globulus Labill from Portugalusing multivariate statistical analysis. Ind Crop Prod,1997, 6(1): 27-33.[12] Lassak EB. The Australian Eucalyptus <strong>oil</strong> industry, pastand present. Chem Australia, 1998, 55(11): 396-8.140

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!