28.11.2012 Views

Sea Quark and Gluon Polarization in the Nucleon

Sea Quark and Gluon Polarization in the Nucleon

Sea Quark and Gluon Polarization in the Nucleon

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

538 Brazilian Journal of Physics, vol. 37, no. 2B, June, 2007<br />

<strong>Sea</strong> <strong>Quark</strong> <strong>and</strong> <strong>Gluon</strong> <strong>Polarization</strong> <strong>in</strong> <strong>the</strong> <strong>Nucleon</strong><br />

D. de Florian, G. A. Navarro, <strong>and</strong> R. Sassot<br />

Departamento de Física, Universidad de Buenos Aires,<br />

Ciudad Universitaria, Pab.1 (1428) Buenos Aires, Argent<strong>in</strong>a<br />

Received on 29 August, 2006<br />

We present results on <strong>the</strong> quark <strong>and</strong> gluon polarization <strong>in</strong> <strong>the</strong> nucleon obta<strong>in</strong>ed <strong>in</strong> a comb<strong>in</strong>ed next to lead<strong>in</strong>g<br />

order analysis to <strong>the</strong> available <strong>in</strong>clusive <strong>and</strong> semi-<strong>in</strong>clusive polarized deep <strong>in</strong>elastic scatter<strong>in</strong>g data. Us<strong>in</strong>g <strong>the</strong><br />

Lagrange multiplier method, we asses <strong>the</strong> uncerta<strong>in</strong>ty <strong>in</strong>herent to <strong>the</strong> extraction of <strong>the</strong> different sp<strong>in</strong> dependent<br />

parton densities <strong>in</strong> a QCD global fit, <strong>and</strong> <strong>the</strong> impact of <strong>the</strong> <strong>in</strong>creased set of semi-<strong>in</strong>clusive data now available.<br />

Keywords: Semi-Inclusive DIS; Perturbative QCD<br />

I. INTRODUCTION<br />

For more than fifteen years, polarized <strong>in</strong>clusive deep <strong>in</strong>elastic<br />

scatter<strong>in</strong>g (pDIS) has been <strong>the</strong> ma<strong>in</strong> source of <strong>in</strong>formation<br />

on how <strong>the</strong> <strong>in</strong>dividual partons <strong>in</strong> <strong>the</strong> nucleon are polarized at<br />

very short distances.<br />

Many alternative experiments have been conceived to improve<br />

this situation. The most mature among <strong>the</strong>m are those<br />

based on polarized semi-<strong>in</strong>clusive deep <strong>in</strong>elastic scatter<strong>in</strong>g<br />

(pSIDIS), i.e. a pDIS experiment where a particular hadron<br />

is tagged <strong>in</strong> <strong>the</strong> hadronic f<strong>in</strong>al state. Choos<strong>in</strong>g different target<br />

<strong>and</strong> f<strong>in</strong>al state hadrons, <strong>the</strong> respective cross sections are sensitive<br />

to different comb<strong>in</strong>ations of flavored quarks <strong>and</strong> antiquarks,<br />

to be disentangled. These experiments began with <strong>the</strong><br />

pioneer<strong>in</strong>g efforts of SMC, <strong>in</strong> <strong>the</strong> late n<strong>in</strong>eties [1], followed<br />

by those of HERMES at DESY [2], <strong>and</strong> lately COMPASS at<br />

CERN [3], <strong>and</strong> are planned to be improved at <strong>the</strong> Thomas Jefferson<br />

National Laboratory (JLAB) <strong>in</strong> <strong>the</strong> near future [4].<br />

The phenomenological impact of <strong>the</strong> pSIDIS data proved<br />

to be encourag<strong>in</strong>g although scarce <strong>in</strong> <strong>the</strong> <strong>in</strong>itial stage: <strong>the</strong> reduced<br />

number of data <strong>and</strong> <strong>the</strong> relatively large estimated errors,<br />

at best allowed to check <strong>the</strong> consistency between pDIS <strong>and</strong><br />

pSIDIS <strong>in</strong> a variety of sp<strong>in</strong>-flavor symmetry scenarios [5–7].<br />

With <strong>the</strong> availability of larger sets of pSIDIS data, much more<br />

precise, <strong>and</strong> for f<strong>in</strong>al state hadrons <strong>and</strong> targets of different flavor<br />

composition, <strong>the</strong> situation now has changed dramatically.<br />

pSIDIS data have a non negligible weight <strong>in</strong> comb<strong>in</strong>ed global<br />

fits at present, comparable to that of <strong>in</strong>clusive data, <strong>and</strong> also<br />

show clear preferences for <strong>the</strong> light sea quark polarization. It<br />

also helps to constra<strong>in</strong> <strong>the</strong> strange sea quark <strong>and</strong> gluon polarization<br />

complement<strong>in</strong>g <strong>the</strong> <strong>in</strong>formation already obta<strong>in</strong>ed from<br />

pDIS.<br />

In <strong>the</strong> follow<strong>in</strong>g we present results obta<strong>in</strong>ed <strong>in</strong> a comb<strong>in</strong>ed<br />

next to lead<strong>in</strong>g order analysis to <strong>the</strong> recently updated set of<br />

pDIS <strong>and</strong> pSIDIS data [8]. Specifically, we focused on <strong>the</strong> extraction<br />

of sea quark <strong>and</strong> gluon densities, analyz<strong>in</strong>g <strong>the</strong> constra<strong>in</strong><strong>in</strong>g<br />

power of <strong>the</strong> data on <strong>the</strong> <strong>in</strong>dividual densities. As result,<br />

we found not only a complete agreement between pDIS<br />

<strong>and</strong> pSIDIS data, but a very useful complementarity, lead<strong>in</strong>g<br />

to ra<strong>the</strong>r well constra<strong>in</strong>ed densities.<br />

Us<strong>in</strong>g <strong>the</strong> Lagrange multiplier approach [9], we explored<br />

<strong>the</strong> profile of <strong>the</strong> χ 2 function aga<strong>in</strong>st different degrees of polarization<br />

<strong>in</strong> each parton flavor. In this way we obta<strong>in</strong>ed estimates<br />

for <strong>the</strong> uncerta<strong>in</strong>ty <strong>in</strong> <strong>the</strong> net polarization of each fla-<br />

vor, <strong>and</strong> <strong>in</strong> <strong>the</strong> parameters of <strong>the</strong> pPDFs. We compared results<br />

obta<strong>in</strong>ed with <strong>the</strong> two most recent sets of fragmentation<br />

functions. The differences are found to be with<strong>in</strong> conservative<br />

estimates for <strong>the</strong> uncerta<strong>in</strong>ties. Never<strong>the</strong>less, <strong>the</strong>re is a clear<br />

preference for a given set of FF over <strong>the</strong> o<strong>the</strong>r, shown <strong>in</strong> a difference<br />

of several units <strong>in</strong> <strong>the</strong> χ 2 of <strong>the</strong> respective global fits.<br />

In NLO global fits <strong>the</strong> overall agreement between <strong>the</strong>ory <strong>and</strong><br />

<strong>the</strong> full set of data is sensibly higher than <strong>in</strong> LO case.<br />

F<strong>in</strong>ally, we analyze <strong>the</strong> behavior of <strong>the</strong> cross section for<br />

longitud<strong>in</strong>ally polarized proton-proton collisions <strong>in</strong>to neutral<br />

pions with a wide range of pPDFs sets com<strong>in</strong>g from a ra<strong>the</strong>r<br />

conservative uncerta<strong>in</strong>ty <strong>in</strong>terval. This observable is found to<br />

be crucially sensitive to <strong>the</strong> polarized gluon density <strong>and</strong> <strong>the</strong>refore<br />

an <strong>in</strong>valuable tool. We compute <strong>the</strong> required precision to<br />

be reached <strong>in</strong> <strong>the</strong> programed experiments <strong>in</strong> order to constra<strong>in</strong><br />

even fur<strong>the</strong>r this distribution <strong>and</strong> also future sets of pPDFs.<br />

A similar analysis is made for forthcom<strong>in</strong>g pSIDIS data to be<br />

obta<strong>in</strong>ed at JLAB.<br />

II. GLOBAL FIT<br />

In our analysis [8], we followed <strong>the</strong> same conventions <strong>and</strong><br />

def<strong>in</strong>itions for <strong>the</strong> polarized <strong>in</strong>clusive asymmetries <strong>and</strong> parton<br />

densities adopted <strong>in</strong> references [6, 7], however we used more<br />

recent <strong>in</strong>puts, such as unpolarized parton densities [10] <strong>and</strong><br />

<strong>the</strong> respective values for αs. In <strong>the</strong> totally <strong>in</strong>clusive case, <strong>the</strong><br />

sp<strong>in</strong> dependent asymmetries are given by:<br />

A N 1 (x,Q2 ) = gN 1 (x,Q2 )<br />

F N 1 (x,Q2 ) =<br />

gN 1 (x,Q2 )<br />

FN 2 (x,Q2 )/2x[1 + RN (x,Q2 , (1)<br />

)]<br />

where <strong>the</strong> <strong>in</strong>clusive sp<strong>in</strong>-dependent nucleon structure function<br />

g N 1 (x,Q2 ) can be written at NLO as a convolution between polarized<br />

parton densities for quarks <strong>and</strong> gluons, ∆qi(x,Q 2 ) <strong>and</strong><br />

∆g(x,Q 2 ), respectively, <strong>and</strong> coefficient functions ∆Ci(x)[11];<br />

F N 1 (x,Q2 ) is <strong>the</strong> unpolarized nucleon structure function that<br />

can be written <strong>in</strong> terms of F N 2 (x,Q2 ) <strong>and</strong> R, <strong>the</strong> ratio of <strong>the</strong><br />

longitud<strong>in</strong>al to transverse cross section [12].<br />

Analogously, for <strong>the</strong> semi-<strong>in</strong>clusive asymmetries we have:<br />

A Nh<br />

1 (x,Q2 ) |Z �<br />

�<br />

Z dzgNh 1 (x,z,Q2 )<br />

�<br />

Z dzFNh 1 (x,z,Q2 , (2)<br />

)


D. de Florian, G. A. Navarro, <strong>and</strong> R. Sassot 539<br />

TABLE I: Inclusive <strong>and</strong> semi-<strong>in</strong>clusive data used <strong>in</strong> <strong>the</strong> fit.<br />

Collaboration Target F<strong>in</strong>al state # po<strong>in</strong>ts Refs.<br />

EMC proton <strong>in</strong>clusive 10 [16]<br />

SMC proton, deuteron <strong>in</strong>clusive 12, 12 [17]<br />

E-143 proton, deuteron <strong>in</strong>clusive 82, 82 [18]<br />

E-155 proton, deuteron <strong>in</strong>clusive 24, 24 [19]<br />

Hermes proton,deuteron,helium <strong>in</strong>clusive 9, 9, 9 [2]<br />

E-142 helium <strong>in</strong>clusive 8 [20]<br />

E-154 helium <strong>in</strong>clusive 17 [21]<br />

Hall A helium <strong>in</strong>clusive 3 [22]<br />

COMPASS deuteron <strong>in</strong>clusive 12 [3]<br />

SMC proton,deuteron h + , h − 24, 24 [1]<br />

Hermes proton, deuteron, helium h + , h − , π + , π − , K + , K − , K T 36,63,18 [2]<br />

Total 478<br />

TABLE II: χ 2 values <strong>and</strong> first moments for distributions at Q 2 = 10 GeV 2<br />

set χ 2 χ 2 DIS χ2 SIDIS δu δd δs δg δΣ<br />

KRE 430.91 206.01 224.90 -0.0487 -0.0545 -0.0508 0.680 0.284<br />

NLO KKP 436.17 205.66 230.51 0.0866 -0.107 -0.0454 0.574 0.311<br />

KRE 457.54 213.48 244.06 -0.0136 -0.0432 -0.0415 0.121 0.252<br />

LO KKP 448.71 219.72 228.99 0.0497 -0.0608 -0.0365 0.187 0.271<br />

where <strong>the</strong> superscript h denotes <strong>the</strong> hadron detected <strong>in</strong> <strong>the</strong> f<strong>in</strong>al<br />

state, <strong>and</strong> <strong>the</strong> variable z is given by <strong>the</strong> ratio between <strong>the</strong><br />

hadron energy <strong>and</strong> that of <strong>the</strong> spectators <strong>in</strong> <strong>the</strong> target. The<br />

region Z, over which z is <strong>in</strong>tegrated, is determ<strong>in</strong>ed by k<strong>in</strong>ematical<br />

cuts applied when measur<strong>in</strong>g <strong>the</strong> asymmetries. For<br />

<strong>the</strong> sp<strong>in</strong> dependent structure function gN 1 (x,Q2 ), we use <strong>the</strong><br />

NLO expression [13]<br />

Fragmentation functions were taken from ei<strong>the</strong>r [14] or<br />

[15], respectively. We also used <strong>the</strong> flavor symmetry <strong>and</strong> flavor<br />

separation criteria proposed <strong>in</strong> [14], at <strong>the</strong> respective <strong>in</strong>i-<br />

tial scales Q 2 i<br />

. The data sets analyzed <strong>in</strong>clude only po<strong>in</strong>ts with<br />

Q 2 > 1 GeV 2 , listed <strong>in</strong> Table I, <strong>and</strong> total<strong>in</strong>g 478 data po<strong>in</strong>ts.<br />

In Table II we summarize <strong>the</strong> results of <strong>the</strong> best NLO <strong>and</strong><br />

LO global fits to all <strong>the</strong> data listed <strong>in</strong> Table I. We present fits<br />

obta<strong>in</strong>ed us<strong>in</strong>g alternatively fragmentation functions from reference<br />

[14], labeled as KRE, <strong>and</strong> from reference [15], labeled<br />

as KKP.<br />

S<strong>in</strong>ce <strong>the</strong> fit <strong>in</strong>volves 20 parameters, <strong>the</strong> number of degrees<br />

of freedom for <strong>the</strong>se fits is 478-20=458. Consequently, <strong>the</strong><br />

χ 2 values obta<strong>in</strong>ed are excellent for NLO fits <strong>and</strong> very good<br />

for LO. The better agreement between <strong>the</strong>ory <strong>and</strong> experiment<br />

found at NLO, highlights <strong>the</strong> importance of <strong>the</strong> correspond<strong>in</strong>g<br />

QCD corrections, for <strong>the</strong> present level of accuracy achieved by<br />

<strong>the</strong> data.<br />

In NLO fits <strong>the</strong>re seems to be better agreement when us<strong>in</strong>g<br />

KRE fragmentation functions. The difference between <strong>the</strong> total<br />

χ 2 values between KRE <strong>and</strong> KKP NLO fits comes ma<strong>in</strong>ly<br />

from <strong>the</strong> contributions related to pSIDIS data, while those associated<br />

to <strong>in</strong>clusive data are almost <strong>the</strong> same, as one should<br />

expect <strong>in</strong> a fully consistent scenario.<br />

Table II <strong>in</strong>cludes also <strong>the</strong> first moment of each flavor distribution<br />

at Q 2 = 10 GeV 2 , <strong>and</strong> that for <strong>the</strong> s<strong>in</strong>glet distribution<br />

δΣ, as reference. Most noticeably, while <strong>the</strong> KRE NLO fit<br />

favors <strong>the</strong> idea of a SU(3) symmetric sea, KKP NLO f<strong>in</strong>ds u<br />

polarized opposite to d <strong>and</strong> to s. <strong>Gluon</strong> <strong>and</strong> strange sea quark<br />

polarization are similar <strong>in</strong> both fits <strong>and</strong> <strong>the</strong> total polarization<br />

carried by quarks is found to be around 30%.<br />

In Figures 1 <strong>and</strong> 2 we show <strong>the</strong> <strong>in</strong>clusive <strong>and</strong> semi-<strong>in</strong>clusive<br />

asymmetries computed with <strong>the</strong> different parameterizations<br />

both at LO <strong>and</strong> NLO accuracy, aga<strong>in</strong>st <strong>the</strong> correspond<strong>in</strong>g data<br />

sets. The differences between <strong>the</strong> various sets can hardly be<br />

noticed <strong>in</strong> <strong>the</strong> comparison to <strong>in</strong>clusive data <strong>in</strong> Figure 1, although<br />

are more significant when compar<strong>in</strong>g to pSIDIS data,<br />

specially <strong>in</strong> <strong>the</strong> case of proton targets. This is due to <strong>the</strong><br />

fact that <strong>the</strong> ma<strong>in</strong> difference between <strong>the</strong> sets are <strong>the</strong> light<br />

sea quark densities, which are probed by pSIDIS processes<br />

of proton targets. The pSIDIS asymmetries for deuterium targets<br />

are, of course, less sensitive to <strong>the</strong>se differences s<strong>in</strong>ce<br />

<strong>the</strong>y average u <strong>and</strong> d contributions.<br />

III. UNCERTAINTIES<br />

Many strategies have been implemented <strong>in</strong> order to assess<br />

<strong>the</strong> uncerta<strong>in</strong>ties <strong>in</strong> PDFs <strong>and</strong> <strong>the</strong>ir propagation to observables,<br />

specially those associated with experimental errors <strong>in</strong><br />

<strong>the</strong> data. The Lagrange multiplier method [9] probes <strong>the</strong> uncerta<strong>in</strong>ty<br />

<strong>in</strong> any observable or quantity of <strong>in</strong>terest relat<strong>in</strong>g <strong>the</strong><br />

range of variation of one or more physical observables dependent<br />

upon PDFs to <strong>the</strong> variation <strong>in</strong> <strong>the</strong> χ 2 used to judge <strong>the</strong><br />

goodness of <strong>the</strong> fit to data. In Figure 3 we show <strong>the</strong> outcome<br />

of vary<strong>in</strong>g <strong>the</strong> χ 2 of <strong>the</strong> NLO fits to data aga<strong>in</strong>st <strong>the</strong> first moment<br />

of <strong>the</strong> respective polarized parton densities δq at Q 2 = 10<br />

GeV 2 , one at a time. This is, to m<strong>in</strong>imize<br />

Φ(λq,aj) = χ 2 (a j) + λq δq(a j) q = u,u,d,d,s,g. (3)


540 Brazilian Journal of Physics, vol. 37, no. 2B, June, 2007<br />

1<br />

0.5<br />

0<br />

1<br />

0.5<br />

0<br />

0.5<br />

0<br />

0.5<br />

0<br />

0.5<br />

0<br />

0.5<br />

0<br />

0.5<br />

0<br />

10 -2<br />

10 -2<br />

1 10 -2<br />

1 10 -2<br />

FIG. 1: Inclusive asymmetries computed with LO <strong>and</strong> NLO pPDFs aga<strong>in</strong>st <strong>the</strong> correspond<strong>in</strong>g data.<br />

10 -2<br />

1 10 -2<br />

1 10 -2<br />

1 10 -2<br />

FIG. 2: Semi-<strong>in</strong>clusive asymmetries computed with LO <strong>and</strong> NLO pPDFs aga<strong>in</strong>st <strong>the</strong> correspond<strong>in</strong>g data.<br />

In order to see <strong>the</strong> effect of <strong>the</strong> variation <strong>in</strong> χ 2 on <strong>the</strong> parton<br />

distributions <strong>the</strong>mselves, <strong>in</strong> Figure 4, we show KRE best fit<br />

densities toge<strong>the</strong>r with <strong>the</strong> uncerta<strong>in</strong>ty b<strong>and</strong>s correspond<strong>in</strong>g to<br />

∆χ 2 = 1 (darker b<strong>and</strong>) <strong>and</strong> ∆χ 2 = 2% (light shaded b<strong>and</strong>). As<br />

expected, <strong>the</strong> relative uncerta<strong>in</strong>ties <strong>in</strong> <strong>the</strong> total quark densities<br />

<strong>and</strong> those strange quarks are ra<strong>the</strong>r small. For gluon densities<br />

<strong>the</strong> ∆χ 2 = 1 b<strong>and</strong> is also small, but <strong>the</strong> most conservative<br />

∆χ 2 = 2% estimate is much more significative. For light sea<br />

1<br />

quarks <strong>the</strong> ∆χ 2 = 1 b<strong>and</strong>s are moderate but <strong>the</strong> ∆χ 2 = 2% are<br />

much more larger. The dot l<strong>in</strong>e corresponds to each respective<br />

unpolarized parton densities for that values of Q 2 <strong>and</strong> x,<br />

show<strong>in</strong>g that <strong>the</strong> positivity constra<strong>in</strong>t is fulfilled.


D. de Florian, G. A. Navarro, <strong>and</strong> R. Sassot 541<br />

χ 2<br />

470<br />

460<br />

450<br />

440<br />

430<br />

470<br />

460<br />

χ 450 2<br />

440<br />

430<br />

KRE NLO<br />

KKP NLO<br />

χ 2<br />

χINC (a)<br />

-0.5 0 -0.5 0 -0.1 0<br />

δu<br />

δd<br />

δs<br />

(d)<br />

0.5 1 -0.9 -0.5 -0.1<br />

δu+δu<br />

δd+δd<br />

(b)<br />

(e)<br />

0 1<br />

FIG. 3: χ 2 profiles for NLO fits obta<strong>in</strong>ed us<strong>in</strong>g Lagrange multipliers at Q 2 = 10 GeV 2 .<br />

IV. FUTURE PROSPECTS<br />

One of <strong>the</strong> measurements most eagerly awaited by <strong>the</strong><br />

sp<strong>in</strong> physics community is that of s<strong>in</strong>gle <strong>in</strong>clusive large pT<br />

pion production <strong>in</strong> longitud<strong>in</strong>ally polarized proton-proton collisions,<br />

which is right now be<strong>in</strong>g run at BNL RHIC [23]. The<br />

sp<strong>in</strong> dependent asymmetry associated to this k<strong>in</strong>d of process,<br />

Aπ0 LL is def<strong>in</strong>ed, as usual, <strong>in</strong> terms of <strong>the</strong> ratio between <strong>the</strong> polarized<br />

<strong>and</strong> <strong>the</strong> unpolarized cross sections,<br />

A π0<br />

LL = d∆σp p→π0 X<br />

dσ p p→π0 X<br />

which is strongly dependent on <strong>the</strong> gluon polarization.<br />

The data obta<strong>in</strong>ed up to now by <strong>the</strong> PHENIX Collaboration<br />

suggest a very small asymmetry, consistent with pPDFs sets<br />

with a moderate gluon polarization. In <strong>the</strong> follow<strong>in</strong>g we apply<br />

<strong>the</strong> Lagrange multiplier method <strong>in</strong> order to explore <strong>the</strong> range<br />

of variation of <strong>the</strong> estimates for this asymmetry associated to<br />

<strong>the</strong> uncerta<strong>in</strong>ty <strong>in</strong> <strong>the</strong> present extraction of pPDFs.<br />

In Figure 5 we show <strong>the</strong> range of variation of Aπ0 LL at an<br />

<strong>in</strong>termediate value for pT = 6 GeV obta<strong>in</strong>ed with different sets<br />

of pPDFs aga<strong>in</strong>st <strong>the</strong> variation of <strong>the</strong> χ2 to pDIS <strong>and</strong> pSIDIS<br />

data for <strong>the</strong>se distributions. The profile of χ2 def<strong>in</strong>es a well<br />

def<strong>in</strong>ed range of values for Aπ0 LL allowed by present pPDFs.<br />

The solid l<strong>in</strong>e represents <strong>the</strong> profile of χ2 obta<strong>in</strong>ed us<strong>in</strong>g KRE<br />

FFs, both <strong>in</strong> <strong>the</strong> global fit to data <strong>and</strong> <strong>in</strong> <strong>the</strong> computation of <strong>the</strong><br />

asymmetry. The dashed l<strong>in</strong>e represents <strong>the</strong> same but for KKP<br />

FFs. The m<strong>in</strong>ima correspond<strong>in</strong>g to both profiles are very close<br />

(4)<br />

δg<br />

(c)<br />

(f)<br />

χ 2 χ0+5% χ 2 χ0+2% χ 2 χ0+1 χ 2 χ0+5% χ 2 χ0+2% χ 2 χ0+1 suggest<strong>in</strong>g a cancellation of <strong>the</strong> associated uncerta<strong>in</strong>ty. Notice<br />

that both <strong>the</strong> extraction of <strong>the</strong> pPDFs, <strong>and</strong> also <strong>the</strong> estimate<br />

of Aπ0 LL with a given set, rely on a set of FFs. The double<br />

dependence of <strong>the</strong> observable on <strong>the</strong> set of FFs used may had,<br />

<strong>in</strong> pr<strong>in</strong>ciple, even potentiated <strong>the</strong> disagreement.<br />

In Figure 5 we have <strong>in</strong>cluded also <strong>the</strong> profiles obta<strong>in</strong>ed<br />

us<strong>in</strong>g δg <strong>in</strong>stead of Aπ0 LL <strong>in</strong> m<strong>in</strong>imization as a dotted l<strong>in</strong>e <strong>in</strong><br />

<strong>the</strong> case of KRE <strong>and</strong> a dashed dotted l<strong>in</strong>e for KKP. Clearly,<br />

<strong>the</strong> sea quark polarization can conspire <strong>in</strong> order to yield a<br />

larger/smaller asymmetry than <strong>the</strong> one obta<strong>in</strong>ed with maximum/m<strong>in</strong>imum<br />

gluon fit at a given χ2 , effect which <strong>in</strong> much<br />

more apparent at larger values of Aπ0 LL . This feature will have<br />

to be taken <strong>in</strong>to account <strong>in</strong> <strong>the</strong> future for a very precise measurement<br />

of <strong>the</strong> gluon polarization.<br />

Unfortunately, <strong>the</strong> data collected so far <strong>in</strong> <strong>the</strong> first two runs<br />

of <strong>the</strong> PHENIX detector at RHIC have estimated errors much<br />

larger than <strong>the</strong> uncerta<strong>in</strong>ties <strong>in</strong> <strong>the</strong> values Aπ0 LL com<strong>in</strong>g from<br />

<strong>the</strong> fits, however this situation is go<strong>in</strong>g to change dramatically<br />

<strong>in</strong> <strong>the</strong> near future. In Figure 6 we plot Aπ0 LL as a function<br />

of pT us<strong>in</strong>g <strong>the</strong> best NLO fits com<strong>in</strong>g from KRE <strong>and</strong><br />

KKP FFs (solid l<strong>in</strong>es <strong>and</strong> dashes, respectively) <strong>and</strong> also with<br />

KRE variants designed to enhance/reduce Aπ0 LL with ∆χ2 = 2%<br />

(dotted-dashed l<strong>in</strong>es). We have also <strong>in</strong>cluded <strong>the</strong> expected uncerta<strong>in</strong>ties<br />

for <strong>the</strong> next two runs centered at KRE best fit estimate<br />

[24]. Clearly, <strong>the</strong> future measurement of <strong>the</strong> asymmetry<br />

would certa<strong>in</strong>ly be able to constra<strong>in</strong> even fur<strong>the</strong>r <strong>the</strong> gluon <strong>and</strong><br />

<strong>the</strong>refore reduce <strong>the</strong> uncerta<strong>in</strong>ties <strong>in</strong> pPDFs.<br />

Ano<strong>the</strong>r source of complementary <strong>in</strong>formation to fur<strong>the</strong>r<br />

constra<strong>in</strong> <strong>the</strong> extraction of pPDFs <strong>and</strong> also FFs is <strong>the</strong> exper-


542 Brazilian Journal of Physics, vol. 37, no. 2B, June, 2007<br />

χ 2<br />

455<br />

450<br />

445<br />

440<br />

435<br />

430<br />

0.4<br />

0.2<br />

0<br />

-0.2<br />

0.06<br />

0.04<br />

0.02<br />

0<br />

-0.02<br />

-0.04<br />

-0.06<br />

x(Δu+Δu –<br />

)<br />

x(Δd+Δd – )<br />

xΔu –<br />

10 -2<br />

x Bj<br />

xΔu v<br />

xΔd v<br />

xΔd –<br />

10 -2<br />

x Bj<br />

xΔg –<br />

xΔs –<br />

KRE (NLO)<br />

KKP (NLO)<br />

unpolarized<br />

KRE χ 2<br />

KRE χm<strong>in</strong> +1<br />

KRE χ 2<br />

KRE χm<strong>in</strong> +2%<br />

FIG. 4: Parton densities at Q 2 = 10 GeV 2 , <strong>and</strong> <strong>the</strong> uncerta<strong>in</strong>ty b<strong>and</strong>s correspond<strong>in</strong>g to ∆χ 2 = 1 <strong>and</strong> ∆χ 2 = 2%<br />

p T =6 GeV<br />

KRE NLO<br />

KKP NLO<br />

-0.004 -0.002 0 0.002 0.004 0.006 0.008 0.01<br />

A π 0<br />

ALL FIG. 5: Profile of <strong>the</strong> global χ 2 to data aga<strong>in</strong>st A π0<br />

LL at pT = 6 GeV<br />

imental program of <strong>the</strong> E04-113 experiment at JLAB, which<br />

propose to measure pion <strong>and</strong> kaon pSIDIS asymmetries for<br />

proton <strong>and</strong> deuteron targets [4]. In Figure 7a we show <strong>the</strong><br />

profile of χ 2 of <strong>the</strong> global fits us<strong>in</strong>g KRE (solid l<strong>in</strong>e) <strong>and</strong><br />

A π<br />

0.03<br />

0.02<br />

0.01<br />

0<br />

ALL 0<br />

-0.01<br />

Run 5<br />

2006-7<br />

10 -2<br />

KRE NLO<br />

KRE NLO Δχ 2 =2%<br />

KKP NLO<br />

x Bj<br />

0.4<br />

0.2<br />

0<br />

-0.2<br />

0.06<br />

0.04<br />

0.02<br />

0<br />

-0.02<br />

-0.04<br />

-0.06<br />

-0.02<br />

0 2 4 6 8 10 12 14<br />

p (GeV/c)<br />

T<br />

FIG. 6: A π0<br />

LL vs. pT computed with different pPDF sets <strong>and</strong> <strong>the</strong> estimated<br />

errors expected by PHENIX at RHIC.<br />

KKP (dashes) FFs aga<strong>in</strong>st <strong>the</strong> π − pSIDIS asymmetry on proton<br />

targets at one of <strong>the</strong> k<strong>in</strong>ematic configurations of E04-113<br />

(xB j = 0.203, Q 2 = 2.3 GeV 2 < z >= 0.5). The expected


D. de Florian, G. A. Navarro, <strong>and</strong> R. Sassot 543<br />

455<br />

450<br />

445<br />

χ<br />

440<br />

2<br />

435<br />

430<br />

χ 2 +5%<br />

χ 2 +2%<br />

χ 2 +1<br />

0.2 0.3 0.4<br />

A π-<br />

Ap (a)<br />

KRE NLO<br />

KKP NLO<br />

A K-<br />

0 0.2 0.4<br />

Ap FIG. 7: Profile of <strong>the</strong> global χ 2 to data aga<strong>in</strong>st A π−<br />

p <strong>and</strong> A K−<br />

p proposed to be measured by E04-113 at JLAB.<br />

uncerta<strong>in</strong>ty for <strong>the</strong> measurement of this asymmetry shown <strong>in</strong><br />

<strong>the</strong> bottom of <strong>the</strong> figure, is significantly smaller than those of<br />

<strong>the</strong> previous measurements, <strong>and</strong> also smaller than <strong>the</strong> present<br />

uncerta<strong>in</strong>ty com<strong>in</strong>g from <strong>the</strong> fit. In Figure 7b we show <strong>the</strong><br />

same as <strong>in</strong> <strong>the</strong> previous figure but but for negative kaons.<br />

This asymmetry has not been measured yet <strong>and</strong> <strong>the</strong> difference<br />

between <strong>the</strong> predictions com<strong>in</strong>g form KRE (solid l<strong>in</strong>e) <strong>and</strong><br />

KKP (dashes) sets is much larger that <strong>the</strong> expected uncerta<strong>in</strong>ties.<br />

The measurement of this last observable toge<strong>the</strong>r with<br />

<strong>the</strong> comb<strong>in</strong>ed effect of data for different targets (proton <strong>and</strong><br />

deuteron) <strong>and</strong> f<strong>in</strong>al state hadrons (positive <strong>and</strong> negative pions<br />

<strong>and</strong> kaons) will certa<strong>in</strong>ly constra<strong>in</strong> <strong>the</strong> fit even fur<strong>the</strong>r, specifically<br />

<strong>the</strong> sea quark densities, <strong>and</strong> at <strong>the</strong> same time provide a<br />

more str<strong>in</strong>gent test on <strong>the</strong> quark flavor separation for <strong>the</strong> FFs<br />

used <strong>in</strong> <strong>the</strong> analysis.<br />

V. CONCLUSIONS<br />

The availability of an important set of new data on polarized<br />

processes toge<strong>the</strong>r with <strong>the</strong> appropriate <strong>the</strong>oretical tools<br />

required to <strong>in</strong>terpret <strong>the</strong>m, obta<strong>in</strong>ed <strong>and</strong> developed <strong>in</strong> <strong>the</strong> last<br />

few years, have led <strong>the</strong> extraction of pPDFs <strong>in</strong> <strong>the</strong> proton<br />

to mature <strong>and</strong> to become an important source of <strong>in</strong>formation<br />

which will still keep grow<strong>in</strong>g <strong>in</strong> <strong>the</strong> near future.<br />

In this paper, we have assessed <strong>the</strong> feasibility of obta<strong>in</strong><strong>in</strong>g<br />

pPDFs, with special emphasis on <strong>the</strong> sea quark densities, from<br />

[1] B. Adeva et al., SMC Collab., Phys. Lett. B 369, 93 (1996),<br />

ibid. 420, 180 (1998).<br />

[2] HERMES Collab., A. Airapetian, et al. hep-ex/0407032; K.<br />

Ackerstaff et al,, Phys. Lett. B 464, 123 (1999).<br />

(b)<br />

455<br />

450<br />

445<br />

440<br />

435<br />

430<br />

a comb<strong>in</strong>ed NLO QCD analysis of pDIS <strong>and</strong> pSIDIS data. We<br />

have estimated <strong>the</strong> uncerta<strong>in</strong>ties associated to <strong>the</strong> extraction<br />

of each parton density, f<strong>in</strong>d<strong>in</strong>g a well constra<strong>in</strong>ed scenario.<br />

pSIDIS data is not only consistent with pDIS, but improves<br />

<strong>the</strong> constra<strong>in</strong><strong>in</strong>g power of <strong>the</strong> fit for all <strong>the</strong> distributions, be<strong>in</strong>g<br />

crucial for <strong>the</strong> light sea quarks.<br />

The overall picture found for <strong>the</strong> quark densities at a 10<br />

GeV 2 is one <strong>in</strong> which, with<strong>in</strong> uncerta<strong>in</strong>ties, up quarks are almost<br />

100% polarized parallel to <strong>the</strong> proton, down quarks antiparallel<br />

<strong>in</strong> a similar proportion, <strong>and</strong> sea quarks have a small<br />

flavor symmetric negative polarization [8, 25]<br />

Two programmed experiments, <strong>the</strong> one based on <strong>the</strong><br />

PHENIX detector already runn<strong>in</strong>g at RHIC, <strong>and</strong> <strong>the</strong> E04-113<br />

experiment at JLab will be able to reduce dramatically <strong>the</strong> uncerta<strong>in</strong>ty<br />

<strong>in</strong> both <strong>the</strong> gluon <strong>and</strong> <strong>the</strong> light sea quark densities<br />

respectively, <strong>the</strong> latter provid<strong>in</strong>g also an even more str<strong>in</strong>gent<br />

test on fragmentation functions.<br />

Acknowledgments<br />

Partially supported by CONICET, Fundación Antorchas,<br />

UBACYT <strong>and</strong> ANPCyT, Argent<strong>in</strong>a. We warmly acknowledges<br />

M. B. Gay Ducati, <strong>and</strong> <strong>the</strong> Local Comitee of <strong>the</strong> I Lat<strong>in</strong><br />

American workshop on High Energy Phenomenology for <strong>the</strong>ir<br />

hospitality dur<strong>in</strong>g <strong>the</strong> meet<strong>in</strong>g where this talk was presented.<br />

[3] A. Bressan, for <strong>the</strong> COMPASS Collaboration, hep-ex/0501040.<br />

[4] X. Jiang et al. Jefferson Lab experiment E04-113: Semi-<br />

Inclusive Sp<strong>in</strong> Asymmetries on <strong>the</strong> <strong>Nucleon</strong> Experiment (hepex/0412010).


544 Brazilian Journal of Physics, vol. 37, no. 2B, June, 2007<br />

[5] D. de Florian, O. A. Sampayo, <strong>and</strong> R. Sassot, Phys. Rev. D 57,<br />

5803 (1998).<br />

[6] D. de Florian, R. Sassot, Phys. Rev. D 62, 094025 (2000).<br />

[7] G. A. Navarro <strong>and</strong> R. Sassot, Eur. Phys. J. C 28, 321 (2003)<br />

[arXiv:hep-ph/0302053].<br />

[8] D. de Florian, G. A. Navarro, <strong>and</strong> R. Sassot, Phys. Rev. D 71,<br />

094018 (2005).<br />

[9] J. Pumpl<strong>in</strong>, D. R. Stump, <strong>and</strong> W. K. Tung, Phys. Rev. D 65,<br />

014011 (2002), D. Stump et al., Eur. Phys. J. C 28, 321 (2003).<br />

[10] A. D. Mart<strong>in</strong>, R. G. Roberts, W. J. Stirl<strong>in</strong>g, <strong>and</strong> R. S. Thorne,<br />

Eur. Phys. J. C 28, 455 (2003).<br />

[11] R. Mertig, W. L. van Neerven, Z. Phys. C 70, 637 (1996); W.<br />

Vogelsang, Phys. Rev. D 54, 2023, (1996).<br />

[12] B. Lampe <strong>and</strong> E. Reya, Phys. Rep. 332, 1 (2000);<br />

E. Leader et al., Phys, Rep. 261, 1 (1995).<br />

[13] D. de Florian, C.A. Garcia Canal, <strong>and</strong> R. Sassot, Nucl. Phys. B<br />

470, 195 (1996).<br />

[14] S. Kretzer, Phys. Rev. D 62, 054001 (2000).<br />

[15] B. A. Kniehl, G. Kramer, <strong>and</strong> B. Potter, Nucl. Phys. B 582, 514<br />

(2000).<br />

[16] EMC Collaboration, J. Ashman et al., Nucl. Phys. B 328, 1<br />

(1989).<br />

[17] SMC Collaboration, B. Adeva et al., Phys. Rev. D 58, 112001<br />

(1998).<br />

[18] E143 Collaboration, K. Abe et al, Phys. Rev. D 58, 112003<br />

(1998).<br />

[19] E155 Collaboration, P. L. Anthony, et al., Phys. Lett. B 463, 339<br />

(1999); G. S. Mitchell, Ph.D. Thesis University of Wiscons<strong>in</strong>-<br />

Madison, SLAC-Report-540 (1999)<br />

[20] E142 Collaboration, P. L. Anthony, et al., Phys. Rev. D 54, 6620<br />

(1996).<br />

[21] E154 Collaboration, K. Abe et al., Phys. Rev. Lett. 79, 26<br />

(1997); Phys. Lett. B 405, 180 (1997).<br />

[22] HALL A Collaboration X. Zheng, et al., nucl-ex/0405006<br />

[23] S. S. Adler et al. [PHENIX Collaboration], Phys. Rev. Lett. 93,<br />

202002 (2004) [arXiv:hep-ex/0404027].<br />

[24] Y. Fukao [PHENIX Collaboration], hep-ex/0501049.<br />

[25] X. Jiang, G.A. Navarro, <strong>and</strong> R. Sassot, Eur. Phys J. C 47, 81<br />

(2006).

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!