28.11.2012 Views

(B-axis) fly-cut adapter main spindle (C-axis)

(B-axis) fly-cut adapter main spindle (C-axis)

(B-axis) fly-cut adapter main spindle (C-axis)

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

LFM<br />

Universität Bremen<br />

Prof. Brinksmeier<br />

Möglichkeiten und Grenzen<br />

der Ultrapräzisionsbearbeitung<br />

im optischen Formenbau<br />

Werner Preuß<br />

LFM Labor für Mikrozerspanung<br />

Universität Bremen


LFM<br />

Universität Bremen<br />

Prof. Brinksmeier<br />

University of Bremen and Technology Park<br />

Schie 0018a-e


Diamond machining Precision grinding<br />

• Development of diamond<br />

<strong>cut</strong>ting processes<br />

• Multi-<strong>axis</strong> machining<br />

• Generation of microstructures<br />

Modeling and simulation<br />

• Computer simulation of <strong>cut</strong>ting<br />

processes<br />

• Molecular dynamics simulation<br />

• Finite element analysis<br />

LFM<br />

Universität Bremen<br />

Prof. Brinksmeier<br />

• Deterministic micro grinding<br />

• Ductile grinding of glass<br />

• Precision grinding of steel and<br />

ceramics<br />

Measuring and testing<br />

• Figure evaluation<br />

• Investigation of surface topography<br />

• Assessment of subsurface damage<br />

Polishing<br />

• Development of CNC-polishing<br />

techniques<br />

• Polishing of aspheric and<br />

freeform surfaces<br />

• Polishing of micro-structured<br />

surfaces<br />

Science and Technology at the<br />

Laboratory for Precision Machining


1 Mikrozerspanung<br />

2 Rotationssymmetrische Flächen<br />

3 Freiformflächen<br />

4 Strukturierte Oberflächen<br />

LFM<br />

Universität Bremen<br />

Prof. Brinksmeier


form deviation<br />

[mm]<br />

1<br />

0,1<br />

0,01<br />

0,001<br />

UP<br />

LFM<br />

Universität Bremen<br />

Prof. Prof. Brinksmeier<br />

P<br />

F<br />

R<br />

fine machining<br />

precision machining<br />

ultraprecision machining<br />

0,01 0,1 1 10<br />

rough machining<br />

average surface<br />

roughness [µm]<br />

OR 677e<br />

(Br 1401e)<br />

Classification of mechanical machining processes


LFM<br />

Universität Bremen<br />

Prof. Brinksmeier<br />

controlled axes:<br />

X, Z, B<br />

bearing:<br />

<strong>main</strong> <strong>spindle</strong>: aerostatic<br />

x,z: double V-grooves with cylinder rollers<br />

drives:<br />

DC-motors with ball bearings<br />

positioning systems:<br />

interferometer and / or decoder<br />

vibration isolation:<br />

granite base + passive air-cushions<br />

control:<br />

Fanuc-3-axes control<br />

resolution: 10 nm<br />

working volume:<br />

range ∆ x = 405 mm, ∆ z = 230 mm<br />

max. turning diameter: 780 mm<br />

accuracy:<br />

contour accuracy: < 0,5 µm<br />

Moore M18 Aspheric Generator<br />

LA 0569e


Nanotech Nanotech 500 500 FG FG<br />

linear linear axes: axes: 3 3 (hydrostatic) (hydrostatic)<br />

rotary rotary axes: axes: 2 2 (air (airbearing) bearing)<br />

grinding grinding <strong>spindle</strong>: <strong>spindle</strong>: 1 1 (hydrostatic) (hydrostatic)<br />

machining machining volume: volume: 300 300 x x 200 200 x x 300 300 mm³ mm³<br />

load load capacity: capacity: 90 90 kg kg<br />

accuracy accuracyof of linear linear motion: motion: < 0.3 0.3 µm µm<br />

Ref.: Nanotechnology<br />

LFM<br />

Universität Bremen<br />

Prof. Brinksmeier<br />

Radial, Radial, axial axial run-out: run-out:<br />

B-, B-, C-<strong>axis</strong>:< C-<strong>axis</strong>:< 50 50 nm nm<br />

A-<strong>axis</strong>: A-<strong>axis</strong>: < 100 100 nm nm<br />

angular angular resolution: resolution:<br />

B-, B-, C-<strong>axis</strong>:0.65“ C-<strong>axis</strong>:0.65“<br />

resolution resolutionof of CNC: CNC: 10 10 nm nm<br />

diamond turning precision grinding<br />

Nanotech 500 Freeform Generator<br />

OR 1026


complete machine tool<br />

(covers removed)<br />

Ref.: Precitech<br />

LFM<br />

Universität Bremen<br />

Prof. Brinksmeier<br />

4 axes axes • • 3 linear linear<br />

• • 1 rotary rotary<br />

processes: processes: • • <strong>fly</strong>-<strong>cut</strong>ting <strong>fly</strong>-<strong>cut</strong>ting<br />

• • raster raster milling milling<br />

• • ball-end ball-end milling milling<br />

Precitech Freeform 3000<br />

ball-end milling<br />

OR 1025


straight straight knife: knife:<br />

b > 3 mm; mm; ε ε = 135°; 135°;<br />

α = 6 °; °; γ γ = 0° 0°<br />

radius radius tool: tool:<br />

rε r =<br />

ε = 6000 6000 µm; µm;<br />

α = 6 °; °; γ γ = 0° 0°<br />

LFM<br />

Universität Bremen<br />

Prof. Brinksmeier<br />

5 mm<br />

radius radius tool: tool:<br />

rε r =<br />

ε = 50 50 µm; µm;<br />

α = 6 °; °; γ γ = 0° 0°<br />

radius radius tool: tool:<br />

rε r =<br />

ε = 760 760 µm; µm;<br />

α = 6 °; °; γ γ = 0° 0°<br />

Monocrystalline diamond tools<br />

- straight knife and radius tools -<br />

OR 190e


Pointed tool: monocrystalline diamond tool<br />

nose angle ε = 70°30’<br />

rake angle γ = 0°<br />

clearance angle α = 7°<br />

<strong>cut</strong>ting edge radius r ß < 50 nm<br />

LFM<br />

Universität Bremen<br />

Prof. Brinksmeier<br />

50 µm<br />

Pointed tool for machining of V-shaped grooves<br />

La 0660e


<strong>cut</strong>ting edge<br />

clearance face<br />

1 µm<br />

1 µm<br />

r β<br />

LFM<br />

Universität Bremen<br />

Prof. Brinksmeier<br />

rake face<br />

diamond tool:<br />

tool nose radius: r ε = ε = 760 µm<br />

<strong>cut</strong>ting edge radius: r β < β < 0.1 µm<br />

rake angle: γ = 0°<br />

clearance angel: α = 6°<br />

-1.0<br />

µm<br />

0.0<br />

section<br />

Cutting edge of a diamond tool<br />

determining the<br />

<strong>cut</strong>ting edge radius<br />

envelope<br />

circle:<br />

d = 0.2 µm<br />

-1.0<br />

0 1,0 2,0 3,0 mm 4,0<br />

OR 194e


Chip area true to scale<br />

r ε = 760 µm<br />

f = 5 µm<br />

a p = 5 µm<br />

LFM<br />

Universität Bremen<br />

Prof. Brinksmeier<br />

diamond tool<br />

r ε<br />

Chip area in diamond turning<br />

f<br />

a p<br />

OR 047e


electroless nickel OFHC copper<br />

LFM<br />

Universität Bremen<br />

Prof. Brinksmeier<br />

process: plunge <strong>cut</strong><br />

<strong>cut</strong>ting speed: tool nose radius: v c = c = 100 mm/min<br />

r ε = ε = 5 µm<br />

Material response<br />

OR 139e


LFM<br />

Universität Bremen<br />

Prof. Brinksmeier<br />

<strong>cut</strong>ting direction<br />

process<br />

face turning<br />

<strong>spindle</strong> speed: n = 500 min<br />

feed: f = 4,8 µm<br />

lubricant: mineral oil (spray mist)<br />

tool<br />

monocrystalline diamond<br />

tool nose radius: r ε = 0,76 mm<br />

<strong>cut</strong>ting edge radius: r β < 0,05 µm<br />

clearance angle: α = 6°<br />

rake angle: γ = 0°<br />

workpiece<br />

material:electroless deposited nickel<br />

(amorphous NiP with<br />

approx. 11% Phosphorous)<br />

roughness<br />

R a = 3,4 nm<br />

R q = 4,1 nm<br />

R = 27,4 nm<br />

max<br />

Diamond turned electroless nickel<br />

-1<br />

OR 0916


1 Mikrozerspanung<br />

2 Rotationssymmetrische Flächen<br />

3 Freiformflächen<br />

4 Strukturierte Oberflächen<br />

LFM<br />

Universität Bremen<br />

Prof. Brinksmeier


LFM<br />

Universität Bremen<br />

Prof. Brinksmeier


LFM<br />

Universität Bremen<br />

Prof. Brinksmeier


LFM<br />

Universität Bremen<br />

Prof. Brinksmeier


LFM<br />

Universität Bremen<br />

Prof. Brinksmeier


1 Mikrozerspanung<br />

2 Rotationssymmetrische Flächen<br />

3 Freiformflächen<br />

4 Strukturierte Oberflächen<br />

LFM<br />

Universität Bremen<br />

Prof. Brinksmeier


LFM<br />

Universität Bremen<br />

Prof. Brinksmeier<br />

Kinematics of SPDT with fast tool servo<br />

Gri 0405


LFM<br />

Universität Bremen<br />

Prof. Brinksmeier<br />

Kinematics of raster <strong>fly</strong>-<strong>cut</strong>ting<br />

Gri 0421a


LFM<br />

Universität Bremen<br />

Prof. Brinksmeier<br />

Spiral milling


SPFC surfaces are<br />

composed of tiny “scallops”:<br />

W f<br />

W c<br />

LFM<br />

Universität Bremen<br />

Prof. Brinksmeier<br />

feed direction<br />

rc : radius of <strong>fly</strong>-<strong>cut</strong>ter<br />

rd : radius of diamond<br />

depth in <strong>cut</strong>ting direction: w 2<br />

c / (8rc )<br />

depth in feed direction: w 2<br />

f / (8rd )<br />

Topography of SPFC-surfaces<br />

<strong>cut</strong>ting direction<br />

OR 885<br />

(JS 0318e)


LFM<br />

Universität Bremen<br />

Prof. Brinksmeier<br />

Chip geometry and surface topography for<br />

Single-point Fly-<strong>cut</strong>ting (SPFC)<br />

OR 884<br />

(JS 0279)


LFM<br />

Universität Bremen<br />

Prof. Brinksmeier<br />

area:<br />

1.23mm x 0.98mm<br />

Ra = 7.56nm<br />

Rq = 11.97nm<br />

spacing of raster lines:<br />

50µm<br />

tool nose radius:<br />

10mm<br />

down milling mode<br />

Gri 0423<br />

White-light interferometric image of raster <strong>fly</strong>-<strong>cut</strong><br />

bi-conic mirror for IRMOS


LFM<br />

Universität Bremen<br />

Prof. Brinksmeier<br />

Down-milling versus up-milling<br />

LA 1002


LFM<br />

Universität Bremen<br />

Prof. Brinksmeier<br />

NC-programming for raster <strong>fly</strong>-<strong>cut</strong>ting<br />

OR 883


Quelle: MEOS<br />

LFM<br />

Universität Bremen<br />

Prof. Brinksmeier<br />

F-Theta lens system<br />

OR 873


Quelle: Corning<br />

LFM<br />

Universität Bremen<br />

Prof. Brinksmeier<br />

F-Theta lenses and molding insert<br />

OR 876


Aspherical Mirror<br />

Quelle: Siemens VDO Automotive<br />

LFM<br />

Universität Bremen<br />

Prof. Brinksmeier<br />

Windshield<br />

Driver<br />

Head-up Display<br />

TFT (Thin-Film-Transistor)<br />

Display<br />

Lightsource with Dimmer<br />

OR 347


X<br />

y<br />

workpiece:<br />

• Ø 50 mm, AlMg3<br />

• roughness calculated<br />

Rt,kin = 10 nm (fc )<br />

Rt,kin = 5.6 nm (fr )<br />

• roughness measured<br />

(WLI, 1300µm x 980 µm)<br />

Ra = 4.8 nm<br />

• inclination in xy-plane: ϕ = 10°<br />

LFM<br />

Universität Bremen<br />

Prof. Brinksmeier<br />

z<br />

diamond tool:<br />

•r ε = 5 mm (half arc)<br />

process (spiral ball-end-milling):<br />

•ap = 20 µm<br />

•fc = 20 µm<br />

fr = 15 µm<br />

• n = 5000 rpm<br />

x<br />

Y �<br />

Spiral ball-end-milling<br />

of a free-form reflector<br />

z<br />

f r<br />

f c<br />

OR 1010


1 Mikrozerspanung<br />

2 Rotationssymmetrische Flächen<br />

3 Freiformflächen<br />

4 Strukturierte Oberflächen<br />

LFM<br />

Universität Bremen<br />

Prof. Brinksmeier


LFM<br />

Universität Bremen<br />

Prof. Brinksmeier<br />

Types and generation of Fresnel lenses


LFM<br />

Universität Bremen<br />

Prof. Brinksmeier<br />

Injection mold for bifocal intraocular lenses


LFM<br />

Universität Bremen<br />

Prof. Brinksmeier<br />

PMMA-Linse<br />

1µm-Stufe


Hybrid lens with total internal reflection (TIR)<br />

– 4 cm x 4 cm<br />

– 625 elements per square meter<br />

LFM<br />

Universität Bremen<br />

Prof. Brinksmeier<br />

hybrid lens<br />

heat sink solar cell<br />

aspherical lens<br />

Realization of novel optical design concepts-<br />

Solar cell concentrator (hybrid PMMA lens)


LFM<br />

Universität Bremen<br />

Prof. Brinksmeier<br />

Mould for primary TIR-R lenses (left) and<br />

mould for dioptric secondary lenses (right)


LFM<br />

Universität Bremen<br />

Prof. Brinksmeier<br />

Photo of the individual parts of the mould<br />

for primary TIR-R lenses


LFM<br />

Universität Bremen<br />

Prof. Brinksmeier<br />

Prototype of the photovoltic system<br />

Ges 299


front view<br />

n<br />

n<br />

a p<br />

LFM<br />

Universität Bremen<br />

Prof. Brinksmeier<br />

top view<br />

<strong>spindle</strong><br />

workpiece<br />

counter-weight<br />

tool<br />

rotary-table<br />

x-slide<br />

z-slide<br />

100µm<br />

15.3 µm<br />

0.0 µm<br />

0.0 mm<br />

Fly-<strong>cut</strong>ting of microprisms<br />

0.5 mm<br />

0.0 mm<br />

0.5 mm<br />

OR 0674e


LFM<br />

Universität Bremen<br />

Prof. Brinksmeier<br />

Conventional and new open ring light system


LFM<br />

Universität Bremen<br />

Prof. Brinksmeier<br />

Mold design for the new open ring light system


Nanotech 500 Freeform Generator<br />

z-slide<br />

y-slide<br />

<strong>main</strong> <strong>spindle</strong><br />

(C-<strong>axis</strong>)<br />

<strong>fly</strong>-<strong>cut</strong><br />

<strong>adapter</strong><br />

LFM<br />

Universität Bremen<br />

Prof. Brinksmeier<br />

siedeview<br />

diamond<br />

tool<br />

mold<br />

rotary table<br />

(B-<strong>axis</strong>)<br />

x-slide<br />

Raster-milling of spherical cavities<br />

on a 60° conical mold


LFM<br />

Universität Bremen<br />

Prof. Brinksmeier<br />

Aluminium test mold with 3 microstructured 10° areas


LFM<br />

Universität Bremen<br />

Prof. Brinksmeier<br />

60° microstructured conical mold<br />

And injection molded replica


LFM<br />

Universität Bremen<br />

Prof. Brinksmeier<br />

Advertisement for 2003 movie


LFM<br />

Universität Bremen<br />

Prof. Brinksmeier<br />

Geometrische Formen<br />

möglich nicht möglich<br />

Asphären Hinterschneidungen<br />

diffraktive Strukturen Strukturen < ca. 10µm<br />

Freiformflächen Aspektverhältnisse > ca. 2:1<br />

Polygone Übergangsradien < ca. 10µm<br />

prismatischen Flächen lokale Krümmungsradien<br />

facettierte Flächen < ca. 10mm (Zeilenfräsen)<br />

u.v.a.m. < ca. 10µm (Kugelkopffräsen)


LFM<br />

Universität Bremen<br />

Prof. Brinksmeier<br />

Oberflächenqualität<br />

möglich nicht möglich<br />

Formtreue: lokale Tangentenfehler:<br />

ca. 0.1µm PV - 2µm PV < ca. 1‘ (z.B. 30nm auf 0.1mm)<br />

Rauheit:<br />

ca. 5nm Ra - 10nm Ra


LFM<br />

Universität Bremen<br />

Prof. Brinksmeier<br />

Werkstoffspektrum<br />

möglich nicht möglich<br />

NiP (chemisch Nickel) Nickel<br />

Neusilber (CuNiZn) Stahl<br />

Messing<br />

Aluminium<br />

Umweg über galvanische Abformung

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!