12.07.2015 Views

On Averaging of Singularly Perturbed Controlled ... - Study at UniSA

On Averaging of Singularly Perturbed Controlled ... - Study at UniSA

On Averaging of Singularly Perturbed Controlled ... - Study at UniSA

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>On</strong> <strong>Averaging</strong> <strong>of</strong> <strong>Singularly</strong> <strong>Perturbed</strong><strong>Controlled</strong> Stochastic Differential Equ<strong>at</strong>ionsVivek Borkar ∗ † and Vladimir Gaitsgory ‡ §August 10, 2006Abstract. An averaged system to approxim<strong>at</strong>e the slow dynamics <strong>of</strong> a twotimescale nonlinear stochastic control system is introduced. Validity <strong>of</strong> the approxim<strong>at</strong>ionis established. Special cases are considered to illustr<strong>at</strong>e the generaltheory.1 IntroductionIn this paper, we consider a system <strong>of</strong> nonlinear singularly perturbed (SP) controlledstochastic differential equ<strong>at</strong>ions (CSDE). A small parameter ɛ > 0 is introducedin the system in such a way th<strong>at</strong> the st<strong>at</strong>e variables are decomposed intoa group <strong>of</strong> slow variables, which change their values with r<strong>at</strong>es <strong>of</strong> the order O(1),and a group <strong>of</strong> fast ones, which change their values with r<strong>at</strong>es <strong>of</strong> the order O( 1 ɛ ).<strong>Singularly</strong> perturbed problems <strong>of</strong> control and optimiz<strong>at</strong>ion have been studiedintensively in both deterministic and stochastic settings (see [1]-[12], [14], [20]-[25],[30], [31], [33]-[36], [38]-[46], [48], [49], [54]-[58], [61]-[63], [65], [67] and referencestherein for a sample <strong>of</strong> the liter<strong>at</strong>ure), with SP CSDE being specifically addressedin [2], [3], [12], [14], [20], [40], [41], [48].Originally, the most common approaches to SP control systems, especially inthe deterministic case, were rel<strong>at</strong>ed to a so-called reduction technique based on∗ V. Borkar is with School <strong>of</strong> Technology and Computer Science, T<strong>at</strong>a Institute <strong>of</strong> FundamentalResearch, Homi Bhabha Rd., Mumbai 400005, India, e-mail: borkar@tifr.res.in† Work partly supported by grant III.5(157)/99-ET from the Department <strong>of</strong> Scienceand Technology, Govenment <strong>of</strong> India.‡ V. Gaitsgory is with the School <strong>of</strong> M<strong>at</strong>hem<strong>at</strong>ics, University <strong>of</strong> South Australia, MawsonLakes Campus, Mawson Lakes SA, 5095, Australia, e-mail: v.gaitsgory@unisa.edu.au§ The research undertaken by this author was supported by the Australian ResearchCouncil Discovery Grants DP0346099 and DP0664330.1


equ<strong>at</strong>ing <strong>of</strong> the small parameter to zero (th<strong>at</strong> is, establishing results in the spirit<strong>of</strong> Tichonov’s theorem; see [14], [24], [40], [41], [45], [46], [48], [54], [57], [62], [65]).L<strong>at</strong>er, it was realized th<strong>at</strong>, while being very efficient in many important specialclasses <strong>of</strong> problems, the reduction technique approaches may not lead to a correctapproxim<strong>at</strong>ion in dealing with general nonlinear SP control systems (see, e.g., [5],[7],[33],[49]).A number <strong>of</strong> averaging type approaches allowing one to deal with nonlinearSP control systems in which equ<strong>at</strong>ing <strong>of</strong> the singular perturb<strong>at</strong>ions parameter tozero may not be justifiable were proposed in [1]-[12], [14], [20], [22], [23], [43],[44], [30], [31], [33]-[36], [38], [39], [48], [58], [63]. In purely deterministic settingaveraging techniques based on the idea <strong>of</strong> approxim<strong>at</strong>ing the slow dynamics by thesolutions <strong>of</strong> an averaged system, in which the role <strong>of</strong> controls is played by limitoccup<strong>at</strong>ional measures <strong>of</strong> the associ<strong>at</strong>ed system (th<strong>at</strong> is, the system th<strong>at</strong> woulddescribe the fast dynamics if the slow st<strong>at</strong>e variables were “frozen”) have beendeveloped in [4], [5], [7]-[10], [34]-[36], [63]. In particular, in [34] (see also [35] and[36]), it has been shown th<strong>at</strong> the controls <strong>of</strong> the averaged system can be takento be measure valued functions th<strong>at</strong> have their values in the limit occup<strong>at</strong>ionalmeasures set (LOMS) <strong>of</strong> the associ<strong>at</strong>ed system, the l<strong>at</strong>ter being characterized bycertain linear constraints (the pro<strong>of</strong> <strong>of</strong> the validity <strong>of</strong> this characteriz<strong>at</strong>ion wasbased on a result in stochastic control obtained in [59]). In a recent paper [20] itwas established th<strong>at</strong>, in case the fast dynamics is independent <strong>of</strong> the slow st<strong>at</strong>evariables, a similar averaging technique is applicable in dealing with SP controlledstochastic differential equ<strong>at</strong>ions, with the LOMS <strong>of</strong> the associ<strong>at</strong>ed system beingin this case equal to the set <strong>of</strong> marginal probability distributions <strong>of</strong> the relaxedst<strong>at</strong>ionary solutions <strong>of</strong> this system (the structure <strong>of</strong> the l<strong>at</strong>ter set was described in[15] and [59]). In this paper we extend the results <strong>of</strong> [20] to the general case whenthe fast dynamics involves the dependence on slow st<strong>at</strong>e variables.The paper is organized as follows. In Section 2, the definitions <strong>of</strong> the associ<strong>at</strong>edand averaged systems along with some not<strong>at</strong>ions are introduced, and also somekey preliminary results are established. In Section 3, it is established th<strong>at</strong>, under amild condition, any partial limit in law <strong>of</strong> any solution <strong>of</strong> the SP CSDE is a weaksolution <strong>of</strong> the averaged system (Theorem 3.3). In Section 4, more restrictiveassumptions are introduced and more strong convergence results are presented(Theorem 4.2). Also in this section, two important rel<strong>at</strong>ed results (Proposition 4.1and 4.2) are given. In Section 5, special cases are discussed. Sections 6,7 and 8contain the pro<strong>of</strong>s <strong>of</strong> the results presented in Section 3,4 and 5 respectively. <strong>On</strong>e<strong>of</strong> the results <strong>of</strong> Section 2 (namely, Lemma 2.2(ii)) is also proved in section 5.2


2 Not<strong>at</strong>ion and preliminariesThroughout this paper, for a Polish space S, C(S) and C b (S) will stand for thespaces <strong>of</strong> continuous and bounded continuous functions on S respectively andP(S) will denote the Polish space <strong>of</strong> probability measures on S with the weakconvergence topology ([18], Chapter 2). Also, for an S−valued random variableX, L(X) will denote its law, viewed as an element <strong>of</strong> P(S). For a deterministicor stochastic process X(t) (t ≥ 0), X(·) will denote its entire trajectory and X(I)will stand for its trajectory restricted to the time interval I = [a, b]. Each <strong>of</strong> theseis viewed as an element <strong>of</strong> an appropri<strong>at</strong>e function space which will be clear fromthe context.Let ɛ > 0 be a small parameter. Consider the R d × R s −valued process(z ɛ (·), x ɛ (·)) described by the system <strong>of</strong> SP CSDEHere:dz ɛ (t) = h(z ɛ (t), x ɛ (t), u ɛ (t))dt + γ(z ɛ (t), x ɛ (t), u ɛ (t))dB(t), (1)dx ɛ (t) = 1 ɛ m(zɛ (t), x ɛ (t), u ɛ (t))dt + 1 √ ɛσ(z ɛ (t), x ɛ (t), u ɛ (t))dW (t). (2)• For a prescribed compact metric ‘action’ space A, h : R d × R s × A → R d ,γ : R d × R s × A → R d×d , m : R d × R s × A → R s , σ : R d × R s × A → R s×sare Lipschitz in the first two arguments uniformly w.r.t. the third one,• The initial values are fixed: (z ɛ (0), x ɛ (0)) = (z 0 , x 0 ),• B(·), W (·) are resp. d− and s−dimensional independent standard Brownianmotions,• u ɛ (·) is an A−valued control process with measurable p<strong>at</strong>hs s<strong>at</strong>isfying thenonanticip<strong>at</strong>ivity condition: for ∀ t ′ ≥ t, (B(t ′ ) − B(t), W (t ′ ) − W (t)) isdefindependent <strong>of</strong> the σ−field F t = the completion <strong>of</strong>∩ θ>t σ(z ɛ (y), x ɛ (y), B(y), W (y), u ɛ (y), y ≤ θ). (3)Note th<strong>at</strong>, in absence <strong>of</strong> control (the case <strong>of</strong> uncontrolled dynamics), singularlyperturbed stochastic differential equ<strong>at</strong>ions similar to (1)-(2) have been studied in[42] and [44], with [42] being probably the first public<strong>at</strong>ion devoted to the genuineanalysis <strong>of</strong> such systems.The triplet (z ɛ (t), x ɛ (t), u ɛ (t)) will be referred to as a solution and u ɛ (t) as anadmissible control <strong>of</strong> the SP CSDE (1)-(2). The solutions <strong>of</strong> (1)-(2) are interpreted3


and the solutions <strong>of</strong> the associ<strong>at</strong>ed system (6) s<strong>at</strong>isfy the inequalitysup τ,u(·) E[||x(τ)|| 4 ] < ∞, (9)where in the first case the supremum is over ɛ ∈ (0, ¯ɛ] (¯ɛ > 0 is small enough), overt > 0 and over all admissible controls for SP CSDE (1)-(2), and in the second caseit is over τ > 0 and over all admissible controls u(·) for the associ<strong>at</strong>ed system (6).Remark: Assumption 1 implies th<strong>at</strong> {L(x ɛ (t)) : t ≥ 0, u ɛ (·) admissible forSP CSDE (1) − (2) } and {L(x(τ)) : τ ≥ 0, u(·) admissible for (6) } are tightin P(R s ).Note th<strong>at</strong> the intuition under Assumption 1 is th<strong>at</strong> there is a sufficiently strongdrift towards the origin when the st<strong>at</strong>e moves far away, so as to keep the probabilitymass concentr<strong>at</strong>ed enough to keep the fourth moment bounded. A simple sufficientcondition for Assumption 1 to be s<strong>at</strong>isfied is th<strong>at</strong> there exist a twice a continuouslydifferentiable function V (x) : R s → R 1 and positive constants a i , i = 1, ..., 5, suchth<strong>at</strong>a 1 ||x|| 4 ≤ V (x) ≤ a 2 ||x|| 4 + a 3andLV (z, x, u) ≤ −a 4 V (x) + a 5 .Here and in the sequel, L stands for the infinitesimal oper<strong>at</strong>or <strong>of</strong> the associ<strong>at</strong>edsystem. Th<strong>at</strong> is, for any twice continuously differentiable functions f(x) : R s →R 1 ,Lf(z, x, u) def= 1 2 tr(σ(z, x, u)σ(z, x, u)T ∇ 2 f(x))+〈∇f(x), m(z, x, u)〉 ∀f ∈ C 2 0(R s ).(10)To verify the validity <strong>of</strong> (9) under the above condition (the verific<strong>at</strong>ion <strong>of</strong> (8)follows similar lines), it is enough to observe th<strong>at</strong>, by Ito formula, for any solution(x(·), u(·)) <strong>of</strong> (6),ddτ E[V (x(τ))] = E[LV (z, x(τ), u(τ))] ≤ −a 4E[V (x(τ))] + a 5⇒ E[V (x(τ))] ≤ E[V (x(0))] + a 5a 4⇒ a 1 E[||x(τ)|| 4 ] ≤ E[V (x(0))] + a 5a 4≤ a 2 E[||x(0)|| 4 ] + a 3 + a 5a 4< ∞.Note th<strong>at</strong> this condition is the counterpart <strong>of</strong> geometric ergodicity <strong>of</strong> Meyn-Tweedie introduced for the discrete time setting in [51].5


Let C0 2(Rs ) be the space <strong>of</strong> twice continuously differentiable functions f(x) :R s → R 1 which vanish <strong>at</strong> infinity along with their first and second deriv<strong>at</strong>ives andlet D be a countable dense set in C0 2(Rs ). Define the set <strong>of</strong> probability measuresD z ⊂ P(R s × A) by the equ<strong>at</strong>ion∫D z = {µ ∈ P(R s × A) : Lf(z, x, u)µ(dxdu) = 0 ∀ f ∈ D}. (11)This set is known to represent the marginal distributions <strong>of</strong> all st<strong>at</strong>ionary relaxedsolutions <strong>of</strong> the associ<strong>at</strong>ed system (see Theorem 2.1 in [15] and Theorem 4.1 in[59]). Also, under Assumption 1, the set D z contains all partial limits <strong>of</strong> occup<strong>at</strong>ionalmeasures gener<strong>at</strong>ed by the solutions <strong>of</strong> the associ<strong>at</strong>ed system as the thetime horizon it is considered on tends to infinity (see Theorems 4.1, 4.2 in [20],and Proposition 5.1 in Section 5 below). The l<strong>at</strong>ter implies, in particular, th<strong>at</strong>D z ≠ ∅ ∀z ∈ R d . (12)Lemma 2.1 The set-valued map z → D z is closed and convex valued and it is alsoupper semicontinuous.Pro<strong>of</strong>. It is easy to see th<strong>at</strong> D z is convex and closed in P(R s × A) for each z.The fact th<strong>at</strong> it is upper semicontinuous follows from the fact th<strong>at</strong> the rel<strong>at</strong>ion∫ Lf(z, x, u)µ(dxdu) = 0 is preserved under convergence <strong>of</strong> (z, µ) in R d ×P(R s ×A).✷Let us introduce now the averaged system. To do this, let us define the functions¯h : R d × P(R s × A) → R d , and ¯γ : R d × P(R s × A) → R d×d by the equ<strong>at</strong>ions:∫¯h(z, µ) = h(z, x, u)µ(dxdu), (13)¯γ(z, µ) =√ ∫γ(z, x, u)γ(z, x, u) T µ(dxdu), (14)where the square-root is assumed to be Lipschitz in z uniformly w.r.t. µ. (SeeTheorem 5.2.3 <strong>of</strong> [60], p. 132, for some sufficient conditions for this to be the case.)The averaged system is the CSDEwhere:dz(t) = ¯h(z(t), µ(t))dt + ¯γ(z(t), µ(t))dB ′ (t), (15)µ(t) ∈ D z(t) ∀t, (16)• z(0) = z 0 (same initial condition as th<strong>at</strong> for the z−component <strong>of</strong> the solution<strong>of</strong> the SP CSDE (1)-(2)),6


• B ′ (·) is a standard d-dimensional Brownian motion,• µ(·) is a P(R s ×A)−valued control process with measurable p<strong>at</strong>hs s<strong>at</strong>isfying(16) and also s<strong>at</strong>isfying the nonanticip<strong>at</strong>ivity condition: for ∀t 2 ≥ t 1 , B ′ (t 2 )−B ′ (t 1 ) is independent <strong>of</strong> the completion <strong>of</strong> the σ−field∩ t ′ >t 1σ(z(t), B ′ (t), µ(t), t ≤ t ′ ).The pairs (z(t), µ(t)) <strong>of</strong> random processes which s<strong>at</strong>isfy the above conditions willbe called solutions <strong>of</strong> the averaged system.In the rest <strong>of</strong> this section we introduce a space <strong>of</strong> measure valued functionswhich is used in our further consider<strong>at</strong>ion. Let ¯R s denote the one point compactific<strong>at</strong>ion<strong>of</strong> R s (see, e.g., [32], p.126). Then any probability measure µ on R s ×A maybe identified with the unique probability measure on ¯R s × A th<strong>at</strong> restricts to µ onR s ×A and perforce assigns zero probability to its complement. The space <strong>of</strong> probabilitymeasures P( ¯R s × A) is endowed with the weak convergence topology whichis metrizable and compact. Note th<strong>at</strong> the sequence µ k ∈ P(R s × A), k = 1, 2, ...,converges in this topology to µ ∈ P(R s × A) if and only if∫lim f(x, u)µ k (dxdu) =k→∞ R s ×A∫R s ×Af(x, u)µ(dxdu)∀f ∈ C b (R s × A).Let U T and U denote the spaces <strong>of</strong> measurable functions which map [0, T ] and[0, ∞) respectively into P( ¯R s × A). Let these spaces be topologized as follows: U Thas the coarsest topology th<strong>at</strong> makes the mapsψ f,g (µ([0, T ]) def=∫ T0∫g(t) f(x, u)µ(t, dxdu)dt : U T → R (17)¯R s ×Acontinuous for all f ∈ C( ¯R s × A), g ∈ L 2 [0, T ] and U has the coarsest topologydefwhich is required to make the mapping <strong>of</strong> µ(·) ∈ U to its trunc<strong>at</strong>ion µ(·)| [0,T ] =µ([0, T ]) ∈ U T continuous for every T > 0.Lemma 2.2 (i) The spaces U T , T > 0 and U are metrizable; (ii) The spacesU T , T > 0, and U are compact and hence Polish.Pro<strong>of</strong>. Let us show th<strong>at</strong> the spaces U T and U are metrizable by constructing themetrics which are consistent with the topologies <strong>of</strong> these spaces. Let µ ′ (·), µ ′′ (·)be arbitrary elements <strong>of</strong> U T and letα ′ i(t) def=∫f i (x, u)µ ′ (t, dxdu) , α¯R s i ′′ (t) def=×A∫f i (x, u)µ ′′ (t, dxdu) , (18)¯R s ×A7


where f i (x, u), i = 1, 2, ..., is a sequence <strong>of</strong> Lipschitz continuous functions which isdense in the unit ball <strong>of</strong> C( ¯R s × A). Let e m (·) : [0, T ] → R 1 , m = 1, 2, ..., be asequence <strong>of</strong> square integrable functions which is dense in L 2 [0, T ] and letḡ T (α i([0, ′ T ]), α i ′′ ([0, T ])) def=Takeg T (µ ′ ([0, T ]), µ ′′ ([0, T ])) def=∞∑m=1∞∑i=1∫ T∫ T2 −m | e m (t)α i(t)dt ′ − e m (t)α i ′′ (t)dt| ∧ 1).00(19)2 −i ḡ T (α ′ i([0, T ]), α ′′i ([0, T ])) ∀µ ′ (·), µ ′′ (·) ∈ U T .(20)It is easy to verify th<strong>at</strong> g T is a metric on U T and th<strong>at</strong> it is consistent with thecoarsest topology which makes the maps (17) continuous.Define now the metric g on U by the equ<strong>at</strong>iong(µ ′ (·), µ ′′ (·)) def=∞∑2 −l g l (µ ′ ([0, l]), µ ′′ ([0, l])) ∀µ ′ (·), µ ′′ (·) ∈ U , (21)l=1where µ ′ ([0, l]), µ ′′ ([0, l]) are trunc<strong>at</strong>ions <strong>of</strong> µ ′ (·) and respectively µ ′′ (·) to the intervals[0, l], l = 1, 2, ... . The metric g is consistent with the coarsest topology th<strong>at</strong>makes the mapping <strong>of</strong> µ(·) to its trunc<strong>at</strong>ion µ([0, T ]) continuous for every T > 0.This proves Lemma 2.2 (i). The pro<strong>of</strong> <strong>of</strong> Lemma 2.2 (ii) is given in Section 8. ✷Lemma 2.3 If µ n ([0, T ]) → µ([0, T ]) in U T for some T > 0, then∫ T ∫∫ T ∫f(t, x, u)µ n (t, dxdu)dt → f(t, x, u)µ(t, dxdu)dt (22)0 ¯R s ×A0 ¯R s ×Afor any f ∈ C([0, T ] × ¯R s × A).Pro<strong>of</strong>. Let the sequence f i (x, u), i = 1, 2, ..., be as above (th<strong>at</strong> is, countable anddense in the unit ball <strong>of</strong> C( ¯R s ×A)). Then, by definition <strong>of</strong> the topology <strong>of</strong> U T , (22)is true if f(t, x, u) = g(t)f i (x, u) for some i and some g ∈ C[0, T ]. By the density <strong>of</strong>{f i (·)}, it is also true if f(t, x, u) = g(t)q(x, u) for g as above and q(·) ∈ C( ¯R s ×A),hence for linear combin<strong>at</strong>ions <strong>of</strong> such functions. By the Stone-Weirstrass theorem(see, e.g., [32], p. 133), the l<strong>at</strong>ter are dense in C([0, T ] × ¯R s × A) and, hence,following standard approxim<strong>at</strong>ion argument, one can establish th<strong>at</strong> (22) is validfor f ∈ C([0, T ] × ¯R s × A).✷Corollary 2.4 If µ n ([0, T ]) → µ([0, T ]) in U T and µ n (t, R d × A) = µ(t, R d × A) =1 ∀t ∈ [0, T ], then∫ T ∫∫ T ∫f(t, x, u)µ n (t, dxdu)dt → f(t, y, u)µ(t, dxdu)dt (23)0R s ×A80R s ×A


for any f ∈ C b ([0, T ] × R s × A).Pro<strong>of</strong>. Consider ˜µ n def= 1 T µn (t, dxdu)dt and ˜µ def= 1 Tµ(t, dxdu)dt as probabilitymeasures on [0, T ] × ¯R d × A, with ˜µ n ([0, T ] × R d × A) = ˜µ([0, T ] × R d × A) = 1.Then, by Corollary 2.3, for any f ∈ C([0, T ] × ¯R s × A),∫∫f(t, x, u)˜µ n (dtdxdu) →f(t, x, u)˜µ(dtdxdu).[0,T ]× ¯R s ×A[0,T ]× ¯R s ×AThis implies th<strong>at</strong> ˜µ n converges weakly to ˜µ in P([0, T ]× ¯R s ×A). The claim followsnow from Theorem 2.1.1 in [18] (the argument used in proving the equivalence <strong>of</strong>the st<strong>at</strong>ements (i), (ii) and (iii) in this theorem is applicable).✷Corollary 2.5 If µ n (·) → µ(·) in U and µ n (t, R d × A) = µ(t, R d × A) = 1 ∀t ∈[0, ∞), then∫ ∞ ∫∫ ∞ ∫e −rt f(t, x, u)µ n (t, dxdu)dt →e −rt f(t, x, u)µ(t, dxdu)dt0R s ×A0R s ×Afor any f ∈ C b ([0, ∞) × R s × A), where r is a positive constant.Pro<strong>of</strong>. By definition <strong>of</strong> the topology <strong>of</strong> U, the convergence µ n (·) → µ(·) in Uimplies the convergence µ n ([0, T ]) → µ([0, T ]) in U T for any T > 0. Hence, (23)with f(t, x, u) replaced by e −rt f(t, x, u) is valid for any T > 0. By a routineargument this can be shown to imply (24).✷3 Convergence in law to the solutions <strong>of</strong> theaveraged systemLet (z ɛ (t), x ɛ (t), u ɛ (t)) be a solution <strong>of</strong> the SP CSDE (1)-(2) and let µ ɛ (t, dxdu) def=δ (x ɛ (t),u ɛ (t))(dxdu) (i.e., the Dirac measure <strong>at</strong> (x ɛ (t), u ɛ (t))). Equ<strong>at</strong>ion (1) can thenbe equivalently (as far as the solutions’ laws are concerned) rewritten in the form(24)dz ɛ (t) = ¯h(z ɛ (t), µ ɛ (t))dt + ¯γ(z ɛ (t), µ ɛ (t))dB(t), (25)where ¯h(·), ¯γ(·) are defined by (13)-(14) (see, e.g., Corollary 5.1.3 <strong>of</strong> [60]). The pair(z ɛ ([0, T ]), µ ɛ ([0, T ])) can be considered as a C([0, T ]; R d ) × U T − valued randomvariable, while the pair (z ɛ (·), µ ɛ (·)) can be considered as a C([0, ∞); R d )×U− valuedrandom variable, where U T , U are as introduced in Section 2 and C([0, T ]; R d )(resp. C([0, ∞); R d )) are the spaces <strong>of</strong> continuous vector functions taking values inR d and defined on [0, T ] (resp. [0, ∞)). The topology <strong>of</strong> C([0, T ]; R d ) is th<strong>at</strong> <strong>of</strong> uniformconvergence and the topology <strong>of</strong> C([0, ∞); R d ) is th<strong>at</strong> <strong>of</strong> uniform convergenceon compact subsets <strong>of</strong> [0, ∞).9


Proposition 3.1 Let Assumption 1 be s<strong>at</strong>isfied. Then the set{L(z ɛ ([0, T ]), µ ɛ ([0, T ])), ɛ > 0} ⊂ P(C([0, T ]; R d ) × U T )is rel<strong>at</strong>ively compact for any T > 0.Pro<strong>of</strong>. By Prohorov’s theorem ([18], p. 25), it suffices to prove th<strong>at</strong>{L(z ɛ ([0, T ]), µ ɛ ([0, T ])), ɛ > 0} is tight in P(C([0, T ]; R d ) × U T ). Since U T is compact,it is enough to prove th<strong>at</strong> {L(z ɛ ([0, T ])), ɛ > 0} is a tight set in P(C([0, T ]; R d )).The Lipschitz condition in the first two variables <strong>of</strong> h, γ, m, σ implies <strong>at</strong> mostlinear growth in these variables. Thus, using the estim<strong>at</strong>es <strong>of</strong> Lemma 4.12 in [50],p.125, for moments <strong>of</strong> stochastic integrals, one can establish th<strong>at</strong> there exists aconstant K T such th<strong>at</strong>∫ tmaxt∈[0,T ] E[||zɛ (t)|| 4 ] ≤ K T (E[||z ɛ (0)|| 4 ] + (1 + E[||z ɛ (θ)|| 4 + ||x ɛ (θ)|| 4 ]dθ)0Taking into account Assumption 1 and applying Gronwall-Bellman lemma one canfurther obtain th<strong>at</strong> there exists a constant ¯K T such th<strong>at</strong>sup t∈[0,T ] E[||z ɛ (t)|| 4 ] ≤ ¯K T (1 + E[||z ɛ (0)|| 4 ]).This, in turn (again, via using Lemma 4.12 <strong>of</strong> [50]), leads to the existence <strong>of</strong> aconstant ¯KT such th<strong>at</strong>E[||z ɛ (t) − z ɛ (θ)|| 4 ] ≤ ¯KT |t − θ| 2 , (26)which is sufficient for the set {L(z ɛ ([0, T ])), ɛ > 0} to be tight in P(C([0, T ]; R d ))(see Theorem 12.2 in [16], p.95).✷Corollary 3.2 L{(z ɛ (·), µ ɛ (·)), ɛ > 0} is rel<strong>at</strong>ively compact in P(C([0, ∞); R d ) ×U).Pro<strong>of</strong>. Let (z ɛ(n) (·), µ ɛ(n) (·)) be a sequence <strong>of</strong> solutions <strong>of</strong> (25), with ɛ(n) , n =1, 2, ..., tending to zero when n tends to infinity. Using Proposition 3.1 and thediagonaliz<strong>at</strong>ion argument, one can establish th<strong>at</strong> there exists a subsequence, say,n l , such th<strong>at</strong> L(z ɛ(nl) ([0, i]), µ ɛ(nl) ([0, i])) converges (as n l tends to infinity) to anelement <strong>of</strong> P(C([0, i]; R d ) × U i ) for any i = 1, 2, ... . This implies the convergence<strong>of</strong> L(z ɛ(nl) (·), µ ɛ(nl) (·)) in P(C([0, ∞); R d ) × U).✷From the fact th<strong>at</strong> the set L{(z ɛ (·), µ ɛ (·)), ɛ > 0} is rel<strong>at</strong>ively compact inP(C([0, ∞); R d ) × U) it follows th<strong>at</strong> the set L{(z ɛ (·), µ ɛ (·), B(·), W (·)), ɛ > 0} isrel<strong>at</strong>ively compact in P(C([0, ∞); R d ) × U × C([0, ∞); R d ) × C([0, ∞); R s )).10


Let η be a limit point <strong>of</strong> L(z ɛ (·), µ ɛ (·), B(·), W (·)). Th<strong>at</strong> is, there exists asequence <strong>of</strong> ɛ(n) tending to zero as n tends to infinity such th<strong>at</strong>limn→∞ L(zɛ(n) (·), µ ɛ(n) (·), B(·), W (·)) def= η ,where η is an element <strong>of</strong> P(C([0, ∞); R d ) × U × C([0, ∞); R d ) × C([0, ∞); R s )).<strong>On</strong>e can interpret η as the lawη = L(z(·), µ(·), B ′ (·), W ′ (·))for a canonically realized random process (z(·), µ(·), B ′ (·), W ′ (·)), which takes valuesinC([0, ∞); R d ) × U × C([0, ∞); R d ) × C([0, ∞); R s )).Such a process will be referred to as a partial limit-in-law <strong>of</strong> (z ɛ (·), µ ɛ (·), B(·), W (·)).Note th<strong>at</strong>, by construction the B ′ (·)− and W ′ (·)− components <strong>of</strong> the partial limitin-laware standard independent d− and s− dimensional Brownian motions.Theorem 3.3 Let Assumption 1 be s<strong>at</strong>isfied and let (z ɛ (t), x ɛ (t), u ɛ (t)) be a solution<strong>of</strong> the SP CSDE (1)-(2). Let also µ ɛ (t, dxdu) = δ (x ɛ (t),u ɛ (t))(dxdu) (as above) and(z(·), µ(·), B ′ (·), W ′ (·)) be a partial limit-in-law <strong>of</strong> (z ɛ (·), µ ɛ (·), B(·), W (·)). Thenthe pair (z(·), µ(·)) is a solution <strong>of</strong> the averaged system (15)-(16).Pro<strong>of</strong> is in Section 6.Consider the optimal control problem∫ Tinf E[ e −rt k(z ɛ (t), x ɛ (t), u ɛ (t))dt] def= J(z ɛ (·),x ɛ (·),u ɛ ɛ ∗ (27)(·)) 0where k(z, x, u) ∈ C b (R d × R s × A) and the inf is either over the solutions <strong>of</strong> thesystem (1)-(2) on a finite time interval [0, T ] (in this case we take T def= T andr ≥ 0) or over the solution <strong>of</strong> this system on the interval [0, ∞) (in which caseT def= ∞ and r > 0).Consider also the optimal control problem∫ Tinf E[ e −rt¯k(z(t), defµ(t))dt] = J0 ∗ , (28)(z(·),µ(·)) 0where ¯k(z, µ) def= ∫ k(z, x, u)µ(dx, du) and the inf is over the solutions <strong>of</strong> the averagedsystem (15)-(16) on a finite or infinite time horizon (as above).Corollary 3.4 Under the conditions <strong>of</strong> Theorem 3.3,lim infɛ→0J ∗ ɛ ≥ J ∗ 0 . (29)11


Pro<strong>of</strong>. Let ɛ = ɛ(n) ↓ 0 and the sequence <strong>of</strong> solutions (z ɛ(n) (·), x ɛ(n) (·), u ɛ(n) (·)) <strong>of</strong>(1)-(2) be such th<strong>at</strong>∫ Tlim E[ e −rt k(z ɛ(n) (t), x ɛ(n) (t), u ɛ(n) (t))dt] = lim inf Jɛ∗ ɛ(n)→0 0ɛ→0∫ T⇒ lim E[ e −rt¯k(z ɛ(n) (t), µ ɛ(n) (t))dt] = lim inf Jɛ ∗ ,ɛ(n)→0 0ɛ→0where µ ɛ (t, dxdu) = δ (x ɛ (t),u ɛ (t))(dxdu). By Proposition 3.1 and Corollary 3.2, onemay assume, without loss <strong>of</strong> generality, th<strong>at</strong>(z ɛ(n) (·), µ ɛ(n) (·), B(·), W (·)) → (z(·), µ(·), B ′ (·), W ′ (·))) in law. (30)From Corollaries 2.4 and 2.5 it follows th<strong>at</strong> the map ∫ T0 e−rt¯k(z(t), µ(t))dt is continuousin (z(·), µ(·)). As it is also bounded, the convergence in law (30) impliesthe convergence <strong>of</strong> the m<strong>at</strong>hem<strong>at</strong>ical expect<strong>at</strong>ions∫ Tlim E[ e −rt¯k(z ∫ Tɛ(n) (t), µ ɛ(n) (t))dt] = E[ e −rt¯k(z(t), µ(t))dt]ɛ(n)→0 00which, in turn, implies∫ TE[ e −rt¯k(z(t), µ(t))dt] = lim inf Jɛ ∗ .0ɛ→0Since, by Theorem 3.3, (z(·), µ(·)) is a solution <strong>of</strong> the averaged system (15)-(16),This proves the claim.∫ TE[ e −rt¯k(z(t), µ(t))dt] ≥ J∗0 .0Remark: Note th<strong>at</strong> lim inf ɛ→0 Jɛ∗ may depend on the initial values <strong>of</strong> the fastst<strong>at</strong>e variables x ɛ (0) = x 0 , in which case the inequality (29) may be strict. Thiscan happen, e.g., if the st<strong>at</strong>e space <strong>of</strong> the fast dynamics R s is decomposed intosubsets in such a way th<strong>at</strong> the trajectories <strong>of</strong> SP CSDE having initial values <strong>of</strong>fast components in one subset can not reach the st<strong>at</strong>es with fast components fromanother subset (with wh<strong>at</strong>ever admissible controls are used). Conditions ensuringth<strong>at</strong> the limit <strong>of</strong> Jɛ ∗ exists and is equal to J0 ∗ are discussed in Sections 4 and 5below.✷12


4 Further assumptions and convergence resultsIn this section we will assume th<strong>at</strong>and th<strong>at</strong> the averaged system is <strong>of</strong> the formγ(z, x, u) def= γ(z). (31)dz(t) = ¯h(z(t), µ(t))dt + γ(z(t))dB(t) , µ(t) ∈ D z(t) ∀t (32)(th<strong>at</strong> is, in particular, it is considered with the same Brownian motion as in (1)).Also, we will use more structured nonanticip<strong>at</strong>ivity conditions. Namely, we willassume (as in [20]) th<strong>at</strong> admissible controls in the CSDE (1)-(2) and in the averagedsystem (32) are progressively measurable with respect to a given (the same in bothcases) continuous and complete filtr<strong>at</strong>ion { ˆF t } <strong>of</strong> σ-fields such th<strong>at</strong>:• {B(θ), W (θ); θ ≤ t} is measurable with respect to ˆF t for t ≥ 0 ,• For t ′ ≥ t ≥ 0 , B(t ′ ) − B(t) and W (t ′ ) − W (t) are independent <strong>of</strong> ˆF t .The admissible controls in the associ<strong>at</strong>ed system (6) will be assumed to be progressivelymeasurable with respect to F τ = ˆF ɛτ .Let us define the metric ρ(·, ·) on P( ¯R s × A) by the equ<strong>at</strong>ionρ(µ ′ , µ ′′ ) def=∞∑(2c i ) −i |〈f i , µ ′ 〉 − 〈f i , µ ′′ 〉| ∀µ ′ , µ ′′ ∈ P( ¯R s × A) , (33)i=1where f i (x, u), i = 1, 2, ..., is a sequence <strong>of</strong> Lipschitz continuous functions which isdense in the unit ball <strong>of</strong> C( ¯R s × A), with c i ≥ 1 being Lipschitz constants <strong>of</strong> f i ,and here and in wh<strong>at</strong> follows 〈f, µ〉 def= ∫ f(x, u)µ(dxdu). Note th<strong>at</strong> this metric isconsistent with the weak convergence topology <strong>of</strong> P( ¯R s × A).Assumption 2: Corresponding to arbitrary random z and x, which are independent<strong>of</strong> W ′ (·) and s<strong>at</strong>isfy the inequalities E[||z|| 4 ] ≤ c , E[||x|| 4 ] ≤ c (c is apositive constant), and corresponding to an arbitrary random µ ∈ D z , which isindependent <strong>of</strong> W ′ (·), there exists a solution (x(·), u(·)) <strong>of</strong> the associ<strong>at</strong>ed system(6) such th<strong>at</strong> x(0) = x andE[ρ(µ, µ S )] ≤ ν c (S) ,lim ν c(S) = 0 , (34)S→∞Here µ S is the occup<strong>at</strong>ional measure gener<strong>at</strong>ed by (x(·), u(·)) on the interval [0, S].This measure is defined by taking µ S (Q) def= 1 Smeas{ τ ∈ [0, S] : (x(τ), u(τ)) ∈ Q}13


for any Borel subset Q <strong>of</strong> ¯R s × A, with meas standing for the Lebesgue measureon [0, S] (see, e.g., [20]). Equivalently, µ S can be defined by the equ<strong>at</strong>ions:∫f i (x, u)µ S (dxdu) = 1 ∫ Sf i (x(τ), u(τ))dτ, i = 1, 2, ... , (35)¯R s ×A S0where f i (·) are as in (33). The not<strong>at</strong>ion ν c (S) in (34) is to reflect the fact th<strong>at</strong> thisestim<strong>at</strong>e is supposed to be uniform in z, x and µ but it may depend on the boundc.Note th<strong>at</strong> Assumption 2 is implied by a certain “mixing” condition st<strong>at</strong>ed in theproposition below. The pro<strong>of</strong> <strong>of</strong> the proposition is based on results <strong>of</strong> [20], where itis also shown th<strong>at</strong>, under some additional provisions, this mixing condition is notonly sufficient but also necessary for Assumption 2 to be true (see Corollary 4.3 anRemark 3 in [20]). An important special case in which the mixing condition and,thus, Assumption 2 are s<strong>at</strong>isfied is discussed in Section 5 below (see Assumption4, Proposition 5.2 and subsequent comments).Proposition 4.1 Letσ(z, x, u) def= σ(z, x) (36)and let Assumption 1 be s<strong>at</strong>isfied. Then Assumption 2 is s<strong>at</strong>isfied if the associ<strong>at</strong>edsystem (6) has the following property: for any initial condition x(0) = x ′ 0 andadmissible control u ′ (·), corresponding to any other initial condition x(0) = x ′′0there exists an admissible control u ′′ (·) such th<strong>at</strong> the solutions x ′ (·) and x ′′ (·) <strong>of</strong>(6) (obtained with x ′ 0 , u′ (·) and x ′′0 , u′′ (·) respectively) s<strong>at</strong>isfy the inequalities∫ SE[ || 1 f i (x ′ (τ), u ′ (τ))dτ − 1 f i (x ′′ (τ), u ′′ (τ))dτ|| ]S 0S 0≤ ν i (S)(1 + E[||x ′ 0|| 4 ] + E[||x ′′0|| 4 ] + E[||z|| 4 ]) i = 1, 2, ... , (37)where ν i (·) are monotone decreasing functions such th<strong>at</strong> lim S→∞ ν i (S) = 0.Pro<strong>of</strong>. In case z is fixed (non-random), the pro<strong>of</strong> follows from Corollary 4.3 in[20]. The extension to the case when z is random and s<strong>at</strong>isfies (7) is straightforward.✷To introduce our next assumption, let us define the metric β(·, ·) on R d ×P( ¯R s × A) by the equ<strong>at</strong>ion∫ Sβ((v ′ , µ ′ ), (v ′′ , µ ′′ )) def= ||v ′ − v ′′ || + ρ(µ ′ , µ ′′ ) (38)∀(v ′ , µ ′ ), (v ′′ , µ ′′ ) ∈ R d × P( ¯R s × A), where here and in the sequel || · || is theEuclidean norm in the finite dimensional space. Define also a multivaled mapQ zdef= {(v, µ) | v = ¯h(z, µ), µ ∈ D z } ⊂ R d × P(R s × A) . (39)14


Note th<strong>at</strong>, under Assumptions 1 and 2, the map z → Q z is convex- and compactvalued.Assumption 3 (Lipschitz continuity <strong>of</strong> Q z ): For any z ′ , z ′′ ∈ R d ,β H (Q z ′, Q z ′′) ≤ c ∗ ||z ′ − z ′′ || , (40)where β H (·, ·) is the Hausdorff metric defined on the closed and bounded subsets<strong>of</strong> R d × P( ¯R s × A) by the metric β(·, ·) and c ∗ is a suitable constant.Remark: Assumption 3 is implied by the Lipschitz continuity in z <strong>of</strong> ¯h(z, µ)(which, in turn, is implied by the Lipschitz continuity <strong>of</strong> h(z, x, u) in z) in caseD z is independent <strong>of</strong> z, th<strong>at</strong> is, if the associ<strong>at</strong>ed system (6) does not involve thedependence on z. An important special case when this assumption (as well asAssumption 2) are s<strong>at</strong>isfied in the presence <strong>of</strong> such a dependence, is considered inthe next section.Theorem 4.2 Let Assumptions 1-3 be s<strong>at</strong>isfied. Then, corresponding to any solution(z(·), µ(·)) <strong>of</strong> the averaged system (32), there exists a solution (z ɛ (·), x ɛ (·),u ɛ (·)) <strong>of</strong> the SP CSDE (1)-(2) such th<strong>at</strong>, for any T > 0lim max E[ɛ→0 t∈[0,T ] ||zɛ (t) − z(t)|| 2 ] = 0 ,lim E[g T (µ ɛ ([0, T ]), µ([0, T ]))] = 0 , (41)ɛ→0where µ ɛ (t, dxdu) def= δ (x ɛ (t),u ɛ (t))(dxdu) and g T (·, ·) is defined in (20).Pro<strong>of</strong>. The theorem is established by Lemma 7.3 and Lemma 7.4 (see section 7).✷Remark: Theorem 4.2 is a generaliz<strong>at</strong>ion <strong>of</strong> Theorem 5.1 (ii) in [20], where thecorresponding result was obtained for the case when the associ<strong>at</strong>ed system is independent<strong>of</strong> z. Note th<strong>at</strong> a st<strong>at</strong>ement generalizing Theorem 5.1 (i) in [20] can beestablished too. Namely, it can be shown th<strong>at</strong> under conditions 1-3, correspondingto any solution (z ɛ (·), x ɛ (·), u ɛ (·)) <strong>of</strong> the SP CSDE (1)-(2), there exists a solution(˜z ɛ (·), ˜µ ɛ (·)) <strong>of</strong> the averaged system (32) such th<strong>at</strong>, for any T > 0,lim max E[ɛ→0 t∈[0,T ] ||˜zɛ (t) − z ɛ (t)|| 2 ] = 0 ,lim E[g T (˜µ ɛ ([0, T ]), µ ɛ ([0, T ]))] = 0 . (42)ɛ→0The pro<strong>of</strong> <strong>of</strong> this st<strong>at</strong>ement is similar to the pro<strong>of</strong> <strong>of</strong> Theorem 5.1 (i) in [20] andwe do not include it in the paper.Corollary 4.3 Under Assumptions 1-3, corresponding to any solution (z(·), µ(·))<strong>of</strong> the averaged system (15)-(16), there exists a solution (z ɛ (·), x ɛ (·), u ɛ (·)) <strong>of</strong> theSP CSDE (1)-(2) such th<strong>at</strong>limɛ→0 L(zɛ (·), µ ɛ (·)) = L(z(·), µ(·)). (43)15


Also,lim J ɛ ∗ = J0 ∗ . (44)ɛ→0Pro<strong>of</strong>. The fact th<strong>at</strong> (41) is valid for any T > 0 implies th<strong>at</strong>lim ɛ→0 L(z ɛ ([0, T ]), µ ɛ ([0, T )) = L(z([0, T ]), µ([0, T ])) is valid for any T > 0, whichin turn implies the validity <strong>of</strong> (43).Let (z ∗ (t), µ ∗ (t)) be a solution <strong>of</strong> the averaged system (15)-(16) such th<strong>at</strong> theminimal value in (28) is achieved:∫ TE[ e −rt¯k(z ∗ (t), µ ∗ (t))dt] = J0 ∗ . (45)0By (43), there exists a solution (z ∗ɛ (t), x ∗ɛ (t), u ∗ɛ (t)) <strong>of</strong> the SP CSDE (1)-(2) suchth<strong>at</strong>limɛ→0 L(z∗ɛ (·), µ ∗ɛ (·)) = L(z ∗ (·), µ ∗ (·)), (46)where µ ∗ɛ (t, dxdu) def= δ (x ∗ɛ (t),u ∗ɛ (t))(dxdu). Similarly to Corollary 3.4 one can showth<strong>at</strong> from (45) and (46) it follows th<strong>at</strong>∫ T∫ Tlim E[ e −rt k(z ∗ɛ (t), x ∗ɛ (t), u ∗ɛ (t))dt] = lim E[ e −rt¯k(z ∗ɛ (t), µ ∗ɛ (t))dt] = J0 ∗ .ɛ→0 0ɛ→0 0(47)Since Jɛ ∗ ≤ E[ ∫ T0 e−rt k(z ∗ɛ (t), x ∗ɛ (t), u ∗ɛ (t))dt] , from (47) in turn follows th<strong>at</strong>lim sup ɛ→0 Jɛ ∗ ≤ J0 ∗ . The l<strong>at</strong>ter and (29) imply (44).✷Remark: By (44) and (47),∫ TE[ e −rt k(z ∗ɛ (t), x ∗ɛ (t), u ∗ɛ (t))dt] = Jɛ ∗ + ν(ɛ),0lim ν(ɛ) = 0. (48)ɛ→0Hence, knowing a solution <strong>of</strong> the averaged system which is optimal in (28), one canconstruct a solution <strong>of</strong> the SP CSDE which is near optimal in (27) (in the senseth<strong>at</strong> (48) is valid). The procedure <strong>of</strong> construction <strong>of</strong> the l<strong>at</strong>ter, provided th<strong>at</strong> theformer is known, is described in Section 7.Let us conclude this section with the st<strong>at</strong>ement th<strong>at</strong> may provide a furtherinsight in the n<strong>at</strong>ure <strong>of</strong> Assumption 2. Assume th<strong>at</strong> (36) is s<strong>at</strong>isfied and considera “relaxed” version <strong>of</strong> the associ<strong>at</strong>ed system (6) defined by the equ<strong>at</strong>iondx(τ) = ¯m(z, x(τ), v(τ))dτ + σ(z, x(τ))dW ′ (τ), (49)where ¯m(z, x, v) def= ∫ A m(z, x, u)v(du) ∀(z, x, v) ∈ Rd × R s × P(A) . Note th<strong>at</strong>we consider system (49) only with fixed (non-random) z. A pair (x(·), v(·)) will16


e called a relaxed solution <strong>of</strong> the associ<strong>at</strong>ed system (or a solution <strong>of</strong> the relaxedassoci<strong>at</strong>ed system) if it s<strong>at</strong>isfies (49) with v(·) being a P(A)-valued control process,which is assumed to have measurable p<strong>at</strong>hs and to s<strong>at</strong>isfy the nonanticip<strong>at</strong>ivitycondition: for ∀ τ 2 ≥ τ 1 , W ′ (τ 2 ) − W ′ (τ 1 ) is independent <strong>of</strong> the completion <strong>of</strong> theσ−field ∩ τ ′ >τ 1σ(x(τ), W ′ (τ), v(τ), τ ≤ τ ′ ).Assumption 1 ′ : Every st<strong>at</strong>ionary solution <strong>of</strong> the relaxed associ<strong>at</strong>ed system (49)s<strong>at</strong>isfies the inequalitysup E[||x(τ)|| 4 ] < c, (50)τ≥0where c is a constant (c can be different for different values <strong>of</strong> z).Proposition 4.4 Let (36) be true and let Assumption 1 ′ be s<strong>at</strong>isfied. Then, correspondingto any extreme point µ <strong>of</strong> D z , there exists an ergodic st<strong>at</strong>ionary solution(x(·), v(·)) <strong>of</strong> the relaxed associ<strong>at</strong>ed system such th<strong>at</strong>lim ρ(µ, µ S) = 0, a.s., (51)S→∞where µ S is the occup<strong>at</strong>ional measure defined on the interval [0, S] by the equ<strong>at</strong>ions∫¯R s ×Af i (x, u)µ S (dxdu) = 1 Sf i (·) being as in (33).∫ S ∫0Af i (x(τ), u)v(τ)(du)dτ, i = 1, 2, ... ,Pro<strong>of</strong>. The proposition is proved in Section 7.✷5 Special cases and commentsDenote by M(z, S, x) a collection <strong>of</strong> occup<strong>at</strong>ional measures <strong>of</strong> the associ<strong>at</strong>ed system,with x and z being as in Assumption 2. Then (34) becomes equivalent tosupµ∈D zinf E[ρ(µ,µ ′ ∈M(z,S,x) µ′ )] ≤ ν c (S) , lim ν c(S) = 0 . (52)S→∞Th<strong>at</strong> is, Assumption 2 postul<strong>at</strong>es a kind <strong>of</strong> lower semicontinuity property <strong>of</strong>M(z, S, x), which is established (under the corresponding conditions) by proposition4.1. The upper semicontinuity property <strong>of</strong> M(z, S, x) is established by thefollowing propositionProposition 5.1 Let Assumption 1 be s<strong>at</strong>isfied and z be fixed (non-random). Thensup E[ρ(µ, D z )] ≤ ν c (S) ,µ∈M(z,S,x)lim ν c(S) = 0 . (53)S→∞17


where ρ(µ, D z ) def= inf µ ′ ∈D zρ(µ, µ ′ ) . If, in addition, Assumption 1 ′ is s<strong>at</strong>isfied,then, for any Lipschitz continuous vector function q(x, u) : R s × A → R j (j ≥ 1),the set Vzqandsup E[dist(µ∈M(z,S,x)def= {v : v = ∫ R s ×A q(x, u)µ(dxdu) , µ ∈ D z} is convex and compact∫R s ×Aq(x, u)µ(dxdu) , V qz ) ] ≤ ν q c (S) ,limS→∞ νq c (S) = 0 , (54)where dist(v, V qz ) def= inf v ′ ∈V qz ||v − v′ || ∀v ∈ R j .Pro<strong>of</strong>. The pro<strong>of</strong> follows from Theorem 4.2 and Corollary 4.4 in [20].✷Remark: By Theorem 2.1 in [15] (or Theorem 4.1 in [59]), the set D z coincideswith the set <strong>of</strong> one dimensional marginal distributions corresponding to allst<strong>at</strong>ionary solutions <strong>of</strong> the relaxed associ<strong>at</strong>ed system (49). Hence, Assumption 1 ′is equivalent to the assumption th<strong>at</strong>∫sup ||x|| 4 µ(dxdu) ≤ c , (55)µ∈D zwhich implies th<strong>at</strong> the set D z is compact and th<strong>at</strong>∫||x||µ(dxdu) ≤ ν(N) ∀µ ∈ D z (56)||x||≥Nfor some function ν(N) tending to zero as n → ∞.Using Proposition 5.1, one can establish th<strong>at</strong> the following exponential stabilityassumption is sufficient for Assumptions 2 and 3 to be valid.Assumption 4: For any admissible control u(·), the solutions x ′ (·) and x ′′ (·) <strong>of</strong>(6) obtained with the initial conditions x ′ (0) = x ′ 0 and x′′ (0) = x ′′0 s<strong>at</strong>isfy theinequalitylimτ→∞ E[||x′ (τ) − x ′′ (τ)||] ≤ ae −bτ E[||x ′ 0 − x ′′0||] ∀τ ≥ 0 , (57)where a, b are some positive constants.Proposition 5.2 Let Assumptions 1 and 1 ′ be valid and (36) be s<strong>at</strong>isfied. ThenAssumptions 2 and 3 are valid if Assumption 4 is valid.Pro<strong>of</strong>. The fact th<strong>at</strong> Assumption 2 is valid follows from Proposition 4.1 (since(37) is implied by (57) with u ′ (·) = u ′′ (·)). The validity <strong>of</strong> Assumption 3 is establishedin Section 8.✷18


Note th<strong>at</strong> Liapunov-type sufficient condition for Assumption 4 to be true can befound in [13], p. 5. In particular, this assumption is valid for purely deterministicsystem (6) (σ(z, x, u) ≡ 0; see, e.g., [35]) if there exist positive definite m<strong>at</strong>ricesM 1 and M 2 such th<strong>at</strong>, ∀z ∈ R d , ∀u ∈ A, ∀x ′ , x ′′ ∈ R s ,(m(z, x ′ , u) − m(z, x ′′ , u)) T M 1 (x ′ − x ′′ ) ≤ −(x ′ − x ′′ ) T M 2 (x ′ − x ′′ ). (58)A different condition th<strong>at</strong> leads to the fulfillment <strong>of</strong> Assumption 2 is th<strong>at</strong> thesmallest eigenvalue <strong>of</strong> σ(z, x)σ(z, x) T is bounded away from zero uniformly in z, x.The validity <strong>of</strong> Assumption 2 in this case can be verified (although we do not do itin the paper) on the basis <strong>of</strong> results <strong>of</strong> [15] and [47], which give a characteriz<strong>at</strong>ion<strong>of</strong> D z using Markov controls, i.e., controls th<strong>at</strong> depend on the present st<strong>at</strong>e alone.Propositions 4.1 and 5.1 allow one to interpret D z as a limit <strong>of</strong> the set <strong>of</strong>occup<strong>at</strong>ional measures <strong>of</strong> system (6), or using the terminology <strong>of</strong> [20], the “limitoccup<strong>at</strong>ional measures set” <strong>of</strong> system (6). In the deterministic setting resultssimilar to Propositions 4.1, 5.1 and to Theorem 4.2 have been obtained in [34](see also closely rel<strong>at</strong>ed earlier results in [35] and [36] and some details aboutthe comparison <strong>of</strong> the deterministic and stochastic cases in Section 5 <strong>of</strong> [20]).Important developments in averaging <strong>of</strong> deterministic singularly perturbed controlsystems over limit occup<strong>at</strong>ional measures <strong>of</strong> the associ<strong>at</strong>ed system can be foundin [4] - [7], [9], [10], [63].In [36] it was shown th<strong>at</strong>, if a deterministic singularly perturbed control systemis linear in fast variables and controls, then only the first moments <strong>of</strong> the measuresfrom the LOMS enter the averaged system and this system proves to be equivalentto a so-called reduced system obtained via equ<strong>at</strong>ing <strong>of</strong> the small parameter tozero. Let us outline how a similar result can be established in the stochasticcontrol framework. Assume th<strong>at</strong> the control set A is a convex and compact subset<strong>of</strong> R k and th<strong>at</strong> represent<strong>at</strong>ion (31) as well asandh(z, x, u) = F 1 (z)x + H 1 (z)u (59)m(z, x, u) = F 2 (z)x + H 2 (z)u , σ(z, x, u) = σ(z) (60)are valid, with F 1 (·), H 1 (·) and F 2 (·), H 2 (·) being m<strong>at</strong>rix functions <strong>of</strong> the correspondingdimensions. Assume th<strong>at</strong> ||e F 2(z)τ || ≤ ae −bτ (th<strong>at</strong> is, the eigenvalues <strong>of</strong>F 2 (z) have real parts which are less than some neg<strong>at</strong>ive number for all z ∈ R d ),which leads to the validity <strong>of</strong> Assumption 4.By (59), the averaged system (15) is reduced todz(t) = h(z(t), ¯x(t), ū(t))dt + γ(z(t))dB(t), (¯x(t), ū(t)) ∈ Ω z(t) , (61)19


where Ω z is the set <strong>of</strong> the first moments corresponding to the probability measuresfrom D z :∫defΩ z = {(¯x, ū) : (¯x, ū) = (x, u)µ(dxdu) , µ ∈ D z } . (62)Proposition 5.3 Let (60) be valid and the associ<strong>at</strong>ed system s<strong>at</strong>isfy Assumptions1 and 1 ′ . Then the following represent<strong>at</strong>ion for Ω z is valid:Ω z = {(¯x, ū) : ¯x = −F −12 (z)H 2 (z)ū , ū ∈ A} . (63)Pro<strong>of</strong>. The pro<strong>of</strong> is in Section 8.Using (63), one can show th<strong>at</strong> the system (61) is equivalent to the systemdz(t) = h(z(t), −F −12 (z)H 2 (z)ū(t), ū(t))dt + γ(z(t))dB(t), ū(t) ∈ A . (64)Note th<strong>at</strong> this system can be obtained if one: (i) multiplies (2) by ɛ; (ii) equ<strong>at</strong>esɛ in the resulting equ<strong>at</strong>ion to zero and expresses x as the function <strong>of</strong> z and u; (iii)substitutes thus obtained expression for y into (1).If, in addition, the function k(z, x, u) in (27) is convex in (x, u), then one canshow also th<strong>at</strong> the ”averaged” optimal control problem (27) is reduced to theproblem∫ Tinf E[ e −rt k(z(t), −F2 −1 (z(t))H 2 (z(t))ū(t), ū(t))dt] = J0 ∗ , (65)(z(·),ū(·)) 0where inf is over the solutions <strong>of</strong> (64). Note th<strong>at</strong> singularly perturbed stochasticcontrol systems with the structure similar to th<strong>at</strong> defined by (59) and (60) havebeen studied in [40],[41], where results concerning the approxim<strong>at</strong>ion <strong>of</strong> the solutions<strong>of</strong> the SP systems by the solutions <strong>of</strong> (64) were established using completelydifferent approach. For the case when the associ<strong>at</strong>ed system is independent <strong>of</strong> z ast<strong>at</strong>ement similar to Proposition 5.3 was given (without a pro<strong>of</strong>) in [20]Another interesting special case to mention is th<strong>at</strong> when the slow system (2)does not involve the Brownian motion in its description. Th<strong>at</strong> is, γ(·) ≡ 0. Inthis case the averaged system (32) is purely deterministic and, by Theorem 4.2,one can restrict the optimiz<strong>at</strong>ion in (27) to ”almost deterministic” solutions <strong>of</strong>(1)-(2) (despite <strong>of</strong> the presence <strong>of</strong> the stochastic elements in the fast dynamics).A similar situ<strong>at</strong>ion was studied in [1] where the fast dynamics was defined by acontrolled Markov chain making transitions in time intervals <strong>of</strong> the length ɛ. Noteth<strong>at</strong> the st<strong>at</strong>e and action spaces <strong>of</strong> this chain were finite and th<strong>at</strong> the approach <strong>of</strong>this paper can be applied to obtain results similar to [1] for the chains with infinite(countable or uncountable) st<strong>at</strong>e and action spaces.20


6 Pro<strong>of</strong> <strong>of</strong> Theorem 3.3Theorem 3.3 is established by the following two lemmas.Lemma 6.1 (z(·), µ(·)) s<strong>at</strong>isfies (15) a.s. and µ(·) is nonanticip<strong>at</strong>ive.Lemma 6.2 µ(·) s<strong>at</strong>isfies (16) a.s.Pro<strong>of</strong> <strong>of</strong> Lemma 6.1. For f ∈ Cb 2(Rd ) def= {f : R d → R is twice continuouslydifferentiable and f, ∂f ∂∂x i,2 f∂x i ∂x j, 1 ≤ i, j ≤ d, are bounded }, defineG µ f(z) = 1 2 tr[( ∫∫+〈γ(z, x, u)γ T (z, y, u)µ(dxdu))∇ 2 f(z)]h(z, x, u)µ(dxdu), ∇f(z)〉= 1 2 tr[¯γ2 (z, µ)∇ 2 f(z)] + 〈¯h(z, µ), ∇f(z)〉,where, by definition (see (14)), the m<strong>at</strong>rix ¯γ(·) is symmetric.Let∫Mf ɛ (t) deft= f(z ɛ (t)) − f(z ɛ (0)) − G µ ɛ (y)f(z ɛ (y))dy, t ≥ 0. (66)0Applying the Ito formula, one can readily verify th<strong>at</strong> Mf ɛ (t) as well as the function∫ t(Mf ɛ (t)) 2 −0||¯γ(z ɛ (θ), µ ɛ (θ))∇f(z ɛ (θ))|| 2 dθ, t ≥ 0,are martingales w.r.t. F t , where || · || stands for the Euclidean norm. Also, usingthe same approach, one can show th<strong>at</strong> the functions∫ tMf ɛ (t)B i (t) −0d∑j=1¯γ ji (z ɛ (θ), µ ɛ (θ)) ∂f∂z j(z(θ))dθ, 1 ≤ i ≤ d, t ≥ 0,are martingales with respect to F t , where B i (·) is the i th component <strong>of</strong> B(·) and¯γ ji (·) is the ji−th entry <strong>of</strong> the m<strong>at</strong>rix ¯γ(·).Let nowM f (t) def= f(z(t)) − f(z(0)) −It can be shown th<strong>at</strong> M f (t),∫ t0G µ(θ) f(z(θ))dθ, t ≥ 0. (67)∫ t(M f (t)) 2 − ||¯γ(z(θ), µ(θ))∇f(z(θ))|| 2 dθ, t ≥ 0, (68)021


and∫ tM f (t)B i(t) ′ −0d∑j=1are martingales with respect to the filtr<strong>at</strong>ion F ′ t¯γ ji (z(θ), µ(θ)) ∂f∂z j(z(θ))dθ, 1 ≤ i ≤ d, t ≥ 0, (69)def= the completion <strong>of</strong>∩ s>t σ(z(θ), µ(θ), B ′ (θ), W ′ (θ); θ ≤ s).Let us verify th<strong>at</strong> M f (t) is a martingale w.r.t. F ′ t (the fact th<strong>at</strong> the rest <strong>of</strong> thefunctions in (68)-(69) are martingales w.r.t. F ′ t is established in a similar way).By definition <strong>of</strong> M ɛ f (t) (see (66) above) and since it is a martingale w.r.t. F t,∫ tE[(f(z ɛ (t)) − f(z ɛ (θ ′ )) − G µ ɛ (y)f(z ɛ (y))dy)θ ′g(z ɛ ([0, θ]), µ ɛ ([0, θ]), B([0, θ]), W ([0, θ]))] = 0for all t ≥ θ ′ > θ, f ∈ C 2 b (Rd ) and for all continuous bounded g : C([0, θ]; R d ) ×U θ × C([0, θ]; R d ) × C([0, θ]; R s )) → R 1 . Let ɛ = ɛ(n) ↓ 0 be such th<strong>at</strong>(z ɛ(n) (·), µ ɛ(n) (·), B(·), W (·)) → (z(·), µ(·), B ′ (·), W ′ (·))in law. Then passing to the limit in the above equ<strong>at</strong>ion, one obtains∫ tE[(f(z(t)) − f(z(θ ′ )) − G µ(y) f(z(y))dy)θ ′g(z([0, θ]), µ([0, θ]), B ′ ([0, θ]), W ′ ([0, θ]))] = 0,which by a standard monotone class argument implies th<strong>at</strong> M f (t) is a martingalew.r.t. F ′ t.Given martingales X(t), Y (t), let 〈X〉(t), 〈Y 〉(t) stand for their quadr<strong>at</strong>ic vari<strong>at</strong>ions(see e.g. [47], p 79) and〈X, Y 〉(t) def= 1 (〈X + Y 〉(t) − 〈X〉(t) − 〈Y 〉(t)).2X(t) and Y (t) are called orthogonal if 〈X, Y 〉(t) = 0, t ≥ 0 a.s. Note th<strong>at</strong> ifX(t) and Y (t) are orthogonal, then 〈X + Y 〉(t) = 〈X〉(t) + 〈Y 〉(t) a.s. and th<strong>at</strong> if〈X〉(t) = 0, t ≥ 0 a.s., then X(t) = const , t ≥ 0 a.s.From the fact th<strong>at</strong> the functions in (68)-(69) are martingales w.r.t. F t ′ andfrom Theorems 5.1 and 5.2 in [50], pp.152-153, it follows th<strong>at</strong> a.s.〈M f 〉(t) =∫ t0||¯γ(z(θ), µ(θ))∇f(z(θ))|| 2 dθ , t ≥ 0, (70)22


∫ t〈M f , B i〉(t) ′ =0d∑j=1¯γ ji (z(θ), µ(θ)) ∂f∂z j(z(θ))dθ, 1 ≤ i ≤ d, t ≥ 0. (71)By (71) and Theorem 5.4 in [50], p.160, the following represent<strong>at</strong>ion is valid a.s.:where ζ(t) is defined by the equ<strong>at</strong>ionζ(t)def==M f (t) = ζ(t) + ξ(t), t ≥ 0, (72)∫ t d∑ d∑( ¯γ ji (z(θ), µ(θ)) ∂f (z(θ))dB0∂zi(θ)′i=1 j=1j∫ t(∇f(z(θ))) T ¯γ(z(θ), µ(θ))dB ′ (θ) (73)0(B ′ i (·), i = 1, ...d, are the components <strong>of</strong> B′ (·)) and ξ(t) is a continuous squareintegrablezero mean martingale w.r.t. F ′ t which is orthogonal to ζ(t): 〈ξ, ζ〉(t) = 0.From this orthogonality it follows th<strong>at</strong> a.s.〈M f 〉(t) = 〈ζ〉(t) + 〈ξ〉(t),where, using (73), one can show (see [50], pp. 152-160) th<strong>at</strong> a.s.〈ζ〉(t) =∫ t0||¯γ(z(θ), µ(θ))∇f(z(θ))|| 2 dθ, t ≥ 0.The comparison <strong>of</strong> the last two expressions with (70) allows one to conclude th<strong>at</strong>a.s.〈ξ〉(t) = 0, t ≥ 0 ⇒ ξ(t) = const t ≥ 0,where the constant is zero because ξ(·) is zero mean. Substituting the l<strong>at</strong>ter and(73),(70) into (67), one can obtain th<strong>at</strong> a.s.∫ tf(z(t)) = f(z(0)) + G µ(θ) f(z(θ))dθ0∫ t+ (∇f(z(θ))) T ¯γ(z(θ), µ(θ))dB ′ (θ), t ≥ 0.0Since the above expression is valid for any f(z) from C 2 b (Rd ) it can be easily verifiedth<strong>at</strong> the pair (z(t), µ(t)) s<strong>at</strong>isfies (15) for t ≥ 0 a.s.Let us next show th<strong>at</strong> µ(·) is nonanticip<strong>at</strong>ive. By definition <strong>of</strong> the admissiblecontrols for the SP CSDE (1)-(2),E[g 1 (z ɛ ([0, θ]), µ ɛ ([0, θ]), B([0, θ]), W ([0, θ]) g 2 (B(t) − B(θ ′ ), W (t) − W (θ ′ ))]= E[g 1 (z ɛ ([0, θ]), µ ɛ ([0, θ]), B([0, θ]), W ([0, θ])] E[g 2 (B(t) − B(θ ′ ), W (t) − W (θ ′ ))]23


for any t ≥ θ ′ > θ and for any continuous bounded g 1 : C([0, θ]; R d ) × U θ ×C([0, θ]; R d ) × C([0, θ]; R s )) → R 1 and g 2 : R d × R s → R 1 . Choosing a sequence <strong>of</strong>ɛ = ɛ(n) ↓ 0 as before and passing to the limit in the above expression along thissequence, one obtainsE[g 1 (z([0, θ]), µ([0, θ]), B ′ ([0, θ]), W ′ ([0, θ])g 2 (B ′ (t) − B ′ (θ ′ ), W ′ (t) − W ′ (θ ′ ))]= E[g 1 (z([0, θ]), µ([0, θ]), B ′ ([0, θ]), W ′ ([0, θ])]E[g 2 (B ′ (t) − B ′ (θ ′ ), W ′ (t) − W ′ (θ ′ ))].The l<strong>at</strong>ter implies th<strong>at</strong>, for any θ ′ > θ, (B ′ (t) − B ′ (θ ′ ), W ′ (t) − W ′ (θ ′ )) is independent<strong>of</strong>∩ θ>s σ(z(y), µ(y), B ′ (y), W ′ (y), y ∈ [0, θ])Letting θ ′ ↓ s, it follows th<strong>at</strong> so is (B ′ (t) − B ′ (s), W ′ (t) − W ′ (s)) (by continuity <strong>of</strong>the Brownian motion). This implies the required nonanticip<strong>at</strong>ivity <strong>of</strong> µ(·). ✷Pro<strong>of</strong> <strong>of</strong> Lemma 6.2. For f ∈ D (where D is the same as in (11) ), extendLf : R d × R s × A → R to Lf : R d × ¯R s × A → R by setting Lf(·, ∞, ·) ≡ 0. Now,for t > θ,ɛ(f(x ɛ (t)) − f(x ɛ (θ))) =∫ t ∫θ+ √ ɛ¯R s ×A∫ tθLf(z ɛ (y), x, u)µ ɛ (y, dxdu)dy〈∇f(x ɛ (y)), σ(z ɛ (y), x ɛ (y), u ɛ (y))dW (y)〉.As ɛ → 0, the l.h.s. tends to zero. The variance <strong>of</strong> the second term in the r.h.s.is <strong>of</strong> the order <strong>of</strong> O(ɛ) and, hence, it also tends to zero in law. Consequently,the first term in the r.h.s. must tend to zero in law. By definition <strong>of</strong> (z(·), µ(·)),there exists a sequence <strong>of</strong> values <strong>of</strong> ɛ(n), n = 1, 2, ..., tending to zero such th<strong>at</strong>(z ɛ(n) (·), µ ɛ(n) (·)) → (z(·), µ(·)) in law as S def= C([0, ∞); R d ) × U−valued randomvariables. Applying Skorohod’s theorem (see e.g. [18], p. 23), one can concludefrom this th<strong>at</strong> there exist S−valued random variables (˜z n (·), ˜µ n (·)), n ≥ 1,(˜z(·), ˜µ(·)) defined on a common probability space such th<strong>at</strong> they agree in law with(z ɛ(n) (·), µ ɛ(n) (·)), n ≥ 1, (z(·), µ(·)) resp. and such th<strong>at</strong> (˜z n (·), ˜µ n (·)) → (˜z(·), ˜µ(·))a.s. From the definition <strong>of</strong> the topology in U and Lemma 2.3 it follows th<strong>at</strong> a.s.∫ t ∫θLf(˜z n (y), x, u)˜µ n (y, dxdu)dy →¯R s ×A∫ t ∫Hence, the r.h.s. <strong>of</strong> the above expression, and therefore∫ t ∫θLf(z(y), x, u)µ(y, dxdu)dy¯R s ×AθLf(˜z(y), x, u)˜µ(y, dxdu)dy.¯R s ×A24


must be a.s. zero. As this is true for all t > θ, the integrand is zero a.e., where theLebesgue null set may be taken to be the same for all f ∈ D. Hence, by taking asuitable version <strong>of</strong> µ(·), we may drop the qualific<strong>at</strong>ion ’a.e.’ and obtain th<strong>at</strong> a.s.∫Lf(z(y), x, u)µ(y, dxdu) = 0 ∀y ∈ [0, ∞).¯R s ×AThe claim would now follow if we prove th<strong>at</strong> µ(y)(R s × A) = 1 for all y. For t > θ,define µ n θ,t ∈ P( ¯R s × A) in such a way th<strong>at</strong>∫f(x, u)µ n θ,t(dxdu) = 1¯R s ×At − θ∫ t ∫θf(x, u)µ ɛ(n) (y, dxdu)dy¯R s ×Afor ∀f ∈ C( ¯R s × A). Likewise, define µ θ,t ∈ P( ¯R s × A) so th<strong>at</strong>∫f(x, u)µ θ,t (dx, du) = 1¯R s ×At − θ∫ t ∫for ∀f ∈ C( ¯R s × A).From the fact th<strong>at</strong> µ ɛ(n) (·) → µ(·) in law it follows th<strong>at</strong>→ E[∫ TE[0∫ T0∫g(y)∫g(y)for any g ∈ L 2 [0, T ] and any T ≥ 0. Hence,θf(x, u)µ(y, dxdu)dy¯R s ×Af(x, u)µ ɛ(n) (y, dxdu)dy]¯R s ×Af(x, u)µ(y, dxdu)dy]¯R s ×A∫∫E[ f(x, u)µ n θ,t(dxdu)] → E[ f(x, u)µ θ,t (dx, du)] ∀f ∈ C( ¯R s × A)¯R s ×A¯R s ×Awhich implies th<strong>at</strong> µ n θ,t → µ θ,t in law as P( ¯R s × A)−valued random variables.By Assumption 1, for any η > 0 there exists a compact K η ⊂ R s such th<strong>at</strong>P (x ɛ (t) ∈ K η ) ≥ 1 − η for all t ≥ 0 and all admissible u ɛ (·). By definition,E[µ ɛ(n) (y, K η × A)] = P (x ɛ (y) ∈ K η )⇒E[µ n θ,t(K η × A)]def=∫1 tP (x ɛ(n) (y) ∈ K η )dy ≥ 1 − η ∀n. (74)t − θ θUsing the Skorohod’s theorem as above and by a small abuse <strong>of</strong> terminology, wereplace the convergence µ n θ,t → µ θ,t ‘in law’ by th<strong>at</strong> ‘a.s.’ and, thus, obtainE[µ θ,t (K η × A)] ≥ E[lim sup µ n θ,t(K η × A)] ≥ 1 − η ⇒n→∞25


whereE[µ θ,t (R s × A)] = 1 ⇒ µ θ,t (R s × A) = 1 a. s. , (75)µ θ,t (K η × A) def=∫1 tµ(y, K η × A)dyt − θ θThe second equality in (75) is true for all t > θ r<strong>at</strong>ional outside a common zeroprobability set, hence by continuity, for all t > θ. It follows th<strong>at</strong> almost surely,µ(y, R s × A) = 1 for a.e. y, where the ‘a.e.’ may be dropped as before by takinga suitable version <strong>of</strong> µ(·).✷7 Pro<strong>of</strong>s for Section 4In this section, K > 0 will stand for a general constant which may vary from oneusage to another.Let the functions f i (x, u), i = 1, 2, ..., be as in (33) and¯ρ(µ ′ , µ ′′ ) def= (Define ˆρ(·, ·) and ˆβ(·, ·) by the equ<strong>at</strong>ions:∞∑(2c i ) −2i |〈f i , µ ′ 〉 − 〈f i , µ ′′ 〉| 2 ) 1 2 .i=1ˆρ(µ ′ , µ ′′ ) def= ρ(µ ′ , µ ′′ ) + ¯ρ(µ ′ , µ ′′ ) ∀µ ′ , µ ′′ ∈ P(R s × A) , (76)ˆβ((v ′ , µ ′ ), (v ′′ , µ ′′ )) def= β((v ′ , µ ′ ), (v ′′ , µ ′′ )) + ˆρ(µ ′ , µ ′′ ) (77)∀(v ′ µ ′ ), (v ′′ , µ ′′ ) ∈ R d × P( ¯R s × A). Since ¯ρ(µ ′ , µ ′′ ) ≤ Kρ(µ ′ , µ ′′ ), one can obtainth<strong>at</strong>ρ(µ ′ , µ ′′ ) ≤ ˆρ(µ ′ , µ ′′ ) ≤ (1 + K)ρ(µ ′ , µ ′′ )andβ((v ′ , µ ′ ), (v ′′ , µ ′′ )) ≤ ˆβ((v ′ , µ ′ ), (v ′′ , µ ′′ )) ≤ (2 + K)β((v ′ , µ ′ ), (v ′′ , µ ′′ )).The l<strong>at</strong>ter implies th<strong>at</strong>ˆβ H (Q z ′, Q z ′′) ≤ K||z ′ − z ′′ || ∀z ′ , z ′′ ∈ R d , (78)where ˆβ H (·, ·) is the Hausdorff metric defined on the subsets <strong>of</strong> R d × P( ¯R s × A)by the metric ˆβ(·, ·).Lemma 7.1 For any (v, µ) ∈ R d × P( ¯R s × A) and z ∈ R d there exists a uniquesolution <strong>of</strong> the problemmin ˆβ((v, µ), (v ′ , µ ′ )). (79)(v ′ ,µ ′ )∈Q z26


Pro<strong>of</strong> follows from the fact th<strong>at</strong> Q z is compact and convex and from th<strong>at</strong>ˆβ((v, µ), (1 − λ)(v ′ , µ ′ ) + λ(v ′′ , µ ′′ ))< (1 − λ) ˆβ((v, µ), (v ′ , µ ′ )) + λ ˆβ((v, µ), (v ′′ , µ ′′ )) (80)∀λ ∈ (0, 1), ∀(v ′ , µ ′ ) ≠ (v ′′ , µ ′′ ). ✷The element <strong>of</strong> Q z which <strong>at</strong>tains minimum in (79) will be referred to as theprojection <strong>of</strong> (v, µ) onto Q z . It will be denoted as Ψ(z, v, µ), with its first andsecond components being denoted as ψ 1 (z, v, µ) and ψ 2 (z, v, µ) respectively. Noteth<strong>at</strong>, by definition <strong>of</strong> Q z ,ψ 1 (z, v, µ) = ¯h(z, ψ 2 (z, v, µ)) (81)and th<strong>at</strong>, by Lemma 6.1 and (78), the map Ψ(z, v, µ) and, hence, ψ 1 (z, v, µ) andψ 2 (z, v, µ) are continuous.Let now (z(t), µ(t)) be a solution <strong>of</strong> the averaged system (15)-(16) on [0, ∞)and v(t) def= ¯h(z(t), µ(t)). Let us partition the time interval with the points t l ,where ∆(ɛ) > 0 is a function <strong>of</strong> ɛ such th<strong>at</strong>Denote:˜θ ldef= (ṽ l , ˜µ l ) def= 1∆(ɛ)t ldef= l∆(ɛ), l = 0, 1, ... , (82)lim ∆(ɛ) = 0, limɛ→0∫ tlt l−1(v(t), µ(t))dt ,where ¯v ldef= ψ 1 (z(t l ), ˜θ l ) , ¯µ ldef= ψ 2 (z(t l ), ˜θ l ) and, by (81),∆(ɛ)= ∞ . (83)ɛ→0 ɛ¯θldef= Ψ(z(t l ), ˜θ l ) = (¯v l , ¯µ l ) ,¯v l = ¯h(z(t l ), ¯µ l ). (84)Lemma 7.2 Let T be an arbitrary positive and N (ɛ,T )def= ⌊ Tpart <strong>of</strong>T∆(ɛ) . Then, for any l = 1, 2, ..., N (ɛ,T ) ,∆(ɛ) ⌋be the integerE[ ||ṽ l − ¯v l || 2 ] + E[ ˆρ 2 (˜µ l , ¯µ l ) ] ≤ E[ ˆβ 2 (˜θ l , ¯θ l ) ] ≤ K∆(ɛ). (85)Pro<strong>of</strong>. The left inequality in (85) follows from the definition <strong>of</strong> ˆβ. To prove theright inequality, note th<strong>at</strong> from the fact th<strong>at</strong> (v(t), µ(t)) def= θ(t) ∈ Q z(t) and from(16) and (78) it follows th<strong>at</strong>, for all t ∈ [t l−1 , t l ],ˆβ(θ(t), Q z(tl )) ≤ ˆβ(θ(t), Q z(t) ) + ˆβ H (Q z(t) , Q z(tl )) ≤ K||z(t) − z(t l )||,27


where ˆβ(θ, Q z ) def= min θ ′ ∈Q zˆβ(θ, θ ′ ). Since, as can be easily verified,ˆβ((1 − λ)θ ′ + λθ ′′ , Q z ) ≤ (1 − λ) ˆβ(θ ′ , Q z ) + λ ˆβ(θ ′′ , Q z ), ∀λ ∈ (0, 1)∀θ ′ , θ ′′ ∈ R d × P( ¯R s × A), one can obtain th<strong>at</strong>ˆβ(˜θ l , ¯θ l ) = ˆβ(˜θ l , Q z(tl )) ≤ 1∆(ɛ)∫ tlt l−1ˆβ(θ(t), Qz(tl ))dt ≤K∆(ɛ)∫ tlt l−1||z(t) − z(t l )||dt.⇒ ˆβ 2 (˜θ l , ¯θ∫l ) ≤ K2 tl∆ 2 (ɛ) ( ||z(t) − z(t l )||dt) 2 ≤ K2t l−1∆(ɛ)Similarly to (26), one can establish th<strong>at</strong>∫ tlE[||z(t) − z(θ)|| 4 ] ≤ K T |t − θ| 2t l−1||z(t) − z(t l )|| 2 dt (86)⇒ E[||z(t) − z(θ)|| 2 ] ≤ √ K T |t − θ| (87)⇒ max t∈[tl−1 ,t l ]E[||z(t) − z(t l )|| 2 ] ≤ √ K T ∆(ɛ), (88)where K T is an appropri<strong>at</strong>e constant. The estim<strong>at</strong>es (86),(88) imply (85).Let us now construct a solution (z ɛ (t), x ɛ (t), u ɛ (t)) <strong>of</strong> the CSDE (1)-(2) whichwill s<strong>at</strong>isfy (43). Initially, let us take u ɛ (t) = u ∀t ∈ [0, t 1 ), where u is an arbitraryelement <strong>of</strong> A. Let (z ɛ (t), x ɛ (t)) be the solution <strong>of</strong> (1)-(2) obtained with this control.Define:def¯θ 1 = Ψ(z ɛ (t 1 ), ¯θdef1 ) , ¯v 1 = ψ 1 (z ɛ (t 1 ), ¯θdef1 ) , ¯µ 1 = ψ 2 (z ɛ (t 1 ), ¯θ 1 ) .Note th<strong>at</strong>||¯v 1 − ¯v l || + ˆρ(¯µ 1 , ¯µ 1 ) = ˆβ(¯θ1 , ¯θ 1 ) =min ˆβ(θ, ¯θ 1 )θ∈Q z ɛ (t1 )≤ ˆβ H (Q z ɛ (t 1 ), Q z(t1 )) ≤ K||z ɛ (t 1 ) − z(t 1 )||. (89)Consider the associ<strong>at</strong>ed system (6) with z = z ɛ (t 1 ), W ′ (τ) = W (ɛτ)−W √ (t 1)ɛandwith the initial condition x(0) = x ɛ (t 1 ). By Assumption 2, there exists a solutionx 1 (τ), u 1 (τ) <strong>of</strong> this system such th<strong>at</strong>∫ Sɛ∫E[ |(S ɛ ) −1 f i (x 1 (τ), u 1 (τ))dτ − f i (x, u)¯µ 1 (dx, du)| ] ≤ ν i (ɛ), (90)0deffor any f i (x, u) used in the definition <strong>of</strong> the metric (33), where S ɛ = ∆(ɛ)ɛ→ ∞and ν i (ɛ) → 0 as ɛ → 0. Also, similarly to Corollary 4.5 in [20] it can be shown(using Assumptions 1 and 2) th<strong>at</strong>∫ Sɛ∫E[ ||(S ɛ ) −1 h(z ɛ (t 1 ), x 1 (τ), u 1 (τ))dτ − h(z ɛ (t 1 ), x, u)¯µ 1 (dx, du)|| ] 2 ≤ ν(ɛ),028✷(91)


where as ɛ → 0. Note th<strong>at</strong> in (90),(91) and in the sequel, E[ · ] 2 stands for (E[ · ]) 2 .Define u ɛ (t) def= u 1 ( t−t 1ɛ) ∀t ∈ [t 1 , t 2 ). Let (z ɛ (t), x ɛ (t)) be the solution <strong>of</strong> (1)-(2) obtained with this control. Define also x ɛ def1 (t) = x( t−t 1ɛ). Note th<strong>at</strong> the l<strong>at</strong>ters<strong>at</strong>isfies the equ<strong>at</strong>iondx ɛ 1(t) = 1 ɛ h(zɛ (t 1 ), x ɛ 1(t), u ɛ (t))dt + 1 √ ɛσ(z ɛ (t 1 ), x ɛ 1(t), u ɛ (t))dW (t) (92)which is obtained via the replacement <strong>of</strong> the time scale t = ɛτ in (6). For t ∈ [t 1 , t 2 ],we haveE[||x ɛ 1(t) − x ɛ (t)|| 2 ≤2ɛ 2 E[|| ∫ tt 1(h(z ɛ (t 1 ), x ɛ 1(s), u ɛ (s)) − h(z ɛ (s), x ɛ (s), u ɛ (s))ds|| 2 ]≤≤≤+ 2 ∫ tɛ E[|| (σ(z ɛ (t 1 ), x ɛ 1(s), u ɛ (s)) − σ(z ɛ (s), x ɛ (s), u ɛ (s))dW (s)|| 2 ]t 1 2∆(ɛ) ∫ tɛ 2 E[ ||h(z ɛ (t 1 ), x ɛ 1(s), u ɛ (s)) − h(z ɛ (s), x ɛ (s), u ɛ (s))|| 2 ds]t 1+ 2K ∫ tɛ E[ ||σ(z ɛ (t 1 ), x ɛ 1(s), u ɛ (s)) − σ(z ɛ (s), x ɛ (s), u ɛ (s))|| 2 ds]t 1 8∆(ɛ) ∫ t∫ tɛ 2 Clip[2 E[||z ɛ (t 1 ) − z ɛ (s)|| 2 ]ds + E[||x ɛ 1(s) − x ɛ (s)|| 2 ]ds]t 1 t 1(· · · for ɛ small enough so th<strong>at</strong> ∆(ɛ) > K)ɛ√ 8∆(ɛ)3ɛ 2 Clip2 ¯KT + 8∆(ɛ) ∫ tɛ 2 Clip2 E[||x ɛ 1(s) − x ɛ (s)|| 2 ]ds,t 1where C lip is a common Lipschitz constant for the functions involved in the definition<strong>of</strong> the SP CSDE (1)-(2) and it has been taken into account th<strong>at</strong>, by (26),max s∈[tl−1 ,t l ] E[||z ɛ (s) − z ɛ (t l )|| 2 ] ≤√¯KT ∆(ɛ) . By Gronwall inequality,√E[||x ɛ 1(t) − x ɛ (t)|| 2 ] ≤ 8∆(ɛ)3ɛ 2 Clip2 ¯KT e 8∆2 (ɛ)ɛ 2 Clip 2 ∀t ∈ [t 1 , t 2 ].Define ∆(ɛ)as follows√∆(ɛ) def = ɛ aln 1 ɛ ,a def = (32C 2 lip) −1 . (93)Note th<strong>at</strong> with such a definition <strong>of</strong> ∆(ɛ) (which we are going to use from now on)the rel<strong>at</strong>ionships (83) are s<strong>at</strong>isfied and8∆(ɛ) 3 √ √ɛ 2 Clip2 ¯KT e 8∆2 (ɛ)ɛ 2 Clip 2 = 8Clip2 ¯KT a − 3 12 ɛ[lnɛ ] 3 2 eln( 1 ɛ ) 14 ≤ ɛ 1 229


for ɛ sufficiently small. The l<strong>at</strong>ter implies th<strong>at</strong> the following inequality is valid forsufficiently small ɛmax E[t∈[t 1 ,t 2 ] ||xɛ 1(t) − x ɛ (t)|| 2 ] ≤ ɛ 1 2 . (94)Assume now th<strong>at</strong> the solution (z ɛ (t), x ɛ (t), u ɛ (t)) <strong>of</strong> (1)-(2) has been definedon the interval [0, t l ) and extend the definition to the interval [0, t l+1 ). Take¯θ ldef= Ψ(z ɛ (t l ), ¯θ l ) , ¯v ldef= ψ 1 (z ɛ (t l ), ¯θ l ) , ¯µ ldef= ψ 2 (z ɛ (t l ), ¯θ l ) .Similarly to (89), one can obtain th<strong>at</strong>Note th<strong>at</strong> (see (81))||¯v l − ¯v l || + ˆρ(¯µ l , ¯µ l ) = ˆβ(¯θl , ¯θ l )= min ˆβ(θ, ¯θ l )θ∈Q z ɛ (tl )≤ ˆβ H (Q z ɛ (t l ), Q z(tl ))≤ K||z ɛ (t l ) − z(t l )||. (95)¯v l = ¯h(z ɛ (t l ), ¯µ l ) (96)Consider the associ<strong>at</strong>ed system (6) with z = z ɛ (t l ), W ′ (τ) = W (ɛτ)−W √ (t l)ɛandwith the initial condition x(0) = x ɛ (t l ). By Assumptions 2, there exists a solution(x l (·), u l (·)) <strong>of</strong> this system such th<strong>at</strong>E[ |(S ɛ ) −1 ∫ Sɛ0∫f i (x 1 (τ), u 1 (τ))dτ −for any f i (x, u) used in the definition <strong>of</strong> the metric (33), andE[ ||(S ɛ ) −1 ∫ Sɛ0∫h(z ɛ (t 1 ), x 1 (τ), u 1 (τ))dτ −f i (x, u)¯µ 1 (dx, du)| ] ≤ ν i (ɛ), (97)h(z ɛ (t 1 ), x, u)¯µ 1 (dx, du)|| ] 2≤ ν(ɛ),(98)where S ɛ , ν i (ɛ) and ν(ɛ) are as in (90) and (91). Th<strong>at</strong> is, in particular, S ɛ → ∞and both ν(ɛ) → 0 and ν i (ɛ) → 0 as ɛ → 0.Note th<strong>at</strong>, using Cauchy-Schwartz inequality and Assumption 1, one can easilyverify th<strong>at</strong> (98) impliesE[ ||(S ɛ ) −1 ∫ Sɛ0∫h(z ɛ (t l ), x ′ l(τ), u ′ l(τ))dτ −√h(z ɛ (t l ), x, u)¯µ l (dx, du)|| 2 ] ≤ K ν(ɛ).(99)Extend the definition <strong>of</strong> the solution (z ɛ (t), x ɛ (t), u ɛ (t)) <strong>of</strong> the system (1)-(2) tothe interval [0, t l+1 ] by applying the control u ɛ (t) def= u l ( t−t lɛ) on the interval t ∈[t l , t l+1 ).30


It is proved below th<strong>at</strong> the solution <strong>of</strong> (1)-(2) thus constructed s<strong>at</strong>isfies (42).Before passing to this pro<strong>of</strong> let us define x ɛ l = x l ( t−t lɛ). Note th<strong>at</strong>, replacingthe time scale t = t l + ɛτ, one can obtain (similarly to (94)) th<strong>at</strong>and also to rewrite (99),(97) in the forms1E[ ||∆(ɛ)and∫ tl+1t l1E[ |∆(ɛ)respectively.(t)defmax E[t∈[t l ,t l+1 ] ||xɛ l (t) − x ɛ (t)|| 2 ] ≤ ɛ 1 2 . (100)∫h(z ɛ (t l ), x ɛ l (t), u ɛ (t))dt −∫ tl+1Lemma 7.3 For any T > 0,t l∫f i (x ɛ l (t), u ɛ (t))dt −√h(z ɛ (t l ), x, u)¯µ l (dx, du)|| 2 ] ≤ K ν(ɛ),(101)f i (x, u)¯µ l (dx, du)| ] ≤ Kν i (ɛ) (102)lim max E[ɛ→0 t∈[0,T ] ||zɛ (t) − z(t)|| 2 ] = 0. (103)Pro<strong>of</strong>. By definition, z ɛ (t) and z(t) s<strong>at</strong>isfy the equ<strong>at</strong>ions:∫ t∫ tz ɛ (t) = z 0 + h(z ɛ (t ′ ), x ɛ (t ′ ), u ɛ (t ′ ))dt ′ + γ(z ɛ (t ′ ))dB(t ′ ),00∫ t∫ tz(t) = z 0 + ¯h(z(t ′ ), µ(t ′ ))dt ′ + γ(z(t ′ ))dB(t ′ ).00Using the fact th<strong>at</strong> γ(z) s<strong>at</strong>isfies Lipschitz conditions, one can obtain th<strong>at</strong>∫ t∫ tE[ ||z ɛ (t) − z(t)|| 2 ] ≤ K{E[ || h(z ɛ (t ′ ), x ɛ (t ′ ), u ɛ (t ′ ))dt ′ − ¯h(z(t ′ ), µ(t ′ ))dt ′ || 2 ]00∫ t+ E[ ||z ɛ (t ′ ) − z(t ′ )|| 2 ]dt ′ }. (104)0Let us evalu<strong>at</strong>e the first term in the right-hand-side <strong>of</strong> (104). Let t ∈ [0, T ] anddefk t = ⌊ tt∆(ɛ)⌋, th<strong>at</strong> is the integer part <strong>of</strong>∆(ɛ) . Then∫ tE[ || h(z ɛ (t ′ ), x ɛ (t ′ ), u ɛ (t ′ ))dt ′ −0∫ t031¯h(z(t ′ ), µ(t ′ ))dt ′ || 2 ]


≤ K{E[ ||≤k t −1 ∑l=1K{k t ∆(ɛ)E[+k t ∆ 2 (ɛ)E[+k t ∆ 2 (ɛ)E[+k t ∆ 2 (ɛ)E[+k t E[+k t E[∫ tl+1t lk t −1 ∑l=1k t −1 ∑l=1k t−1 ∑l=1k∑t−1l=1(k∑t−1 ∫ tl(h(z ɛ (t ′ ), x ɛ (t ′ ), u ɛ (t ′ )) − ¯h(z(t ′ ), µ(t ′ )) )dt ′ || 2 ] + ∆(ɛ)}∫ tl+1t l||h(z ɛ (t ′ ), x ɛ (t ′ ), u ɛ (t ′ )) − h(z ɛ (t l ), x ɛ l (t ′ ), u ɛ (t ′ ) )|| 2 dt ′ ]∫ tl+1||∆ −1 (ɛ) ( h(z ɛ (t l ), x ɛ l (t ′ ), u ɛ (t ′ ))dt ′ − ¯h(z ɛ (t l ), ¯µ l ) || 2 ]t l||¯h(z ɛ (t l ), ¯µ l ) − ¯h(z ɛ (t l ), ¯µ l )|| 2 ]||¯h(z ɛ (t l ), ¯µ l ) − ¯h(z ɛ (t l ), ˜µ l )|| 2 ]) 2||¯h(z ɛ (t l ), µ(t ′ )) − ¯h(z(t l ), µ(t ′ ))||dt ′ ]l=1t l−1(k∑t −1 ∫ tll=1t l−1||¯h(z(t l ), µ(t ′ )) − ¯h(z(t ′ ), µ(t ′ ))||dt ′ ) 2] + ∆(ɛ)}.Let us estim<strong>at</strong>e the right-hand-side terms <strong>of</strong> the above inequality. From the Lipschitzcontinuity <strong>of</strong> h(z, x, u) in (z, x) and from (26), (100) it follows th<strong>at</strong>k t ∆(ɛ)E[≤ k t ∆(ɛ)KE[k t−1 ∑l=1k t−1 ∑l=1∫ tl+1t l||h(z ɛ (t ′ ), x ɛ (t ′ ), u ɛ (t ′ )) − h(z ɛ (t l ), x ɛ l (t ′ ), u ɛ (t ′ ) )|| 2 dt ′ ]∫ tl+1Using (101), one can show th<strong>at</strong>t l(||z ɛ (t ′ )−z ɛ (t l )|| 2 +||x ɛ (t ′ )−x ɛ l (t ′ )|| 2 )dt ′ ] ≤ K(∆(ɛ)+ɛ 1 2 ).kk t ∆ 2 ∑ t −1 ∫ tl+1√(ɛ)E[ ||∆ −1 (ɛ) ( h(z ɛ (t l ), x ɛ l (t ′ ), u ɛ (t ′ ))dt ′ −¯h(z ɛ (t l ), ¯µ l ) || 2 ] ≤ K ν(ɛ).t ll=1From the fact th<strong>at</strong> h(z, x, u) s<strong>at</strong>isfies Lipschitz conditions in z it follows th<strong>at</strong> ¯h(z, µ)s<strong>at</strong>isfies Lipschitz conditions in z. Using this as well as (84), (96), (85),(95) and(26),(87), one can verify th<strong>at</strong>k t (∆ 2 (ɛ)E[+∆ 2 (ɛ)E[k t −1 ∑l=1k∑t −1l=1||¯h(z ɛ (t l ), ¯µ l ) − ¯h(z ɛ (t l ), ¯µ l )|| 2 ]||¯h(z ɛ (t l ), ¯µ l ) − ¯h(z ɛ (t l ), ˜µ l )|| 2 ])32


≤≤≤⎛K∆(ɛ) ⎝E[¯K∆(ɛ){E[k t −1 ∑l=1k t −1 ∑l=1||¯v l − ¯v l || 2 ] + E[k t −1 ∑l=1||z ɛ (t l ) − z(t l )|| 2 ] + 1}∫ t¯K{ E[ ||z ɛ (t ′ ) − z(t ′ )|| ] 2 dt ′ + ∆(ɛ)},0||¯v l − ṽ l || 2 ] + E[k t −1 ∑l=1⎞||z ɛ (t l ) − z(t l )|| 2 ] + 1⎠where K, ¯K, ¯K are positive constants. Again, using the Lipschitz continuity <strong>of</strong>¯h(z, µ) in z and (26), (87), one can verify th<strong>at</strong>and th<strong>at</strong>k t E[k t E[≤ K{k t −1 ∑l=1k t−1 ∑l=1∫ t0( ∫ tl( ∫ tlt l−1||¯h(z ɛ (t l ), µ(t ′ )) − ¯h(z(t l ), µ(t ′ ))||dt ′ ) 2]E[ ||z ɛ (t ′ ) − z(t ′ )|| 2 ]dt ′ + ∆(ɛ)},t l−1||¯h(z(t l ), µ(t ′ )) − ¯h(z(t ′ ), µ(t ′ ))||dt ′ ) 2] ≤ K∆(ɛ).Summarizing the above estim<strong>at</strong>es in (104) and applying Gronwall-Bellman Lemma,one can obtain now th<strong>at</strong>which proves (103).E[ ||z ɛ (t) − z(t)|| 2 ] ≤ K(∆(ɛ) + ɛ 1 2 +√ν(ɛ) ) ∀t ∈ [0, T ], (105)Lemma 7.4 Let µ ɛ (t, dxdu) def= δ (x ɛ (t),u ɛ (t))(dxdu). Then, for any T > 0 ,Pro<strong>of</strong>. By (85), (95) and (105),lim E[g T (µ ɛ (·), µ(·))] = 0, (106)ɛ→0E[ ˆρ(¯µ l , ˜µ l ) ] ≤ ˜ν(ɛ) ⇒ E[ ρ(¯µ l , ˜µ l ) ] ≤ ˜ν(ɛ) , (107)where ˜ν(ɛ) def= K(∆(ɛ) + ɛ 1 2 + ν 1 2 (ɛ)) 1 2 and ρ(·, ·) is defined in (33). Hence,E[ |〈f i , ¯µ l 〉 − 〈f i , ˜µ l 〉| ] ≤ (2c i ) i˜ν(ɛ) . (108)Let αi ɛ def(t) = 〈f i , µ ɛ (t)〉 and α i (t) def= 〈f i , µ(t)〉 . From the definitions <strong>of</strong>µ ɛ (t) and ˜µ l it follows th<strong>at</strong>✷∫ tl+1t lα ɛ i(t)dt =∫ tl+1t lf i (x ɛ (t), u ɛ (t))dt,∫ tlt l−1α i (t)dt = ∆(ɛ)〈f i , ˜µ l 〉 .33


Hence, for any 0 < ¯t < ¯t < T ,≤=≤∫ ¯t ∫E[ | αi(t)dt ɛ ¯t− α i (t)dt| ]¯t¯tN ɛ −1 ∑l=1N ɛ −1 ∑E[ |l=1N∑ɛ−1 ∫ tl+1l=1∫ tl+1t l∫ tlE[ |t ll=1α ɛ i(t)dt −N∑ɛ−11+∆(ɛ) E[ |∆(ɛ)∫ tlt l−1α i (t)dt| ] + O(∆(ɛ))t l−1f i (x ɛ (t), u ɛ (t))dt − ∆(ɛ)〈f i , ˜µ l 〉| ] + O(∆(ɛ))E[ |f i (x ɛ (t), u ɛ (t)) − f i (x ɛ l (t), u ɛ (t))| ]dt∫ tl+1t lf i (x ɛ l (t), u ɛ (t))dt − 〈f i , ¯µ l 〉| ]N∑ɛ −1+∆(ɛ) E[ |〈f i , ¯µ l 〉 − 〈f i , ˜µ l 〉| ] + O(∆(ɛ)),l=1where N ɛ = ⌊ T∆(ɛ) ⌋. By (100) and the Lipschitz continuity <strong>of</strong> f i,By (102),N ɛ −1 ∑l=1N∑ɛ−1∆(ɛ)l=1Finally, by (108),∫ tl+1t lE[ |f i (x ɛ (t), u ɛ (t)) − f i (x ɛ l (t), u ɛ (t))| ]dt ≤ Kɛ 1 4 .1E[ |∆(ɛ)N∑ɛ−1∆(ɛ)l=1Thus, for any 0 < ¯t < ¯t < T ,∫ tl+1t lf i (x ɛ l (t), u ɛ (t))dt − 〈f i , ¯µ l 〉| ] ≤ Kν i (ɛ) .E[ |〈f i , ¯µ l 〉 − 〈f i , ˜µ l 〉| ] ≤ K ˜ν(ɛ) .∫ ¯t ∫E[ | αi(t)dt ɛ ¯t− α i (t)dt| ] ≤ O(˜ν(ɛ)) + O(ν i (ɛ)) → 0¯t¯tas ɛ → 0. This implies th<strong>at</strong> lim ɛ→0 E[ḡ T (αi ɛ(·), α i(·))] = 0 , which, in turn, impliesthe validity <strong>of</strong> (106).✷34


Pro<strong>of</strong> <strong>of</strong> Proposition 4.4. Let µ be an extreme point <strong>of</strong> D z . By Theorem 2.1 in [15]or Theorem 4.1 in [59] (see also [47]), there exists a st<strong>at</strong>ionary solution (x(·), v(·))<strong>of</strong> the relaxed associ<strong>at</strong>ed system (49) such th<strong>at</strong> its one dimensional marginal lawis equal to µ. Th<strong>at</strong> is,∫∫E[ f i (x(t), u)v(t)(du)] = f i (x, u)µ(dxdu), i = 1, 2, ... , (109)A¯R s ×Awhere f i (·) are as in (33). To prove (51), it is enough to show th<strong>at</strong>1limS→∞ S∫ S ∫0A∫f i (x(t), u)v(t)(du) =f i (x, u)µ(dxdu) a. s. , i = 1, 2, ... .¯R s ×A(110)The pair (x(·), v(·)) can be viewed as a random variable taking values inC((−∞, ∞); R s ) × V, where C((−∞, ∞); R s ) is the space <strong>of</strong> continuous functionsfrom (−∞, ∞) to R s with the topology <strong>of</strong> uniform convergence on compactsubsets and V def= the space <strong>of</strong> measurable maps from (−∞, ∞) to P(A)with the coarsest topology th<strong>at</strong> renders continuous the maps ψ f,g,t,θ (v ′ (·)) def=∫ θt g(τ) ∫ A f(u)v′ (τ)(du)dτ → R ∀t < θ, ∀g ∈ L 2 [t, θ], ∀f ∈ C(A).Denote by ˜W z the set <strong>of</strong> laws <strong>of</strong> st<strong>at</strong>ionary solutions <strong>of</strong> the relaxed associ<strong>at</strong>edsystem (49) viewing it as a subset <strong>of</strong> P(C((−∞, ∞); R s ) × V) (the space <strong>of</strong> probabilitymeasures defined on Borel subsets <strong>of</strong> C((−∞, ∞); R s ) × V). It is easy tosee th<strong>at</strong> ˜W z is convex and it can be verified (using Assumption 1 ′ and argumentssimilar to those used in Proposition 3.1 and Corollary 3.2) th<strong>at</strong> it is rel<strong>at</strong>ivelycompact in P(C((−∞, ∞); R s ) × V). Also, it can be shown th<strong>at</strong> ˜W z is closed and,thus, compact.Let ˜W z ∗ ⊂ ˜W z be a set <strong>of</strong> laws <strong>of</strong> relaxed st<strong>at</strong>ionary solutions th<strong>at</strong> have µ astheir one dimensional marginal law (th<strong>at</strong> is, (109) is s<strong>at</strong>isfied for every element <strong>of</strong>˜W z ∗ ). The set ˜W z ∗ is convex and compact, and it can be shown th<strong>at</strong> every extremepoint <strong>of</strong> ˜W∗ z is also an extreme point <strong>of</strong> ˜Wz . In fact, if L(x ∗ (·), v ∗ (·)) is an extremepoint <strong>of</strong> ˜W∗ z th<strong>at</strong> is not an extreme point <strong>of</strong> ˜Wz , then L(x ∗ (·), v ∗ (·)) is a convexcombin<strong>at</strong>ion <strong>of</strong> two distinct L(x 1 (·), v 1 (·)) ∈ ˜W z and L(x 2 (·), v 2 (·)) ∈ ˜W z , and,hence, µ is a convex combin<strong>at</strong>ion <strong>of</strong> distinct elements µ 1 ∈ D z and µ 2 ∈ D z , beingone dimensional marginal laws <strong>of</strong> L(x 1 (·), v 1 (·)) and L(x 2 (·), v 2 (·)) respectively.This would contradict to the assumption th<strong>at</strong> µ is an extreme point <strong>of</strong> D z .Thus, without loss <strong>of</strong> generality, one may assume th<strong>at</strong> the law L(x(·), v(·)) <strong>of</strong>the solution (x(·), v(·)), which s<strong>at</strong>isfies (109) is an extreme point <strong>of</strong> ˜Wz . To prove(110), it is sufficient to prove th<strong>at</strong> this law is ergodic.The Borel σ−field <strong>of</strong> C((−∞, ∞); R s ) × V is gener<strong>at</strong>ed by cylinder sets <strong>of</strong> thetypeB = {(x ′ (·), v ′ (·)) : x ′ (t i ) ∈ B i , 1 ≤ i ≤ m;35∫ s ′js j∫g j (τ) f j (u)v ′ (τ)(du)dτ ∈ C j ,A


1 ≤ j ≤ n},where for some n, m ≥ 1, t 1 < t 2 < · · · < t m , s 1 < s 2 < · · · < s n , and s i < s ′ iin R, f j (·) ∈ C(A), g j (·) ∈ L 2 [s j , s ′ j ], 1 ≤ j ≤ n, and B i’s, C j ’s are Borel in therespective spaces. Call such a cylinder B a “pre-t set” if t m ≤ t and max j s ′ j ≤ t.Define F t ′ = σ(x(s), v(s), s ≤ t), F −∞ ′ = ∩F t, ′ F ∞ ′ = ∨ t F t ′ and F I ′ = {B ∈ F ∞ ′ : Bis shift invariant}, all completed w.r.t. the underlying probability measure. ThusF t ′ is gener<strong>at</strong>ed by the pre-t sets. We claim th<strong>at</strong> F I ′ ⊂ F −∞.′To see this, first note th<strong>at</strong> the collection <strong>of</strong> G ∈ F ∞ ′ such th<strong>at</strong> for any δ > 0there exists a pre-t set B with P (B∆G) < δ, coincides with F t. ′ Also, denote byθ t the t−shift th<strong>at</strong> maps (x ′ (·), v ′ (·)) ∈ C((−∞, ∞); R s ) × V to (x ′ (t + ·), v ′ (t + ·)).Take arbitrary D ∈ F I ′ . For any δ > 0, there exists a pre-t set B withP (B∆D) < δ. Fix τ ∈ R and letT > max{(t m − τ) + , (s ′ j − τ) + , 1 ≤ j ≤ n}.Then θ −T (B) is a pre-τ set. By shift-invariance <strong>of</strong> D and st<strong>at</strong>ionarity <strong>of</strong> (x(·), v(·)),P (θ −T (B)∆D) = P (θ −T (B)∆θ −T (D))= P (B∆D) < δ.Hence D ∈ F τ ′ and, as τ is arbitrary, D ∈ F −∞. ′ Consequently, F I ′ ⊂ F −∞.′Let us now prove th<strong>at</strong> L(x(·), v(·)) is ergodic. Assume th<strong>at</strong> it is not. Then thereexists some D ∈ F I ′ with P (D) ∈ (0, 1). Then L(x(·), v(·)) = P (D)L(x(·), v(·)|D)+(1 − P (D)L(x(·), v(·)|D c ), with L(x(·), v(·)|D) and L(x(·), v(·)|D c ) being the laws<strong>of</strong> (x(·), v(·)) conditioned on D and D c resp. Now the membership <strong>of</strong> L(x(·), v(·))in ˜W z is characterized by the fact th<strong>at</strong>∫ θ ∫f(x(θ)) − Lf(z, x(τ), u)v(τ)(du)dτ, θ ≥ t,tAis a martingale w.r.t. F t ′ for any f(·) ∈ C0 2(Rs ). Th<strong>at</strong> is,∫ θ ∫E[(f(x(θ)) − f(x(t)) − Lf(z, x(τ), u)v(τ)(du)dτ)|F t] ′ = 0 a. s. (111)tAfor all θ > t. Since D ∈ F I ′ ⊂ F −∞, ′ the aforementioned martingale propertyimplies th<strong>at</strong>∫ θ ∫E[(f(x(θ)) − f(x(t)) − Lf(z, x(τ), u)v(τ)(du)dτ)I D |F t] ′ = 0 a. s.tADividing by P (D) > 0, we get (111) under L(x(·), v(·)|D). A similar argumentworks for L(x(·), v(·)|D c ). Thus L(x(·), v(·)|D) ∈ ˜W z and L(x(·), v(·)|D c ) ∈ ˜W z ,which contradicts the extreme point property <strong>of</strong> L(x(·), v(·)). Hence L(x(·), v(·))must be ergodic.✷36


8 Pro<strong>of</strong>s <strong>of</strong> Propositions 5.2, 5.3 and <strong>of</strong> Lemma2.2(ii)Pro<strong>of</strong> <strong>of</strong> Proposition 5.2. The validity <strong>of</strong> Assumption 2 has been already established.To prove the validity <strong>of</strong> Assumption 3, take an arbitrary (v, µ) ∈ Q z 1.Th<strong>at</strong> is, µ ∈ D z 1 and v = ¯h(z 1 , µ). From Assumption 2 it follows th<strong>at</strong> there existan admissible control u(τ) and the corresponding solution x z 1(τ) <strong>of</strong> the associ<strong>at</strong>edsystem (considered with z = z 1 ) such th<strong>at</strong>lim E[ | 1 ∫ S∫f i (xS→∞ Sz 1(τ), u(τ))dτ −0f i (x, u)µ(dx, du)| ] = 0 , (112)where f i (·) are as in (33). Also, from the fact th<strong>at</strong> the sequence <strong>of</strong> f i (·), i = 1, 2, ...,is dense in the unit ball <strong>of</strong> C( ¯R s × A) it follows th<strong>at</strong>lim E[ || 1 ∫ S∫h(z 1 , xS→∞ Sz 1(τ), u(τ))dτ −0h(z 1 , x, u)µ(dx, du)|| ] = 0 . (113)Denote by x z 2(τ) the solution <strong>of</strong> (6) obtained with the same control, same initialconditions, same Brownian motion (as those x z 1(τ) was obtained with) but withz = z 2 . Similarly to Lema 4.1 in [33], it can be established th<strong>at</strong>E[ ||x z 1(τ) − x z 2(τ)|| ] ≤ c ′ ||z 1 − z 2 || ∀τ ≥ 0.where c ′ = const. Hence, from the Lipschitz continuity <strong>of</strong> f i (x, u) (with a constantc i ) and from the Lipschitz continuity <strong>of</strong> h(z, x, u) in (z, x) (with a constant c lip ) itfollows th<strong>at</strong>, for any S > 0 ,E[ | 1 Sand∫ S0f i (x z 1(τ), u(τ))dτ − 1 S∫ S∫ S0f i (x z 2(τ), u(τ))dτ| ] ≤ c i c ′ ||z 1 − z 2 || , (114)E[ || 1 h(z 1 , xSz 1(τ), u(τ))dτ − 1 h(z 2 , x0Sz 2(τ), u(τ))dτ|| ]0≤ c lip (1 + c ′ )||z 1 − z 2 || . (115)Let µ S be the occup<strong>at</strong>ional measure <strong>of</strong> the process (x z 2(τ), u(τ)) on the interval[0, S] and let v Sdef= ¯h(z 2 , µ S ). From (38) and the triangle inequality it follows th<strong>at</strong>β((v, µ), Q z 2) ≤ lim sup E[ ||v − v S || + ρ(µ, µ S ) ] + lim sup E[ β((v S , µ S ), Q z 2) ] .S→∞S→∞(116)∫ S37


Note th<strong>at</strong>, by Proposition 5.1,lim sup E[ β((v S , µ S ), Q z 2) ] = 0 . (117)S→∞Taking into account the definition <strong>of</strong> the occup<strong>at</strong>ional measure as well as (113)and (115), one can obtain th<strong>at</strong>lim sup E[ ||v − v S || ]S→∞∫= lim sup E[ || h(z 1 , x, u)µ(dx, du) − 1S→∞S∫≤ lim sup E[ || h(z 1 , x, u)µ(dx, du) − 1S→∞S∫ S∫ S0∫ S+ lim sup E[ || 1 h(z 1 , xS→∞ Sz 1(τ), u(τ))dτ − 10S≤ c lip (1 + c ′ )||z 1 − z 2 || .0h(z 2 , x z 2(τ), u(τ))dτ|| ]h(z 1 , x z 1(τ), u(τ))dτ|| ]Similarly, taking into account (112) and (114), one obtains th<strong>at</strong>lim sup E[|〈f i , µ〉 − 〈f i , µ S 〉|]=S→∞∫lim sup E[|S→∞f i (x, u)µ(dx, du) − 1 S≤ c i c ′ ||z 1 − z 2 ||∫ S⇒ lim sup E[ ρ(µ, µ S ) ]S→∞∞∑= lim sup E[ (2c i ) −i |〈f i , µ〉 − 〈f i , µ S 〉| ]S→∞≤ c ′ ||z 1 − z 2 ||.i=10∫ S0h(z 2 , x z 2(τ), u(τ))dτ|| ]f i (x z 2(τ), u(τ))dτ| ]The above inequalities along with (117) imply (being substituted into (116)) th<strong>at</strong>β((v, µ), Q z 2) ≤ (c lip (1 + c ′ ) + c ′ )||z 1 − z 2 || .Since (v, µ) is an arbitrary element <strong>of</strong> Q z 1 and since z 1 and z 2 are symmetrical,this implies the validity <strong>of</strong> (40) with c ∗ = c lip (1 + c ′ ) + c ′ .✷Pro<strong>of</strong> <strong>of</strong> Proposition 5.3. We denote the right hand side <strong>of</strong> (63) by P z and showth<strong>at</strong> Ω z = P z .Let ū be an arbitrary element <strong>of</strong> A and ¯x(τ) be a solution <strong>of</strong> the associ<strong>at</strong>edsystem (6) obtained with the control ū(τ) def= ū. Let also ¯µ S be the occup<strong>at</strong>ional38


measure gener<strong>at</strong>ed by the pair (¯x(·), ū(·)) on the interval [0, S] and let∫¯x S = x¯µ S (dxdu) = 1R s ×A Sthe last equality being implied by (35). By (6),∫ S0¯x(τ)dτ ,¯x(S) − ¯x(0)S= F 2 (z)¯x s + H 2 (z)ū + 1 S∫ S0σ(z)dW ′ (τ) .Since E[ || ¯x(S)−¯x(0)S|| 2 ] → 0 and E[ 1 S || ∫ S0 σ(z)dW ′ (τ)|| 2 ] → 0 as S → ∞, one canconclude th<strong>at</strong> E[ ||F 2 (z)¯x s + H 2 (z)ū|| 2 ] → 0 as S → ∞. Hence,lim E[ ||¯x s − (−F2 −1 (z)H 2 (z)ū )|| ] = 0 . (118)S→∞Let q(x, u) = (x, u) . Then Vz q = Ω z , where VzqProposition 5.1. By (54),is the set introduced in∫lim E[ dist( q(¯x s, ū) , Ω z ) ] = lim E[ dist( q(x, u)¯µ S (dxdu) , Ω z ) ] = 0S→0 S→0 R s ×Aand, by (118),lim E[ ||q(¯x s, ū) − (−F2 −1 (z)H 2 (z)ū , ū )|| ] = 0 .S→∞From the fact th<strong>at</strong> Ω z is closed it follows now th<strong>at</strong> (−F −12 (z)H 2 (z)ū , ū ) ∈ Ω zand, consequently, P z ⊂ Ω z (since ū is an arbitrary element <strong>of</strong> A). To provethe converse inclusion, denote: f 1,N (x) = x 1 φ N (x) , ... , f s,N (x) = x s φ N (x) ,where x = (x 1 ... x s ) and φ N (x) : R s → R 1 is a function having continuous firstand second deriv<strong>at</strong>ives such th<strong>at</strong> φ N (x) = 1 for ||x|| ≤ N and φ N (x) = 0 for||x|| ≥ N + 1. It is easy to see th<strong>at</strong>Lf l,N = m l (z, x, u) for ||x|| ≤ N , Lf l,N = 0 for ||x|| ≥ N + 1and |Lf l,N (z, x, u)| is bounded for N < ||x|| < N + 1 , where m l (·) are the components<strong>of</strong> m(·). From (56) and the Lipschitz continuity <strong>of</strong> m l (z, x, u) in x it followsth<strong>at</strong>, for any µ ∈ D z and N → ∞,∫∫0 = Lf l,N (z, x, u)µ(dxdu) → m l (z, x, u)µ(dxdu)R s ×A⇒∫R s ×AR s ×Am(z, x, u)µ(dxdu) = 0 ∀µ ∈ D z . (119)39


Let (¯x, ū) be an arbitrary element <strong>of</strong> Ω z . Th<strong>at</strong> is, (¯x, ū) = ∫ R s ×A(x, u)µ(dxdu) forsome µ ∈ D z . Taking into account (60) and (119), one obtains¯x = −F −12 (z)H 2 (z)ū ⇒ (¯x, ū) ∈ P z ,where it is taken into account th<strong>at</strong> ū ∈ A (since A is convex). The last inclusionimplies th<strong>at</strong> Ω z ⊂ P z .✷Pro<strong>of</strong> <strong>of</strong> Lemma 2.2 (ii) We shall prove the claim for U, the other case beingsimilar. Let µ n (·) ∈ U, n = 1, 2, ... and let αi n def(t) = ∫ R s ×A f i(x, u)µ n (t)(dxdu),where the sequence f i (·), i = 1, 2, ..., is the same as in (33) (th<strong>at</strong> is, it is densein the unit ball <strong>of</strong> C( ¯R s × A)). Due to the fact th<strong>at</strong> the unit ball <strong>of</strong> L 2 [0, T ] isweakly compact for any T > 0, one may assume (by dropping to a subsequence ifnecessary) th<strong>at</strong> there exist measurable functions α i (·) : [0, ∞) → R 1 , i = 1, 2, ...such th<strong>at</strong>, for every i, αi n(·) converges weakly to a α i(·) on any interval [0, T ].Fix T > 0. Let n(1) = 1 and define {n(k)} inductively so th<strong>at</strong>∞∑i=1∫ T2 −i max 1≤l


This is well-defined because {f i (·)} is dense in the unit ball <strong>of</strong> C( ¯R s × A). In fact,ν k (t) = 1m(k)∑µ n(j) (t), i ≥ 1, k ≥ 1.m(k)j=1For every t ∈ [0, ∞), define µ(t) as a limit point <strong>of</strong> {ν k (t)} in P( ¯R s ×A) as k → ∞.By (120) and (121),∫f i (x, u)µ(t)(dxdu) = α i (t), i ≥ 1 (122)R s ×Afor a.e. t, where the qualific<strong>at</strong>ion “a.e.” can be dropped by suitably modifying µ(·)on a Lebesgue-null set. Hence, µ(·) ∈ U.From the weak convergence <strong>of</strong> α n i (·), i = 1, 2, , ..., to the corresponding α i(·), i =1, 2, , ..., on any interval [0, T ] it follows th<strong>at</strong>limn→∞ g(µn (·), µ(·)) = 0 , (123)where g(·, ·) is defined in (21). This proves the required st<strong>at</strong>ement.✷References[1] Altman E., Gaitsgory V. Asymptotic Optimiz<strong>at</strong>ion <strong>of</strong> a Nonlinear HybridSystem Governed by a Markov Decision Process, SIAM J. Control and Optimiz<strong>at</strong>ion,35 (1997), no. 6, pp.2070-2085.[2] Alvarez O., Bardi M., Viscosity Solutions Methods for Singular Perturb<strong>at</strong>ionsin Deterministic and Stochastic Control, SIAM J. Control and Optimiz<strong>at</strong>ion,40(2001), pp 1159-1188.[3] Alvarez O., Bardi M., Singular Perturb<strong>at</strong>ions <strong>of</strong> Nonlinear Degener<strong>at</strong>eParabolic PDEs: a General Convergence result, Arch. R<strong>at</strong>ion. Mech. Anal.,170 (2003), pp. 17-61.[4] Artstein Z., Invariant Measures <strong>of</strong> Differentialinclusions Applied to SingularPerturb<strong>at</strong>ions, Journal <strong>of</strong> Differential Equ<strong>at</strong>ions, 152 (1999), pp 289-307.[5] Artstein Z., An Occup<strong>at</strong>ional Measure Solution to a <strong>Singularly</strong> <strong>Perturbed</strong> OptimalControl Problem, Control and Cybernetics, 31 (2002), pp. 623-642.[6] Artstein Z. , “Invariant Measures and Their Projections in NonautonomousDynamical Systems”, Stochastics and Dynamics, 4 (2004), no. 3, pp 439-459.41


[7] Artstein Z., Gaitsgory V., Tracking Fast Trajectories Along a Slow Dynamics:A Singular Perturb<strong>at</strong>ions Approach, SIAM J. Control and Optimiz<strong>at</strong>ion, 35(1997), no 5, pp. 1487-1507.[8] Artstein Z., Gaitsgory V., The Value Function <strong>of</strong> <strong>Singularly</strong> <strong>Perturbed</strong> ControlSystems, Appl. M<strong>at</strong>h. Optim., 41 (2000), pp 425-445.[9] Artstein Z. and Leizarowitz A., “<strong>Singularly</strong> <strong>Perturbed</strong> Control Systemswith <strong>On</strong>e-Dimensional Fast Dynamics”, SIAM J. Control and Optimiz<strong>at</strong>ion,41(2002), 641-658.[10] Artstein Z. and Vigodner A., “<strong>Singularly</strong> <strong>Perturbed</strong> Ordinary Differentialequ<strong>at</strong>ions with Dynamic Limits”, Procceding <strong>of</strong> the Royal Society <strong>of</strong> Edinburgh,126A (1996), 541-569.[11] Avrachenkov K.E., Filar J. and Haviv M. Singular Perturb<strong>at</strong>ions <strong>of</strong> MarkovChains and Decision Processes, in “Handbook <strong>of</strong> Markov Decision Processes”.Methods and Applic<strong>at</strong>ions, Kluwer, Boston, 2002.[12] Bagagiolo F., Bardi M., Singular Perturb<strong>at</strong>ion <strong>of</strong> a Finite Horizon Problemwith St<strong>at</strong>e-Space Constraints, SIAM J. Control and Optimiz<strong>at</strong>ion, 36 (1998),pp. 2040-2060.[13] Basak, G. K., Borkar, V. S., Ghosh, M. K., Ergodic Control <strong>of</strong> Degener<strong>at</strong>eDiffusions, Stochastic Analysis and Appl. 15 (1997), 1-17.[14] Bensoussan A., Perturb<strong>at</strong>ion Methods in Optimal Control, John Wiley, NewYork, 1989.[15] Bh<strong>at</strong>t A. G., Borkar V. S., Occup<strong>at</strong>ion Measures for <strong>Controlled</strong> Markov Processes:Characteriz<strong>at</strong>ion and Optimality, Annals <strong>of</strong> Probability 24 (1996),1531-1562.[16] Billingsley P., Convergence <strong>of</strong> Probability Measures, John Wiley, New York,1968.[17] Borkar V. S., Optimal Control <strong>of</strong> Diffusion Processes, Pitman Research Notesin M<strong>at</strong>hs. No. 203, Longman Scientific and Technical, Harlow, UK, 1989.[18] Borkar V. S., Probability Theory: An Advanced Course, Springer Verlag, NewYork, 1995.[19] Borkar V. S., Stability <strong>of</strong> Annealing Schemes and Rel<strong>at</strong>ed Processes, Systemsand Control Letters 41 (2000), 325-331.42


[20] Borkar V. S., Gaitsgory V. <strong>On</strong> Existence <strong>of</strong> Limit Occup<strong>at</strong>ional MeasuresSet <strong>of</strong> a <strong>Controlled</strong> Stochastic Differential Equ<strong>at</strong>ion, SIAM J. Control andOptimiz<strong>at</strong>ion, 44 (2005), pp 1436-1473.[21] Colonius F. and Fabbri R, “Controllability for Systems with Slowly VaryingParameters”, ESAIM: Control, Optimis<strong>at</strong>ion and Calculus <strong>of</strong> Vari<strong>at</strong>ions,9(2003), pp 207-216.[22] Donchev T. and Slavov I., <strong>Averaging</strong> Method for <strong>On</strong>e Sided Lipschitz DifferentialInclusions, SIAM J. Control and Optimiz<strong>at</strong>ion, 37 (1999), pp 1600-1613.[23] Donchev T.D. and Dontchev A.L., Singular Perturb<strong>at</strong>ions in Infinite-Dimensional Control Systems, SIAM J. Control and Optimiz<strong>at</strong>ion, 42 (2003),pp. 1795-1812.[24] Dontchev A., Time-scale Decomposition <strong>of</strong> the Reachable Set <strong>of</strong> ConstrainedLinear Systems, M<strong>at</strong>hem<strong>at</strong>ics <strong>of</strong> Control, Signal, and Systems, 5 (1992),pp. 327-340.[25] Dontchev A., Donchev T. and Slavov I, A Tichonov-type Theorem for <strong>Singularly</strong><strong>Perturbed</strong> Differential Inclusion, Nonlinear Analysis, 26 (1996), 1547-1554.[26] Dudley R. M., Distances <strong>of</strong> Probability Measures and Random Variables, TheAnnals <strong>of</strong> M<strong>at</strong>hem<strong>at</strong>ical St<strong>at</strong>istics 39 (1968), 1563-1572.[27] Dudley R.M., Real Analysis and Probability, Wadsworth and Brooks/ColeM<strong>at</strong>hem<strong>at</strong>ics Series, Pacific Grove, California, 1989.[28] Dunford N., Schwartz J.T., Linear Oper<strong>at</strong>ors. Part I: General Theory, IntersciencePublishers, New York, 1958.[29] Ethier, S., T.G. Kurtz, Markov Processes: Characteriz<strong>at</strong>ion and Convergence,John Wiley, New York, 1986.[30] Filar J.A., V. Gaitsgory V. and Haurie A., “Control <strong>of</strong> <strong>Singularly</strong> <strong>Perturbed</strong>Hybrid Stochastic Systems”, IEEE Trans. on Autom<strong>at</strong>ic Control, 46:2 (2001).[31] Fil<strong>at</strong>ov O.P., Hapaev M.M., <strong>Averaging</strong> <strong>of</strong> Systems <strong>of</strong> Differential Inclusions,Moscow University Publishing House, Moscow, 1998 (in Russian).[32] Folland, G.B., Real Analysis, John Wiley, New York, 1984.[33] Gaitsgory V., Suboptimiz<strong>at</strong>ion <strong>of</strong> <strong>Singularly</strong> <strong>Perturbed</strong> Control Problem, SIAMJ. Control and Optimiz<strong>at</strong>ion, 30 (1992), No. 5, pp. 1228 - 1248.43


[34] Gaitsgory V., <strong>On</strong> a Represent<strong>at</strong>ion <strong>of</strong> the Limit Occup<strong>at</strong>ional Measures Setwith Applic<strong>at</strong>ions to <strong>Singularly</strong> <strong>Perturbed</strong> Control Systems, SIAM J. Controland Optimiz<strong>at</strong>ion, 43 (2004), pp. 325-340.[35] Gaitsgory V., Leizarowitz A., Limit Occup<strong>at</strong>ional Measures Set for a ControlSystem and <strong>Averaging</strong> <strong>of</strong> <strong>Singularly</strong> <strong>Perturbed</strong> Control Systems, J. M<strong>at</strong>h.Anal. and Appl., 233 (1999), pp. 461-475.[36] Gaitsgory V., Nguyen M.T., Multiscale <strong>Singularly</strong> <strong>Perturbed</strong> Control Systems:Limit Occup<strong>at</strong>ional Measures Sets and <strong>Averaging</strong>, SIAM J. Control Optim.,41(2002), No. 3, pp. 954-974.[37] Gilbarg D., Trudinger N. S., Elliptic Partial Differential Equ<strong>at</strong>ions <strong>of</strong> SecondOrder, Springer Verlag, Berlin-Heidelberg, 2001.[38] Grammel G., <strong>Averaging</strong> <strong>of</strong> <strong>Singularly</strong> <strong>Perturbed</strong> Systems, Nonlinear Analysis,28 (1997), pp. 1855-1865.[39] Grammel G., Exponential Stability <strong>of</strong> Nonlinear <strong>Singularly</strong> perturbed DifferentialEqu<strong>at</strong>ions , SIAM J. Control and Optimiz<strong>at</strong>ion, 44 (2005), pp. 1712-1724.[40] Kabanov Y., Pergamenshikov S., <strong>On</strong> Convergence <strong>of</strong> Attainability Sets for<strong>Controlled</strong> Two-Scale Stochastic Linear Systems, SIAM J. on Control andOptimiz<strong>at</strong>ion, 35 (1997), pp. 134-159.[41] Kabanov Y., Pergamenshchikov S., Two-Scale Stochastic Systems, SpringerVerlag, Berlin-Heidelberg, 2003.[42] Khasminskii R.Z., <strong>On</strong> the <strong>Averaging</strong> Principle for Ito Stochastic Equ<strong>at</strong>ions,Kybernetika, 4:3 (1968), pp. 260-279[43] Khasminskii R.Z., Stochastic Stability <strong>of</strong> Differential Equ<strong>at</strong>ions, Sijth<strong>of</strong>f andNoordh<strong>of</strong>f, Alphen aan den Rijn, The Netherland, 1980.[44] Khasminskii R.Z. and Yin G., <strong>On</strong> <strong>Averaging</strong> Principles: An Asymptotic ExpansionApproach, SIAM J. on M<strong>at</strong>hem<strong>at</strong>ical Analysis, 35:6 (2004), pp. 1534-1560[45] Kokotovic P.V., Applic<strong>at</strong>ions <strong>of</strong> Singular Perturb<strong>at</strong>ion Techniques to ControlProblems, SIAM Review, 26 (1984), 501-550.[46] Kokotovic P.V., Khalil H.K., and O’Reilly J., Singular Perturb<strong>at</strong>ion Methodsin Control: Analysis and Design, Academic Press, New York, 1986.44


[47] Kurtz T.G. and Stockbridge R.H., Existence <strong>of</strong> Markov Controls and Characteriz<strong>at</strong>ion<strong>of</strong> Optimal Markov Controls, SIAM J. on Control and Optimiz<strong>at</strong>ion,36:2 (1998), pp. 609-653.[48] Kushner H.J., Weak Convergence Methods and <strong>Singularly</strong> <strong>Perturbed</strong> StochasticControl and Filtering Problems, Birkhauser, Boston, 1990.[49] Leizarowitz A., Order Reduction is Invalid for <strong>Singularly</strong> <strong>Perturbed</strong> ControlProblems with Vector Fast Variables, M<strong>at</strong>h. Control Signals and Systems, 15(2002), 101-119.[50] Liptser R. S., Shiryayev A. N., St<strong>at</strong>istics <strong>of</strong> Random Processes I: GeneralTheory, Springer Verlag, New York, 1977.[51] Meyn S. P., Tweedie R. L. Markov Chains and Stochastic Stability, Springer-Verlag, London, 1993[52] O’Malley R.E., Jr., Introduction to Singular Perturb<strong>at</strong>ions, Academic Press,New York, 1974.[53] O’Malley R.E., Jr., Singular Perturb<strong>at</strong>ions and Optimal Control, In M<strong>at</strong>hem<strong>at</strong>icalControl Theory, W.A. Copel, ed., Lecture Notes in M<strong>at</strong>hem<strong>at</strong>ics, 680,Springer-Verlag, Berlin 1978.[54] Naidu S.D., Singular Perturb<strong>at</strong>ions and Time Scales in Control Theory andApplic<strong>at</strong>ions: An Overview, Dynamics <strong>of</strong> Continuous Discrete and ImpulsiveSystems, Series B: Applic<strong>at</strong>ions and lgorithms, 9 (2002), 233-278.[55] Pervozvanskii A.A., Gaitsgory V. Theory <strong>of</strong> Suboptimal Decisions, Kluwer,Dordrecht, 1988.[56] Plotnikov V.A., Plotnikov A.V., Vituk A.N. Differential Equ<strong>at</strong>ions with MultivaluedRight-Hand Sides: Asymptotic Methods, AstroPrint, Odessa, 1999 (inRussian).[57] Quincampoix M., Zhang H., Singular Perturb<strong>at</strong>ions in Non-linear OptimalControl Systems, Differential and Integral Equ<strong>at</strong>ions, 8 (1995), pp 931-944.[58] Quincampoix M.& W<strong>at</strong>bled F. <strong>Averaging</strong> method for discontinuous Mayer’sproblem <strong>of</strong> singularly perturbed control systems, Nonlinear Analysis: Theory,Methods & Applic<strong>at</strong>ions, 54(2003), pp 819-837.[59] Stockbridge R. H., Time-average Control <strong>of</strong> a Martingale Problem: Existence<strong>of</strong> a St<strong>at</strong>ionary Solution, Annals <strong>of</strong> Probability 18 (1990), 190-205.45


[60] Stroock D. W., Varadhan S. R. S., Multidimensional Diffusion Processes,Springer Verlag, New York, 1979.[61] Vasil’eva A.B., Butuzov V.F., Asymptotic Expansions <strong>of</strong> Solutions <strong>of</strong> <strong>Singularly</strong><strong>Perturbed</strong> Equ<strong>at</strong>ions, Nauka, Moscow, 1973 (in Russian).[62] Veliov V., A Generaliz<strong>at</strong>ion <strong>of</strong> Tichonov Theorem for <strong>Singularly</strong> <strong>Perturbed</strong>Differential Inclusions, Journal <strong>of</strong> Dynamical and Control Systems, 3 (1997),pp 1-28[63] Vigodner A., Limits <strong>of</strong> <strong>Singularly</strong> <strong>Perturbed</strong> Control Problems with St<strong>at</strong>isticalLimits <strong>of</strong> Fast Motions, SIAM J. Control and Optimiz<strong>at</strong>ion, 35 (1997), 1-28.[64] Wagner D., Survey <strong>of</strong> Measurable Selection Theorems, SIAM J. Control andOptimiz<strong>at</strong>ion, 15 (1977), 859-903.[65] W<strong>at</strong>bled F., <strong>On</strong> Singular Perturb<strong>at</strong>ions for Differential Inclusions on the InfiniteInterval, J. M<strong>at</strong>h. Anal. Appl., 310 (2005), pp.362-378.[66] Wong E., Represent<strong>at</strong>ion <strong>of</strong> martingales, quadr<strong>at</strong>ic vari<strong>at</strong>ion and applic<strong>at</strong>ions,SIAM J. Control and Optimiz<strong>at</strong>ion, 9 (1971), 621-633.[67] Yin G.G. and Zhang Q., Continuous-Time Markov Chains and Applic<strong>at</strong>ions.A Singular Perturb<strong>at</strong>ion Approach, Springer, New York, 1997.46

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!