12.07.2015 Views

BIOSILICIFICATION: Formation of Amorphous Silica Complex ...

BIOSILICIFICATION: Formation of Amorphous Silica Complex ...

BIOSILICIFICATION: Formation of Amorphous Silica Complex ...

SHOW MORE
SHOW LESS
  • No tags were found...

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>BIOSILICIFICATION</strong>: <strong>Formation</strong> <strong>of</strong> <strong>Amorphous</strong><strong>Silica</strong> <strong>Complex</strong> Structures in Biological SystemsDIATOMS: Living in a Constructal Environment, p. 143


<strong>Silica</strong> BiomineralsDiatom shellRadiolarian microskeleton


Physicochemical Characterization <strong>of</strong> Biosilica


Plant BiosilicaSheet-likeglobularfibrilar


<strong>BIOSILICIFICATION</strong>: Ornate <strong>Silica</strong>“Super-structures” Not Reproduced by ManGross Biogenic <strong>Silica</strong> Production: ~ 240 ± 40 Tmol “Si”/annumSilicon Processing: 6.7 Giga tons/annum


THE DIATOM: An Ideal ProtistSystem for the Study <strong>of</strong>BiosilicificationM. Sumper, Science 2002, 295, 2430.


SILICA FORMATION: Condensation PolymerizationOf Silicic Acid at pH ~ 7T. Coradin, P. Jean Lopez, ChemBioChem 2003, 4, 251.


BIOSILICA FORMATION: Inside the <strong>Silica</strong>Deposition Vesicle (SDV)


THE CATALYTIC ROLE OF BIOMOLECULESON SILICA FORMATION: Silaffins- HO 3 P- HO 3 PO O- HO 3 P- HO 3 PO- HO 3 PO- HO 3 POO- HO 3 POH 2 N S S K K S G S G S Y S K G S K COOH- HO 3 PONHH 3 CNH 3 CHNN + CH 3CH 3H 3 CH 3 CNx = 4-9y = 4-9NCH3H 3 CNCH 3H 3 CNCH 3N. Kröger, S. Lorenz, E. Brunner, M. Sumper, Science 2002, 298, 585


SILICA BIOTRANSPORT: How is “Silicon”Transported Inside the SDV?‣ Transport <strong>of</strong> “soluble” silicate into the SDV‣ Increase <strong>of</strong> silicate concentration‣ Supersaturation in the SDV‣ <strong>Silica</strong> formation “at will” and “when needed”‣ Role <strong>of</strong> <strong>Silica</strong> Transport Vesicle (STV)‣ Role <strong>of</strong> biomolecules for silicon transport


GOAL: To identify macromolecules that extendor delay silica formation from soluble silicateBIOINSPIRED APPROACH‣ Study silicification “in vitro” at pH ~ 7 in theabsence <strong>of</strong> any “additives”‣ Identify macromolecules that may have a “delay” effecton silicification‣ Study the inhibitory effect <strong>of</strong> these macromolecules “invitro” and compare to “control”‣ Long-term (3 days) and short-term (8 h) experiments‣ Monitor “soluble silica”‣ Study silica formed (if any) by several techniques‣ Identify mechanisms, structure/function relationships‣ Ways to improve inhibitory activity


ATTRIBUTES OF MACROMOLECULES THATAFFECT SILICATE CONDENSATION‣ Charged polyelectrolytes, water-soluble‣ Usually Cationic or Partially Cationic‣ “Proper” extent <strong>of</strong> Cationic Charge‣ What Kind <strong>of</strong> Cationic Groups?‣ Zwitter-Ions?‣ What about “neutral” polymers?


CLASSES OF MACROMOLECULES STUDIED‣ Cationic Dendrimers (-NH 3+ end-groups)‣ Cationic, Amine-Containing Polymers (-NH 3+ , -NH 2 R + ,-NHR 2+ groups)‣ Purely Cationic, Ammonium-Containing Polymers(-NR 3+ groups)‣ Copolymers (neutral + cationic groups)‣ Zwitter-Ions (-NH 2 R + , -NHR 2+ and –PO 3 H - Groups)‣ Cationic, Phosphonium-Based oligomers‣ Neutral Polymers (polyvinylpyrrolidone)


FUNCTIONALITY OF DENDRIMERS ASSiO 2 INHIBITORS (“δέντρον” + “µέρος”)N H 2ON H 2NHONH 2N H 2HNNHOONHNONHNOONNNHONHNNHONH 2O NHPAMAM = polyaminoamideN H 2NHNONHONHNH 2Biodegradable by virtue <strong>of</strong> theiramide bondsNH 2PAMAM generation 1(8 -NH 2terminal groups)Tomalia, D. A., et al. Angew. Chem. Int. Ed. Engl. 1990, 29, 138.


VARIOUS GENERATIONS OF DENDRIMERSG = 12.2 nmG = 22.9 nm


EFFECT OF DENDRIMERS ON SiO 2 FORMATIONsoluble SiO 2(ppm)500450400350300250200150CONTROLPAMAM 0.5 (40ppm)PAMAM 1.0 (40ppm)PAMAM 1.5 (40ppm)PAMAM 2.0 (40ppm)PAMAM 2.5 (40ppm)1000 240 480 720 960 1200 1440time (min)pH = 7.0(minimum SiO 2solubility)Ne<strong>of</strong>otistou, E.; Demadis, K.D. Coll. & Surf. A: Physicochem. Eng. Asp. 2004, 242, 213.


DISPERSION OF SiO 2 – PAMAM-1 1 PRECIPITATESUSING ANIONIC POLYMERS*O- O*OOPAAnOHn**OHPAM-co-AAO- OCH 2OHHOCH 2OCH 2CH 2HOOCH 2OHOOOHOHOOO*mCH 2ONH 2OHnCH 2OHCMIsoluble ∆ιαλυτό SiO 2(ppm) 2(ppm)500450400350300250200150CONTROLPAMAM 1.0 (40ppm)PAMAM 1.0 (40ppm) - PAMCOAA (40ppm)PAMAM 1.0 (40ppm) - PAA(LOW MW) (40ppm)PAMAM 1.0 (40ppm) - PAA(HIGH MW) (40ppm)PAMAM 1.0 (40ppm) - CMI (40ppm)1000 240 480 720 960 1200 1440 1680χρόνος time (min)Mavredaki, E.; Ne<strong>of</strong>otistou, E.; Demadis, K.D. Ind. Eng. Chem. Res. 2005, 44, 7019.Demadis, K.D.; Ne<strong>of</strong>otistou, E. Chem. Mater. 2007, 19, 581.


DISPERSION OF SiO 2 – PAMAM-2 2 PRECIPITATESUSING GREEN ANIONIC POLYMERS*O- O*OOPAAnOHn**OHPAM-co-AAO- OCH 2OHHOCH 2OCH 2CH 2HOOCH 2 OHOOOH OOHOOCH 2OOH*mNH 2nCH 2 OHCMIsoluble SiO 2(ppm)∆ιαλυτό SiO 2(ppm)500450400350300250200150CONTROLPAMAM 2.0 (40ppm)PAMAM 2.0 (40ppm) - PAMCOAA (40ppm)PAMAM 2.0 (40ppm) - PAA(LOW MW) (40ppm)PAMAM 2.0 (40ppm) - PAA(HIGH MW) (40ppm)PAMAM 2.0 (40ppm) - CMI (40ppm)1000 240 480 720 960 1200 1440 1680χρόνος (min)time (min)Mavredaki, E.; Ne<strong>of</strong>otistou, E.; Demadis, K.D. Ind. Eng. Chem. Res. 2005, 44, 7019.Demadis, K.D.; Ne<strong>of</strong>otistou, E. Chem. Mater. 2007, 19, 581.


STABLE DISPERSIONS OF SiO 2 – PAMAMPRECIPITATES WITH GREEN ANIONIC POLYMERSOHCH 2 OHO*n**mOHOHOOOOHONH 2OHOCH 2OCH 2PAM-co-AAO- OOCH 2CH 2OOnCH 2 OH- OCH 2HOOHCMIPAMAMPAMAM + CMIPAMAM + PAM-co-AAMavredaki, E.; Ne<strong>of</strong>otistou, E.; Demadis, K.D. Ind. Eng. Chem. Res. 2005, 44, 7019.


AMORPHOUS SiO 2 -PAMAM COMPOSITES60Transmittance (%)50403020103432ν(O-H)-ΝΗ 3+ν(C=O)1635ν(Si-O-Si)1096788ν(Si-O-Si)46414001200100080060040020000.0 10.0 20.0 30.0 40.0 50.0 60.0 70.0 80.003400240014004002θwavenumbers (cm -1 )Si


CATIONIC BIO-POLYMERS FOR SiO 2 INHIBITIONbiopolymerinulin(neutral)Inulin(cationic)chicory roots(Renewablefeedstock fornon-foodapplications)Inulin content:14.9 - 18.3 %3 cationic inulins:CATIN-220 (DS = 0.22)CATIN-860 (DS = 0.86)CATIN-1280 (DS = 1.28)DS = degree <strong>of</strong> substitution)


EFFECT OF CATIN-1280BIO-POLYMERON SiO 2 INHIBITION500.0500400.024h400soluble silicate (ppm)300.0200.0100.048h72hsoluble silicate (ppm)30020010080 ppm CATIN-1280control0.0control 100 ppm 150 ppm 200 ppmCATIN-1280 dosage00 1 2 3 4 5 6 7 8hoursDemadis, K.D.; Ketsetzi, A. Desalination 2008, 223, 487


SYNERGY BETWEEN CATIN-1280 AND CMI500,024h400,048h300,072h~ 200 ppm silicicacid enhancement200,0100,0soluble silica (ppm)0,0control+100ppmCatin860+150ppmCMIcontrol+100ppmCatin860+100ppmCMIcontrol+100ppmCatin860+50ppmCMIcontrol+100ppmCatin860+0ppmCMIcontroladditive dosage (ppm)Demadis, K.D.; Ketsetzi, A. Desalination 2008, 223, 487


SYNERGISTIC EFFECTS IN SiO 2 INHIBITION:CATIN + PASPsoluble silicate (ppm as SiO 2)500450400350300250200150100500100 ppm CATIN + 100 ppm PASP40 ppm CATIN + 60 ppm PASP100 ppm CATINcontrol0 2 4 6 8 10polymerization time (h)PASP = polyaspartate


EFFECTS OF ZWITTER-IONIC IONIC POLYMERSON SiO 2 INHIBITION: PhosphonomethylchitosanOHCH 2 OHOOHHNOCH 3CH 2 OHOOHHNCH 3OCH 2 OHOOHHNOHCH 3CHTOOnOOHCH 2 OHOOHNH 3+OCH 2 OHOOHHNCH 3OCH 2 OHOOHNH 3+OCH 2 OHO OHOHNH 3+CHSOmnOHCH 2 OHOOH+ NH 3OCH 2 OHOOHHNOCH 2 OHCH 2 OHCH 2 OHOOOOHO OHO OHONH 3+CH 3 + H 2 NNmH+npOqCH 2 OHO OHOH+ NH 3PCHHOPOO -- O P OH HO P O -OO(m = 0.16, n = 0.37, p = 0.24, q = 0.14)


Effect <strong>of</strong> Phosphonomethylchitosan (PCH)On <strong>Silica</strong> <strong>Formation</strong>50045040 ppm200 ppmsoluble silicate (ppm as SiO2)400350300250200150100150 ppmcontrol150 ppm silicic acidadditional stabilization5000 1 2 3 4 5 6 7 8time (h)Demadis, K.D.; Ketsetzi, K. Pachis; A. Ramos, V.M. Biomacromolecules 2008, 9, 3288.


Phosphonomethylchitosan (PCH)Entrapment in the <strong>Silica</strong> Matrix1614silica2220silica-PCH compositePCHtransmittance (%)121086silica-PCH compositePCH1816141210silica4821700160015006150014001300120011001000900800700600500400wavenumber (cm -1 )Demadis, K.D.; Ketsetzi, K. Pachis; A. Ramos, V.M. Biomacromolecules 2008, 9, 3288.


Conclusions Biosilicification is a very complexprocess (in vitro silicification, too!) Nature uses silica biominerals fordifferent purposes Biosilica is not simple inorganicsystem Biosilica is a composite material There are many potential applications<strong>of</strong> silica

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!