12.07.2015 Views

Single Event Effects in Advanced SRAM and Logic ... - Sematech

Single Event Effects in Advanced SRAM and Logic ... - Sematech

Single Event Effects in Advanced SRAM and Logic ... - Sematech

SHOW MORE
SHOW LESS
  • No tags were found...

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>S<strong>in</strong>gle</strong> <strong>Event</strong> <strong>Effects</strong> <strong>in</strong><strong>Advanced</strong> <strong>SRAM</strong> <strong>and</strong> <strong>Logic</strong>ComponentsRobert BaumannDist<strong>in</strong>guished Member Technical StaffTexas Instruments, Inc.Dallas, TexasTRC: Oct 25-27, 2004


The 3 Radiation MechanismsT.C. May <strong>and</strong> M.H. Woods, IEEE Trans. Elec. Dev., 26, pp. 2-9, 1979Alpha ParticlesWere dom<strong>in</strong>ant, but m<strong>in</strong>imized dur<strong>in</strong>gtechnology development by ultra-lowbackground alpha detection to verifyall materials meet ULA spec.4HeLow Energy NeutronsWere dom<strong>in</strong>ant, but elim<strong>in</strong>ated when TIdiscovered effect <strong>and</strong> removed BPSGfrom C05 technology <strong>and</strong> beyond.R.C. Baumann et al., IEEE IRPS, p. 299, 1995High Energy Neutronsn (> 1 MeV)J.F. Ziegler <strong>and</strong> W.A. Lanford, Science,vol. 206, p.776, 1979.Cannot easily be shielded. Increases withaltitude. High charge generation efficiency.This is the dom<strong>in</strong>ant mechanism <strong>in</strong> TI products.n (< 100 eV)28Si, 16 O10B12/16/2004 • j://stdpres/template.pot • Slide 2


NomenclatureSEE<strong>S<strong>in</strong>gle</strong> eventeffectsSET<strong>S<strong>in</strong>gle</strong> eventtransient<strong>S<strong>in</strong>gle</strong> bit upsetSBUMultiple bit upsetMBU<strong>S<strong>in</strong>gle</strong> event func.<strong>in</strong>teruptSEFI<strong>S<strong>in</strong>gle</strong> event latch-upSELU<strong>S<strong>in</strong>gle</strong> event gaterupture/BurnoutSEGR/SEBSEU<strong>S<strong>in</strong>gle</strong>eventupsetSoftErrorHardError12/16/2004 • j://stdpres/template.pot • Slide 3


DRAM SER (a.u.)DRAM SER Scal<strong>in</strong>g Trend1010.10.010.001SystemSERbit SERV dd1 10 100 1000DRAM Generation (Mbits)5.04.03.02.01.0Voltage (V)12/16/2004 • j://stdpres/template.pot • Slide 4


SER (A.U.)<strong>SRAM</strong> Bit SER Trend100101Based on embedded high-performance <strong>SRAM</strong>0.7µm0.35µm0.5µm0.25µm0.18µmw BPSG0.13µm0.09µm20.10.1 1 10 100 1<strong>SRAM</strong> Integration Level (Mbits)543Voltage (V)12/16/2004 • j://stdpres/template.pot • Slide 5


<strong>SRAM</strong> System SER TrendSER (A.U.)1000Based on embedded highperformance<strong>SRAM</strong>1001010.5µm0.25µm0.35µmw BPSG0.18µm0.09µm0.13µm5432Voltage (V)0.7µm0.110.1 1 10 100<strong>SRAM</strong> Integration Level (Mbits)12/16/2004 • j://stdpres/template.pot • Slide 6


6T <strong>SRAM</strong> SER – Physics LimitedSoft Error FIT Rate/Mbit10000100010010* From Paul Dodd et al. IEEE 2003 IEDM,TI 6T Bulk CMOS(65nm - 0.25um)S<strong>and</strong>ia 6T CMOSSOI (Non-radhardversion)FIT Rate <strong>in</strong> NYC10.0 1.0 2.0 3.0 4.0 5.0 6.0Power Supply (V)4 vendors of6T BulkCMOS <strong>SRAM</strong>12/16/2004 • j://stdpres/template.pot • Slide 7


SER (A.U.)<strong>Logic</strong> SER Trend1010.10.010.0010.00010.25um0.18um<strong>SRAM</strong> bit SER (DC)Flip-flop/Latch SER (DC)Simulated FF/Latch SER<strong>SRAM</strong> bit SER (w ECC)0.13um 0.09um0.000011 10 100<strong>SRAM</strong> Integration Level (Mbits)0.065umNot derated forAC effects,logical mask<strong>in</strong>g.12/16/2004 • j://stdpres/template.pot • Slide 8


Latchup FIT Rate/Mbit100010010* From PaulDodd et al.IEEE 2003IRPS, p. 51-55ASELU Test ResultsVendor C: 3.3-V V 0.25-µm 6T<strong>SRAM</strong>s SELU rate 1000 FIT/MbitPower Supply (V)Vendor C25 o C85 o C125 o C11.0 1.5 2.0 2.5 3.0 3.5 4.0Latchup FIT Rate/Mbit100101Vendor A: 1.5-V V 0.16-µm 6T <strong>SRAM</strong>sShow Low SELU Rate (1-10 10 FIT/Mbit)25 o C125 o C0.11.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4HUGE SELU variation fromvendor-to-vendorPower Supply (V)12/16/2004 • j://stdpres/template.pot • Slide 9


More SELU dataNon-SEU Fail-Rate (FIT/Mbit)1010.10.010.00140C (24.1 Mbit <strong>SRAM</strong>)detection limit0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2Core Voltage (V)No fails seen at 0.9-1.3V.Limit of detection was0.0044 FIT/Mbit12/16/2004 • j://stdpres/template.pot • Slide 10


Critical Width for PropagationTechnologyf max500 Mhz1 Ghz2.5 Ghz5 GhzFrom P.E. Dodd, et al., “Production <strong>and</strong>Propagation of <strong>S<strong>in</strong>gle</strong>-<strong>Event</strong> Transients<strong>in</strong> High-Speed Digital <strong>Logic</strong> ICs,” IEEENSREC, 2004100 Ghz12/16/2004 • j://stdpres/template.pot • Slide 11


Alternate Memories• FRAM• MRAM• Chalcogenide/phase change• These Memory elements are virtually immune <strong>in</strong> storage mode s<strong>in</strong>cethey do not use charge storage but a ferroelectric/magnetic bistablestate or phase change to store <strong>in</strong>formation. The st<strong>and</strong>ard CMOSsupport circuitry IS however sensitive to SEE so sensitivity is def<strong>in</strong>edby SEU of conventional circuit as well as access frequency.12/16/2004 • j://stdpres/template.pot • Slide 12


SOI vs. Bulk SEUNormalized alpha SER/Mb100101P. Roche et al., IEEE Trans. Nucl. Sci., 50(6), pp. 2046-2054 Dec. 2003.5xBulk 130nm 10SOI 130nm11.0 1.2 1.4 1.6Supply Voltage (V)Normalized neutron SER/Mb1005xBulk devicesSOI devices0.8 1.0 1.2 1.4 1.6 1.8Supply Voltage (V)12/16/2004 • j://stdpres/template.pot • Slide 13


Device Technology SolutionsModification Costs/Performance impact SER ImprovementVoltage/Temp scal<strong>in</strong>g GOI, FET reliability, Power 5x (less for nSER)Node Cap. Scal<strong>in</strong>g Extra mask, chip area, speed, power 1.5x - 5xSOI (Part. Dep.) Substrate cost, yield, layout complex. 0.1x – 5xMulti-well/buried layers Process complexity, yield, cost ~ 2 - 3xSOI (fully-depeleted)* Substrate cost, yield, layout complex. 3x – 50x* Not a production technology at this moment12/16/2004 • j://stdpres/template.pot • Slide 14


Design/Layout SolutionsModification Costs/Performance impact SER ImprovementNode Capacitance extra loads (gates), parasitics 1.3x - 3xResistive Harden<strong>in</strong>g poly R/extra masks/delay*/no extra area 10x – 200xState Redundancy 2-3x chip area & power/no delay 10x - 1000xParity < 5% chip area, several gate delays > 1000xEDAC/ECC ~ 10-30% area <strong>in</strong>crease (efficiency > 1000ximproves with width) several gate delaysTriple Mod. Redund. +3x chip area, small (vot<strong>in</strong>g) delay > 1000x12/16/2004 • j://stdpres/template.pot • Slide 15


Software/System SolutionsModification Cost/Performance ImprovementSoftware ECC Extra code uses available memory, > 1000xsystem throughput is slowed s<strong>in</strong>ceprocessor must execute ECC code withevery fetch of protected words. Goodfor protect<strong>in</strong>g program code.Multiprocessor Redun. Multiple processors runn<strong>in</strong>g same code > 1000xFault Tolerant OS Assumes multi-processors > 1000x12/16/2004 • j://stdpres/template.pot • Slide 16

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!