12.07.2015 Views

Electron response in the Rutgers-Chalmers van der Waals Density ...

Electron response in the Rutgers-Chalmers van der Waals Density ...

Electron response in the Rutgers-Chalmers van der Waals Density ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

vdW-DF Presention Useful! Response<strong>Electron</strong> <strong>response</strong> <strong>in</strong> <strong>the</strong> <strong>Rutgers</strong>-<strong>Chalmers</strong><strong>van</strong> <strong>der</strong> <strong>Waals</strong> <strong>Density</strong> FunctionalsPer Hyldgaard,Kristian Berland, Elisa Lon<strong>der</strong>o, Elsebeth Schrö<strong>der</strong>Microtechnology and Nanoscience, MC2,<strong>Chalmers</strong> University of Technology, Göteborg, SwedenGPAW workshop, Lyngby, May 21-22, 2013Per Hyldgaard


vdW-DF Presention Useful! Response<strong>Density</strong> Functional Theory (DFT)Must we really stop DFT before look<strong>in</strong>g at broadly rele<strong>van</strong>t sparsematter, molecular recognition, and life processes?Per Hyldgaard


vdW-DF Presention Useful! ResponseOn <strong>the</strong> <strong>van</strong> <strong>der</strong> <strong>Waals</strong> density functional (vdW-DF) methodGets <strong>van</strong> <strong>der</strong> <strong>Waals</strong> (vdW) b<strong>in</strong>d<strong>in</strong>g, sparse matter, seamless extenstion w. nonlocal correlationsNon-empirical, physics-based constra<strong>in</strong>ts, close relative of LDA/GGA, enhance transferability[”vdW-DF”: Surf. Sci. 493, 253 (01); PRL 91, 126402 (03); ‘general’ PRL 92, 246491 (04), vdW-DF2]Key vdW-DF works at <strong>Rutgers</strong>/WFU/ORNL and <strong>Chalmers</strong> [http://fy.chalmers.se/∼schro<strong>der</strong>/vdWDF]Per Hyldgaard


vdW-DF Presention Useful! Response Picture TheoryChallenges <strong>in</strong> <strong>van</strong> <strong>der</strong> <strong>Waals</strong> (vdW) bond<strong>in</strong>g, sparse matterTypical matter is sparse, comb<strong>in</strong>es:◮ Strong short-ranged bonds.◮ Weaker <strong>van</strong> <strong>der</strong> <strong>Waals</strong> (vdW) forcesact<strong>in</strong>g via electrodynamics coupl<strong>in</strong>gacross low-density voids.Mostly a dynamics view of vdW:◮ <strong>van</strong> <strong>der</strong> <strong>Waals</strong>, London: atom focus◮ Casimir: zero-po<strong>in</strong>t energy shifts[Equivalence, proven for excitons, Mahan, JPC (65)]vdW <strong>in</strong>teractions from quantum-physical correlations of spontaneous and<strong>in</strong>duced dynamical charge fluctuations . . . <strong>in</strong> ground-state DFT?Per Hyldgaard


vdW-DF Presention Useful! Response Picture Theory<strong>van</strong> <strong>der</strong> <strong>Waals</strong> forces: nonlocal correlations, from plasmonsLondon++: atom oscillator coupl<strong>in</strong>gRapcewicz and Ashcroft, PRB 44, 4032 (91):◮ xc-hole nxc 0 [LDA/GGA-type plasmons] oscillates relative to electron;supplements Hopfield/An<strong>der</strong>son/Mahan exciton view, l<strong>in</strong>ks with density.◮ Rele<strong>van</strong>t: <strong>the</strong> plasmon coupl<strong>in</strong>g is dynamically screened.◮ Physics picture also <strong>in</strong> An<strong>der</strong>sson/Langreth/Lundqvist+DCL/Vosko works◮ Adiabatic connection formula (ACF) [DCL/Perdew/Gunnarsson/BIL 1975-77]Plasmons ↔ LSDA; lower-q plasmon shifts → surface energy.Set to follow plasmon zero-po<strong>in</strong>t energy shifts Plasmons ωqλc <strong>in</strong>complete correlation.vdW-DF builds nonlocal correlation energy from <strong>in</strong>side out, nxc 0 ← ωq λc .Per Hyldgaard


vdW-DF Presention Useful! Response Picture Theory<strong>Density</strong> functional construction <strong>in</strong> vdW-DFvdW-DF2 [PRB 82, 081101R (10)] picked PW86r exchange [E. Murray/KL/DCL, JCTC 5, 2754 (09)],follow<strong>in</strong>g study of exhange-energy variation <strong>in</strong> vdW-bonded molecules.Per Hyldgaard


vdW-DF Presention Useful! Response Picture TheoryScreen<strong>in</strong>g and plasmon <strong>response</strong> <strong>in</strong> <strong>the</strong> vdW-DF methodWith V = −4πG = |r 1 − r 2 | −1 , no retardation, longitud<strong>in</strong>al <strong>response</strong>:E xc = E ACFxc≡∫ ∞0∫ 1 ∫ ∞≡ − dλ0 0duln|det(∇ · ɛ[n](iu) · ∇G)|2πduTr{χ[n](λ, iu)V }2π◮ χ[n](λ, iu) = δn/δΦ ext : density <strong>response</strong> at λ = (q/e) 2 ,◮ ACF gives vdW-DF dielectrics: ɛ[n](iu) ≡ 1 + 4πα[n](iu)λ-averaged <strong>response</strong> ˜χ ACF [n] ≡ ∇ · α[n] · ∇, χ ACF [n].◮ κ r [n](iu) ≡ (1 + χ ACF V ) −1 full ACF; For components,[ln(κ r [n])] A,B ≈ [ln(ɛ[n])] A,B ] ↔ GGA-type E 0 xc, plasmons poles.◮ Expand E nlc ≡ E xc − E 0 xc <strong>in</strong> fluctuation propagator S = 1 − ɛ −1 .vdW-DF from ACF screen<strong>in</strong>g, l<strong>in</strong>k to Mahan 65, exchange-correlation hole analysis, PH/KB/ES, <strong>in</strong> preparation.Per Hyldgaard


vdW-DF Presention Useful! Response Picture TheoryvdW-DF nonlocal correlations ↔ plasmon shiftsExpansion for two fragments A and B:E nlc = Tr{ln(1 − [χ ACF V ] AB [χ ACF V ] BA )}When χ ACF is <strong>in</strong>tra-fragment and V AB mediates ω λcqcoupl<strong>in</strong>g:vdW-DF counts zero-po<strong>in</strong>t energy shifts. [fromexciton argument, Mahan, JCP 43, 1569 (65)].Also, vdW-DF second-or<strong>der</strong> expansion∫ ∫Ec nl = n(r)φ[n, ∇](r, r ′ )n(r)r r ′φ[n, ∇n] : {D, δ} ↔ {q 0 [n](r), q 0 [n](r ′ )}permits nontrivial universal-kernel evaluation.Per Hyldgaard


vdW-DF Presention Useful! Response Picture TheoryvdW-DF reflects b<strong>in</strong>d<strong>in</strong>g regions and electron tailsLow-density-po<strong>in</strong>ts cut 2% 8% 50%Trivial n(r)¯Φn(r ′ ) loss 4% 15% 75%∆E nlc ∼ n(r)φ[n]n(r ′ ) loss 15% 65% 97%Variation demonstratively different from a simple pair-summation of densities.[KB/PH arXiv:1303.0389, PRB <strong>in</strong> press.]Per Hyldgaard


vdW-DF Presention Useful! Response Picture TheoryNature, electrostatic signature of dispersive <strong>in</strong>teractionsBorn-Oppenheimer, equilibrium:forces are electrostatic → vdWattraction must have steady-statedensity signature like all bondsNature + V xc [PRB 76 (2007) 125112]Per Hyldgaard


vdW-DF Presention Useful! Response e.g., for Molecular Assembly for Supramolecules (w. accel.)Spectroscopy, weak chemisorption, head/tail frustrationPRB 74, 155402 (06).With Bartels. . ., vdW-DF <strong>in</strong>co-spectroscopy/model-ref<strong>in</strong>ement role:Nano Lett. 11, 2944 (11).Molecular electronic contacts →adsorbate <strong>in</strong> dopant role.PRB 84, 155451 (11).Per Hyldgaard


vdW-DF Presention Useful! Response e.g., for Molecular Assembly for Supramolecules (w. accel.)Interference coupl<strong>in</strong>g by metallic surface state propagationSurface-state signature, Bz/Cu, PRB 80 (09) 155431;KS decoupl<strong>in</strong>g, PRB 85, 035427 (12).Asymptotically exact <strong>the</strong>rmodynamics DFT evaluation ofw. Repp/Moresco/Meyer/Rie<strong>der</strong>/Persson,PRL 85, 2981 (00), Focus story, [& Repp]<strong>the</strong>rmodynamics DFT calculations: JPCM 24, 424219(12), EPL 59, 265 (02), JPCM 12, L13 (00).Per Hyldgaard


vdW-DF Presention Useful! Response e.g., for Molecular Assembly for Supramolecules (w. accel.)Benzene/Cu(111): co-exist<strong>in</strong>g adsorbate condensations◮ Experiments: two dense phases, a ≈ 6.8 Å and a ≈ 10.2 Å:◮ With vdW-DF, we <strong>in</strong>terpret C2 phase as vdW-bound overlayer.◮ C1 phase as organized by <strong>in</strong>terference of Friedel oscillationsFriedel-<strong>in</strong>terference force rele<strong>van</strong>t when mediated by metallic surface state (MSS) as on Cu(111).Exp.: PRL 97 (06) 236806; KB/TLE/PH, PRB 80 (09) 155431 [EPL 59, 265 (02), PRL 85, 2981 (00)]Per Hyldgaard


vdW-DF Presention Useful! Response e.g., for Molecular Assembly for Supramolecules (w. accel.)Organic-molecular assembly: excitement at surfaces<strong>van</strong> <strong>der</strong> <strong>Waals</strong> and Friedel play with molecules <strong>in</strong> <strong>the</strong> surface lab.Grateful for surface-science collaborations, e.g., w. Bartels/E<strong>in</strong>ste<strong>in</strong>/Rahman.http://fy.chalmers.se/∼hyldgaar/FirstPr<strong>in</strong>cipleNobleSurfaceshttp://fy.chalmers.se/∼hyldgaar/FirstPr<strong>in</strong>cipleCarbonHillPer Hyldgaard


vdW-DF Presention Useful! Response e.g., for Molecular Assembly for Supramolecules (w. accel.)Ideas for vdW-DF study of large (biomolecular) systems900E vdW−DF1 vdW−DF1nsc vs E sc900E vdW−DF2 vdW−DF2nsc vs E scE vdW−DF1 vdW−DF1sfd vs E scE vdW−DF2 vdW−DF2sfd vs E scE vdW−DF1 sc vs QCE vdW−DF2 sc vs QCInteraction energy (meV)600300Interaction energy (meV)60030000 300 600 900Interaction energy (meV)00 300 600 900Interaction energy (meV)Until 2007– we had no V xc and used a non-selfconsistent (nsc-)vdW-DF [<strong>in</strong> (03)/(04) vdW-DF papers]◮ Real-space evaluation of Ecnl is essentially cost free [for biomolecules at 1000+ cores].◮ Biomolecular vdW-DF promis<strong>in</strong>g yet all DFT suffer: k<strong>in</strong>etic-energy bottleneck.◮ Superposition-of-fragment-density “E vdW−DFsfd ” nsc* vdW-DF w. acceleration, for analysisKB, EL, ES, PH arXiv:1303.3762; unpubl.Per Hyldgaard


vdW-DF Presention Useful! Response e.g., for Molecular Assembly for Supramolecules (w. accel.)A superposition-of-fragment-density vdW-DF scheme?Harris-type philosophy and scheme ‘sfd-vdW-DF’; Limited effects of Coulomb, K<strong>in</strong>eticenergy — Ecnl is key, naturally handles charg<strong>in</strong>g, can be cost free w. real space code.−→ Classical-MD plus Ecnl for Molecular recognition ??? No, lacks n(r)−→ EMT* plus Ec nl for Molecular recognition ? . . .— or at least a Harris-type scheme plus start with Ecnl mapp<strong>in</strong>g.sfd-vdW-DF: KB/EL/ES/PH, arXiv:1303.3762; B-DNA-dimer vdW-DF mapp<strong>in</strong>g arXix:1304.yyyy.Per Hyldgaard


vdW-DF Presention Useful! Response e.g., for Molecular Assembly for Supramolecules (w. accel.)A contrast of vdW attraction: DNA and CNT dimersWith sfd-vdW-DF strategy, we beg<strong>in</strong> by evaluat<strong>in</strong>g <strong>the</strong> variation <strong>in</strong> Ecnl ; DFT-D vs. vdW-DF characterization:◮ DFT-D-type/electron functional for charged biomolecules?◮ Beyond-morphology enhancements extend longer <strong>in</strong> CNT.◮ vdW-DF is electron based, conserv<strong>in</strong>g; ready for next E nlcexploration of <strong>the</strong> attraction effects of counter ions.EL/PH/ES unpubl, KB/EL/ES/PH arXiv:1303.3762; [Also: <strong>Rutgers</strong>-<strong>Chalmers</strong> JACS 130, 1304 (08)].Per Hyldgaard


vdW-DF Presention Useful! Response Collectivity Components test<strong>in</strong>gvdW-DF builds on conservation, aware of global density◮ vdW-DF exploits conservation, forexample, of <strong>the</strong> exhange correlation hole,n xc = n 0 xc+n nlc ↔ χ ACF +. . . ↔ ∇·{S+. . .}.◮ Plasmon are collective excitations,∫ ∫Ec nl = n(r)φ[n, ∇n](r, r ′ )n(r)r r ′has a GGA-type ability to reflect <strong>the</strong>global density variation <strong>in</strong>side componentsq 0 [n, ∇n] ↔ ɛ 0 xc ↔ n 0 xc.ACF-based reformulation of vdW-DF, exchange-correlation hole analysis, PH/KB/ES, <strong>in</strong> preparation.Per Hyldgaard


vdW-DF Presention Useful! Response Collectivity Components test<strong>in</strong>gvdW-DF reflects electron distribution, needs q ≠ 0Most E nl contributions <strong>in</strong>side d b<strong>in</strong>d ,(unlike pair-potential descriptions).[KB/PH arXiv:1303.0389, PRB <strong>in</strong> press.]Per Hyldgaard


vdW-DF Presention Useful! Response Collectivity Components test<strong>in</strong>gPlasmons → collective/nonlocal S: b<strong>in</strong>d<strong>in</strong>g ≠ asymptoticsvdW-DF enhancements over its asymptotics (i.e., over <strong>the</strong> vdW-DF atom-based pair-potential limit)[JCP 132, 134705 (10); Comp. Phys. Commun. 182, 1800 (11)].For example, C60 has an enhanced far-regime <strong>in</strong>teractions [e.g., Surf. Sci. 605, 1621 (11); PRL 109, 233203 (12)]due to formation of ω q=0,l=0 → 0 excitation. Collective effects <strong>in</strong> present vdW-DFs are limited to shorter ranges.Per Hyldgaard


vdW-DF Presention Useful! Response Collectivity Components test<strong>in</strong>gSurface nature & collectivity, by plasmons <strong>response</strong>: CNTsMorphology+image-plane formation+nonlocal plasmon form <strong>in</strong> S:Contrast<strong>in</strong>g nsc-vdW-DF1 [PRB 77, 205422 (08)] andanalytic evaluations [Comput. Mat. Sci. 33, 195 (05); Mater. Sci. Eng. C 73, 721 (03)]Per Hyldgaard


vdW-DF Presention Useful! Response Collectivity Components test<strong>in</strong>gSame-<strong>in</strong>terface/different-volume (physi-)sorptionFunctional Bz/G h[Å] Bz/G E a [eV] C60/G h C60/G E avdW-DF1 3.6 0.49 3.3 0.85vdW-DF1(C09) 3.25 0.59 3.0 1.06vdW-DF1(optPBE) 3.4 0.59 3.15 1.01vdW-DF1(PW86r) 3.35 0.66 3.15 1.10vdW-DF2 3.5 0.43 3.25 0.72vdW-DF2(C09) 3.4 0.34 3.1 0.65Exp. – 0.50±0.08 – 0.85Exp.: Hertel; Bz/Graphene: PRB 89, 155406 (04); C60/Graphene: PRL 90, 095501 (03).Per Hyldgaard


vdW-DF Presention Useful! Response Collectivity Components test<strong>in</strong>gSame-<strong>in</strong>terface/different-volume (physi-)sorption◮ Benzene vs. C60 different volume/same <strong>in</strong>terface.◮ Similar <strong>in</strong>terface reflected <strong>in</strong> E0 , semilocal parts of total energy.◮ Different volume expressed <strong>in</strong> Enlc .◮ Complicated to fit exchange choice Balance may be offset by volume <strong>in</strong>crease.Also: complex-data-set benchmark<strong>in</strong>g of vdW-DF exchange and vdW attractionH2/Cu, PRB 84, 193408 (11); JPCM , 24, 424213 (12); vdW-DF2 exchange good.Per Hyldgaard


vdW-DF Presention Useful! Response Collectivity Components test<strong>in</strong>gFunctional components <strong>in</strong> benzene on graphene adsorption◮ Corrugation is sensitive to choice ofexchange <strong>in</strong> vdW-DF version or variant◮ Corrugation is <strong>in</strong>sensitive to exchangechoice when viewed at given separation 〈h〉.◮ Corrugation reflects exchange choice —because (∆E x1 − ∆E x2 ) acts as load l<strong>in</strong>eand <strong>the</strong>refore changes 〈h〉.KB/PH, arXiv:1303.0389;PRB <strong>in</strong> pressPer Hyldgaard


vdW-DF Presention Useful! Response Collectivity Components test<strong>in</strong>gFunctional components <strong>in</strong> benzene on graphene adsorption◮ Corrugation reflects exchange choice — because(∆E x1 − ∆E x2 ) acts as load l<strong>in</strong>e and <strong>the</strong>refore changes 〈h〉.◮ There exists analysis to prefer one exhange choice [PW86r] formolecular systems and one choice [C09] for bulk.◮ Measur<strong>in</strong>g corrugation might allow bootstrap specification ofphysisorption 〈h〉; Note physisorbed molecules is not ‘on site.’◮ One may even obta<strong>in</strong> an extraction of E xc [〈h〉] becausenonlocal k<strong>in</strong>etic-energy effects are found small.◮ Contrast<strong>in</strong>g same-<strong>in</strong>terface/different volume physisorptionmight <strong>the</strong>n analyse <strong>the</strong> role of nonlocal correlations ∆E nlc .KB/PH, arXiv:1303.0389; PRB <strong>in</strong> pressPer Hyldgaard


vdW-DF Presention Useful! Response Collectivity Components test<strong>in</strong>gConclusions◮ Presentation of vdW-DF, a first-pr<strong>in</strong>ciple sparse-matter DFT.◮ vdW-DF permits analysis of molecular-adsorption experiments.◮ Physics picture: vdW-DF counts coupl<strong>in</strong>g-<strong>in</strong>duced shifts.◮ vdW-DF captures effects beyond morphology.◮ System-specific mapp<strong>in</strong>gs of details <strong>in</strong> <strong>the</strong> vdW-DF b<strong>in</strong>d<strong>in</strong>g.Pleasure to acknowledge our excellent Ph.D. graduates <strong>in</strong> <strong>the</strong><strong>Rutgers</strong>-<strong>Chalmers</strong> vdW-DF program, Ylva An<strong>der</strong>sson, Erika Hult,Henrik Rydberg, Max Dion, Svetla Chakarova-Käck, Øyv<strong>in</strong>d Borck,Jesper Kleis, Eleni Ziambaras, Jochen Rohrer, André Kelkkanen,Kristian Berland, Elisa Lon<strong>der</strong>oPer Hyldgaard


vdW-DF Presention Useful! Response Collectivity Components test<strong>in</strong>g<strong>Rutgers</strong>-<strong>Chalmers</strong> vdW-DF stakehol<strong>der</strong>s welcome questionsPer Hyldgaard


vdW-DF Presention Useful! Response Collectivity Components test<strong>in</strong>gCHALMERS/RUTGERS vdW-DF publications I(Recent) Method Papers:◮ K. Lee, E.D. Murray, L. Kong, B.I. Lundqvist, and D.C. Langreth, Phys. Rev. B82 (2010) 081101(R).◮ T. Thonhauser, V. R. Cooper, S. Li, A. Puz<strong>der</strong>, P. Hyldgaard, and D.C.Langreth, Phys. Rev. B, 76 (2007) 125112.◮ D.C. Langreth, M. Dion, H. Rydberg, E. Schrö<strong>der</strong>, P. Hyldgaard, and B.I.Lundqvist, Int. J. Quantum Chem. 101 (2005) 599.◮ M. Dion, H. Rydberg, E. Schrö<strong>der</strong>, D.C. Langreth, and B.I. Lundqvist, Phys.Rev. Lett. 92 (2004) 246401; 95 (2005) 109902(E).◮ H. Rydberg, M. Dion, N. Jacobson, E. Schrö<strong>der</strong>, P. Hyldgaard, S.I. Simak, D.C.Langreth, and B.I. Lundqvist, Phys. Rev. Lett. 91 (2003) 126402.vdW-related Thesis at <strong>Chalmers</strong> and <strong>Rutgers</strong>:◮ E. Lon<strong>der</strong>o, Theory of <strong>van</strong> <strong>der</strong> <strong>Waals</strong> bond<strong>in</strong>g: from bulk materials tobiomolecules, Ph.D. Thesis, MC2/Applied Physics, <strong>Chalmers</strong>, Dec. 2012.◮ K. Berland, Connected by voids: Interactions and screen<strong>in</strong>g <strong>in</strong> sparse matter,Ph.D. Thesis, MC2, <strong>Chalmers</strong>, Aug. 2012.◮ J. Kleis, Van <strong>der</strong> <strong>Waals</strong> density-functionl description of polymers and o<strong>the</strong>rsparse materials, Ph.D. Thesis, Applied Physics, <strong>Chalmers</strong>, June 2006.◮ M. Dion, <strong>van</strong> <strong>der</strong> <strong>Waals</strong> Forces <strong>in</strong> <strong>Density</strong> Functional Theory, Ph.D. Thesis,Physics, <strong>Rutgers</strong>, State University of New Jersey, 2004.◮ H. Rydberg, Nonlocal Correlations <strong>in</strong> <strong>Density</strong> Functional Theory, Ph.D. Thesis,Applied Physics, <strong>Chalmers</strong>/GU, 2001.Per Hyldgaard


vdW-DF Presention Useful! Response Collectivity Components test<strong>in</strong>gvdW-DF publications IIA few (recent) application/analysis papers (<strong>Chalmers</strong>):◮ K. Lee et al, Phys. Rev. B 84, 193408 (2011); JPCM 24, 424213 (2012).◮ K. Berland and P. Hyldgaard, J. Chem. Phys 132 (2010) 134705.◮ E. Lon<strong>der</strong>o and E. Schrö<strong>der</strong>, Phys. Rev. B 82 (2010) 054166.◮ K. Berland, T.L. E<strong>in</strong>ste<strong>in</strong>, and P. Hyldgaard, Phys. Rev. B 80 (2009) 155431.◮ D.C Langreth, et al, <strong>in</strong>vited, J. Phys.:Condens. Matter 21 (2009) 084203.◮ J. Kleis, E. Schrö<strong>der</strong>, and P. Hyldgaard, Phys. Rev. B 77, 205422 (2008).◮ V.R. Cooper, T. Thonhauser, A. Puz<strong>der</strong>, E. Schrö<strong>der</strong>, B.I. Lundqvist, andD.C. Langreth, JACS 130, 1304 (2008).◮ E. Ziambaras, J. Kleis, E. Schrö<strong>der</strong>, and P. Hyldgaard, Phys. Rev. B 76 (2007)155425.◮ J. Kleis, B.I. Lundqvist, D.C. Langreth, and E. Schrö<strong>der</strong>, Phys. Rev. B 76(2007) 100201(R).◮ S.D. Chakarova-Käck, E. Schrö<strong>der</strong>, Bengt I. Lundqvist, and D.C. Langreth,Phys. Rev. Lett. 96 (2006) 146107.Per Hyldgaard

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!