29.11.2012 Views

slides - King's College London

slides - King's College London

slides - King's College London

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Preliminaries<br />

Model and Problem Formulation<br />

Methods<br />

Experiments & Results<br />

Conclusions & Future Research<br />

Stochastic Local Search for the Optimization of<br />

Secondary Structure Packing in Proteins<br />

Leonidas Kapsokalivas Dr Kathleen Steinhöfel<br />

Computer Science Department<br />

King’s <strong>College</strong> <strong>London</strong><br />

LAW LSD 2010<br />

Leonidas Kapsokalivas, Dr Kathleen Steinhöfel LAW LSD 2010


Outline<br />

1 Preliminaries<br />

Background Work<br />

Motivation<br />

Preliminaries<br />

Model and Problem Formulation<br />

Methods<br />

Experiments & Results<br />

Conclusions & Future Research<br />

2 Model and Problem Formulation<br />

The off-Lattice Model<br />

Problem Formulation<br />

3 Methods<br />

The Move Set<br />

Monte Carlo-based Optimization<br />

4 Experiments & Results<br />

Benchmarks & Protocol<br />

Computational Results<br />

5 Conclusions & Future Research<br />

Leonidas Kapsokalivas, Dr Kathleen Steinhöfel LAW LSD 2010


Preliminaries<br />

Model and Problem Formulation<br />

Methods<br />

Experiments & Results<br />

Conclusions & Future Research<br />

Protein Structure Prediction<br />

Background Work<br />

Motivation<br />

Proteins settle into conformations of minimum energy.<br />

The sequence of amino acids determines the folded (tertiary)<br />

conformation.<br />

A good model of representation and an energy function with good<br />

discrimination between folded and unfolded conformations ⇒ good<br />

structure predictions<br />

Interesting Review Papers<br />

E. Shakhnovich, 2006, Protein Folding Thermodynamics and Dynamics:<br />

Where Physics, Chemistry, and Biology Meet.<br />

G. Rose, 2006, A backbone-based theory of protein folding.<br />

Leonidas Kapsokalivas, Dr Kathleen Steinhöfel LAW LSD 2010


Outline<br />

1 Preliminaries<br />

Background Work<br />

Motivation<br />

Preliminaries<br />

Model and Problem Formulation<br />

Methods<br />

Experiments & Results<br />

Conclusions & Future Research<br />

2 Model and Problem Formulation<br />

The off-Lattice Model<br />

Problem Formulation<br />

3 Methods<br />

The Move Set<br />

Monte Carlo-based Optimization<br />

4 Experiments & Results<br />

Benchmarks & Protocol<br />

Computational Results<br />

5 Conclusions & Future Research<br />

Background Work<br />

Motivation<br />

Leonidas Kapsokalivas, Dr Kathleen Steinhöfel LAW LSD 2010


Preliminaries<br />

Model and Problem Formulation<br />

Methods<br />

Experiments & Results<br />

Conclusions & Future Research<br />

Hierarchical Protein Folding<br />

Intuition<br />

Background Work<br />

Motivation<br />

Pure ab-initio structure prediction is computationally expensive.<br />

Building blocks can be used to assemble the folded structure.<br />

The idea is first proposed in:<br />

Rose G., 1979, Hierarchic organization of domains in proteins.<br />

Lesk A. and Rose G., 1981, Folding unit in globular proteins.<br />

Notable applications:<br />

Yuval I. et al., 2003, Protein structure prediction via combinatorial<br />

assembly of sub-structural units.<br />

In the first stage of the folding process, short range interactions occur<br />

and form sub-structures of local fragments.<br />

Then, relatively stable local structural units join to larger structural units<br />

via non-local interactions.<br />

Leonidas Kapsokalivas, Dr Kathleen Steinhöfel LAW LSD 2010


Outline<br />

1 Preliminaries<br />

Background Work<br />

Motivation<br />

Preliminaries<br />

Model and Problem Formulation<br />

Methods<br />

Experiments & Results<br />

Conclusions & Future Research<br />

2 Model and Problem Formulation<br />

The off-Lattice Model<br />

Problem Formulation<br />

3 Methods<br />

The Move Set<br />

Monte Carlo-based Optimization<br />

4 Experiments & Results<br />

Benchmarks & Protocol<br />

Computational Results<br />

5 Conclusions & Future Research<br />

Background Work<br />

Motivation<br />

Leonidas Kapsokalivas, Dr Kathleen Steinhöfel LAW LSD 2010


Preliminaries<br />

Model and Problem Formulation<br />

Methods<br />

Experiments & Results<br />

Conclusions & Future Research<br />

Motivation for our Approach<br />

Background Work<br />

Motivation<br />

One can generally predict secondary structure elements with some<br />

accuracy, but the problem then is how those elements pack together<br />

to form a 3D structure.<br />

Pack secondary structure fragments to obtain a conformation in case<br />

template conformations cannot be built by homology modeling.<br />

The quality of secondary structure prediction ranges from 70% to<br />

80%.<br />

Use secondary structure fragments as building blocks.<br />

Employ stochastic local search to pack them.<br />

Closely Related Work<br />

Dal Palu et al., 2004, A Constraint Logic Programming Approach to<br />

Protein Structure Prediction.<br />

Hoang et al., 2003 Assembly of Protein Tertiary Structures From<br />

Secondary Structures Using Optimized Potentials.<br />

Leonidas Kapsokalivas, Dr Kathleen Steinhöfel LAW LSD 2010


Outline<br />

1 Preliminaries<br />

Background Work<br />

Motivation<br />

Preliminaries<br />

Model and Problem Formulation<br />

Methods<br />

Experiments & Results<br />

Conclusions & Future Research<br />

2 Model and Problem Formulation<br />

The off-Lattice Model<br />

Problem Formulation<br />

3 Methods<br />

The Move Set<br />

Monte Carlo-based Optimization<br />

4 Experiments & Results<br />

Benchmarks & Protocol<br />

Computational Results<br />

5 Conclusions & Future Research<br />

The off-Lattice Model<br />

Problem Formulation<br />

Leonidas Kapsokalivas, Dr Kathleen Steinhöfel LAW LSD 2010


Preliminaries<br />

Model and Problem Formulation<br />

Methods<br />

Experiments & Results<br />

Conclusions & Future Research<br />

The off-Lattice Model<br />

Problem Formulation<br />

The Model for Representing Protein Conformations<br />

A coarse-grained model.<br />

A conformation is represented by the backbone C-alpha atoms only.<br />

Each bead corresponds to an amino acid.<br />

Beads are connected through flexible bonds of length L.<br />

Beads are not allowed to come closer than a threshold C.<br />

i − 1<br />

i<br />

i + 1<br />

i + 2<br />

Figure: A conformation without side chains.<br />

Leonidas Kapsokalivas, Dr Kathleen Steinhöfel LAW LSD 2010


Outline<br />

1 Preliminaries<br />

Background Work<br />

Motivation<br />

Preliminaries<br />

Model and Problem Formulation<br />

Methods<br />

Experiments & Results<br />

Conclusions & Future Research<br />

2 Model and Problem Formulation<br />

The off-Lattice Model<br />

Problem Formulation<br />

3 Methods<br />

The Move Set<br />

Monte Carlo-based Optimization<br />

4 Experiments & Results<br />

Benchmarks & Protocol<br />

Computational Results<br />

5 Conclusions & Future Research<br />

The off-Lattice Model<br />

Problem Formulation<br />

Leonidas Kapsokalivas, Dr Kathleen Steinhöfel LAW LSD 2010


Preliminaries<br />

Model and Problem Formulation<br />

Methods<br />

Experiments & Results<br />

Conclusions & Future Research<br />

The off-Lattice Model<br />

Problem Formulation<br />

Energy & Overlap Penalty Functions<br />

Energy Function<br />

Considers contacts between amino acids. A contact involves a pair of<br />

amino acids.<br />

The matrix M of all pairwise interactions is used to give a score to each<br />

contact.<br />

The sum of all scores is the energy value.<br />

E(φ) =<br />

n�<br />

i=0<br />

n�<br />

M(φ(i),φ(j)) · ∆(i,j), (1)<br />

j=i<br />

where,<br />

φ(i) is the type of the i − th amino acid.∆(i,j) = 1 if ||�ri −�rj|| ≤ d and<br />

∆(i,j) = 0 otherwise.<br />

Leonidas Kapsokalivas, Dr Kathleen Steinhöfel LAW LSD 2010


Preliminaries<br />

Model and Problem Formulation<br />

Methods<br />

Experiments & Results<br />

Conclusions & Future Research<br />

The off-Lattice Model<br />

Problem Formulation<br />

Energy & Overlap Penalty Functions<br />

Penalty for Ovelapping amino acids<br />

n� n�<br />

Z(φ) =<br />

i=0<br />

j=i<br />

[(D(i,j) − C) · ∆ ′ (i,j)] 2 , (2)<br />

where,<br />

∆ ′ (i,j) = 1 if ||�ri −�rj|| ≤ C and |i − j| ≥ 2 and ∆ ′ (i,j) = 0 otherwise.<br />

Due to the nature of the energy function the problem is two-objective.<br />

Minimize the energy and the overlaps.<br />

Leonidas Kapsokalivas, Dr Kathleen Steinhöfel LAW LSD 2010


Outline<br />

1 Preliminaries<br />

Background Work<br />

Motivation<br />

Preliminaries<br />

Model and Problem Formulation<br />

Methods<br />

Experiments & Results<br />

Conclusions & Future Research<br />

2 Model and Problem Formulation<br />

The off-Lattice Model<br />

Problem Formulation<br />

3 Methods<br />

The Move Set<br />

Monte Carlo-based Optimization<br />

4 Experiments & Results<br />

Benchmarks & Protocol<br />

Computational Results<br />

5 Conclusions & Future Research<br />

The Move Set<br />

Monte Carlo-based Optimization<br />

Leonidas Kapsokalivas, Dr Kathleen Steinhöfel LAW LSD 2010


Preliminaries<br />

Model and Problem Formulation<br />

Methods<br />

Experiments & Results<br />

Conclusions & Future Research<br />

The Move Set<br />

Monte Carlo-based Optimization<br />

Transforming one Conformation into another<br />

i<br />

i + 1<br />

i + 2<br />

i − 1 i + 1 i + 2<br />

Figure: The single rotation move.<br />

i − 1<br />

i<br />

i + 1<br />

i + 2<br />

i + 1 i + 2<br />

Figure: The double rotation move.<br />

Secondary structure is not affected by the move set.<br />

Leonidas Kapsokalivas, Dr Kathleen Steinhöfel LAW LSD 2010


Outline<br />

1 Preliminaries<br />

Background Work<br />

Motivation<br />

Preliminaries<br />

Model and Problem Formulation<br />

Methods<br />

Experiments & Results<br />

Conclusions & Future Research<br />

2 Model and Problem Formulation<br />

The off-Lattice Model<br />

Problem Formulation<br />

3 Methods<br />

The Move Set<br />

Monte Carlo-based Optimization<br />

4 Experiments & Results<br />

Benchmarks & Protocol<br />

Computational Results<br />

5 Conclusions & Future Research<br />

The Move Set<br />

Monte Carlo-based Optimization<br />

Leonidas Kapsokalivas, Dr Kathleen Steinhöfel LAW LSD 2010


Preliminaries<br />

Model and Problem Formulation<br />

Methods<br />

Experiments & Results<br />

Conclusions & Future Research<br />

The Move Set<br />

Monte Carlo-based Optimization<br />

Monte Carlo-based Optimization (MC)<br />

Start with the initial conformation φ<br />

for i = 1 to MaxIter do<br />

Apply a move randomly to obtain a neighbor φ ′ of φ<br />

Calculate the penalty Z(φ ′ )<br />

if Z(φ ′ ) ≤ Pthres then<br />

Calculate the contact energy E(φ ′ )<br />

if E(φ ′ ) ≤ E(φ) then<br />

Accept the transition from to φ to φ ′ and set φ = φ ′<br />

Update the best conformation seen in case E(φ ′ ) ≤ E(φbest)<br />

else<br />

Generate a random number q ∈ [0, . . . , 1]<br />

if q < min(1, e E(φ′ )−E(φ)<br />

T ) then<br />

Accept the transition from to φ to φ ′ and set φ = φ ′<br />

else<br />

Reject the transition from to φ to φ ′<br />

end if<br />

end if<br />

end if<br />

end for<br />

Leonidas Kapsokalivas, Dr Kathleen Steinhöfel LAW LSD 2010


Preliminaries<br />

Model and Problem Formulation<br />

Methods<br />

Experiments & Results<br />

Conclusions & Future Research<br />

The Move Set<br />

Monte Carlo-based Optimization<br />

Monte Carlo-based Optimization for Penalty Refinment<br />

Let φ be the initial conformation of energy Einit, penaltySteps = 0 and factor = 1<br />

for i = 1 to MaxPenaltyIter do<br />

Apply a move randomly to obtain a neighbor φ ′ of φ<br />

Calculate the energy E(φ ′ )<br />

if E(φ ′ ) ≤ factor ∗ Einit then<br />

Calculate the penalty Z(φ ′ ) and increase penaltySteps by 1<br />

if Z(φ ′ ) ≤ Z(φ) then<br />

Accept the transition from to φ to φ ′ and set φ = φ ′<br />

Update the best in terms of penalty conformation seen in case<br />

Z(φ ′ ) ≤ Z(φbest)<br />

else<br />

Generate a random number q ∈ [0, . . . , 1]<br />

Z(φ<br />

if q < min(1, e<br />

′ )−Z(φ)<br />

Tpen ) then<br />

Accept the transition from to φ to φ ′ and set φ = φ ′<br />

else<br />

Reject the transition from to φ to φ ′<br />

end if<br />

end if<br />

Reduce factor by 0.00001 every 5 steps (penaltySteps mod 5 equals 0)<br />

end if<br />

end for<br />

Leonidas Kapsokalivas, Dr Kathleen Steinhöfel LAW LSD 2010


Preliminaries<br />

Model and Problem Formulation<br />

Methods<br />

Experiments & Results<br />

Conclusions & Future Research<br />

The Move Set<br />

Monte Carlo-based Optimization<br />

Replica Exchange Monte Carlo (REMC)<br />

Leonidas Kapsokalivas, Dr Kathleen Steinhöfel LAW LSD 2010


Preliminaries<br />

Model and Problem Formulation<br />

Methods<br />

Experiments & Results<br />

Conclusions & Future Research<br />

The Move Set<br />

Monte Carlo-based Optimization<br />

Replica Exchange Monte Carlo (REMC)<br />

The REMC algorithm maintains an array of K conformations<br />

(replicas) and a range of temperatures T1 ≤ T2 ≤,...TK, where<br />

Ti = Tmax ∗ exp(i/K − 1).<br />

Leonidas Kapsokalivas, Dr Kathleen Steinhöfel LAW LSD 2010


Preliminaries<br />

Model and Problem Formulation<br />

Methods<br />

Experiments & Results<br />

Conclusions & Future Research<br />

The Move Set<br />

Monte Carlo-based Optimization<br />

Replica Exchange Monte Carlo (REMC)<br />

The REMC algorithm maintains an array of K conformations<br />

(replicas) and a range of temperatures T1 ≤ T2 ≤,...TK, where<br />

Ti = Tmax ∗ exp(i/K − 1).<br />

A separate Monte Carlo simulation is performed for each replica and<br />

terminated after MCsteps number of iterations.<br />

Leonidas Kapsokalivas, Dr Kathleen Steinhöfel LAW LSD 2010


Preliminaries<br />

Model and Problem Formulation<br />

Methods<br />

Experiments & Results<br />

Conclusions & Future Research<br />

The Move Set<br />

Monte Carlo-based Optimization<br />

Replica Exchange Monte Carlo (REMC)<br />

The REMC algorithm maintains an array of K conformations<br />

(replicas) and a range of temperatures T1 ≤ T2 ≤,...TK, where<br />

Ti = Tmax ∗ exp(i/K − 1).<br />

A separate Monte Carlo simulation is performed for each replica and<br />

terminated after MCsteps number of iterations.<br />

Neighboring conformations φi and φi+1 exchange positions in the<br />

array with a probability<br />

Pex = min{1,exp((1/Ti − 1/Ti+1) ∗ (E(φi) − E(φi+1)))}.<br />

Leonidas Kapsokalivas, Dr Kathleen Steinhöfel LAW LSD 2010


Preliminaries<br />

Model and Problem Formulation<br />

Methods<br />

Experiments & Results<br />

Conclusions & Future Research<br />

The Move Set<br />

Monte Carlo-based Optimization<br />

Replica Exchange Monte Carlo (REMC)<br />

The REMC algorithm maintains an array of K conformations<br />

(replicas) and a range of temperatures T1 ≤ T2 ≤,...TK, where<br />

Ti = Tmax ∗ exp(i/K − 1).<br />

A separate Monte Carlo simulation is performed for each replica and<br />

terminated after MCsteps number of iterations.<br />

Neighboring conformations φi and φi+1 exchange positions in the<br />

array with a probability<br />

Pex = min{1,exp((1/Ti − 1/Ti+1) ∗ (E(φi) − E(φi+1)))}.<br />

The REMC algorithm terminates after REMCsteps rounds of Monte<br />

Carlo simulations.<br />

Leonidas Kapsokalivas, Dr Kathleen Steinhöfel LAW LSD 2010


Preliminaries<br />

Model and Problem Formulation<br />

Methods<br />

Experiments & Results<br />

Conclusions & Future Research<br />

The idea behind REMC<br />

T1 T2 T3<br />

The Move Set<br />

Monte Carlo-based Optimization<br />

Leonidas Kapsokalivas, Dr Kathleen Steinhöfel LAW LSD 2010


Outline<br />

1 Preliminaries<br />

Background Work<br />

Motivation<br />

Preliminaries<br />

Model and Problem Formulation<br />

Methods<br />

Experiments & Results<br />

Conclusions & Future Research<br />

2 Model and Problem Formulation<br />

The off-Lattice Model<br />

Problem Formulation<br />

3 Methods<br />

The Move Set<br />

Monte Carlo-based Optimization<br />

4 Experiments & Results<br />

Benchmarks & Protocol<br />

Computational Results<br />

5 Conclusions & Future Research<br />

Benchmarks & Protocol<br />

Computational Results<br />

Leonidas Kapsokalivas, Dr Kathleen Steinhöfel LAW LSD 2010


Experiment Set Up<br />

Preliminaries<br />

Model and Problem Formulation<br />

Methods<br />

Experiments & Results<br />

Conclusions & Future Research<br />

Benchmarks & Protocol<br />

Computational Results<br />

Leonidas Kapsokalivas, Dr Kathleen Steinhöfel LAW LSD 2010


Experiment Set Up<br />

Preliminaries<br />

Model and Problem Formulation<br />

Methods<br />

Experiments & Results<br />

Conclusions & Future Research<br />

Benchmarks & Protocol<br />

Computational Results<br />

Produce initial conformations by arranging secondary structure<br />

fragments in a straight line.<br />

Leonidas Kapsokalivas, Dr Kathleen Steinhöfel LAW LSD 2010


Experiment Set Up<br />

Preliminaries<br />

Model and Problem Formulation<br />

Methods<br />

Experiments & Results<br />

Conclusions & Future Research<br />

Benchmarks & Protocol<br />

Computational Results<br />

Produce initial conformations by arranging secondary structure<br />

fragments in a straight line.<br />

Adjust the parameters: temperatures T, Tmax and Pthres through<br />

preliminary short runs.<br />

Leonidas Kapsokalivas, Dr Kathleen Steinhöfel LAW LSD 2010


Experiment Set Up<br />

Preliminaries<br />

Model and Problem Formulation<br />

Methods<br />

Experiments & Results<br />

Conclusions & Future Research<br />

Benchmarks & Protocol<br />

Computational Results<br />

Produce initial conformations by arranging secondary structure<br />

fragments in a straight line.<br />

Adjust the parameters: temperatures T, Tmax and Pthres through<br />

preliminary short runs.<br />

2,000,000 iterations for Monte Carlo-based Optimization.<br />

Leonidas Kapsokalivas, Dr Kathleen Steinhöfel LAW LSD 2010


Experiment Set Up<br />

Preliminaries<br />

Model and Problem Formulation<br />

Methods<br />

Experiments & Results<br />

Conclusions & Future Research<br />

Benchmarks & Protocol<br />

Computational Results<br />

Produce initial conformations by arranging secondary structure<br />

fragments in a straight line.<br />

Adjust the parameters: temperatures T, Tmax and Pthres through<br />

preliminary short runs.<br />

2,000,000 iterations for Monte Carlo-based Optimization.<br />

2000 MCsteps and 150 - 250 REMCsteps for Replica Exchange<br />

Monte Carlo.<br />

Leonidas Kapsokalivas, Dr Kathleen Steinhöfel LAW LSD 2010


Experiment Set Up<br />

Preliminaries<br />

Model and Problem Formulation<br />

Methods<br />

Experiments & Results<br />

Conclusions & Future Research<br />

Benchmarks & Protocol<br />

Computational Results<br />

Produce initial conformations by arranging secondary structure<br />

fragments in a straight line.<br />

Adjust the parameters: temperatures T, Tmax and Pthres through<br />

preliminary short runs.<br />

2,000,000 iterations for Monte Carlo-based Optimization.<br />

2000 MCsteps and 150 - 250 REMCsteps for Replica Exchange<br />

Monte Carlo.<br />

Output 10 conformations for each benchmark.<br />

Leonidas Kapsokalivas, Dr Kathleen Steinhöfel LAW LSD 2010


Experiment Set Up<br />

Preliminaries<br />

Model and Problem Formulation<br />

Methods<br />

Experiments & Results<br />

Conclusions & Future Research<br />

Benchmarks & Protocol<br />

Computational Results<br />

Produce initial conformations by arranging secondary structure<br />

fragments in a straight line.<br />

Adjust the parameters: temperatures T, Tmax and Pthres through<br />

preliminary short runs.<br />

2,000,000 iterations for Monte Carlo-based Optimization.<br />

2000 MCsteps and 150 - 250 REMCsteps for Replica Exchange<br />

Monte Carlo.<br />

Output 10 conformations for each benchmark.<br />

Align all 10 to the native<br />

�<br />

and measure the RMSD (Root Mean<br />

N�<br />

Square Deviation).<br />

1<br />

N<br />

corresponding C-alpha atoms.<br />

Leonidas Kapsokalivas, Dr Kathleen Steinhöfel LAW LSD 2010<br />

δ<br />

i=0<br />

2 i , where δi is the distance between the


Initial Conformations<br />

Preliminaries<br />

Model and Problem Formulation<br />

Methods<br />

Experiments & Results<br />

Conclusions & Future Research<br />

Benchmarks & Protocol<br />

Computational Results<br />

(a) Initial conformation for 1CTF.<br />

(b) Initial conformation for 1ENH.<br />

Leonidas Kapsokalivas, Dr Kathleen Steinhöfel LAW LSD 2010


Outline<br />

1 Preliminaries<br />

Background Work<br />

Motivation<br />

Preliminaries<br />

Model and Problem Formulation<br />

Methods<br />

Experiments & Results<br />

Conclusions & Future Research<br />

2 Model and Problem Formulation<br />

The off-Lattice Model<br />

Problem Formulation<br />

3 Methods<br />

The Move Set<br />

Monte Carlo-based Optimization<br />

4 Experiments & Results<br />

Benchmarks & Protocol<br />

Computational Results<br />

5 Conclusions & Future Research<br />

Benchmarks & Protocol<br />

Computational Results<br />

Leonidas Kapsokalivas, Dr Kathleen Steinhöfel LAW LSD 2010


Preliminaries<br />

Model and Problem Formulation<br />

Methods<br />

Experiments & Results<br />

Conclusions & Future Research<br />

Benchmarks & Protocol<br />

Computational Results<br />

Summury Table for Monte Carlo-based Optimization<br />

PDB id. Length<br />

Energy Best conformation RMSD<br />

Function Atoms RMSD(˚A) Total RMSD(˚A)<br />

1CTF 68 FOG 64 4.346 4.94<br />

FOG 59 7.387 8.45<br />

1R69 63<br />

MJ<br />

59<br />

57<br />

6.49<br />

5.946<br />

8.19<br />

1ENH 54<br />

FOG<br />

MJ<br />

53<br />

52<br />

3.954<br />

4.953<br />

4.11<br />

5.85<br />

1YPA 64 FOG 57 5.546 6.88<br />

2IGD 61 FOG<br />

52<br />

55<br />

5.522<br />

6.17<br />

8.60<br />

1RHX 87 FOG 79 7.804 9.51<br />

82 5.523<br />

1S12 94 FOG 84 5.76 13.29<br />

88 7.29<br />

*Atoms stands for the number of C-alpha carbon atoms in the alignment.<br />

*MJ stands for the Miyazawa-Jernigan energy function.<br />

*FOG stands for the Fogollari energy function.<br />

Leonidas Kapsokalivas, Dr Kathleen Steinhöfel LAW LSD 2010


Preliminaries<br />

Model and Problem Formulation<br />

Methods<br />

Experiments & Results<br />

Conclusions & Future Research<br />

Benchmarks & Protocol<br />

Computational Results<br />

Summury Table for Replica Exchange Monte Carlo<br />

PDB id. Length<br />

Best conformation RMSD Number of<br />

Atoms RMSD(˚A) All atoms replicas<br />

REMCsteps<br />

1CTF 68 62 4.71 7.2 8 200<br />

1R69 63<br />

59<br />

58<br />

6.82<br />

6.63<br />

7.72 8 200<br />

1ENH 54 54 5.11 5.115 8 150<br />

1YPA 64 59 6.73 8.14 8 200<br />

2IGD 61 56 5.77 7.38 8 200<br />

1RHX 87 85 9.31 9.68 10 250<br />

1S12 94<br />

81<br />

80<br />

6.06<br />

5.89<br />

14.66 10 250<br />

*Atoms stands for the number of C-alpha carbon atoms in the alignment.<br />

Leonidas Kapsokalivas, Dr Kathleen Steinhöfel LAW LSD 2010


Preliminaries<br />

Model and Problem Formulation<br />

Methods<br />

Experiments & Results<br />

Conclusions & Future Research<br />

Comparison to Related Work<br />

Benchmarks & Protocol<br />

Computational Results<br />

1ENH 1YPA 2IGD<br />

MC<br />

3.954 (53 atoms)<br />

4.11 (all)<br />

5.546 (57 atoms)<br />

6.88 (all)<br />

5.522 (52 atoms)<br />

8.60 (all)<br />

REMC 5.11 (all)<br />

6.73 (59 atoms)<br />

8.14 (all)<br />

5.77 (52 atoms)<br />

7.38 (all)<br />

Dal Palu et al.<br />

8.6 (45 atoms)<br />

9.9 (all)<br />

9.8 (41 atoms)<br />

12.9 (all)<br />

15.0 (54 atoms)<br />

16.9 (all)<br />

1CTF 1R69<br />

MC<br />

4.346 (64 atoms)<br />

4.94 (all)<br />

6.49 (59 atoms)<br />

8.19 (all)<br />

REMC<br />

4.71 (62 atoms)<br />

7.2 (all)<br />

6.63 (58 atoms)<br />

7.72 (all)<br />

Hoang et al. 2.94 (all) 4.21 (all)<br />

Table: RMSD for the alignment of the best conformation to the native one.<br />

Leonidas Kapsokalivas, Dr Kathleen Steinhöfel LAW LSD 2010


Preliminaries<br />

Model and Problem Formulation<br />

Methods<br />

Experiments & Results<br />

Conclusions & Future Research<br />

(c) Best conformation for<br />

1CTF from MC.<br />

Benchmarks & Protocol<br />

Computational Results<br />

(d) Best conformation for<br />

1CTF from REMC.<br />

Figure: The transparent is the native and the solid is the superimposition of<br />

the predicted conformation.<br />

Leonidas Kapsokalivas, Dr Kathleen Steinhöfel LAW LSD 2010


Preliminaries<br />

Model and Problem Formulation<br />

Methods<br />

Experiments & Results<br />

Conclusions & Future Research<br />

(a) Best conformation for<br />

1ENH from MC.<br />

Benchmarks & Protocol<br />

Computational Results<br />

(b) Best conformation for 1ENH<br />

from REMC.<br />

Figure: The transparent is the native and the solid is the superimposition of<br />

the predicted conformation.<br />

Leonidas Kapsokalivas, Dr Kathleen Steinhöfel LAW LSD 2010


Preliminaries<br />

Model and Problem Formulation<br />

Methods<br />

Experiments & Results<br />

Conclusions & Future Research<br />

Benchmarks & Protocol<br />

Computational Results<br />

Remarks on MC and REMC methods<br />

Leonidas Kapsokalivas, Dr Kathleen Steinhöfel LAW LSD 2010


Preliminaries<br />

Model and Problem Formulation<br />

Methods<br />

Experiments & Results<br />

Conclusions & Future Research<br />

Benchmarks & Protocol<br />

Computational Results<br />

Remarks on MC and REMC methods<br />

Combining MC for Energy and MC for Penalty Refinment<br />

Starting conformation for 1CTF : Z = 0.506 and E = -206.5<br />

Leonidas Kapsokalivas, Dr Kathleen Steinhöfel LAW LSD 2010


Preliminaries<br />

Model and Problem Formulation<br />

Methods<br />

Experiments & Results<br />

Conclusions & Future Research<br />

Benchmarks & Protocol<br />

Computational Results<br />

Remarks on MC and REMC methods<br />

Combining MC for Energy and MC for Penalty Refinment<br />

Starting conformation for 1CTF : Z = 0.506 and E = -206.5<br />

After penalty refinment for 130,000 iterations :<br />

Z = 0.0014 and E = -177.29<br />

Leonidas Kapsokalivas, Dr Kathleen Steinhöfel LAW LSD 2010


Preliminaries<br />

Model and Problem Formulation<br />

Methods<br />

Experiments & Results<br />

Conclusions & Future Research<br />

Benchmarks & Protocol<br />

Computational Results<br />

Remarks on MC and REMC methods<br />

Combining MC for Energy and MC for Penalty Refinment<br />

Starting conformation for 1CTF : Z = 0.506 and E = -206.5<br />

After penalty refinment for 130,000 iterations :<br />

Z = 0.0014 and E = -177.29<br />

Best conformation after 2,500,000 iterations of MC and no overlaps :<br />

Z = 0 and E = -167.34<br />

Leonidas Kapsokalivas, Dr Kathleen Steinhöfel LAW LSD 2010


Preliminaries<br />

Model and Problem Formulation<br />

Methods<br />

Experiments & Results<br />

Conclusions & Future Research<br />

Benchmarks & Protocol<br />

Computational Results<br />

Remarks on MC and REMC methods<br />

Combining MC for Energy and MC for Penalty Refinment<br />

Starting conformation for 1CTF : Z = 0.506 and E = -206.5<br />

After penalty refinment for 130,000 iterations :<br />

Z = 0.0014 and E = -177.29<br />

Best conformation after 2,500,000 iterations of MC and no overlaps :<br />

Z = 0 and E = -167.34<br />

Thus, the combination results in better conformations with less<br />

computational cost.<br />

Transitions to overlap-free conformations are interpolated by<br />

conformations with few overlaps.<br />

Leonidas Kapsokalivas, Dr Kathleen Steinhöfel LAW LSD 2010


Preliminaries<br />

Model and Problem Formulation<br />

Methods<br />

Experiments & Results<br />

Conclusions & Future Research<br />

Benchmarks & Protocol<br />

Computational Results<br />

Remarks on MC and REMC methods<br />

Combining MC for Energy and MC for Penalty Refinment<br />

Starting conformation for 1CTF : Z = 0.506 and E = -206.5<br />

After penalty refinment for 130,000 iterations :<br />

Z = 0.0014 and E = -177.29<br />

Best conformation after 2,500,000 iterations of MC and no overlaps :<br />

Z = 0 and E = -167.34<br />

Thus, the combination results in better conformations with less<br />

computational cost.<br />

Transitions to overlap-free conformations are interpolated by<br />

conformations with few overlaps.<br />

MC vs REMC<br />

Given the same running time, MC and REMC produce conformations of<br />

similar energy.<br />

REMC can be parallelized efficiently with a potential speedup in the order<br />

of the number of replicas.<br />

Leonidas Kapsokalivas, Dr Kathleen Steinhöfel LAW LSD 2010


Conclusions<br />

Preliminaries<br />

Model and Problem Formulation<br />

Methods<br />

Experiments & Results<br />

Conclusions & Future Research<br />

The method captures the correct topology packing of secondary<br />

structure.<br />

Better than the constraint programming approach in terms of<br />

RMSD.<br />

Can serve as the first step to a protein structure prediction method<br />

which proceeds from coarse to more elaborate models.<br />

Leonidas Kapsokalivas, Dr Kathleen Steinhöfel LAW LSD 2010


Future Research<br />

Preliminaries<br />

Model and Problem Formulation<br />

Methods<br />

Experiments & Results<br />

Conclusions & Future Research<br />

Use other type of structural elements that are highly conserved in<br />

proteins, ie. a structural alphabet [Camproux et al.]<br />

Devise a move set that yields less global changes.<br />

Extend to bigger benchmarks. → Handle the problem of multiple<br />

topological combinations of secondary structure.<br />

Apply a multiobjective genetic algorithm. → Apply crossover and<br />

employ penalty refinment to minimize overlaps.<br />

Transcoding from Octave to C++ is 500-times faster, thus speeding<br />

up a 2,000,000 iteration run from 2 hours to 8.5 seconds.<br />

This work has appeared in 4 th LION 2010 and will appear in 8 th EvoBIO<br />

2010.<br />

Leonidas Kapsokalivas, Dr Kathleen Steinhöfel LAW LSD 2010

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!