12.07.2015 Views

Challenges and opportunities for carbon sequestration in ... - FAO

Challenges and opportunities for carbon sequestration in ... - FAO

Challenges and opportunities for carbon sequestration in ... - FAO

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Integrated Crop Management Vol. 9 –2010ISSN 1020-4555<strong>Challenges</strong> <strong>and</strong> <strong>opportunities</strong><strong>for</strong> <strong>carbon</strong> <strong>sequestration</strong><strong>in</strong> grassl<strong>and</strong> systemsA technical reporton grassl<strong>and</strong> management<strong>and</strong> climate change mitigation


Integrated Crop Management Vol. 9–2010<strong>Challenges</strong> <strong>and</strong> <strong>opportunities</strong><strong>for</strong> <strong>carbon</strong> <strong>sequestration</strong> <strong>in</strong>grassl<strong>and</strong> systemsA technical report ongrassl<strong>and</strong> management <strong>and</strong>climate change mitigationPrepared <strong>for</strong> thePlant Production <strong>and</strong> Protection DivisionFood <strong>and</strong> Agriculture Organization of the United Nations (<strong>FAO</strong>)Compiled byRichard T. ConantColorado State UniversityFort Coll<strong>in</strong>s, United States of AmericaFood <strong>and</strong> Agriculture Organization of the United NationsRome, 2010


The designations employed <strong>and</strong> the presentation of material <strong>in</strong> this <strong>in</strong><strong>for</strong>mation product do not implythe expression of any op<strong>in</strong>ion whatsoever on the part of the Food <strong>and</strong> Agriculture Organization ofthe United Nations (<strong>FAO</strong>) concern<strong>in</strong>g the legal or development status of any country, territory, cityor area or of its authorities, or concern<strong>in</strong>g the delimitation of its frontiers or boundaries.The mention of specific companies or products of manufacturers, whether or not these have beenpatented, does not imply that these have been endorsed or recommended by <strong>FAO</strong> <strong>in</strong> preference toothers of a similar nature that are not mentioned.ISBN 978-92-5-106494-8All rights reserved. <strong>FAO</strong> encourages reproduction <strong>and</strong> dissem<strong>in</strong>ation of material <strong>in</strong> this <strong>in</strong><strong>for</strong>mationproduct. Non-commercial uses will be authorized free of charge. Reproduction <strong>for</strong> resale or othercommercial purposes, <strong>in</strong>clud<strong>in</strong>g educational purposes, may <strong>in</strong>cur fees.Applications <strong>for</strong> permission to reproduce or dissem<strong>in</strong>ate <strong>FAO</strong> copyright materials <strong>and</strong> all otherqueries on rights <strong>and</strong> licences, should be addressed by e-mail to copyright@fao.org or to the Chief,Publish<strong>in</strong>g Policy <strong>and</strong> Support Branch, Office of Knowledge Exchange, Research <strong>and</strong> Extension, <strong>FAO</strong>,Viale delle Terme di Caracalla, 00153 Rome, Italy.© <strong>FAO</strong> 2010Cover photos, from left to right: R. Conant, ©<strong>FAO</strong>/M.Marzot, ©<strong>FAO</strong>/J. Prontz, ©<strong>FAO</strong>/o.Thuillirt


CONTENTSv1Executive summaryChapter 1Introduction33577141519202323242526272829303133333535384951Chapter 2BackgroundGrassl<strong>and</strong>s cover broad areas, contribute substantially to livelihoods <strong>and</strong> are vulnerableGrassl<strong>and</strong>s are <strong>in</strong>tensively used <strong>and</strong> degradation is widespreadChapter 3OpportunitiesCarbon <strong>sequestration</strong> <strong>in</strong> grassl<strong>and</strong>sReduced <strong>carbon</strong> emissions through reduced grassl<strong>and</strong> degradationPractices that sequester <strong>carbon</strong> <strong>in</strong> grassl<strong>and</strong>s often enhance productivityPractices that sequester <strong>carbon</strong> <strong>in</strong> grassl<strong>and</strong>s can enhance adaptation to climate changePotential <strong>in</strong>come <strong>for</strong> practices that sequester <strong>carbon</strong>Chapter 4<strong>Challenges</strong>Develop<strong>in</strong>g workable policies <strong>and</strong> <strong>in</strong>centives is difficultDemonstrat<strong>in</strong>g additionality is a <strong>for</strong>midable challengeCarbon sequestered <strong>in</strong> grassl<strong>and</strong> systems is subject to reversalsWell-<strong>in</strong>tentioned policies do not necessarily lead to good practicesL<strong>and</strong> tenure <strong>and</strong> governance issues complicate policy implementationSystems <strong>for</strong> document<strong>in</strong>g <strong>carbon</strong> stock changes have not been agreed uponPractice-based estimates of soil <strong>carbon</strong> <strong>sequestration</strong>Comb<strong>in</strong><strong>in</strong>g measurement with mechanistic modell<strong>in</strong>gData on management impacts on <strong>carbon</strong> stocks are limited <strong>in</strong> develop<strong>in</strong>g countriesChapter 5The way <strong>for</strong>wardFoundations <strong>for</strong> sound policiesGrassl<strong>and</strong> <strong>carbon</strong> <strong>sequestration</strong> <strong>in</strong> contextResearch prioritiesreferencesacknowledgementspolicy briefVol. 9–2010iii


Executive SummaryImplement<strong>in</strong>g grassl<strong>and</strong> management practices that <strong>in</strong>crease <strong>carbon</strong>uptake by <strong>in</strong>creas<strong>in</strong>g productivity or reduc<strong>in</strong>g <strong>carbon</strong> losses (e.g. throughhigh rates of offtake) can lead to net accumulation of <strong>carbon</strong> <strong>in</strong> grassl<strong>and</strong>soils – sequester<strong>in</strong>g atmospheric <strong>carbon</strong> dioxide (CO 2). Globally, thepotential to sequester <strong>carbon</strong> by improv<strong>in</strong>g grassl<strong>and</strong> practices orrehabilitat<strong>in</strong>g degraded grassl<strong>and</strong>s is substantial – of the same order as thatof agricultural <strong>and</strong> <strong>for</strong>estry <strong>sequestration</strong>. Because practices that sequester<strong>carbon</strong> <strong>in</strong> grassl<strong>and</strong>s often enhance productivity, policies designed toencourage <strong>carbon</strong> sequester<strong>in</strong>g grassl<strong>and</strong> management practices couldlead to near-term dividends <strong>in</strong> greater <strong>for</strong>age production <strong>and</strong> enhancedproducer <strong>in</strong>come.Practices that sequester <strong>carbon</strong> <strong>in</strong> grassl<strong>and</strong>s also tend to enhanceresilience <strong>in</strong> the face of climate variability, <strong>and</strong> are thus likely to enhancelonger-term adaptation to chang<strong>in</strong>g climates. Develop<strong>in</strong>g policies toencourage the adoption of practices that sequester <strong>carbon</strong> has severalsignificant challenges, such as demonstrat<strong>in</strong>g additionality, address<strong>in</strong>gthe potential <strong>for</strong> losses of sequestered <strong>carbon</strong>, <strong>and</strong> engag<strong>in</strong>g smallholders<strong>and</strong> pastoralists with uncerta<strong>in</strong> l<strong>and</strong> tenure. In addition, the paucity ofdata <strong>in</strong> develop<strong>in</strong>g countries hampers the measurement, monitor<strong>in</strong>g <strong>and</strong>verify<strong>in</strong>g of <strong>carbon</strong> <strong>sequestration</strong> <strong>in</strong> response to those practices.This report reviews the current status of <strong>opportunities</strong> <strong>and</strong> challenges<strong>for</strong> grassl<strong>and</strong> <strong>carbon</strong> <strong>sequestration</strong>. Based on these observations, thereport then identifies components that could foster the <strong>in</strong>clusion ofgrassl<strong>and</strong>s <strong>in</strong> a post-2012 climate agreement, <strong>and</strong> the development ofpolicies to improve grassl<strong>and</strong> management.Vol. 9–2010v


©<strong>FAO</strong>/d. miller


Chapter 2BackgroundGrassl<strong>and</strong>s cover broad areas, contributesubstantially to livelihoods <strong>and</strong> are vulnerableGrassl<strong>and</strong>s, <strong>in</strong>clud<strong>in</strong>g rangel<strong>and</strong>s, shrubl<strong>and</strong>s, pasturel<strong>and</strong>, <strong>and</strong> cropl<strong>and</strong>sown with pasture <strong>and</strong> fodder crops, covered approximately 3.5 billion ha<strong>in</strong> 2000, represent<strong>in</strong>g 26 percent of the world l<strong>and</strong> area <strong>and</strong> 70 percent of theworld agricultural area, <strong>and</strong> conta<strong>in</strong><strong>in</strong>g about 20 percent of the world’s soil<strong>carbon</strong> stocks (<strong>FAO</strong>STAT, 2009; Ramankutty et al., 2008; Schles<strong>in</strong>ger, 1977).People rely heavily upon grassl<strong>and</strong>s <strong>for</strong> food <strong>and</strong> <strong>for</strong>age production. Around20 percent of the world’s native grassl<strong>and</strong>s have been converted to cultivatedcrops (Figure 1) (Ramankutty et al., 2008) <strong>and</strong> significant portions of worldmilk (27 percent) <strong>and</strong> beef (23 percent) production occur on grassl<strong>and</strong>smanaged solely <strong>for</strong> those purposes. The livestock <strong>in</strong>dustry – largely based ongrassl<strong>and</strong>s – provides livelihoods <strong>for</strong> about 1 billion of the world’s poorestpeople <strong>and</strong> one-third of global prote<strong>in</strong> <strong>in</strong>take (Ste<strong>in</strong>feld et al., <strong>FAO</strong>, 2006).graz<strong>in</strong>g l<strong>and</strong>sWoodl<strong>and</strong>Shrubl<strong>and</strong>Tall grassMedium grassShort grassSource: Connant <strong>and</strong> Paustian, 2000Vol. 9–2010 3


<strong>Challenges</strong> <strong>and</strong> <strong>opportunities</strong> <strong>for</strong> <strong>carbon</strong> <strong>sequestration</strong> <strong>in</strong> grassl<strong>and</strong> systemsA Technical Report on Grassl<strong>and</strong> Management <strong>and</strong> Climate Change MitigationS AmericaN AmericaPacific(development)EuropeAsia (<strong>in</strong>cl. FSU)AfricaS AmericaN AmericaPacific(development)EuropeAsia (<strong>in</strong>cl. FSU)Africa0 2 4 6 8 10 12% of total grassl<strong>and</strong>/savannah area0 2 4 6 8 10 12% of total shrubl<strong>and</strong> areacropl<strong>and</strong>pastureFigure 1: Percentage of native grassl<strong>and</strong>/savannah <strong>and</strong> shrubl<strong>and</strong> that has beenconverted to cropl<strong>and</strong> <strong>and</strong> pastureSource: Ramankutty et al., 2008The development challenges faced by the populations of the world’sdry grassl<strong>and</strong>s systems vividly illustrate the tighten<strong>in</strong>g l<strong>in</strong>kage betweenecosystem services <strong>and</strong> enhanced human well-be<strong>in</strong>g: 2 billion people<strong>in</strong>habit dryl<strong>and</strong> regions, yet dryl<strong>and</strong> regions have only 8 percent of theworld’s renewable water supply. This means that people have access towater that meets only two-thirds of the m<strong>in</strong>imum per capita requirements,population growth rates are faster <strong>in</strong> dryl<strong>and</strong>s than anywhere else, butproduction potential is lower than anywhere else. Traditional socioecologicalsystems have evolved to cope with climatic <strong>and</strong> economicuncerta<strong>in</strong>ty, but population <strong>and</strong> economic pressures are <strong>in</strong>creas<strong>in</strong>glytax<strong>in</strong>g traditional systems (Verstraete, Scholes <strong>and</strong> Staf<strong>for</strong>d Smith, 2009).Primary production <strong>in</strong> rangel<strong>and</strong>s is relatively low, varies substantiallyfrom place to place, <strong>and</strong> is strongly limited by precipitation (Le Houerou,1984). Even where ra<strong>in</strong>fall is high (some grassl<strong>and</strong> areas receive as muchas 900 mm of precipitation per year), almost all of the precipitation fallsdur<strong>in</strong>g dist<strong>in</strong>ct ra<strong>in</strong>y seasons <strong>and</strong> evapotranspiration dem<strong>and</strong>s exceedprecipitation dur<strong>in</strong>g most of the year. Moreover, precipitation, <strong>and</strong> thusproduction, varies considerably from year to year, with coefficients ofvariation averag<strong>in</strong>g 33 percent, <strong>and</strong> as high as 60 percent <strong>in</strong> some of thedrier areas (Ellis <strong>and</strong> Galv<strong>in</strong>, 1994). Grassl<strong>and</strong>s are thus highly vulnerableto climate change (Thornton et al., 2007; 2009).4Integrated Crop Management


ackgroundGrassl<strong>and</strong>s are <strong>in</strong>tensively used <strong>and</strong>degradation is widespreadA large part of the world’s grassl<strong>and</strong>s is under pressure to producemore livestock by graz<strong>in</strong>g more <strong>in</strong>tensively, particularly <strong>in</strong> Africa’srangel<strong>and</strong>s, which are vulnerable to climate change <strong>and</strong> are expectednonetheless to supply most of the beef <strong>and</strong> milk requirements <strong>in</strong> Africa(Reid et al., 2004). As a result of past practices, 7.5 percent of theworld’s grassl<strong>and</strong>s have been degraded by overgraz<strong>in</strong>g (Oldeman, 1994).Previous research has documented that improved graz<strong>in</strong>g managementcould lead to greater <strong>for</strong>age production, more efficient use of l<strong>and</strong>resources, <strong>and</strong> enhanced profitability <strong>and</strong> rehabilitation of degradedl<strong>and</strong>s (Oldeman, 1994). The strong bond between ecosystem services <strong>and</strong>human well-be<strong>in</strong>g <strong>in</strong> the world’s dryl<strong>and</strong> systems demonstrates the need<strong>for</strong> a new, <strong>in</strong>tegrated approach to diagnos<strong>in</strong>g <strong>and</strong> address<strong>in</strong>g susta<strong>in</strong>abledevelopment priorities, <strong>in</strong>clud<strong>in</strong>g ma<strong>in</strong>tenance of the supply of criticalecosystem services.One of the reasons <strong>for</strong> the <strong>in</strong>tensive use of grassl<strong>and</strong>s is the high naturalsoil fertility. Grassl<strong>and</strong>s characteristically have high <strong>in</strong>herent soil organicmatter content, averag<strong>in</strong>g 333 Mg 1 ha -1 (Schles<strong>in</strong>ger, 1977). Soil organicmatter – an important source of plant nutrients – <strong>in</strong>fluences the fateof organic residues <strong>and</strong> <strong>in</strong>organic fertilizers, <strong>in</strong>creases soil aggregation,which can limit soil erosion, <strong>and</strong> also <strong>in</strong>creases action exchange <strong>and</strong> waterhold<strong>in</strong>g capacities (Miller <strong>and</strong> Donahue, 1990; Kononova, 1966; Allison,1973; Tate, 1987). It is a key regulator of grassl<strong>and</strong> ecosystem processes.Thus, a prime underly<strong>in</strong>g goal of susta<strong>in</strong>able management of grassl<strong>and</strong>ecosystems is to ma<strong>in</strong>ta<strong>in</strong> high levels of soil organic matter <strong>and</strong> soil<strong>carbon</strong> stocks.Portions of the grassl<strong>and</strong>s on every cont<strong>in</strong>ent have been degradedow<strong>in</strong>g to human activities, with about 7.5 percent of grassl<strong>and</strong> hav<strong>in</strong>gbeen degraded because of overgraz<strong>in</strong>g (Oldeman, 1994). More recently,the L<strong>and</strong> Degradation Assessment <strong>in</strong> Dryl<strong>and</strong>s (LADA) concluded thatabout 16 percent of rangel<strong>and</strong>s are currently undergo<strong>in</strong>g degradation <strong>and</strong>that rangel<strong>and</strong>s comprise 20–25 percent of the total l<strong>and</strong> area currently1mega gramsVol. 9–20105


<strong>Challenges</strong> <strong>and</strong> <strong>opportunities</strong> <strong>for</strong> <strong>carbon</strong> <strong>sequestration</strong> <strong>in</strong> grassl<strong>and</strong> systemsA Technical Report on Grassl<strong>and</strong> Management <strong>and</strong> Climate Change Mitigation©<strong>FAO</strong>/m. marzotbe<strong>in</strong>g degraded. This process affects the livelihoods of over 1.5 billionpeople worldwide (Bai et al., 2008). Present degradation is probably tak<strong>in</strong>gplace <strong>in</strong> addition to historic degradation (Bai et al., 2008). Cultivation ofnative grassl<strong>and</strong>s has contributed substantially to the transfer of about0.8 Mg of soil <strong>carbon</strong> to the atmosphere annually (Schles<strong>in</strong>ger, 1990). Soilorganic matter losses due to conversion of native grassl<strong>and</strong>s to cultivationare both extensive <strong>and</strong> well documented (Kern, 1994; Donigian et al.,1994; Follett, Kimble <strong>and</strong> Lal, 2001). Removal of large amounts ofaboveground biomass, cont<strong>in</strong>uous heavy stock<strong>in</strong>g rates <strong>and</strong> other poorgraz<strong>in</strong>g management practices are important human-controlled factorsthat <strong>in</strong>fluence grassl<strong>and</strong> production <strong>and</strong> have led to the depletion of soil<strong>carbon</strong> stocks (Conant <strong>and</strong> Paustian, 2002a; Ojima et al., 1993). However,good grassl<strong>and</strong> management can potentially reverse historical soil <strong>carbon</strong>losses <strong>and</strong> sequester substantial amounts of <strong>carbon</strong> <strong>in</strong> soils.6Integrated Crop Management


Chapter 3OpportunitiesCarbon <strong>sequestration</strong> <strong>in</strong> grassl<strong>and</strong>sDisturbance – def<strong>in</strong>ed as remov<strong>in</strong>g biomass, chang<strong>in</strong>g the vegetationor alter<strong>in</strong>g soil function – is an <strong>in</strong>tegral part of traditional grassl<strong>and</strong>management systems, which fosters dependable yields of <strong>for</strong>age.However, disturbance through overgraz<strong>in</strong>g, fire, <strong>in</strong>vasive species, etc.can also deplete grassl<strong>and</strong> systems of <strong>carbon</strong> stocks (Smith et al., 2008).Harvest<strong>in</strong>g a large proportion of plant biomass enhances yields of usefulmaterial (e.g. <strong>for</strong> <strong>for</strong>age or fuel), but decreases <strong>carbon</strong> <strong>in</strong>puts to the soil(Figure 2) (see Box 1) (Wilts et al., 2004).Primary production <strong>in</strong> overgrazed grassl<strong>and</strong>s can decrease if herbivoryreduces plant growth or regeneration capacity, vegetation density <strong>and</strong>community biomass, or if community composition changes (Chapman<strong>and</strong> Lemaire, 1993). If <strong>carbon</strong> <strong>in</strong>puts to the soil <strong>in</strong> these systems decreasebecause of decreased net primary production or direct <strong>carbon</strong> removal bylivestock, soil <strong>carbon</strong> stocks will decl<strong>in</strong>e.Like <strong>carbon</strong> <strong>sequestration</strong> <strong>in</strong> <strong>for</strong>ests or agricultural l<strong>and</strong>, <strong>sequestration</strong><strong>in</strong> grassl<strong>and</strong> systems – primarily, but not entirely <strong>in</strong> the soils – is broughtabout by <strong>in</strong>creas<strong>in</strong>g <strong>carbon</strong> <strong>in</strong>puts. It is widely accepted that cont<strong>in</strong>uousexcessive graz<strong>in</strong>g is detrimental to plant communities (Milchunas <strong>and</strong>Lauenroth, 1993) <strong>and</strong> soil <strong>carbon</strong> stocks (Conant <strong>and</strong> Paustian, 2002a).When management practices that deplete soil <strong>carbon</strong> stocks are reversed,grassl<strong>and</strong> ecosystem <strong>carbon</strong> stocks can be rebuilt, sequester<strong>in</strong>g atmosphericCO 2(Follett, Kimble <strong>and</strong> Lal, 2001).Vol. 9–2010 7


<strong>Challenges</strong> <strong>and</strong> <strong>opportunities</strong> <strong>for</strong> <strong>carbon</strong> <strong>sequestration</strong> <strong>in</strong> grassl<strong>and</strong> systemsA Technical Report on Grassl<strong>and</strong> Management <strong>and</strong> Climate Change MitigationCO 2CO 2CO 2system cNative / undisturbedgrassl<strong>and</strong>sPoor management / degradedgrassl<strong>and</strong>sImprovedmanagementfigure 2: Conceptual diagram illustrat<strong>in</strong>g how past l<strong>and</strong> management has led todepletion of grassl<strong>and</strong> soil <strong>carbon</strong> stocks due to practices that decrease<strong>carbon</strong> uptake. Implementation of improved management practices canlead to enhanced <strong>carbon</strong> uptake, restor<strong>in</strong>g ecosystem <strong>carbon</strong> stocks <strong>and</strong>sequester<strong>in</strong>g atmospheric CO 2<strong>in</strong> grassl<strong>and</strong> soils.Box 1: Carbon stocks are a function of <strong>carbon</strong> <strong>in</strong>puts <strong>and</strong> outputsAll ecosystems – <strong>for</strong>ested ecosystems, agro-ecosystems, grassl<strong>and</strong>ecosystems, etc. – take up atmospheric CO 2<strong>and</strong> m<strong>in</strong>eral nutrients <strong>and</strong>trans<strong>for</strong>m them <strong>in</strong>to organic products. In grassl<strong>and</strong>s, <strong>carbon</strong> assimilationis directed towards the production of fibre <strong>and</strong> <strong>for</strong>age by manipulat<strong>in</strong>gspecies composition <strong>and</strong> grow<strong>in</strong>g conditions. Ecosystems are a majorsource <strong>and</strong> s<strong>in</strong>k <strong>for</strong> the three ma<strong>in</strong> biogenic greenhouse gases (GHG) –CO 2, nitrous oxide (N 2O) <strong>and</strong> methane (CH 4). In undisturbed ecosystems,the <strong>carbon</strong> balance tends to be positive: <strong>carbon</strong> uptake throughphotosynthesis exceeds losses from respiration, even <strong>in</strong> mature, oldgrowth<strong>for</strong>est ecosystems (Luyssaert et al., 2008; Gough et al., 2008;8Integrated Crop Management


<strong>opportunities</strong>Stephens et al., 2007). Disturbance, such as fire, drought, disease orexcessive <strong>for</strong>age consumption by graz<strong>in</strong>g, can lead to substantial losses of<strong>carbon</strong> from both soils <strong>and</strong> vegetation (Page et al., 2002; Ciais et al., 2005;Adams et al., 2009). Disturbance is a def<strong>in</strong><strong>in</strong>g element of all ecosystemsthat cont<strong>in</strong>ues to <strong>in</strong>fluence the <strong>carbon</strong> uptake <strong>and</strong> losses that determ<strong>in</strong>elong-term ecosystem <strong>carbon</strong> balance (R<strong>and</strong>erson et al., 2002).Human l<strong>and</strong>-use activities function much like natural activities <strong>in</strong> their<strong>in</strong>fluence on ecosystem <strong>carbon</strong> balance. CO 2is produced when <strong>for</strong>estbiomass is burned, <strong>and</strong> soil <strong>carbon</strong> stocks beg<strong>in</strong> to decl<strong>in</strong>e soon after soildisturbances (Lal, Kimble <strong>and</strong> Stewart, 2000). Like natural disturbances suchas fire <strong>and</strong> drought, l<strong>and</strong>-use change affects vegetation <strong>and</strong> soil dynamics,often prompt<strong>in</strong>g further <strong>in</strong>creased <strong>carbon</strong> releases <strong>and</strong> decreased <strong>carbon</strong>uptake. De<strong>for</strong>estation, degradation of native grassl<strong>and</strong>s <strong>and</strong> conversionto cropl<strong>and</strong> have prompted losses of biomass <strong>and</strong> soil <strong>carbon</strong> of 450–800Gt/CO 2– equivalent to 30–40 percent of cumulative fossil fuel emissions(Houghton et al., 1983; DeFries et al., 1999; Marl<strong>and</strong>, Boden <strong>and</strong> Andres,2000; Olofsson <strong>and</strong> Hickler, 2008) Emissions from conversion from <strong>for</strong>eststo cropl<strong>and</strong> or other l<strong>and</strong> use have dom<strong>in</strong>ated <strong>carbon</strong> losses fromterrestrial ecosystems (DeFries et al., 1999), but substantial amounts of<strong>carbon</strong> have been lost from biomass <strong>and</strong> soils of grassl<strong>and</strong> systems as well(Shevliakova et al., 2009).The basic processes govern<strong>in</strong>g the <strong>carbon</strong> balance of grassl<strong>and</strong>s aresimilar to those of other ecosystems: the photosynthetic uptake <strong>and</strong>assimilation of CO 2<strong>in</strong>to organic compounds <strong>and</strong> the release of gaseous<strong>carbon</strong> through respiration (primarily CO 2but also CH 4).Biomass <strong>in</strong> grassl<strong>and</strong> systems, be<strong>in</strong>g predom<strong>in</strong>antly herbaceous (i.e.non-woody), is a small, transient <strong>carbon</strong> pool (compared to <strong>for</strong>est) <strong>and</strong>hence soils constitute the dom<strong>in</strong>ant <strong>carbon</strong> stock. Grassl<strong>and</strong> systems canbe productive ecosystems, but restricted grow<strong>in</strong>g season length, droughtperiods <strong>and</strong> graz<strong>in</strong>g-<strong>in</strong>duced shifts <strong>in</strong> species composition or productioncan reduce <strong>carbon</strong> uptake relative to that <strong>in</strong> other ecosystems. Soil organic<strong>carbon</strong> stocks <strong>in</strong> grassl<strong>and</strong>s have been depleted to a lesser degree than <strong>for</strong>cropl<strong>and</strong> (Ogle, Conant <strong>and</strong> Paustian, 2004), <strong>and</strong> <strong>in</strong> some regions biomasshas <strong>in</strong>creased due to suppression of disturbance <strong>and</strong> subsequent woodyencroachment. Much of the <strong>carbon</strong> lost from agricultural l<strong>and</strong> soil <strong>and</strong>biomass pools can be recovered with changes <strong>in</strong> management practicesthat <strong>in</strong>crease <strong>carbon</strong> <strong>in</strong>puts, stabilize <strong>carbon</strong> with<strong>in</strong> the system or reduce<strong>carbon</strong> losses, while still ma<strong>in</strong>ta<strong>in</strong><strong>in</strong>g outputs of fibre <strong>and</strong> <strong>for</strong>age.Vol. 9–20109


<strong>Challenges</strong> <strong>and</strong> <strong>opportunities</strong> <strong>for</strong> <strong>carbon</strong> <strong>sequestration</strong> <strong>in</strong> grassl<strong>and</strong> systemsA Technical Report on Grassl<strong>and</strong> Management <strong>and</strong> Climate Change Mitigation©<strong>FAO</strong>/r. faidutti©<strong>FAO</strong>/g. napolitano©<strong>FAO</strong>/j. pr<strong>in</strong>tz10Integrated Crop Management


<strong>opportunities</strong>Many management techniques <strong>in</strong>tended to <strong>in</strong>crease livestock <strong>for</strong>ageproduction have the potential to augment soil <strong>carbon</strong> stocks, thussequester<strong>in</strong>g atmospheric <strong>carbon</strong> <strong>in</strong> soils. Methods of improvedmanagement <strong>in</strong>clude fertilization, irrigation, <strong>in</strong>tensive graz<strong>in</strong>g management<strong>and</strong> sow<strong>in</strong>g of favourable <strong>for</strong>age grasses <strong>and</strong> legumes. Grassl<strong>and</strong>management to enhance production (through sow<strong>in</strong>g improved species,irrigation or fertilization), m<strong>in</strong>imiz<strong>in</strong>g the negative impacts of graz<strong>in</strong>g orrehabilitat<strong>in</strong>g degraded l<strong>and</strong>s can each lead to <strong>carbon</strong> <strong>sequestration</strong> (Conant<strong>and</strong> Paustian, 2002a; Follett, Kimble <strong>and</strong> Lal, 2001; Conant, Paustian <strong>and</strong>Elliott, 2001). Improved graz<strong>in</strong>g management (management that <strong>in</strong>creasesproduction) leads to an <strong>in</strong>crease of soil <strong>carbon</strong> stocks by an average of 0.35Mg C ha -1 yr -1 (Conant, Paustian <strong>and</strong> Elliott, 2001).Agro<strong>for</strong>estry enhances <strong>carbon</strong> uptake by lengthen<strong>in</strong>g the grow<strong>in</strong>gseason, exp<strong>and</strong><strong>in</strong>g the niches from which water <strong>and</strong> soil nutrients aredrawn <strong>and</strong>, <strong>in</strong> the case of nitrogen (N)-fix<strong>in</strong>g species, enhanc<strong>in</strong>g soilfertility (Nair, Kumar <strong>and</strong> Nair, 2009). The result is that when agro<strong>for</strong>estrysystems are <strong>in</strong>troduced <strong>in</strong> suitable locations, <strong>carbon</strong> is sequestered <strong>in</strong> thetree biomass <strong>and</strong> tends to be sequestered <strong>in</strong> the soil as well (Jose, 2009).Improved management <strong>in</strong> exist<strong>in</strong>g agro<strong>for</strong>estry systems could sequester0.012 Tg 1 C yr -1 while conversion of 630 million ha of unproductive ordegraded cropl<strong>and</strong>s <strong>and</strong> grassl<strong>and</strong>s to agro<strong>for</strong>estry could sequester as muchas 0.59 Tg C annually by 2040 (IPCC, 2000), which would be accompaniedby modest <strong>in</strong>creases <strong>in</strong> N 2O emissions as more N circulates <strong>in</strong> the system(see Box 2 <strong>for</strong> <strong>in</strong><strong>for</strong>mation on grassl<strong>and</strong> emissions of other GHGs).Us<strong>in</strong>g seeded grasses <strong>for</strong> cover cropp<strong>in</strong>g, catch crops <strong>and</strong> morecomplex crop rotations all <strong>in</strong>crease <strong>carbon</strong> <strong>in</strong>puts to the soil by extend<strong>in</strong>gthe time over which plants are fix<strong>in</strong>g atmospheric CO 2<strong>in</strong> cropl<strong>and</strong>systems. Rotations with grass, hay or pasture tend to have the largestimpact on soil <strong>carbon</strong> stocks (West <strong>and</strong> Post, 2002). Add<strong>in</strong>g manureto soil builds soil organic matter <strong>in</strong> grassl<strong>and</strong>s (Conant, Paustian <strong>and</strong>Elliott, 2001). The synthesis by Smith et al. (2008) suggests that add<strong>in</strong>gmanure or biosolids to soil could sequester between 0.42 <strong>and</strong> 0.76 t Cha -1 yr -1 depend<strong>in</strong>g on the region (<strong>sequestration</strong> rates tend to be greater<strong>in</strong> moist regions than <strong>in</strong> dry). Rapid <strong>in</strong>corporation of manure <strong>in</strong>to fields1Tg = 10 12 gVol. 9–201011


<strong>Challenges</strong> <strong>and</strong> <strong>opportunities</strong> <strong>for</strong> <strong>carbon</strong> <strong>sequestration</strong> <strong>in</strong> grassl<strong>and</strong> systemsA Technical Report on Grassl<strong>and</strong> Management <strong>and</strong> Climate Change MitigationBox 2: Full GHG account<strong>in</strong>gWhen m<strong>in</strong>eral soil N content is <strong>in</strong>creased by N additions (i.e. fertilizer),a portion of that N can be trans<strong>for</strong>med <strong>in</strong>to N 2O as a by-product of twomicrobiological processes (nitrification <strong>and</strong> denitrification), <strong>and</strong> lost tothe atmosphere. Co<strong>in</strong>cidental <strong>in</strong>troduction of large amounts of easily-decomposable organic matter <strong>and</strong> NO 3from either a plough downof cover crop or manure addition greatly stimulates denitrificationunder wet conditions (Mosier, Syers <strong>and</strong> Freney, 2004). Some practices<strong>in</strong>tended to sequester atmospheric <strong>carbon</strong> <strong>in</strong> soil could prompt <strong>in</strong>creases<strong>in</strong> N 2O fluxes.For example, fertilization <strong>in</strong>creases soil m<strong>in</strong>eral N concentrations,lead<strong>in</strong>g to <strong>in</strong>creased N 2O fluxes, particularly <strong>in</strong> wetter environments.N 2O is the most potent biogenic GHG <strong>in</strong> terms of global warm<strong>in</strong>gpotential, with a radioactive <strong>for</strong>c<strong>in</strong>g 296 times that of CO 2(IPCC, 2001).Management activities that add m<strong>in</strong>eral or organic N – fertilization,plant N 2fixation, manure additions, etc. – augment naturally occurr<strong>in</strong>gN 2O emissions from nitrification <strong>and</strong> denitrification by 0.0125 kg N 2Okg N applied -1 (Mosier et al., 1998). Agriculture contributes significantlyto total global N 2O fluxes through soil emissions (35 percent of totalglobal emissions), animal waste h<strong>and</strong>l<strong>in</strong>g (12 percent), nitrate leach<strong>in</strong>g(7 percent), synthetic fertilizer application (5 percent), graz<strong>in</strong>g animals(4 percent) <strong>and</strong> crop residue management (2 percent). Agriculture is thelargest source of N 2O <strong>in</strong> the United States of America (78 percent of totalN 2O emissions), Canada (59 percent) <strong>and</strong> Mexico (76 percent).CH 4emissions from rum<strong>in</strong>ant animals comprise about one-third ofnon-CO 2GHG emissions from agriculture (IPCC, 2007a). To the extentthat practices that sequester <strong>carbon</strong> lead to <strong>in</strong>creased stock<strong>in</strong>g rates,CH 4fluxes would <strong>in</strong>crease, potentially offsett<strong>in</strong>g mitigation due to<strong>sequestration</strong> (Soussana et al., 2007). CH 4emissions from rum<strong>in</strong>ant animalsare a measure of production <strong>in</strong>efficiency – more CH 4emitted means lessof the <strong>carbon</strong> consumed by livestock is converted to product (<strong>FAO</strong>, 2006;Leng, 1993). The complement is also largely true: <strong>in</strong>creas<strong>in</strong>g productionefficiency reduces CH 4emission. Consequently, <strong>in</strong>vestments to reduce CH 4emissions will lead to <strong>in</strong>creased production efficiency.12Integrated Crop Management


<strong>opportunities</strong>1.31.21.11.00.90.8nom<strong>in</strong>altemperateDegraded Improved Medium <strong>in</strong>put High <strong>in</strong>puttropicalThese factors estimate proportional <strong>carbon</strong> <strong>sequestration</strong> or loss (i.e. through degradation) givendeparture from nom<strong>in</strong>al management practices. Medium <strong>in</strong>puts require one external <strong>in</strong>put (e.g.fertilizer improved species, etc.) whereas high <strong>in</strong>puts require more than one external <strong>in</strong>put. Thesemanagement factors are presented as proportional <strong>in</strong>creases <strong>in</strong> <strong>carbon</strong> stocks rather than <strong>carbon</strong><strong>sequestration</strong> rates, so that the factors can be applied to all soils.Figure 3: Grassl<strong>and</strong> management factors <strong>for</strong> temperate <strong>and</strong> tropical regionsSource: Figure reproduced from Ogle, Conant <strong>and</strong> Paustian, 2004would reduce the time that manure decomposes <strong>in</strong> anaerobic piles <strong>and</strong>lagoons, reduc<strong>in</strong>g emissions of CH 4<strong>and</strong> N 2O. IPCC (2007a) estimatesthe technical potential <strong>for</strong> reduction of CH 4emissions from manure tobe 12.3 Tg C yr -1 by 2030; N 2O emissions could also be reduced. Add<strong>in</strong>gmanure <strong>in</strong> one place to build soil <strong>carbon</strong> stocks is offset by removal, orwhat would be <strong>carbon</strong> <strong>in</strong>puts <strong>in</strong> another place (by <strong>for</strong>age or feed harvest).The balance between these has not been well characterized. Summarydata synthesized by climate region are presented <strong>in</strong> Figure 3.Globally, an estimated 0.2—0.8 Gt 2 CO 2yr -1 could be sequestered<strong>in</strong> grassl<strong>and</strong> soils by 2030, given prices <strong>for</strong> CO 2of USD20–50/tonne(IPCC, 2007a). Although both fertilization <strong>and</strong> fire management couldcontribute to <strong>carbon</strong> <strong>sequestration</strong>, most of the potential <strong>sequestration</strong><strong>in</strong> non-degraded grassl<strong>and</strong>s is due to changes <strong>in</strong> graz<strong>in</strong>g managementpractices. Estimated rates of <strong>carbon</strong> <strong>sequestration</strong> per unit are lowerthan those <strong>for</strong> <strong>sequestration</strong> on agricultural l<strong>and</strong>, but <strong>sequestration</strong>potential is comparable to that of cropl<strong>and</strong>s because grassl<strong>and</strong>s coversuch a large portion of the earth’s surface (Figure 4). Nearly 270million ha of grassl<strong>and</strong> worldwide have been degraded to some degree2Gt = 10 15 gVol. 9–201013


<strong>Challenges</strong> <strong>and</strong> <strong>opportunities</strong> <strong>for</strong> <strong>carbon</strong> <strong>sequestration</strong> <strong>in</strong> grassl<strong>and</strong> systemsA Technical Report on Grassl<strong>and</strong> Management <strong>and</strong> Climate Change Mitigation1 000Mt CO 2-eq yr -18006004002000cropl<strong>and</strong>mgmtgraz<strong>in</strong>gl<strong>and</strong>mgmtrestoredegraded l<strong>and</strong>slivestockset-asideagro<strong>for</strong>estryUSD t CO 2-eq -1 0—20 20—50 >50Figure 4: Estimates of <strong>carbon</strong> <strong>sequestration</strong> potential <strong>for</strong> several mitigationmeasures at vary<strong>in</strong>g <strong>carbon</strong> pricesSource: IPCC, 2007aby mismanagement (Oldeman, 1994; Bridges <strong>and</strong> Oldeman, 1999).Much of this l<strong>and</strong> can be rehabilitated by enhanc<strong>in</strong>g plant productivity,captur<strong>in</strong>g water resources <strong>and</strong> us<strong>in</strong>g them more efficiently, or improv<strong>in</strong>gsoil fertility; do<strong>in</strong>g so could sequester about as much <strong>carbon</strong> as could besequestered <strong>in</strong> grassl<strong>and</strong>s (0.15—0.7 Gt CO 2yr -1 depend<strong>in</strong>g on <strong>carbon</strong>prices) (IPCC, 2007a).Reduced <strong>carbon</strong> emissions throughreduced grassl<strong>and</strong> degradationGrassl<strong>and</strong>s conta<strong>in</strong> a substantial amount of the world’s soil organic<strong>carbon</strong>. Integrat<strong>in</strong>g data on grassl<strong>and</strong> areas (<strong>FAO</strong>STAT, 2009) <strong>and</strong>grassl<strong>and</strong> soil <strong>carbon</strong> stocks (Sombroek, Nachtergaele <strong>and</strong> Hebel, 1993)results <strong>in</strong> a global estimate of about 343 billion tonnes of C – nearly 50percent more than is stored <strong>in</strong> <strong>for</strong>ests worldwide (<strong>FAO</strong>, 2007).Just as <strong>in</strong> the case of <strong>for</strong>est biomass <strong>carbon</strong> stocks, grassl<strong>and</strong> soil<strong>carbon</strong> stocks are susceptible to loss upon conversion to other l<strong>and</strong> uses(Paustian, Coll<strong>in</strong>s <strong>and</strong> Paul, 1997) or follow<strong>in</strong>g activities that lead tograssl<strong>and</strong> degradation (e.g. overgraz<strong>in</strong>g). Current rates of <strong>carbon</strong> lossfrom grassl<strong>and</strong> systems are not well quantified. Over the last decade,the grassl<strong>and</strong> area has been dim<strong>in</strong>ish<strong>in</strong>g while arable l<strong>and</strong> area has been14Integrated Crop Management


<strong>opportunities</strong>grow<strong>in</strong>g, suggest<strong>in</strong>g cont<strong>in</strong>ued conversion of grassl<strong>and</strong> to cropl<strong>and</strong>s(<strong>FAO</strong>STAT, 2009). When grassl<strong>and</strong>s are converted to agricultural l<strong>and</strong>,soil <strong>carbon</strong> stocks tend to decl<strong>in</strong>e by an average of about 60 percent(Paustian, Coll<strong>in</strong>s <strong>and</strong> Paul, 1997; Guo <strong>and</strong> Gif<strong>for</strong>d, 2002).Grassl<strong>and</strong> degradation has also exp<strong>and</strong>ed (Bai et al., 2008), probablycontribut<strong>in</strong>g to the loss of grassl<strong>and</strong> ecosystem <strong>carbon</strong> stocks. Arrest<strong>in</strong>ggrassl<strong>and</strong> conversion <strong>and</strong> degradation would preserve grassl<strong>and</strong> soil<strong>carbon</strong> stocks. The magnitude of the impact on atmospheric CO 2ismuch smaller than that due to de<strong>for</strong>estation, but preserv<strong>in</strong>g grassl<strong>and</strong>soil <strong>carbon</strong> stocks serves to ma<strong>in</strong>ta<strong>in</strong> the productive capacity of theseecosystems that make a substantial contribution to livelihoods.Practices that sequester <strong>carbon</strong> <strong>in</strong> grassl<strong>and</strong>soften enhance productivityAn important argument <strong>in</strong> favour of grassl<strong>and</strong> <strong>carbon</strong> <strong>sequestration</strong>is that implementation of practices to sequester <strong>carbon</strong> often lead to<strong>in</strong>creased production <strong>and</strong> greater economic returns. Forage removalpractices that disturb the system <strong>and</strong> prompt <strong>carbon</strong> losses usuallyreflect attempts to enhance <strong>for</strong>age utilization, but the complement isnot necessarily true: practices that sequester <strong>carbon</strong> do not necessarilyresult <strong>in</strong> reduced <strong>for</strong>age utilization.Reduc<strong>in</strong>g the amount of <strong>carbon</strong> <strong>in</strong>puts removed, or <strong>in</strong>creas<strong>in</strong>gproduction, <strong>carbon</strong> <strong>in</strong>puts or below-ground allocation, could all leadto <strong>in</strong>creas<strong>in</strong>g soil <strong>carbon</strong> stocks (Conant, Paustian <strong>and</strong> Elliott, 2001).Graz<strong>in</strong>g management can lead to decreased <strong>carbon</strong> removal if graz<strong>in</strong>g<strong>in</strong>tensities are reduced or if graz<strong>in</strong>g is deferred while <strong>for</strong>age species aremost actively grow<strong>in</strong>g (Kemp <strong>and</strong> Michalk, 2007). Susta<strong>in</strong>able graz<strong>in</strong>gmanagement can thus <strong>in</strong>crease <strong>carbon</strong> <strong>in</strong>puts <strong>and</strong> <strong>carbon</strong> stocks withoutnecessarily reduc<strong>in</strong>g <strong>for</strong>age production. Graz<strong>in</strong>g management can alsobe used to restore productive <strong>for</strong>age species, further augment<strong>in</strong>g <strong>carbon</strong><strong>in</strong>puts <strong>and</strong> soil <strong>carbon</strong> stocks.Other practices that enhance production, such as sow<strong>in</strong>g moreproductive species or supply<strong>in</strong>g adequate moisture <strong>and</strong> nutrients, alsoresult <strong>in</strong> greater <strong>carbon</strong> uptake, ecosystem <strong>carbon</strong> stocks <strong>and</strong> <strong>for</strong>ageproduction (Conant, Paustian <strong>and</strong> Elliott, 2001) (Box 3).Vol. 9–201015


<strong>Challenges</strong> <strong>and</strong> <strong>opportunities</strong> <strong>for</strong> <strong>carbon</strong> <strong>sequestration</strong> <strong>in</strong> grassl<strong>and</strong> systemsA Technical Report on Grassl<strong>and</strong> Management <strong>and</strong> Climate Change MitigationBox 3: Which grassl<strong>and</strong> management practices <strong>in</strong>crease<strong>carbon</strong> stocks?1. Graz<strong>in</strong>g management can be improved to reverse graz<strong>in</strong>g practicesthat cont<strong>in</strong>ually remove a very large proportion of aboveground biomass.Implement<strong>in</strong>g a graz<strong>in</strong>g management system that maximizes production,rather than offtake, can <strong>in</strong>crease <strong>carbon</strong> <strong>in</strong>puts <strong>and</strong> sequester <strong>carbon</strong>.2. Sow<strong>in</strong>g improved species can lead to <strong>in</strong>creased production through speciesthat are better adapted to local climate, more resilient to graz<strong>in</strong>g, more resistantto drought <strong>and</strong> able to enhance soil fertility (i.e. N-fix<strong>in</strong>g crops). Enhanc<strong>in</strong>gproduction leads to greater <strong>carbon</strong> <strong>in</strong>puts <strong>and</strong> <strong>carbon</strong> <strong>sequestration</strong>.3. Direct <strong>in</strong>puts of water, fertilizer or organic matter can enhancewater <strong>and</strong> N balances, <strong>in</strong>creas<strong>in</strong>g plant productivity <strong>and</strong> <strong>carbon</strong> <strong>in</strong>puts,potentially sequester<strong>in</strong>g <strong>carbon</strong>. Inputs of water, N <strong>and</strong> organic matterall tend to require energy <strong>and</strong> can each enhance fluxes of N 2O, which arelikely to offset <strong>carbon</strong> <strong>sequestration</strong> ga<strong>in</strong>s.4. Restor<strong>in</strong>g degraded l<strong>and</strong>s enhances production <strong>in</strong> areas with lowproductivity, <strong>in</strong>creas<strong>in</strong>g <strong>carbon</strong> <strong>in</strong>puts <strong>and</strong> sequester<strong>in</strong>g <strong>carbon</strong>.5. Includ<strong>in</strong>g grass <strong>in</strong> the rotation cycle on arable l<strong>and</strong>s can <strong>in</strong>creaseproduction return organic matter (when grazed as a <strong>for</strong>age crop), <strong>and</strong>reduce disturbance to the soil through tillage. Thus, <strong>in</strong>tegrat<strong>in</strong>g grasses<strong>in</strong>to crop rotations can enhance <strong>carbon</strong> <strong>in</strong>puts <strong>and</strong> reduce decompositionlosses of <strong>carbon</strong>, each of which leads to <strong>carbon</strong> <strong>sequestration</strong>.Improved management techniques can <strong>in</strong>crease <strong>for</strong>age production <strong>and</strong>reduce feed costs, f<strong>in</strong>ancially benefit<strong>in</strong>g producers. As <strong>for</strong>age production<strong>in</strong>creases, an ancillary benefit may lie <strong>in</strong> <strong>in</strong>creased <strong>sequestration</strong> ofatmospheric <strong>carbon</strong>. Indeed, Gif<strong>for</strong>d et al. (1992) noted that improvedpasture management is an important consideration when comput<strong>in</strong>g a16Integrated Crop Management


<strong>opportunities</strong>©<strong>FAO</strong>/m. marzotnational <strong>carbon</strong> budget. A variety of grassl<strong>and</strong> management practices leadto near-term <strong>in</strong>creases <strong>in</strong> both production <strong>and</strong> <strong>sequestration</strong> of <strong>carbon</strong>, <strong>and</strong>practices that sequester <strong>carbon</strong> often enhance producer <strong>in</strong>come. Practicesthat reduce offtake – through graz<strong>in</strong>g or harvest – tend to enhance <strong>carbon</strong><strong>in</strong>puts, build<strong>in</strong>g <strong>carbon</strong> stocks. Thus, graz<strong>in</strong>g management practices that<strong>in</strong>crease <strong>carbon</strong> <strong>in</strong>puts by <strong>in</strong>creas<strong>in</strong>g production can sequester <strong>carbon</strong>.Also, practices that <strong>in</strong>crease production <strong>in</strong>puts by enhanc<strong>in</strong>g soil fertilityor sow<strong>in</strong>g more productive species can help to build up soil <strong>carbon</strong>stocks. Directly <strong>in</strong>troduc<strong>in</strong>g more <strong>carbon</strong> to the system through organicmatter (e.g. manure) additions will also lead to <strong>in</strong>creased <strong>carbon</strong> stocks,although it has been po<strong>in</strong>ted out that <strong>in</strong>creases are ga<strong>in</strong>ed at the expenseof <strong>carbon</strong> <strong>in</strong>puts where feed crops are grown (Conant, Paustian <strong>and</strong>Elliott, 2001).Vol. 9–201017


<strong>Challenges</strong> <strong>and</strong> <strong>opportunities</strong> <strong>for</strong> <strong>carbon</strong> <strong>sequestration</strong> <strong>in</strong> grassl<strong>and</strong> systemsA Technical Report on Grassl<strong>and</strong> Management <strong>and</strong> Climate Change MitigationIn addition to enhanc<strong>in</strong>g <strong>for</strong>age production <strong>and</strong> food security,many l<strong>and</strong> management practices that sequester <strong>carbon</strong> prompt otherchanges <strong>in</strong> environmental processes that are beneficial <strong>for</strong> other reasons.Practices that sequester <strong>carbon</strong> <strong>in</strong> grassl<strong>and</strong> soils tend to maximizevegetative cover, reduc<strong>in</strong>g w<strong>in</strong>d <strong>and</strong> water-<strong>in</strong>duced erosion (Follett,Kimble <strong>and</strong> Lal, 2001). Reduc<strong>in</strong>g sediment load <strong>in</strong>creases water qualitywhile reduc<strong>in</strong>g airborne particulate matter improves air quality. Carbonsequester<strong>in</strong>g practices can also enhance ecosystem water balance;build<strong>in</strong>g soil organic matter stocks tends to enhance water <strong>in</strong>filtration<strong>and</strong> soil moisture status <strong>in</strong> arid-semi-arid environments (Unger et al.,1991). In many cases practices that sequester <strong>carbon</strong> can lead to greaterbiodiversity (Bekessy <strong>and</strong> W<strong>in</strong>tle, 2008).CO 2CH 4N 2O Agreement EvidenceGraz<strong>in</strong>g <strong>in</strong>tensity +/- +/- +/- * *Increased productivity(e.g. through fertilization)+ +/- ** *Nutrient management + +/- ** **Fire management + + +/- ** *Species <strong>in</strong>troductions(<strong>in</strong>cl. legumes)+ +/- * **Table 1: Mitigative effects of various aspects of graz<strong>in</strong>g l<strong>and</strong> improvementSource: Reproduced from IPCC, 2007aMost grassl<strong>and</strong> management practices with the potential to sequester<strong>carbon</strong> were developed to address issues other than <strong>carbon</strong> <strong>sequestration</strong>.For example, exp<strong>and</strong><strong>in</strong>g grassl<strong>and</strong>s through agricultural set-asides <strong>and</strong>rehabilitat<strong>in</strong>g degraded rangel<strong>and</strong>s are often <strong>in</strong>tended to arrest w<strong>in</strong>d<strong>and</strong> water erosion (Lal, 2009a). Practices that preserve the habitat, likegrassl<strong>and</strong> preservation, rehabilitation, etc., can preserve species <strong>and</strong>biodiversity. A variety of practices that <strong>in</strong>tegrate grass species <strong>in</strong>to arablecrop rotation (<strong>for</strong> example, catch crops used to reta<strong>in</strong> nutrients, covercrops to reduce erosion, grass crops <strong>in</strong> rotation) sequester <strong>carbon</strong> <strong>and</strong> alsoreta<strong>in</strong> nutrients <strong>in</strong> agricultural systems, reduc<strong>in</strong>g downstream pollution(Stevens <strong>and</strong> Qu<strong>in</strong>ton, 2009).18Integrated Crop Management


<strong>opportunities</strong>Practices that sequester <strong>carbon</strong> <strong>in</strong> grassl<strong>and</strong>scan enhance adaptation to climate changeMitigation <strong>in</strong>vestments are crucially important <strong>for</strong> reduc<strong>in</strong>g the impactsof climate change, but GHG concentrations will cont<strong>in</strong>ue to <strong>in</strong>crease<strong>for</strong> decades despite implementation of even the most aggressive climatepolicies (IPCC, 2007a). There<strong>for</strong>e, adaptation is an important responseto climate change that should beg<strong>in</strong> now (IPCC, 2007b). Because yieldreductions under drought, heat stress, floods <strong>and</strong> other extreme eventswill be the most consequential, negative impacts of climate change, ef<strong>for</strong>tsto adapt to a chang<strong>in</strong>g climate should focus on <strong>in</strong>creas<strong>in</strong>g the resilienceof management systems (<strong>FAO</strong>, 2008a; WMO, 2007). The <strong>in</strong>creas<strong>in</strong>gfrequency of droughts <strong>in</strong> the dryl<strong>and</strong>s (Thornton et al., 2008) <strong>and</strong> droughtsof longer duration are expected to have a substantial negative effect onthe susta<strong>in</strong>ability <strong>and</strong> viability of livestock production systems <strong>in</strong> semiaridregions. Grassl<strong>and</strong> management practices maximize the <strong>in</strong>filtration,capture <strong>and</strong> utilization of precipitation <strong>for</strong> production (Woodf<strong>in</strong>e, 2009).In cases where susta<strong>in</strong>able graz<strong>in</strong>g management <strong>in</strong>creases soil <strong>carbon</strong>stocks, soil water hold<strong>in</strong>g capacity <strong>in</strong>creases. Both facets of enhanc<strong>in</strong>gwater balance will <strong>in</strong>crease drought resilience.Grassl<strong>and</strong> management practices that sequester <strong>carbon</strong> tend to makesystems more resilient to climate variation <strong>and</strong> climate change: <strong>in</strong>creasedsoil organic matter (<strong>and</strong> <strong>carbon</strong> stocks) <strong>in</strong>creases yields (Vallis et al., 1996;Pan et al., 2006); soil organic matter also enhances soil fertility, reduc<strong>in</strong>greliance on external N <strong>in</strong>puts (Lal, 2009b). Surface cover, mulch <strong>and</strong> soilorganic matter all contribute to a decrease <strong>in</strong> <strong>in</strong>terannual variation <strong>in</strong>yields (Lal et al., 2007); <strong>and</strong> practices that diversify cropp<strong>in</strong>g systems,such as grass <strong>and</strong> <strong>for</strong>age crops <strong>in</strong> rotation, sequester <strong>carbon</strong> <strong>and</strong> enhanceyield consistency.Agricultural practices <strong>in</strong>tended to mitigate GHG emissions could<strong>in</strong>crease vulnerability to climate variation <strong>and</strong> climate change, if they<strong>in</strong>crease the energy supply from food production systems (e.g. to supplybiomass energy), or prevent arable l<strong>and</strong> from be<strong>in</strong>g cultivated (e.g.af<strong>for</strong>estation). Similarly, actions <strong>in</strong>tended to foster adaptation could leadto <strong>in</strong>creased emissions: e.g. <strong>in</strong>creased N fertilization (<strong>and</strong> N 2O release)to enhance yields or harvest of stover <strong>for</strong> conversion to biofuels (IPCC,Vol. 9–201019


<strong>Challenges</strong> <strong>and</strong> <strong>opportunities</strong> <strong>for</strong> <strong>carbon</strong> <strong>sequestration</strong> <strong>in</strong> grassl<strong>and</strong> systemsA Technical Report on Grassl<strong>and</strong> Management <strong>and</strong> Climate Change Mitigation2007a). However, practices that m<strong>in</strong>imize soil disturbance <strong>and</strong> ma<strong>in</strong>ta<strong>in</strong>good ground cover, restore soil <strong>carbon</strong> stocks <strong>and</strong> related soil biologicalactivity, diversify crops <strong>and</strong> <strong>in</strong>tegrate crop/livestock production, willtend to <strong>in</strong>crease soil <strong>carbon</strong> stocks <strong>and</strong> enhance resilience to drought <strong>and</strong>climate change (Woodf<strong>in</strong>e, 2009).Potential <strong>in</strong>come <strong>for</strong> practicesthat sequester <strong>carbon</strong>One of the ma<strong>in</strong> arguments <strong>for</strong> grassl<strong>and</strong> <strong>sequestration</strong> is that theimpend<strong>in</strong>g climate impacts are real <strong>and</strong> potentially severe, so all options toreduce GHG emissions should be pursued. The pr<strong>in</strong>ciple of comparativeadvantage suggests that a wider range of options should generate lowercosts <strong>in</strong>itially <strong>and</strong> overall. The potential contribution of grassl<strong>and</strong>,<strong>for</strong>estry <strong>and</strong> agricultural <strong>sequestration</strong> to mitigate GHG emissions islarge – together rivall<strong>in</strong>g the potential emission reductions from theenergy supply, transportation, build<strong>in</strong>gs, waste <strong>and</strong> <strong>in</strong>dustrial sectors atlow prices <strong>for</strong> <strong>carbon</strong> (USD20/Mg CO 2) <strong>and</strong> exceed<strong>in</strong>g all sectors at high<strong>carbon</strong> prices (USD100/Mg CO 2) (IPCC, 2007b). The IntergovernmentalPanel on Climate Change (IPCC) (2007b) estimated that grassl<strong>and</strong>s,<strong>for</strong>estry <strong>and</strong> agriculture would sequester approximately 8 Gt CO 2yr -1given <strong>carbon</strong> prices of USD100/Mg CO 2; <strong>in</strong>clud<strong>in</strong>g reduced emissionsfrom de<strong>for</strong>estation <strong>and</strong> degradation would ma<strong>in</strong>ta<strong>in</strong> an additional 4 GtCO 2yr -1 <strong>in</strong> the soil, rais<strong>in</strong>g total contribution of the l<strong>and</strong> sectors to aboutone-third of total annual global emissions (i.e. 12 Gt CO 2yr -1 out of30 Gt CO 2yr -1 ; Figure 5). Substantial amounts of CO 2emission fromthe l<strong>and</strong> sector <strong>and</strong> large potential <strong>for</strong> <strong>sequestration</strong> with changes <strong>in</strong>l<strong>and</strong> management are among the most important arguments <strong>in</strong> favour ofterrestrial <strong>sequestration</strong>.Some practices that sequester <strong>carbon</strong> require l<strong>and</strong> managers to <strong>for</strong>egooptimal harvest (e.g. reduc<strong>in</strong>g <strong>for</strong>age offtake), tolerate reduced yields(e.g. reduced stock<strong>in</strong>g rates) or change l<strong>and</strong> use (e.g. cessation of graz<strong>in</strong>gof vulnerable soils). Others require <strong>in</strong>vestments <strong>in</strong> new equipment thatcould be substantial (e.g. <strong>for</strong> seed<strong>in</strong>g, irrigation or fertilization). However,the primary <strong>in</strong>vestments necessary <strong>for</strong> successful widespread adoption ofmany of the l<strong>and</strong> management practices that enhance ecosystem <strong>carbon</strong>20Integrated Crop Management


Chapter 4<strong>Challenges</strong>Develop<strong>in</strong>g workable policies <strong>and</strong><strong>in</strong>centives is difficultThe pr<strong>in</strong>ciple of “common but differentiated responsibilities” <strong>in</strong> theKyoto Protocol regulates emissions <strong>for</strong> Annex I countries, but encouragesdevelop<strong>in</strong>g country participation through the CDM. The current rules<strong>for</strong> the l<strong>and</strong>-use, l<strong>and</strong>-use change <strong>and</strong> <strong>for</strong>estry projects under the CDM,adopted at the Seventh Conference of the Parties (COP7) <strong>in</strong> 2001, resulted<strong>in</strong> an agreement that permits af<strong>for</strong>estation <strong>and</strong> re<strong>for</strong>estation <strong>carbon</strong> offsetprojects <strong>in</strong> develop<strong>in</strong>g countries, but with complex monitor<strong>in</strong>g <strong>and</strong>report<strong>in</strong>g requirements, <strong>and</strong> the exclusion of emissions from de<strong>for</strong>estationor credits <strong>for</strong> agricultural or grassl<strong>and</strong> <strong>sequestration</strong> (Schlamad<strong>in</strong>ger et al.,2007). Emissions from af<strong>for</strong>estation, re<strong>for</strong>estation <strong>and</strong> de<strong>for</strong>estation s<strong>in</strong>ce1990 are reported as part of United Nations Framework Convention onClimate Change (UNFCCC) official National Communications thatwill determ<strong>in</strong>e compliance with the Kyoto Protocol emission reductiontargets. The CDM is designed to lower costs <strong>for</strong> achiev<strong>in</strong>g that goal whileencourag<strong>in</strong>g participation of non-Annex I countries <strong>and</strong> help<strong>in</strong>g to fostersusta<strong>in</strong>able development (Paulsson, 2009). Many develop<strong>in</strong>g countriesstrongly supported the <strong>in</strong>clusion of s<strong>in</strong>ks <strong>in</strong> anticipation that emissioncaps would substantially <strong>in</strong>crease the flow of aid – <strong>in</strong> the <strong>for</strong>m of emissionoffset projects – from developed countries (Boyd, Corbera <strong>and</strong> Estrada,2008). The <strong>in</strong>clusion of s<strong>in</strong>ks through the CDM allows participation of awide range of actors <strong>in</strong> emission reduction ef<strong>for</strong>ts, but places strict limitson only a subset of those participants. Balanc<strong>in</strong>g emission reductions <strong>for</strong>large emitters with mechanisms that engage small emitters rema<strong>in</strong>s a keycomponent of <strong>in</strong>ternational negotiations.Vol. 9–2010 23


challenges<strong>in</strong> species composition) (Lovbr<strong>and</strong>, 2004). In theory, such changes couldbe documented by sampl<strong>in</strong>g, but disentangl<strong>in</strong>g drivers of <strong>carbon</strong> stockchanges rema<strong>in</strong>s challeng<strong>in</strong>g (Alex<strong>and</strong>rov <strong>and</strong> Yamagata, 2004; Canadellet al., 2007; Smith, 2005).The anticipated low costs of grassl<strong>and</strong> <strong>carbon</strong> <strong>sequestration</strong> are<strong>in</strong>timately <strong>in</strong>tertw<strong>in</strong>ed with the additionality issue – if barriers (costs)are low <strong>for</strong> adopt<strong>in</strong>g practices that sequester <strong>carbon</strong>, they are morelikely to be adopted <strong>in</strong> the absence of policies to promote them.Document<strong>in</strong>g changes <strong>in</strong> biomass or soil <strong>carbon</strong> stocks will requiresome k<strong>in</strong>d of measurement coupled with extrapolation or <strong>in</strong>terpolation(Conant et al., 2009). These measurements differ from those required<strong>for</strong> other types of offset projects; they contribute more significantly toproject costs, <strong>and</strong> economies of scale may not be as effective at reduc<strong>in</strong>gcosts. Enact<strong>in</strong>g a project <strong>in</strong> which several l<strong>and</strong>owners carry out <strong>carbon</strong>sequester<strong>in</strong>g practices would require document<strong>in</strong>g the effect of thosepractices (collectively or <strong>in</strong>dividually) on each parcel. The difficultylies not <strong>in</strong> measur<strong>in</strong>g <strong>carbon</strong> stocks but <strong>in</strong> devis<strong>in</strong>g measurement/monitor<strong>in</strong>g/verification systems that are accurate yet cost-effective(Conant et al., 2009).Carbon sequestered <strong>in</strong> grassl<strong>and</strong> systemsis subject to reversalsDisturbance can cause rapid reversals of previously sequestered <strong>carbon</strong>(Galik <strong>and</strong> Jackson, 2009). Such disturbances can be large or small,<strong>in</strong>tentional or un<strong>in</strong>tentional (Page et al., 2002). The CDM has dealt withthis issue by develop<strong>in</strong>g temporary Certified Emission Reductions (CERs)<strong>for</strong> five- or twenty-year periods (Dessai et al., 2005), while other st<strong>and</strong>ardsreduce emission reduction credits to buffer aga<strong>in</strong>st losses 2 . Impermanencedecreases the value of <strong>sequestration</strong> projects compared with emissionreduction projects, <strong>and</strong> <strong>in</strong>creases uncerta<strong>in</strong>ty <strong>and</strong> transaction costs (vanKooten, 2009). The resolution of additionality, leakage <strong>and</strong> permanenceissues is critical <strong>for</strong> acceptance of REDD <strong>and</strong> terrestrial <strong>sequestration</strong><strong>in</strong> a post-2012 climate agreement; the identification of a pre-agreement2For example the Voluntary Carbon St<strong>and</strong>ard (http://www.v-c-s.org)Vol. 9–201025


challenges<strong>in</strong>novation by agricultural producers because new measurements wouldbe <strong>in</strong>corporated from the latest management options, while us<strong>in</strong>g themodel to allow all producers to receive credit from the latest <strong>in</strong>novationswithout necessarily requir<strong>in</strong>g new measurements on each farm. F<strong>in</strong>ally,a comb<strong>in</strong>ed system could make use of published <strong>in</strong><strong>for</strong>mation on howother factors (like global change, widespread l<strong>and</strong>-use changes, changes<strong>in</strong> l<strong>and</strong> use prompted by terrestrial soil <strong>carbon</strong> offset programmes, etc.)affect soil <strong>carbon</strong> stocks both on- <strong>and</strong> off-site, to account <strong>for</strong> shift<strong>in</strong>gbasel<strong>in</strong>es, additionality <strong>and</strong> leakage.Data on management impacts on <strong>carbon</strong> stocksare limited <strong>in</strong> develop<strong>in</strong>g countriesSystems that <strong>in</strong>tegrate measurement <strong>and</strong> mechanistic modell<strong>in</strong>g requirerobust sources of data that reflect the range of potential management practices.A variety of ef<strong>for</strong>ts are under way across the developed world to build up,test <strong>and</strong> implement such systems. However, all syntheses document that, <strong>in</strong>the develop<strong>in</strong>g world, observations of management-<strong>in</strong>duced changes <strong>in</strong> soil<strong>carbon</strong> stocks are relatively rare (Conant, Paustian <strong>and</strong> Elliott, 2001; Smithet al., 2006). Lack of accurate <strong>in</strong><strong>for</strong>mation can lead to greater uncerta<strong>in</strong>ty <strong>in</strong>estimates of soil <strong>carbon</strong> stock changes, <strong>and</strong> could result <strong>in</strong> climate-drivenbias because developed country studies are more common <strong>in</strong> temperateregions. More importantly, practices that could be most beneficial riskbe<strong>in</strong>g excluded from schemes to encourage <strong>carbon</strong> <strong>sequestration</strong> because thepractices are not widely familiar to the scientists from the developed world,<strong>and</strong> to policy-makers who develop quantification tools. This paucity ofdata from developed countries presents a challenge to the creation of robustaccount<strong>in</strong>g systems that offer the same utility <strong>for</strong> quantify<strong>in</strong>g soil <strong>carbon</strong><strong>sequestration</strong> <strong>in</strong> developed <strong>and</strong> develop<strong>in</strong>g countries.Vol. 9–201031


©<strong>FAO</strong>/s. reynolds


Chapter 5The way <strong>for</strong>wardFoundations <strong>for</strong> sound policiesCurrent yields <strong>and</strong> economic returns can often be maximized bypractices that boost <strong>for</strong>age harvest, deplete soil nutrients <strong>and</strong> reduce thelong-term productive capacity of grassl<strong>and</strong> systems. Indeed, economicpressures to “adopt unsusta<strong>in</strong>able practices as yields drop” <strong>in</strong> responseto a chang<strong>in</strong>g climate, “may <strong>in</strong>crease l<strong>and</strong> degradation <strong>and</strong> resource use”(IPCC, 2007d). This fact should further motivate support <strong>for</strong> policies <strong>and</strong>programmes that encourage the implementation of susta<strong>in</strong>able grassl<strong>and</strong>management practices. Identify<strong>in</strong>g <strong>and</strong> underst<strong>and</strong><strong>in</strong>g situations <strong>in</strong> whichshort-term <strong>in</strong>terests <strong>in</strong> harvest trump long-term <strong>in</strong>terests <strong>in</strong> ma<strong>in</strong>ta<strong>in</strong><strong>in</strong>gproductive capacities, <strong>and</strong> develop<strong>in</strong>g technical solutions that <strong>in</strong>volveresearch, education <strong>and</strong> technical assistance <strong>in</strong> implement<strong>in</strong>g susta<strong>in</strong>ablepractices, should be a top priority. A key challenge is the large numberof smallholders <strong>and</strong> pastoralists who may be among the hardest hitby climate change (<strong>FAO</strong>, 2009). Their challenge is often exacerbatedbecause uncerta<strong>in</strong> l<strong>and</strong> tenure discourages <strong>in</strong>vestments that pay dividends<strong>in</strong> the long term. Thus, ef<strong>for</strong>ts to spread knowledge on susta<strong>in</strong>ablegrassl<strong>and</strong> management practices are essential <strong>for</strong> ensur<strong>in</strong>g their successfulimplementation <strong>and</strong> must address tenure-related motivations to implementsusta<strong>in</strong>able practices.Not all categories of producers have the same potential <strong>for</strong> implement<strong>in</strong>gsusta<strong>in</strong>able l<strong>and</strong> management practices, <strong>and</strong> some producers will benefitmore <strong>and</strong> sooner than others. Development–mitigation–adaptationstrategies must be evaluated with<strong>in</strong> the framework of local environmentalconditions, <strong>in</strong>stitutions <strong>and</strong> capacities. Priority should be given to<strong>in</strong>vestments <strong>in</strong> susta<strong>in</strong>able l<strong>and</strong> management practices that:• show strong evidence of enhanc<strong>in</strong>g near- <strong>and</strong> longer-termproductivity <strong>and</strong> profitability <strong>for</strong> farmers <strong>and</strong> pastoralists;Vol. 9–2010 33


<strong>Challenges</strong> <strong>and</strong> <strong>opportunities</strong> <strong>for</strong> <strong>carbon</strong> <strong>sequestration</strong> <strong>in</strong> grassl<strong>and</strong> systemsA Technical Report on Grassl<strong>and</strong> Management <strong>and</strong> Climate Change Mitigation©<strong>FAO</strong>/m. marzot• offer <strong>opportunities</strong> to enhance production, mitigate GHG emissions<strong>and</strong> enable adaptation to climate change;• develop <strong>in</strong>centives that foster susta<strong>in</strong>ability of exist<strong>in</strong>g resources –soil, water, air, labour, etc.;• rehabilitate l<strong>and</strong>s that can be improved at modest cost, <strong>and</strong> adopt<strong>in</strong>glow-tech changes <strong>in</strong> management practices;• support research <strong>and</strong> education on best practices <strong>for</strong> ma<strong>in</strong>ta<strong>in</strong><strong>in</strong>gfertility <strong>and</strong> production; <strong>and</strong>• align with exist<strong>in</strong>g <strong>in</strong>vestment programmes.Despite w<strong>in</strong>–w<strong>in</strong> situations <strong>in</strong> which practices that sequester <strong>carbon</strong>also lead to enhanced productivity <strong>and</strong> substantial biological potential tosequester <strong>carbon</strong> <strong>in</strong> grassl<strong>and</strong>s, policies to encourage adoption of practicesthat sequester <strong>carbon</strong> <strong>in</strong> grassl<strong>and</strong>s lag beh<strong>in</strong>d policies <strong>for</strong> <strong>for</strong>est <strong>and</strong>agricultural l<strong>and</strong>s. Like <strong>for</strong>estry <strong>and</strong> agricultural <strong>sequestration</strong>, policiesthat promote <strong>carbon</strong> <strong>sequestration</strong> <strong>in</strong> rangel<strong>and</strong>s could <strong>for</strong>m an importantpart of a “no regrets” climate strategy. This is particularly true <strong>for</strong> practicesthat promote <strong>in</strong>creased primary productivity or livestock production <strong>and</strong>practices that arrest rangel<strong>and</strong> degradation. In addition to sequester<strong>in</strong>g<strong>carbon</strong>, implement<strong>in</strong>g practices that sequester <strong>carbon</strong> can help to achieve34Integrated Crop Management


the way <strong>for</strong>wardthe strategic objectives of the UN Convention to Combat Desertification:improv<strong>in</strong>g livelihoods, enhanc<strong>in</strong>g productivity <strong>and</strong> generat<strong>in</strong>g globalbenefits. Reduc<strong>in</strong>g emissions from grassl<strong>and</strong> degradation is not only likelyto pay dividends <strong>in</strong> ma<strong>in</strong>ta<strong>in</strong><strong>in</strong>g <strong>carbon</strong> stocks, but also <strong>in</strong> susta<strong>in</strong><strong>in</strong>g thelivelihoods of people mak<strong>in</strong>g a liv<strong>in</strong>g from grassl<strong>and</strong>s.Grassl<strong>and</strong> <strong>carbon</strong> <strong>sequestration</strong> <strong>in</strong> contextMuch of the world’s grassl<strong>and</strong>, a disproportionately large share of thedegraded grassl<strong>and</strong> <strong>and</strong> a majority of grassl<strong>and</strong> <strong>sequestration</strong> potentialis found <strong>in</strong> the develop<strong>in</strong>g world. More importantly, the fate of largeportions of the populations <strong>in</strong> these areas is <strong>in</strong>timately tied to livestockproduction systems directly dependent upon grassl<strong>and</strong>s. Susta<strong>in</strong><strong>in</strong>gproductivity <strong>and</strong> rehabilitat<strong>in</strong>g degraded grassl<strong>and</strong> systems are cruciallyimportant to people right now. It is also clear that there are synergisticeffects with other development agendas. For example, K<strong>and</strong>ji <strong>and</strong>Verchot (2007) po<strong>in</strong>t out several ways <strong>in</strong> which develop<strong>in</strong>g countries <strong>in</strong>semi-arid East Africa will be adversely impacted by climate change <strong>and</strong>the relationship of those impacts to the Millennium Development Goals.The relevant goals are: reduce hunger <strong>and</strong> poverty (Goal 1) by reduc<strong>in</strong>gvulnerability to extreme events; ensure environmental susta<strong>in</strong>ability(Goal 7) by rebuild<strong>in</strong>g ecosystem <strong>carbon</strong> stocks <strong>and</strong> restor<strong>in</strong>g ecosystemprocesses; <strong>and</strong> build a global development partnership (Goals 8) whileenhanc<strong>in</strong>g the ability <strong>for</strong> governments to <strong>in</strong>vest <strong>in</strong> key socio-economicsectors. Synergies between environmental, development <strong>and</strong> agriculturalactivities <strong>in</strong>dicate <strong>opportunities</strong> <strong>for</strong> engagement from multiple sectors.Research prioritiesA key barrier to identify<strong>in</strong>g priority <strong>in</strong>vestments is lack of knowledge onthe impacts of grassl<strong>and</strong> management <strong>in</strong> most of the develop<strong>in</strong>g world.Despite a large estimated potential <strong>in</strong> the develop<strong>in</strong>g world, lack of directobservations makes these estimates highly uncerta<strong>in</strong> (Conant <strong>and</strong> Paustian,2002a; Ogle, Conant <strong>and</strong> Paustian, 2004). Moreover, best managementpractices are typically based on those identified <strong>in</strong> other regions, limit<strong>in</strong>gthe breadth of management alternatives <strong>and</strong> possibly overlook<strong>in</strong>g thoseVol. 9–201035


<strong>Challenges</strong> <strong>and</strong> <strong>opportunities</strong> <strong>for</strong> <strong>carbon</strong> <strong>sequestration</strong> <strong>in</strong> grassl<strong>and</strong> systemsA Technical Report on Grassl<strong>and</strong> Management <strong>and</strong> Climate Change Mitigation©<strong>FAO</strong>/K. Wiedenhoeferthat could do more to build or rebuild soil <strong>carbon</strong> stocks <strong>and</strong> enhanceproductivity. Ef<strong>for</strong>ts to build capacity while enhanc<strong>in</strong>g environmentalbenefits, such as the participatory practice capture used by the WorldOverview of Conservation Approaches <strong>and</strong> Technologies (WOCAT),can simultaneously facilitate identification <strong>and</strong> implementation of bestpractices. Build<strong>in</strong>g soil <strong>carbon</strong> stocks through the implementation ofimproved/more susta<strong>in</strong>able management practices is just one componentof develop<strong>in</strong>g more productive <strong>and</strong> efficient livestock production systems.Increas<strong>in</strong>g livestock production could lead to greater CH 4emissions, butimprov<strong>in</strong>g feed quality by enhanc<strong>in</strong>g pasture management to produce<strong>for</strong>age with more balanced quality (Leng, 1993) could concurrentlysequester <strong>carbon</strong>, <strong>and</strong> <strong>in</strong>crease milk or meat production. If implemented<strong>in</strong> coord<strong>in</strong>ation with graz<strong>in</strong>g practices that encourage consumption of aquality, mixed diet, CH 4emissions per unit product could even decl<strong>in</strong>e.Improved grassl<strong>and</strong> management can facilitate better breed<strong>in</strong>g: reduc<strong>in</strong>gthe number of replacement heifers, reach<strong>in</strong>g slaughter weight at an earlierage, <strong>in</strong>creas<strong>in</strong>g milk production, br<strong>in</strong>g<strong>in</strong>g higher pregnancy rates, etc.This <strong>in</strong> turn could reduce GHG emissions per unit product, despite thefact that none of the practices mentioned above directly reduce emissions(Boadi et al., 2004). A systems perspective is there<strong>for</strong>e crucial: research to36Integrated Crop Management


the way <strong>for</strong>wardassess <strong>carbon</strong> <strong>sequestration</strong> alone could miss important <strong>in</strong>teractions withfactors that control rum<strong>in</strong>ant CH 4emissions. This latter represents oneof the largest sources of GHGs <strong>in</strong> develop<strong>in</strong>g countries.Successful pilot projects carried out <strong>in</strong> collaboration with nationalscientists, grassl<strong>and</strong> managers <strong>and</strong> development actors will play a key role<strong>in</strong> demonstrat<strong>in</strong>g the feasibility of new practices. At the same time, pilotprojects are necessary to extend <strong>and</strong> divulgate <strong>in</strong><strong>for</strong>mation on the efficacyof grassl<strong>and</strong> management practices as a mitigation strategy. Underst<strong>and</strong><strong>in</strong>gthe <strong>in</strong>stitutional requirements <strong>and</strong> test<strong>in</strong>g <strong>carbon</strong> account<strong>in</strong>g proceduresare crucial next steps <strong>for</strong> legitimiz<strong>in</strong>g mitigation through grassl<strong>and</strong>management. Invest<strong>in</strong>g <strong>in</strong> pilot projects will engage community leaders,farmers <strong>and</strong> other resource users <strong>in</strong> programme development, <strong>and</strong> buildup technical, organizational <strong>and</strong> human capacities (Pender et al., 2009).An important component of a pilot programme consists of the conductof desk reviews <strong>and</strong> collection of additional <strong>in</strong><strong>for</strong>mation on current <strong>and</strong>projected GHG emissions from other grassl<strong>and</strong> projects <strong>and</strong> pilot studies.Outputs from this work built around a series of pilot study programmescould <strong>in</strong>clude:• a comprehensive database of estimates of greenhouse emissionfactors by region, <strong>and</strong> a complete grassl<strong>and</strong> emission <strong>in</strong>ventory;• a focus on document<strong>in</strong>g <strong>carbon</strong> <strong>sequestration</strong> responses <strong>for</strong> areas orpractices that are understudied;• an analysis of different global <strong>and</strong> regional scenarios <strong>for</strong> grassl<strong>and</strong>sunder different <strong>carbon</strong> constra<strong>in</strong>ts (different policy measures <strong>and</strong>prices <strong>for</strong> <strong>carbon</strong>), f<strong>in</strong>anc<strong>in</strong>g <strong>and</strong> credit<strong>in</strong>g arrangements <strong>and</strong> thedevelopment of support<strong>in</strong>g models <strong>and</strong> tools;• an analysis of the marg<strong>in</strong>al costs of <strong>carbon</strong> <strong>sequestration</strong> <strong>in</strong> grassl<strong>and</strong>sdriven by changes <strong>in</strong> management practices, together with a detaileddescription of their implications <strong>for</strong> food security <strong>and</strong> livelihoods;• policy <strong>and</strong> technical guidance <strong>for</strong> Nationally Appropriate MitigationActions that may affect grassl<strong>and</strong> production <strong>and</strong> food security;<strong>and</strong>• scientific underp<strong>in</strong>n<strong>in</strong>g <strong>in</strong> support of <strong>in</strong>ternational (post-Kyoto)agreements on climate change.Vol. 9–201037


<strong>Challenges</strong> <strong>and</strong> <strong>opportunities</strong> <strong>for</strong> <strong>carbon</strong> <strong>sequestration</strong> <strong>in</strong> grassl<strong>and</strong> systemsA Technical Report on Grassl<strong>and</strong> Management <strong>and</strong> Climate Change MitigationReferencesAdams, H.D., Guardiola-Claramonte, M., Barron-Gaf<strong>for</strong>d, G.A., Villegas,J.C., Breshears, D.D., Zou, C.B., Troch, P.A. & Huxman, T.E. 2009.Temperature sensitivity of drought-<strong>in</strong>duced tree mortality portends <strong>in</strong>creasedregional die-off under global-change-type drought. Proc. Natl. Acad. Sci.USA, 106: 7063–7066.Alex<strong>and</strong>rov, G. & Yamagata, Y. 2004. Verification of <strong>carbon</strong> s<strong>in</strong>k assessment:can we exclude natural s<strong>in</strong>ks? Climate Change, 67: 437–447.Allison, F.E. 1973. Soil organic matter <strong>and</strong> its role <strong>in</strong> crop production. Developments<strong>in</strong> Soil Science 3. Amsterdam, Elsevier Science Ltd.Angers, D.A. & Eriksen-Hamel, N.S. 2008. Full-<strong>in</strong>version tillage <strong>and</strong> organic<strong>carbon</strong> distribution <strong>in</strong> soil profiles: meta-analysis. Soil Sci. Soc. Am. J., 72:1370–1374.Antle, J.M., Capalbo, S.M., Mooney, S., Elliott, D.K. & Paustian, K.H.2003. Spatial heterogeneity, contract design, <strong>and</strong> the efficiency of <strong>carbon</strong><strong>sequestration</strong> policies <strong>for</strong> agriculture. J. Enviro. Eco. & Mgt., 46: 231–250.Bai, Z.G., Dent, D.L., Olsson, L. & Schaepman, M.E. 2008. Global assessment ofl<strong>and</strong> degradation <strong>and</strong> improvement. 1. Identification by remote sens<strong>in</strong>g. Report2008/01. Wagen<strong>in</strong>gen, Netherl<strong>and</strong>s, ISRIC – World Soil In<strong>for</strong>mation.Baker, J.M., Ochsner, T.E., Venterea, R.T. & Griffis, T.J. 2007. Tillage <strong>and</strong> soil<strong>carbon</strong> <strong>sequestration</strong> - what do we really know? Agriculture, Ecosystems &Environment, 118: 1–5.Bekessy, S.A. & W<strong>in</strong>tle, B.A. 2008. Us<strong>in</strong>g <strong>carbon</strong> <strong>in</strong>vestment to grow thebiodiversity bank. Conserv. Biol., 22: 510–513.Benitez, P.C., McCallum, I., Oberste<strong>in</strong>er, M. & Yamagata, Y. 2007. Globalpotential <strong>for</strong> <strong>carbon</strong> <strong>sequestration</strong>: geographical distribution, country risk<strong>and</strong> policy implications. Ecological Economics, 60: 572–583.Berhe, A.A., Harte, J., Harden, J.W. & Torn, M.S. 2007. The significance of theerosion-<strong>in</strong>duced terrestrial <strong>carbon</strong> s<strong>in</strong>k. Bioscience, 57: 337–346.Blanco-Canqui, H. & Lal, R. 2008. No-tillage <strong>and</strong> soil profile <strong>carbon</strong><strong>sequestration</strong>: an on-farm assessment. Soil Sci. Soc. Am. J., 72:. 693–701.Boadi, D., Benchaar, C., Chiquette, J. & Masse, D. 2004. Mitigation strategiesto reduce enteric methane emissions from dairy cows: update review. Can. J.Anim. Sci., 84: 319–335.38Integrated Crop Management


eferencesBoyd, E., Corbera, E. & Estrada, M. 2008. UNFCCC negotiations (pre-Kyoto toCOP-9): what the process says about the politics of CDM-s<strong>in</strong>ks. InternationalEnvironmental Agreements: Politics, Law <strong>and</strong> Economics, 8: 95–112.Bridges, E.M. & Oldeman, L.R. 1999. Global assessment of human-<strong>in</strong>duced soildegradation. Arid Soil Res. Rehabil., 13: 319–325.Cambardella, C.A., Moorman,T.B., Park<strong>in</strong>, T.B., Karlen, D.L., Novak, J.M.,Turco, R.F., & Konopka A.E. 1994. Field-scale variability of soil properties<strong>in</strong> central Iowa soils. Soil Sci. Soc. Am. J., 58:1501-1511.Canadell, J.G., Kirschbaum M.U.F, Kurz, W.A., Sanz, M.J., Schlamad<strong>in</strong>ger,B. & Yamagata, Y. 2007. Factor<strong>in</strong>g out natural <strong>and</strong> <strong>in</strong>direct human effectson terrestrial <strong>carbon</strong> sources <strong>and</strong> s<strong>in</strong>ks. Environmental Science & Policy, 10:370–384.Chap<strong>in</strong> III, F.S., R<strong>and</strong>erson, J.T., McGuire, A.D., Foley, J.A. & Field, C.B.2008. Chang<strong>in</strong>g feedbacks <strong>in</strong> the climate-biosphere system. Frontiers <strong>in</strong>Ecology <strong>and</strong> the Environ., 6: 313–320.Chapman, D.F. & Lemaire, G. 1993. Grassl<strong>and</strong>s <strong>for</strong> our world. In: M.J. Baker,pp. 55-64, ed. Well<strong>in</strong>gton, New Zeal<strong>and</strong>, SIR Publish<strong>in</strong>g.Chomitz, K.M. 2002. Basel<strong>in</strong>e, leakage <strong>and</strong> measurement issues: how do <strong>for</strong>estry<strong>and</strong> energy projects compare? Climate Policy, 2: 35–49.Ciais, P., Reichste<strong>in</strong>, M., Viovy, N., Granier, A., Ogée, J., Allard, V., Aub<strong>in</strong>et,M., Buchmann, N., Bernhofer, C., Carrara, A., Chevallier, F., De Noblet, N.,Friend, A.D., Friedl<strong>in</strong>gste<strong>in</strong>, P., Grünwald, T., He<strong>in</strong>esch, B., Keronen, P., Knohl,A., Kr<strong>in</strong>ner, G., Loustau, D., Manca, G., Matteucci, G., Miglietta, F., Ourcival,J.M., Papale, D., Pilegaard, K., Rambal, S., Seufert, G., Soussana, J.F., Sanz, M.J.,Schulze, E.D., Vesala, T. & Valent<strong>in</strong>i, R. 2005. Europe-wide reduction <strong>in</strong> primaryproductivity caused by the heat <strong>and</strong> drought <strong>in</strong> 2003. Nature, 437: 529–533.Conant, R.T. & Paustian, K. 2000. Soil <strong>carbon</strong> <strong>sequestration</strong> <strong>in</strong> managedgrassl<strong>and</strong>s: an ecological perspective. Poster presentation at Carbon: Explor<strong>in</strong>gthe Benefits to Farmers <strong>and</strong> Society. Des Mo<strong>in</strong>es, USA, 8/00.Conant, R.T. & Paustian, K. 2002a. Potential soil <strong>carbon</strong> <strong>sequestration</strong> <strong>in</strong>overgrazed grassl<strong>and</strong> ecosystems. Global Biogeochem. Cycles, 16: 1143Conant, R.T. & Paustian, K. 2002b. Spatial variability of soil organic <strong>carbon</strong>:implications <strong>for</strong> detect<strong>in</strong>g change at different scales. Environ. Pollut., 116:127–135.Conant, R.T., Paustian, K. & Elliott, E.T. 2001. Grassl<strong>and</strong> management <strong>and</strong>conversion <strong>in</strong>to grassl<strong>and</strong>: effects on soil <strong>carbon</strong>. Ecol. Appl., 11: 343–355.Conant, R.T., Ogle, S.M., Paul, E.A. & Paustian, K. 2009. Reliable methods arefundamental <strong>for</strong> legitimate terrestrial offset programs. Frontiers <strong>in</strong> Ecology<strong>and</strong> the Environment, submitted September 2009.Vol. 9–201039


<strong>Challenges</strong> <strong>and</strong> <strong>opportunities</strong> <strong>for</strong> <strong>carbon</strong> <strong>sequestration</strong> <strong>in</strong> grassl<strong>and</strong> systemsA Technical Report on Grassl<strong>and</strong> Management <strong>and</strong> Climate Change MitigationCoomes, O.T., Grimard, F., Potv<strong>in</strong>, C. & Sima, P. 2008. The fate of the tropical<strong>for</strong>est: <strong>carbon</strong> or cattle? Ecological Economics, 65: 207–212.Creyts, J., Derkach, A., Nyquist, S., Ostrowksi, K. & Stephenson, J. 2007.Reduc<strong>in</strong>g U.S. greenhouse gas emissions: how much at what cost? TheConference Board, New York. McK<strong>in</strong>sey & Company.DeFries, R.S., Field, C.B., Fung, I., Collatz, G.J. & Bounoua, L. 1999.Comb<strong>in</strong><strong>in</strong>g satellite data <strong>and</strong> biogeochemical models to estimate globaleffects of human-<strong>in</strong>duced l<strong>and</strong> cover change on <strong>carbon</strong> emissions <strong>and</strong> primaryproductivity. Global Biogeochem. Cycles, 13: 803–815.Dessai, S., Schipper, E.L.F., Corbera, E., Kjellén, B., Gutiérrez, M. &Haxelt<strong>in</strong>e A. 2005. <strong>Challenges</strong> <strong>and</strong> Outcomes at the N<strong>in</strong>th Session of theConference of the Parties to the United Nations Framework Convention onClimate Change. International Environmental Agreements: Politics, Law <strong>and</strong>Economics, 5: 105–124.Donigian Jr., A.S., Barnwell, T.O., Jackson, R.B., Partwardhan, A.S.,We<strong>in</strong>reich,K.B., Rowell, A.L., Ch<strong>in</strong>naswamy, R.V. & Cole, C.V. 1994. Assessmentof alternative management practices <strong>and</strong> policies affect<strong>in</strong>g soil <strong>carbon</strong> <strong>in</strong>agroecosystems of the central United States. Report No. EPA/600/R-94/067.Athens, USA, US Environmental Protection Agency.Ellis, J.E. & Galv<strong>in</strong>, K.A., 1994. Climate patterns <strong>and</strong> l<strong>and</strong>-use practices <strong>in</strong> thedry zones of Africa. Bioscience, 44: 340–349.Ellis, J., W<strong>in</strong>kler, H., Corfee-Morlot, J. & Gagnon-Lebrun, F. 2007. CDM:tak<strong>in</strong>g stock <strong>and</strong> look<strong>in</strong>g <strong>for</strong>ward. Energy Policy, 35: 15–28.<strong>FAO</strong>. 2006. Livestock’s long shadow: environmental issues <strong>and</strong> options. Rome.<strong>FAO</strong>. 2007. State of the World’s Forests 2007. Rome.<strong>FAO</strong>. 2008a. Climate change, water <strong>and</strong> food security. Rome.<strong>FAO</strong>. 2008b. TerrAfrica - A vision paper <strong>for</strong> susta<strong>in</strong>able l<strong>and</strong> management <strong>in</strong>sub-Saharan Africa. Rome.<strong>FAO</strong>. 2009. Agriculture <strong>and</strong> environmental challenges of the twenty-first century:a strategic approach <strong>for</strong> <strong>FAO</strong>. Report No. COAG/2009/3, 11. Rome.<strong>FAO</strong>STAT. 2009. Statistical Database 2007. Rome.Follett, R.F., Kimble, J.M. & Lal, R., eds. 2001. The potential of US graz<strong>in</strong>gl<strong>and</strong>s to sequester <strong>carbon</strong> <strong>and</strong> mitigate the greenhouse effect. Boca Raton,USA, CRC Press LLC.Galik, C.S. & Jackson, R.B. 2009. Risks to <strong>for</strong>est <strong>carbon</strong> offset projects <strong>in</strong> achang<strong>in</strong>g climate. For. Ecol. Manag., 257: 2209–2216.40Integrated Crop Management


eferencesGif<strong>for</strong>d, R.M., Cheney, N.P., Noble, J.C.R.J.S., Well<strong>in</strong>gton, A.B. & Zammit,C. 1992. Australia’s renewable resources: susta<strong>in</strong>ability <strong>and</strong> global change.In: R.M. Gif<strong>for</strong>d & M.M. Barson, eds. pp. 151–188. Australian GovernmentPublish<strong>in</strong>g Service.Gough, C.M., Vogel, C.S., Schmid, H.P. & Curtis, P.S. 2008. Controls onannual <strong>for</strong>est <strong>carbon</strong> storage: lessons from the past <strong>and</strong> predictions <strong>for</strong> thefuture. Bioscience, 58: 609–622.Gra<strong>in</strong>ger, A. 2009. The role of science <strong>in</strong> implement<strong>in</strong>g <strong>in</strong>ternational environmentalagreements: the case of desertification. L<strong>and</strong> Degrad. Dev., 20: 410–430.Gre<strong>in</strong>er, S. & Michaelowa, A. 2003 Def<strong>in</strong><strong>in</strong>g <strong>in</strong>vestment additionality <strong>for</strong> CDMprojects - practical approaches. Energy Policy, 31: 1007–1015Greig-Gran, M., Porras, I. & Wunder, S. 2005. How can market mechanisms<strong>for</strong> <strong>for</strong>est environmental services help the poor? Prelim<strong>in</strong>ary lessons fromLat<strong>in</strong> America. World Development, 33: 1511–1527.Guo, L.B. & Gif<strong>for</strong>d, R.M. 2002. Soil <strong>carbon</strong> stocks <strong>and</strong> l<strong>and</strong> use change: a metaanalysis. Glob. Change Biol., 8: 345–360.Houghton, R.A. 2006. The <strong>carbon</strong> cycle <strong>in</strong> l<strong>and</strong> <strong>and</strong> water systems: Part III:Overview. pp. 106. The First State of the Carbon Cycle Report (SOCCR). TheNorth American Carbon Budget <strong>and</strong> Implications <strong>for</strong> the Global Carbon Cycle.Houghton, R.A., Hobbie, J.E., Melillo, J.M., Moore, B., Peterson, B.J., Shaver,G.R. & Woodwell, G.M., 1983. Changes <strong>in</strong> the <strong>carbon</strong> content of terrestrialbiota <strong>and</strong> soils between 1860 <strong>and</strong> 1980: a net release of CO 2to the atmosphere.Ecol. Monogr., 53: 235–262.IPCC (Intergovernmental Panel on Climate Change). 2000. L<strong>and</strong> use, l<strong>and</strong>use change, <strong>and</strong> <strong>for</strong>estry: a special report of the IPCC. Cambridge, UK,Cambridge University Press.IPCC. 2001. Climate Change 2001: The Scientific Basis. Contribution of Work<strong>in</strong>gGroup I to the Third Assessment Report of the Intergovernmental Panel onClimate Change, J.T. Houghton, Y. D<strong>in</strong>g, D.J. Griggs, M. Noguer, P.J. van derL<strong>in</strong>den & D. Xiaosu, eds. Cambridge, UK, Cambridge University Press. 944 p.IPCC. 2007a. Climate Change 2007: Mitigation. Contribution of Work<strong>in</strong>g GroupIII to the Fourth Assessment Report of the Intergovernmental Panel on ClimateChange. B. Metz, O.R. Davidson, P.R. Bosch, R. Dave & L.A. Meyer, eds.Cambridge, UK, <strong>and</strong> New York, USA, Cambridge University Press.IPCC. 2007b. Climate Change 2007: Synthesis Report. Cambridge, UK, <strong>and</strong> NewYork, USA, Cambridge University Press.Vol. 9–201041


<strong>Challenges</strong> <strong>and</strong> <strong>opportunities</strong> <strong>for</strong> <strong>carbon</strong> <strong>sequestration</strong> <strong>in</strong> grassl<strong>and</strong> systemsA Technical Report on Grassl<strong>and</strong> Management <strong>and</strong> Climate Change MitigationIPCC. 2007c. Climate Change 2007: The Physical Science Basis. Contribution ofWork<strong>in</strong>g Group I to the Fourth Assessment Report of the IntergovernmentalPanel on Climate Change. S. Solomon, D. Q<strong>in</strong>, M. Mann<strong>in</strong>g, Z. Chen, M.Marquis, K.B. Averyt, M. Tignor & H.L. Miller, eds. Cambridge, UK, <strong>and</strong>New York, USA, Cambridge University Press. 996 pp.IPCC. 2007d. Climate Change 2007: Impacts, Adaptation <strong>and</strong> Vulnerability.Contribution of Work<strong>in</strong>g Group II to the Fourth Assessment Report of theIntergovernmental Panel on Climate Change, M.L. Parry, O.F. Canziani,J.P. Palutikof, P.J. van der L<strong>in</strong>den & C.E.Hanson, eds. Cambridge, UK,Cambridge University Press. 976 pp.Jack, B.K., Kousky, C. & Sims, K.R.E. 2008. Design<strong>in</strong>g payments <strong>for</strong> ecosystemservices: lessons from previous experience with <strong>in</strong>centive-based mechanisms.Proc. Natl. Acad. Sci. USA, 105: 9465–9470.Jose, S. 2009. Agro<strong>for</strong>estry <strong>for</strong> ecosystem services <strong>and</strong> environmental benefits: anoverview. Agro<strong>for</strong> Syst., 76: 1–10.Jung, M. 2005. The role of <strong>for</strong>estry projects <strong>in</strong> the clean development mechanism.Environmental Science & Policy, 8: 87–104.K<strong>and</strong>ji, S.T. & Verchot, L.V. 2007. Impact of adaptation to climate variability<strong>and</strong> climate change <strong>in</strong> the East African community: a focus on the agriculturalsector. Nairobi, World Agro<strong>for</strong>estry Centre.Karsenty, A. 2008. The architecture of proposed REDD schemes after Bali:fac<strong>in</strong>g critical choices. International Forestry Review, 10: 443–457.Kelly, A., Redmond, L. & K<strong>in</strong>g, F. 2009. GHG MACC Brief: A provisional collationof some GHG MACC curves <strong>in</strong> circulation. Dubl<strong>in</strong>, AP EnvEcon Ltd.Kemp, D.R. & Michalk, D.L. 2007. Towards susta<strong>in</strong>able grassl<strong>and</strong> <strong>and</strong> livestockmanagement. J. Agric Sci., 145: 543–564.Kern, J.S. 1994. Spatial patterns of soil organic matter <strong>in</strong> the contiguous UnitedStates. Soil Sci. Soc. Am. J., 58: 439–455.Kimble, J.M. 2004. The Global Carbon Cycle: Integrat<strong>in</strong>g Humans, Climate,<strong>and</strong> the Natural World. C.B. Field & M.R. Raupach, eds. pp. 103–130.Wash<strong>in</strong>gton, DC, Isl<strong>and</strong> Press.Kononova, M.M. 1966. Soil organic matter. Its nature, its role <strong>in</strong> soil <strong>for</strong>mation<strong>and</strong> <strong>in</strong> soil fertility. 2 nd ed. Ox<strong>for</strong>d, UK, Pergamon Press.Lal, R. 2000. Carbon <strong>sequestration</strong> <strong>in</strong> dryl<strong>and</strong>s. Annals of Arid Zone, 39: 1–10.Lal, R. 2009a. The plow <strong>and</strong> agricultural susta<strong>in</strong>ability J. Susta<strong>in</strong>able Agriculture,33: 66–84.Lal, R. 2009b. Soils <strong>and</strong> food sufficiency: a review. Agronomy <strong>for</strong> Susta<strong>in</strong>ableDevelopment, 29: 113–133.42Integrated Crop Management


eferencesLal, R., Kimble, J.M. & Stewart, B.A., eds. 2000. Global climate change <strong>and</strong>tropical ecosystems. Advances <strong>in</strong> Soil Science, pp. 341–364. Boca Raton, USA,CRC Press LLC.Lal, R., Follett, F., Stewart, B.A. & Kimble, J.M. 2007. Soil <strong>carbon</strong> <strong>sequestration</strong>to mitigate climate change <strong>and</strong> advance food security. Soil Sci., 172: 943–956.Le Houerou, H.N. 1984. Ra<strong>in</strong> use efficiency: a unify<strong>in</strong>g concept <strong>in</strong> arid-l<strong>and</strong>ecology. J. Arid Environment, 7: 213–247.Leng, R.A. 1993. Quantitative rum<strong>in</strong>ant nutrition - a green science. Aust. J.Agric. Res., 44: 363–380.Lipper, L. & Cavatassi, R. 2004. L<strong>and</strong>-use change, <strong>carbon</strong> <strong>sequestration</strong> <strong>and</strong>poverty alleviation. Environ. Manag., 33: 374–387.Lovbr<strong>and</strong>, E. 2004. Bridg<strong>in</strong>g political expectations <strong>and</strong> scientific limitations <strong>in</strong>climate risk management – on the uncerta<strong>in</strong> effects of <strong>in</strong>ternational <strong>carbon</strong>s<strong>in</strong>k policies. Climate Change, 67: 449–460.Luyssaert, S., Schulze E.D., Börner, A., Knohl, A., Hessenmöller, D., Law,B.E., Ciais, P. & Grace, J. 2008. Old-growth <strong>for</strong>ests as global <strong>carbon</strong> s<strong>in</strong>ks.Nature, 455: 213–215.Makipaa, R., Hakk<strong>in</strong>en, M., Muukkonen, P. & Peltoniemi, M. 2008. The costsof monitor<strong>in</strong>g changes <strong>in</strong> <strong>for</strong>est soil <strong>carbon</strong> stocks. Boreal Environ. Res., 13:120–130.Marl<strong>and</strong>, G. & Marl<strong>and</strong>, E. 2009. Trad<strong>in</strong>g permanent <strong>and</strong> temporary <strong>carbon</strong>emissions credits. Climate Change, 95: 465–468.Marl<strong>and</strong>, G., Boden, T.A. & Andres, R.J. 2000. Trends: a compendium of dataon global change. Oak Ridge, USA, Carbon Dioxide In<strong>for</strong>mation AnalysisCenter, Oak Ridge National Laboratory.Milchunas, D.G. & Lauenroth, W.K. 1993. Quantitative effects of graz<strong>in</strong>g onvegetation <strong>and</strong> soils over a global range of environments. Ecol. Monogr., 63:327–366.Miller, R.W. & Donahue, R.L. 1990. Soils. 6 th ed. Prentice Hall, New Jersey.Mosier, A., Kroeze, C., Nevison, C., Oenema, O., Seitz<strong>in</strong>ger, S. & vanCleemput, O. 1998. Clos<strong>in</strong>g the global N 2O budget: nitrous oxide emissionsthrough the agricultural nitrogen cycle - OECD/IPCC/IEA phase IIdevelopment of IPCC guidel<strong>in</strong>es <strong>for</strong> national greenhouse gas <strong>in</strong>ventorymethodology. Nutr. Cycl. Agroecosyst., 52: 225–248.Mosier, A.R., Syers, J.K. & Freney, J.R., eds. 2004. Agriculture <strong>and</strong> the nitrogencycle: assess<strong>in</strong>g the impacts of fertilizer use on food production <strong>and</strong> theenvironment. pp. 53-69. Wash<strong>in</strong>gton, DC, Isl<strong>and</strong> Press.Vol. 9–201043


<strong>Challenges</strong> <strong>and</strong> <strong>opportunities</strong> <strong>for</strong> <strong>carbon</strong> <strong>sequestration</strong> <strong>in</strong> grassl<strong>and</strong> systemsA Technical Report on Grassl<strong>and</strong> Management <strong>and</strong> Climate Change MitigationNair, P.K.R., Kumar, B.M. & Nair, V.D. 2009. Agro<strong>for</strong>estry as a strategy <strong>for</strong><strong>carbon</strong> <strong>sequestration</strong>. Journal of Plant Nutrition <strong>and</strong> Soil (Science-Zeitschriftfür Pflanzenernahrung und Bodenkunde). 172: 10–23.Neely, C. Bunn<strong>in</strong>g S. & Wilkes A. 2009. Review of evidence on dryl<strong>and</strong> pastoralsystems <strong>and</strong> climate change: implications <strong>and</strong> <strong>opportunities</strong> <strong>for</strong> mitigation <strong>and</strong>adaptation. <strong>FAO</strong> – NRL Work<strong>in</strong>g Paper 8. Rome.Nelson, E. Polasky, S., Lewis, D.J., Plant<strong>in</strong>ga, A.J., Lonsdorf, E., White, D.,Bael, D. & Lawler, J.J. 2008. Efficiency of <strong>in</strong>centives to jo<strong>in</strong>tly <strong>in</strong>crease<strong>carbon</strong> <strong>sequestration</strong> <strong>and</strong> species conservation on a l<strong>and</strong>scape. Proc. Natl.Acad. Sci. USA, 105(28): 9471–9476.Ogle, S.M., Conant, R.T. & Paustian, K. 2004. Deriv<strong>in</strong>g grassl<strong>and</strong> managementfactors <strong>for</strong> a <strong>carbon</strong> account<strong>in</strong>g method developed by the <strong>in</strong>tergovernmentalpanel on climate change. Environ. Manag., 33: 474–484.Ogle, S.M., Breidt, F.J. & Paustian, K. 2005. Agricultural management impactson soil organic <strong>carbon</strong> storage under moist <strong>and</strong> dry climatic conditions oftemperate <strong>and</strong> tropical regions. Biogeochemistry, 72: 87–121.Ogle, S.M., Breidt, F.J., Easter, M., Williams, S. & Paustian, K. 2007. Anempirically based approach <strong>for</strong> estimat<strong>in</strong>g uncerta<strong>in</strong>ty associated withmodel<strong>in</strong>g <strong>carbon</strong> <strong>sequestration</strong> <strong>in</strong> soils. Ecol. Model., 205: 453–463.Ojima, D.S., Parton, W.J., Schimel, D. S., Scurlock, J.M.O. & Kittel, T.G.F.1993. Model<strong>in</strong>g the effects of climatic <strong>and</strong> CO 2changes on grassl<strong>and</strong> storageof soil C. Water, Air, <strong>and</strong> Soil Pollution, 70: 643–657.Oldeman, L.R. 1994. Soil resilience <strong>and</strong> susta<strong>in</strong>able l<strong>and</strong> use. D.J. Greenl<strong>and</strong> & I.Szabolcs, eds. Wall<strong>in</strong>g<strong>for</strong>d, UK, CAB International.Olofsson, J. & Hickler, T. 2008. Effects of human l<strong>and</strong>-use on the global<strong>carbon</strong> cycle dur<strong>in</strong>g the last 6,000 years. Veg. History & Archaeobotany. 17:605—615.Page, S. E., Siegert, F., Rieley, J.O., Boehm, H.D.V., Jaya, A. & Lim<strong>in</strong> S. 2002.The amount of <strong>carbon</strong> released from peat <strong>and</strong> <strong>for</strong>est fires <strong>in</strong> Indonesia dur<strong>in</strong>g1997. Nature, 420: 61–65.Palm, M., Ostwald, M. & Reilly, J. 2008. L<strong>and</strong> use <strong>and</strong> <strong>for</strong>estry based CDM <strong>in</strong>scientific peer-reviewed literature pre-<strong>and</strong> post-COP 9 <strong>in</strong> Milan. InternationalEnvironmental Agreements: Politics, Law <strong>and</strong> Economics, 8: 249–274.Pan, Y., Birdsey, R.A., Hom, J., McCoullough, K. & Clark, K. 2006. Improvedsatellite estimates of net primary productivity from MODIS satellite data atregional <strong>and</strong> local scales. Ecol. Appl., 16: 125–132.Paulsson, E. 2009. A review of the CDM literature: from f<strong>in</strong>e-tun<strong>in</strong>g tocritical scrut<strong>in</strong>y? International Environmental Agreements: Politics, Law <strong>and</strong>Economics, 9: 63–80.44Integrated Crop Management


eferencesPaustian, K., Coll<strong>in</strong>s, H.P. & Paul, E.A. 1997. Soil organic matter <strong>in</strong> temperateagroecosystems. In: E.A. Paul, K. Paustian, E.T. Elliot & C.V. Cole, eds. pp.15-49. Boca Raton, USA, CRC Press LLC.Paustian, K., Babcock, B.A., Hatfield, J., Kl<strong>in</strong>g, C.L., Lal, R., McCarl, B.A.McLaughl<strong>in</strong>, S., Mosier, A.R., Post, W.M., Rice, C.W., Robertson, G.P.,Rosenberg, N.J., Rosenzweig, C., Schles<strong>in</strong>ger, W.H. & Zilberman, D. 2004.Climate change <strong>and</strong> greenhouse gas mitigation: challenges <strong>and</strong> <strong>opportunities</strong><strong>for</strong> agriculture. Ames, USA, CAST (Council <strong>for</strong> Agricultural Science <strong>and</strong>Technology).Pender, J., R<strong>in</strong>gler, C., Magalhaes, M. & Place, F. 2009. The role of susta<strong>in</strong>ablel<strong>and</strong> management <strong>for</strong> climate change adaptation <strong>and</strong> mitigation <strong>in</strong> sub-SaharanAfrica. L<strong>and</strong> & Climate. TerrAfrica.Ramankutty, N., Evan, A.T., Monfreda, C. & Foley, J.A. 2008. Farm<strong>in</strong>g theplanet: 1 Geographic dictribution of global agricultural l<strong>and</strong>s <strong>in</strong> the year 2000.Global Biogeochem. Cycles, 22(1), GB1003.R<strong>and</strong>erson, J.T., Chap<strong>in</strong> III, F.S., Harden, J.W., Neff, J.C. & Harmon, M.E.2002. Net ecosystem production: a comprehensive measure of net <strong>carbon</strong>accumulation by ecosystems. Ecol. Appl., 12: 937–947.Reid, R. Thornton, P.K., McCrabb, G.J., Kruska, R.L., Atieno, F. & Jones P.G.2004. Is it possible to mitigate greenhouse gas emissions <strong>in</strong> pastoral ecosystemsof the tropics? Environment, Development <strong>and</strong> Susta<strong>in</strong>ability, 6: 91–109.Reilly, J.M. & Asadoorian, M.O. 2007. Mitigation of greenhouse gas emissionsfrom l<strong>and</strong> use: creat<strong>in</strong>g <strong>in</strong>centives with<strong>in</strong> greenhouse gas emissions trad<strong>in</strong>gsystems. Climate Change, 80: 173–197.Reyer, C., Guericke, M. & Ibisch, P.L. 2009. Climate change mitigation viaaf<strong>for</strong>estation, re<strong>for</strong>estation <strong>and</strong> de<strong>for</strong>estation avoidance: <strong>and</strong> what aboutadaptation to environmental change? New For., 38: 15–34.Robertson, G.P., Kl<strong>in</strong>gensmith, K.M., Klug, M.J., Paul, E.A., Crum, J.R. &Ellis, B.G. 1997. Soil resources, microbial activity, <strong>and</strong> primary productionacross an agricultural ecosystem. Ecol. Appl., 7: 158–170.Saby, N.P.A., Bellamy, P.H., Morvan, X., Arrouays, D., Jones, R.J.A.,Verheijen, F.G.A., Kibblewhite, M.G., Verdoodt, A., Üveges, J.B.,Freudenschuß, A. & Simota, C. 2008. Will European soil-monitor<strong>in</strong>gnetworks be able to detect changes <strong>in</strong> topsoil organic <strong>carbon</strong> content? Glob.Change Biol., 14: 2432–2442.Vol. 9–201045


<strong>Challenges</strong> <strong>and</strong> <strong>opportunities</strong> <strong>for</strong> <strong>carbon</strong> <strong>sequestration</strong> <strong>in</strong> grassl<strong>and</strong> systemsA Technical Report on Grassl<strong>and</strong> Management <strong>and</strong> Climate Change MitigationSchlamad<strong>in</strong>ger B, Bird N, Johns T . Brown, S., Canadell, J., Ciccarese, L.,Dutschke, M., Fiedler, j., Fischl<strong>in</strong>, A., Fearnside, P., Forner, C., Freibauer,A., Frumhoff, P., Hoehne, N., Kirschbaum, M.U.F., Labat, A., Marl<strong>and</strong>,G., Michaelowa, A., Montanarella, L., Mout<strong>in</strong>ho, P., Murdivarso, D.,Pena, N., P<strong>in</strong>gound, K., Rakonczav, Z., Rometste<strong>in</strong>er, E., Rock, J., Sanz,M.J., Schneider, U.A., Shvidenko, A., Skutsch, M., Smith, P., Somogyi, Z.,Tr<strong>in</strong>es, E., ward, M. & Yamagata, Y. 2007. A synopsis of l<strong>and</strong> use, l<strong>and</strong>-usechange <strong>and</strong> <strong>for</strong>estry (LULUCF) under the Kyoto Protocol <strong>and</strong> MarrakechAccords. Environ. Science & Policy. 10: 271–282Schles<strong>in</strong>ger, W.H. 1990. Evidence from chronosequence studies <strong>for</strong> a low<strong>carbon</strong>-storage potential of soils. Nature. 348:232–234.Schles<strong>in</strong>ger, W.H. 1977. Carbon balance <strong>in</strong> terrestrial detritus. Ann. Rev. Ecol.Syst., 8: 51–81.Schles<strong>in</strong>ger, W.H. 2000. Carbon <strong>sequestration</strong> <strong>in</strong> soils: some cautions amidstoptimism. Agric. Ecosyst. Environ., 82: 121–127.Schneider, L. 2009. Assess<strong>in</strong>g the additionality of CDM projects: practicalexperiences <strong>and</strong> lessons learned. Climate Policy, 9: 242–254.Shevliakova, E., Pacala, S.W., Malyshev, S., Hurtt, G.C., Milly, P.C.D.,Caspersen, J.P., Sentman, L.T., Fisk, J.P., Wirth, C. & Crevoisier. C.2009. Carbon cycl<strong>in</strong>g under 300 years of l<strong>and</strong> use change: importance of thesecondary vegetation s<strong>in</strong>k. Global Biogeochem. Cycles, 23, GB2022.Smith, P. 2005. An overview of the permanence of soil organic <strong>carbon</strong> stocks:<strong>in</strong>fluence of direct human-<strong>in</strong>duced, <strong>in</strong>direct <strong>and</strong> natural effects. Eur. J. SoilSci., 56: 673–680.Smith, P., Mart<strong>in</strong>o, D., Cai, Z., Gwary, D., Janzen, H., Kumar, P., McCarl,B., Ogle, S., O’Mara, F., Rice, C., Scholes, B., Sirotenko, O., Howden, M.,McAllister, T., Pan, G., Romanenkov, V., Schneider, U. & Towprayoon, S.2006. Policy <strong>and</strong> technological constra<strong>in</strong>ts to implementation of greenhousegas mitigation options <strong>in</strong> agriculture. Agriculture, Ecosystems & Environment,118(1–4): 6–28.Smith, P., Mart<strong>in</strong>o, D., Cai, Z., Gwary, D., Janzen, H., Kumar, P., McCarl,B., Ogle, S., O’Mara, F., Rice, C., Scholes, B., Sirotenko, O., Howden, M.,McAllister, T., Pan, G., Romanenkov, V., Schneider, U., Towprayoon, S.,Wattenbach, M. & Smith, J. 2008. Greenhouse gas mitigation <strong>in</strong> agriculture.Philosophical Transactions of the Royal Society B - Biological Sciences, 363:789–813.Sombroek, W.G., Nachtergaele, F.O. & Hebel, A. 1993. Amounts, dynamics<strong>and</strong> sequestet<strong>in</strong>g of <strong>carbon</strong> <strong>in</strong> tropical <strong>and</strong> subtropical soils. Ambio, 22:417–426.46Integrated Crop Management


eferencesSoussana, J.F., Allard, V., Pilegaard, K., Ambus, P., Ammann, C., Campbell,C., Ceschia, E., Clifton-Brown, J., Czobel, S., Dom<strong>in</strong>gues, R., Flechard,C., Fuhrer, J., Hensen, A., Horvath, L., Jones, M., Kasper, G., Mart<strong>in</strong>, C.,Nagy, Z., Neftel, A., Raschi, A., Baronti, S., Rees, R.M., Skiba, U., Stefani,P., Manca, G., Sutton, M., Tuba, Z. & Valent<strong>in</strong>i, R. 2007. Full account<strong>in</strong>gof the greenhouse gas (CO 2, N 2O, CH 4) budget of n<strong>in</strong>e European grassl<strong>and</strong>sites. Agric., Eco. <strong>and</strong> Environ., 121(1–2): 121–134.Spark, D.L. 1996. Methods of soil analysis. Part 3: Chemical methods. pp. 961–1010. American Society of agronomy - Soil Science Society of America.Stephens, B.B., Gurney, K.R., Tans, P.P, Sweeney, C., Peters, W., Bruhwiler,L., Ciais, P., Ramonet, M., Bousquet, P., Nakazawa, T., Aoki, S., Machida,T., Inoue, G., V<strong>in</strong>nichenko, N., Lloyd, J., Jordan, A., Heimann, M.,Shibistova, O., L<strong>and</strong>enfeld, R.L., Steele, L.P., Francey, R.J. & Denn<strong>in</strong>g,A.S. 2007. Weak northern <strong>and</strong> strong tropical l<strong>and</strong> <strong>carbon</strong> uptake fromvertical profiles of atmospheric CO 2. Science, 316: 1732–1735.Stevens, C.J. & Qu<strong>in</strong>ton, J.N. 2009. Diffuse pollution swapp<strong>in</strong>g <strong>in</strong> arableagricultural systems. Crit. Rev. Environ. Sci. Technol., 39: 478–520.Tate, R.L. 1987. Soil organic matter. biological <strong>and</strong> ecological effects. New York,USA, John Wiley & Sons.The World Bank. 2007. Agriculture <strong>for</strong> Development. Wash<strong>in</strong>gton, DC.Thornton, P.K. Boone, R.B., Galv<strong>in</strong>, K.A., BurnSilver, S.B., Waithaka,M.M., Kuyiah, J., Karanja, S., González-Estrada, E. & Herrero, M. 2007.Cop<strong>in</strong>g strategies <strong>in</strong> livestock-dependent households <strong>in</strong> east <strong>and</strong> southernAfrica: A synthesis of four case studies. Hum Ecol., 35: 461–476.Thornton, P.K., van de Steeg, J., Notenbaert, A. & Herrero, M. 2008. The Livestock-Climate-Poverty Nexus. Nairobi, International Livestock Research Institute.Thornton, P.K., van de Steeg, J., Notenbaert, A. & Herrero, M. 2009. Theimpacts of climate change on livestock <strong>and</strong> livestock systems <strong>in</strong> develop<strong>in</strong>gcountries: a review of what we know <strong>and</strong> what we need to know. Agric. Sys.,101: 113–127.UNFCCC (United Nations Framework Convention on Climate Change).2001. Report to the Conference of the Parties on its seventh session. Part Two:Action taken by the Conference of the Parties.Unger, P.W., Stewart, B.A., Parr, J.F. & S<strong>in</strong>gh, R.P. 1991. Residue management<strong>and</strong> tillage methods <strong>for</strong> conserv<strong>in</strong>g soil <strong>and</strong> water <strong>in</strong> semi-arid regions. SoilTillage Res., 20: 219–240.Ussiri, D.A.N. & Lal, R. 2009. Long-term tillage effects on soil <strong>carbon</strong> storage<strong>and</strong> <strong>carbon</strong> dioxide emissions <strong>in</strong> cont<strong>in</strong>uous corn cropp<strong>in</strong>g system from analfisol <strong>in</strong> Ohio. Soil <strong>and</strong> Tillage Research, 104: 39–47.Vol. 9–201047


<strong>Challenges</strong> <strong>and</strong> <strong>opportunities</strong> <strong>for</strong> <strong>carbon</strong> <strong>sequestration</strong> <strong>in</strong> grassl<strong>and</strong> systemsA Technical Report on Grassl<strong>and</strong> Management <strong>and</strong> Climate Change MitigationVallis, I., Parton, W.J., Keat<strong>in</strong>g, B.A. & Wood, A.W. 1996. Simulation of theeffects of trash <strong>and</strong> N fertilizer management on soil organic matter levels <strong>and</strong>yields of sugarcane. Soil Tillage Res., 38: 115–132.van Kooten G. 2009. Biological <strong>carbon</strong> <strong>sequestration</strong> <strong>and</strong> <strong>carbon</strong> trad<strong>in</strong>gre-visited. Climatic Change. 95: 449–463.V<strong>and</strong>enBygaart, A.J. 2006. Monitor<strong>in</strong>g soil organic <strong>carbon</strong> stock changes <strong>in</strong>agricultural l<strong>and</strong>scapes: Issues <strong>and</strong> a proposed approach. Can. J. Soil Sci., 86:451–463.Verstraete, M.M., Scholes, R.J. & Staf<strong>for</strong>d Smith, M. 2009. Climate <strong>and</strong>desertification: look<strong>in</strong>g at an old problem through new lenses. Frontiers <strong>in</strong>Ecology <strong>and</strong> the Environment, 7(8): 421–428.VCS (Voluntary Carbon St<strong>and</strong>ard). 2008. (available at http://www.v-c-s.org/)Wara, M. 2007. Is the global <strong>carbon</strong> market work<strong>in</strong>g? Nature, 445: 595–596.West, T.O. & Post, W.M. 2002. Soil organic <strong>carbon</strong> <strong>sequestration</strong> rates by tillage<strong>and</strong> crop rotation: a global data analysis. Soil Sci. Soc. Am. J., 66: 1930–1946.Wiley, Z. & Chameides, W. 2007 Harness<strong>in</strong>g Farms <strong>and</strong> Forests <strong>in</strong> the Low<strong>carbon</strong>Economy, Durham, USA, Duke University Press.Wilts, A.R., Reicosky, D.C., Allmaras, R.R. & Clapp, C.E. 2004. Long-termcorn residue effects: harvest alternatives, soil <strong>carbon</strong> turnover, <strong>and</strong> rootderived<strong>carbon</strong>. Soil Sci. Soc. Am. J., 68: 1342–1351.WMO (World Meteorological Organization). 2007. Climate <strong>and</strong> l<strong>and</strong>degradation, M.V.K. Sivakumar & N. Ndiang’ui, eds. pp. 205–221. Berl<strong>in</strong> &Heidelberg, Spr<strong>in</strong>ger.Woodf<strong>in</strong>e, A. 2009. The potential of susta<strong>in</strong>able l<strong>and</strong> management practices <strong>for</strong>climate change mitigation <strong>and</strong> adaptation <strong>in</strong> sub-Saharan Africa. TechnicalReport <strong>for</strong> TerrAfrica. Rome, <strong>FAO</strong>.Yang, X.M., Drury, C.F., W<strong>and</strong>er, M.M. & Kay, B.D. 2008. Evaluat<strong>in</strong>g theeffect of tillage on <strong>carbon</strong> <strong>sequestration</strong> us<strong>in</strong>g the m<strong>in</strong>imum detectabledifference concept. Pedosphere, 18: 421–430.48Integrated Crop Management


AcknowledgementsIn April 2009, 20 <strong>in</strong>ternational experts met at the Food <strong>and</strong> Agricultureorganization of the United Nations (<strong>FAO</strong>) <strong>for</strong> a three‐day workshopto discuss the potential <strong>and</strong> role of grassl<strong>and</strong> <strong>carbon</strong> <strong>sequestration</strong> <strong>in</strong>the mitigation of climate change. Follow<strong>in</strong>g the workshop this paperis a collaborative ef<strong>for</strong>t between the Plant Production <strong>and</strong> ProtectionDivision <strong>and</strong> the Natural Resources Management <strong>and</strong> EnvironmentDepartment of the <strong>FAO</strong>.We would like to extend our special thanks to Richard Conant,Colorado State University, who undertook the task of pull<strong>in</strong>g the threadstogether <strong>and</strong> provid<strong>in</strong>g an <strong>in</strong>-depth analysis. We also wish to thankMichael Abberton from Aberystwyth University, <strong>for</strong> his cont<strong>in</strong>ued <strong>and</strong>highly competent support, <strong>and</strong> Constance Neely, Senior ConsultantL<strong>and</strong>, Livelihoods <strong>and</strong> Climate Change, <strong>for</strong> her contribution to thepaper <strong>and</strong> to the Carbon Grassl<strong>and</strong> Network. Our appreciation goesalso to Arturo Mart<strong>in</strong>ez, retired Chief, Plant Production <strong>and</strong> ProtectionDivision, <strong>FAO</strong>, who reviewed the paper, <strong>and</strong> to all the <strong>in</strong>ternationalexperts who have made <strong>in</strong>valuable contributions to the report.F<strong>in</strong>ally, thanks to our colleagues at <strong>FAO</strong>, <strong>in</strong> particular Sally Bunn<strong>in</strong>g,Freddy Nachtergaele, Monica Petri, Wendy Mann, Claudia Hiepe, LeslieLipper, Shivaji P<strong>and</strong>ey, L<strong>in</strong>da Collette, Cater<strong>in</strong>a Batello <strong>and</strong> SuzanneRedfern.Vol. 9–201049


©<strong>FAO</strong>/m.marzot


Policy briefPastoralistsPlay<strong>in</strong>g a critical role <strong>in</strong>manag<strong>in</strong>g grassl<strong>and</strong>s <strong>for</strong>climate change mitigation<strong>and</strong> adaptationVol. 9–2010 6–2009 51


<strong>Challenges</strong> <strong>and</strong> <strong>opportunities</strong> <strong>for</strong> <strong>carbon</strong> <strong>sequestration</strong> <strong>in</strong> grassl<strong>and</strong> systemsA Technical Report on Grassl<strong>and</strong> Management <strong>and</strong> Climate Change Mitigation©<strong>FAO</strong>/A. Savory©<strong>FAO</strong>/C. Neely©<strong>FAO</strong>/C. LeggettGrassl<strong>and</strong>s represent the majority of the world’sagricultural area <strong>and</strong> hold 20 percent of theworld’s soil <strong>carbon</strong> stockGrassl<strong>and</strong>s, <strong>in</strong>clud<strong>in</strong>g rangel<strong>and</strong>s, shrub l<strong>and</strong>, pasture l<strong>and</strong> <strong>and</strong> cropl<strong>and</strong>sown with pasture, trees <strong>and</strong> fodder crops, represent 70 percent of theworld’s agricultural area.Grassl<strong>and</strong>s are an irreplaceable source oflivelihoods <strong>and</strong> food security <strong>for</strong> the poorPoverty <strong>and</strong> economic marg<strong>in</strong>alization often characterize the humancommunities manag<strong>in</strong>g grassl<strong>and</strong>s. Livestock keep<strong>in</strong>g is a source of <strong>in</strong>come<strong>and</strong> basis <strong>for</strong> food security <strong>for</strong> more than 1 billion people – or one-thirdof the poor <strong>in</strong> rural areas – <strong>and</strong> is also the only potential source of <strong>in</strong>comethat can be derived from many grassl<strong>and</strong> areas (see figure A). In addition,grassl<strong>and</strong>s are a source of goods <strong>and</strong> services such as wild food, energy <strong>and</strong>wildlife habitat. They also provide <strong>carbon</strong> <strong>and</strong> water storage, recreation <strong>and</strong>watershed protection <strong>for</strong> many major river systems.52Integrated Crop Management


policy briefMuch of the world’s grassl<strong>and</strong>s are <strong>in</strong> a state ofdegradationGlobally grassl<strong>and</strong> degradation is estimated to be 20–35 percent. Becauselivestock is the fastest grow<strong>in</strong>g agricultural sector – mak<strong>in</strong>g up over50 percent of agricultural GDP <strong>in</strong> many develop<strong>in</strong>g countries – pressureon the l<strong>and</strong> has <strong>in</strong>creased <strong>in</strong> order to meet meat <strong>and</strong> milk dem<strong>and</strong>. As aresult of <strong>in</strong>appropriate graz<strong>in</strong>g management practices, large parts of theworld’s grassl<strong>and</strong>s have been degraded.accord<strong>in</strong>g to the IPCC, improv<strong>in</strong>g grassl<strong>and</strong>management <strong>and</strong> revers<strong>in</strong>g degradation offer themost important technical mitigation solutions <strong>in</strong>agriculturePrevious research has documented that improved graz<strong>in</strong>g managementcould lead to greater <strong>for</strong>age production, more efficient use of l<strong>and</strong>resources, <strong>and</strong> enhanced profitability <strong>and</strong> rehabilitation of degradedl<strong>and</strong>s <strong>and</strong> restoration of ecosystem services. Many managementtechniques <strong>in</strong>tended to <strong>in</strong>crease <strong>for</strong>age production have the potentialto <strong>in</strong>crease soil <strong>carbon</strong> stocks, thus sequester<strong>in</strong>g atmospheric <strong>carbon</strong><strong>in</strong> soils. Improved graz<strong>in</strong>g management can lead to an <strong>in</strong>crease <strong>in</strong> soil<strong>carbon</strong> stocks by an average of 0.35 tonnes C ha 1 yr -1 but under goodclimate <strong>and</strong> soil conditions improved pasture <strong>and</strong> silvopastoral systemscan sequester 1–3 tonnes C ha -1 yr -1 . It is estimated that 5–10 percent ofglobal graz<strong>in</strong>g l<strong>and</strong>s could be placed under C <strong>sequestration</strong> managementby 2020 (See figure B).Photo credits: C. Neely, A. Savory, C. LeggettVol. 9–201053


<strong>Challenges</strong> <strong>and</strong> <strong>opportunities</strong> <strong>for</strong> <strong>carbon</strong> <strong>sequestration</strong> <strong>in</strong> grassl<strong>and</strong> systemsA Technical Report on Grassl<strong>and</strong> Management <strong>and</strong> Climate Change MitigationGrassl<strong>and</strong> management practices that reduceemissions also enhance adaptationWell-managed grassl<strong>and</strong>s provide multiple co-benefits that are criticalto adaptation. Risks associated with prolonged drought periods <strong>and</strong>unreliable ra<strong>in</strong>s can be offset by the <strong>in</strong>creased water <strong>in</strong>filtration <strong>and</strong>retention associated with organic matter accumulation <strong>in</strong> the soil.Moreover, this will improve nutrient cycl<strong>in</strong>g <strong>and</strong> plant productivity <strong>and</strong>,at the same time, enhance the conservation <strong>and</strong> susta<strong>in</strong>able use of habitat<strong>and</strong> species diversity. Grassl<strong>and</strong> management is thereby a key adaptation<strong>and</strong> mitigation strategy <strong>for</strong> address<strong>in</strong>g climate change <strong>and</strong> variability.Grassl<strong>and</strong>s can become a bright spot throughsystems managementGraz<strong>in</strong>g practices can be used to stimulate diverse grasses <strong>and</strong> thedevelopment of healthy root systems; feed both livestock <strong>and</strong> soil biota;ma<strong>in</strong>ta<strong>in</strong> plant cover at all times; <strong>and</strong> promote natural soil <strong>for</strong>m<strong>in</strong>gprocesses. Graz<strong>in</strong>g practices that ensure adequate plant recovery be<strong>for</strong>ere-graz<strong>in</strong>g will enhance soil <strong>and</strong> biomass <strong>carbon</strong>, capitalize on animalbased nutrients <strong>and</strong> offset rum<strong>in</strong>ant methane emissions.Ef<strong>for</strong>ts to <strong>in</strong>crease the resilience of grassl<strong>and</strong>management systems <strong>and</strong> support livestock keepersmust beg<strong>in</strong> nowBecause yield reductions under drought, heat stress, floods <strong>and</strong> otherextreme events will be the most consequential negative impacts of climatechange, ef<strong>for</strong>ts to adapt to a chang<strong>in</strong>g climate should focus on <strong>in</strong>creas<strong>in</strong>gresilience of ecosystem processes through management systems <strong>and</strong> thepolicies that support these. This will also require address<strong>in</strong>g key politicalconstra<strong>in</strong>ts <strong>in</strong>clud<strong>in</strong>g l<strong>and</strong> tenure.54Integrated Crop Management


policy briefpost copenhagen agricultural priorities willrequire <strong>in</strong>tegrated adaptation <strong>and</strong> mitigationef<strong>for</strong>ts focused on livestock keepers, graz<strong>in</strong>gmanagement <strong>and</strong> <strong>for</strong>age production practicesCritical components required, with or without Copenhagen agreements,<strong>in</strong>clude:• rais<strong>in</strong>g awareness at the local level about the potential impacts ofclimate change;• implement<strong>in</strong>g graz<strong>in</strong>g management systems that build soil <strong>carbon</strong>,enhance biological communities, re-establish effective water cycles,<strong>and</strong> manage livestock-based nutrients; <strong>and</strong>• promot<strong>in</strong>g soil cover of grasses, legumes <strong>and</strong> multipurpose trees toenhance livestock productivity.Underst<strong>and</strong><strong>in</strong>g <strong>and</strong> account<strong>in</strong>g <strong>for</strong> <strong>carbon</strong> <strong>and</strong> nitrogen flows will be<strong>in</strong>strumental <strong>in</strong> capitaliz<strong>in</strong>g on the full potential of grassl<strong>and</strong> systems <strong>for</strong>adaptation <strong>and</strong> mitigation. Climate change will dem<strong>and</strong> the susta<strong>in</strong>ablestewardship of our natural resource base that has been called <strong>for</strong> over thelast several decades.Vol. 9–201055


<strong>Challenges</strong> <strong>and</strong> <strong>opportunities</strong> <strong>for</strong> <strong>carbon</strong> <strong>sequestration</strong> <strong>in</strong> grassl<strong>and</strong> systemsA Technical Report on Grassl<strong>and</strong> Management <strong>and</strong> Climate Change Mitigation>N0 2 000 4 000kilometers(cattle + small rum<strong>in</strong>ants) DensityTLU/sqKm1 None2 Extensive livestock3 Mod. <strong>in</strong>tensive livestock4 Intensive livestockCountry boundariesFigure A: Livestock presence <strong>in</strong>tensitySource: <strong>FAO</strong> LADA Mapp<strong>in</strong>g L<strong>and</strong> Use Systems at global <strong>and</strong> regional scales <strong>for</strong> L<strong>and</strong> Degradation Assessment Analysis,Nachtergaele <strong>and</strong> Petri, 200956Integrated Crop Management


policy brief>N0 2 000 4 000kilometersTopsoil SOC changekg/sq m> 0.10.051 – 0.10.026 – 0.050.01 – 0.0250 – 0.010-0.01 – 0< -0.01country boundariesFigure B: Potential soil organic <strong>carbon</strong> <strong>sequestration</strong> <strong>in</strong> grassl<strong>and</strong>sGeographic projection. 30 arc seconds resolution at the equatorSource: Carbon status <strong>and</strong> <strong>carbon</strong> <strong>sequestration</strong> potential <strong>in</strong> the world’s grassl<strong>and</strong>s. Petri, M., Batello, C., Villani, R.<strong>and</strong> Nachtergaele F., 2009Vol. 9–201057


© <strong>FAO</strong> 2010Pr<strong>in</strong>ted <strong>in</strong> Italy on ecological + recycled paperFebruary 2010


<strong>Challenges</strong> <strong>and</strong> <strong>opportunities</strong> <strong>for</strong> <strong>carbon</strong> <strong>sequestration</strong> <strong>in</strong> grassl<strong>and</strong> systemA technical report on grassl<strong>and</strong> management <strong>and</strong> climate change mitigationPractices that sequester <strong>carbon</strong> <strong>in</strong> grassl<strong>and</strong>s can enhance productivity,<strong>and</strong> policies designed to encourage these practices could lead to near‐termdividends <strong>in</strong> greater <strong>for</strong>age production <strong>and</strong> enhanced producer <strong>in</strong>comes.This report reviews the current status of <strong>opportunities</strong> <strong>and</strong> challenges<strong>for</strong> grassl<strong>and</strong> <strong>carbon</strong> <strong>sequestration</strong> <strong>and</strong> identifies components thatcould foster the <strong>in</strong>culsion of grassl<strong>and</strong>s <strong>in</strong> future climate agreementsto enhance longer term adaptation to climate variability. It <strong>in</strong>cludes apolicy brief to assist policy‐makers <strong>in</strong> their development plans.ISBN 978-92-5-106494-8 ISSN 1020-4555I1399E/1/02.10/150

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!