01.12.2012 Views

Appendix E: Properties of special functions

Appendix E: Properties of special functions

Appendix E: Properties of special functions

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>Appendix</strong> E<br />

<strong>Properties</strong> <strong>of</strong> <strong>special</strong> <strong>functions</strong><br />

E.1 Bessel <strong>functions</strong><br />

Notation<br />

z = complex number; ν, x = real numbers; n = integer<br />

Jν(z) = ordinary Bessel function <strong>of</strong> the first kind<br />

Nν(z) = ordinary Bessel function <strong>of</strong> the second kind<br />

Iν(z) = modified Bessel function <strong>of</strong> the first kind<br />

Kν(z) = modified Bessel function <strong>of</strong> the second kind<br />

H (1)<br />

ν = Hankel function <strong>of</strong> the first kind<br />

H (2)<br />

ν = Hankel function <strong>of</strong> the second kind<br />

jn(z) = ordinary spherical Bessel function <strong>of</strong> the first kind<br />

nn(z) = ordinary spherical Bessel function <strong>of</strong> the second kind<br />

h (1)<br />

n (z) = spherical Hankel function <strong>of</strong> the first kind<br />

h (2)<br />

n (z) = spherical Hankel function <strong>of</strong> the second kind<br />

f ′ (z) = df(z)/dz = derivative with respect to argument<br />

Differential equations<br />

d 2 Zν(z)<br />

dz 2<br />

1<br />

+<br />

z<br />

dZν(z)<br />

dz +<br />

�<br />

1 − ν2<br />

z2 �<br />

Zν(z) = 0 (E.1)<br />

⎧<br />

⎪⎨<br />

Jν(z)<br />

Nν(z)<br />

Zν(z) =<br />

⎪⎩<br />

H (1)<br />

ν (z)<br />

H (2)<br />

ν (z)<br />

(E.2)<br />

Nν(z) = cos(νπ)Jν(z) − J−ν(z)<br />

, ν �= n, | arg(z)|


d 2 zn(z)<br />

dz 2<br />

d 2 ¯Zν(x)<br />

dz 2<br />

1<br />

+<br />

z<br />

d ¯Zν(z)<br />

dz −<br />

�<br />

1 + ν2<br />

z2 �<br />

¯Zν = 0 (E.6)<br />

�<br />

¯Zν(z)<br />

Iν(z)<br />

=<br />

(E.7)<br />

Kν(z)<br />

�<br />

Iν(z)<br />

L(z) =<br />

e jνπ (E.8)<br />

Kν(z)<br />

Iν(z) = e − jνπ/2 Jν(ze jπ/2 ), −π


� a<br />

Jν<br />

0<br />

Specific examples<br />

� ′ p νm<br />

a ρ<br />

� � ′ p νn<br />

Jν<br />

a ρ<br />

�<br />

a<br />

ρ dρ = δmn<br />

2 �<br />

2<br />

� ∞<br />

0<br />

1 − ν2<br />

p ′2<br />

νm<br />

�<br />

J 2 ν (p′ νm ), ν > −1 (E.23)<br />

Jν(αx)Jν(βx)x dx= 1<br />

δ(α − β) (E.24)<br />

α<br />

� a<br />

0<br />

�<br />

αlm<br />

jl<br />

a r<br />

� �<br />

αln<br />

jl<br />

a r<br />

�<br />

r 2 a<br />

dr = δmn<br />

3<br />

2 j 2 n+1 (αlna) (E.25)<br />

� ∞<br />

−∞<br />

Functional relationships<br />

π<br />

jm(x) jn(x) dx = δmn , m, n ≥ 0 (E.26)<br />

2n + 1<br />

h (1)<br />

0<br />

h (2)<br />

0<br />

Jm(pmn) = 0 (E.27)<br />

J ′ m (p′ mn ) = 0 (E.28)<br />

jm(αmn) = 0 (E.29)<br />

j ′ m (α′ mn ) = 0 (E.30)<br />

sin z<br />

j0(z) = (E.31)<br />

z<br />

cos z<br />

n0(z) =− (E.32)<br />

z<br />

jz<br />

(z) =−j e (E.33)<br />

z<br />

j jz<br />

(z) = e− (E.34)<br />

z<br />

sin z cos z<br />

j1(z) = − (E.35)<br />

z2 z<br />

cos z sin z<br />

n1(z) =− − (E.36)<br />

z2 � � z<br />

3 1<br />

j2(z) = − sin z −<br />

z3 z<br />

3<br />

cos z (E.37)<br />

z2 �<br />

n2(z) = − 3<br />

�<br />

1<br />

+ cos z −<br />

z3 z<br />

3<br />

sin z (E.38)<br />

z2 Jn(−z) = (−1) n Jn(z) (E.39)<br />

In(−z) = (−1) n In(z) (E.40)<br />

jn(−z) = (−1) n jn(z) (E.41)<br />

nn(−z) = (−1) n+1 nn(z) (E.42)<br />

J−n(z) = (−1) n Jn(z) (E.43)


Power series<br />

N−n(z) = (−1) n Nn(z) (E.44)<br />

I−n(z) = In(z) (E.45)<br />

K−n(z) = Kn(z) (E.46)<br />

j−n(z) = (−1) n nn−1(z), n > 0 (E.47)<br />

∞�<br />

k (z/2)n+2k<br />

Jn(z) = (−1)<br />

k!(n + k)!<br />

k=0<br />

In(z) =<br />

∞�<br />

k=0<br />

Small argument approximations |z| ≪1.<br />

(z/2) n+2k<br />

k!(n + k)!<br />

(E.48)<br />

(E.49)<br />

Jn(z) ≈ 1<br />

�<br />

z<br />

�n n! 2<br />

1<br />

�<br />

z<br />

�ν Jν(z) ≈<br />

Ɣ(ν + 1) 2<br />

(E.50)<br />

(E.51)<br />

N0(z) ≈ 2<br />

(ln z + 0.5772157 − ln 2)<br />

π<br />

� �n (n − 1)! 2<br />

Nn(z) ≈− , n > 0<br />

π z<br />

Nν(z) ≈−<br />

(E.52)<br />

(E.53)<br />

Ɣ(ν)<br />

� �ν 2<br />

, ν > 0<br />

π z<br />

In(z) ≈<br />

(E.54)<br />

1<br />

�<br />

z<br />

�n n! 2<br />

1<br />

�<br />

z<br />

�ν Iν(z) ≈<br />

Ɣ(ν + 1) 2<br />

(E.55)<br />

(E.56)<br />

jn(z) ≈ 2n n!<br />

(2n + 1)! zn<br />

nn(z) ≈− (2n)!<br />

2 n n! z−(n+1)<br />

Large argument approximations |z| ≫1.<br />

�<br />

2<br />

Jν(z) ≈<br />

πz cos<br />

�<br />

z − π<br />

�<br />

4<br />

2<br />

Nν(z) ≈<br />

πz sin<br />

�<br />

z − π νπ<br />

−<br />

4 2<br />

H (1)<br />

�<br />

2<br />

ν (z) ≈<br />

πz<br />

H (2)<br />

�<br />

2<br />

ν (z) ≈<br />

�<br />

πz<br />

1<br />

Iν(z) ≈<br />

2πz ez , | arg(z)| < π<br />

2<br />

(E.57)<br />

(E.58)<br />

νπ<br />

�<br />

− , | arg(z)|


Recursion relationships<br />

Integral representations<br />

�<br />

π<br />

Kν(z) ≈<br />

2z e−z , | arg(z)| < 3π<br />

2<br />

jn(z) ≈<br />

(E.64)<br />

1<br />

z sin<br />

�<br />

z − nπ<br />

�<br />

, | arg(z)|


Wronskians and cross products<br />

Jν(z)Nν+1(z) − Jν+1(z)Nν(z) =− 2<br />

πz<br />

H (2) (1)<br />

(1) (2) 4<br />

ν (z)H ν+1 (z) − H ν (z)H ν+1 (z) =<br />

jπz<br />

Iν(z)Kν+1(z) + Iν+1(z)Kν(z) = 1<br />

z<br />

Iν(z)K ′ ν (z) − I ′ ν (z)Kν(z) =− 1<br />

z<br />

Jν(z)H (1) ′ ′<br />

ν (z) − J ν (z)H (1) 2 j<br />

ν (z) =<br />

πz<br />

Jν(z)H (2) ′ ′<br />

ν (z) − J ν (z)H (2) j<br />

ν (z) =−2<br />

πz<br />

(2) ′ (1) ′ (2) j<br />

(z)H ν (z) − H ν (z)H ν (z) =−4<br />

πz<br />

jn(z)nn−1(z) − jn−1(z)nn(z) = 1<br />

z2 2n + 1<br />

jn+1(z)nn−1(z) − jn−1(z)nn+1(z) =<br />

z3 jn(z)n ′ n (z) − j ′ n (z)nn(z) = 1<br />

z2 h (1)<br />

n (z)h(2)<br />

′ (1) ′ (2) j<br />

n (z) − h n (z)h n (z) =−2<br />

z2 H (1)<br />

ν<br />

✁<br />

✁<br />

Summation formulas ✁<br />

✁<br />

✦<br />

r ψ<br />

R<br />

✦<br />

✦✦✦✦✦✦✦ φ<br />

ρ<br />

e jνψ Zν(zR) =<br />

e jnψ Jn(zR) =<br />

e jzρ cos φ =<br />

∞�<br />

k=−∞<br />

∞�<br />

k=−∞<br />

R, r, ρ, φ, ψ as shown.<br />

R = � r 2 + ρ 2 − 2rρ cos φ.<br />

Jk(zρ)Zν+k(zr)e jkφ , ρ < r, 0


Integrals<br />

�<br />

�<br />

x ν+1 Jν(x) dx = x ν+1 Jν+1(x) + C (E.104)<br />

Zν(ax)Zν(bx)x dx= x [bZν(ax)Zν−1(bx) − aZν−1(ax)Zν(bx)]<br />

+ C, a �= b (E.105)<br />

�<br />

xZ 2 2 x<br />

ν (ax) dx =<br />

� ∞<br />

0<br />

2<br />

a 2 − b 2<br />

� Z 2 ν (ax) − Zν−1(ax)Zν+1(ax) � + C (E.106)<br />

Jν(ax) dx = 1<br />

, ν > −1, a > 0 (E.107)<br />

a<br />

Fourier–Bessel expansion <strong>of</strong> a function<br />

∞�<br />

f (ρ) =<br />

�<br />

ρ<br />

�<br />

,<br />

a<br />

0 ≤ ρ ≤ a, ν > −1 (E.108)<br />

�<br />

ρ<br />

�<br />

f (ρ)Jν pνm ρ dρ<br />

a<br />

(E.109)<br />

am Jν pνm<br />

m=1<br />

2<br />

am =<br />

a2 J 2 ν+1 (pνm)<br />

� a<br />

0<br />

f (ρ) =<br />

bm =<br />

∞�<br />

m=1<br />

Series <strong>of</strong> Bessel <strong>functions</strong><br />

bm Jν<br />

2<br />

�<br />

p ′ νm<br />

a2 �<br />

1 − ν2<br />

p ′ 2 J<br />

νm<br />

2 ν (p′ νm )<br />

e jzcos φ =<br />

∞�<br />

k=−∞<br />

ρ<br />

�<br />

, 0 ≤ ρ ≤ a, ν > −1 (E.110)<br />

a<br />

�<br />

e jzcos φ = J0(z) + 2<br />

sin z = 2<br />

E.2 Legendre <strong>functions</strong><br />

Notation<br />

� a<br />

0<br />

j k Jk(z)e jkφ<br />

f (ρ)Jν<br />

� ′ p νm<br />

a ρ<br />

�<br />

ρ dρ (E.111)<br />

(E.112)<br />

∞�<br />

j k Jk(z) cos φ (E.113)<br />

k=1<br />

∞�<br />

(−1) k J2k+1(z) (E.114)<br />

k=0<br />

cos z = J0(z) + 2<br />

x, y,θ = real numbers; l, m, n = integers;<br />

Pm n (cos θ) = associated Legendre function <strong>of</strong> the first kind<br />

∞�<br />

(−1) k J2k(z) (E.115)<br />

k=1


Qm n<br />

Pn(cos θ) = P0 n<br />

Qn(cos θ) = Q0 n<br />

(cos θ) = associated Legendre function <strong>of</strong> the second kind<br />

(cos θ) = Legendre polynomial<br />

(cos θ) = Legendre function <strong>of</strong> the second kind<br />

Differential equation x = cos θ.<br />

(1 − x 2 ) d2 R m n (x)<br />

dx 2<br />

− 2x dRm n (x)<br />

dx +<br />

�<br />

n(n + 1) − m2<br />

1 − x 2<br />

�<br />

R m n (x) = 0, −1 ≤ x ≤ 1 (E.116)<br />

R m n<br />

(x) =<br />

� P m n (x)<br />

Q m n (x)<br />

Orthogonality relationships<br />

� 1<br />

P<br />

−1<br />

m<br />

l (x)Pm 2 (n + m)!<br />

n (x) dx = δln<br />

2n + 1 (n − m)!<br />

� π<br />

P<br />

0<br />

m<br />

l (cos θ)Pm 2 (n + m)!<br />

n (cos θ)sin θ dθ = δln<br />

2n + 1 (n − m)!<br />

� 1 P<br />

−1<br />

m n (x)Pk n (x)<br />

1 − x 2<br />

1 (n + m)!<br />

dx = δmk<br />

m (n − m)!<br />

� π P<br />

0<br />

m n (cos θ)Pk n (cos θ) 1 (n + m)!<br />

dθ = δmk<br />

sin θ<br />

m (n − m)!<br />

� 1<br />

2<br />

Pl(x)Pn(x) dx = δln<br />

−1<br />

2n + 1<br />

� π<br />

2<br />

Pl(cos θ)Pn(cos θ)sin θ dθ = δln<br />

2n + 1<br />

Specific examples<br />

0<br />

(E.117)<br />

(E.118)<br />

(E.119)<br />

(E.120)<br />

(E.121)<br />

(E.122)<br />

(E.123)<br />

P0(x) = 1 (E.124)<br />

P1(x) = x = cos(θ) (E.125)<br />

P2(x) = 1<br />

2 (3x 2 − 1) = 1<br />

(3 cos 2θ + 1)<br />

4<br />

P3(x) =<br />

(E.126)<br />

1<br />

2 (5x 3 − 3x) = 1<br />

(5 cos 3θ + 3 cos θ)<br />

8<br />

P4(x) =<br />

(E.127)<br />

1<br />

8 (35x 4 − 30x 2 + 3) = 1<br />

(35 cos 4θ + 20 cos 2θ + 9)<br />

64<br />

P5(x) =<br />

(E.128)<br />

1<br />

8 (63x 5 − 70x 3 + 15x) = 1<br />

(63 cos 5θ + 35 cos 3θ + 30 cos θ)<br />

128<br />

(E.129)<br />

Q0(x) = 1<br />

2 ln<br />

� � �<br />

1 + x<br />

= ln cot<br />

1 − x<br />

θ<br />

�<br />

(E.130)<br />

2<br />

Q1(x) = x<br />

2 ln<br />

� �<br />

�<br />

1 + x<br />

− 1 = cos θ ln cot<br />

1 − x<br />

θ<br />

�<br />

− 1 (E.131)<br />

2


Q2(x) = 1<br />

4 (3x 2 � �<br />

1 + x<br />

− 1) ln −<br />

1 − x<br />

3<br />

x (E.132)<br />

2<br />

Q3(x) = 1<br />

4 (5x 3 � �<br />

1 + x<br />

− 3x) ln −<br />

1 − x<br />

5<br />

2 x 2 + 2<br />

(E.133)<br />

3<br />

Q4(x) = 1<br />

16 (35x 4 − 30x 2 � �<br />

1 + x<br />

+ 3) ln −<br />

1 − x<br />

35<br />

8 x 3 + 55<br />

x (E.134)<br />

24<br />

P 1 1 (x) =−(1 − x 2 ) 1/2 =−sin θ (E.135)<br />

P 1 2 (x) =−3x(1 − x 2 ) 1/2 =−3cos θ sin θ (E.136)<br />

P 2 2 (x) = 3(1 − x 2 ) = 3 sin 2 θ (E.137)<br />

P 1 3 (x) =−3<br />

2 (5x 2 − 1)(1 − x 2 ) 1/2 =− 3<br />

2 (5 cos2 θ − 1) sin θ (E.138)<br />

P 2 3 (x) = 15x(1 − x 2 ) = 15 cos θ sin 2 θ (E.139)<br />

P 3 3 (x) =−15(1 − x 2 ) 3/2 =−15 sin 3 θ (E.140)<br />

P 1 4 (x) =−5<br />

2 (7x 3 − 3x)(1 − x 2 ) 1/2 =− 5<br />

2 (7 cos3 θ − 3 cos θ)sin θ<br />

P<br />

(E.141)<br />

2 15<br />

4 (x) =<br />

2 (7x 2 − 1)(1 − x 2 ) = 15<br />

2 (7 cos2 θ − 1) sin 2 θ (E.142)<br />

P 3 4 (x) =−105x(1 − x 2 ) 3/2 =−105 cos θ sin 3 θ (E.143)<br />

P 4 4 (x) = 105(1 − x 2 ) 2 = 105 sin 4 θ (E.144)<br />

Functional relationships<br />

�<br />

0, m > n,<br />

(x) =<br />

P m n<br />

(−1) m (1−x2 ) m/2<br />

2 n n!<br />

d n+m (x 2 −1) n<br />

dx n+m , m ≤ n.<br />

Pn(x) = 1<br />

2n d<br />

n!<br />

n (x 2 − 1) n<br />

dxn R m n (x) = (−1)m (1 − x 2 ) m/2 dm Rn(x)<br />

dx m<br />

(E.145)<br />

(E.146)<br />

(E.147)<br />

P −m<br />

m (n − m)!<br />

n (x) = (−1)<br />

(n + m)! Pm n (x) (E.148)<br />

Pn(−x) = (−1) n Pn(x) (E.149)<br />

Qn(−x) = (−1) n+1 Qn(x) (E.150)<br />

P m n (−x) = (−1)n+m P m n (x) (E.151)<br />

Q m n (−x) = (−1)n+m+1Q m n (x) (E.152)<br />

P m n<br />

(1) =<br />

�<br />

1, m = 0,<br />

0, m > 0.<br />

(E.153)<br />

|Pn(x)| ≤Pn(1) = 1 (E.154)


Power series<br />

Pn(x) =<br />

n�<br />

k=0<br />

Recursion relationships<br />

Pn(0) = Ɣ � � n 1<br />

+ 2 2 nπ<br />

cos<br />

+ 1� 2<br />

√ πƔ � n<br />

2<br />

(E.155)<br />

P −m<br />

m (n − m)!<br />

n (x) = (−1)<br />

(n + m)! Pm n (x) (E.156)<br />

(−1) k (n + k)!<br />

(n − k)!(k!) 22k+1 � k n k<br />

(1 − x) + (−1) (1 + x) �<br />

(E.157)<br />

(n + 1 − m)R m n+1 (x) + (n + m)Rm n−1 (x) = (2n + 1)xRm n (x) (E.158)<br />

(1 − x 2 )R m n<br />

Integral representations<br />

√<br />

2<br />

Pn(cos θ) =<br />

π<br />

Pn(x) = 1<br />

π<br />

Addition formula<br />

Summations<br />

′ m<br />

(x) = (n + 1)xRn (x) − (n − m + 1)R m n+1 (x) (E.159)<br />

(2n + 1)xRn(x) = (n + 1)Rn+1(x) + nRn−1(x) (E.160)<br />

(x 2 − 1)R ′ n (x) = (n + 1)[Rn+1(x) − xRn(x)] (E.161)<br />

R ′ n+1 (x) − R′ n−1 (x) = (2n + 1)Rn(x) (E.162)<br />

� π<br />

0 � π<br />

0<br />

sin � n + 1<br />

�<br />

u 2<br />

√ du<br />

cos θ − cos u<br />

(E.163)<br />

� � 2 1/2 n<br />

x + (x − 1) cos θ dθ (E.164)<br />

Pn(cos γ) = Pn(cos θ)Pn(cos θ ′ ) +<br />

n� (n − m)!<br />

+ 2<br />

(n + m)! Pm n (cos θ)Pm n (cos θ ′ ) cos m(φ − φ ′ ), (E.165)<br />

m=1<br />

cos γ = cos θ cos θ ′ + sin θ sin θ ′ cos(φ − φ ′ ) (E.166)<br />

1<br />

|r − r ′ | =<br />

1<br />

� =<br />

r 2 + r ′2 − 2rr ′ cos γ<br />

∞�<br />

n=0<br />

r n <<br />

r n+1 Pn(cos γ) (E.167)<br />

><br />

cos γ = cos θ cos θ ′ + sin θ sin θ ′ cos(φ − φ ′ ) (E.168)<br />

r< = min � |r|, |r ′ | � , r> = max � |r|, |r ′ | �<br />

(E.169)


Integrals<br />

�<br />

Pn(x) dx = Pn+1(x) − Pn−1(x)<br />

+ C<br />

2n + 1<br />

� 1<br />

x<br />

(E.170)<br />

−1<br />

m Pn(x) dx = 0, m < n (E.171)<br />

� 1<br />

x<br />

−1<br />

n Pn(x) dx = 2n+1 (n!) 2<br />

(2n + 1)!<br />

� 1<br />

x<br />

−1<br />

(E.172)<br />

2k P2n(x) dx = 22n+1 (2k)!(k + n)!<br />

(2k + 2n + 1)!(k − n)!<br />

� 1 Pn(x)<br />

√ dx =<br />

−1 1 − x<br />

(E.173)<br />

2√2 2n + 1<br />

� � � ��<br />

1<br />

1<br />

2<br />

P2n(x) Ɣ n + 2<br />

√ dx =<br />

−1 1 − x 2 n!<br />

� 1<br />

n (2n)! 1<br />

P2n+1(x) dx = (−1)<br />

2n + 2 (2<br />

(E.174)<br />

(E.175)<br />

nn!) 2<br />

(E.176)<br />

0<br />

Fourier–Legendre series expansion <strong>of</strong> a function<br />

f (x) =<br />

an =<br />

E.3 Spherical harmonics<br />

Notation<br />

∞�<br />

an Pn(x), −1 ≤ x ≤ 1 (E.177)<br />

n=0<br />

2n + 1<br />

2<br />

� 1<br />

θ,φ = real numbers; m, n = integers<br />

Ynm(θ, φ) = spherical harmonic function<br />

Differential equation<br />

1<br />

sin θ<br />

∂<br />

∂θ<br />

�<br />

sin θ<br />

−1<br />

�<br />

∂Y (θ, φ)<br />

+<br />

∂θ<br />

1<br />

sin 2 ∂<br />

θ<br />

2Y (θ, φ)<br />

∂φ2 Ynm(θ, φ) =<br />

�<br />

f (x)Pn(x) dx (E.178)<br />

+ 1<br />

λY (θ, φ) = 0 (E.179)<br />

a2 λ = a 2 n(n + 1) (E.180)<br />

2n + 1 (n − m)!<br />

4π (n + m)! Pm jmθ<br />

n (cos θ)e<br />

(E.181)


Orthogonality relationships<br />

∞�<br />

Specific examples<br />

� π � π<br />

−π<br />

n�<br />

n=0 m=−n<br />

Functional relationships<br />

Addition formulas<br />

0<br />

Y ∗ n ′ m ′(θ, φ)Ynm(θ, φ) sin θ dθ dφ = δn ′ nδm ′ m<br />

(E.182)<br />

Y ∗ nm (θ ′ ,φ ′ )Ynm(θ, φ) = δ(φ − φ ′ )δ(cos θ − cos θ ′ ) (E.183)<br />

�<br />

1<br />

Y00(θ, φ) =<br />

(E.184)<br />

�<br />

4π<br />

3<br />

Y10(θ, φ) = cos θ (E.185)<br />

�<br />

4π<br />

3 jφ<br />

Y11(θ, φ) =− sin θe (E.186)<br />

�<br />

8π<br />

�<br />

5 3<br />

Y20(θ, φ) =<br />

4π 2 cos2 θ − 1<br />

�<br />

(E.187)<br />

2<br />

�<br />

15<br />

jφ<br />

Y21(θ, φ) =− sin θ cos θe (E.188)<br />

�<br />

8π<br />

15<br />

Y22(θ, φ) =<br />

32π sin2 2 jφ<br />

θe (E.189)<br />

� �<br />

7 5<br />

Y30(θ, φ) =<br />

4π 2 cos3 θ − 3<br />

�<br />

cos θ<br />

(E.190)<br />

2<br />

�<br />

21<br />

Y31(θ, φ) =−<br />

64π sin θ � 5 cos 2 θ − 1 � e jφ<br />

(E.191)<br />

�<br />

105<br />

Y32(θ, φ) =<br />

32π sin2 2 jφ<br />

θ cos θe (E.192)<br />

�<br />

35<br />

Y33(θ, φ) =−<br />

64π sin3 3 jφ<br />

θe (E.193)<br />

Yn0(θ, φ) =<br />

� 2n + 1<br />

4π Pn(cos θ) (E.194)<br />

Yn,−m(θ, φ) = (−1) m Y ∗ nm (θ, φ) (E.195)<br />

Pn(cos γ)= 4π<br />

2n + 1<br />

n�<br />

Ynm(θ, φ)Y<br />

m=−n<br />

∗ nm (θ ′ ,φ ′ ) (E.196)<br />

Pn(cos γ) = Pn(cos θ)Pn(cos θ ′ ) +<br />

+<br />

n� (n − m)!<br />

(n + m)! Pm n (cos θ)Pm n (cos θ ′ ) cos � m(φ − φ ′ ) �<br />

m=−n<br />

(E.197)


Series<br />

1<br />

|r − r ′ | =<br />

cos γ = cos θ cos θ ′ + sin θ sin θ ′ cos(φ − φ ′ ) (E.198)<br />

n�<br />

m=−n<br />

|Ynm(θ, φ)| 2 =<br />

1<br />

� r 2 + r ′2 − 2rr ′ cos γ<br />

= 4π<br />

∞�<br />

Series expansion <strong>of</strong> a function<br />

n�<br />

n=0 m=−n<br />

1<br />

2n + 1<br />

2n + 1<br />

4π<br />

r< = min � |r|, |r ′ | � , r> = max � |r|, |r ′ | �<br />

f (θ, φ) =<br />

� π � π<br />

anm =<br />

−π 0<br />

∞�<br />

n�<br />

n=0 m=−n<br />

(E.199)<br />

r n <<br />

r n+1 Y<br />

><br />

∗ nm (θ ′ ,φ ′ )Ynm(θ, φ), (E.200)<br />

(E.201)<br />

anmYnm(θ, φ) (E.202)<br />

f (θ, φ)Y ∗ nm (θ, φ) sin θ dθ dφ (E.203)

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!