12.07.2015 Views

The 5th Asia Summer School and Symposium on Laser-plasma ...

The 5th Asia Summer School and Symposium on Laser-plasma ...

The 5th Asia Summer School and Symposium on Laser-plasma ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

CONTENTCONTENT ............................................................................................................................ 3AGENDA .............................................................................................................................. 5PROGRAM .......................................................................................................................... 7<strong>Laser</strong> science ....................................................................................................................... 9PIC simulati<strong>on</strong> of LWFA <str<strong>on</strong>g>and</str<strong>on</strong>g> capillary discharge .............................................................. 10Basic issues <strong>on</strong> laser-<strong>plasma</strong> accelerati<strong>on</strong> for novel versatile applicati<strong>on</strong>s...................... 11Charged particle beam physics in laser-<strong>plasma</strong> accelerati<strong>on</strong> ........................................... 12C<strong>on</strong>cepts of laser <strong>plasma</strong> accelerati<strong>on</strong> ............................................................................. 13Plasma based accelerati<strong>on</strong> at UCLA: theory, simulati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> experiment ........................ 14Advanced simulati<strong>on</strong> tools for laser-<strong>plasma</strong> accelerati<strong>on</strong> ................................................. 15Stability improvement of laser-accelerated electr<strong>on</strong> beam <str<strong>on</strong>g>and</str<strong>on</strong>g> its c<strong>on</strong>trol........................ 16<strong>Laser</strong> driven <strong>plasma</strong> wakefield accelerators <str<strong>on</strong>g>and</str<strong>on</strong>g> radiati<strong>on</strong> sources ................................. 17Experiments <str<strong>on</strong>g>and</str<strong>on</strong>g> Diagnostics <strong>on</strong> <strong>Laser</strong> Particle Accelerati<strong>on</strong> ........................................... 18Generati<strong>on</strong> of fast electr<strong>on</strong>s in the intense laser-<strong>plasma</strong> interacti<strong>on</strong>s .............................. 19<strong>Laser</strong> i<strong>on</strong> accelerati<strong>on</strong> in laser-foil interacti<strong>on</strong> ................................................................... 20Energetic i<strong>on</strong> generati<strong>on</strong> by high c<strong>on</strong>trast lasers irradiated <strong>on</strong> nanometer-foils ............... 21Particle accelerati<strong>on</strong> by circularly polarized lasers ............................................................ 22Stable prot<strong>on</strong> beam accelerati<strong>on</strong> in two-i<strong>on</strong>-specie regime dominated by the laserradiati<strong>on</strong> pressure .............................................................................................................. 23High harm<strong>on</strong>ic x-ray sources ............................................................................................. 24Overview of high power THz sources from laser-<strong>plasma</strong> interacti<strong>on</strong> ................................ 25Relativistic electrodynamics, synchrotr<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> undulator radiati<strong>on</strong> ................................... 26An introducti<strong>on</strong> to particle accelerators ............................................................................. 27An introducti<strong>on</strong> to beam dynamics .................................................................................... 28THz regi<strong>on</strong> accelerator including beam driven dielectric accelerati<strong>on</strong> .............................. 29Analytical method for laser <strong>plasma</strong> interacti<strong>on</strong> .................................................................. 30Recent progress in laser wakefield accelerati<strong>on</strong> experiments .......................................... 31Electr<strong>on</strong> Bow-wave injecti<strong>on</strong> in laser wake field accelerati<strong>on</strong> ........................................... 32Efficient energy coupling into nanolayed target by intense short-pulse laser ................... 333


9:00~11:00 Sessi<strong>on</strong> VII11:00~11:30 Coffee breakC<strong>on</strong>ference room 2 st Floor11:30~12:30 Sessi<strong>on</strong> VII12:30~13:30 Lunch 1 st Floor13:30~15:00 Sessi<strong>on</strong> VIII C<strong>on</strong>ference room 2 st Floor15:00~16:50 Lab. tour SIOM17:00~18:00 Coffee break <str<strong>on</strong>g>and</str<strong>on</strong>g> Poster 2 st Floor18:30~20:30 Banquet 1 st FloorAug. 20, 2010 Friday7:30~17:30 EXPO 2010 Waiting for the notice6


PROGRAMInvited lectures: 60 minutesInvited talks: 30 minutes or 15 minutesAug. 16Aug. 17Sessi<strong>on</strong> IChairman: Hyy<strong>on</strong>g Suk10:00~11:00 <strong>Laser</strong> science (Invited lecture) Prof. Leng11:30~12:30PIC simulati<strong>on</strong> of LWFA <str<strong>on</strong>g>and</str<strong>on</strong>g> capillary discharge(Invited lecture)Prof. HurSessi<strong>on</strong> IIChairman: Dino Jaroszynski13:30~14:30Basic issues <strong>on</strong> laser-<strong>plasma</strong> accelerati<strong>on</strong> fornovel versatile applicati<strong>on</strong>s (Invited lecture)Prof. Nakajima14:30~15:30Charged-particle beam physics in laser-<strong>plasma</strong>accelerati<strong>on</strong> (Invited lecture)Prof. Suk16:00~17:00 C<strong>on</strong>cepts of <strong>Laser</strong> Plasma (Invited lecture) Prof. Huang17:00~18:00Sessi<strong>on</strong> III9:00~10:0010:00~11:0011:30~12:30Sessi<strong>on</strong> IV13:30~14:3014:30~15:3016:00~17:0017:00~17:3017:30~17:4517:45~18:00Plasma based accelerati<strong>on</strong> at UCLA: theory,Dr. Lusimulati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> experimentn (Invited lecture)Chairman: Shigeo KawataAdvanced simulati<strong>on</strong> tools for laser-<strong>plasma</strong>Dr. Cowanaccelerati<strong>on</strong> (Invited lecture)Stability improvement of laser-acceleratedDr. Kotakielectr<strong>on</strong> beam <str<strong>on</strong>g>and</str<strong>on</strong>g> its c<strong>on</strong>trol (Invited lecture)<strong>Laser</strong>-driven <strong>plasma</strong> wakefield accelerators <str<strong>on</strong>g>and</str<strong>on</strong>g>Prof. Jaroszynskiradiati<strong>on</strong> sources (Invited lecture)Chairman: Hideyuki KotakiExperimental study <strong>on</strong> laser particlesProf. Guaccelerati<strong>on</strong> (Invited lecture)Generati<strong>on</strong> of fast electr<strong>on</strong>s in the intenseProf. Lilaser-<strong>plasma</strong> interacti<strong>on</strong>s (Invited lecture)<strong>Laser</strong> i<strong>on</strong> accelerati<strong>on</strong> in lase-foil interacti<strong>on</strong>Prof. Kawata(Invited lecture)Energetic i<strong>on</strong> generati<strong>on</strong> by high c<strong>on</strong>trast laserProf. Yanirradiated <strong>on</strong> nanometer-foil (Invited talk)Particle accelerati<strong>on</strong> by circularly polarizedDr. Wanglasers (Invited talk)Stable prot<strong>on</strong> beam accelerati<strong>on</strong> inDr. T<strong>on</strong>gpuYutwo-i<strong>on</strong>-specie regime dominated by the laser7


adiati<strong>on</strong> pressure (Invited talk)Aug. 18Aug. 19Sessi<strong>on</strong> VChairman: Helmut Wiedemann9:00~11:00 High harm<strong>on</strong>ic X-ray sources (Invited lecture) Prof. Nam11:30~12:30Sessi<strong>on</strong> VI13:30~15:3016:00~18:00Sessi<strong>on</strong> VII9:00~10:0010:00~11:0011:30~12:0012:00~12:30Sessi<strong>on</strong> VIII13:30~14:0014:00~14:3014:30~15:00High power THz sources from relativistic laserProf. Sheng<strong>plasma</strong>s (Invited lecture)Chairman: Zhengming ShengRelativisticelectrodynamics,synchrotr<strong>on</strong>-radiati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> undulator radiati<strong>on</strong> Prof. Wiedemann(Invited lecture)An introducti<strong>on</strong> to particle accelerators,historical review <str<strong>on</strong>g>and</str<strong>on</strong>g> basic physics (Invitedlecture)Prof. ZhangAn introducti<strong>on</strong> to beam dynamics (Invitedlecture)Chairman: Chang Hee NamTHz regi<strong>on</strong> accelerator including beam drivenProf. Yoshidadielectric accelerati<strong>on</strong> (Invited lecture)Analytical method for laser <strong>plasma</strong> interacti<strong>on</strong>Prof. Wei Yu(Invited lecture)Recent progress in laser wakefield accelerati<strong>on</strong>Dr. Hafzexperiments (Invited talk)Electr<strong>on</strong> bow-wave Injecti<strong>on</strong> in laser wake fieldProf. Maaccelerati<strong>on</strong> (Invited talk)Chairman: Wei YuEfficient laser energy coupling bynanolayeredProf. Caotarget (Invited talk)Enhancement of electr<strong>on</strong> injecti<strong>on</strong> using twoauxiliary interfering-pulses in LWFA (Invited Prof. Yintalk)Electr<strong>on</strong> accelerati<strong>on</strong> in wake bubble byultraintense laser interacting with <strong>plasma</strong> Prof. Xie(Invited talk)8


<strong>Laser</strong> scienceYuxin Leng(SIOM, CAS, China)9


PIC simulati<strong>on</strong> of LWFA <str<strong>on</strong>g>and</str<strong>on</strong>g> capillary dischargeMin Sup HurKERI, Korea10


Basic issues <strong>on</strong> laser-<strong>plasma</strong> accelerati<strong>on</strong> for novel versatileapplicati<strong>on</strong>sKazuhisa NakajimaHigh Energy Accelerator Research Organizati<strong>on</strong>, Oho, Tsukuba, Ibaraki 305-0801 JapanDepartment of Physics, Shanghai Jiao T<strong>on</strong>g University, 200240, ChinaIn this decade, worldwide experimental <str<strong>on</strong>g>and</str<strong>on</strong>g> theoretical researches <strong>on</strong> laser-<strong>plasma</strong>accelerators have brought about great progress in high-energy high-quality electr<strong>on</strong>beams of the order of GeV-class energy <str<strong>on</strong>g>and</str<strong>on</strong>g> a few percent energy spread. On the otherh<str<strong>on</strong>g>and</str<strong>on</strong>g>, laser-driven producti<strong>on</strong> of GeV-class high-quality i<strong>on</strong> beams such as prot<strong>on</strong>s <str<strong>on</strong>g>and</str<strong>on</strong>g>carb<strong>on</strong> i<strong>on</strong>s is underdeveloped, harnessing development of Petawatt-class ultra-intenselasers with high-quality <str<strong>on</strong>g>and</str<strong>on</strong>g> ultra-thin foil targets. <str<strong>on</strong>g>The</str<strong>on</strong>g>se high-energy high-quality particlebeams make it possible to open the door for a wide range of applicati<strong>on</strong>s in research, <str<strong>on</strong>g>and</str<strong>on</strong>g>medical <str<strong>on</strong>g>and</str<strong>on</strong>g> industrial uses.In this lecture, basic issues <strong>on</strong> laser-driven <strong>plasma</strong> particle accelerators includingelectr<strong>on</strong>- <str<strong>on</strong>g>and</str<strong>on</strong>g> i<strong>on</strong>-accelerati<strong>on</strong> are reviewed from the aspects of injecti<strong>on</strong> or particlegenerati<strong>on</strong>, accelerati<strong>on</strong> process, resultant beam properties such as energy, energyspread, emittance, bunch length <str<strong>on</strong>g>and</str<strong>on</strong>g> charge, strictly determined by accelerati<strong>on</strong>mechanism or laser-<strong>plasma</strong> interacti<strong>on</strong> such as the bubble mechanism for electr<strong>on</strong>s <str<strong>on</strong>g>and</str<strong>on</strong>g>radiati<strong>on</strong> pressure accelerati<strong>on</strong> for i<strong>on</strong>s. Based <strong>on</strong> currently vital researches <strong>on</strong> laser<strong>plasma</strong> accelerators, we c<strong>on</strong>ceive novel versatile tools for broad scientific fields rangingfrom basic researches to medical <str<strong>on</strong>g>and</str<strong>on</strong>g> industrial applicati<strong>on</strong>s in c<strong>on</strong>juncti<strong>on</strong> with the recentcutting-edge technology.11


Charged particle beam physics in laser-<strong>plasma</strong> accelerati<strong>on</strong>Hyy<strong>on</strong>g SukAPRI, Gwangju Institute of Science <str<strong>on</strong>g>and</str<strong>on</strong>g> Technology Gwangju, 500-712 Rebuplic of KoreaIn laser-driven <strong>plasma</strong> accelerati<strong>on</strong>, intense high-energy charged-particle beams aregenerated by str<strong>on</strong>g laser-<strong>plasma</strong> interacti<strong>on</strong>s. Such beams are quite unique in severalpoints of view compared with those from RF-based c<strong>on</strong>venti<strong>on</strong>al accelerators, <str<strong>on</strong>g>and</str<strong>on</strong>g>dynamics of charged particle beams is an interesting <str<strong>on</strong>g>and</str<strong>on</strong>g> important subject inlaser-<strong>plasma</strong> accelerati<strong>on</strong>. In this lecture, some details of the beam dynamics inlaser-<strong>plasma</strong> accelerati<strong>on</strong> are presented, which will be helpful for graduate students <str<strong>on</strong>g>and</str<strong>on</strong>g>young scientists.12


C<strong>on</strong>cepts of laser <strong>plasma</strong> accelerati<strong>on</strong>Yen-Chieh HuangDepartment of Electrical Engineering, Nati<strong>on</strong>al Tsinghua University,Hsinchu 30013, Taiwan China13


Plasma based accelerati<strong>on</strong> at UCLA: theory, simulati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g>experimentWei LuUniversity of California, Los Angeles (UCLA)<str<strong>on</strong>g>The</str<strong>on</strong>g> field of Plasma based accelerati<strong>on</strong> (LWFA <str<strong>on</strong>g>and</str<strong>on</strong>g> PWFA) has experienced amazingdevelopment lately. During the past decade, Researchers at UCLA <str<strong>on</strong>g>and</str<strong>on</strong>g> their collaboratorshave achieved many important progresses <strong>on</strong> theory, simulati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> experiment in bothLWFA <str<strong>on</strong>g>and</str<strong>on</strong>g> PWFA. In this lecture, I will describe some of these progress that I haveactively engaged in <str<strong>on</strong>g>and</str<strong>on</strong>g> try to give my pers<strong>on</strong>al view of this field. On theory part, the topicsI will cover include the n<strong>on</strong>linear wake excitati<strong>on</strong> in the blowout regime, beam loading,hosing instability, multi-dimensi<strong>on</strong>al injecti<strong>on</strong> (self <str<strong>on</strong>g>and</str<strong>on</strong>g> c<strong>on</strong>trolled) <str<strong>on</strong>g>and</str<strong>on</strong>g> phenomenologicalframework <str<strong>on</strong>g>and</str<strong>on</strong>g> scaling of LWFA in the blowout regime. On simulati<strong>on</strong> part, the topics I willcover include the full scale 3D modeling of LWFA for GeV to 100GeV stage by large scaleparallel PIC simulati<strong>on</strong>s in both lab frame <str<strong>on</strong>g>and</str<strong>on</strong>g> in a Lorentz boosted frame. On experimentpart, the topics I will cover include both PWFA <str<strong>on</strong>g>and</str<strong>on</strong>g> LWFA. For PWFA, a series ofsuccessful experiments at SLAC will be discussed, including an experiment thatdem<strong>on</strong>strated energy doubling of the 42GeV electr<strong>on</strong> beam. For LWFA, a series ofexperiments at UCLA <str<strong>on</strong>g>and</str<strong>on</strong>g> LLNL will be discussed, including short pulse laser self-guiding,injecti<strong>on</strong> threshold, i<strong>on</strong>izati<strong>on</strong> induced injecti<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> GeV level electr<strong>on</strong> beam generati<strong>on</strong> inthe self-guided blowout regime with both self <str<strong>on</strong>g>and</str<strong>on</strong>g> i<strong>on</strong>izati<strong>on</strong> induced injecti<strong>on</strong>.14


Advanced simulati<strong>on</strong> tools for laser-<strong>plasma</strong> accelerati<strong>on</strong>Benjamin M. Cowan 1 , David L. Bruhwiler 1 , John R. Cary 1,2 , Estelle Cormier-Michel 1,3 , EricEsarey 3 , Camer<strong>on</strong> G. R. Geddes 3 , Peter Messmer 1 , <str<strong>on</strong>g>and</str<strong>on</strong>g> Kevin Paul 11Tech-X Corporati<strong>on</strong>, Boulder, Colorado 80303, USA2University of Colorado, Boulder, Colorado 80309, USA3Lawrence Berkeley Nati<strong>on</strong>al Laboratory, Berkeley, California 94720, USAAs the field of laser wakefield accelerati<strong>on</strong> makes rapid progress, improved computati<strong>on</strong>almethods are essential to underst<str<strong>on</strong>g>and</str<strong>on</strong>g>ing the physics of the latest designs <str<strong>on</strong>g>and</str<strong>on</strong>g> furtherdeveloping the technology. We present an overview of recent advances in computati<strong>on</strong>alalgorithms for laser-<strong>plasma</strong> accelerati<strong>on</strong>.<str<strong>on</strong>g>The</str<strong>on</strong>g> use of higher-order particles inparticle-in-cell (PIC) simulati<strong>on</strong>s has been shown to significantly reduce numericalnoise. To simulate meter-scale stages, several algorithms have been developed,including operating in a Lorentz-boosted frame, scaling simulati<strong>on</strong> parameters, <str<strong>on</strong>g>and</str<strong>on</strong>g>reduced models which remove the need to resolve the fast laser oscillati<strong>on</strong>s. Suchalgorithms can achieve over 5 orders of magnitude speedup over c<strong>on</strong>venti<strong>on</strong>al PICsimulati<strong>on</strong>s. Finally, we discuss computati<strong>on</strong> <strong>on</strong> emerging architectures, such asgraphics processing units, which can further speed simulati<strong>on</strong>s by two orders ofmagnitude.Work supported by U. S. Department of Energy, Office of Science, Office of High EnergyPhysics grants DE-SC0000840 (SBIR), DE-FC02-07ER41499 (ComPASS SciDAC), <str<strong>on</strong>g>and</str<strong>on</strong>g>DE-AC02-05CH11231 (LBNL), <str<strong>on</strong>g>and</str<strong>on</strong>g> by Tech-X Corporati<strong>on</strong>.15


Stability improvement of laser-accelerated electr<strong>on</strong> beam <str<strong>on</strong>g>and</str<strong>on</strong>g> itsc<strong>on</strong>trolHideyuki KotakiJapan Atomic Energy Agency<strong>Laser</strong> wakefield accelerati<strong>on</strong> (LWFA) is regarded as a basis for the next-generati<strong>on</strong> ofcharged particle accelerators. In experiments, it has been dem<strong>on</strong>strated that LWFA iscapable of generating electr<strong>on</strong> bunches with high quality: quasi-m<strong>on</strong>oenergetic, low inemittance, <str<strong>on</strong>g>and</str<strong>on</strong>g> a very short durati<strong>on</strong> of the order of ten femtosec<strong>on</strong>ds. Such femtosec<strong>on</strong>dbunches can be used to measure ultrafast phenomena. In applicati<strong>on</strong>s of the laseraccelerated electr<strong>on</strong> beam, it is necessary to generate a stable electr<strong>on</strong> beam <str<strong>on</strong>g>and</str<strong>on</strong>g> toc<strong>on</strong>trol the electr<strong>on</strong> beam.In order to improve the stability <str<strong>on</strong>g>and</str<strong>on</strong>g> to c<strong>on</strong>trol the electr<strong>on</strong> beam, some methods areproposed. <str<strong>on</strong>g>The</str<strong>on</strong>g> proposed methods are colliding injecti<strong>on</strong> [1], i<strong>on</strong>izati<strong>on</strong>-stage c<strong>on</strong>trol [2],etc. <str<strong>on</strong>g>The</str<strong>on</strong>g> colliding injecti<strong>on</strong> uses multiple laser pulses. A driver pulse produces a wakewave to accelerate electr<strong>on</strong>s. Colliding laser pulses injects <strong>plasma</strong> electr<strong>on</strong>s into the wakeexcited by the driver pulse. We can separate the wake wave excitati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> the electr<strong>on</strong>injecti<strong>on</strong>. <str<strong>on</strong>g>The</str<strong>on</strong>g> separati<strong>on</strong> makes possible to improve the electr<strong>on</strong>-beam stability <str<strong>on</strong>g>and</str<strong>on</strong>g> toc<strong>on</strong>trol the electr<strong>on</strong> beam. <str<strong>on</strong>g>The</str<strong>on</strong>g> i<strong>on</strong>izati<strong>on</strong>-stage c<strong>on</strong>trol by using high-Z gases makes al<strong>on</strong>g channel due to cascade i<strong>on</strong>izati<strong>on</strong>. <str<strong>on</strong>g>The</str<strong>on</strong>g> l<strong>on</strong>g channel improves the stability of theelectr<strong>on</strong> beam pointing.Experimentally, we have improved the electr<strong>on</strong> beam stability by the optical injecti<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g>the i<strong>on</strong>izati<strong>on</strong>-stage c<strong>on</strong>trol. In my lecture, I will present the improvement of the electr<strong>on</strong>beam stability, <str<strong>on</strong>g>and</str<strong>on</strong>g> its c<strong>on</strong>trol of the directi<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> the profile.Reference1. E. Esarey et al., PRL 79, 2682 (1997); H. Kotaki et al., PoP 9, 1392 (2002); J. Faureet al., Nature 444, 737 (2006); H. Kotaki et al., PRL 102, 211083 (2009).2. M. Mori, et al., Phys. Rev. ST-AB 12, 082801 (2009).16


<strong>Laser</strong> driven <strong>plasma</strong> wakefield accelerators <str<strong>on</strong>g>and</str<strong>on</strong>g> radiati<strong>on</strong> sourcesD. A. JaroszynskiUniversity of Strathclyde, Physics Department, John Anders<strong>on</strong> Building107 Rottenrow, Glasgow, G4 0NG, Scotl<str<strong>on</strong>g>and</str<strong>on</strong>g>, UKIn this lecture we will present progress towards producing an ultra-compact laser driven<strong>plasma</strong> wakefield accelerator <str<strong>on</strong>g>and</str<strong>on</strong>g> applying it as an ultra-short pulse X-ray radiati<strong>on</strong> source.We will discuss how the state-of-the-art before 2004, where electr<strong>on</strong> beams wereproduced with 100% energy spreads, has been completely transformed by pi<strong>on</strong>eeringdevelopments that have culminating in wakefield accelerators routinely producing veryhigh quality electr<strong>on</strong> beams with energies from 50 MeV to more than 1 GeV. Anoverview of the basic physical processes of <strong>plasma</strong> wakefild accelerati<strong>on</strong> will be given <str<strong>on</strong>g>and</str<strong>on</strong>g>we will examine how the transverse forces in the <strong>plasma</strong> bubble produced by the laserpulse cause oscillati<strong>on</strong> of the electr<strong>on</strong>s <str<strong>on</strong>g>and</str<strong>on</strong>g> result in the emissi<strong>on</strong> of brilliant X-ray pulses.We will also present an overview of applicati<strong>on</strong>s of wakefield accelerators.17


Experiments <str<strong>on</strong>g>and</str<strong>on</strong>g> Diagnostics <strong>on</strong> <strong>Laser</strong> Particle Accelerati<strong>on</strong>Gu YuqiuNati<strong>on</strong>al Key Laboratory of <strong>Laser</strong> Fusi<strong>on</strong>,<strong>Laser</strong> Fusi<strong>on</strong> Research Center, CAEP, Mianyan, 621900Abstract: <strong>Laser</strong> particle accelerati<strong>on</strong>, as an observable phenomen<strong>on</strong> of ultra intense laserinteracting with targets, is a fast increasing research field for its potential applicati<strong>on</strong>s.Many theories <str<strong>on</strong>g>and</str<strong>on</strong>g> computer simulati<strong>on</strong>s were developed for describing laser particleaccelerati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> laser interacting with matter. Experiments <str<strong>on</strong>g>and</str<strong>on</strong>g> diagnostics are moreimportant from another point of view, since practice is the sole criteri<strong>on</strong> for testing truth. Inthis report, the experiments <strong>on</strong> electr<strong>on</strong> accelerati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> prot<strong>on</strong> accelerati<strong>on</strong> <strong>on</strong> SILEX-Iwere introduced <str<strong>on</strong>g>and</str<strong>on</strong>g> the diagnostics used in the experiments were described in details.18


Generati<strong>on</strong> of fast electr<strong>on</strong>s in the intense laser-<strong>plasma</strong>interacti<strong>on</strong>sYut<strong>on</strong>g LiInstitute of Physics, Chinese Academy of Sciences, Beijing 100080, ChinaEmail: ytli@aphy.iphy.ac.cnIn the interacti<strong>on</strong> of a high intensity relativistic laser pulse with a solid foil, a large numberof electr<strong>on</strong>s can be accelerated to very high energies, forming so-called fast electr<strong>on</strong>s.Some of the fast electr<strong>on</strong>s are ejected backward from the interacti<strong>on</strong> regi<strong>on</strong> into thevacuum in fr<strong>on</strong>t of the target. <str<strong>on</strong>g>The</str<strong>on</strong>g> others transport into the overdense <strong>plasma</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> coldtarget regi<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g>, finally, part of them escape from the rear target surface. <str<strong>on</strong>g>The</str<strong>on</strong>g> fastelectr<strong>on</strong>s are of significance for fast igniti<strong>on</strong> in inertial c<strong>on</strong>fined fusi<strong>on</strong>, high-energy i<strong>on</strong>generati<strong>on</strong>, x-ray emissi<strong>on</strong>, etc. In this lecture the dependence of the fast electr<strong>on</strong> beams<strong>on</strong> the experimental c<strong>on</strong>diti<strong>on</strong>s of the laser <str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>plasma</strong>s, such as intensity, polarizati<strong>on</strong>,incident angle, scale length of the pre<strong>plasma</strong>, as well as the possible ways to c<strong>on</strong>trol theemissi<strong>on</strong> directi<strong>on</strong> of fast electr<strong>on</strong>s will be discussed.Funding supported by the Nati<strong>on</strong>al Nature Science Foundati<strong>on</strong> of China (Grant Nos. 10925421,10734130), Nati<strong>on</strong>al Basic Research Program of China (973 Program) (Grant No.2007CB815101) <str<strong>on</strong>g>and</str<strong>on</strong>g> the Nati<strong>on</strong>al High-Tech ICF program.19


<strong>Laser</strong> i<strong>on</strong> accelerati<strong>on</strong> in laser-foil interacti<strong>on</strong>Shigeo KawataUtsunomya University, 321-8585 Utsunomiya Japan.kwt@cc.utsunomiya-u.ac.jpIn this lecture key issues relating to laser i<strong>on</strong> accelerati<strong>on</strong> are summarized <str<strong>on</strong>g>and</str<strong>on</strong>g> explained withdetail examples. Intense short-pulse lasers are now available in actual experiments. <str<strong>on</strong>g>The</str<strong>on</strong>g> laserhas opened a new world in laser particle accelerati<strong>on</strong>, radiati<strong>on</strong> generati<strong>on</strong>, etc. In laserthin-foil interacti<strong>on</strong> first electr<strong>on</strong>s are expelled or accelerated by the laser str<strong>on</strong>g field, <str<strong>on</strong>g>and</str<strong>on</strong>g> forma str<strong>on</strong>g electric field or a large current in the foil depending <strong>on</strong> the thin foil density <str<strong>on</strong>g>and</str<strong>on</strong>g> thefoil-parameter values. <str<strong>on</strong>g>The</str<strong>on</strong>g> high-energy-electr<strong>on</strong> current or moti<strong>on</strong> is sustained for the laserpulse length or a l<strong>on</strong>ger period than the laser pulse. During the period i<strong>on</strong>s are graduallyaccelerated by the electric field, created by the high-energy electr<strong>on</strong>s or the time-dependentstr<strong>on</strong>g magnetic field. In the laser i<strong>on</strong> accelerati<strong>on</strong> the following key issues are included: i<strong>on</strong>species c<strong>on</strong>trol, i<strong>on</strong> energy c<strong>on</strong>trol, i<strong>on</strong> divergence reducti<strong>on</strong>, i<strong>on</strong> beam pulse shape c<strong>on</strong>trol,energy spectrum c<strong>on</strong>trol, laser-i<strong>on</strong> energy c<strong>on</strong>vergence enhancement, i<strong>on</strong> beam temperaturec<strong>on</strong>trol, i<strong>on</strong> particle number increase, etc.In the lecture the attendees are requested to propose or discuss new ideas to improve the i<strong>on</strong>beam quality or to propose new directi<strong>on</strong>s for the laser i<strong>on</strong> accelerati<strong>on</strong>. New soluti<strong>on</strong>s arevery welcome to solve the issues.Funding supported by JSPS, MEXT, CORE (Center for Optical Research <str<strong>on</strong>g>and</str<strong>on</strong>g> Educati<strong>on</strong>) <str<strong>on</strong>g>and</str<strong>on</strong>g>ILE / Osaka university, Japan.<str<strong>on</strong>g>The</str<strong>on</strong>g> Author would like to extend his acknowledgements to colleagues <str<strong>on</strong>g>and</str<strong>on</strong>g> friends, including Dr.Y.Y. Ma, Dr. W.M. Wang, Prof. Z.M. Sheng, Prof. Y.T. Li, Dr. Q. K<strong>on</strong>g, Dr. P.X. Wang, Prof. J.Limpouch, Dr. O. Klimo, Prof. A.A. Andreev, Dr. K. takahashi, Dr. D. Barada <str<strong>on</strong>g>and</str<strong>on</strong>g> Dr. D. Satoh.20


Energetic i<strong>on</strong> generati<strong>on</strong> by high c<strong>on</strong>trast lasers irradiated<strong>on</strong> nanometer-foilsX.Q.YanState Key Lab. of Nuclear Physics & Technology, PKU, Beijing 100871, ChinaMax Planck for Quantum Optics (MPQ), Garching B. Muenchen, 85748, GermanyUltrahigh-intensity lasers can produce accelerating fields of TV/m, surpassing those inc<strong>on</strong>venti<strong>on</strong>al accelerators for i<strong>on</strong>s by few orders of magnitude. Remarkable progress hasbeen made in producing laser-driven ultra-bright MeV prot<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> i<strong>on</strong> beams in a verycompact fashi<strong>on</strong> compared to c<strong>on</strong>venti<strong>on</strong>al RF accelerators. <str<strong>on</strong>g>The</str<strong>on</strong>g>se beams have beenproduced up to several MeV per nucle<strong>on</strong> with outst<str<strong>on</strong>g>and</str<strong>on</strong>g>ing properties in terms oftransverse emittance <str<strong>on</strong>g>and</str<strong>on</strong>g> current, but typically suffer from exp<strong>on</strong>ential energydistributi<strong>on</strong>s.A new mechanism for laser-driven i<strong>on</strong> accelerati<strong>on</strong> was proposed, where particles gainenergy directly from the Radiati<strong>on</strong> Pressure Accelerati<strong>on</strong> or Phase Stable Accelerati<strong>on</strong>(RPA / PSA). By choosing the laser intensity, target thickness, <str<strong>on</strong>g>and</str<strong>on</strong>g> density such that theradiati<strong>on</strong> pressure equals the restoring force given by the charge separati<strong>on</strong> field, the i<strong>on</strong>scan be bunched in a phase-stable way <str<strong>on</strong>g>and</str<strong>on</strong>g> efficiently accelerated to a higher energy. Inproof of principle experiments quasi-m<strong>on</strong>oenergetic peaks for C 6+at ~30 MeV wereobserved by MPQ/MBI/LANL/PKU group <str<strong>on</strong>g>and</str<strong>on</strong>g> C6 +at >500 MeV (exp<strong>on</strong>ential) wasobserved at LANL/MPQ. Furthermore at LANL also quasi-m<strong>on</strong>oenergetic prot<strong>on</strong>s at~40MeV were generated from nm thin diam<strong>on</strong>d-like carb<strong>on</strong> foils. <str<strong>on</strong>g>The</str<strong>on</strong>g>oretical study showsthat the required medical prot<strong>on</strong>/carb<strong>on</strong> beams (200MeV for prot<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> 400MeV/u forCarb<strong>on</strong>) can be generated from hydrogen/carb<strong>on</strong> foil (sub micr<strong>on</strong>) in a laser intensity of~10 21 /10 22 W/cm 2 .Funding supported by NSFC (10935002)21


Particle accelerati<strong>on</strong> by circularly polarized lasersW.-M. Wang 1,2 , Z.-M. Sheng 1,3 , S. Kawata 2 , Y.-T. Li 1 , L.-M. Chen 1 , J. Zhang 1,31 Beijing Nati<strong>on</strong>al Laboratory of C<strong>on</strong>densed Matter Physics, Institute of Physics, CAS, Beijing100190, China2 Graduate <str<strong>on</strong>g>School</str<strong>on</strong>g> of Engineering, Utsunomiya University, 7-1-2 Yohtoh, Utsunomiya 321-8585,Japan3 Department of Physics, Shanghai Jiao T<strong>on</strong>g University, Shanghai 200240, Chinahbwwm1@aphy.iphy.ac.cn<str<strong>on</strong>g>The</str<strong>on</strong>g> first part is c<strong>on</strong>cerned with the electr<strong>on</strong> accelerati<strong>on</strong> by a circularly polarized laserpulse. Our analytical <str<strong>on</strong>g>and</str<strong>on</strong>g> simulati<strong>on</strong> investigati<strong>on</strong>s show that future ultra-short 10 22 -10 25Wcm -2 laser pulses offer the possibility of producing ultra-short m<strong>on</strong>oenergetic electr<strong>on</strong>beams in the GeV-TeV level by direct laser p<strong>on</strong>deromotive force accelerati<strong>on</strong> (LPFA) indistances of millimeters to about <strong>on</strong>e meter. A scheme is proposed that a thin solid foil<str<strong>on</strong>g>and</str<strong>on</strong>g> a thick solid foil are placed <strong>on</strong> the laser axis, where the thin foil supplies the electr<strong>on</strong>source for LPFA <str<strong>on</strong>g>and</str<strong>on</strong>g> the thick foil reflects the laser away while allows the acceleratedelectr<strong>on</strong>s to go through. By optimizing the distance between the foils, <strong>on</strong>e can obtain themaximum electr<strong>on</strong> beam energy. This scheme is dem<strong>on</strong>strated by particle-in-cellsimulati<strong>on</strong>s. In such laser regime, LPFA has the larger accelerati<strong>on</strong> field <str<strong>on</strong>g>and</str<strong>on</strong>g> can producehigher energy electr<strong>on</strong> beams than laser wakefield accelerati<strong>on</strong> (LWFA).Such laser can also be used to accelerate i<strong>on</strong>s. <str<strong>on</strong>g>The</str<strong>on</strong>g> accelerati<strong>on</strong> of prot<strong>on</strong>s by theradiati<strong>on</strong> pressure of a circularly polarized laser pulse with the intensity up to 10 21 Wcm -2from a double-layer or multi-i<strong>on</strong>-mixed thin foil is investigated by two-dimensi<strong>on</strong>alparticle-in-cell simulati<strong>on</strong>s, where the double-layer foil is composed of a heavy i<strong>on</strong> layer<str<strong>on</strong>g>and</str<strong>on</strong>g> a prot<strong>on</strong> layer. It is found that the radiati<strong>on</strong> pressure accelerati<strong>on</strong> can be classifiedinto three regimes according to the laser intensity due to the different critical intensities forlaser transparency with different i<strong>on</strong> species. When the laser intensity is moderately high,the laser pushes the electr<strong>on</strong>s neither so slowly nor so quickly that the prot<strong>on</strong>s can catchup with the electr<strong>on</strong>s, while the heavy i<strong>on</strong>s cannot. <str<strong>on</strong>g>The</str<strong>on</strong>g>refore, the prot<strong>on</strong>s can beaccelerated efficiently. <str<strong>on</strong>g>The</str<strong>on</strong>g> prot<strong>on</strong> beam generated from the double-layer foil has betterquality <str<strong>on</strong>g>and</str<strong>on</strong>g> higher energy than from a pure prot<strong>on</strong> foil with the same areal electr<strong>on</strong> density.When the intensity is relatively low, the prot<strong>on</strong>s <str<strong>on</strong>g>and</str<strong>on</strong>g> heavy i<strong>on</strong>s are accelerated together,which is not favorable to the prot<strong>on</strong> accelerati<strong>on</strong>. When the intensity is relatively high,neither the heavy i<strong>on</strong>s nor the prot<strong>on</strong>s can be accelerated efficiently due to the lasertransparency through the target.22


Stable prot<strong>on</strong> beam accelerati<strong>on</strong> in two-i<strong>on</strong>-specie regimedominated by the laser radiati<strong>on</strong> pressureT<strong>on</strong>gpu YuInstitut fuer <str<strong>on</strong>g>The</str<strong>on</strong>g>oretische Physik I, HHUD, 40225 Duesseldorf, GermanyRecently, with the rapid development of laser technology, <strong>on</strong>e of the most straightforwardaccelerati<strong>on</strong> mechanisms, radiati<strong>on</strong> pressure accelerati<strong>on</strong> (RPA) is being re-visited. Byusing multi-dimensi<strong>on</strong>al particle-in-cell simulati<strong>on</strong>s, we investigate the prot<strong>on</strong> accelerati<strong>on</strong>dominated by the RPA in a two-i<strong>on</strong>-specie ultra-thin foil. In this two-i<strong>on</strong>-specie regime, thelighter prot<strong>on</strong>s are initially separated from the heavier carb<strong>on</strong> i<strong>on</strong>s due to their highercharge-to-mass ratio Z/m. <str<strong>on</strong>g>The</str<strong>on</strong>g> laser pulse is well-defined so that it doesn’t penetrate thecarb<strong>on</strong> i<strong>on</strong> layer. <str<strong>on</strong>g>The</str<strong>on</strong>g> Rayleigh-Taylor-like (RT) instability seeded at the very early stagethen <strong>on</strong>ly degrades the accelerati<strong>on</strong> of the carb<strong>on</strong> i<strong>on</strong>s which act as a ”cushi<strong>on</strong>” for thelighter prot<strong>on</strong>s. In the absence of prot<strong>on</strong>-RT instability, the produced high qualitym<strong>on</strong>o-energetic prot<strong>on</strong> beams can be well collimated even after the laser-foil interacti<strong>on</strong>c<strong>on</strong>cludes.23


High harm<strong>on</strong>ic x-ray sourcesChang Hee NamDepartment of Physics <str<strong>on</strong>g>and</str<strong>on</strong>g> Coherent X-ray Research Center, KAIST, Daeje<strong>on</strong> 305-701, Koreachnam@kaist.ac.krGaseous atoms, exposed to an intense femtosec<strong>on</strong>d laser field, are periodicallymodulated by the laser electric field <str<strong>on</strong>g>and</str<strong>on</strong>g> emit very high-order harm<strong>on</strong>ics of the laserfrequency. <str<strong>on</strong>g>The</str<strong>on</strong>g> high harm<strong>on</strong>ics possess unique properties of superb spatial coherence<str<strong>on</strong>g>and</str<strong>on</strong>g> ultrashort durati<strong>on</strong> reaching the attosec<strong>on</strong>d range. In this lecture the physical pictureof high harm<strong>on</strong>ic generati<strong>on</strong> processes will be given first, <str<strong>on</strong>g>and</str<strong>on</strong>g> the characteristics of highharm<strong>on</strong>ics <str<strong>on</strong>g>and</str<strong>on</strong>g> applicati<strong>on</strong>s to x-ray interferometry <str<strong>on</strong>g>and</str<strong>on</strong>g> to attosec<strong>on</strong>d pulse generati<strong>on</strong> willthen be explained.24


Overview of high power THz sources from laser-<strong>plasma</strong> interacti<strong>on</strong>Z.M. ShengDepartment of Physics, Shanghai Jiao T<strong>on</strong>g University, Shanghai 200240, ChinaInstitute of Physics, Chinese Academy of Sciences, Beijing 100190, ChinaEmail: zmsheng@sjtu.edu.cn<str<strong>on</strong>g>The</str<strong>on</strong>g> high intensity laser-<strong>plasma</strong> can be a radiati<strong>on</strong> source covering ultra-broad spectrumranging from terahertz (THz) radiati<strong>on</strong> to MeV gamma ray. In this talk, I will present anoverview of recent experimental, theoretical <str<strong>on</strong>g>and</str<strong>on</strong>g> numerical studies <strong>on</strong> THz emissi<strong>on</strong> fromlaser-<strong>plasma</strong> interacti<strong>on</strong>. Particular attenti<strong>on</strong> will be paid <strong>on</strong> the progress made in ourgroup.Experimental investigati<strong>on</strong> of str<strong>on</strong>g THz wave generati<strong>on</strong> by laser interacting with solidtargets has been c<strong>on</strong>ducted. It is found that such emissi<strong>on</strong> is in p-polarizati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> itsenergy scales linearly with the incident laser energy. <str<strong>on</strong>g>The</str<strong>on</strong>g> emissi<strong>on</strong> shows very boardspectrum such as 20THz. It is attributed to the <strong>plasma</strong> currents associated with the hotelectr<strong>on</strong>s produced by the laser pulse.In a theoretical study, it is found that high power THz emissi<strong>on</strong> can be produced by theresidual currents as a laser pulse passing through a gas or <strong>plasma</strong> target. <str<strong>on</strong>g>The</str<strong>on</strong>g> residualcurrents can be produced by field i<strong>on</strong>izati<strong>on</strong> process or by a dc/ac bias field applied overtenuous <strong>plasma</strong>, which is produced by a laser pulse. <str<strong>on</strong>g>The</str<strong>on</strong>g> current can be c<strong>on</strong>vertedefficiently into electromagnetic (EM) emissi<strong>on</strong> at the <strong>plasma</strong> frequency p with itsamplitude <str<strong>on</strong>g>and</str<strong>on</strong>g> polarizati<strong>on</strong> determined by the bias. <str<strong>on</strong>g>The</str<strong>on</strong>g> initial phase of the EM waves canbe c<strong>on</strong>trolled by the triggering time of the bias <str<strong>on</strong>g>and</str<strong>on</strong>g> therefore circularly/elliptically polarizedEM waves can be obtained by applying two bias fields perpendicular to each other. Ananalytical model is presented <str<strong>on</strong>g>and</str<strong>on</strong>g> c<strong>on</strong>firmed by particle-in-cell (PIC) simulati<strong>on</strong>.In another theoretical study, we clarify THz radiati<strong>on</strong> mechanism from a <strong>plasma</strong> filamentformed by an intense femtosec<strong>on</strong>d laser pulse based up<strong>on</strong> 2D PIC simulati<strong>on</strong>. <str<strong>on</strong>g>The</str<strong>on</strong>g>n<strong>on</strong>uniform <strong>plasma</strong> density of the filament formed by field i<strong>on</strong>izati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> the electr<strong>on</strong>moti<strong>on</strong> driven by the laser p<strong>on</strong>deromotive force can result in a n<strong>on</strong>vanishing radiatingcurrent for the THz radiati<strong>on</strong>. This current is mainly located within the pulse <str<strong>on</strong>g>and</str<strong>on</strong>g> the firstcycle of the wakefield of the laser pulse. As the laser pulse propagates, a single-cycle <str<strong>on</strong>g>and</str<strong>on</strong>g>radially polarized THz pulse is c<strong>on</strong>structively built up forward.25


Relativistic electrodynamics, synchrotr<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> undulator radiati<strong>on</strong>Helmut WiedemannStanford UniversityIn this lecture, we discuss the emissi<strong>on</strong> of electromagnetic radiati<strong>on</strong> from relativisticelectr<strong>on</strong> beams. Starting with fundamental rules determining the possibility to emitelectromagnetic radiati<strong>on</strong> from charged particles, we derive the radiati<strong>on</strong> power fromdipole oscillati<strong>on</strong>s of electr<strong>on</strong>s. Applicati<strong>on</strong>s of four-vectors will define the emissi<strong>on</strong>geometry <str<strong>on</strong>g>and</str<strong>on</strong>g> relativistic Doppler effect which together with the Lorentz c<strong>on</strong>tracti<strong>on</strong> playsan important role in the final radiati<strong>on</strong> spectrum. Transforming that to the laboratorysystem we are ready to derive the spectrum of synchrotr<strong>on</strong> radiati<strong>on</strong>. Special inserti<strong>on</strong>devices like wavelength shifters, undulators <str<strong>on</strong>g>and</str<strong>on</strong>g> wiggler magnets have been developed toc<strong>on</strong>trol the radiati<strong>on</strong> properties without affecting the electr<strong>on</strong> beam in the storage ring.Undulator magnets emit quasi m<strong>on</strong>ochromatic radiati<strong>on</strong> in a line spectrum, while radiati<strong>on</strong>from wiggler magnets produces a more <str<strong>on</strong>g>and</str<strong>on</strong>g> more dense line spectrum overlapping at highharm<strong>on</strong>ics into a c<strong>on</strong>tinuous spectrum similar to that of a bending magnet.26


An introducti<strong>on</strong> to particle acceleratorsChuang ZhangInstitute of High Energy Physics, CAS, Beijing 100049, China<str<strong>on</strong>g>The</str<strong>on</strong>g> human’s curiosity <strong>on</strong> the universe has always been the driven force behind thedevelopment of telescopes <str<strong>on</strong>g>and</str<strong>on</strong>g> microscopes. As a type of powerful microscope, particleaccelerators play an important role in discovery <strong>on</strong> the micro-world, which provide a majorstimulus for research into the c<strong>on</strong>stituents <str<strong>on</strong>g>and</str<strong>on</strong>g> nature of matter. Traced to its three roots,the history of accelerators is a c<strong>on</strong>tinuous upgrade towards higher energy, betterperformance <str<strong>on</strong>g>and</str<strong>on</strong>g> wider applicati<strong>on</strong>. Innovative ideas, new methods, <str<strong>on</strong>g>and</str<strong>on</strong>g> new technologiesemerge in endlessly. Historical evoluti<strong>on</strong>, innovative ideas <str<strong>on</strong>g>and</str<strong>on</strong>g> prospective in acceleratordevelopments are briefly reviewed in this lecture.• <str<strong>on</strong>g>The</str<strong>on</strong>g> outline of the lecture is as follows:• From telescope to microscope• Historical evoluti<strong>on</strong> of accelerators• Fr<strong>on</strong>tiers of modern accelerators• Future science <str<strong>on</strong>g>and</str<strong>on</strong>g> accelerators• Summary27


An introducti<strong>on</strong> to beam dynamicsChuang ZhangInstitute of High Energy Physics, CAS, Beijing 100049, ChinaBeam dynamics is the study of particle beams, their moti<strong>on</strong> in envir<strong>on</strong>ments, involvingexternal electro-magnetic fields <str<strong>on</strong>g>and</str<strong>on</strong>g> their interacti<strong>on</strong>s, including the interacti<strong>on</strong> of beamswith matters, of beams with beams, <str<strong>on</strong>g>and</str<strong>on</strong>g> of particle beams with radiati<strong>on</strong>. Evolving fromc<strong>on</strong>cepts <str<strong>on</strong>g>and</str<strong>on</strong>g> ideas derived from classical mechanics, electromagnetism, statisticalphysics, <str<strong>on</strong>g>and</str<strong>on</strong>g> quantum physics. <str<strong>on</strong>g>The</str<strong>on</strong>g> study of beams is opening up a very rich field, withnew effects being discovered <str<strong>on</strong>g>and</str<strong>on</strong>g> new types of beams with novel characteristics beingrealized. Basic knowledge of the beam physics is briefly introduced in this lecture for thestudents who are preparing to work in the field of laser-<strong>plasma</strong> accelerati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> radiati<strong>on</strong>.<str<strong>on</strong>g>The</str<strong>on</strong>g> outline of the lecture is as follows:• Basic C<strong>on</strong>cepts• Transverse Moti<strong>on</strong>• L<strong>on</strong>gitudinal Moti<strong>on</strong>• Collective Effects• Lept<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> Hadr<strong>on</strong>28


THz regi<strong>on</strong> accelerator including beam driven dielectricaccelerati<strong>on</strong>Mitsuhiro YoshidaHigh Energy Accelerator Research Organizati<strong>on</strong> (KEK) in JapanHigher frequency electromagnetic wave can make much higher energy density that leadsvery high electric field. <str<strong>on</strong>g>The</str<strong>on</strong>g> electric field is expected to increase linear to the frequency.<str<strong>on</strong>g>The</str<strong>on</strong>g> terahertz (THz) regi<strong>on</strong> accelerator is growing to become a moderate frequency regi<strong>on</strong>to accelerate the recent low emittance <str<strong>on</strong>g>and</str<strong>on</strong>g> short bunch electr<strong>on</strong> beam. For example, thetransverse beam size can be easily focused under 10 micr<strong>on</strong> using the low emittancebeam <str<strong>on</strong>g>and</str<strong>on</strong>g> the bunch length can be compressed under 100 fs using a photo cathode or abunch compressor. Thus the transverse <str<strong>on</strong>g>and</str<strong>on</strong>g> l<strong>on</strong>gitudinal beam size becomes enoughsmall to capture inside the stable phase space.However such a THz regi<strong>on</strong> accelerator is not currently established since the THz sourceis limited <str<strong>on</strong>g>and</str<strong>on</strong>g> some additi<strong>on</strong>al soluti<strong>on</strong> is required to avoid the wakefield <str<strong>on</strong>g>and</str<strong>on</strong>g> the surfacebreakdown.In this lecture, some c<str<strong>on</strong>g>and</str<strong>on</strong>g>idates of the THz accelerator, its sources <str<strong>on</strong>g>and</str<strong>on</strong>g> simulati<strong>on</strong>methods are presented.29


Analytical method for laser <strong>plasma</strong> interacti<strong>on</strong>Wei Yu(SIOM, CAS, China)30


Recent progress in laser wakefield accelerati<strong>on</strong> experimentsNasr A. M. HafzAPRI, Gwangju Institute of Science <str<strong>on</strong>g>and</str<strong>on</strong>g> Technology, Gwangju 500-712, KoreaRelativistic electr<strong>on</strong> beam generati<strong>on</strong> through the excitati<strong>on</strong> of large-amplitude <strong>plasma</strong> waves byhigh-power ultrashort laser pulses has gained a lot of attenti<strong>on</strong> in the past few years. Such anaccelerati<strong>on</strong> regime is known as the laser wakefield accelerator (LWFA) [1]. In 2004 a breakthroughin LWFA research has led, for the first time, to the generati<strong>on</strong> of high-quality quasim<strong>on</strong>oenergeticelectr<strong>on</strong> beams [2-4]. Since then, several important results have been reported in this field [5-7].With the emergence of compact PW-class <str<strong>on</strong>g>and</str<strong>on</strong>g> PW laser systems around the world, a new era for theLWFA research has started [8-9]. By using PW-class lasers, laser-driven <strong>plasma</strong> accelerati<strong>on</strong> isforeseen to produce multi- GeV electr<strong>on</strong> beams in the near future. One of the main goals for futureLWFA research would be achieving electr<strong>on</strong> energy fr<strong>on</strong>tiers relevant to high-energy physicsapplicati<strong>on</strong>s [10]. However, there are other motivati<strong>on</strong>s for laser-driven electr<strong>on</strong> beam accelerati<strong>on</strong>research. For example, electr<strong>on</strong> beams from laser-driven <strong>plasma</strong> (shortened here as EBLP)produced by using 10−20 TW laser systems are very useful from the applicati<strong>on</strong> point of view [11].EBLP are unique in their characteristics as they have a small divergence of a few mrad <str<strong>on</strong>g>and</str<strong>on</strong>g> anextremely-short bunch length of ≈ 40 fs [12] or shorter. Those characteristics are essential forcompact high brightness light source applicati<strong>on</strong>s such as free-electr<strong>on</strong> lasers <str<strong>on</strong>g>and</str<strong>on</strong>g> synchrotr<strong>on</strong>s[13-14]. In additi<strong>on</strong>, EBLP are naturally synchr<strong>on</strong>ized with the driving laser pulse, thus allowingjitter−less timing for pump-probe experiments <str<strong>on</strong>g>and</str<strong>on</strong>g> laser-electr<strong>on</strong> collisi<strong>on</strong>s for Thoms<strong>on</strong> scatteringX-ray applicati<strong>on</strong>s. Furthermore, high flux EBLP in the 20 MeV-range have been used in table-topphot<strong>on</strong>uclear physics <str<strong>on</strong>g>and</str<strong>on</strong>g> radiati<strong>on</strong> chemistry experiments [15-16]. In this talk, I am going to reviewthe recent progress of LWFA in key laboratories worldwide <str<strong>on</strong>g>and</str<strong>on</strong>g> present recent results from mylaboratory [17].Reference1. T. Tajima <str<strong>on</strong>g>and</str<strong>on</strong>g> J. Daws<strong>on</strong>, Phys. Rev. Lett. 43 (1979) 267.2. S. P. D. Mangles et al., Nature, 431, (2004) 535.3. C. G. R. Geddes, et al., Nature, 431, (2004) 538.4. J. Faure et al., Nature 431 (2004) 541.5. J. Faure et al., Nature 444 (2006) 737.6. W. Leemans et al., Nature Phys. 2 (2006) 696.7. Nasr A. M. Hafz et al., Nat. Phot<strong>on</strong>ics 2 (2008) 571.8. S. Kneip et al., Phys. Rev. Lett. 103 (2009) 035002.9. D. H. Froula et al., Phys. Rev. Lett. 103 (2009) 215006.10. S. F. Martins et al., Nat. Phys. 6 (2010) 311.11. Compact 10−20 TW laser systems are affordable to many university-scale laboratoriesworldwide.12. 12 A. D. Debus et al., Phys. Rev. Lett. 104 (2010) 084802.13. H.-P. Schlenvoigt et al., Nat. Phys. 4 (2008) 130.14. Matthias Fuchs et al., Nat. Phys. 5 (2009) 826.15. A. Giulietti etal., Phys. Rev. Lett. 101 (2008) 105002.16. Beata Brozek-Pluska et al., Rad. Phys. & Chem. 72 (2005) 149.17. Nasr A. M. Hafz et al., Accepted 2010.31


Electr<strong>on</strong> Bow-wave injecti<strong>on</strong> in laser wake field accelerati<strong>on</strong>Y. Y. Ma 1,2,3 S. Kawata 3 Y. Q. Gu 2 Z. M. Sheng 4 M. Y. Yu 5 H. J. Liu 2 H. B. Zhuo 6 W. M. Wang 3,7Y. Yin 1 K. Takahashi 3 X. H. Yang 1 C. L. Tian 1 <str<strong>on</strong>g>and</str<strong>on</strong>g> F. Q. Shao 11. Department of Physics, Nati<strong>on</strong>al University of Defense Technology, Changsha 410073, China2. <strong>Laser</strong> Fusi<strong>on</strong> Research Center, China Academy of Engineering Physics, Mianyang 621000, China3. Center for Optical Research <str<strong>on</strong>g>and</str<strong>on</strong>g> Educati<strong>on</strong>, Graduate <str<strong>on</strong>g>School</str<strong>on</strong>g> of Engineering, Utsunomiya University,7-1-2 Yohtoh, Utsunomiya 321-8585, Japan4. Department of Physics, Shanghai Jiao T<strong>on</strong>g University, Shanghai 200240, China5 Institute for Fusi<strong>on</strong> <str<strong>on</strong>g>The</str<strong>on</strong>g>ory <str<strong>on</strong>g>and</str<strong>on</strong>g> Simulati<strong>on</strong>, Department of Physics, Zhejiang University, Hangzhou310027, China6. College of Computer Science, Nati<strong>on</strong>al University of Defense Technology, Changsha 410073, China7. Institute of Physics, Chinese Academy of Sciences, Beijing 100080, ChinaA new regime of str<strong>on</strong>g electr<strong>on</strong> injecti<strong>on</strong> named electr<strong>on</strong> bow-wave injecti<strong>on</strong> (EBWI) inlaser wakefield accelerati<strong>on</strong> of electr<strong>on</strong>s is investigated using particle-in-cell simulati<strong>on</strong>. Inc<strong>on</strong>trast to the known injecti<strong>on</strong> regimes, here the dense trapped electr<strong>on</strong>s in a str<strong>on</strong>gelectr<strong>on</strong> bow wave (EBW) excited behind the primary bubble c<strong>on</strong>tribute most to theinjected, trapped, <str<strong>on</strong>g>and</str<strong>on</strong>g> accelerated electr<strong>on</strong>s in the bubble. EBWI operates at higher laserintensities than that of the normal self injecti<strong>on</strong> (NSI) of the electr<strong>on</strong>s from the bubbleperiphery. Even with EBWI for lower laser intensities, the number of the bubble-trappedelectr<strong>on</strong>s is much larger than that from NSI. In this regime the electr<strong>on</strong>s in the intenseelectr<strong>on</strong> bow waves behind the first bubble catch up with the bubble tail <str<strong>on</strong>g>and</str<strong>on</strong>g> enter into it.<str<strong>on</strong>g>The</str<strong>on</strong>g> number of the bubble-trapped electr<strong>on</strong>s can thus be much enhanced. It is shown thatthe trapped-electr<strong>on</strong> charge can reach 0.27 nC in 180μm. A simple analytical model of thec<strong>on</strong>diti<strong>on</strong> for EBWI is proposed, which is in good agreement with the simulati<strong>on</strong> results.<str<strong>on</strong>g>The</str<strong>on</strong>g> EBWI scheme is robust <str<strong>on</strong>g>and</str<strong>on</strong>g> c<strong>on</strong>trollable <str<strong>on</strong>g>and</str<strong>on</strong>g> should be useful for efficient generati<strong>on</strong>of collimated high energy electr<strong>on</strong>s.Funding supported by the Nati<strong>on</strong>al Natural Science Foundati<strong>on</strong> of China (grants 10976031,10935002, <str<strong>on</strong>g>and</str<strong>on</strong>g> 10835003) <str<strong>on</strong>g>and</str<strong>on</strong>g> the Nati<strong>on</strong>al Basic Research Program of China (grants2007CB815105 <str<strong>on</strong>g>and</str<strong>on</strong>g> 2008CB717806). Y. Y. Ma acknowledges the support of the JSPS <str<strong>on</strong>g>and</str<strong>on</strong>g>CORE of Utsunomiya University, Japan32


Efficient energy coupling into nanolayed target by intenseshort-pulse laserLihua CaoInstitute of Applied Physics <str<strong>on</strong>g>and</str<strong>on</strong>g> Computati<strong>on</strong>al Mathematics, Beijing 100088, ChinaCenter for Applied Physics <str<strong>on</strong>g>and</str<strong>on</strong>g> Technology, Peking University, Beijing, 100871, China<str<strong>on</strong>g>The</str<strong>on</strong>g> introducti<strong>on</strong> of a target with nanolayered fr<strong>on</strong>t can reduce the reflecti<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> increaseenergy coupling of an intense short laser pulse into it. <str<strong>on</strong>g>The</str<strong>on</strong>g> electr<strong>on</strong>s within the skin depth<strong>on</strong> the target surfaces are accelerated to relativistic velocities <str<strong>on</strong>g>and</str<strong>on</strong>g> then propagate forwardwith most of the absorbed laser energy al<strong>on</strong>g the surfaces of the layers. <str<strong>on</strong>g>The</str<strong>on</strong>g> twodimensi<strong>on</strong>al particle-in-cell (PIC) simulati<strong>on</strong>s show that more laser energy goes intokinetic energy of hot electr<strong>on</strong>s respected to the planar target. <str<strong>on</strong>g>The</str<strong>on</strong>g> energy absorpti<strong>on</strong>decreases a little both for too lower <str<strong>on</strong>g>and</str<strong>on</strong>g> higher laser intensity. It is ascribed to theweakening of the electric <str<strong>on</strong>g>and</str<strong>on</strong>g> magnetic fields associated with smaller hotelectr<strong>on</strong> jet, shorter relativistic skin length at lower intensity <str<strong>on</strong>g>and</str<strong>on</strong>g> the corrupti<strong>on</strong> oflayer structure at higher intensity. <str<strong>on</strong>g>The</str<strong>on</strong>g> manipulati<strong>on</strong> of the properties of the hotelectr<strong>on</strong>s is discussed by matching the parameters of nanolayered target <str<strong>on</strong>g>and</str<strong>on</strong>g> laser pulse.33


Enhancement of electr<strong>on</strong> injecti<strong>on</strong> using two auxiliaryinterfering-pulses in LWFAZ. Y. Ge 1 Y. Yin 1* H. Xu 2, 3 Y. Y. Ma 1, 3 H. B. Zhuo 2 <str<strong>on</strong>g>and</str<strong>on</strong>g> F. Q. Shao 11 Department of Physics, Nati<strong>on</strong>al University of Defense Technology, Changsha 410073,China2 Nati<strong>on</strong>al Laboratory of Parallel <str<strong>on</strong>g>and</str<strong>on</strong>g> Distributed Processing, Nati<strong>on</strong>al University of DefenseTechnology, Changsha 410073, China3 <strong>Laser</strong> Fusi<strong>on</strong> Research Center, China Academy of Engineering Physics, Mianyang 621000,China*yinyansilver@hotmail.comAn interfering-pulses auxiliary laser wake-led accelerati<strong>on</strong> (IPA-LWFA) scheme has beenpro-posed <str<strong>on</strong>g>and</str<strong>on</strong>g> examined by particle-in-cell (PIC) simulati<strong>on</strong>s. In this scheme, twolow-intensity l<strong>on</strong>g pulses are interfering in the <strong>plasma</strong> before the main pump pulse arrival.<str<strong>on</strong>g>The</str<strong>on</strong>g> <strong>plasma</strong> density is modulated in the interfering ¯eld of the auxiliary pulses <str<strong>on</strong>g>and</str<strong>on</strong>g> theelectr<strong>on</strong>s are heated slightly. Enhancement of electr<strong>on</strong> injecti<strong>on</strong> has been dem<strong>on</strong>stratedcompared with the LWFA. It is shown that the IPA-LWFA works well for the main pumppulse with moderate intensity I < 1021W=cm2. When the pump pulse is extremely intense,the energy distributi<strong>on</strong> of electr<strong>on</strong>s is broadened although the number of injectedelectr<strong>on</strong>s increases.34


Electr<strong>on</strong> accelerati<strong>on</strong> in wake bubble by ultraintense laserinteracting with <strong>plasma</strong>Bai-S<strong>on</strong>g Xie <str<strong>on</strong>g>and</str<strong>on</strong>g> Hai-Cheng WuCollege of Nuclear Science <str<strong>on</strong>g>and</str<strong>on</strong>g> Technology, Beijing Normal University, Beijing 100875 ChinaEmail: bsxie@bnu.edu.cnModificati<strong>on</strong> of fields <str<strong>on</strong>g>and</str<strong>on</strong>g> shape of bubble from electr<strong>on</strong>s which go into the bubble interiorfrom the bubble fr<strong>on</strong>t is theoretically studied by three different models - thephenomenological theory from Kostyukov et al. [Phys. Plasmas 11, 5256 (2004)], a modelwith an elliptic boundary c<strong>on</strong>diti<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> the c<strong>on</strong>sistent dynamic model from Lu et al.[ Phys.Plasmas 13, 056709 (2006)]. <str<strong>on</strong>g>The</str<strong>on</strong>g> results from these three models are the same: theelectr<strong>on</strong>s in the bubble go backward with a speed close to the velocity of light in vacuum,the slops of the transverse fields are reduced by these electr<strong>on</strong>s, <str<strong>on</strong>g>and</str<strong>on</strong>g> the ratio of theradius of l<strong>on</strong>gitudinal to transverse of the bubble is decreased; the slop of the l<strong>on</strong>gitudinalelectric field is hardly changed because the decrease of the radius’ ratio compensates theweakening of the field by the electr<strong>on</strong>s. <str<strong>on</strong>g>The</str<strong>on</strong>g> theoretical results of field <str<strong>on</strong>g>and</str<strong>on</strong>g> bubble shape inmodificati<strong>on</strong> would agree better with the particle-in-cell simulati<strong>on</strong>s.A way of optimizing the electr<strong>on</strong> accelerati<strong>on</strong> in the wake bubble - a quasi phase-stableaccelerati<strong>on</strong> scheme - is also presented. This way is achieved by adding a capillary-likedense-<strong>plasma</strong> wall with an inner radius of between the initial lateral radius <str<strong>on</strong>g>and</str<strong>on</strong>g> maximumlateral radius of the bubble in the path of the laser pulse. With the wall, the bubble shapeis transversely c<strong>on</strong>trolled <str<strong>on</strong>g>and</str<strong>on</strong>g> l<strong>on</strong>gitudinally shrunk. <str<strong>on</strong>g>The</str<strong>on</strong>g> advantages of this scheme are asfollows: (i) <str<strong>on</strong>g>The</str<strong>on</strong>g> shrink of the bubble sheath would tailor some of the injected electr<strong>on</strong>bunch <str<strong>on</strong>g>and</str<strong>on</strong>g> suppress further electr<strong>on</strong> self-injecti<strong>on</strong>, this results in a more m<strong>on</strong>oenergeticelectr<strong>on</strong> bunch; (ii) <str<strong>on</strong>g>The</str<strong>on</strong>g> accelerated electr<strong>on</strong> bunch almost always stays close to thebottom of the bubble that leads to larger average accelerating gradient <str<strong>on</strong>g>and</str<strong>on</strong>g> overcomes thelimit of dephasing to a certain degree; (iii) This scheme does not need increase thedensity of the <strong>plasma</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> the depleti<strong>on</strong> rate of the laser, however, it does produce alarger gradient of accelerating field. <str<strong>on</strong>g>The</str<strong>on</strong>g>refore, in this scheme, the electr<strong>on</strong> bunch isaccelerated to much higher energy, meanwhile, it has narrower energy spread.35


Electr<strong>on</strong>-positr<strong>on</strong> pair creati<strong>on</strong> in time-dependent external fieldsNa Ren, Jia-xiang WangState Key Laboratory of Precisi<strong>on</strong> Spectroscopy, Department of Physics, East China NormalUniversity, Shanghai, 200062 ChinaWe investigate electr<strong>on</strong>-positr<strong>on</strong> pair producti<strong>on</strong> from vacuum for time-dependent laserpulses. It has been found that, in order to have prominent pair producti<strong>on</strong>s, we not <strong>on</strong>lyrequire that the electric field intensity should be higher than the Schwinger threshold, butalso require that the pulse durati<strong>on</strong> should be l<strong>on</strong>ger than a threshold. <str<strong>on</strong>g>The</str<strong>on</strong>g> formerc<strong>on</strong>diti<strong>on</strong> guarantees that the electr<strong>on</strong> in the negative energy state could gain enoughenergy to jump <strong>on</strong>to a positive-energy state in Compt<strong>on</strong> time. <str<strong>on</strong>g>The</str<strong>on</strong>g> latter is related tomomentum requirement for the transiti<strong>on</strong>. In particular, we show that the probability of thecreated electr<strong>on</strong>-positr<strong>on</strong> pairs depends <strong>on</strong> the laser frequency, the pulse length, <str<strong>on</strong>g>and</str<strong>on</strong>g> thecarrier phase. This observati<strong>on</strong> could help in the design of laser pulses to optimize theexperimental signature of Schwinger pair producti<strong>on</strong>.Funding supported by Shanghai Shuguang Project Grant pers<strong>on</strong>nel issues(06sg27); ShanghaiPujiang Talent Project Grant subject (07pj14036); Nati<strong>on</strong>al Natural Science Foundati<strong>on</strong> oftopics (10974056).36


Comparis<strong>on</strong> of i<strong>on</strong> accelerati<strong>on</strong> from ultra-short intense laserinteracti<strong>on</strong>s with thin foil <str<strong>on</strong>g>and</str<strong>on</strong>g> small dense targetYouwei TianCollege of Science, Nanjing University of Posts <str<strong>on</strong>g>and</str<strong>on</strong>g> Telecommunicati<strong>on</strong>s,Nanjing 210003, China<str<strong>on</strong>g>The</str<strong>on</strong>g> generati<strong>on</strong> of highly directi<strong>on</strong>al beam of i<strong>on</strong>s with energies in the MeV range throughthe interacti<strong>on</strong> of high-intensity laser radiati<strong>on</strong> with solid targets, gas jets, <str<strong>on</strong>g>and</str<strong>on</strong>g> clusters hasbeen the subject of great significance due to recent research in high-field laser interacti<strong>on</strong>physics by experiments <str<strong>on</strong>g>and</str<strong>on</strong>g> particle-in-cell (PIC) simulati<strong>on</strong>s. <strong>Laser</strong>-driven energetic i<strong>on</strong>beam generati<strong>on</strong> has a promising applicati<strong>on</strong> in hadr<strong>on</strong> cancer therapy, as well as inc<strong>on</strong>trolled nuclear fusi<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> particle injectors. In a number of experimental <str<strong>on</strong>g>and</str<strong>on</strong>g>theoretical publicati<strong>on</strong>s, the laser-driven i<strong>on</strong> beam generati<strong>on</strong> with energies in the range offew MeV to several tens of MeV has been reported.<str<strong>on</strong>g>The</str<strong>on</strong>g> comparative efficiency <str<strong>on</strong>g>and</str<strong>on</strong>g> beam characteristics of high-energy i<strong>on</strong>s generated fromthe interacti<strong>on</strong> of a petawatt laser pulse with thin foil target <str<strong>on</strong>g>and</str<strong>on</strong>g> a small solid-density<strong>plasma</strong> bunch target have been studied by particle-in-cell simulati<strong>on</strong> under identicalc<strong>on</strong>diti<strong>on</strong>s. It is shown that thin foil <str<strong>on</strong>g>and</str<strong>on</strong>g> small solid dense target of micrometer size can be21 2efficiently accelerated when irradiated by a laser pulse of intensity > 10 W / cm . Usingdirect beam measurements, we find that small solid dense target accelerati<strong>on</strong> produceshigher energy particles with smaller divergence <str<strong>on</strong>g>and</str<strong>on</strong>g> a higher efficiency compared to thinfoil target accelerati<strong>on</strong>. <str<strong>on</strong>g>The</str<strong>on</strong>g> merits of small solid target accelerati<strong>on</strong> can be exploited forpotential applicati<strong>on</strong>s such as its role as ignitor for fast igniti<strong>on</strong> (FI) in inertial c<strong>on</strong>finementfusi<strong>on</strong> (ICF).This work has been supported by the Nati<strong>on</strong>al Natural Sciences Foundati<strong>on</strong> of China underGrant No. 10947170/A05, <str<strong>on</strong>g>and</str<strong>on</strong>g> Foundati<strong>on</strong> of NJUPT under Grant Nos. NY207151 <str<strong>on</strong>g>and</str<strong>on</strong>g>NY207006.37


Interferometric technique for measurement of capillary <strong>plasma</strong>densityD<strong>on</strong>g K. Jang, Do G. Jang, Min-Seok Kim, Se<strong>on</strong>g Y. Oh1), <str<strong>on</strong>g>and</str<strong>on</strong>g> Hyy<strong>on</strong>g SukGraduate Program of Phot<strong>on</strong>ics <str<strong>on</strong>g>and</str<strong>on</strong>g> Applied Physics, Gwangju Institute of Science <str<strong>on</strong>g>and</str<strong>on</strong>g>Technology, Gwangju 500-712, Republic of Korea1)Advanced Phot<strong>on</strong>ics Research Institute, Gwangju Institute of Science <str<strong>on</strong>g>and</str<strong>on</strong>g> Technology,Gwangju 500-712, Republic of KoreaLWFA (laser wake field accelerati<strong>on</strong>) has been extensively studied to achieve high energyelectr<strong>on</strong> beams in a short distance compared to c<strong>on</strong>venti<strong>on</strong>al accelerators. Recently apre-i<strong>on</strong>ized <strong>plasma</strong> capillary apparatus has been utilized in order to accelerate electr<strong>on</strong>sup to Gev level, avoiding the rapid laser divergence due to diffracti<strong>on</strong>. Such an opticalphenomen<strong>on</strong> can be avoided with the so-called ‘optical guiding’, where the laser beamcan propagate a l<strong>on</strong>g distance due to the parabolic density profile. In this case,divergence of the laser beam can be compensated by the focusing effect from theparabolic density profile. <str<strong>on</strong>g>The</str<strong>on</strong>g> <strong>plasma</strong> column in the capillary changes very rapidly in time,so knowing the density profile dynamics is very important. Shadowgraphy <str<strong>on</strong>g>and</str<strong>on</strong>g>interferometry are good techniques to measure the temporal <str<strong>on</strong>g>and</str<strong>on</strong>g> spatial electr<strong>on</strong> density.We built a Mach-Zehnder interferometer to investigate the <strong>plasma</strong> dynamics in thecapillary <str<strong>on</strong>g>and</str<strong>on</strong>g> some results are shown in this presentati<strong>on</strong>.38


Detecti<strong>on</strong> of the terahertz radiati<strong>on</strong> emitted from laser-induced<strong>plasma</strong>s by using the electro-optic sampling methodDo-Geun Jang, Jin-Ju Kim, <str<strong>on</strong>g>and</str<strong>on</strong>g> Hyy<strong>on</strong>g SukGraduate Program of Phot<strong>on</strong>ics <str<strong>on</strong>g>and</str<strong>on</strong>g> Applied Physics, Gwangju Institute of Science <str<strong>on</strong>g>and</str<strong>on</strong>g>Technology, Gwangju 500-712, Republic of KoreaTHz radiati<strong>on</strong> based <strong>on</strong> laser-induced <strong>plasma</strong> was first dem<strong>on</strong>strated by Hamster et al,<str<strong>on</strong>g>and</str<strong>on</strong>g> the THz pulse emissi<strong>on</strong> process in air has been studied by a few people so far. Whenan intense laser pulse is focused in air, it produces a <strong>plasma</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> it propagates through it.In this case, the electr<strong>on</strong>s in the <strong>plasma</strong> oscillate at the frequency of ,where is the density of electr<strong>on</strong>s, is the electric charge, is the mass of theelectr<strong>on</strong>, <str<strong>on</strong>g>and</str<strong>on</strong>g> is the permittivity of the free space. In the density regi<strong>on</strong> of 1016 – 1018cm-3, the <strong>plasma</strong> frequency is sub-1012 Hz range <str<strong>on</strong>g>and</str<strong>on</strong>g> we are interested in this range. Inour research group at GIST, we are going to generate THz pulses from an i<strong>on</strong>ized air<strong>plasma</strong> using an intense laser beam. We are also interested in applicati<strong>on</strong> of the THzemissi<strong>on</strong> for diagnostics of the <strong>plasma</strong>. For this research we are going to use aTi:sapphire laser system c<strong>on</strong>sisting of an oscillator <str<strong>on</strong>g>and</str<strong>on</strong>g> a regenerative amplifier. <str<strong>on</strong>g>The</str<strong>on</strong>g> laserpulse will be focused in air by means of a parabolic mirror <str<strong>on</strong>g>and</str<strong>on</strong>g> the air pressure will bec<strong>on</strong>trolled in the gas cell to investigate the relati<strong>on</strong> between the THz spectrum <str<strong>on</strong>g>and</str<strong>on</strong>g> the<strong>plasma</strong> density, which can give a way for <strong>plasma</strong> diagnostics. For the THz detecti<strong>on</strong>system, the produced THz pulses from the <strong>plasma</strong> will be measured by the electro-opticsampling(EOS) method in time-domain. In this presentati<strong>on</strong>, we will show the <strong>on</strong>-goingexperiment for THz generati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> detecti<strong>on</strong> from the laser-induced <strong>plasma</strong>s.39


Overloading Effect of Energetic Electr<strong>on</strong>s <strong>on</strong> Wakefield in BubbleRegimeJiancai Xu, Baifei Shen, Xiaomei Zhang, Meng Wen, Liangliang Ji, Wenpeng Wang,Yah<strong>on</strong>g YuState Key Laboratory of High Field <strong>Laser</strong> Physics, Shanghai Institute of Optics <str<strong>on</strong>g>and</str<strong>on</strong>g> FineMechanics, Chinese Academy of Sciences, Shanghai 201800, ChinaOverloading effects of a high-charge self-injected electr<strong>on</strong> bunch <strong>on</strong> bubble wakefieldhave been studied in the bubble regime. After many electr<strong>on</strong>s has been trapped by thebubble, the wakefield is str<strong>on</strong>gly modified <str<strong>on</strong>g>and</str<strong>on</strong>g> prevents further injecti<strong>on</strong> of backgroundelectr<strong>on</strong>s. <str<strong>on</strong>g>The</str<strong>on</strong>g>se effects are directly observed in two-dimensi<strong>on</strong>al particle-in-cellsimulati<strong>on</strong>s, <str<strong>on</strong>g>and</str<strong>on</strong>g> are explained by <strong>on</strong>e-dimensi<strong>on</strong>al wake theory. In order to obtain muchmore energetic electr<strong>on</strong>s, it is suggested to use a decreasing density profile of the <strong>plasma</strong>in the electr<strong>on</strong> accelerati<strong>on</strong> process.40


Photodissociati<strong>on</strong> of nitrobenzene <str<strong>on</strong>g>and</str<strong>on</strong>g> o-nitrotoluene at 266 nm: anew photoproduct of OHXian-Fang Yue 1,2 , Hai-Ran Feng 1 , Jie Cheng 11 Department of Physics <str<strong>on</strong>g>and</str<strong>on</strong>g> Informati<strong>on</strong> Engineering, Jining University, Qufu 273155, China2 State Key Laboratory of Molecular Reacti<strong>on</strong> Dynamics, Dalian Institute of Chemical Physics,Chinese Academy of Sciences, Dalian 116023, ChinaPhotodissociati<strong>on</strong> of nitrobenzene <str<strong>on</strong>g>and</str<strong>on</strong>g> o-nitrotoluene has been investigated in the gasphase at room temperature at 266 nm. <str<strong>on</strong>g>The</str<strong>on</strong>g> OH fragment was firstly observed in thephotodissociati<strong>on</strong> of nitrobenzene. <str<strong>on</strong>g>The</str<strong>on</strong>g> internal state distributi<strong>on</strong> of the nascent OH fromthe photodissociati<strong>on</strong> of nitrobenzene <str<strong>on</strong>g>and</str<strong>on</strong>g> o-nitrotoluene were measured using the<strong>on</strong>e-phot<strong>on</strong> laser induced fluorescence (LIF) technique. It was found that the OH fragmentwas vibrati<strong>on</strong>ally cold <str<strong>on</strong>g>and</str<strong>on</strong>g> their rotati<strong>on</strong>al state distributi<strong>on</strong>s showed Boltzmann behavior.Preferential populati<strong>on</strong>s of the 2Π3/2 spin-orbit state <str<strong>on</strong>g>and</str<strong>on</strong>g> the Π+ Λ-doublet state wereobserved for the two molecules. One possible dissociati<strong>on</strong> mechanism involving theintramolecular hydrogen transfer from the benzene ring to the nitro group was proposedfor the OH fragment pathway. To examine the nature of the potential energy surfaces, weperformed the density functi<strong>on</strong>al theory (DFT) calculati<strong>on</strong>s for the hydrogen transfer <str<strong>on</strong>g>and</str<strong>on</strong>g>dissociati<strong>on</strong> processes <strong>on</strong> both T1 <str<strong>on</strong>g>and</str<strong>on</strong>g> S0 states.Funding supported by Nati<strong>on</strong>al Natural Science Foundati<strong>on</strong> of China (No.10947103), theFoundati<strong>on</strong> for Outst<str<strong>on</strong>g>and</str<strong>on</strong>g>ing Young Scientist in Sh<str<strong>on</strong>g>and</str<strong>on</strong>g><strong>on</strong>g Province (No.2008BS01017), <str<strong>on</strong>g>and</str<strong>on</strong>g>the Young Funding of Jining University (No.2009QNKJ02).41


Raman amplificati<strong>on</strong> of ultrashort laser pulses in <strong>plasma</strong>X. Yang G. Vieux E. Brunetti J. Farmer B. Ersfeld D.A. JaroszynskiUniversity of Strathclyde, Dept of Physics, 107 Rottenrow, Glasgow UKRaman backscattering (RBS) in <strong>plasma</strong> is an attractive source of intense, ultrashort laserpulses which has the potential to bring in a new generati<strong>on</strong> of laser amplifiers. Capitalizing<strong>on</strong> the advantages of <strong>plasma</strong>s, which can withst<str<strong>on</strong>g>and</str<strong>on</strong>g> extremely high power densities <str<strong>on</strong>g>and</str<strong>on</strong>g>can offer high efficiencies over short distances, Raman amplificati<strong>on</strong> in <strong>plasma</strong> could leadto significant reducti<strong>on</strong>s in both size <str<strong>on</strong>g>and</str<strong>on</strong>g> cost of high power laser systems.We are investigating chirped laser pulse amplificati<strong>on</strong> through RBS in the linear <str<strong>on</strong>g>and</str<strong>on</strong>g>n<strong>on</strong>linear regimes, with experiments aiming to develop an effective way to transfer energyfrom a l<strong>on</strong>g pump pulse to a res<strong>on</strong>ant counter-propagating short probe pulse. Currentresults show a peak spectral gain of 2200%, with an energy increase of 500%.Funding supported by University of Strathclyde42


Quasi-m<strong>on</strong>oenergetic prot<strong>on</strong> accelerati<strong>on</strong> from double layer targetsirradiated by intense laser pulseL. G. Huang, A. L. Lei*, Y. Bai, Wei Yu <str<strong>on</strong>g>and</str<strong>on</strong>g> M.Y. YuShanghai Institute of Optics <str<strong>on</strong>g>and</str<strong>on</strong>g> Fine Mechanics, CAS, Shanghai 201800, ChinaInstitute for Fusi<strong>on</strong> <str<strong>on</strong>g>The</str<strong>on</strong>g>ory <str<strong>on</strong>g>and</str<strong>on</strong>g> Simulati<strong>on</strong>, Zhejiang University, Hangzhou 310027, China*E-mail: lal @siom.ac.cnAbstract: In recent ten years, laser-i<strong>on</strong> accelerati<strong>on</strong> has been studied with a great interestworldwide. Double layer targets (DLT) c<strong>on</strong>sisting of a high-Z layer <str<strong>on</strong>g>and</str<strong>on</strong>g> a low-Zhydrogen-rich layer was first proposed by Ueshima et al. to obtain higher-energy prot<strong>on</strong>srelative to a single layer target. Bulanov et al. <str<strong>on</strong>g>and</str<strong>on</strong>g> Esirkepov et al. found in a particle in cellsimulati<strong>on</strong> that high-quality, i.e., m<strong>on</strong>oenergetic, intense i<strong>on</strong> beam could be achieved withDLT. Schwoerer et al. experimentally dem<strong>on</strong>strated laser accelerati<strong>on</strong> of prot<strong>on</strong>s with aquasi-m<strong>on</strong>oenergetic peak distributi<strong>on</strong> using DLT. In this paper, an improved DLT isproposed to enhance m<strong>on</strong>oenergetic prot<strong>on</strong> accelerati<strong>on</strong> with higher peak energycompared to the c<strong>on</strong>venti<strong>on</strong>al DLT. <str<strong>on</strong>g>The</str<strong>on</strong>g> shape of improved DLT is shown in Fig.1(b). <str<strong>on</strong>g>The</str<strong>on</strong>g>fr<strong>on</strong>t layer of the both DLTs is made of Au 2+ i<strong>on</strong>s <str<strong>on</strong>g>and</str<strong>on</strong>g> the rear is a thin prot<strong>on</strong> patch. Whenthe intense laser pulse irradiates <strong>on</strong>to the two DLTs, <strong>on</strong>e sees that the laser absorpti<strong>on</strong><str<strong>on</strong>g>and</str<strong>on</strong>g> the hot electr<strong>on</strong> temperature are both higher in the case of the improved target. As aresult, the prot<strong>on</strong>s can be accelerated more efficiently by the rear-surface electrostaticsheath field. As shown in Fig.1(c), the prot<strong>on</strong>energy spectra show a higher peak energy~77.1MeV with the improved DLT while thepeak energy of the reference target is57.2MeV.FIG.1. Shape of the (a) c<strong>on</strong>venti<strong>on</strong>al DLT; (b)improved DLT; <str<strong>on</strong>g>and</str<strong>on</strong>g> (c) energy spectra of theimproved DLT <str<strong>on</strong>g>and</str<strong>on</strong>g> c<strong>on</strong>venti<strong>on</strong>al DLT at t=42T.43


Comparis<strong>on</strong> between classical <str<strong>on</strong>g>and</str<strong>on</strong>g> quantum treatment of harm<strong>on</strong>icgenerati<strong>on</strong> by relativistic electr<strong>on</strong>s in str<strong>on</strong>g laser fieldsA.K. Li <str<strong>on</strong>g>and</str<strong>on</strong>g> J. X. WangDepartment of Physics, East China Normal University, ShanghaiWe c<strong>on</strong>sider relativistic harm<strong>on</strong>ic generati<strong>on</strong> by scatting of circularly <str<strong>on</strong>g>and</str<strong>on</strong>g> a linearlypolarized laser field from free electr<strong>on</strong>. We investigate in detail the relati<strong>on</strong> between thephot<strong>on</strong> spectrum calculated through classical <str<strong>on</strong>g>and</str<strong>on</strong>g> quantum theory for several scatteringc<strong>on</strong>figurati<strong>on</strong>s by both analytical <str<strong>on</strong>g>and</str<strong>on</strong>g> numerical methods. We found that when the effectsof radiati<strong>on</strong> reacti<strong>on</strong> <strong>on</strong> the electr<strong>on</strong> moti<strong>on</strong> are significant, the difference between QED<str<strong>on</strong>g>and</str<strong>on</strong>g> classical results are also large.44


Simulati<strong>on</strong> study of self-injecti<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> density-ramping-injecti<strong>on</strong> inLWFA based <strong>on</strong> typical 100 TW laser facilities by OOPICLI Dazhang 1 GAO Jie 2 ZhU Xi<strong>on</strong>gwei 3 HE An 41 Institute of High Energy Physics, Chinese Academy of ScienceOne of the most important advanced accelerati<strong>on</strong> c<strong>on</strong>cepts is laser <strong>plasma</strong> accelerati<strong>on</strong>.<str<strong>on</strong>g>The</str<strong>on</strong>g> amplitude of the accelerating electric fields generated from <strong>Laser</strong> WakeFieldAccelerators (LWFA) may bey<strong>on</strong>d 100 GV/m, which is more than 1000 times higher thantraditi<strong>on</strong>al radio frequency accelerating structures. We do 2-D simulati<strong>on</strong>s based <strong>on</strong>typical 100TW laser facilities by OOPIC. At first, we fix the laser parameters <str<strong>on</strong>g>and</str<strong>on</strong>g> doexplicit <strong>plasma</strong> density scanning to find a matched <strong>plasma</strong> density as in a real LWFAexperiment. And then in order to solve the problems during self-injecti<strong>on</strong>, we givetheoretical <str<strong>on</strong>g>and</str<strong>on</strong>g> simulati<strong>on</strong> results of density-ramping-injecti<strong>on</strong> (DRI) methods. It is shownthat the number of captured electr<strong>on</strong>s is 10 times larger in DRI than in normalself-injecti<strong>on</strong> process <str<strong>on</strong>g>and</str<strong>on</strong>g> the energy <str<strong>on</strong>g>and</str<strong>on</strong>g> absolute energy spread of the bunch doesn’tchange a lot.Funding supported by NSFC (10525525, 10775154) <str<strong>on</strong>g>and</str<strong>on</strong>g> Knowledge Innovati<strong>on</strong> Funds ofIHEP, CAS (H75452A0U2).45


Vacuum laser-driven electr<strong>on</strong> accelerati<strong>on</strong> by Airy beamsJian-Xing Li 1 , Wei-Ping Zang 1, 2 , Jian-Guo Tian 1, 21Phot<strong>on</strong>ics Center, <str<strong>on</strong>g>School</str<strong>on</strong>g> of Physics, Nankai University, Tianjin 300071, China2<str<strong>on</strong>g>The</str<strong>on</strong>g> Key Laboratory of Weak Light N<strong>on</strong>linear Phot<strong>on</strong>ics, Ministry of Educati<strong>on</strong>, Teda AppliedPhysics <str<strong>on</strong>g>School</str<strong>on</strong>g>, Nankai University, Tianjin 3000457, ChinaDue to the inventi<strong>on</strong> of the chirped pulse amplificati<strong>on</strong> (CPA) technique, laser accelerati<strong>on</strong>in vacuum has been an active research area in recent years. <strong>Laser</strong>-driven electr<strong>on</strong>accelerati<strong>on</strong> relies <strong>on</strong> the large laser intensity that can be achieved by focusing laserbeams down to spot sizes in the order of wavelength. However, a shortcoming of many ofthese schemes is that the interacti<strong>on</strong> length over which the high intensity can be sustainedis relatively short due to transverse spreading (diffracti<strong>on</strong>). <str<strong>on</strong>g>The</str<strong>on</strong>g>refore, electr<strong>on</strong>accelerati<strong>on</strong> by quasi-diffracti<strong>on</strong>-free beams, Bessel beam, has attracted widespreadattenti<strong>on</strong>s.Another known diffracti<strong>on</strong>-free beam is Airy wave packets, first predicted by Berry <str<strong>on</strong>g>and</str<strong>on</strong>g>Balazs within the c<strong>on</strong>text of quantum mechanics. This intriguing class of beams was <strong>on</strong>lyrecently predicted <str<strong>on</strong>g>and</str<strong>on</strong>g> realized in optical domain. Its key features are transverselyaccelerating <str<strong>on</strong>g>and</str<strong>on</strong>g> diffracti<strong>on</strong>-free during propagati<strong>on</strong>. Unlike other-diffracting beams, theAiry beam does not result from c<strong>on</strong>ical superpositi<strong>on</strong>, is possible even in <strong>on</strong>e-dimensi<strong>on</strong>,<str<strong>on</strong>g>and</str<strong>on</strong>g> is highly asymmetric. Airy beams have been used in optical micromanipulati<strong>on</strong>. In thisposter we present the first use of the Airy beam in vacuum electr<strong>on</strong> accelerati<strong>on</strong>. <str<strong>on</strong>g>The</str<strong>on</strong>g>characteristics of accelerati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> n<strong>on</strong>-diffracti<strong>on</strong> of Airy beam in <strong>on</strong>e dimensi<strong>on</strong>alc<strong>on</strong>figurati<strong>on</strong> lead to the formati<strong>on</strong> of a l<strong>on</strong>g “asymmetric field channel” (AFC) al<strong>on</strong>g thepropagati<strong>on</strong> axis. Electr<strong>on</strong> senses a c<strong>on</strong>tinual accelerati<strong>on</strong> phase in AFC, so 1D Airybeam is more appreciable to the accelerating of electr<strong>on</strong> than other diffracti<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g>diffracti<strong>on</strong>-free beams. Moreover, the injecti<strong>on</strong> energy of electr<strong>on</strong> plays an important rolein determining the final energy gain. An initial fast electr<strong>on</strong> can be captured by AFC, <str<strong>on</strong>g>and</str<strong>on</strong>g> aslow electr<strong>on</strong> could be captured or reflected.Funding supported by the Natural Science Foundati<strong>on</strong> of China (grant 60678025), ChineseNati<strong>on</strong>al Key Basic Research Special Fund (2006CB921703), Program for New CenturyExcellent Talents in University, <str<strong>on</strong>g>and</str<strong>on</strong>g> 111 Project (B07013).46


I<strong>on</strong> jet generati<strong>on</strong> in the ultra-intense laser interacti<strong>on</strong>s withrear-side c<strong>on</strong>cave targetBin Liu 1,2 Hua Zhang 1,3 Li-Bin Fu 1,3 Yu-Qiu Gu 4 Bao-Han Zhang 4 Ming-Ping Liu 5Bai-S<strong>on</strong>g Xie 6 Jie Liu 1,3 Xian-Tu He 1,31 Center for Applied Physics <str<strong>on</strong>g>and</str<strong>on</strong>g> Technology, Peking University, Beijing, 100084, China2 Graduate <str<strong>on</strong>g>School</str<strong>on</strong>g>, China Academy of Engineering Physics, Beijing 100088, China3 Institute of Applied Physics <str<strong>on</strong>g>and</str<strong>on</strong>g> Computati<strong>on</strong>al Mathematics, Beijing, 100088, China4 Fusi<strong>on</strong> Research Center, Chinese Academy of Engineering Physics, Mianyang, China5 <str<strong>on</strong>g>School</str<strong>on</strong>g> of Informati<strong>on</strong> Engineering, Nanchang University, Nanchang, China6 College of Nuclear Science <str<strong>on</strong>g>and</str<strong>on</strong>g> technology, Beijing Normal University, Beijing 100875, China<str<strong>on</strong>g>The</str<strong>on</strong>g> i<strong>on</strong> jet generati<strong>on</strong> from the interacti<strong>on</strong> of an ultraintense laser pulse <str<strong>on</strong>g>and</str<strong>on</strong>g> a rear-sidec<strong>on</strong>cave target is investigated analytically using a simple fluid model. We find that the i<strong>on</strong>exp<str<strong>on</strong>g>and</str<strong>on</strong>g>ing surface at the rear-side is distorted due to a str<strong>on</strong>g charge-separati<strong>on</strong> field, <str<strong>on</strong>g>and</str<strong>on</strong>g>that this distorti<strong>on</strong> becomes dramatic with a singular cusp shown <strong>on</strong> the central axis at acritical time. <str<strong>on</strong>g>The</str<strong>on</strong>g> variati<strong>on</strong> of the transverse i<strong>on</strong> velocity <str<strong>on</strong>g>and</str<strong>on</strong>g> the relative i<strong>on</strong> densitydiverge <strong>on</strong> the cusp, signaling the emergence of an <strong>on</strong>-axis i<strong>on</strong> jet. We have obtainedanalytical expressi<strong>on</strong>s for the critical time <str<strong>on</strong>g>and</str<strong>on</strong>g> the maximum velocity of the i<strong>on</strong> jet, <str<strong>on</strong>g>and</str<strong>on</strong>g>suggested an optimum shape for generating a collimated energetic i<strong>on</strong> jet. <str<strong>on</strong>g>The</str<strong>on</strong>g> abovetheoretical analysis has been verified by particle-in-cell (PIC) numerical simulati<strong>on</strong>s.Funding supported by the Nati<strong>on</strong>al Fundamental Research Programme of China (C<strong>on</strong>tactNos.2007CB815103,2007CB814800), the Nati<strong>on</strong>al Natural Science Foundati<strong>on</strong> of China(C<strong>on</strong>tact Nos. 10725521, 10875015, 10834008), <str<strong>on</strong>g>and</str<strong>on</strong>g> the Foundati<strong>on</strong> of CAEP (C<strong>on</strong>tact No.2006Z0202).47


Generati<strong>on</strong> of low density <strong>plasma</strong> channels <str<strong>on</strong>g>and</str<strong>on</strong>g> optical guiding in<strong>plasma</strong> waveguidesMingwei Liu 1,2 , Aihua Deng 1 , Jiancai Xu 1 , Changquan Xia 1 , Cheng Wang 1 , Jiansheng Liu 1 ,Baifei Shen 1, Ruxin Li 1, Zhizhan Xu 11 State Key Laboratory of High Field <strong>Laser</strong> Physics, Shanghai Institute of Optics <str<strong>on</strong>g>and</str<strong>on</strong>g> FineMechanics, Chinese Academy of Sciences, Shanghai 201800, China2 <str<strong>on</strong>g>School</str<strong>on</strong>g> of Physics, Hunan University of Science <str<strong>on</strong>g>and</str<strong>on</strong>g> Technology, Xiangtan Hunan, 411201,ChinaA technique is developed to trigger ablative capillary discharges transversely by a laserpulse. This transverse laser igniti<strong>on</strong> method has several advantages over previoustechniques employing a laser pulse collinear with the capillary, including increasedcapillary lifetime <str<strong>on</strong>g>and</str<strong>on</strong>g> simpler arrangement of the igniting <str<strong>on</strong>g>and</str<strong>on</strong>g> the driving pulses forlaser-wakefield accelerati<strong>on</strong>. Using this technique l<strong>on</strong>g <strong>plasma</strong> channels (waveguides) areproduced with low jitter. An off-axis incident model is presented to analyze the influence ofbeam pointing fluctuati<strong>on</strong> <strong>on</strong> the propagati<strong>on</strong> properties of intense laser beams in suchkinds of waveguides. Optical guiding of a 200TW laser pulse over 3-cm in <strong>plasma</strong>waveguides is also dem<strong>on</strong>strated in experiments.Funding supported by the Nati<strong>on</strong>al Natural Science Foundati<strong>on</strong> (Grant Nos.10734080 <str<strong>on</strong>g>and</str<strong>on</strong>g>10834008), the Nati<strong>on</strong>al Basic Research Program of China (Grant No. 2006CB806000), theChinese Academy of Sciences, the Shanghai Commissi<strong>on</strong> of Science <str<strong>on</strong>g>and</str<strong>on</strong>g> Technology (GrantNos. 06DZ22015 <str<strong>on</strong>g>and</str<strong>on</strong>g> 0652nm005), <str<strong>on</strong>g>and</str<strong>on</strong>g> the Hunan Provincial Natural Science Foundati<strong>on</strong> ofChina (Grant No. 09JJ3012).48


Interacti<strong>on</strong> of ultraintense <str<strong>on</strong>g>and</str<strong>on</strong>g> ultrashort laser pulse with overdense<strong>plasma</strong> targetShixia Luan Wei YuShanghai Institute of Optics <str<strong>on</strong>g>and</str<strong>on</strong>g> Fine Mechanics, Chinese Academy of Sciences, 201800,Shanghai, ChinaA simple but comprehensive 2-dimensi<strong>on</strong>al analytical model for laser <str<strong>on</strong>g>and</str<strong>on</strong>g> overdense<strong>plasma</strong> interacti<strong>on</strong> during the normal incidence by a ultrashort <str<strong>on</strong>g>and</str<strong>on</strong>g> ultraintense Gaussianlaser pulse with a finite spot size <strong>on</strong> a solid-density <strong>plasma</strong> is proposed. Hole punching bythe laser pulse is a key feature in this process, which induces str<strong>on</strong>g spatial chargeseparati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> plays an crucial role for the occurrence of linear mode c<strong>on</strong>versi<strong>on</strong> (both forcircularly <str<strong>on</strong>g>and</str<strong>on</strong>g> linearly polarized laser pulse) <str<strong>on</strong>g>and</str<strong>on</strong>g> J× B heating (<strong>on</strong>ly for linearly polarizedlaser pulse). It is also found that the depth of the hole increases with higher laser intensity49


High charged electr<strong>on</strong>s generati<strong>on</strong> by dual laser pulses 1Meng Wen 1 ,2 ,3 Baifei Shen 21 Shanghai Institute of Optics <str<strong>on</strong>g>and</str<strong>on</strong>g> Fine Mechanics, Chinese Academy of Sciences, Shanghai,China2 IHIP, Peking University, Beijing China3 Institute of Phot<strong>on</strong>ics & Phot<strong>on</strong>-Technology, North-West University, Xi’an ChinaLarge amount of energetic electr<strong>on</strong>s generated in laser wake fields driven by dual parallellaser pulses is investigated with three-dimensi<strong>on</strong>al (3D) PIC simulati<strong>on</strong>. By adjusting thedistance between the pulses, bubbles with different structure are formed, which results indifferent injecti<strong>on</strong> efficiency. Compared with the single pulse case, the charge of theenergetic electr<strong>on</strong>s can be doubled when the distance between two pulses is largeenough. A characteristic distance between the pulses is obtained, above which the totalamount of the energetic electr<strong>on</strong>s increases linearly by applying more laser pulses. <str<strong>on</strong>g>The</str<strong>on</strong>g>reis no limit for the charge increase in our scheme, as l<strong>on</strong>g as the <strong>plasma</strong> is wide enough sothat more pulses can be applied.Funding supported by the Nati<strong>on</strong>al Natural Science Foundati<strong>on</strong> of China (Project 60921004<str<strong>on</strong>g>and</str<strong>on</strong>g> 10834008), the Program of Shanghai Subject Chief Scientist (09XD1404300), ShanghaiNatural Science Foundati<strong>on</strong> (10ZR1433800) <str<strong>on</strong>g>and</str<strong>on</strong>g> the 973 program (No. 2006CB806004)50


Numerical research <strong>on</strong> evaporati<strong>on</strong> of target bombarded by pulsedi<strong>on</strong> beamWu Di 1 G<strong>on</strong>g Ye 2 Liu Jin-Yuan 2 Wang Xiao-Gang 2 Liu Yue 2 Ma Teng-Cai 21 Collge of Physical Science <str<strong>on</strong>g>and</str<strong>on</strong>g> Technology, Dalian University, Dalian 116622, China2 Key Laboratory of Materials Modificati<strong>on</strong> by <strong>Laser</strong>, I<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> Electr<strong>on</strong> Beams, DalianUniversity of Technology, Dalian 116024, ChinaTo discuss the mechanism of <strong>plasma</strong> transport in vacuum, the ejecti<strong>on</strong> model ofhydrodynamic equati<strong>on</strong>s related to the ablati<strong>on</strong> shape of the target has been establishedby using the ablati<strong>on</strong> results as initial c<strong>on</strong>diti<strong>on</strong>s of <strong>plasma</strong> formed by high intensity pulsedi<strong>on</strong> beam irradiati<strong>on</strong>. <str<strong>on</strong>g>The</str<strong>on</strong>g> spatial <str<strong>on</strong>g>and</str<strong>on</strong>g> temporal evoluti<strong>on</strong> profiles of <strong>plasma</strong> pressure, massdensity <str<strong>on</strong>g>and</str<strong>on</strong>g> velocity are calculated. <str<strong>on</strong>g>The</str<strong>on</strong>g> <strong>plasma</strong> transport is faster based <strong>on</strong> our modelthan vertical <strong>on</strong>e, <str<strong>on</strong>g>and</str<strong>on</strong>g> the formati<strong>on</strong> of film relates to the distance between target <str<strong>on</strong>g>and</str<strong>on</strong>g>substrate can be well explained according to our ejecti<strong>on</strong> model.Funding supported by the Nati<strong>on</strong>al Natural Science Foundati<strong>on</strong> of China (Grant No.10975026).51


Generati<strong>on</strong> of tens of GeV quasi-m<strong>on</strong>oenergetic prot<strong>on</strong> beamsfrom a moving double layer formed by ultraintense lasers atintensity 10 21 –10 23 W cm −2Lu-Le Yu 1 , Han Xu 2 , Wei-Min Wang 1 , Zheng-Ming Sheng 1,3,5 , Bai-Fei Shen 4 , Wei Yu 4 <str<strong>on</strong>g>and</str<strong>on</strong>g> JieZhang 1,31 Beijing Nati<strong>on</strong>al Laboratory for C<strong>on</strong>densed Matter Physics, Institute of Physics, CAS, Beijing100190, People’s Republic of China2 <str<strong>on</strong>g>School</str<strong>on</strong>g> of Computer Science, Nati<strong>on</strong>al University of Defence Technology, Changsha 410073,Weimin Wang China3Department of Physics, Shanghai Jiao T<strong>on</strong>g University, Shanghai 200240, China4 Shanghai Institute of Optics <str<strong>on</strong>g>and</str<strong>on</strong>g> Fine Mechanics, CAS, Shanghai 201800, ChinaWe present a scheme for prot<strong>on</strong> accelerati<strong>on</strong> from a moving double layer formed by anultraintense circularly polarized laser pulse with intensity10 21 –10 23 Wcm −2 irradiated <strong>on</strong> acombinati<strong>on</strong> target. <str<strong>on</strong>g>The</str<strong>on</strong>g> target is composed of a thin overdense prot<strong>on</strong>-rich foil located atthe fr<strong>on</strong>t followed by an underdense gas regi<strong>on</strong> behind with an effective Z/A ratio of theorder of 1/3. When the areal density of the thin foil is small enough, the prot<strong>on</strong>s togetherwith electr<strong>on</strong>s in the thin overdense foil can be pre-accelerated under the laser irradiati<strong>on</strong>.As the laser pulse passes through the thin foil <str<strong>on</strong>g>and</str<strong>on</strong>g> propagates in the underdense gasregi<strong>on</strong>, it excites high-amplitude electrostatic fields moving at a high speed, which appearlike a moving double layer. <str<strong>on</strong>g>The</str<strong>on</strong>g> pre-accelerated prot<strong>on</strong>s can get trapped <str<strong>on</strong>g>and</str<strong>on</strong>g> acceleratedin the moving double layer <str<strong>on</strong>g>and</str<strong>on</strong>g> tens of GeV quasi-m<strong>on</strong>oenergetic prot<strong>on</strong> beams areachieved, provided the laser intensity <str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>plasma</strong> density are properly chosen, asdem<strong>on</strong>strated by <strong>on</strong>e-dimensi<strong>on</strong>al (1D) <str<strong>on</strong>g>and</str<strong>on</strong>g> 2D particlein-cell (PIC) simulati<strong>on</strong>s.Funding supported by NSFC (grant numbers 10935002, 10734130 <str<strong>on</strong>g>and</str<strong>on</strong>g> 60621063),theNati<strong>on</strong>al High-Tech ICF Committee of China <str<strong>on</strong>g>and</str<strong>on</strong>g> the Nati<strong>on</strong>al Basic Research Program ofChina (grant numbers 2007CB815101 <str<strong>on</strong>g>and</str<strong>on</strong>g> 2007CB815105).52


Ultra-intense single attosec<strong>on</strong>d pulse generated fromcircularly-polarized laser interacting with overdense <strong>plasma</strong>Liangliang Ji, Baifei Shen, Xiaomei Zhang, Meng Wen, Changquan Xia, Wenpeng Wang,Jiancai Xu, <str<strong>on</strong>g>and</str<strong>on</strong>g> Yah<strong>on</strong>g YuState Key Laboratory of High Field <strong>Laser</strong> Physics, Shanghai Institute of Optics <str<strong>on</strong>g>and</str<strong>on</strong>g> FineMechanics, Chinese Academy of Sciences, Shanghai 201800, ChinaUltra-intense high order harm<strong>on</strong>ics <str<strong>on</strong>g>and</str<strong>on</strong>g> furthermore attosec<strong>on</strong>d pulses can be generatedby relativistic linearly polarized laser pulse interacting with overdense target, which haspreviously been dem<strong>on</strong>strated theoretically <str<strong>on</strong>g>and</str<strong>on</strong>g> experimentally. However, with linearlypolarized lasers, there would be a train of attosec<strong>on</strong>d pulses which is difficult forapplicati<strong>on</strong>s. By particle-in-cell simulati<strong>on</strong>s <str<strong>on</strong>g>and</str<strong>on</strong>g> analysis, we propose that employing acircularly polarized pulse a single attosec<strong>on</strong>d pulse is generated by itself <str<strong>on</strong>g>and</str<strong>on</strong>g> nopost-treatments are required. This method is much more c<strong>on</strong>venient than previousproposals to isolate pulse from the pulse train by linearly polarized lasers. We give theanalytical mode <str<strong>on</strong>g>and</str<strong>on</strong>g> it describes the simulati<strong>on</strong> results very well. Parameter relati<strong>on</strong>shipshows that using a single-cycle21 210 W/cm circularly polarized laser, a single 36asattosec<strong>on</strong>d pulse with peak intensity of21 26.3× 10 W/cm is generated. Two dimensi<strong>on</strong>alsimulati<strong>on</strong> shows that the proposal is also efficient in multi-dimensi<strong>on</strong> geometries.53


Self-generated magnetic fields in the relativistic laser-<strong>plasma</strong>interacti<strong>on</strong>A. AbudurexitiPhysics Department, Xinjiang University, Urumqi , 830046Str<strong>on</strong>g magnetic fields can be generated when an intense laser pulse interacts with<strong>plasma</strong>. <str<strong>on</strong>g>The</str<strong>on</strong>g> sp<strong>on</strong>taneous magnetic fields as large as several mega-Gauss have beendirectly measured in the blowoff <strong>plasma</strong> in fr<strong>on</strong>t <str<strong>on</strong>g>and</str<strong>on</strong>g> rear of solid targets ,<str<strong>on</strong>g>and</str<strong>on</strong>g> attributed toa mechanism that occurs when the <strong>plasma</strong> density gradient ∇ n <str<strong>on</strong>g>and</str<strong>on</strong>g> temperature gradient∇ T are not collinear, <str<strong>on</strong>g>The</str<strong>on</strong>g>se magnetic fields, which can become str<strong>on</strong>g enough tosignificantly affect transport, are attributed to n<strong>on</strong>local effects that are missing in thest<str<strong>on</strong>g>and</str<strong>on</strong>g>ard, local theories .In this paper ,<str<strong>on</strong>g>The</str<strong>on</strong>g> self-generated magnetic field by a relativisticlaser pulse irradiated <strong>on</strong> a thin <strong>plasma</strong> target at the perpendicular incidence isinvestigated using a two dimensi<strong>on</strong>al particle-in cell simulati<strong>on</strong>.54


High resoluti<strong>on</strong> emittance <str<strong>on</strong>g>and</str<strong>on</strong>g> energy spread measurements of80- 135 MeV electr<strong>on</strong> beams from a laser driven <strong>plasma</strong> wakefieldaccelerator <strong>on</strong> the ALPHA-X beam lineG. Manahan E. Brunetti R. P. Shanks M. P. Anania S. Cipiccia R. T. L. Burgess R.Issac M. R. Islam B. Ersfeld G. H. Welsh S. M. Wiggins <str<strong>on</strong>g>and</str<strong>on</strong>g> D. A. JaroszynskiDepartment of Physics, University of Strathclyde, Glasgow, G4 0NG, UK<str<strong>on</strong>g>The</str<strong>on</strong>g> normalised transverse emittance characterises the quality of an electr<strong>on</strong> beamgenerated from the laser-<strong>plasma</strong> wakefield accelerator (LWFA). Brightness, parallelism<str<strong>on</strong>g>and</str<strong>on</strong>g> focusability are all functi<strong>on</strong>s of the emittance. Here, we present a high-resoluti<strong>on</strong>single shot method of measuring the transverse emittance of a 125 MeV electr<strong>on</strong> beamgenerated from a LWFA using a pepper-pot mask. An average normalised emittance ofaround 1 mm mrad was measured, which is comparable to that of a c<strong>on</strong>venti<strong>on</strong>alaccelerator. We also show high resoluti<strong>on</strong> measurements of the energy spreaddetermined using a magnetic dipole spectrometer.Funding supported by U.K. EPSRC <str<strong>on</strong>g>and</str<strong>on</strong>g> the Scottish Universities Physics Alliance.55


Ultrafast pulse-train laser leading to desktop intense THzfree-electr<strong>on</strong> laserYen-Chieh Huang a , Kuei-Feng H<strong>on</strong>g a , Yen-Yin Lin a , An-Chung Chiang b , Chiahsian Chen aaDepartment of Electrical Engineering, b Nuclear Science <str<strong>on</strong>g>and</str<strong>on</strong>g> Technology DevelopmentCenter, Nati<strong>on</strong>al Tsinghua University, Hsinchu 30013, TaiwanWe report the development of a high-power THz pulse train laser to drive an electr<strong>on</strong>photoinjector, which in turn drives a single-pass free electr<strong>on</strong> laser to generate fullytunable, coherent, intense THz radiati<strong>on</strong> in a desktop dimensi<strong>on</strong>. In this work, weengineer a TW-power, THz pulse train laser <str<strong>on</strong>g>and</str<strong>on</strong>g> further encode the laser pulse structureto an electr<strong>on</strong> beam through a photocathode electr<strong>on</strong> accelerator. Such an electr<strong>on</strong> beam,carrying the coherence of the laser, is ideal for generating high-brightness electr<strong>on</strong>radiati<strong>on</strong> at frequencies that can not be reached by a solid-state laser.This work is supported by Nati<strong>on</strong>al Tsinghua University under project code 98N2534E1 <str<strong>on</strong>g>and</str<strong>on</strong>g> byNati<strong>on</strong>al Science Council under C<strong>on</strong>tract NSC 99-2112-M-007 -013 -MY3.56

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!