12.07.2015 Views

Hydrodealkylation is a process in which side chains ... - cribME!

Hydrodealkylation is a process in which side chains ... - cribME!

Hydrodealkylation is a process in which side chains ... - cribME!

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Homework 51. (30 pts) <strong>Hydrodealkylation</strong> <strong>is</strong> a <strong>process</strong> <strong>in</strong> <strong>which</strong> <strong>side</strong> cha<strong>in</strong>s, cons<strong>is</strong>t<strong>in</strong>g of alkyl groups, are removedfrom aromatics by reaction with hydrogen to form the parent aromatic compound. For <strong>in</strong>stance,toluene can be converted to benzene:Xylene can be converted to toluene:C 6 H 5 CH 3 + H2 C 6 H 6 + CH 4C 6 H 4 (CH 3 ) 2 + H 2 C 6 H 5 CH 3 + CH 4Pseudocumene and other C 9 hydrocarbons conta<strong>in</strong><strong>in</strong>g three CH 3 groups can be converted to xylenes:C 6 H 3 (CH 3 ) 3 + H 2 C 6 H 4 (CH 3 ) 2 + CH 4In a given application, a ref<strong>in</strong>ery reformate stream cons<strong>is</strong>t<strong>in</strong>g of 5% benzene, 20% toluene, 35% xylene,and 40% C 9 hydrocarbons <strong>is</strong> reacted with hydrogen. If 5 mol H 2 <strong>is</strong> used per 1 mol feed, 80% conversionof toluene, 74% conversion of xylene, and 70% conversion of C 9 hydrocarbons are atta<strong>in</strong>ed. The productstream <strong>is</strong> found to conta<strong>in</strong> a small amount, 0.1% of biphenyl, <strong>in</strong>dicat<strong>in</strong>g that the <strong>side</strong> reaction2C 6 H 6 C 6 H 5 C 6 H 5 + H 2occurs to some extent.The four reactions that are occurr<strong>in</strong>g can be described by the simplified form:T + H2 B + CH4 (1)X + H2 T + CH4 (2)C9 + H2 X + CH4 (3)2B BP + H2 (4)Use the Extent of Reaction Method for multiple reactions to calculate the complete composition of thereactor outlet stream. The problem should be worked <strong>in</strong> mol/h and mole fraction.See work below:BP: .001 Benzene: .007 C9: .02 CH 4 : .14 H 2 : .71 Toluene: .12 Xylene: .015


Given .740 − nc940.7435 − nx35nB 5 − 2⋅squig4+ squig1 nH 500 − squig1− squig2 − squig3 + squig4nT 20 − squig1+ squig2nCH4 squig1 + squig2 + squig3nx 35 − squig2 + squig3 nc9 40 − squig3 nbp squig473.724 nBntot nbp + nx + nT + nH + nCH4 + c9 + nB .00112.000 nC99.100 nXnbpntotxnxntot.820 − nT20TnTnHHntotntot348.788 nH24.000 nT151.800 nCH40.588 nBP588.020 ntotal69.900 ζ153.900 ζ228.000 ζ30.588 ζ40.015 x xylenex0.007 toluene0.593 x H20.258 x CH40.020 x C9x0.125 benzene0.001 x BPCH4nCH4ntotc9nc9ntotBnBntotbpnbpntot


2. (30 pts) Methanol <strong>is</strong> produced by react<strong>in</strong>g carbon monoxide and hydrogen. A fresh feed conta<strong>in</strong><strong>in</strong>gCO and H 2 jo<strong>in</strong>s a recycle stream and the comb<strong>in</strong>ed stream <strong>is</strong> fed to the reactor. The reactor outletstream flows at a rate of 250 mole/m<strong>in</strong> and conta<strong>in</strong>s 63.1 mole % H 2 , 27.4 mole % CO and 9.53 % CH 3 OH.Th<strong>is</strong> stream enters a cooler <strong>in</strong> <strong>which</strong> most of the methanol <strong>is</strong> condensed. The liquid methanol <strong>is</strong>withdrawn as a product, and the gas stream leav<strong>in</strong>g the condenser, conta<strong>in</strong><strong>in</strong>g all three species with a0.40 mole % methanol vapor <strong>is</strong> the recycle stream that comb<strong>in</strong>es with the fresh feed.a) Draw a picture and label all of your knowns and unknowns.b) Do a degree of freedom analys<strong>is</strong> for the overall <strong>process</strong> and the condenser.c) F<strong>in</strong>d the molar flow rates of CO and H 2 <strong>in</strong> the fresh feed, the production of liquid methanol, and thes<strong>in</strong>gle‐pass and overall conversions of CO.H 2CH 3 OHGiven.0953250 ⋅ n3 + .004⋅n4250 n3 + n4 n1 n32n2 ⋅4n3 ⋅ .274⋅250xn4 ⋅F<strong>in</strong>d( n1, n2, n3, n4,x)→⎛⎜⎜⎜⎜⎜⎝22.91666666666666666745.83333333333333333322.916666666666666667227.08333333333333333.30165137614678899083⎞⎟⎟⎟⎠c) CO = 22.9 moles; H 2 =45.8 moles; production rate of methanol = 22.9 moles;s<strong>in</strong>gle pass: (22.9+.3*227.8)‐.274*250 = 25 %(22.9+.3*227.8)Overall: 100 %


3. (20 pts) In the Deacon <strong>process</strong> for the manufacture of chlor<strong>in</strong>e, HCl and O 2 react to form Cl 2 and H 2 0.Sufficient air (79 % N 2 and 21 % O 2 ) <strong>is</strong> fed to provide 35 % excess oxygen and the fractional conversion ofHCl <strong>is</strong> 85 %. Calculate the mole fractions of the product stream components us<strong>in</strong>g atomic speciesbalances.4HCl + O 2 → 2Cl 2 + 2H 2 OAssume 100 moles of HCl.1.35*100 moles HCl*(1 mole O 2 /4 moles HCl) = 33.75 moles O 2 com<strong>in</strong>g <strong>in</strong>Givennn2 33.75⋅ 3.76 .85100 − nhcl100100 2⋅ncl2+ nhcl 100 2⋅nh2o+ nhcl2⋅33.75nh2o + 2⋅no2ntot nn2 + nhcl + ncl2 + no2 + nh2on2nn2ntoto2no2ntothclnhclntotcl2ncl2ntoth2onh2ontotF<strong>in</strong>d( nn2, nhcl, ncl2, nh2o , no2, ntot , n2, o2, hcl, cl2,h2o)→N 2 = .53 O 2 = .052 HCl = .063 Cl 2 = .1775 H 2 O = .1775⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝126.9000000000000000015.⎟42.500000000000000000⎟⎟12.500000000000000000⎟239.40000000000000000⎟.53007518796992481203⎟⎟.52213868003341687552e-1⎟.62656641604010025063e-1 ⎟.17752715121136173768⎟.17752715121136173768⎞⎠


4. (20 pts) A mixture of NH 3 and air (21% O 2 , 79% N 2 ) <strong>is</strong> fed to a reactor at rates of 2000 mol/h air and100 mol/h NH 3 where they are reacted to produce a mixture of gases compr<strong>is</strong><strong>in</strong>g 3 mol% O 2 , 6 mol %NO, and the rest N 2 , NH 3 , H 2 O, and NO 2 . If the fractional conversion of NH 3 <strong>is</strong> f NH3 = 0.8, calculate theoutlet molar flow rate (mol/h) of each species. Do a degree of freedom analys<strong>is</strong> first! The follow<strong>in</strong>greactions are occurr<strong>in</strong>g:4NH 3 + 5O 2 4NO + 6H 2 O4NH 3 + 3O2 2N 2 + 6H 2 O2NO + O 2 2NO 2Given.8100 − nnh3100.79⋅ 2⋅2000+ 100 nnh3 + nno + nno2 + nn2⋅2300 3nnh3 + 2nh2o.21⋅ 2⋅20002⋅no2+ 2⋅nno+ nh2o + 2nno2ntot nnh3 + no2 + nno + nh2o + nn2 + nno21969.543 total20.000 NH359.086 O2118.173 NO120.000 H2O1469.543 N2182.741 NO2

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!