12.07.2015 Views

Effect of L-carnitine Supplementation on Left Ventricular Functions in ...

Effect of L-carnitine Supplementation on Left Ventricular Functions in ...

Effect of L-carnitine Supplementation on Left Ventricular Functions in ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<str<strong>on</strong>g>Effect</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> L-<str<strong>on</strong>g>carnit<strong>in</strong>e</str<strong>on</strong>g> <str<strong>on</strong>g>Supplementati<strong>on</strong></str<strong>on</strong>g> <strong>on</strong><strong>Left</strong> <strong>Ventricular</strong> Functi<strong>on</strong>s <strong>in</strong>Hemodialysis PatientsThesisSubmitted to Faculty <str<strong>on</strong>g>of</str<strong>on</strong>g> Medic<strong>in</strong>e, Alexandria University<strong>in</strong> partial fulfillment <str<strong>on</strong>g>of</str<strong>on</strong>g> the requirements for theDegree <str<strong>on</strong>g>of</str<strong>on</strong>g> Master<str<strong>on</strong>g>of</str<strong>on</strong>g>Internal Medic<strong>in</strong>eByRehab Hussien Mohamed MersalMBBCh., Alex. University, 1995Faculty <str<strong>on</strong>g>of</str<strong>on</strong>g> Medic<strong>in</strong>eAlexandria University2005


CONTENTSChapterPageI. Introducti<strong>on</strong> .................................................................................. 1II. Aim <str<strong>on</strong>g>of</str<strong>on</strong>g> the Work .......................................................................... 45III. Subjects ........................................................................................ 46IV. Methods ........................................................................................ 48V. Results .......................................................................................... 54VI. Discussi<strong>on</strong> .................................................................................... 108VII. Summary ...................................................................................... 119VIII. C<strong>on</strong>clusi<strong>on</strong> ................................................................................... 121IX. References ................................................................................... 122ProtocolArabic Summary


My s<strong>in</strong>cere thanks to my supervisor, Pr<str<strong>on</strong>g>of</str<strong>on</strong>g>essor Dr.Salah Said Naga, Pr<str<strong>on</strong>g>of</str<strong>on</strong>g>essor <str<strong>on</strong>g>of</str<strong>on</strong>g> Internal Medic<strong>in</strong>e andNephrology, Faculty <str<strong>on</strong>g>of</str<strong>on</strong>g> Medic<strong>in</strong>e, University <str<strong>on</strong>g>of</str<strong>on</strong>g>Alexandria, for his generous and c<strong>on</strong>t<strong>in</strong>uous help,encouragement, criticism and support.I would like also to acknowledge the dist<strong>in</strong>guishedadvice, help, support and experience given byPr<str<strong>on</strong>g>of</str<strong>on</strong>g>essor Dr. Mohamed Magdy Abd El Kader, Pr<str<strong>on</strong>g>of</str<strong>on</strong>g>essor<str<strong>on</strong>g>of</str<strong>on</strong>g> Internal Medic<strong>in</strong>e and Nephrology, Faculty <str<strong>on</strong>g>of</str<strong>on</strong>g>Medic<strong>in</strong>e, University <str<strong>on</strong>g>of</str<strong>on</strong>g> Alexandria.My gratitude to Pr<str<strong>on</strong>g>of</str<strong>on</strong>g>essor Dr. Tarek Hussien ElZawawey, Pr<str<strong>on</strong>g>of</str<strong>on</strong>g>essor <str<strong>on</strong>g>of</str<strong>on</strong>g> Cardiology and Angiology,Faculty <str<strong>on</strong>g>of</str<strong>on</strong>g> Medic<strong>in</strong>e, University <str<strong>on</strong>g>of</str<strong>on</strong>g> Alexandria for hishelp and supervisi<strong>on</strong>.I would like to express my special thanks toAssistant Pr<str<strong>on</strong>g>of</str<strong>on</strong>g>essor Dr. Akram El Deghady, AssistantPr<str<strong>on</strong>g>of</str<strong>on</strong>g>essor <str<strong>on</strong>g>of</str<strong>on</strong>g> Cl<strong>in</strong>ical Pathology, Faculty <str<strong>on</strong>g>of</str<strong>on</strong>g> Medic<strong>in</strong>e,University <str<strong>on</strong>g>of</str<strong>on</strong>g> Alexandria for his effort, time & support.I am deeply grateful to patients; without theirc<strong>on</strong>sent this thesis would not have been possible.


Introducti<strong>on</strong> 1.INTRODUCTIONChr<strong>on</strong>ic renal failure (CRF) is a progressive disease characterized byprogressive destructi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the renal mass with <strong>in</strong>creas<strong>in</strong>g <strong>in</strong>ability <str<strong>on</strong>g>of</str<strong>on</strong>g> thekidney to ma<strong>in</strong>ta<strong>in</strong> normal homeostasis <str<strong>on</strong>g>of</str<strong>on</strong>g> prote<strong>in</strong> metabolism (e.g. urea),normal blood pressure and hematocrit, water, and electrolytes. (1)Etiology <str<strong>on</strong>g>of</str<strong>on</strong>g> chr<strong>on</strong>ic renal failureThere are many causes <str<strong>on</strong>g>of</str<strong>on</strong>g> chr<strong>on</strong>ic renal failure, they can be divided <strong>in</strong>to:1- Primary glomerular diseases:• Membranous nephropathy.• Immunoglobul<strong>in</strong> A (IgA) nephropathy. (2)• Focal and segmental glomerulosclerosis (FSGS).• M<strong>in</strong>imal change disease.• Membranoproliferative glomerul<strong>on</strong>ephritis.• Rapidly progressive (crescentric) glomerul<strong>on</strong>ephritis.2- Sec<strong>on</strong>dary glomerular diseases:• Diabetic glomerulosclerosis.• Systemic lupus erythrematosis(SLE) ,PAN. (3)• Rheumatoid arthritis.• Mixed c<strong>on</strong>nective tissue disease.• Scleroderma.• Goodpasture syndrome.• Wegener granulomatosis.


Introducti<strong>on</strong> 2.• Mixed cryoglobul<strong>in</strong>emia.• Post <strong>in</strong>fectious glomerul<strong>on</strong>ephritis.• Bacterial endocarditis.• Hepatitis B and C.• Syphilis, HIV <strong>in</strong>fecti<strong>on</strong>. (4)• Parasitic <strong>in</strong>fecti<strong>on</strong>s.• Hero<strong>in</strong> use.• Gold, pencillam<strong>in</strong>e.• Amyloidosis.• Light cha<strong>in</strong> depositi<strong>on</strong> disease.• Neoplasia.• Thrombotic thrombocytopenic purpura (TTP).• Hemolytic uremic syndrome (HUS).• Henoch-schenole<strong>in</strong> purpura.• Schistosomiasis-associated glomerulopathy. (4)3- Tubulo-<strong>in</strong>terstitial diseases:• Drugs (e.g; sulfa, allopur<strong>in</strong>ol). (5)• Infecti<strong>on</strong> (viral, bacterial as T.B., parasitic).• Sarcoidosis.• Sjogren syndrome.• Multiple myloma (cast nephropathy).


Introducti<strong>on</strong> 3.• Gouty nephropathy.• Nephrocalc<strong>in</strong>osis.4- Hereditary and genetic diseases:• Polycystic kidney disease.• Alport’s syndrome.• C<strong>on</strong>genital hypoplasia.5- Vascular diseases:• Renal artery stenosis.• Ant<strong>in</strong>eutrophil cytoplasmic antibody (ANCA).♦ Cytoplasmic pattern ant<strong>in</strong>eutrophil cytoplasmic antibody(C-ANCA).♦ Positive and per<strong>in</strong>uclear pattern ant<strong>in</strong>eutrophil cytoplasmicantibody (P-ANCA).• Hypertensive nephrosclerosis.• Renal ve<strong>in</strong> thrombosis.6- Ur<strong>in</strong>ary tract obstructi<strong>on</strong>:• Urolithiasis.• Benign prostatic hyperplasia. (6)• Tumours.• Retroperit<strong>on</strong>eal fibrosis.• Urethral stricture.• Neurogenic bladder. (7)


Introducti<strong>on</strong> 4.Pathogenesis <str<strong>on</strong>g>of</str<strong>on</strong>g> chr<strong>on</strong>ic renal failure:Approximately 1-1.3 milli<strong>on</strong> nephr<strong>on</strong>s are present <strong>in</strong> each kidney,each c<strong>on</strong>tribut<strong>in</strong>g to the total GFR regardless <str<strong>on</strong>g>of</str<strong>on</strong>g> the etiology <str<strong>on</strong>g>of</str<strong>on</strong>g> renal <strong>in</strong>jury,with progressive destructi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> nephr<strong>on</strong>s, the kidney has an <strong>in</strong>nate ability toma<strong>in</strong>ta<strong>in</strong> GFR by hyperfiltrati<strong>on</strong> and compensatory hypertrophy <str<strong>on</strong>g>of</str<strong>on</strong>g> therema<strong>in</strong><strong>in</strong>g healthy nephr<strong>on</strong>s. This nephr<strong>on</strong> adaptability allows forc<strong>on</strong>t<strong>in</strong>ued normal clearance <str<strong>on</strong>g>of</str<strong>on</strong>g> plasma solutes such as urea and creat<strong>in</strong><strong>in</strong>e,these substances start to show significant <strong>in</strong>creases <strong>in</strong> their plasma levels<strong>on</strong>ly after total GFR has decreased to 50%, when the renal reserve has beenexhausted. A rise <strong>in</strong> plasma creat<strong>in</strong><strong>in</strong>e from a basel<strong>in</strong>e value <str<strong>on</strong>g>of</str<strong>on</strong>g> 0.6 mg/dl to1.2 mg/dl <strong>in</strong> a patient, although still with<strong>in</strong> the reference range, actuallyrepresents a loss <str<strong>on</strong>g>of</str<strong>on</strong>g> 50%<str<strong>on</strong>g>of</str<strong>on</strong>g> the functi<strong>on</strong><strong>in</strong>g nephr<strong>on</strong> mass. (8)Although, the residual nephr<strong>on</strong>s hyperfiltrati<strong>on</strong> and hypertrophy arebeneficial, it may be a major cause <str<strong>on</strong>g>of</str<strong>on</strong>g> progressive renal dysfuncti<strong>on</strong>. This isbecause <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>in</strong>creased glomerular capillary pressure, which damages thecapillaries and leads <strong>in</strong>itially to focal and segmental glomerulosclerosis andeventually to global glomrulosclerosis.Factors other than the underly<strong>in</strong>g disease process and glomerularhypertensi<strong>on</strong> that may cause progressive renal <strong>in</strong>jury <strong>in</strong>clude the follow<strong>in</strong>g:• Systemic hypertensi<strong>on</strong>. (9)• Acute <strong>in</strong>sults: nephrotox<strong>in</strong>s or decreased perfusi<strong>on</strong>.• Prote<strong>in</strong>uria. (10)• Increased renal amm<strong>on</strong>iagenesis with <strong>in</strong>terstitial <strong>in</strong>jury.• Hyperlipidemia.• Hyperphosphatemia with calcium-phosphate depositi<strong>on</strong>. (11)• Decreased levels <str<strong>on</strong>g>of</str<strong>on</strong>g> nitric oxide.


Introducti<strong>on</strong> 5.Morbidity and mortality:Chr<strong>on</strong>ic renal failure is a major cause <str<strong>on</strong>g>of</str<strong>on</strong>g> morbidity and mortality, the5-year survival rate for a patient undergo<strong>in</strong>g chr<strong>on</strong>ic dialysis isapproximately 35%. This rate decrease to approximately 20% <strong>in</strong> patientswith diabetic nephropathy. (12,13)Age:CRF can be found <strong>in</strong> people <str<strong>on</strong>g>of</str<strong>on</strong>g> any age, from <strong>in</strong>fants to the very old,but the elderly populati<strong>on</strong> is the most rapidly grow<strong>in</strong>g ESRD populati<strong>on</strong>.Ag<strong>in</strong>g also results <strong>in</strong> c<strong>on</strong>comitant progressive physiological decrease<strong>in</strong> muscle mass such that daily ur<strong>in</strong>ary creat<strong>in</strong><strong>in</strong>e excreti<strong>on</strong> also decrease;this comb<strong>in</strong>ati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> factors results <strong>in</strong> c<strong>on</strong>stant serum creat<strong>in</strong><strong>in</strong>e values overtime <strong>in</strong> a given <strong>in</strong>dividual, despite a decrease <strong>in</strong> CrCl and GFR. (14)Pathophysiology and biochemistry <str<strong>on</strong>g>of</str<strong>on</strong>g> uremia:The uremic syndrome results from functi<strong>on</strong>al derangement <str<strong>on</strong>g>of</str<strong>on</strong>g> manyorgan systems, although the prom<strong>in</strong>ence <str<strong>on</strong>g>of</str<strong>on</strong>g> specific symptoms variesam<strong>on</strong>g patients. Azotemia refers to the retenti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> nitrogenous wasteproducts as renal <strong>in</strong>sufficiency develops. Uremia; refers to the moreadvanced stages <str<strong>on</strong>g>of</str<strong>on</strong>g> progressive renal <strong>in</strong>sufficiency when the complexmultiorgan system derangements become cl<strong>in</strong>ically manifest. The termuremia was orig<strong>in</strong>ally used because <str<strong>on</strong>g>of</str<strong>on</strong>g> the presumpti<strong>on</strong> that all <str<strong>on</strong>g>of</str<strong>on</strong>g> theabnormalities results from retenti<strong>on</strong> <strong>in</strong> the blood <str<strong>on</strong>g>of</str<strong>on</strong>g> end products <str<strong>on</strong>g>of</str<strong>on</strong>g>metabolism normally excreted <strong>in</strong> the ur<strong>in</strong>e. (15)The most likely tox<strong>in</strong>s <strong>in</strong> uremia are the by-products <str<strong>on</strong>g>of</str<strong>on</strong>g> prote<strong>in</strong> andam<strong>in</strong>o acid metabolism. A number <str<strong>on</strong>g>of</str<strong>on</strong>g> such products have been identified


Introducti<strong>on</strong> 6.(Table 1). The cl<strong>in</strong>ical symptoms <str<strong>on</strong>g>of</str<strong>on</strong>g> uremia correlate poorly with the bloodlevels <str<strong>on</strong>g>of</str<strong>on</strong>g> these products. This is because uremia <strong>in</strong>volves more than renalexcretory failure al<strong>on</strong>e. The metabolic and endocr<strong>in</strong>e functi<strong>on</strong>s subservedby the kidney are also impaired, result<strong>in</strong>g <strong>in</strong> anemia; malnutriti<strong>on</strong>; impairedmetabolism <str<strong>on</strong>g>of</str<strong>on</strong>g> carbohydrate, fats, and prote<strong>in</strong>s, defective utilizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g>energy; and metabolic b<strong>on</strong>e disease. (16)Table (1): Uremic “tox<strong>in</strong>s” (16)By-products <str<strong>on</strong>g>of</str<strong>on</strong>g> prote<strong>in</strong> and am<strong>in</strong>o acid metabolismUrea-80% <str<strong>on</strong>g>of</str<strong>on</strong>g> total excreted nitrogenGuanid<strong>in</strong>o compoundsGuanid<strong>in</strong>eMethylguanid<strong>in</strong>eDimethylguanid<strong>in</strong>eCreat<strong>in</strong><strong>in</strong>eCreat<strong>in</strong>eGuanid<strong>in</strong>osucc<strong>in</strong>ic acidUrates and hippuratesEnd products <str<strong>on</strong>g>of</str<strong>on</strong>g> nucleic acid metabolismEnd products <str<strong>on</strong>g>of</str<strong>on</strong>g> aliphatic am<strong>in</strong>e metabolismEnd products <str<strong>on</strong>g>of</str<strong>on</strong>g> aromatic am<strong>in</strong>o acid metabolismTryptophanTyros<strong>in</strong>ePhenylalan<strong>in</strong>eOther nitrogenous substancesPolyam<strong>in</strong>esMyo<strong>in</strong>ositolPhenolsBenzoatesIndolesAdvanced glycati<strong>on</strong> end productsInhibitors <str<strong>on</strong>g>of</str<strong>on</strong>g> ligand-prote<strong>in</strong> b<strong>in</strong>d<strong>in</strong>gGlucur<strong>on</strong>oc<strong>on</strong>jugates and aglyc<strong>on</strong>esInhibitors <str<strong>on</strong>g>of</str<strong>on</strong>g> somatomed<strong>in</strong> and <strong>in</strong>sul<strong>in</strong> acti<strong>on</strong>


Introducti<strong>on</strong> 7.The pathophysiology <str<strong>on</strong>g>of</str<strong>on</strong>g> the uremic syndrome can be divided to:1- Abnormalities due to accumulati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> products <str<strong>on</strong>g>of</str<strong>on</strong>g> prote<strong>in</strong> metabolism.2- Abnormalities due to loss <str<strong>on</strong>g>of</str<strong>on</strong>g> the other renal functi<strong>on</strong>s, such as fluid andelectrolytes homeostasis and synthesis <str<strong>on</strong>g>of</str<strong>on</strong>g> certa<strong>in</strong> horm<strong>on</strong>es [e.g.erythropoiet<strong>in</strong> (EPO), 1-25 dihydroxy cholecalciferol ]. (17)One <str<strong>on</strong>g>of</str<strong>on</strong>g> the major causes <str<strong>on</strong>g>of</str<strong>on</strong>g> the uremic toxicity is urea which mayc<strong>on</strong>tribute to some <str<strong>on</strong>g>of</str<strong>on</strong>g> the cl<strong>in</strong>ical abnormalities <strong>in</strong>clud<strong>in</strong>g anorexia,malaise, vomit<strong>in</strong>g, and headache. Elevated levels <str<strong>on</strong>g>of</str<strong>on</strong>g> plasmaguanid<strong>in</strong>osucc<strong>in</strong>ic acid, by <strong>in</strong>terfer<strong>in</strong>g with activati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> platelet factor IIIby ADP, lead to impairement <strong>in</strong> the platelet functi<strong>on</strong> <strong>in</strong> chr<strong>on</strong>ic renaldisease (CRD). Creat<strong>in</strong><strong>in</strong>e c<strong>on</strong>verts to metabolites such as sarc<strong>on</strong><strong>in</strong>e andmethylguanid<strong>in</strong>e. (18)Other nitrogenous compounds are also reta<strong>in</strong>ed <strong>in</strong> CRD and mayc<strong>on</strong>tribute to morbidity and mortality <strong>in</strong> uremic patients. (19) accumulati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g>cytok<strong>in</strong>es and growth factors <strong>in</strong> uremic plasma is due to decrease renalmass with subsequent decreased catabolism <str<strong>on</strong>g>of</str<strong>on</strong>g> the circulat<strong>in</strong>g plasmaprote<strong>in</strong>s and polypeptides; (20) also there is <strong>in</strong>crease <strong>in</strong> the plasma levels <str<strong>on</strong>g>of</str<strong>on</strong>g>many polypeptide horm<strong>on</strong>es as parathyroid horm<strong>on</strong>e(PTH), and prolact<strong>in</strong>e.This is due to decrease excreti<strong>on</strong> and <strong>in</strong>crease glandular secreti<strong>on</strong>. (21)PTH has an adverse effect <str<strong>on</strong>g>of</str<strong>on</strong>g> elevat<strong>in</strong>g cellular cytosolic Ca 2+ levels<strong>in</strong> some tissues and organs, so its excessive level <strong>in</strong> CRD can be c<strong>on</strong>sideredan important “uremic tox<strong>in</strong>”. (22)


Introducti<strong>on</strong> 8.Cl<strong>in</strong>ical and laboratory manifestati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> chr<strong>on</strong>ic renalfailureThe cl<strong>in</strong>ical uremic syndrome manifestati<strong>on</strong>s usually appear whenthe GFR decl<strong>in</strong>e to


Introducti<strong>on</strong> 9.The reta<strong>in</strong>ed phosphate leads to sec<strong>on</strong>dary hyperparathyroidism <strong>in</strong> CRF,this occurs by decreas<strong>in</strong>g renal producti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> calcitriol and by lower<strong>in</strong>gplasma i<strong>on</strong>ized calcium. The calcitriol exerts negative feed back c<strong>on</strong>trol <strong>on</strong>the parathyroid gland, lead<strong>in</strong>g to <strong>in</strong>crease <strong>in</strong> the plasma calcium (bystimulati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>in</strong>test<strong>in</strong>al absorpti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Ca), and <strong>in</strong>hibit<strong>in</strong>g parathorm<strong>on</strong>esecreti<strong>on</strong>. (26)The patients with CRF have a significantly low plasma calciumc<strong>on</strong>centrati<strong>on</strong> which is due to:• High level <str<strong>on</strong>g>of</str<strong>on</strong>g> phosphate (which form Ca- phosphate deposit <strong>in</strong> s<str<strong>on</strong>g>of</str<strong>on</strong>g>ttissues lead<strong>in</strong>g to decl<strong>in</strong>es <strong>in</strong> serum calcium c<strong>on</strong>centrati<strong>on</strong>s).• Decrease <strong>in</strong>test<strong>in</strong>al absorpti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Ca.• Vitam<strong>in</strong> D deficiency. The hypocalcemia is a potent stimulus to the PTHsecreti<strong>on</strong> lead<strong>in</strong>g to hyperplasia <str<strong>on</strong>g>of</str<strong>on</strong>g> the parathyroid gland (sec<strong>on</strong>daryhyperparathyroidism). (22)With progressi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the chr<strong>on</strong>ic renal disease, the elevated PTHlevels adversely affect b<strong>on</strong>e metabolism caus<strong>in</strong>g <strong>in</strong>crease <strong>in</strong> the osteoclasticand osteoblastic activity lead<strong>in</strong>g to renal osteodystrophy. (27)Metabolic acidosis:In chr<strong>on</strong>ic renal failure, the kidneys are unable to produce enoughamm<strong>on</strong>ia <strong>in</strong> the proximal tubules to excrete the endogenous acid <strong>in</strong>to theur<strong>in</strong>e <strong>in</strong> the form <str<strong>on</strong>g>of</str<strong>on</strong>g> amm<strong>on</strong>ium. (28) Manifestati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> acidosis <strong>in</strong>clude;nausea, vomit<strong>in</strong>g, anorexia, exercise <strong>in</strong>tolerance, and abnormalities <strong>in</strong> themental status. (29)


Introducti<strong>on</strong> 10.The metabolic acidosis affects metabolism <strong>in</strong> several organs; itcauses b<strong>on</strong>e disease by <strong>in</strong>creas<strong>in</strong>g renal osteodystrophy by accelerat<strong>in</strong>gskeletal m<strong>in</strong>eral loss to buffer reta<strong>in</strong>ed H + . (30)Metabolic acidosis, alsoc<strong>on</strong>tributes to glucose <strong>in</strong>tolerance <str<strong>on</strong>g>of</str<strong>on</strong>g> uremia by caus<strong>in</strong>g <strong>in</strong>sul<strong>in</strong> resistance,and <strong>in</strong>duces prote<strong>in</strong> catabolism. (31)Correcti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> metabolic acidosisresolves these effects and improve the nutriti<strong>on</strong>al status. (32)2- Cardiovascular manifestati<strong>on</strong>s:The patients with CRD have many <str<strong>on</strong>g>of</str<strong>on</strong>g> the cardiovascularabnormalities as hypertensi<strong>on</strong>, c<strong>on</strong>gestive heart failure, pericarditis,astherosclerosis <str<strong>on</strong>g>of</str<strong>on</strong>g> cor<strong>on</strong>ary and peripheral arteries, cardiac tamp<strong>on</strong>ade,hemorrhagic pericardial effusi<strong>on</strong>. (33)3- Respiratory manifestati<strong>on</strong>s:Pleurisy, pulm<strong>on</strong>ary oedema, pleural effusi<strong>on</strong>, acidotic breath<strong>in</strong>g. (34)4- Gastro<strong>in</strong>test<strong>in</strong>al manifestati<strong>on</strong>s:Anorexia, hiccough, nausea, and vomit<strong>in</strong>g are the comm<strong>on</strong> earlymanifestati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> uremia. Uremic fetor (ur<strong>in</strong>iferous odor <str<strong>on</strong>g>of</str<strong>on</strong>g> the breath),unpleasent metallic taste sensati<strong>on</strong>, gastritis, and peptic ulcer are comm<strong>on</strong><strong>in</strong> uremic patients. (35)5- Hematologic manifestati<strong>on</strong>s:A normocytic, normochromic anemia is present <strong>in</strong> the majority <str<strong>on</strong>g>of</str<strong>on</strong>g>patients with CRD. (36) Also those patients have abnormal hemostasis withtendency to sp<strong>on</strong>taneous bleed<strong>in</strong>g <strong>in</strong>to the GIT.


Introducti<strong>on</strong> 11.6- Neurological manifestati<strong>on</strong>s:Disturbances <str<strong>on</strong>g>of</str<strong>on</strong>g> the central nervous system functi<strong>on</strong> <strong>in</strong>clude <strong>in</strong>abilityto c<strong>on</strong>centrate, drows<strong>in</strong>ess, <strong>in</strong>somnia, mild behavioral changes, loss <str<strong>on</strong>g>of</str<strong>on</strong>g>memory. In advanced CRD, peripheral neuropathy is a comm<strong>on</strong>manifestati<strong>on</strong>. Neuromuscular manifestati<strong>on</strong>s <strong>in</strong>clude cramps,fasciculati<strong>on</strong>s, and twitch<strong>in</strong>g <str<strong>on</strong>g>of</str<strong>on</strong>g> the muscles, asterixis, myocl<strong>on</strong>us <strong>in</strong> theterm<strong>in</strong>al uremia. (37)7- Musculoskeletal manifestati<strong>on</strong>s:Generalized myopathy, muscle cramps, osteodystrophy, which is acomm<strong>on</strong> b<strong>on</strong>e lesi<strong>on</strong> <strong>in</strong> CRF. It <strong>in</strong>clude osteomalacia, osteoprosis, andosteitis fibrosa cystica, aplastic b<strong>on</strong>e disease. (27)8- Endocr<strong>in</strong>al manifestati<strong>on</strong>s:Hyperparathyroidism, ammenorhea, impotence, <strong>in</strong>fertility.9- Metabolic manifestati<strong>on</strong>s:Glucose metabolism is impaired and glucose <strong>in</strong>tolerance is comm<strong>on</strong><strong>in</strong> uremic patients. Because the kidney c<strong>on</strong>tributes to <strong>in</strong>sul<strong>in</strong> removal fromthe circulati<strong>on</strong>, so plasma levels <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>in</strong>sul<strong>in</strong> are elevated <strong>in</strong> most uremicpatients, so the <strong>in</strong>sul<strong>in</strong> requirements decrease <strong>in</strong> the diabetic uremicpatients, however, <strong>in</strong>sul<strong>in</strong> resistance may occur <strong>in</strong> CRD patients. (21)Hyperurecemia and gout are comm<strong>on</strong> <strong>in</strong> CRD. (38)


Introducti<strong>on</strong> 12.10- Dermatologic manifestati<strong>on</strong>s:Pruritis, and excoriati<strong>on</strong>s, pallor (due to anemia), dryness,ecchymosis (due to defective hemostasis), uremic frost which is seen <strong>in</strong>advanced uremia.11- Immunological manifestati<strong>on</strong>s:Enhanced susceptibility to <strong>in</strong>fecti<strong>on</strong>s due to impairment <strong>in</strong> theleukocytes formati<strong>on</strong>s and functi<strong>on</strong>s <strong>in</strong> uremia. Lymphocytopenia andatrophy <str<strong>on</strong>g>of</str<strong>on</strong>g> lymphoid structure occures. The coexist<strong>in</strong>g acidosis,hyperglycemia, prote<strong>in</strong> malnutriti<strong>on</strong>, all lead to defect <strong>in</strong> the defensivemechanisms <str<strong>on</strong>g>of</str<strong>on</strong>g> the sk<strong>in</strong>, and mucosa. So both humoral and cellularimmunity decrease with uremia. (39)12- Abnormalities <strong>in</strong> uremic lipoprote<strong>in</strong> metabolism and itsimpact <strong>on</strong> cardiovascular diseasePatients with end stage renal disease (ESRD) suffer from asec<strong>on</strong>dary form <str<strong>on</strong>g>of</str<strong>on</strong>g> complex dyslipidemia which appears to be <strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> themajor risk factors. It c<strong>on</strong>sists <str<strong>on</strong>g>of</str<strong>on</strong>g> both quantitative and qualitativeabnormalities <strong>in</strong> serum lipoorote<strong>in</strong> result<strong>in</strong>g from alterati<strong>on</strong>s <strong>in</strong> lipoprote<strong>in</strong>metabolism and compositi<strong>on</strong>. The predom<strong>in</strong>ant feature <str<strong>on</strong>g>of</str<strong>on</strong>g> uremicdyslipidemia is an <strong>in</strong>crease <strong>in</strong> serum triglycerides levels. (40)Triglycerides are <strong>in</strong>creased predom<strong>in</strong>antly <strong>in</strong> the very low densitylipoprote<strong>in</strong> (VLDL) fracti<strong>on</strong>, <strong>in</strong>termediate density lipoprote<strong>in</strong> (IDL), andlow density lipoprote<strong>in</strong> (LDL) triglyceride is also <strong>in</strong>creased. High density


Introducti<strong>on</strong> 13.lipoprote<strong>in</strong> (HDL) cholesterol is decreased whereas LDL and <strong>in</strong>termediate(IDL) density lipoprote<strong>in</strong>s cholesterol are <strong>in</strong>creased. These changes <strong>in</strong>lipoprote<strong>in</strong> compositi<strong>on</strong> occur early <strong>in</strong> the course <str<strong>on</strong>g>of</str<strong>on</strong>g> renal failure,suggest<strong>in</strong>g that they are a c<strong>on</strong>sequence <str<strong>on</strong>g>of</str<strong>on</strong>g> renal failure and not ac<strong>on</strong>sequence <str<strong>on</strong>g>of</str<strong>on</strong>g> treatment. (41)The lipid compositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> each lipoprote<strong>in</strong> fracti<strong>on</strong> is also abnormal.The triglyceride c<strong>on</strong>tent <str<strong>on</strong>g>of</str<strong>on</strong>g> HDL and LDL is <strong>in</strong>creased whereas cholesterolc<strong>on</strong>centrati<strong>on</strong> is <strong>in</strong>creased <strong>in</strong> VLDL and chylomicr<strong>on</strong> remnants. Theprote<strong>in</strong> c<strong>on</strong>tent <str<strong>on</strong>g>of</str<strong>on</strong>g> each lipoprote<strong>in</strong> subfracti<strong>on</strong> <strong>in</strong>creases relative to lipidthus chr<strong>on</strong>ic renal failure is associated with an <strong>in</strong>creased plasma level <str<strong>on</strong>g>of</str<strong>on</strong>g>apolipoprote<strong>in</strong>-rich, lipid-poor lipoprote<strong>in</strong>s. (42)Lipoprote<strong>in</strong>(a)[LP(a)] has been identified as a prom<strong>in</strong>ent and<strong>in</strong>dependent risk factor <strong>in</strong> atherogenesis <strong>in</strong> dialysis patients. (43)LP(a)c<strong>on</strong>sists <str<strong>on</strong>g>of</str<strong>on</strong>g> a molecule <str<strong>on</strong>g>of</str<strong>on</strong>g> LDL to which <strong>on</strong>e molecule <str<strong>on</strong>g>of</str<strong>on</strong>g> the apolipoprote<strong>in</strong>apo(a) has been covalently attached to apo B100. The size <str<strong>on</strong>g>of</str<strong>on</strong>g> the apo (a)molecule <strong>in</strong> LP(a) is genetically determ<strong>in</strong>d and distributed <strong>in</strong> the populati<strong>on</strong><strong>in</strong> a n<strong>on</strong>- normal fashi<strong>on</strong>. (44)A majority <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>in</strong>dividuals have the largest apo(a) and the lowestplasma LP(a) c<strong>on</strong>centrati<strong>on</strong>. LP(a) levels are <strong>in</strong>creased <strong>in</strong> patients with avariety <str<strong>on</strong>g>of</str<strong>on</strong>g> renal diseases <strong>in</strong>clud<strong>in</strong>g CRF. Unlike <strong>in</strong>herited <strong>in</strong>creases <strong>in</strong>plasma LP(a) levels, acquired <strong>in</strong>creases <strong>in</strong> LP(a) are not associated with<strong>in</strong>creased apo(a)size. (45)


Introducti<strong>on</strong> 14.Apo A-I and apo A-II are apolipopote<strong>in</strong>s secreted by liver and<strong>in</strong>test<strong>in</strong>e and are found predom<strong>in</strong>antly <strong>in</strong> HDL. Apo A-I correlates<strong>in</strong>versely with atherosclerotic disease <strong>in</strong> patients and is necessary for theacti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> lecith<strong>in</strong> cholesterol ester transferase (LCAT). ApoE is secreted bya variety <str<strong>on</strong>g>of</str<strong>on</strong>g> tissues and is recognized by both the remnant receptor <strong>in</strong> liverand the scavenger receptor <strong>in</strong> macrophages. ApoE is found <strong>on</strong> alllipoprote<strong>in</strong>s. (46)Plasma apo A-I and apo A–II are decreased, and apoE is decreased <strong>in</strong>men with CRF. Decreased apo A-I is <strong>in</strong> part a c<strong>on</strong>sequence <str<strong>on</strong>g>of</str<strong>on</strong>g> reducedsynthesis, s<strong>in</strong>ce apo A-I is a necessary c<strong>on</strong>stituent <str<strong>on</strong>g>of</str<strong>on</strong>g> HDL, its reducedplasma c<strong>on</strong>centrati<strong>on</strong> may cause the low HDL levels characteristic <str<strong>on</strong>g>of</str<strong>on</strong>g> CRF.Apo B, an apolipoprote<strong>in</strong> necessary for triglyceride-rich lipoprote<strong>in</strong>s(VLDL and chylomicr<strong>on</strong>s (CM)), may be elevated.Apo B 48, an is<str<strong>on</strong>g>of</str<strong>on</strong>g>orm <strong>on</strong>ly secreted by the <strong>in</strong>test<strong>in</strong>e <strong>in</strong> humans, is<strong>in</strong>creased <strong>in</strong> the VLDL fracti<strong>on</strong>, suggest<strong>in</strong>g the presence <str<strong>on</strong>g>of</str<strong>on</strong>g> CM remmantparticles with<strong>in</strong> the VLDL fracti<strong>on</strong>. (47)All apo C lipoprote<strong>in</strong>s are <strong>in</strong>creased but the most important change isan <strong>in</strong>crease <strong>in</strong> apo C-III relative to apo C-II lead<strong>in</strong>g to an <strong>in</strong>creased apoC-III /apo C –II ratio. Apo Cs acts to either catalyze ( C-II) or <strong>in</strong>hibit (C-II)the acti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> liporote<strong>in</strong> lipase(LPL), the rate limit<strong>in</strong>g enzyme hydrolyz<strong>in</strong>gtriglycerides with<strong>in</strong> CM and VLDL, and also <strong>in</strong>hibit the uptake <str<strong>on</strong>g>of</str<strong>on</strong>g> remantsby the liver. The changed apo C-III/C-II ratio should <strong>in</strong>hibit LPL and beimportant <strong>in</strong> the pathogenesis <str<strong>on</strong>g>of</str<strong>on</strong>g> hypertriglyceridemia <strong>in</strong> CRF. (48)


Introducti<strong>on</strong> 15.Disordered lipoprote<strong>in</strong> metabolism <strong>in</strong> CRFAlthough triglyceride producti<strong>on</strong> may be <strong>in</strong>creased <strong>in</strong> CRF,decreased catabolism predom<strong>in</strong>ates. Serum from patients <strong>in</strong>hibits LPL,suggest<strong>in</strong>g the presence <str<strong>on</strong>g>of</str<strong>on</strong>g> a LPL <strong>in</strong>hibitor <strong>in</strong> CRF. (40) Together thesef<strong>in</strong>d<strong>in</strong>gs provide a basis for reduced lipolysis <str<strong>on</strong>g>of</str<strong>on</strong>g> triglycerids richlipoprote<strong>in</strong>s <strong>in</strong> CRF. VLDL is synthesized <strong>in</strong> the liver and catabolized <strong>on</strong>the vascular endothelium (Figure 1). (49)Figure (1): Metabolism <str<strong>on</strong>g>of</str<strong>on</strong>g> VLDL (49)Processed VLDL remnants are released and then may be either takenup directly by the liver by a receptor that recognizes apoE, or furthermetabolized to LDL, and then taken up by the liver via the LDL receptor ,which targets apo B 100. CM are synthesized <strong>in</strong> the <strong>in</strong>test<strong>in</strong>e and processedto remnants <strong>in</strong> much the same way as <strong>in</strong> VLDL, but are not processed toLDL and can not be a target for the LDL receptor because they carry theapo B 48 is<str<strong>on</strong>g>of</str<strong>on</strong>g>orm , <strong>on</strong>e not recognized by the LDL receptor. Although CMthemselves have no significant risk for atherogensis, CM remnants areatherogenic. (49) Remnant particles accumulate extensively <strong>in</strong> plasma <str<strong>on</strong>g>of</str<strong>on</strong>g>CRF patients . (40)


Introducti<strong>on</strong> 16.HDL plays a vital role <strong>in</strong> metabolism <str<strong>on</strong>g>of</str<strong>on</strong>g> both CM and VLDL.Mature HDL 2 is necessary for transport <str<strong>on</strong>g>of</str<strong>on</strong>g> the essential LPL c<str<strong>on</strong>g>of</str<strong>on</strong>g>actor, apoC-II to nascent VLDL and CM (Figure 2). (50) ApoC-II is recycled from CMand VLDL remnants by HDL 2 , without recycl<strong>in</strong>g, the acti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> LPL <strong>on</strong>these large lipoprole<strong>in</strong>s will be reduced. (50)Figure (2): Metabolism <str<strong>on</strong>g>of</str<strong>on</strong>g> chylomicr<strong>on</strong>s (50)Dur<strong>in</strong>g hydrolysis <str<strong>on</strong>g>of</str<strong>on</strong>g> CM and VLDL, Discoid HDL is released <strong>in</strong>plasma (Figure 1). Discoid HDL is a liquid bilayer and <strong>on</strong>ly becomes aspherical lipoprote<strong>in</strong> by the acti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> LCAT (which is an enzyme thatesterifies free cholesterol), the cholesterol ester s<strong>in</strong>k <strong>in</strong>to the core <str<strong>on</strong>g>of</str<strong>on</strong>g> thelipid bilayer transform<strong>in</strong>g it <strong>in</strong>to small spherical HDL 3 particles. LCATalso act <strong>on</strong> HDL transform<strong>in</strong>g it <strong>in</strong>to layer HDL 2 molecules so discoid HDLparticles are structurally altered and hepatic cholesterol clearance islimited. Although all forms <str<strong>on</strong>g>of</str<strong>on</strong>g> HDL are reduced <strong>in</strong> CRF, HDL2 is the mostform <str<strong>on</strong>g>of</str<strong>on</strong>g> lipoprote<strong>in</strong> that is reduced <strong>in</strong> CRF provid<strong>in</strong>g another mechanismfor reduced lipolysis. (51)


Introducti<strong>on</strong> 17.The change <strong>in</strong> HDL compositi<strong>on</strong> observed <strong>in</strong> CRF occur as ac<strong>on</strong>sequence <str<strong>on</strong>g>of</str<strong>on</strong>g> LCAT deficiency and also due to reduced apo A-Isynthesis, both lead<strong>in</strong>g to reducti<strong>on</strong> <strong>in</strong> HDL <strong>in</strong> CRF. (40) This altherogenicform <str<strong>on</strong>g>of</str<strong>on</strong>g> dyslipidemia is causes <str<strong>on</strong>g>of</str<strong>on</strong>g> cardiovascular diseases <strong>in</strong> patients withchr<strong>on</strong>ic renal failure this may be due to <strong>in</strong>terference with deteriorat<strong>in</strong>gaspects <str<strong>on</strong>g>of</str<strong>on</strong>g> the activated acute-phase resp<strong>on</strong>se. (52)Cardiovascular abnormalities <strong>in</strong> patients with endstage renal diseaseCardiovascular disease accounts for half the deaths <strong>in</strong> adults treatedwith ma<strong>in</strong>tenance dialysis and mortality from cardiovascular causes is farhigher than that <strong>in</strong> the general populati<strong>on</strong>. (53)Cardiovascular mortality for those treated with dialysis c<strong>on</strong>t<strong>in</strong>ues t<str<strong>on</strong>g>of</str<strong>on</strong>g>ar exceed that predicted by the comb<strong>in</strong>ed risks attributable to age, sex,systolic blood pressure, left ventricular hypertrophy, serum total and HDLcholesterol, cigarette smok<strong>in</strong>g and diabetes mellitus. (54) The risk <str<strong>on</strong>g>of</str<strong>on</strong>g>atherosclerotic cardiovascular disease <strong>in</strong> patients with chr<strong>on</strong>ic renal failure,especially patients <strong>on</strong> renal replacement therapy, has been shown to be10-20 times greater than <strong>in</strong> the general populati<strong>on</strong>. Therefore, patients withchr<strong>on</strong>ic renal disease should be c<strong>on</strong>sidered <strong>in</strong> the highest risk group forsubsequent cardiovascular events and proper preventive measures shouldbe undertaken. (55) The care <str<strong>on</strong>g>of</str<strong>on</strong>g> chr<strong>on</strong>ic renal failure patients can not start <strong>in</strong>the period <str<strong>on</strong>g>of</str<strong>on</strong>g> ESRD or after the <strong>in</strong>itiati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> dialysis but must be set <strong>in</strong>to


Introducti<strong>on</strong> 18.moti<strong>on</strong> when progressive renal disease is diagnosed and renal failure firstbeg<strong>in</strong>s. Optimal treatment prevents detrimental <strong>in</strong>fluence <str<strong>on</strong>g>of</str<strong>on</strong>g> uremia <strong>on</strong> themetabolic balance, functi<strong>on</strong>, and structure <str<strong>on</strong>g>of</str<strong>on</strong>g> the body. Reducti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> boththe “traditi<strong>on</strong>al” atherosclerosis risk factors as well as specific risk factorsrelated to CRF should be <strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> the ma<strong>in</strong> targets <str<strong>on</strong>g>of</str<strong>on</strong>g> early management <str<strong>on</strong>g>of</str<strong>on</strong>g>patients with chr<strong>on</strong>ic renal disease. (56)Risk factors <str<strong>on</strong>g>of</str<strong>on</strong>g> atherosclerosis <strong>in</strong> chr<strong>on</strong>ic renal diseaseSeveral risk factors for cardiovascular manifestati<strong>on</strong> <strong>in</strong> chr<strong>on</strong>ic renaldisease patients are similar to the progressi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> atherosclerosis <strong>in</strong> thegeneral populati<strong>on</strong> because <str<strong>on</strong>g>of</str<strong>on</strong>g> the higher <strong>in</strong>cidence <str<strong>on</strong>g>of</str<strong>on</strong>g> ESRD <strong>in</strong> elderly.Atherosclerosis is a multifactorial disease. The approach to the“traditi<strong>on</strong>al” cardiovascular risk factors like hypertensi<strong>on</strong>, diabetesmellitus, obesity, hyperlipidemia, oxidative stress, smok<strong>in</strong>g, physical<strong>in</strong>activity should be guided by the pr<strong>in</strong>ciple that chr<strong>on</strong>ic renal diseasepatients bel<strong>on</strong>g to the highest risk group for subsequent cardiovascularcomplicati<strong>on</strong>s. Dur<strong>in</strong>g the course <str<strong>on</strong>g>of</str<strong>on</strong>g> the renal disease progressi<strong>on</strong> excessrisk may appear that <strong>in</strong>fluence significantly the outcome. (57)Patients <strong>on</strong> HD typically have many risk factors associated with poorcardiac functi<strong>on</strong>s, which is caused by the hemodynamic and metabolicfactors like progressive prote<strong>in</strong>uria, hypoalbum<strong>in</strong>emia, malnutriti<strong>on</strong>,electrolyte imbalance, hyperuricemia, high levels <str<strong>on</strong>g>of</str<strong>on</strong>g> fibr<strong>in</strong>ogen, <strong>in</strong>creasedextracellular volume, anemia, uremic tox<strong>in</strong>s, hyperphosphatemia, lipidabnormalities, hypertensi<strong>on</strong>. (58)


Introducti<strong>on</strong> 19.L-Carnit<strong>in</strong>eCarnit<strong>in</strong>e, is a low molecular weight compound (161.20) that wasfirst characterized <strong>in</strong> muscle extracts <strong>in</strong> 1905 and named from the lat<strong>in</strong>carnis (flesh) because L-<str<strong>on</strong>g>carnit<strong>in</strong>e</str<strong>on</strong>g> appeared to act as a vitam<strong>in</strong> <strong>in</strong> themealworm (tenebrio molitor), it was called vitam<strong>in</strong> B T . Vitam<strong>in</strong> B T turnedout to be a misnomer when scientists discovered that humans and otherhigher organisms synthesize L-<str<strong>on</strong>g>carnit<strong>in</strong>e</str<strong>on</strong>g>. (59) The chemical structure laterwas shown to be 3- hydroxy – 4- (N- trimethyl-amm<strong>on</strong>io)butanoate, (60) and<strong>in</strong> 1962 the physiological form <str<strong>on</strong>g>of</str<strong>on</strong>g> L- <str<strong>on</strong>g>carnit<strong>in</strong>e</str<strong>on</strong>g> was identified as theL-isomer, or levo<str<strong>on</strong>g>carnit<strong>in</strong>e</str<strong>on</strong>g>, which is the <strong>on</strong>ly physiologically active form <str<strong>on</strong>g>of</str<strong>on</strong>g><str<strong>on</strong>g>carnit<strong>in</strong>e</str<strong>on</strong>g>. (Figure 3) (61)CH 3- + OOCCH2 CHCH 2 N CH 3OH CH 3Figure (3): Structural formula <str<strong>on</strong>g>of</str<strong>on</strong>g> L-<str<strong>on</strong>g>carnit<strong>in</strong>e</str<strong>on</strong>g> (61)L-<str<strong>on</strong>g>carnit<strong>in</strong>e</str<strong>on</strong>g> is normally present <strong>in</strong> most human tissues, its majorsource (75%) come from the diet ma<strong>in</strong>ly, meat, poultry, fish, and dairyproducts be<strong>in</strong>g the richest sources <str<strong>on</strong>g>of</str<strong>on</strong>g> L-<str<strong>on</strong>g>carnit<strong>in</strong>e</str<strong>on</strong>g>. Tempeh (fermented soyabeans) wheat, and avocados c<strong>on</strong>ta<strong>in</strong> some L-<str<strong>on</strong>g>carnit<strong>in</strong>e</str<strong>on</strong>g>, while fruits,vegetables and gra<strong>in</strong>s c<strong>on</strong>ta<strong>in</strong> relatively little L-<str<strong>on</strong>g>carnit<strong>in</strong>e</str<strong>on</strong>g>. The rema<strong>in</strong><strong>in</strong>g(25%) <str<strong>on</strong>g>of</str<strong>on</strong>g> L-<str<strong>on</strong>g>carnit<strong>in</strong>e</str<strong>on</strong>g> come from de novo synthesis, the average adultc<strong>on</strong>sumes 30 to 50 mg <str<strong>on</strong>g>carnit<strong>in</strong>e</str<strong>on</strong>g> per day. (62)The normal rate <str<strong>on</strong>g>of</str<strong>on</strong>g> L-<str<strong>on</strong>g>carnit<strong>in</strong>e</str<strong>on</strong>g> biosynthesis <strong>in</strong> humans ranges from0.16 to 0.48 mg/ Kg <str<strong>on</strong>g>of</str<strong>on</strong>g> body weight / day. (59)Thus a 70 Kg pers<strong>on</strong> would synthesize from 11 to 34 mg/day.Omniverous diets have been found to provide 20 to 200 mg/day <str<strong>on</strong>g>of</str<strong>on</strong>g>


Introducti<strong>on</strong> 20.L-<str<strong>on</strong>g>carnit<strong>in</strong>e</str<strong>on</strong>g> for a 70 Kg pers<strong>on</strong>, while strict vegetarian diets may provide aslittle as 1 mg/day for 70 Kg pers<strong>on</strong>. This rate <str<strong>on</strong>g>of</str<strong>on</strong>g> synthesis comb<strong>in</strong>ed withthe reabsorpti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> about 95% <str<strong>on</strong>g>of</str<strong>on</strong>g> the L-<str<strong>on</strong>g>carnit<strong>in</strong>e</str<strong>on</strong>g> filtered by the kidneys isenough to prevent deficiency <strong>in</strong> generally healthy people, <strong>in</strong>clud<strong>in</strong>g strictvegetarians. (61)Some <str<strong>on</strong>g>carnit<strong>in</strong>e</str<strong>on</strong>g> rich foods and their <str<strong>on</strong>g>carnit<strong>in</strong>e</str<strong>on</strong>g> c<strong>on</strong>tent <strong>in</strong> mg are listed<strong>in</strong> Table (2). (61)Table (2) (61) Food Serv<strong>in</strong>gL-<str<strong>on</strong>g>carnit<strong>in</strong>e</str<strong>on</strong>g>(mg)Beef steak 3 ounces 81Gound beef 3 ounces 80Pork 3ounces 24Canadian bac<strong>on</strong> 3 ounces 20Milk ( whole) 1cup 8Fish( cod) 3 ounces 5Ice cream ½ cup 3Whole- wheat Bread 2 slices 0.2Avocado 1(medium) 2In mammals, <str<strong>on</strong>g>carnit<strong>in</strong>e</str<strong>on</strong>g> is present as free <str<strong>on</strong>g>carnit<strong>in</strong>e</str<strong>on</strong>g> and acylated<str<strong>on</strong>g>carnit<strong>in</strong>e</str<strong>on</strong>g>; the latter are product <str<strong>on</strong>g>of</str<strong>on</strong>g> reacti<strong>on</strong>s that <strong>in</strong>volve the transfer <str<strong>on</strong>g>of</str<strong>on</strong>g> acylgroups from acyl coenzyme A (CoA). These acyl groups vary <strong>in</strong> lengthfrom short cha<strong>in</strong> (acetyl) to l<strong>on</strong>g cha<strong>in</strong> (palmitoyl).Typically <strong>in</strong> healthy humans, approximately 80% to 85% <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>carnit<strong>in</strong>e</str<strong>on</strong>g>exist as the free form <strong>in</strong> plasma at c<strong>on</strong>centrati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> approximately 40µmol/L to 50 μmol/L <strong>in</strong> healthy adult men. (63) Plasma <str<strong>on</strong>g>carnit<strong>in</strong>e</str<strong>on</strong>g> is low atbirth, the transplacental transport <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>carnit<strong>in</strong>e</str<strong>on</strong>g> or its precursors appears to beimportant for the formati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>carnit<strong>in</strong>e</str<strong>on</strong>g> depot <strong>in</strong> the fetal life. After the first


Introducti<strong>on</strong> 21.week, total plasma <str<strong>on</strong>g>carnit<strong>in</strong>e</str<strong>on</strong>g> is progressively <strong>in</strong>creas<strong>in</strong>g till it reaches theadult level after the first year. (64) There is no sex difference <strong>in</strong> plasma<str<strong>on</strong>g>carnit<strong>in</strong>e</str<strong>on</strong>g> dur<strong>in</strong>g childhood and puberty up to 17 years <str<strong>on</strong>g>of</str<strong>on</strong>g> age, however <strong>in</strong>adult plasma total free and acyl <str<strong>on</strong>g>carnit<strong>in</strong>e</str<strong>on</strong>g> are significantly higher <strong>in</strong> malesthan <strong>in</strong> females. (65)Carnit<strong>in</strong>e present <strong>in</strong> the human diet is almost completely absorbed,the peak blood level is reached 2-4½ hours after L-<str<strong>on</strong>g>carnit<strong>in</strong>e</str<strong>on</strong>g>adm<strong>in</strong>istrati<strong>on</strong>. (66)Carnit<strong>in</strong>e biosynthesisCarnit<strong>in</strong>e is biosynthesized from the essential am<strong>in</strong>o acids lys<strong>in</strong>e andmethi<strong>on</strong><strong>in</strong>e. In mammals, trimethyl lys<strong>in</strong>e (mostly prote<strong>in</strong> bound) acts as aprecursor for <str<strong>on</strong>g>carnit<strong>in</strong>e</str<strong>on</strong>g> and this c<strong>on</strong>versi<strong>on</strong> is relatively rapid process. (67)Thus, the majority <str<strong>on</strong>g>of</str<strong>on</strong>g> body trimethyl lys<strong>in</strong>e is present outside theliver ma<strong>in</strong>ly <strong>in</strong> the skeletal muscles, so 95% <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>carnit<strong>in</strong>e</str<strong>on</strong>g> is stored <strong>in</strong> theskeletal muscle and the myocardium, some is c<strong>on</strong>centrated <strong>in</strong> the liver,kidneys (68) , sperms and the bra<strong>in</strong> (hence its use <strong>in</strong> Alzheimer disease). (65)The sequence for <str<strong>on</strong>g>carnit<strong>in</strong>e</str<strong>on</strong>g> biosynthesis from extra hepatictrimethllys<strong>in</strong>e <strong>in</strong>volves prote<strong>in</strong> degradati<strong>on</strong> to release free trimethyllys<strong>in</strong>e,then c<strong>on</strong>versi<strong>on</strong> to trimethylamm<strong>on</strong>io-butanoate (Y-butyrobeta<strong>in</strong>e),followed by transport <strong>in</strong> the plasma with ultimate hydroxylati<strong>on</strong> to<str<strong>on</strong>g>carnit<strong>in</strong>e</str<strong>on</strong>g> <strong>in</strong> the liver (Figure 4). This later step serves as a regulatory po<strong>in</strong>t<strong>in</strong> the <str<strong>on</strong>g>carnit<strong>in</strong>e</str<strong>on</strong>g> synthesis pathway because the liver and kidney are themajor sites <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>carnit<strong>in</strong>e</str<strong>on</strong>g> producti<strong>on</strong>. (69) However, the rate <str<strong>on</strong>g>of</str<strong>on</strong>g> prote<strong>in</strong>turnover, which produces trimethllys<strong>in</strong>e, is the limit<strong>in</strong>g step <strong>in</strong> thebiosynthesis <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>carnit<strong>in</strong>e</str<strong>on</strong>g> (Figure 4). (70)


Introducti<strong>on</strong> 22.COO -CHCH 2 CH 2 CH 2 CH 2 NH 2+ NH3 Lys<strong>in</strong>e+3 S-Adenosylmethi<strong>on</strong><strong>in</strong>e3 S-Adenosylmocyste<strong>in</strong>eCOO -CH 3+CHCH 2 CH 2 CH 2 CH 2 N 3 S-Adenosylmocyste<strong>in</strong>eCH 32-Oxoglutarate + O 2 Fe 2+ , Ascorbic acidSucc<strong>in</strong>ate + CO 2COO -CH 3+CHCH(OH)CH 2 CH 2 CH 2 N NH 3NH 3 CH 3No-Trimethyl-3-hydroxyls<strong>in</strong>ePyridoxal phosphate glys<strong>in</strong>eCH 3+OHCCH 2 CH 2 CH 2 N NH 3CH 34-Trimethylam<strong>in</strong>obutyraldehyde- OOCCH2 CH 2 CH 2+ NCH 3NADNADH + H +NH 3CH 34-Trimethylam<strong>in</strong>obutyrate2-Oxoglutarate + O 2Fe 2+ , Ascorbic acidSucc<strong>in</strong>ate + CO 2CH 3- + OOCCH2 CHCH 2 N CH 3OH CH 3Carnit<strong>in</strong>eFigure (4): Synthesis <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>carnit<strong>in</strong>e</str<strong>on</strong>g> (70)


Introducti<strong>on</strong> 23.Carnit<strong>in</strong>e is turned over rapidly <strong>in</strong> the kidney, which is the ma<strong>in</strong> site<str<strong>on</strong>g>of</str<strong>on</strong>g> regulati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> plasma <str<strong>on</strong>g>carnit<strong>in</strong>e</str<strong>on</strong>g> c<strong>on</strong>centrati<strong>on</strong>. It is excreated <strong>in</strong> the ur<strong>in</strong>eas free and acyl c<strong>on</strong>jugates ma<strong>in</strong>ly as H-trimethylam<strong>in</strong>e oxide and as H-butyrobeta<strong>in</strong>e. (71)Free <str<strong>on</strong>g>carnit<strong>in</strong>e</str<strong>on</strong>g> is filtered at the glomerulus and over 90% undergotubular reabsorpti<strong>on</strong>. In c<strong>on</strong>trast renal tubular absorpti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> acyl<str<strong>on</strong>g>carnit<strong>in</strong>e</str<strong>on</strong>g> islimited; as a result, the clearance <str<strong>on</strong>g>of</str<strong>on</strong>g> acyl<str<strong>on</strong>g>carnit<strong>in</strong>e</str<strong>on</strong>g> is 4 to 8 times greaterthan that <str<strong>on</strong>g>of</str<strong>on</strong>g> free <str<strong>on</strong>g>carnit<strong>in</strong>e</str<strong>on</strong>g>. This difference <strong>in</strong> clearance is c<strong>on</strong>sistent withthe c<strong>on</strong>cept that esterificati<strong>on</strong> with <str<strong>on</strong>g>carnit<strong>in</strong>e</str<strong>on</strong>g> is a pathway for detox<str<strong>on</strong>g>of</str<strong>on</strong>g>icati<strong>on</strong>and elim<strong>in</strong>ati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> toxic acyl groups. (72)Functi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>carnit<strong>in</strong>e</str<strong>on</strong>g>Carnit<strong>in</strong>e has a very important role <strong>in</strong> fatty acid oxidati<strong>on</strong>. In mammals,fatty acids are a primary source <str<strong>on</strong>g>of</str<strong>on</strong>g> energy <strong>in</strong> a number <str<strong>on</strong>g>of</str<strong>on</strong>g> systems, <strong>in</strong>clud<strong>in</strong>gskeletal muscle and heart. Dietary fat is digested and transformed <strong>in</strong>totriglyceride for subsequent storage <strong>in</strong> adipose tissue, a process stimulated by<strong>in</strong>sul<strong>in</strong>. When required, stored triglycerdes are hydrolyzed to free fatty acidsand glycerol, this process <str<strong>on</strong>g>of</str<strong>on</strong>g> lipolysis is regulated by ep<strong>in</strong>ephr<strong>in</strong>e andglucag<strong>on</strong>. Fatty acids are released <strong>in</strong>to the circulati<strong>on</strong> and transported tovarious tissues by attachment to album<strong>in</strong>. With<strong>in</strong> the cell, fatty acids enter themitoch<strong>on</strong>dria through the <str<strong>on</strong>g>carnit<strong>in</strong>e</str<strong>on</strong>g> system as acyl<str<strong>on</strong>g>carnit<strong>in</strong>e</str<strong>on</strong>g> and aremetabolized by β- oxidati<strong>on</strong>. In this pathway, energy is released, acetyl CoAis produced, and the fatty acid cha<strong>in</strong> is shortened by two carb<strong>on</strong>s with eachcycle. The released Acetyl-CoA then enters the citric acid cycle, dur<strong>in</strong>g whichfurther energy is generated. (73)


Introducti<strong>on</strong> 24.L-<str<strong>on</strong>g>carnit<strong>in</strong>e</str<strong>on</strong>g> plays an important role <strong>in</strong> energy producti<strong>on</strong> bychaper<strong>on</strong><strong>in</strong>g activated fatty acids (acyl-CoA) <strong>in</strong>to the mitoch<strong>on</strong>drial matrix formetabolism and chaper<strong>on</strong><strong>in</strong>g <strong>in</strong>termediate compounds out <str<strong>on</strong>g>of</str<strong>on</strong>g> themitoch<strong>on</strong>drial matrix to prevent their accumulati<strong>on</strong>, so the ma<strong>in</strong> functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g>L-<str<strong>on</strong>g>carnit<strong>in</strong>e</str<strong>on</strong>g> is <strong>in</strong> the mitoch<strong>on</strong>dria. It <strong>in</strong>volves the reversible formati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g>acyl<str<strong>on</strong>g>carnit<strong>in</strong>e</str<strong>on</strong>g>, which unlike acyl CoA is able to cross the mitoch<strong>on</strong>drialmembrane. (74)1- Transport <str<strong>on</strong>g>of</str<strong>on</strong>g> l<strong>on</strong>g cha<strong>in</strong> fatty acids <strong>in</strong>to the mitoch<strong>on</strong>drial matrixThe activati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> l<strong>on</strong>g cha<strong>in</strong> fatty acid to form Acyl CoA occurs <strong>in</strong> themicrosomal fracti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the endoplasmic recticulum <strong>on</strong> the outer surface <str<strong>on</strong>g>of</str<strong>on</strong>g> themitoch<strong>on</strong>drial outer membrane. Acyl CoA then must traverse the outermembrane <strong>in</strong>to the mitoch<strong>on</strong>drial <strong>in</strong>termembrane space , an important processthat uses the voltage-dependent ani<strong>on</strong> channel (por<strong>in</strong>). (75,76) Acyl CoA betweenthe outer and <strong>in</strong>ner boundray membranes is c<strong>on</strong>verted to acyl<str<strong>on</strong>g>carnit<strong>in</strong>e</str<strong>on</strong>g> by themal<strong>on</strong>yl-CoA- sensitive <str<strong>on</strong>g>carnit<strong>in</strong>e</str<strong>on</strong>g> palmitoyl transferase I (CPT-I).Acyl<str<strong>on</strong>g>carnit<strong>in</strong>e</str<strong>on</strong>g> next is transported across the mitoch<strong>on</strong>drial <strong>in</strong>ner membraneby a <str<strong>on</strong>g>carnit<strong>in</strong>e</str<strong>on</strong>g>- acyl<str<strong>on</strong>g>carnit<strong>in</strong>e</str<strong>on</strong>g> translocase, an important regulatory site that isresp<strong>on</strong>sive to <strong>in</strong>tramitoch<strong>on</strong>drial <str<strong>on</strong>g>carnit<strong>in</strong>e</str<strong>on</strong>g> c<strong>on</strong>tent. (77)In the matrix,acyl<str<strong>on</strong>g>carnit<strong>in</strong>e</str<strong>on</strong>g> acts as a substrate for <str<strong>on</strong>g>carnit<strong>in</strong>e</str<strong>on</strong>g> palmitoyltransferase II (CPT-II),with result<strong>in</strong>g transfer <str<strong>on</strong>g>of</str<strong>on</strong>g> the acylgroup to CoA and the release <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>carnit<strong>in</strong>e</str<strong>on</strong>g>.AcylcoA then enters the fatty acid β- oxidati<strong>on</strong> pathway. (Figure 5) (77)


Introducti<strong>on</strong> 25.Figure (5): The mitoch<strong>on</strong>drial <str<strong>on</strong>g>carnit<strong>in</strong>e</str<strong>on</strong>g> system (77)2- Buffer<strong>in</strong>g <str<strong>on</strong>g>of</str<strong>on</strong>g> the short – cha<strong>in</strong> acyl CoA – CoA ratioCarnit<strong>in</strong>e can directly modulate the short – cha<strong>in</strong> AcylCoA- CoAratio, imply<strong>in</strong>g that the system can transfer acyl group (as acyl<str<strong>on</strong>g>carnit<strong>in</strong>e</str<strong>on</strong>g>derivatives) from <strong>on</strong>e compartement to another <strong>in</strong> a tissue – and substrate –dependent fashi<strong>on</strong>. (78) The ma<strong>in</strong> buffer<strong>in</strong>g acti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>carnit<strong>in</strong>e</str<strong>on</strong>g> occurs dur<strong>in</strong>gexercise, when acetyl<str<strong>on</strong>g>carnit<strong>in</strong>e</str<strong>on</strong>g> accumulate at workload greater than thelactate threshold, but no change <strong>in</strong> skeletal muscle <str<strong>on</strong>g>carnit<strong>in</strong>e</str<strong>on</strong>g> occurs. Under


Introducti<strong>on</strong> 26.low – <strong>in</strong>tensity exercise these <strong>in</strong>creases <strong>in</strong> the acetyl<str<strong>on</strong>g>carnit<strong>in</strong>e</str<strong>on</strong>g> – <str<strong>on</strong>g>carnit<strong>in</strong>e</str<strong>on</strong>g>ratio reflect the <strong>in</strong>creased producti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> acetyl CoA as a result <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>in</strong>creasedpyruvate generati<strong>on</strong> dur<strong>in</strong>g high <strong>in</strong>tensity exercise. (79) The accumulatedAcetyl CoA exceeds its utilizati<strong>on</strong> <strong>in</strong> the Krebs cycle, and it is thus toxic tothe cell and must be exported to the outside via <str<strong>on</strong>g>carnit<strong>in</strong>e</str<strong>on</strong>g>. (80) Accumulati<strong>on</strong><str<strong>on</strong>g>of</str<strong>on</strong>g> propi<strong>on</strong>ate or its metabolic product propi<strong>on</strong>yl CoA can disturb normalcellular metabolism by <strong>in</strong>hibit<strong>in</strong>g short – cha<strong>in</strong> fatty acid oxidati<strong>on</strong>, as wellas other metabolic pathways. Carnit<strong>in</strong>e can partly reverse this <strong>in</strong>hibiti<strong>on</strong> bygenerat<strong>in</strong>g propi<strong>on</strong>yl <str<strong>on</strong>g>carnit<strong>in</strong>e</str<strong>on</strong>g>, thereby decreas<strong>in</strong>g propi<strong>on</strong>yl CoAc<strong>on</strong>centrati<strong>on</strong>s and <strong>in</strong>creas<strong>in</strong>g the availability <str<strong>on</strong>g>of</str<strong>on</strong>g> free CoA. (81)3- Trapp<strong>in</strong>g and elim<strong>in</strong>ati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> unphysiological acyl groupsThis is examplified by valproic acid (used <strong>in</strong> the treatment <str<strong>on</strong>g>of</str<strong>on</strong>g> epilepsy),which is c<strong>on</strong>verted to valproyl CoA, which <strong>in</strong> an exchange reacti<strong>on</strong> forms<str<strong>on</strong>g>carnit<strong>in</strong>e</str<strong>on</strong>g> esters. Acyl <str<strong>on</strong>g>carnit<strong>in</strong>e</str<strong>on</strong>g>s unlike the corresp<strong>on</strong>d<strong>in</strong>g acyl CoA derivativesdiffuse across the cell membrane. These are excreted <strong>in</strong> ur<strong>in</strong>e and so may leadto <str<strong>on</strong>g>carnit<strong>in</strong>e</str<strong>on</strong>g> losses. (82) Under certa<strong>in</strong> c<strong>on</strong>diti<strong>on</strong>s where there is overproducti<strong>on</strong><str<strong>on</strong>g>of</str<strong>on</strong>g> l<strong>on</strong>g cha<strong>in</strong> fatty acids, e.g., dur<strong>in</strong>g prol<strong>on</strong>ged muscular exercise. Rapidaccumulati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> l<strong>on</strong>g cha<strong>in</strong> acyl <str<strong>on</strong>g>carnit<strong>in</strong>e</str<strong>on</strong>g> occurs. This return back to bloodstream caus<strong>in</strong>g a rise <strong>in</strong> its level <strong>in</strong> the post-exerti<strong>on</strong>al state. (83)Branched-cha<strong>in</strong> am<strong>in</strong>o acid metabolismCarnit<strong>in</strong>e also has a role <strong>in</strong> the oxidati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> BCAA, shown by itsability to enhance the oxidati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> leuc<strong>in</strong>e and val<strong>in</strong>e derivatives. (84)


Introducti<strong>on</strong> 27.Extramitoch<strong>on</strong>drial free <str<strong>on</strong>g>carnit<strong>in</strong>e</str<strong>on</strong>g> rapidly <strong>in</strong>teracts with matrix short – cha<strong>in</strong>aliphatic acylCoAs generated from alpha- keto acids <str<strong>on</strong>g>of</str<strong>on</strong>g> branched – cha<strong>in</strong>am<strong>in</strong>o acids and pyruvate <strong>in</strong> the presence and absence <str<strong>on</strong>g>of</str<strong>on</strong>g> malate. Thiseffect appears to <strong>in</strong>volve a mechanism similar to the buffer<strong>in</strong>g effect <str<strong>on</strong>g>of</str<strong>on</strong>g><str<strong>on</strong>g>carnit<strong>in</strong>e</str<strong>on</strong>g> <strong>on</strong> other metabolic processes. (85)Carnit<strong>in</strong>e transferasesCarnit<strong>in</strong>e transferases represent important regulatory targets <strong>in</strong> fattyacid metabolism. There are three groups <str<strong>on</strong>g>of</str<strong>on</strong>g> transferases dist<strong>in</strong>guishedprimarily by their substrate specificity, and localizati<strong>on</strong>, as shown <strong>in</strong> (Table 3). (86)Table (3): Carnit<strong>in</strong>e acyltransferases and their subcellular localizati<strong>on</strong> (86)Enzyme Group Substrate Locati<strong>on</strong>1- Carnit<strong>in</strong>e acetyl- transferase Short- cha<strong>in</strong> acyl groups(C1-C4) with high activity <strong>in</strong>heart and musclemitoch<strong>on</strong>driaInnermitoch<strong>on</strong>drialmembraneCarnit<strong>in</strong>epalmitoyltransferase I(CPTI)Carnit<strong>in</strong>e palmitoyltransferaseIICarnit<strong>in</strong>e octanoyltransferase.L<strong>on</strong>g- cha<strong>in</strong> acyl groups(>C12) & <strong>in</strong>hibited bymal<strong>on</strong>yl CoA (so it isimportant regulatory step)L<strong>on</strong>g cha<strong>in</strong> acyl groupsMedium- cha<strong>in</strong> acyl groups(C5-C12)Outermitoch<strong>on</strong>drialmembraneInnermitoch<strong>on</strong>drialmembrane.peroxisomes


Introducti<strong>on</strong> 28.Role <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>carnit<strong>in</strong>e</str<strong>on</strong>g> <strong>in</strong> l<strong>on</strong>g cha<strong>in</strong> fatty acid oxidati<strong>on</strong>us<strong>in</strong>g palmitate as an example1- Transfer <str<strong>on</strong>g>of</str<strong>on</strong>g> palmitoyl CoA through the outer mitoch<strong>on</strong>drialmembrane to <strong>in</strong>termembrane space.2- Transfer <str<strong>on</strong>g>of</str<strong>on</strong>g> palmitoyl group from CoA <str<strong>on</strong>g>carnit<strong>in</strong>e</str<strong>on</strong>g> us<strong>in</strong>g <str<strong>on</strong>g>carnit<strong>in</strong>e</str<strong>on</strong>g>palmitoyl transferase (CPT-I) which is located <strong>on</strong> the outer surface <str<strong>on</strong>g>of</str<strong>on</strong>g>the <strong>in</strong>ner mitoch<strong>on</strong>drial membrane.3- Translocati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> palmitoyl <str<strong>on</strong>g>carnit<strong>in</strong>e</str<strong>on</strong>g> through the <strong>in</strong>ner membraneus<strong>in</strong>g the <str<strong>on</strong>g>carnit<strong>in</strong>e</str<strong>on</strong>g> / acyl <str<strong>on</strong>g>carnit<strong>in</strong>e</str<strong>on</strong>g> translocase which is an antiportsystem where palmitoyl <str<strong>on</strong>g>carnit<strong>in</strong>e</str<strong>on</strong>g> is transported <strong>in</strong> the mitoch<strong>on</strong>drialmatrix <strong>in</strong> exchange for <str<strong>on</strong>g>carnit<strong>in</strong>e</str<strong>on</strong>g>.4- Trasnsfer <str<strong>on</strong>g>of</str<strong>on</strong>g> palmitoyl group from the palmitoyl <str<strong>on</strong>g>carnit<strong>in</strong>e</str<strong>on</strong>g> to formpalmitoyl CoA us<strong>in</strong>g <str<strong>on</strong>g>carnit<strong>in</strong>e</str<strong>on</strong>g> palmitoyl transferase II (CPT-II).5- Palmitoyl CoA enters the β- oxidati<strong>on</strong> pathway at the l<strong>on</strong>g cha<strong>in</strong>acyl CoA dehydrogenase po<strong>in</strong>t. (87)Other roles for <str<strong>on</strong>g>carnit<strong>in</strong>e</str<strong>on</strong>g>:Carnit<strong>in</strong>e has a protective role by remov<strong>in</strong>g l<strong>on</strong>g –cha<strong>in</strong> acyl CoAsfrom cell membranes, thereby stabiliz<strong>in</strong>g them. Fatty acids oxidati<strong>on</strong>mediated by <str<strong>on</strong>g>carnit<strong>in</strong>e</str<strong>on</strong>g> is believed to be important comp<strong>on</strong>ent <str<strong>on</strong>g>of</str<strong>on</strong>g>gluc<strong>on</strong>eogenesis. (69) Other functi<strong>on</strong>s for <str<strong>on</strong>g>carnit<strong>in</strong>e</str<strong>on</strong>g> <strong>in</strong>clude energy storage <strong>in</strong>sperm and macrophages and calcium transport. (88)


Introducti<strong>on</strong> 29.C<strong>on</strong>trol <str<strong>on</strong>g>of</str<strong>on</strong>g> fatty acid oxidati<strong>on</strong>:Fatty acids oxidati<strong>on</strong> is completely dependent <strong>on</strong> <str<strong>on</strong>g>carnit<strong>in</strong>e</str<strong>on</strong>g> and<str<strong>on</strong>g>carnit<strong>in</strong>e</str<strong>on</strong>g> palmitoyl transferase I (CPT -I). Mal<strong>on</strong>yl CoA (the product <str<strong>on</strong>g>of</str<strong>on</strong>g>CoA carboxylase and the first <strong>in</strong>termediate <strong>in</strong> fatty acid synthesis) <strong>in</strong>hibitsthe outer CPT- I and hence the fatty acid oxidati<strong>on</strong>. In c<strong>on</strong>diti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g><strong>in</strong>creased fatty acid oxidati<strong>on</strong> and ketogenesis as <strong>in</strong> diabetes melitus,hyperthyroidism and fast<strong>in</strong>g states, there is an <strong>in</strong>crease <strong>in</strong> free fatty acidoxidati<strong>on</strong> and l<strong>on</strong>g cha<strong>in</strong> acyl <str<strong>on</strong>g>carnit<strong>in</strong>e</str<strong>on</strong>g>. Mal<strong>on</strong>yl CoA hence is decreasedand there is an <strong>in</strong>crease <strong>in</strong> the delivery <str<strong>on</strong>g>of</str<strong>on</strong>g> fatty acid to the liver foroxidati<strong>on</strong>. (89)Renal handl<strong>in</strong>g <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>carnit<strong>in</strong>e</str<strong>on</strong>g>Carnit<strong>in</strong>e is an important <strong>in</strong>termediary <strong>in</strong> fat metabolism. Themetabolism <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>carnit<strong>in</strong>e</str<strong>on</strong>g> is disturbed <strong>in</strong> renal failure; as a result, free<str<strong>on</strong>g>carnit<strong>in</strong>e</str<strong>on</strong>g> deficiency may be a significant problem, especially <strong>in</strong> patients <strong>on</strong>ma<strong>in</strong>tenance dialysis.Because <str<strong>on</strong>g>carnit<strong>in</strong>e</str<strong>on</strong>g> is a small water-soluble molecule, it is freelyexcreted <strong>in</strong> ur<strong>in</strong>e as free and variable acyl c<strong>on</strong>jugates. (90)Free <str<strong>on</strong>g>carnit<strong>in</strong>e</str<strong>on</strong>g> is filtered at the glomerulus and over 90% undergoestubular reabsorpti<strong>on</strong>. In c<strong>on</strong>trast, renal tubular absorpti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> acyl<str<strong>on</strong>g>carnit<strong>in</strong>e</str<strong>on</strong>g> islimited; as a result, the clearance <str<strong>on</strong>g>of</str<strong>on</strong>g> acyl<str<strong>on</strong>g>carnit<strong>in</strong>e</str<strong>on</strong>g> is 4 to 8 times greaterthan that <str<strong>on</strong>g>of</str<strong>on</strong>g> free <str<strong>on</strong>g>carnit<strong>in</strong>e</str<strong>on</strong>g>. (72)


Introducti<strong>on</strong> 30.Carnit<strong>in</strong>e homeostasis depends significantly <strong>on</strong> the glomerularfiltrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> free <str<strong>on</strong>g>carnit<strong>in</strong>e</str<strong>on</strong>g> and its reabsorpti<strong>on</strong> by renal tubules.As glomerular functi<strong>on</strong> decl<strong>in</strong>es with progressive kidney disease,plasma <str<strong>on</strong>g>carnit<strong>in</strong>e</str<strong>on</strong>g> c<strong>on</strong>centrati<strong>on</strong> is elevated. Further decrease <strong>in</strong> kidneyfuncti<strong>on</strong> lead to an accumulati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> acyl<str<strong>on</strong>g>carnit<strong>in</strong>e</str<strong>on</strong>g> <strong>in</strong> plasma. Also,<strong>in</strong>complete fatty acids oxidati<strong>on</strong> leads to accumulati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> acyl<str<strong>on</strong>g>carnit<strong>in</strong>e</str<strong>on</strong>g>.The comb<strong>in</strong>ed effect for uremic patients who are not <strong>on</strong> dialysis therapy isthat <strong>in</strong>creased levels <str<strong>on</strong>g>of</str<strong>on</strong>g> both free <str<strong>on</strong>g>carnit<strong>in</strong>e</str<strong>on</strong>g> (FC) and total <str<strong>on</strong>g>carnit<strong>in</strong>e</str<strong>on</strong>g> (TC) andmarkedly elevated c<strong>on</strong>centrati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> acyl<str<strong>on</strong>g>carnit<strong>in</strong>e</str<strong>on</strong>g> (AC). The ratio <str<strong>on</strong>g>of</str<strong>on</strong>g>acyl<str<strong>on</strong>g>carnit<strong>in</strong>e</str<strong>on</strong>g> (AC) to free <str<strong>on</strong>g>carnit<strong>in</strong>e</str<strong>on</strong>g> (FC) is abnormally high. (91)Carnit<strong>in</strong>e <strong>in</strong> hemodialysis patientsUnlike undialysed uremic patients, most hemodialysis (HD) patientsexhibit relative <str<strong>on</strong>g>carnit<strong>in</strong>e</str<strong>on</strong>g> deficiency, which is manifested as subnormalplasma / serum FC c<strong>on</strong>centrati<strong>on</strong>s (92) and dim<strong>in</strong>ished muscle stores. (93) Aswith uremic patients, hemodialysis (HD) patients have markedly elevatedAC levels, (Figure 6). (94) HD patients dem<strong>on</strong>strate an abnormally high ratio<str<strong>on</strong>g>of</str<strong>on</strong>g> asyl to free <str<strong>on</strong>g>carnit<strong>in</strong>e</str<strong>on</strong>g>, an AC:FC ratio <str<strong>on</strong>g>of</str<strong>on</strong>g> greater than 0.40 <strong>in</strong>dicates arelative FC deficiency (<strong>in</strong>sufficiency); <strong>in</strong> normal patients the AC:FC ratiois approximately 0.19, while it is <strong>in</strong>creased to 0.87 <strong>in</strong> hemodialysispatients. (95) Despite the abnormal <str<strong>on</strong>g>carnit<strong>in</strong>e</str<strong>on</strong>g> fracti<strong>on</strong>s, most HD patients havenormal or decreased plasma c<strong>on</strong>centrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> TC. (96) The possible reas<strong>on</strong>sfor subnormal FC c<strong>on</strong>centrati<strong>on</strong>s are <strong>in</strong>cluded <strong>in</strong> Table (4). (95)


Introducti<strong>on</strong> 31.Figure (6): Plasma <str<strong>on</strong>g>carnit<strong>in</strong>e</str<strong>on</strong>g> pr<str<strong>on</strong>g>of</str<strong>on</strong>g>ile <strong>in</strong> HD patients and normal ranges (94)Table (4): Potential factors c<strong>on</strong>tribut<strong>in</strong>g to <str<strong>on</strong>g>carnit<strong>in</strong>e</str<strong>on</strong>g> depleti<strong>on</strong> <strong>in</strong> HDpatients (95)Decreased availabilityLow dietary <strong>in</strong>take <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>carnit<strong>in</strong>e</str<strong>on</strong>g>-rich food(meat and dairy products)Increased requirementsAbnormal fatty acid metabolismDecreased endogenous producti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>carnit<strong>in</strong>e</str<strong>on</strong>g>N<strong>on</strong>selective dialytic losses (FC and AC)Dialytic lossesCarnit<strong>in</strong>e is a small water soluble molecule that is well dialyzed;dur<strong>in</strong>g <strong>on</strong>e HD sessi<strong>on</strong>, plasma c<strong>on</strong>centrati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>carnit<strong>in</strong>e</str<strong>on</strong>g> decl<strong>in</strong>ed asmuch as 75%. (97) This rapid decrease is quickly corrected by transport <str<strong>on</strong>g>of</str<strong>on</strong>g><str<strong>on</strong>g>carnit<strong>in</strong>e</str<strong>on</strong>g> from tissue stores ,which may lead to a decrease <strong>in</strong> muscle<str<strong>on</strong>g>carnit<strong>in</strong>e</str<strong>on</strong>g> levels. (98) Muscle <str<strong>on</strong>g>carnit<strong>in</strong>e</str<strong>on</strong>g> c<strong>on</strong>tent 6 hours after HD rema<strong>in</strong>edlower than predialysis c<strong>on</strong>centrati<strong>on</strong>s. (99) Plasma levels <str<strong>on</strong>g>of</str<strong>on</strong>g> TC return topredialysis levels 6 hours after HD. (98) Although the TC lost dur<strong>in</strong>g dialysisper week is similar to weekly ur<strong>in</strong>ary <str<strong>on</strong>g>carnit<strong>in</strong>e</str<strong>on</strong>g> excreti<strong>on</strong> <strong>in</strong> normal


Introducti<strong>on</strong> 32.<strong>in</strong>dividuals, FC clearance by HD is greater than that <str<strong>on</strong>g>of</str<strong>on</strong>g> AC, a pattern thatis the reverse <str<strong>on</strong>g>of</str<strong>on</strong>g> normal ur<strong>in</strong>ary <str<strong>on</strong>g>carnit<strong>in</strong>e</str<strong>on</strong>g> excreti<strong>on</strong>, which may c<strong>on</strong>tributeto decrease <strong>in</strong> FC c<strong>on</strong>centrati<strong>on</strong>. (100)Dialysis v<strong>in</strong>tageL-<str<strong>on</strong>g>carnit<strong>in</strong>e</str<strong>on</strong>g> deficiency progresses with dialysis v<strong>in</strong>tage (durati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g>dialysis); significant negative correlati<strong>on</strong> has been found between dialysisdurati<strong>on</strong> (v<strong>in</strong>tage) and plasma FC c<strong>on</strong>centrati<strong>on</strong>, (Figure 7); (101) as well asbetween m<strong>on</strong>ths <strong>on</strong> dialysis and muscle <str<strong>on</strong>g>carnit<strong>in</strong>e</str<strong>on</strong>g> c<strong>on</strong>tent, (Figure 8). (102)Figure (7): Correlati<strong>on</strong> between dialysis v<strong>in</strong>tage and free <str<strong>on</strong>g>carnit<strong>in</strong>e</str<strong>on</strong>g> levels <strong>in</strong> HD patients (101)Figure (8): Correlati<strong>on</strong> between dialysis v<strong>in</strong>tage and muscle <str<strong>on</strong>g>carnit<strong>in</strong>e</str<strong>on</strong>g> levels <strong>in</strong> HD patients (102)


Introducti<strong>on</strong> 33.Bazzi et al (99) found that patients undergo<strong>in</strong>g HD for more than 10years had decreased muscle <str<strong>on</strong>g>carnit<strong>in</strong>e</str<strong>on</strong>g>; this was not seen <strong>in</strong> patients who hadbeen <strong>on</strong> HD for less than 3 years. (99)Significant reducti<strong>on</strong>s <strong>in</strong> predialysis TC levels with dialysis v<strong>in</strong>tagehave been documented as well. Over a 25-week period, Rodriguz-Segade etal (103) found a gradual decrease <strong>in</strong> serum TC levels, and Kudoh et al (92)documented a gradual reducti<strong>on</strong> <strong>in</strong> predialysis plasma TC levels over a 2-years period. Older patients appear to be at greatest risk for <str<strong>on</strong>g>carnit<strong>in</strong>e</str<strong>on</strong>g>deficiency; there is a significant negative correlati<strong>on</strong> between serum FClevels and age. (104)Carnit<strong>in</strong>e deficiencyCarnit<strong>in</strong>e level is regulated by a number <str<strong>on</strong>g>of</str<strong>on</strong>g> processes. Am<strong>on</strong>gst theseare the endogenous biosynthesis from lys<strong>in</strong>e and methi<strong>on</strong><strong>in</strong>e, <strong>in</strong>test<strong>in</strong>alabsorpti<strong>on</strong>, renal excreti<strong>on</strong> and catabolism <strong>in</strong> the body. Carnit<strong>in</strong>e deficiencycould be def<strong>in</strong>ed as decrease <strong>in</strong> <strong>in</strong>tracellular free <str<strong>on</strong>g>carnit<strong>in</strong>e</str<strong>on</strong>g> levels lead<strong>in</strong>g to<strong>in</strong>hibiti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> acyl transport via the <strong>in</strong>ner mitoch<strong>on</strong>drial membrane and theaccumulati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> acyl CoA. (105) This may lead to the follow<strong>in</strong>g:1- Intracellular free <str<strong>on</strong>g>carnit<strong>in</strong>e</str<strong>on</strong>g> becomes too low to susta<strong>in</strong> mitoch<strong>on</strong>drialfatty acid oxidati<strong>on</strong>. Glycogen and glucose becomes the preferredsubstrates for energy producti<strong>on</strong> lead<strong>in</strong>g to hypoglycemia.2- Intracellular free <str<strong>on</strong>g>carnit<strong>in</strong>e</str<strong>on</strong>g> become too low to enable acetyl CoAexport from the mitoch<strong>on</strong>dria to cytosol via <str<strong>on</strong>g>carnit<strong>in</strong>e</str<strong>on</strong>g> transport system.3- Increased acyl CoA ester leads to <strong>in</strong>hibiti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> ATP producti<strong>on</strong>. (106)Carnit<strong>in</strong>e deficiency is divided <strong>in</strong>to:1- Primary <str<strong>on</strong>g>carnit<strong>in</strong>e</str<strong>on</strong>g> deficiency.2- Sec<strong>on</strong>dary <str<strong>on</strong>g>carnit<strong>in</strong>e</str<strong>on</strong>g> deficiency.


Introducti<strong>on</strong> 34.Primary <str<strong>on</strong>g>carnit<strong>in</strong>e</str<strong>on</strong>g> deficiencyThe primary <str<strong>on</strong>g>carnit<strong>in</strong>e</str<strong>on</strong>g> deficiency could be def<strong>in</strong>ed by the follow<strong>in</strong>g criteria:• The metabolic disorder is caused directly by <strong>in</strong>adequate tissuec<strong>on</strong>centrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>carnit<strong>in</strong>e</str<strong>on</strong>g>.• It is accompanied by impaired fatty acid oxidati<strong>on</strong>.• It is corrected when <str<strong>on</strong>g>carnit<strong>in</strong>e</str<strong>on</strong>g> c<strong>on</strong>centrati<strong>on</strong> is restored to normal.• It is not sec<strong>on</strong>dary to a defect <str<strong>on</strong>g>of</str<strong>on</strong>g> mitoch<strong>on</strong>drial β-oxidati<strong>on</strong>.The possible aetiologies for primary <str<strong>on</strong>g>carnit<strong>in</strong>e</str<strong>on</strong>g> deficiency:1- Defective biosynthesis and dietary <strong>in</strong>take.2- Defective <strong>in</strong>test<strong>in</strong>al absorpti<strong>on</strong>.3- Defective transport affect<strong>in</strong>g uptake and / or release <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>carnit<strong>in</strong>e</str<strong>on</strong>g>from the tissues.4- Renal loss due to decreased tubular reabsorpti<strong>on</strong> or <strong>in</strong>creasedexcreti<strong>on</strong>. (40)There are two forms <str<strong>on</strong>g>of</str<strong>on</strong>g> primary <str<strong>on</strong>g>carnit<strong>in</strong>e</str<strong>on</strong>g> Deficiency:1- Myopathic.2- Systemic.Primary myopathic <str<strong>on</strong>g>carnit<strong>in</strong>e</str<strong>on</strong>g> deficiency:It is characterized by progressive muscle weakness & wast<strong>in</strong>glimited to skeletal and cardiac muscles. The symptoms <str<strong>on</strong>g>of</str<strong>on</strong>g> myopathic<str<strong>on</strong>g>carnit<strong>in</strong>e</str<strong>on</strong>g> deficiency <strong>in</strong>clude muscle pa<strong>in</strong> and progressive weakness,symptoms may beg<strong>in</strong> <strong>in</strong> childhood or adulthood.


Introducti<strong>on</strong> 35.There is accumulati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> lipids <strong>in</strong> the muscle fibers and low <str<strong>on</strong>g>carnit<strong>in</strong>e</str<strong>on</strong>g><strong>in</strong> the skeletal muscles and serum – L <str<strong>on</strong>g>carnit<strong>in</strong>e</str<strong>on</strong>g> levels are generally normal.It may be due to defect <strong>in</strong> the <str<strong>on</strong>g>carnit<strong>in</strong>e</str<strong>on</strong>g> import<strong>in</strong>g prote<strong>in</strong> <strong>in</strong> the plasmamembrane <str<strong>on</strong>g>of</str<strong>on</strong>g> skeletal muscles. This results <strong>in</strong> failure <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>carnit<strong>in</strong>e</str<strong>on</strong>g> transportmechanism <strong>in</strong>to the muscle, the primary myopathic <str<strong>on</strong>g>carnit<strong>in</strong>e</str<strong>on</strong>g> deficiency istransmitted as autosomal recessive trait. (107)2- Primary systemic <str<strong>on</strong>g>carnit<strong>in</strong>e</str<strong>on</strong>g> deficiency:It is genetic disorder that is usually detected <strong>in</strong> <strong>in</strong>fancy or earlychildhood. It is characterized by low serum L–<str<strong>on</strong>g>carnit<strong>in</strong>e</str<strong>on</strong>g> levels and ifuntreated may result <strong>in</strong> life – threaten<strong>in</strong>g damage to the liver, heart, orbra<strong>in</strong>. It is also known as <str<strong>on</strong>g>carnit<strong>in</strong>e</str<strong>on</strong>g> carrier deficiency, the underly<strong>in</strong>g causeis a mutati<strong>on</strong> <strong>in</strong> the gene cod<strong>in</strong>g for the prote<strong>in</strong> that transports L-<str<strong>on</strong>g>carnit<strong>in</strong>e</str<strong>on</strong>g><strong>in</strong>to cells. As a result <str<strong>on</strong>g>of</str<strong>on</strong>g> this defect, <strong>in</strong>test<strong>in</strong>al absorpti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> dietary L-<str<strong>on</strong>g>carnit<strong>in</strong>e</str<strong>on</strong>g> is poor and reabsorpti<strong>on</strong> by the kidney is impaired, result<strong>in</strong>g <strong>in</strong><strong>in</strong>creased ur<strong>in</strong>ary loss <str<strong>on</strong>g>of</str<strong>on</strong>g> L-<str<strong>on</strong>g>carnit<strong>in</strong>e</str<strong>on</strong>g>. (108)Sec<strong>on</strong>dary <str<strong>on</strong>g>carnit<strong>in</strong>e</str<strong>on</strong>g> deficiencyIt may be hereditary or acquired, <strong>in</strong> all cases they are characterizedby decreased availability <str<strong>on</strong>g>of</str<strong>on</strong>g> free L-<str<strong>on</strong>g>carnit<strong>in</strong>e</str<strong>on</strong>g>. In such cases, total L-<str<strong>on</strong>g>carnit<strong>in</strong>e</str<strong>on</strong>g>levels may be normal, but free L-<str<strong>on</strong>g>carnit<strong>in</strong>e</str<strong>on</strong>g> levels are decreased.Hereditary causes:It <strong>in</strong>cludes genetic defects <strong>in</strong> am<strong>in</strong>o acids degradati<strong>on</strong>, so there is<strong>in</strong>creased excrti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> acyl <str<strong>on</strong>g>carnit<strong>in</strong>e</str<strong>on</strong>g> <strong>in</strong> ur<strong>in</strong>e result<strong>in</strong>g <strong>in</strong> sec<strong>on</strong>dary <str<strong>on</strong>g>carnit<strong>in</strong>e</str<strong>on</strong>g>


Introducti<strong>on</strong> 36.deficiency; the more comm<strong>on</strong> is propi<strong>on</strong>ic aciduria, methlymal<strong>on</strong>icaciduria and glutaric aciduria. (109)Increased L-<str<strong>on</strong>g>carnit<strong>in</strong>e</str<strong>on</strong>g> loss:Haemodialysis, fanc<strong>on</strong>i syndrome, and the metabolism <str<strong>on</strong>g>of</str<strong>on</strong>g> somemedicati<strong>on</strong>s as after therapy with valproate (antic<strong>on</strong>vulsant) andpivampicill<strong>in</strong>, pivamecill<strong>in</strong>am and pivcephaex<strong>in</strong>) also zidovud<strong>in</strong>e (AZT),didanos<strong>in</strong>e (ddI), Zalcitab<strong>in</strong>e (ddc), stavud<strong>in</strong>e (dut) that are used <strong>in</strong>treatment <str<strong>on</strong>g>of</str<strong>on</strong>g> HIV <strong>in</strong>fecti<strong>on</strong> may result <strong>in</strong> substantial L-<str<strong>on</strong>g>carnit<strong>in</strong>e</str<strong>on</strong>g> loss,result<strong>in</strong>g <strong>in</strong> L- <str<strong>on</strong>g>carnit<strong>in</strong>e</str<strong>on</strong>g> deficiency. (89,110)Insufficient L-<str<strong>on</strong>g>carnit<strong>in</strong>e</str<strong>on</strong>g> synthesis:Due to deficient supply <str<strong>on</strong>g>of</str<strong>on</strong>g> L-<str<strong>on</strong>g>carnit<strong>in</strong>e</str<strong>on</strong>g> and its precursors am<strong>in</strong>o acids(methi<strong>on</strong><strong>in</strong>e and lys<strong>in</strong>e) <strong>in</strong> the diet, also malabsorpti<strong>on</strong> syndromes may<strong>in</strong>crease the risk <str<strong>on</strong>g>of</str<strong>on</strong>g> sec<strong>on</strong>dary <str<strong>on</strong>g>carnit<strong>in</strong>e</str<strong>on</strong>g> deficiency. (111)Defective hepatic synthesis:Due to hepatic impairment, s<strong>in</strong>ce the liver is the ma<strong>in</strong> part for<str<strong>on</strong>g>carnit<strong>in</strong>e</str<strong>on</strong>g> synthesis. So any alterati<strong>on</strong>s <strong>in</strong> the hepatic functi<strong>on</strong>s will beassociated with change <strong>in</strong> the plasma <str<strong>on</strong>g>carnit<strong>in</strong>e</str<strong>on</strong>g>. (112)Nutrient <strong>in</strong>teracti<strong>on</strong>s:The synthesis <str<strong>on</strong>g>of</str<strong>on</strong>g> L-<str<strong>on</strong>g>carnit<strong>in</strong>e</str<strong>on</strong>g> is catalyzed by the c<strong>on</strong>certed acti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g>five different enzymes. This process requires two essential am<strong>in</strong>o acids(lys<strong>in</strong>e and methi<strong>on</strong><strong>in</strong>e), ir<strong>on</strong> (Fe 2+ ), vitam<strong>in</strong> C, vitam<strong>in</strong> B 6 , and niac<strong>in</strong> <strong>in</strong>the form <str<strong>on</strong>g>of</str<strong>on</strong>g> nicot<strong>in</strong>amide aden<strong>in</strong>e d<strong>in</strong>ucleotide (NAD).


Introducti<strong>on</strong> 37.One <str<strong>on</strong>g>of</str<strong>on</strong>g> the earliest symptoms <str<strong>on</strong>g>of</str<strong>on</strong>g> vitam<strong>in</strong> C deficiency is fatigue,thought to be related to decreased synthesis <str<strong>on</strong>g>of</str<strong>on</strong>g> L- <str<strong>on</strong>g>carnit<strong>in</strong>e</str<strong>on</strong>g>. (113)Cl<strong>in</strong>ical features <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>carnit<strong>in</strong>e</str<strong>on</strong>g> deficiency:Dialysis patients suffer from many complicati<strong>on</strong>s which are similarto those observed with <str<strong>on</strong>g>carnit<strong>in</strong>e</str<strong>on</strong>g> deficiency.Skeletal myopathies:Skeletal myopathies associated with abnormal <str<strong>on</strong>g>carnit<strong>in</strong>e</str<strong>on</strong>g> metabolism<strong>in</strong>clude; muscle fatigue, weakness, cramps/ aches, and abnormal histology.These are comm<strong>on</strong> complicati<strong>on</strong>s <strong>in</strong> HD patients; <strong>in</strong>tradialytic musclecramps may occur <strong>in</strong> as many as 86% <str<strong>on</strong>g>of</str<strong>on</strong>g> patients. (114) HD patients withmuscle symptoms exhibit a significantly lower level <str<strong>on</strong>g>of</str<strong>on</strong>g> FC (Figure 9a) (101) ,and a higher AC:FC ratio (Figure 9b) (101) , than those without symptoms. (101)Figure (9): Difference <strong>in</strong> (A) free <str<strong>on</strong>g>carnit<strong>in</strong>e</str<strong>on</strong>g> levels and (B) AC:FC ratio <strong>in</strong> HD patients (101)Exercise performance:HD patients have severely limited exercise capacity and a low peakoxygen c<strong>on</strong>sumpti<strong>on</strong>. These limitati<strong>on</strong>s are seen even <strong>in</strong> those patients withnormal cardiac and pulm<strong>on</strong>ary functi<strong>on</strong> and normal hematocrit, suggest<strong>in</strong>g


Introducti<strong>on</strong> 38.that the defect is at the level <str<strong>on</strong>g>of</str<strong>on</strong>g> skeletal muscle. (115) There is a positivecorrelati<strong>on</strong> between endogenous muscle <str<strong>on</strong>g>carnit<strong>in</strong>e</str<strong>on</strong>g> c<strong>on</strong>tent and maximalexercise capacity <strong>in</strong> HD patients (Figure 10) (102) ; exercise durati<strong>on</strong> wasreduced by 50% <strong>in</strong> <str<strong>on</strong>g>carnit<strong>in</strong>e</str<strong>on</strong>g>- deficient patients. (102)Figure (10): Correlati<strong>on</strong> between exercise capacity and muscle stores <strong>in</strong> HD patients (102)Cardiac dysfuncti<strong>on</strong>:Cardiovascular disease is a significant cause <str<strong>on</strong>g>of</str<strong>on</strong>g> mortality andaccounts for as many as 50% <str<strong>on</strong>g>of</str<strong>on</strong>g> deaths <strong>in</strong> dialysis patients. (116) Inheritedsystemic <str<strong>on</strong>g>carnit<strong>in</strong>e</str<strong>on</strong>g> deficiency (n<strong>on</strong>-ESRD) causes familial cardiomyopathy. (117)It was found that there is subnormal levels <str<strong>on</strong>g>of</str<strong>on</strong>g> FC <strong>in</strong> ischemic heart diseaseand heart failure. (118)Sec<strong>on</strong>dary <str<strong>on</strong>g>carnit<strong>in</strong>e</str<strong>on</strong>g> deficiency is associated with dialysis-resistantcardiomegaly; plasma free <str<strong>on</strong>g>carnit<strong>in</strong>e</str<strong>on</strong>g> levels <strong>in</strong> patients <strong>on</strong> chr<strong>on</strong>ic HD weremarkedly reduced and <strong>in</strong>versely correlated with cardiothoracic ratio(Figure 11). (93) There is also a significant associati<strong>on</strong> between low FCc<strong>on</strong>centrati<strong>on</strong> and reduced ejecti<strong>on</strong> fracti<strong>on</strong> (Figure 12). (91)


Introducti<strong>on</strong> 39.Figure (11): Inverse correlati<strong>on</strong> between plasma free <str<strong>on</strong>g>carnit<strong>in</strong>e</str<strong>on</strong>g> levels andcardiothoracic ratio <strong>in</strong> HD patients (93)Figure (12): Correlati<strong>on</strong> between ejecti<strong>on</strong> fracti<strong>on</strong> and plasma free <str<strong>on</strong>g>carnit<strong>in</strong>e</str<strong>on</strong>g> levels <strong>in</strong> HD patients (91)Intradialytic complicati<strong>on</strong>s:One <str<strong>on</strong>g>of</str<strong>on</strong>g> the most comm<strong>on</strong> complicati<strong>on</strong>s dur<strong>in</strong>g HD is hypotensi<strong>on</strong>.Riley et al (104) found significantly lower serum levels <str<strong>on</strong>g>of</str<strong>on</strong>g> TC and FC <strong>in</strong> welldialyzedHD patients with <strong>in</strong>tradialytic hypotensi<strong>on</strong> episodes (a decrease <str<strong>on</strong>g>of</str<strong>on</strong>g>more than 15 mm/ Hg) compared to HD patients without these episodes(Table 5). (104)


Introducti<strong>on</strong> 40.Table (5): Serum <str<strong>on</strong>g>carnit<strong>in</strong>e</str<strong>on</strong>g> levels <strong>in</strong> patients with (n = 8) and without(n = 23) <strong>in</strong>tradialytic hypotensi<strong>on</strong> (104)Without hypotensi<strong>on</strong>With hypotensi<strong>on</strong>Total <str<strong>on</strong>g>carnit<strong>in</strong>e</str<strong>on</strong>g> (TC)(µmol/L)Free <str<strong>on</strong>g>carnit<strong>in</strong>e</str<strong>on</strong>g> (FC)(µmol/L)27.0±2.7 18.4±2.2 a18.8±2.0 10.9±1.7 ba p < 0.05b p < 0.01Rehabilitati<strong>on</strong>:Riley et al (104) also found a significant correlati<strong>on</strong> between a reducedKarn<str<strong>on</strong>g>of</str<strong>on</strong>g>sky score (an <strong>in</strong>dicator <str<strong>on</strong>g>of</str<strong>on</strong>g> functi<strong>on</strong>al status ) and <strong>in</strong>creased AC: FCratio (Figure 13). (104) The low functi<strong>on</strong>al status <strong>in</strong> patients with reducedserum <str<strong>on</strong>g>carnit<strong>in</strong>e</str<strong>on</strong>g> levels may be l<strong>in</strong>ked to poor cardiac functi<strong>on</strong> and/or poormuscle functi<strong>on</strong>.Figure (13): Relati<strong>on</strong>ship between Karn<str<strong>on</strong>g>of</str<strong>on</strong>g>sky Activity Scale score and acyl: free<str<strong>on</strong>g>carnit<strong>in</strong>e</str<strong>on</strong>g> ratio <strong>in</strong> HD patients (104)


Introducti<strong>on</strong> 41.Anemia:While the most important cause <str<strong>on</strong>g>of</str<strong>on</strong>g> anemia <strong>in</strong> dialysis patients isdecreased erythropoiet<strong>in</strong> (EPO), evidence is mount<strong>in</strong>g that <str<strong>on</strong>g>carnit<strong>in</strong>e</str<strong>on</strong>g> alsoplays a role. Lower TC and FC levels have been found <strong>in</strong> HD patients withanemia compared to those without. Kooistra et al (119) found that patientswith lower TC levels required higher EPO doses to ma<strong>in</strong>ta<strong>in</strong> a hematocrit<str<strong>on</strong>g>of</str<strong>on</strong>g> 30 or more (Figure 14). (120) A significant <strong>in</strong>verse correlati<strong>on</strong> has alsobeen reported between FC levels and EPO dosage. (120) These studiessuggest that <str<strong>on</strong>g>carnit<strong>in</strong>e</str<strong>on</strong>g> deficiency c<strong>on</strong>tributes to anemia and may be <strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g>the causes <str<strong>on</strong>g>of</str<strong>on</strong>g> relative EPO resistance.Figure (14): Relati<strong>on</strong>ship between required dose <str<strong>on</strong>g>of</str<strong>on</strong>g> rHuEPO and total <str<strong>on</strong>g>carnit<strong>in</strong>e</str<strong>on</strong>g> levels<strong>in</strong> HD patients (120)Carnit<strong>in</strong>e as a therapeutic agentL-<str<strong>on</strong>g>carnit<strong>in</strong>e</str<strong>on</strong>g> therapy has been used as a therapy for treatment andpreventi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> some diseases that <strong>in</strong>volve both primary and sec<strong>on</strong>dary<str<strong>on</strong>g>carnit<strong>in</strong>e</str<strong>on</strong>g> deficiency. (121) Treatment with L-<str<strong>on</strong>g>carnit<strong>in</strong>e</str<strong>on</strong>g> can be used as anadjuvant therapy <strong>in</strong> the follow<strong>in</strong>g c<strong>on</strong>diti<strong>on</strong>s:


Introducti<strong>on</strong> 42.• Myocardial <strong>in</strong>farcti<strong>on</strong>:Myocardial <strong>in</strong>farcti<strong>on</strong> (MI) occurs when atherosclerotic plaque <strong>in</strong> acor<strong>on</strong>ary artery ruptures. The resultant blood clot can obstruct the bloodsupply to the heart muscle, caus<strong>in</strong>g <strong>in</strong>jury or damage to the heart.L-<str<strong>on</strong>g>carnit<strong>in</strong>e</str<strong>on</strong>g> treatment has been found to reduce <strong>in</strong>jury to the heart muscleresult<strong>in</strong>g from ischemia. (122)• Heart failure:Impairment <str<strong>on</strong>g>of</str<strong>on</strong>g> the heart’s ability to pump enough blood for all thebody’s needs is known as heart failure. In cor<strong>on</strong>ary artery disease, theaccumulati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> atherosclerotic plaque <strong>in</strong> the cor<strong>on</strong>ary arteries may preventparts <str<strong>on</strong>g>of</str<strong>on</strong>g> the heart muscle from gett<strong>in</strong>g adequate circulati<strong>on</strong>, ultimatelyresult<strong>in</strong>g <strong>in</strong> damage and impaired pump<strong>in</strong>g ability. Myocardial <strong>in</strong>farcti<strong>on</strong>(MI) may also damage the heart muscle, result<strong>in</strong>g <strong>in</strong> the development <str<strong>on</strong>g>of</str<strong>on</strong>g>heart failure. Because physical exercise <strong>in</strong>creases the demand <strong>on</strong> theweakened heart, measures <str<strong>on</strong>g>of</str<strong>on</strong>g> exercise tolerance are frequently used tom<strong>on</strong>itor the severity <str<strong>on</strong>g>of</str<strong>on</strong>g> the heart failure. Echocardiogaphy is also used todeterm<strong>in</strong>e the left ventricular ejecti<strong>on</strong> fracti<strong>on</strong> (LVEF), an objectivemeasure <str<strong>on</strong>g>of</str<strong>on</strong>g> the heart’s pump<strong>in</strong>g ability.An LVEF <str<strong>on</strong>g>of</str<strong>on</strong>g> less than 40% is <strong>in</strong>dicative <str<strong>on</strong>g>of</str<strong>on</strong>g> systolic heart failure. (123)The additi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> L-<str<strong>on</strong>g>carnit<strong>in</strong>e</str<strong>on</strong>g> to the standard medical therapy for heart failurespecially <strong>in</strong> patients with higher LVEF values (greater than 30%), exercisetolerance was significantly improved, with significant decrease <strong>in</strong> leftventricular size. (124)


Introducti<strong>on</strong> 43.• Ang<strong>in</strong>a pectoris:The additi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> L-<str<strong>on</strong>g>carnit<strong>in</strong>e</str<strong>on</strong>g> to the pharmacologic therapy forchr<strong>on</strong>ic stable ang<strong>in</strong>a has been found to improve exercise tolerance anddecrease the time required for exercise- <strong>in</strong>duced ST segment changes toreturn to basel<strong>in</strong>e. (125)Intermittent claudicati<strong>on</strong> <strong>in</strong> peripheral arterial diseaseIn peripheral arterial disease, atherosclerosis <str<strong>on</strong>g>of</str<strong>on</strong>g> the arteries supply<strong>in</strong>gthe lower extensities may dim<strong>in</strong>ish blood flow to the po<strong>in</strong>t that it is<strong>in</strong>sufficient to supply the metabolic needs <str<strong>on</strong>g>of</str<strong>on</strong>g> exercis<strong>in</strong>g muscles, lead<strong>in</strong>g toischemic leg or hip pa<strong>in</strong> known as claudicati<strong>on</strong>. (126)Adm<strong>in</strong>istrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> L-<str<strong>on</strong>g>carnit<strong>in</strong>e</str<strong>on</strong>g> <strong>in</strong> these patients significantly <strong>in</strong>creasesthe maximal walk<strong>in</strong>g distance and the distance walked prior to the <strong>on</strong>set <str<strong>on</strong>g>of</str<strong>on</strong>g>claudicati<strong>on</strong> <strong>in</strong> patients whose <strong>in</strong>itial maximal walk<strong>in</strong>g distance was lessthan 250 meters. (127)• Alzheimer’s disease (dementia):It was found that some patients with early-<strong>on</strong>set Alzheimer’s disease(65 years and younger) experienced more rapid cognitive decl<strong>in</strong>e that wassignificantly slowed by L-canit<strong>in</strong>e treatment. (128)• HIV/AIDS:One <str<strong>on</strong>g>of</str<strong>on</strong>g> the hallmarks <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>in</strong>fecti<strong>on</strong> with the retrovirus, HIV, is aprogressive decl<strong>in</strong>e <strong>in</strong> the numbers <str<strong>on</strong>g>of</str<strong>on</strong>g> CD4T lymphocytes (CD4cells),ultimately lead<strong>in</strong>g to the development <str<strong>on</strong>g>of</str<strong>on</strong>g> AIDS. Lymphocytes <str<strong>on</strong>g>of</str<strong>on</strong>g> HIV-


Introducti<strong>on</strong> 44.<strong>in</strong>fected <strong>in</strong>dividuals <strong>in</strong>appropriately undergo programmed cell death(apoptosis).L-<str<strong>on</strong>g>carnit<strong>in</strong>e</str<strong>on</strong>g> supplementati<strong>on</strong> <strong>in</strong>creases CD4 cell counts significantlyand markers <str<strong>on</strong>g>of</str<strong>on</strong>g> lymphocytes apoptosis decreased, although there was nosignificant change <strong>in</strong> plasma levels <str<strong>on</strong>g>of</str<strong>on</strong>g> HIV virus (viremia). (129)Some antiretroviral agents (nucleoside analogues) used to treat HIV<strong>in</strong>fecti<strong>on</strong>appear to cause a sec<strong>on</strong>dary L-<str<strong>on</strong>g>carnit<strong>in</strong>e</str<strong>on</strong>g> deficiency that may leadto their toxic side effects. (130) It was found that the nerve c<strong>on</strong>centrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> L-<str<strong>on</strong>g>carnit<strong>in</strong>e</str<strong>on</strong>g> was significantly lower <strong>in</strong> HIV patients who developed peripheralneuropathy while tak<strong>in</strong>g nucleioside analogues. (131)Patients with pa<strong>in</strong>ful neuropathies show improvement withL-<str<strong>on</strong>g>carnit<strong>in</strong>e</str<strong>on</strong>g> supplementati<strong>on</strong>, so it may be a beneficial adjuvant toantiretroviral therapy <strong>in</strong> some HIV-<strong>in</strong>fected <strong>in</strong>dividuals. (132)• Decreased sperm motility:L-<str<strong>on</strong>g>carnit<strong>in</strong>e</str<strong>on</strong>g> is c<strong>on</strong>centrated <strong>in</strong> the epididymis, where sperms matureand acquire their motility. (133) It was found that L-<str<strong>on</strong>g>carnit<strong>in</strong>e</str<strong>on</strong>g> supplementati<strong>on</strong>resulted <strong>in</strong> significant improvement <strong>in</strong> sperm motility. (134) It was also foundthat L-<str<strong>on</strong>g>carnit<strong>in</strong>e</str<strong>on</strong>g> c<strong>on</strong>centrati<strong>on</strong>s <strong>in</strong> semen were positively correlated with thenumber <str<strong>on</strong>g>of</str<strong>on</strong>g> sperm, the percentage <str<strong>on</strong>g>of</str<strong>on</strong>g> motile sperm, and the percentage <str<strong>on</strong>g>of</str<strong>on</strong>g>normal appear<strong>in</strong>g sperm <strong>in</strong> the sample, (135) suggest<strong>in</strong>g that measur<strong>in</strong>gL-<str<strong>on</strong>g>carnit<strong>in</strong>e</str<strong>on</strong>g> levels <strong>in</strong> semen may be useful <strong>in</strong> the evaluati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> male<strong>in</strong>fertility.


Aim <str<strong>on</strong>g>of</str<strong>on</strong>g> the Work 45.AIM OF THE WORKThe aim <str<strong>on</strong>g>of</str<strong>on</strong>g> this work is to study the effect <str<strong>on</strong>g>of</str<strong>on</strong>g> the L-<str<strong>on</strong>g>carnit<strong>in</strong>e</str<strong>on</strong>g>deficiency <strong>on</strong> the left ventricular functi<strong>on</strong>s as well as evaluati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> thetherapeutic efficacy <str<strong>on</strong>g>of</str<strong>on</strong>g> L-<str<strong>on</strong>g>carnit<strong>in</strong>e</str<strong>on</strong>g> supplementati<strong>on</strong> <strong>on</strong> left ventricularfuncti<strong>on</strong>s and lipid pr<str<strong>on</strong>g>of</str<strong>on</strong>g>ile <strong>in</strong> hemodialysis patients.


Subjects 46.SUBJECTSThis study was carried out <strong>on</strong> 50 patients and 10 healthy c<strong>on</strong>trol,subjects are classified <strong>in</strong>to three groups as follow:Group I (G I):10 patients with chr<strong>on</strong>ic renal <strong>in</strong>sufficiency <strong>on</strong> c<strong>on</strong>servative medicaltreatment with GFR 20-50 ml / m<strong>in</strong>t. They didn’t receive L-<str<strong>on</strong>g>carnit<strong>in</strong>e</str<strong>on</strong>g>supplementati<strong>on</strong>.Group II (G II):It <strong>in</strong>cludes 40 patients with ESRD <strong>on</strong> regular ma<strong>in</strong>tenancehemodialysis for more than 6 m<strong>on</strong>ths, the dialysis schedule was 4 hours, 3-times/ week. This group was divided <strong>in</strong>to 2 subgroups (a) & (b).G II (a):Include 20 patients with ESRD <strong>on</strong> regular dialysis and receive oralL-<str<strong>on</strong>g>carnit<strong>in</strong>e</str<strong>on</strong>g> supplementati<strong>on</strong> at a dose <strong>on</strong>e-g/ day for 6 m<strong>on</strong>ths. This groupsubdivided <strong>in</strong>to GIIaS 1 (patients <strong>on</strong> HD before receiv<strong>in</strong>g L-<str<strong>on</strong>g>carnit<strong>in</strong>e</str<strong>on</strong>g>supplementati<strong>on</strong>) and GIIaS 2 (patients <strong>on</strong> HD after receiv<strong>in</strong>g L-<str<strong>on</strong>g>carnit<strong>in</strong>e</str<strong>on</strong>g>supplementati<strong>on</strong>).G II (b):Include 20 patients with ESRD <strong>on</strong> regular dialysis who didn’treceive L-<str<strong>on</strong>g>carnit<strong>in</strong>e</str<strong>on</strong>g> supplementati<strong>on</strong>.


Subjects 47.Group III:Include 10 normal pers<strong>on</strong>s as a c<strong>on</strong>trol group.N.B:Patients <str<strong>on</strong>g>of</str<strong>on</strong>g> G II were ma<strong>in</strong>ta<strong>in</strong>ed <strong>on</strong> regular hemodialysis <strong>in</strong> thenephrology unit <strong>in</strong> the Alex University Students Hospital.N.B:Patients suffer<strong>in</strong>g from diseases that would affect the myocardialfuncti<strong>on</strong>s were excluded from the study as:• Diabetes mellitus.• Ischemic heart diseases.• Extensive myocardial calcificati<strong>on</strong>s.• Arrhythmias specially atrial fibrillati<strong>on</strong>.• Hyperlipidemia.• Significant valvular lesi<strong>on</strong>s.


Methods 48.METHODSAll patients were subjected to the follow<strong>in</strong>g:I- Detailed history tak<strong>in</strong>g:Stress<strong>in</strong>g <strong>on</strong> the possible cause <str<strong>on</strong>g>of</str<strong>on</strong>g> renal failure.II- Cl<strong>in</strong>ical exam<strong>in</strong>ati<strong>on</strong>:III- Rout<strong>in</strong>e laboratory <strong>in</strong>vestigati<strong>on</strong>s:• Blood urea (136) , serum creat<strong>in</strong><strong>in</strong>e. (137)• Creat<strong>in</strong><strong>in</strong>e clearance (A = body surface area (m 2 )u × v 1.73 × ). (138)P A• Serum album<strong>in</strong> & total prote<strong>in</strong>s. (139)• Serum uric acid. (140)• Serum sodium and serum potassium. (141)• Serum triglycerids and serum LDL, HDL cholesterol. (142)• Complete blood picture; RBc, WBc, Platelets, Hb level, Hct. (143)IV- Electrocardiogram.V- Echocardiogram: to assess the left ventricular dimensi<strong>on</strong>s andfuncti<strong>on</strong>s, <strong>in</strong>clud<strong>in</strong>g:1- <strong>Left</strong> ventricular- end diastolic dimensi<strong>on</strong>s (LVEDd).2- <strong>Left</strong> ventricular –end systolic dimensi<strong>on</strong>s (LVESd).3- <strong>Left</strong> ventricular systolic functi<strong>on</strong>s.• Ejecti<strong>on</strong> fracti<strong>on</strong> (EF).


Methods 49.• Fracti<strong>on</strong>al shorten<strong>in</strong>g (FS).4- <strong>Left</strong> ventricular diastolic functi<strong>on</strong>s.• Peak velocity <str<strong>on</strong>g>of</str<strong>on</strong>g> early fill<strong>in</strong>g (E) / peak velocity <str<strong>on</strong>g>of</str<strong>on</strong>g> late fill<strong>in</strong>g (A).• E- <strong>in</strong>tegral (Ei).• A-<strong>in</strong>tegral (Ai).• Ei /Ai ratio.5- <strong>Left</strong> ventricular mass.VI- Estimati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> serum L-<str<strong>on</strong>g>carnit<strong>in</strong>e</str<strong>on</strong>g> level:We estimated the serum level <str<strong>on</strong>g>of</str<strong>on</strong>g> L- <str<strong>on</strong>g>carnit<strong>in</strong>e</str<strong>on</strong>g> <strong>in</strong> all the studiedgroups, <strong>in</strong> group IIa and group IIb, the sample was taken predialysis. Weused the spectrophotometric–k<strong>in</strong>etic method, The c<strong>on</strong>centrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> L-<str<strong>on</strong>g>carnit<strong>in</strong>e</str<strong>on</strong>g> <strong>in</strong> serum was measured us<strong>in</strong>g L-<str<strong>on</strong>g>carnit<strong>in</strong>e</str<strong>on</strong>g> enzymatic U-V test.Roche Diagnostics GmbH Germany. (144,145)The follow<strong>in</strong>g reagents were used:(1) 3 X 0.7 co-enzyme buffer/mixture:• Lyophlizate.• C<strong>on</strong>sist<strong>in</strong>g <str<strong>on</strong>g>of</str<strong>on</strong>g> tris buffer, pH 7.0 NADH, 5mg, ATP, 6mg;Acetyl-coenzyme A, 4mg; PEP, 3mg; Magnesium acetate andstabilizers.(2) 3 ml enzyme suspensi<strong>on</strong>, c<strong>on</strong>sist<strong>in</strong>g <str<strong>on</strong>g>of</str<strong>on</strong>g>;• Acetyl-CoA synthetase approx. 2 U.• Myok<strong>in</strong>ase approx. 160 U.• Lactate dehydrogenase approx. 240 U.• Pyruvate k<strong>in</strong>ase approx. 240 U.(3) 0.2 ml enzyme suspensi<strong>on</strong> <str<strong>on</strong>g>carnit<strong>in</strong>e</str<strong>on</strong>g> acetyl transferase approx. 60U


Methods 50.(4) L-<str<strong>on</strong>g>carnit<strong>in</strong>e</str<strong>on</strong>g> standard soluti<strong>on</strong> approx. 100mg/l.(5) Detergent soluti<strong>on</strong>.Pr<strong>in</strong>ciple:L-<str<strong>on</strong>g>carnit<strong>in</strong>e</str<strong>on</strong>g> is acetylated to acetyl <str<strong>on</strong>g>carnit<strong>in</strong>e</str<strong>on</strong>g> by acetyl coenzyme A(acetyl CoA) <strong>in</strong> the presence <str<strong>on</strong>g>of</str<strong>on</strong>g> the enzyme <str<strong>on</strong>g>carnit<strong>in</strong>e</str<strong>on</strong>g> acetyl transferase(CAT). The result<strong>in</strong>g Co A is acetylated back to acetyl CoA <strong>in</strong> the presence<str<strong>on</strong>g>of</str<strong>on</strong>g> adenos<strong>in</strong>e-5 ’ -triphosphate (ATP) and acetate. Catalyzed by the enzymeacetyl CoA synthetase (ACS). This results <strong>in</strong> the formati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> adenos<strong>in</strong>e-5 ’ -m<strong>on</strong>ophosphate (AMP) and <strong>in</strong>organic pyrophosphate (PPi). In the presence<str<strong>on</strong>g>of</str<strong>on</strong>g> ATP, supported by myok<strong>in</strong>ase (MK) AMP forms twice the amount <str<strong>on</strong>g>of</str<strong>on</strong>g>adenos<strong>in</strong>e-5 ’ -diphosphate (ADP). This is c<strong>on</strong>verted <strong>in</strong> the follow<strong>in</strong>greacti<strong>on</strong> with phosphoenol pyruvate (PEP) <strong>in</strong> the presence <str<strong>on</strong>g>of</str<strong>on</strong>g> pyruvatek<strong>in</strong>ase(PK). The pyruvate formed is reduced to L-lactate by reducednicot<strong>in</strong>amid aden<strong>in</strong>e d<strong>in</strong>ucleotide (NADH) <strong>in</strong> the presence <str<strong>on</strong>g>of</str<strong>on</strong>g> lactatedehydrogenase (LDH).The amount <str<strong>on</strong>g>of</str<strong>on</strong>g> NADH c<strong>on</strong>sumed dur<strong>in</strong>g the reacti<strong>on</strong> is equivalent tohalf the amount <str<strong>on</strong>g>of</str<strong>on</strong>g> L- <str<strong>on</strong>g>carnit<strong>in</strong>e</str<strong>on</strong>g>. NADH is the parameter to be measured, Itis determ<strong>in</strong>ed <strong>on</strong> the basis <str<strong>on</strong>g>of</str<strong>on</strong>g> its absorpti<strong>on</strong> at 334 (Hg)nm., 340 or365(Hg) nm.(1) L- carnirt<strong>in</strong>e + acetyl CoA ⎯ CAT ⎯ →acetyl <str<strong>on</strong>g>carnit<strong>in</strong>e</str<strong>on</strong>g> + CoA(2) CoA + ATP + acetate ⎯ ACS ⎯ →acetyl CoA + AMP +PPi(3) AMP +ATP ⎯ MK ⎯→2ADP(4) 2ADP + 2PEP ⎯ PK ⎯→2ATP + 2 pyruvate(5) 2 pyruvate + 2 NADH + 2 H + ⎯ LDH ⎯⎯ →2 L- lactate + 2 NAD


Methods 51.Reference values:Serum: 6.9mg/L or 43 µM.Preparati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> serum or plasma samples:The samples was first deprote<strong>in</strong>ized as follows:• 1 ml perchloric acid soluti<strong>on</strong> (0.6M) was pipeted <strong>in</strong>to 10 ml centrifugedtubes.• It was mixed properly, and kept <strong>in</strong> an ice bath for 10 m<strong>in</strong>, thencentrifuged at 3000 x g for 10 m<strong>in</strong>.• 1 ml <str<strong>on</strong>g>of</str<strong>on</strong>g> the supernatant was pipetted <strong>in</strong>to a fresh centrifuge tube.• 200 µl potassium carb<strong>on</strong>ate soluti<strong>on</strong> (approx. 1.2M) was added.• It was mixed properly and kept <strong>in</strong> an ice-bath for 20 m<strong>in</strong>.• Then centrifuged at 3000 x g for 5 m<strong>in</strong>.• The supernatant was pipetted <strong>in</strong>to fresh tube.Protocol:The follow<strong>in</strong>g steps were d<strong>on</strong>e at temperature 20- 25 °C, andmeasured aga<strong>in</strong>st air, WL 340


Methods 52.(1) The follow<strong>in</strong>g soluti<strong>on</strong>s were pipetted <strong>in</strong>to cuvettes:Reagent Blank Sample StandardCoenzyme buffer/mixture 1ml 1 ml 1mlSerum Sample - 500µl -L-<str<strong>on</strong>g>carnit<strong>in</strong>e</str<strong>on</strong>g> standard soluti<strong>on</strong> - - 100µlEnzyme suspensi<strong>on</strong> 100µl 100µl 100µlDouble distilled water 1.1 ml 600µl 1ml(2) They were mixed by stirr<strong>in</strong>g spatula.(3) The absorbances <str<strong>on</strong>g>of</str<strong>on</strong>g> the soluti<strong>on</strong> (A 1 ) were measured after 10 m<strong>in</strong>.(4) The reacti<strong>on</strong> was started by the additi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> 5 µl <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>carnit<strong>in</strong>e</str<strong>on</strong>g> acetyltransferase suspensi<strong>on</strong>.(5) Then mixed by stirr<strong>in</strong>g spatula.(6) 30 m<strong>in</strong> after the enzyme suspensi<strong>on</strong> was added, the absorbances <str<strong>on</strong>g>of</str<strong>on</strong>g> thesoluti<strong>on</strong>s was measured <strong>in</strong> quick successi<strong>on</strong> (A 2 ).(7) 10 m<strong>in</strong> later, the absorbances was measured aga<strong>in</strong> (A 3 ).Absorbance difference:• Absorbance difference <str<strong>on</strong>g>of</str<strong>on</strong>g> the blank =(A 1 – A 2 ) blank –3 x (A 2 -A 3 ) blank’ =(ΔA blank ).• Absorbance difference <str<strong>on</strong>g>of</str<strong>on</strong>g> the sample =(A 1 -A 2 ) sample –3 x (A 2 -A 3 ) sample =(ΔA sample ).


Methods 53.The absorbance difference <str<strong>on</strong>g>of</str<strong>on</strong>g> the blank was subtracted from theabsorbance difference <str<strong>on</strong>g>of</str<strong>on</strong>g> the sample to obta<strong>in</strong>? A.Calculati<strong>on</strong>:(1) General calculati<strong>on</strong>:Accord<strong>in</strong>g to the general equati<strong>on</strong> for reacti<strong>on</strong>s <strong>in</strong> which the amount<str<strong>on</strong>g>of</str<strong>on</strong>g> NADH c<strong>on</strong>sumed is equivalent to half the amount <str<strong>on</strong>g>of</str<strong>on</strong>g> substrate, thec<strong>on</strong>centrati<strong>on</strong> is calculated by:V × MW × FC = × ΔA (mg / L)ε × d × v × 2V= f<strong>in</strong>al volume (ml)v= sample volume (ml)MW= molecular weight <str<strong>on</strong>g>of</str<strong>on</strong>g> the substance to be assayed (g /mol)d= path length (cm)ε= absorbance coefficient <str<strong>on</strong>g>of</str<strong>on</strong>g> NADH at 340 nm= 6.3 (L x mmol -1 x cm -1 )F= diluti<strong>on</strong> factor(2) For serum sample, the L-<str<strong>on</strong>g>carnit<strong>in</strong>e</str<strong>on</strong>g> c<strong>on</strong>centrati<strong>on</strong> is:C =2.205×161.2×2.346.3×1×0.5×2× ΔAC =831.7× ΔA6.3C = (mg L-<str<strong>on</strong>g>carnit<strong>in</strong>e</str<strong>on</strong>g> / L sample soluti<strong>on</strong>)


Results 54.RESULTSI- Demographic dataAge and sex distributi<strong>on</strong>Age and sex distributi<strong>on</strong> study was carried out <strong>on</strong> 50 patientsdistributed <strong>in</strong> 3 groups as follows:• In group I: it <strong>in</strong>cluded 10 patients they were 7 males and 3 females, theirages ranged from 20-50 years with mean age <str<strong>on</strong>g>of</str<strong>on</strong>g> 34.1±10.35.• In group II: it <strong>in</strong>cluded 40 patients <strong>in</strong> 2 subdivided groups:- Group IIa: <strong>in</strong>cluded 20 patients they were 11 males and 9 females,their ages ranged from 22-55 years with a mean <str<strong>on</strong>g>of</str<strong>on</strong>g> 39.75±10.32.- Group IIb: <strong>in</strong>cluded 20 patients they were 8 males and 2 females, theirages ranged from 19-49 years with a mean <str<strong>on</strong>g>of</str<strong>on</strong>g> 31.85±9.92.• Group III: It <strong>in</strong>cluded 10 healthy c<strong>on</strong>trol they were 4 males and 6females their ages ranged from 18-45 years with a mean <str<strong>on</strong>g>of</str<strong>on</strong>g> 30.7±9.96.There is no significant difference between the studied groups asregards age and sex.


Results 55.Table (6):Age and sex distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> group I, II <strong>in</strong> comparis<strong>on</strong> with thec<strong>on</strong>trol (group III)Age“years”RangeMeanS.D.FpSexMaleFemaleX 2pGroup III Group I Group IIb Group IIa18-45 20-50 19-49 22-5530.7 34.1 31.85 39.759.96 10.354 9.928 10.321.850.35, N.S.4 (40.0%) 7 (70.0%) 8 (40.0%) 11 (55.0%)6 (60.0%) 3 (30.0%) 12 (60.0%) 9 (45.0%)3.000.39, N.S.NS : No significant difference.• The groups hav<strong>in</strong>g the same superscript letter <strong>in</strong>dicate no statisticalsignificant difference, meanwhile the groups with different superscriptletter have a statistical significant difference.Group III: C<strong>on</strong>trol group.Group I : end- stage renal disease patients not <strong>on</strong> HD.Group II b: Patients <strong>on</strong> HD didn’t receive L. <str<strong>on</strong>g>carnit<strong>in</strong>e</str<strong>on</strong>g> supplementati<strong>on</strong>Group II aS 1 : Patients <strong>on</strong> HD before L. <str<strong>on</strong>g>carnit<strong>in</strong>e</str<strong>on</strong>g> supplementati<strong>on</strong>Group II aS 2 : Patients <strong>on</strong> HD after L. <str<strong>on</strong>g>carnit<strong>in</strong>e</str<strong>on</strong>g> supplementati<strong>on</strong>


Results 56.5039.754030.734.131.85Mean3020100Group III Group I Group IIb Group IIaAgeMaleFemale%807060504030201007060605540404530Group III Group I Group IIb Group IIaSexFig. (15) :Demographic data <str<strong>on</strong>g>of</str<strong>on</strong>g> the different studied groups.


Results 57.II- Laboratory <strong>in</strong>vestigati<strong>on</strong>s1- Hemoglob<strong>in</strong> level (g/dl)• In group I, hemoglob<strong>in</strong> level ranged from 6.5-9.5 g/dl with a mean <str<strong>on</strong>g>of</str<strong>on</strong>g>7.77±1.02g /dl.• In group II b, hemoglob<strong>in</strong> level ranged from 5.2-10.1 g/dl with a mean <str<strong>on</strong>g>of</str<strong>on</strong>g>7.57±1.312 g/dl.• In group II a S 1 , hemoglob<strong>in</strong> level ranged from 5.3-11.1 g/dl with a mean<str<strong>on</strong>g>of</str<strong>on</strong>g> 7.79±1.49g /dl.• In group IIaS 2 , hemoglob<strong>in</strong> level ranged from 9.3-12.1g /dl with a mean<str<strong>on</strong>g>of</str<strong>on</strong>g> 11.023±1.18g /dl.• In group III, hemoglob<strong>in</strong> level ranged from 12-16g /dl with a mean <str<strong>on</strong>g>of</str<strong>on</strong>g>14.06±2.23g /dl.It was observed that, there is significant differences between thestudied groups as (F = 9.88) (p = 0.003).2- Red blood cells (×10 6 /mm 3 )• In group I, the RBC ’ s ranged from 1.85-3.5 with a mean <str<strong>on</strong>g>of</str<strong>on</strong>g> 2.62±0.49.• In group IIb, the RBC ’ s ranged from 1.85-6.75 with a mean <str<strong>on</strong>g>of</str<strong>on</strong>g>3.90±0.526.• In group IIa S 1 , the RBC’s ranged from 2.1-8.3 with a mean <str<strong>on</strong>g>of</str<strong>on</strong>g> 3.2±1.48.• In group IIaS 2 , the RBC’s ranged from 3.7-5.9 with a mean <str<strong>on</strong>g>of</str<strong>on</strong>g>4.22±0.91.


Results 58.• In group III, the RBC’s ranged from 3.5-5.7 with a mean <str<strong>on</strong>g>of</str<strong>on</strong>g> 4.1±098.It was observed that, there is significant statistical differencebetween the studied groups as (F = 9.82) (p = 0.02).3- White blood cells (×10 6 /mm 3 )• In group I, the WBC’s ranged from 3.6-6.8 with a mean <str<strong>on</strong>g>of</str<strong>on</strong>g> 5.13±1.97.• In group IIb, the WBC’s ranged from 4.0-5.4 with a mean <str<strong>on</strong>g>of</str<strong>on</strong>g> 4.92±1.003.• In group IIaS 1 , the WBC’s ranged from 3.7-5.6 with a mean <str<strong>on</strong>g>of</str<strong>on</strong>g>4.655±1.33.• In group IIaS 2 , the WBC’s ranged from 4.2-6.8with a mean <str<strong>on</strong>g>of</str<strong>on</strong>g>5.46±1.11.• In group III, the WBC’s ranged from 4.1-6.0 with a mean <str<strong>on</strong>g>of</str<strong>on</strong>g> 5.3±0.98.It was observed that, there is no significant statistical differencesbetween the studied groups as regard<strong>in</strong>g the WBC’s count (F = 1.98) (p = 0.43).4- Platelets (×10 6 /mm 3 )• In group I, the platelets ranged from 201-293 with a mean <str<strong>on</strong>g>of</str<strong>on</strong>g>263.10±28.47.• In group IIb, the platelets ranged from 237-380 with a mean <str<strong>on</strong>g>of</str<strong>on</strong>g>189.30±72.848.• In group IIaS 1 , the platelets ranged from 230-381 with a mean <str<strong>on</strong>g>of</str<strong>on</strong>g>197.25±71.32.


Results 59.• In group IIaS 2 , the platelets ranged from 141-350 with a mean <str<strong>on</strong>g>of</str<strong>on</strong>g>228.2±53.80.• In group III, the platelets ranged from 248-440 with a mean <str<strong>on</strong>g>of</str<strong>on</strong>g>304.2±53.56.It was observed that, there is significant statistical differencesbetween the studied groups as (F= 20.32) (p = 0.0001).5- Hematocrit (Hct) %• In group I, the Hct ranged from 18.7-28 with a mean <str<strong>on</strong>g>of</str<strong>on</strong>g> 23.68±3.52.• In group IIb, the Hct ranged from 14.2-31.1 with a mean <str<strong>on</strong>g>of</str<strong>on</strong>g> 22.24±5.148.• In group IIaS 1 , the Hct ranged from 13.5-30.1 with a mean <str<strong>on</strong>g>of</str<strong>on</strong>g>23.505±4.67.• In group IIaS 2 , the Hct ranged from 21.5-32.1 with a mean <str<strong>on</strong>g>of</str<strong>on</strong>g>28.25±3.25.• In group III, the Hct ranged from 25-35 with a mean <str<strong>on</strong>g>of</str<strong>on</strong>g> 29.55±2.93.It was observed that, there is significant statistical differencesbetween the studied groups as regard<strong>in</strong>g Hct as (F = 16.5) (p = 0.002).


Results 60.Table (7): Blood picture <str<strong>on</strong>g>of</str<strong>on</strong>g> the different studied groups.RBCs(x10 6 /mm 3 )RangeMeanS.D.F,pWBCs(x10 3 /mm 3 )RangeMeanS.D.F,pHb (gm/dl)RangeMeanS.D.F,pGroupIII3.5-5.74.1 a0.984.1-6.05.30.9812.0-16.014.06 a2.23GroupI1.85-3.52.62 b0.493.6-6.85.131.976.5-9.57.77 b1.02GroupIIb1.85-6.753.90 b0.5269.82,0.02*4.0-5.44.921.0031.98,0.43 N.S.5.2-10.17.57 b1.3129.880.003*GroupIIas 12.1-8.33.2 ab1.483.7-5.64.6551.335.3-11.17.79 b1.49GroupIIas 23.7-5.94.22 a0.914.2-6.85.461.119.3-12.111.023 c1.18• NS : No significant difference.• The groups hav<strong>in</strong>g the same superscript letter <strong>in</strong>dicate no statisticalsignificant difference, meanwhile the groups with different superscriptletter have a statistical significant difference.Group III: C<strong>on</strong>trol group.Group I : end- stage renal disease patients not <strong>on</strong> HD.Group II b: Patients <strong>on</strong> HD didn’t receive L. <str<strong>on</strong>g>carnit<strong>in</strong>e</str<strong>on</strong>g> supplementati<strong>on</strong>Group II aS 1 : Patients <strong>on</strong> HD before L. <str<strong>on</strong>g>carnit<strong>in</strong>e</str<strong>on</strong>g> supplementati<strong>on</strong>Group II aS 2 : Patients <strong>on</strong> HD after L. <str<strong>on</strong>g>carnit<strong>in</strong>e</str<strong>on</strong>g> supplementati<strong>on</strong>


Results 61.Table (7) C<strong>on</strong>t.: Blood picture <str<strong>on</strong>g>of</str<strong>on</strong>g> the different studied groups.Platelet(x10 3 /mm 3 )FpRangeMeanS.D.Hct (%)FpRangeMeanS.D.GroupIII248-440304.2 a53.5625-3529.55 a2.93GroupI201-293263.10 b28.4718.7-2823.68 b3.52GroupIIb237-380189.30 c72.84820.32,0.0001*14.2-31.122.24 b5.14816.85,0.002*GroupIIas 1230-381197.25 c71.3213.5-30.123.505 b4.67GroupIIas 2141-350228.2 b53.8021.5-32.128.25 a3.25• NS : No significant difference.• The groups hav<strong>in</strong>g the same superscript letter <strong>in</strong>dicate no statisticalsignificant difference, meanwhile the groups with different superscriptletter have a statistical significant difference.Group III: C<strong>on</strong>trol group.Group I : end- stage renal disease patients not <strong>on</strong> HD.Group II b: Patients <strong>on</strong> HD didn’t receive L. <str<strong>on</strong>g>carnit<strong>in</strong>e</str<strong>on</strong>g> supplementati<strong>on</strong>Group II aS 1 : Patients <strong>on</strong> HD before L. <str<strong>on</strong>g>carnit<strong>in</strong>e</str<strong>on</strong>g> supplementati<strong>on</strong>Group II aS 2 : Patients <strong>on</strong> HD after L. <str<strong>on</strong>g>carnit<strong>in</strong>e</str<strong>on</strong>g> supplementati<strong>on</strong>


Results 62.5645Mean32Mean432110Group IIIGroup IGroup IIbGroup IIa S1Group IIa S20Group IIIGroup IGroup IIbGroup IIa S1Group IIa S2RBCs (x106/mm3)WBCs (x106/mm3)161412Mean1086420Group IIIGroup IGroup IIbGroup IIa S1Group IIa S2Hb %Fig. (16) :Blood picture <str<strong>on</strong>g>of</str<strong>on</strong>g> the different studied groups.


Results 63.350300250Mean200150100500Group IIIGroup IGroup IIbGroup IIa S1Group IIa S2Platelet (x10-3/mm3)353025Mean20151050Group IIIGroup IGroup IIbGroup IIa S1Group IIa S2Hct (%)Fig. (16) C<strong>on</strong>t. :Blood picture <str<strong>on</strong>g>of</str<strong>on</strong>g> the different studied group


Results 64.6- Urea ( mg/dl)• In group I, the blood urea level ranged from 36-110 with a mean <str<strong>on</strong>g>of</str<strong>on</strong>g>78.2±25.03.• In group IIb, the blood urea level ranged from 111-225 with a mean <str<strong>on</strong>g>of</str<strong>on</strong>g>166.45±38.031.• In group IIaS 1 , the blood urea ranged from 109-261 with a mean <str<strong>on</strong>g>of</str<strong>on</strong>g>168.85±41.03• In group IIaS 2 , the blood urea ranged from 109-117 with a mean <str<strong>on</strong>g>of</str<strong>on</strong>g>111.10±3.96• In group III, the blood urea level ranged from 22-35 with a mean <str<strong>on</strong>g>of</str<strong>on</strong>g>28.9±6.72.It was observed that there is significant al differences between thestudied groups as (F = 24.3) (p = 0.002).7- Creat<strong>in</strong><strong>in</strong>e (mg/dl)• In group I, the serum creat<strong>in</strong><strong>in</strong>e level ranged from 0.7-2.4 with a mean <str<strong>on</strong>g>of</str<strong>on</strong>g>1.349±0.53.• In group IIb, the serum creat<strong>in</strong><strong>in</strong>e level ranged from 9.5-16.7 with amean <str<strong>on</strong>g>of</str<strong>on</strong>g> 12.28±2.096.• In group IIaS 1 , the serum creat<strong>in</strong><strong>in</strong>e level ranged from 9.8-17.1 with amean <str<strong>on</strong>g>of</str<strong>on</strong>g> 12.60±2.49.• In group IIaS 2 , the serum creat<strong>in</strong><strong>in</strong>e level ranged from 9.5-15.1 with amean <str<strong>on</strong>g>of</str<strong>on</strong>g> 11.805±2.12.


Results 65.• In group III, the serum creat<strong>in</strong><strong>in</strong>e level ranged from 0.31-0.9 with a mean<str<strong>on</strong>g>of</str<strong>on</strong>g> 0.573±0.19.It was observed that, there is significant statistical differencesbetween the studied groups as (F = 78.98) (p = 0.0001).8- Uric acid (mg/dl)• In group I, the serum uric acid level ranged from 3.5-8.1 with a mean <str<strong>on</strong>g>of</str<strong>on</strong>g>6.23±1.52.• In group IIb, the serum uric acid level ranged from 4.12-9.6 with a mean<str<strong>on</strong>g>of</str<strong>on</strong>g> 6.32±1.444.• In group IIaS 1 , the serum uric acid level ranged from 4.3-8.3 with amean <str<strong>on</strong>g>of</str<strong>on</strong>g> 6.37±1.15.• In group IIaS 2 , the serum uric acid level ranged from 4.1-7.9 with amean <str<strong>on</strong>g>of</str<strong>on</strong>g> 5.76±1.06.• In group III, the serum uric acid level ranged from 3.4-7.4 with a mean<str<strong>on</strong>g>of</str<strong>on</strong>g> 5.62±1.44.It was observed that there is no significant statistical differencesbetween the studied groups as regard<strong>in</strong>g the uric acid level.


Results 66.Table (8): Blood urea, serum creat<strong>in</strong><strong>in</strong>e and uric acid <strong>in</strong> the differentUrea(mg/dl)RangeMeanS.D.FpCreat<strong>in</strong><strong>in</strong>e(mg/dl)RangeMeanS.D.FpUric acid(mg/dl)RangeMeanS.D.F, pLSDstudied groups.GroupIII22-3528.9 a6.720.31-0.90.573 a0.193.4-7.45.621.44GroupI36-11078.2 b25.030.7-2.41.349 b0.533.5-8.16.231.52GroupIIb111-225166.45 c38.03124.3,0.002*9.5-16.712.28 c2.09678.98,0.0001*4.12-9.66.321.4443.21, 0.89N.S.GroupIIas 1109-261168.85 c41.039.8-17.112.60 c2.494.3-8.36.371.15GroupIIas 2109-117111.10 d3.969.5-15.111.805 c2.124.1-7.95.761.06• NS : No significant difference.• The groups hav<strong>in</strong>g the same superscript letter <strong>in</strong>dicate no statisticalsignificant difference, meanwhile the groups with different superscriptletter have a statistical significant difference.Group III: C<strong>on</strong>trol group.Group I : end- stage renal disease patients not <strong>on</strong> HD.Group II b: Patients <strong>on</strong> HD didn’t receive L. <str<strong>on</strong>g>carnit<strong>in</strong>e</str<strong>on</strong>g> supplementati<strong>on</strong>Group II aS 1 : Patients <strong>on</strong> HD before L. <str<strong>on</strong>g>carnit<strong>in</strong>e</str<strong>on</strong>g> supplementati<strong>on</strong>Group II aS 2 : Patients <strong>on</strong> HD after L. <str<strong>on</strong>g>carnit<strong>in</strong>e</str<strong>on</strong>g> supplementati<strong>on</strong>


Results 67.200150Mean100500Group IIIGroup IGroup IIbUrea (mg/dl)Group IIa S1Group IIa S2141210Mean864270Group IIIGroup IGroup IIbCreat<strong>in</strong><strong>in</strong>e mg/dlGroup IIabs1Group IIas265Mean43210Group IIIGroup IGroup IIbGroup IIa S1Uric acid (mg/dl)Group IIa S2Fig. (17) : Boold urea, serum creat<strong>in</strong><strong>in</strong>e and uric acid <strong>in</strong> the different stugroups.


Results 68.9- Total prote<strong>in</strong> (mg/dl)• In group I, the total prote<strong>in</strong> level ranged from 5.6-8.5 with a mean <str<strong>on</strong>g>of</str<strong>on</strong>g>3.97 ± 0.416.• In group II b, the total prote<strong>in</strong> level ranged from 4.5-7.5with a mean <str<strong>on</strong>g>of</str<strong>on</strong>g>6.13 ± 0.955.• In group II a S 1 , the total prote<strong>in</strong> level ranged from 4.1-8.1with a mean<str<strong>on</strong>g>of</str<strong>on</strong>g> 6.32 ± 0.89.• In group II a S 2 , the total prote<strong>in</strong> level ranged from 6.0-8.3 with a mean<str<strong>on</strong>g>of</str<strong>on</strong>g> 7.1 ± 0.56.• In group III, the total prote<strong>in</strong> level ranged from 7.0-8.5 with a mean <str<strong>on</strong>g>of</str<strong>on</strong>g>7.83 ± 0.69.It was observed that there is no significant statistical differencesbetween the studied groups as ( F= 2.11) ( P= 0.27).10- Serum album<strong>in</strong> (mg / dl):• In group I, the serum album<strong>in</strong> level ranged from 3.5-4.7 with a mean <str<strong>on</strong>g>of</str<strong>on</strong>g>3.97 ± 0.416.• In group II b, the serum album<strong>in</strong> ranged from 2.3-4.7 with a mean <str<strong>on</strong>g>of</str<strong>on</strong>g>3.53 ±0.696.• In group II a S 1 , the serum album<strong>in</strong> level ranged from 2.1-4.9 with amean <str<strong>on</strong>g>of</str<strong>on</strong>g> 4.605 ± 0.75.• In group II aS 2 , the serum album<strong>in</strong> level ranged from 3.1-5.5 with amean <str<strong>on</strong>g>of</str<strong>on</strong>g> 4.605 ± 0.75.• In group III, the serum album<strong>in</strong> ranged from 4.4-6.5 with a mean <str<strong>on</strong>g>of</str<strong>on</strong>g>5.14 ± 0.40.It was observed that there is statistical differences between thestudied groups as ( F= 5.16) ( P= 0.03).


Results 69.Table (9): Total plasma prote<strong>in</strong> and serum album<strong>in</strong> <strong>in</strong> the differentTotalprote<strong>in</strong>(g/dl)RangeMeanS.D.FpSerumalbum<strong>in</strong>(g/dl)RangeMeanS.D.F,pstudied groups.GroupIII7.0-8.57.830.694.4-6.55.14 a0.40GroupI5.6-8.56.740.8263.5-4.73.97 b0.416GroupIIb4.5-7.56.130.9552.110.27 N.S.2.3-4.73.53 b0.6965.16,0.03*GroupIIas 14.1-8.16.320.892.1-4.93.646 b0.76GroupIIas 26.0-8.37.10.563.1-5.54.605 ab0.75• NS : No significant difference.• The groups hav<strong>in</strong>g the same superscript letter <strong>in</strong>dicate no statisticalsignificant difference, meanwhile the groups with different superscriptletter have a statistical significant difference.Group III: C<strong>on</strong>trol group.Group I : end- stage renal disease patients not <strong>on</strong> HD.Group II b: Patients <strong>on</strong> HD didn’t receive L. <str<strong>on</strong>g>carnit<strong>in</strong>e</str<strong>on</strong>g> supplementati<strong>on</strong>Group II aS 1 : Patients <strong>on</strong> HD before L. <str<strong>on</strong>g>carnit<strong>in</strong>e</str<strong>on</strong>g> supplementati<strong>on</strong>Group II aS 2 : Patients <strong>on</strong> HD after L. <str<strong>on</strong>g>carnit<strong>in</strong>e</str<strong>on</strong>g>supplementati<strong>on</strong>


Results 70.108Mean6420Group IIIGroup IGroup IIbGroup IIa S1Group IIa S2Total plasma prote<strong>in</strong> (g/dl)654Mean3210Group IIIGroup IGroup IIbGroup IIa S1Group IIa S2Serum album<strong>in</strong> (g/dl)Fig. (18) :Total prote<strong>in</strong> and serum album<strong>in</strong> <strong>in</strong> thedifferent studied groups.


Results 71.11- Sodium ( mEq /l):• In group I, the sodium level ranged from 136-141 with a mean <str<strong>on</strong>g>of</str<strong>on</strong>g> 138.7±1.636.• In group II b, the sodium ranged from 132-145 with a mean <str<strong>on</strong>g>of</str<strong>on</strong>g>138.55±4.347.• In group II a S 1 , the sodium ranged from 132-149 with a mean <str<strong>on</strong>g>of</str<strong>on</strong>g>13865±3.92.• In group II a S 2 , the sodium ranged from 132-142 with a mean <str<strong>on</strong>g>of</str<strong>on</strong>g>138.15±2.37.• In group III, the sodium level ranged from 132-144 with a mean <str<strong>on</strong>g>of</str<strong>on</strong>g>139.3± 6.24.It was observed that there is no significant differences between thestudied groups as (F=1.52) ( P= 0.58).12- Potassium ( mEq /l):• In group I, the potassium level ranged from 3.6-5.0 with a mean <str<strong>on</strong>g>of</str<strong>on</strong>g>4.25±0.510.• In group II b, the potassium level ranged from 3.4-6.0 with a mean <str<strong>on</strong>g>of</str<strong>on</strong>g>5.11±0.695.• In group II a S 1 , the potassium level ranged from 4.1-6.0 with a mean <str<strong>on</strong>g>of</str<strong>on</strong>g>4.905±0.63.• In group II a S 2 , the potassium ranged from 3.9-5.8 with a mean <str<strong>on</strong>g>of</str<strong>on</strong>g>4.625±0.50.• In group III, the potassium level ranged from 3.1-4.1 with a mean <str<strong>on</strong>g>of</str<strong>on</strong>g>3.85±0.48.It was observed that, there is no significant differences between thestudied groups as ( F+ 2.52) (P= 0.28).


Results 72.Table (10): Serum sodium and potassium <strong>in</strong> the different studiedgroups.GroupIIIGroupIGroupIIbGroupIIas 1GroupIIas 2Sodium(mEq/l)RangeMeanS.D.132-144139.36.24136-141138.71.636132-145138.554.347132-149138.653.92132-142138.152.37Fp1.52,0.58 N.S.Potassium(mEq/l)RangeMeanS.D.3.1-4.13.850.483.6-54.250.5103.4-65.110.6954.1-64.9050.633.9-5.84.6250.50Fp2.520.28, N.S.• NS : No significant difference.• The groups hav<strong>in</strong>g the same superscript letter <strong>in</strong>dicate no statisticalsignificant difference, meanwhile the groups with different superscriptletter have a statistical significant difference.Group III: C<strong>on</strong>trol group.Group I : end- stage renal disease patients not <strong>on</strong> HD.Group II b: Patients <strong>on</strong> HD didn’t receive L. <str<strong>on</strong>g>carnit<strong>in</strong>e</str<strong>on</strong>g> supplementati<strong>on</strong>Group II aS 1 : Patients <strong>on</strong> HD before L. <str<strong>on</strong>g>carnit<strong>in</strong>e</str<strong>on</strong>g> supplementati<strong>on</strong>Group II aS 2 : Patients <strong>on</strong> HD after L. <str<strong>on</strong>g>carnit<strong>in</strong>e</str<strong>on</strong>g> supplementati<strong>on</strong>


Results 73.160140120100Mean806040200Group IIIGroup IGroup IIbGroup IIa S1Sodium (meq/L)Group IIa S2654Mean3210Group IIIGroup IGroup IIbPotassium meq/LGroup IIas1Group IIas2Fig. (19) : blood sodium, and potassium <strong>in</strong> the differentstudied groups.


Results 74.13- HDL cholesterol (mg /dl):• In group I, HDL level ranged from 41-89 with a mean <str<strong>on</strong>g>of</str<strong>on</strong>g> 59.1±17.451.• In group II b, HDL level ranged from 29-60 with a mean <str<strong>on</strong>g>of</str<strong>on</strong>g> 39.80±9.480.• In group II a S 1 , HDL level ranged from 25-55 with a mean <str<strong>on</strong>g>of</str<strong>on</strong>g>36.9±8.21.• In group II a S 2 , HDL level ranged from 31-73 with a mean <str<strong>on</strong>g>of</str<strong>on</strong>g>49.55±12.56.• In group III, HDL level ranged from 43-90 with a mean <str<strong>on</strong>g>of</str<strong>on</strong>g> 76.2 ± 13.05.It was observed that there is significant statistical differencesbetween the studied groups as ( F= 24.5) ( P= 0.003).14 – LDL cholesterol ( mg /dl):• In group I, LDL level ranged from 75-150 with a mean <str<strong>on</strong>g>of</str<strong>on</strong>g> 109.5±27.024.• In group II b, LDL level ranged from 142-310 with a mean <str<strong>on</strong>g>of</str<strong>on</strong>g>223.70±54.314.• In group II a S 1 , LDL level ranged from 160-320 with a mean <str<strong>on</strong>g>of</str<strong>on</strong>g>226.3±50.81.• In group II a S 2 , LDL level ranged from 101-210 with a mean <str<strong>on</strong>g>of</str<strong>on</strong>g>166.05±29.84.• In group III, LDL level ranged from 67-130 with a mean <str<strong>on</strong>g>of</str<strong>on</strong>g> 94.9±19.16.It was observed that there is significant differences between thestudied groups as ( F = 19.85) ( P =0.002).


Results 75.15 – Triglcyeride ( mg /dl):• In group I, TG level ranged from 136-225 with a mean <str<strong>on</strong>g>of</str<strong>on</strong>g> 180.5±33.952.• In group II b, TG level ranged from 187-350 with a mean <str<strong>on</strong>g>of</str<strong>on</strong>g>210.30±41.449.• In group II a S 1 , TG level ranged from 136-321 with a mean <str<strong>on</strong>g>of</str<strong>on</strong>g>200.55±41.26.• In group II a S 2 , TG level ranged from 75-195 with a mean <str<strong>on</strong>g>of</str<strong>on</strong>g>117.9±40.75.• In group III, TG level ranged from 40-105 with a mean <str<strong>on</strong>g>of</str<strong>on</strong>g> 75.9±21.34.It was observed that there is significant statistical differencesbetween the studied groups as ( F= 19.65) ( P= 0.001).


Results 76.Table (11): Blood lipid pr<str<strong>on</strong>g>of</str<strong>on</strong>g>ile <strong>in</strong> the different studied groups.HDL(mg/dl)RangeMeanS.D.F,pLDL(mg/dl)RangeMeanS.D.FpTriglcyeride(mg/dl)RangeMeanS.D.FpGroupIII43-9076.2 a13.0567-13094.9 a19.1640-10575.9 a21.34GroupI41-8959.1 b17.45175-150109.5 a27.024136-225180.5 b33.952GroupIIb29-6039.80 c9.48024.50.003*142-310223.70 b54.31419.85,0.002*187-350210.30 b41.44919.650.001*GroupIIas 125-5536.9 c8.21160-320226.3 b50.81136-321200.55 b41.26GroupIIas 231-7349.55 b12.56101-210166.05 c29.8475-195117.9 c40.75• NS : No significant difference.• The groups hav<strong>in</strong>g the same superscript letter <strong>in</strong>dicate no statisticalsignificant difference, meanwhile the groups with different superscriptletter have a statistical significant difference.Group III: C<strong>on</strong>trol group.Group I : end- stage renal disease patients not <strong>on</strong> HD.Group II b: Patients <strong>on</strong> HD didn’t receive L. <str<strong>on</strong>g>carnit<strong>in</strong>e</str<strong>on</strong>g> supplementati<strong>on</strong>Group II aS 1 : Patients <strong>on</strong> HD before L. <str<strong>on</strong>g>carnit<strong>in</strong>e</str<strong>on</strong>g> supplementati<strong>on</strong>Group II aS 2 : Patients <strong>on</strong> HD after L. <str<strong>on</strong>g>carnit<strong>in</strong>e</str<strong>on</strong>g> supplementati<strong>on</strong>


Results 77.250200Mean150100500Group IIIGroup IGroup IIbGroup IIa S1Group IIa S2Triglcyeride mg/dl10080Mean6040200Group IIIGroup IGroup IIbHDL mg/dlGroup IIas1Group IIas2250200Mean150100500Group IIIGroup IGroup IIbGroup IIa S1LDL (mg/dl)Group IIa S2Fig. (20) : seurm lipid pr<str<strong>on</strong>g>of</str<strong>on</strong>g>ile <strong>in</strong> the different studiedgroups.


Results 78.16- L – Carnit<strong>in</strong>e (mg /dl):• In group I, serum L-<str<strong>on</strong>g>carnit<strong>in</strong>e</str<strong>on</strong>g> level ranged from 3.8-7.5 with a mean <str<strong>on</strong>g>of</str<strong>on</strong>g>5.997± 0.969.• In group II b, L-<str<strong>on</strong>g>carnit<strong>in</strong>e</str<strong>on</strong>g> level ranged from 1.92-3.5 with a mean <str<strong>on</strong>g>of</str<strong>on</strong>g>2.62± 0.724.• In group II a S 1 , L-<str<strong>on</strong>g>carnit<strong>in</strong>e</str<strong>on</strong>g> level ranged from 1.3-3.51 with a mean <str<strong>on</strong>g>of</str<strong>on</strong>g>2.571±0.66.• In group II a S 2 , L-<str<strong>on</strong>g>carnit<strong>in</strong>e</str<strong>on</strong>g> level ranged from 4.84-16-76 with a mean <str<strong>on</strong>g>of</str<strong>on</strong>g>7.158±2.40.• In group III, L-<str<strong>on</strong>g>carnit<strong>in</strong>e</str<strong>on</strong>g> level ranged from 6.58-12.67 with a mean <str<strong>on</strong>g>of</str<strong>on</strong>g>9.171±2.18.It was observed that there is significant statistical differencesbetween the studied groups as ( F= 29.65) ( P= 0.0001)


Results 79.Table (12): Serum L-<str<strong>on</strong>g>carnit<strong>in</strong>e</str<strong>on</strong>g> <strong>in</strong> the different studied groups.GroupIIIGroupIGroupIIbGroupIIas 1L-<str<strong>on</strong>g>carnit<strong>in</strong>e</str<strong>on</strong>g>(mg/L)Range 6.58- 3.8- 1.92- 1.3-12.67 7.5 3.5 3.51Mean 9.171 a 5.997 b 2.62 c 2.571 cS.D. 2.18 0.969 0.724 0.66F29.65p0.0001*GroupIIas 24.84-16.767.158 a2.40• NS : No significant difference.• The groups hav<strong>in</strong>g the same superscript letter <strong>in</strong>dicate no statisticalsignificant difference, meanwhile the groups with different superscriptletter have a statistical significant difference.Group III: C<strong>on</strong>trol group.Group I : end- stage renal disease patients not <strong>on</strong> HD.Group II b: Patients <strong>on</strong> HD didn’t receive L. <str<strong>on</strong>g>carnit<strong>in</strong>e</str<strong>on</strong>g> supplementati<strong>on</strong>Group II aS 1 : Patients <strong>on</strong> HD before L. <str<strong>on</strong>g>carnit<strong>in</strong>e</str<strong>on</strong>g> supplementati<strong>on</strong>Group II aS 2 : Patients <strong>on</strong> HD after L. <str<strong>on</strong>g>carnit<strong>in</strong>e</str<strong>on</strong>g> supplementati<strong>on</strong>


Results 80.108Mean6420Group IIIGroup IGroup IIbGroup IIa S1Group IIa S2Fig. (21) : serum L-<str<strong>on</strong>g>carnit<strong>in</strong>e</str<strong>on</strong>g> (mg/L) <strong>in</strong> the differentstudied groups.


Results 81.III- Echocardiograhy:1- <strong>Left</strong> ventricular- end diastolic dimensi<strong>on</strong>s (LVEDd) (mm):• In group I, LVEDd ranged from 45-60 with a mean <str<strong>on</strong>g>of</str<strong>on</strong>g> 54.3 ±4.92.• In group II b, LVEDd ranged from 57-83 with a mean <str<strong>on</strong>g>of</str<strong>on</strong>g> 68.00 ±8.903.• In group II a S 1 , LVEDd ranged from 59-79 with a mean <str<strong>on</strong>g>of</str<strong>on</strong>g> 68.45±6.134.• In group II a S 2 , LVEDd ranged from 39-57 with a mean <str<strong>on</strong>g>of</str<strong>on</strong>g> 50.50±5.808.• In group III, LVEDd ranged from 35-57 with a mean <str<strong>on</strong>g>of</str<strong>on</strong>g> 46.6 ±8.25.It was observe that there is significant statistical deference betweenthe studied groups as ( F= 19.65) ( P= 0.0001).2- <strong>Left</strong> ventricular- end systolic dimensi<strong>on</strong>s (LVESd) (mm):• In group I, LVESd ranged from 35-43 with a mean <str<strong>on</strong>g>of</str<strong>on</strong>g> 39.5± 2.55.• In group II b, LVESd ranged from 35-51 with a mean <str<strong>on</strong>g>of</str<strong>on</strong>g> 47.95 ±4.283.• In group II a S 1 , LVESd ranged from 43-60 with a mean <str<strong>on</strong>g>of</str<strong>on</strong>g> 49.80±4.786.• In group II a S 2 , LVESd ranged from 23-42 with a mean <str<strong>on</strong>g>of</str<strong>on</strong>g> 34.80±6.371.• In group III, LVESd ranged from 22-40 with a mean <str<strong>on</strong>g>of</str<strong>on</strong>g> 31.3±6.33.It was observed that here is significant differences between thestudied groups as ( F= 8.69) ( P= 0.023).3- Ejecti<strong>on</strong> fracti<strong>on</strong> ( EF) %:• In group I, EF ranged from 54-77 with a mean <str<strong>on</strong>g>of</str<strong>on</strong>g> 66 ±7.07.• In group II b, EF ranged from 20-31 with a mean <str<strong>on</strong>g>of</str<strong>on</strong>g> 25.33 ±3.25.• In group II a S 1 , EF ranged from 25-31 with a mean <str<strong>on</strong>g>of</str<strong>on</strong>g> 25.12 ±7.185.• In group II a S 2 , EF ranged from 49-60 with a mean <str<strong>on</strong>g>of</str<strong>on</strong>g> 52.81 ± 5.109.• In group III, EF ranged from 50-77 with a mean <str<strong>on</strong>g>of</str<strong>on</strong>g> 64.6 ± 8.80.


Results 82.It was observed that there is significant differences between thestudied groups as ( F= 11.98) ( P= 0.021).4- Fracti<strong>on</strong>al shorten<strong>in</strong>g (FS) %:• In group I, FS ranged from 20-41 with a mean <str<strong>on</strong>g>of</str<strong>on</strong>g> 32.9 ± 3.66.• In group II b, FS ranged from 19-30 with a mean <str<strong>on</strong>g>of</str<strong>on</strong>g> 23.95 ± 3.323.• In group II a S 1 , FS ranged from 15-25 with a mean <str<strong>on</strong>g>of</str<strong>on</strong>g> 21.10 ± 3.672.• In group II a S 2 , Fs ranged from 25-41 with a mean <str<strong>on</strong>g>of</str<strong>on</strong>g> 31.85 ± 4.782.• In group III, FS ranged from 27-46 with a mean <str<strong>on</strong>g>of</str<strong>on</strong>g> 37.0 ± 7.60.It was observe that there is significant differences between thestudied groups as ( F= 9.85) ( P= 0.035).5- E – <strong>in</strong>tegral(Ei):• In group I, E ranged from 0.5-0.9 with a mean <str<strong>on</strong>g>of</str<strong>on</strong>g> 0.72 ± 0.13.• In group II b, E ranged from 0.32-0.53 with a mean <str<strong>on</strong>g>of</str<strong>on</strong>g> 0.42 ± 0.081.• In group II a S 1 , E ranged from 0.35-0.55 with a mean <str<strong>on</strong>g>of</str<strong>on</strong>g> 0.41 ± 0.016.• In group II a S 2 , E ranged from 0.45-0.80 with a mean <str<strong>on</strong>g>of</str<strong>on</strong>g> 0.62 ± 0.044.• In group III, E ranged from 0.5-1.0 with a mean <str<strong>on</strong>g>of</str<strong>on</strong>g> 0.8 ± 0.17.It was observed that there is significant differences between thestudied groups as ( F= 8.18) ( P= 0.034).6- A –<strong>in</strong>tegral(Ai):• In group I, A ranged from 0.3-0.53 wit a mean <str<strong>on</strong>g>of</str<strong>on</strong>g> 0.41 ± 0.09.• In group II b, A ranged from 0.14-0.22 with a mean <str<strong>on</strong>g>of</str<strong>on</strong>g> 0.19 ± 0.016.• In group II a S 1 , A ranged from 0.16-0.26 with a mean <str<strong>on</strong>g>of</str<strong>on</strong>g> 0.19 ± 0.019.• In group II a S 2 , A ranged from 0.3-0.61 with a mean <str<strong>on</strong>g>of</str<strong>on</strong>g> 0.51 ± 0.060.


Results 83.• In group III, A ranged from 0.3-0.6 with a mean <str<strong>on</strong>g>of</str<strong>on</strong>g> 0.46 ± 0.11.It was observed that there is significant differences between thestudied groups as ( F = 5.93) ( P= 0.023).7- Ei / Ai:• In group I, E /A ranged from 1.4-2.0 with a mean <str<strong>on</strong>g>of</str<strong>on</strong>g> 1.71 ± 0.11.• In group II b, E /A ranged from 0.91-1.76 with a mean <str<strong>on</strong>g>of</str<strong>on</strong>g> 1.41 ± 0.324.• In group II a S 1 , E /A ranged from 0.87-1.66 with a mean <str<strong>on</strong>g>of</str<strong>on</strong>g> 1.13±0.130.• In group II a S 2 , E /A ranged from 1.05-2.1 with a mean <str<strong>on</strong>g>of</str<strong>on</strong>g> 1.32 ± 0.293.• In group III, E /A ranged from 1.4-2.33 with a mean <str<strong>on</strong>g>of</str<strong>on</strong>g> 1.72 ± 0.27.It was observed that there is no significant differences between thestudied groups as ( F= 2.53) (P= 0.12).8- Peak velocity <str<strong>on</strong>g>of</str<strong>on</strong>g> early fill<strong>in</strong>g (E)/Peak velocity <str<strong>on</strong>g>of</str<strong>on</strong>g> late fill<strong>in</strong>g (A)• In group I, E /A ranged from 1.4-1.9 with a mean <str<strong>on</strong>g>of</str<strong>on</strong>g> 1.62 ± 0.9.• In group II b, E /A ranged from 0.82-1.75 with a mean <str<strong>on</strong>g>of</str<strong>on</strong>g> 1.41 ± 0.32.• In group II a S 1 , E /A ranged from 0.9-1.5 with a mean <str<strong>on</strong>g>of</str<strong>on</strong>g> 1.2±0.130.• In group II a S 2 , E /A ranged from 1.1-1.9 with a mean <str<strong>on</strong>g>of</str<strong>on</strong>g> 1.3 ± 0.29.• In group III, E /A ranged from 1.3-2.0 with a mean <str<strong>on</strong>g>of</str<strong>on</strong>g> 1.13 ± 0.1.It was observed that there is no significant differences between thestudied groups as ( F= 2.5) (P= 0.12).9- <strong>Left</strong> ventricular mass ( m 2 ):• In group I, LV mass range from 131-135 with a mean <str<strong>on</strong>g>of</str<strong>on</strong>g> 130.067 ± 1.54.• In group II b, LV mass ranged from 130-149 with a mean <str<strong>on</strong>g>of</str<strong>on</strong>g>134.60±3.267.


Results 84.• In group II a S 1 . LV mass ranged from 137-152 with a mean <str<strong>on</strong>g>of</str<strong>on</strong>g>146.45±3.52.• In group II a S 2 , LV mass ranged from 118-139 with a mean <str<strong>on</strong>g>of</str<strong>on</strong>g>129.22±6.35.• In group III, LV mass ranged from 125-130 with a mean <str<strong>on</strong>g>of</str<strong>on</strong>g> 129.25±3.60.It was observed that there is significant differences between thestudied groups as ( F = 9.85) ( P= 0.03).


Results 85.Table (13): Echocardiographic parameters <strong>in</strong> the different studiedLVEDd(mm)RangeMeanS.D.FpLVESd(mm)RangeMeanS.D.FpEF (%)RangeMeanS.D.Fpgroups.GroupIII35-5746.6 a8.2522-4031.3 a6.3350-7764.6 a8.80GroupI45-6054.3 a4.9235-4339.5 a2.5554-7766 a7.07Group IIb Group IIas 1 Group57-8368.00 b8.90319.650.0001*35-5147.95 b4.2838.690.023*20-3125.33 b3.2511.98,0.021*59-7968.45 b6.13443-6049.80 b4.78625-3125.12 b7.185IIas 239-5750.50 a5.80823-4234.80 a6.37149-6052.81 a5.109• NS : No significant difference.• The groups hav<strong>in</strong>g the same superscript letter <strong>in</strong>dicate no statisticalsignificant difference, meanwhile the groups with different superscriptletter have a statistical significant difference.Group III: C<strong>on</strong>trol group.Group I : end- stage renal disease patients not <strong>on</strong> HD.Group II b: Patients <strong>on</strong> HD didn’t receive L. <str<strong>on</strong>g>carnit<strong>in</strong>e</str<strong>on</strong>g> supplementati<strong>on</strong>Group II aS 1 : Patients <strong>on</strong> HD before L. <str<strong>on</strong>g>carnit<strong>in</strong>e</str<strong>on</strong>g> supplementati<strong>on</strong>Group II aS 2 : Patients <strong>on</strong> HD after L. <str<strong>on</strong>g>carnit<strong>in</strong>e</str<strong>on</strong>g> supplementati<strong>on</strong>LVEDd : <strong>Left</strong> ventricular end diastolic dimensi<strong>on</strong>LVESd : <strong>Left</strong> ventricular end systolic dimensi<strong>on</strong>EF: Ejecti<strong>on</strong> fracti<strong>on</strong>


Results 86.Table (13) C<strong>on</strong>t.: Echocardiographic parameters <strong>in</strong> the differentstudied groups.FS (%)RangeMeanS.D.FpEi (meter)RangeMeanS.D.FpAiRangeMeanS.D.FpGroupIII27-4637.0 a7.600.5-1.00.8 a0.170.3-0.60.46 a0.11GroupI20-4132.9 a3.660.5-0.90.72 a0.130.3-0.530.41 a0.09GroupIIb19-3023.95 b3.3239.850.035*0.32-0.530.42 b0.0818.180.034*0.14-0.220.19 b0.0165.93,0.023*GroupIIas 115-2521.10 b3.6720.35-0.550.41 b0.0160.16-0.260.19 b0.019GroupIIas 225-4131.85 a4.7820.45-0.800.62 ab0.0440.3-0.610.51 a0.060• The groups hav<strong>in</strong>g the same superscript letter <strong>in</strong>dicate no statisticalsignificant difference, meanwhile the groups with different superscriptletter have a statistical significant difference.Group III: C<strong>on</strong>trol group.Group I : end- stage renal disease patients not <strong>on</strong> HD.Group II b: Patients <strong>on</strong> HD didn’t receive L. <str<strong>on</strong>g>carnit<strong>in</strong>e</str<strong>on</strong>g> supplementati<strong>on</strong>Group II aS 1 : Patients <strong>on</strong> HD before L. <str<strong>on</strong>g>carnit<strong>in</strong>e</str<strong>on</strong>g> supplementati<strong>on</strong>Group II aS 2 : Patients <strong>on</strong> HD after L. <str<strong>on</strong>g>carnit<strong>in</strong>e</str<strong>on</strong>g> supplementati<strong>on</strong>FS : Fracti<strong>on</strong>al shorten<strong>in</strong>gEi : E-<strong>in</strong>tegralAi : A-<strong>in</strong>tegral


Results 87.Table (13) C<strong>on</strong>t.: Echocardiographic parameters <strong>in</strong> the differentstudied groups.GroupIIIGroupIGroupIIbGroupIIas 1GroupIIas 2Ei/AiRangeMeanS.D.FpE/ARangeMeanS.D.FpLV mass(m 2 )RangeMeanS.D.FP1.4-2.331.720.271.3-2.01.130.1125-130129.25 a3.601.4-2.001.710.111.4-1.91.620.9131-135130.067 a1.540.91-1.761.410.3242.530.12 N.S.0.82-1.751.40.322.50.12 N.S.130-149134.60 a3.2679.850.03*0.87-1.661.130.1300.9-1.51.20.130137-152146.45 b3.521.05-2.11.320.2931.1-1.91.30.29118-139129.22 a6.35• NS : No significant difference.• The groups hav<strong>in</strong>g the same superscript letter <strong>in</strong>dicate no statisticalsignificant difference, meanwhile the groups with different superscriptletter have a statistical significant difference.Group III: C<strong>on</strong>trol group.Group I : end- stage renal disease patients not <strong>on</strong> HD.Group II b: Patients <strong>on</strong> HD didn’t receive L. <str<strong>on</strong>g>carnit<strong>in</strong>e</str<strong>on</strong>g> supplementati<strong>on</strong>Group II aS 1 : Patients <strong>on</strong> HD before L. <str<strong>on</strong>g>carnit<strong>in</strong>e</str<strong>on</strong>g> supplementati<strong>on</strong>Group II aS 2 : Patients <strong>on</strong> HD after L. <str<strong>on</strong>g>carnit<strong>in</strong>e</str<strong>on</strong>g> supplementati<strong>on</strong>Ei/Ai : E-<strong>in</strong>tegeral/A-<strong>in</strong>ttegralLV mass : <strong>Left</strong> ventricular massE/A : Peak velocity <str<strong>on</strong>g>of</str<strong>on</strong>g> early fill<strong>in</strong>g (E)/ Peak velocity <str<strong>on</strong>g>of</str<strong>on</strong>g> late fill<strong>in</strong>g (A)


Results 88.807060Mean50403020100Group IIIGroup IGroup IIbGroup IIa S1Group IIa S2<strong>Left</strong> ventricular end diastolic dimensi<strong>on</strong> (mm)605040Mean3020100Group IIIGroup IGroup IIbGroup IIa S1Group IIa S2<strong>Left</strong> ventricular end systolic dimensi<strong>on</strong>s (mm)Fig. (22) : Echocordiographic parameteres <str<strong>on</strong>g>of</str<strong>on</strong>g> left ventricularfuncti<strong>on</strong>s (LVEDd and LVESd) <strong>in</strong>the different studied groups.


Results 89.706050Mean403020100Group IIIGroup IGroup IIbGroup IIa S1Ejecti<strong>on</strong> fracti<strong>on</strong>(%)Group IIa S24030Mean20100Group IIIGroup IGroup IIbGroup IIa S1Group IIa S2Fracti<strong>on</strong>al shorten<strong>in</strong>g (%)Fig. (22) C<strong>on</strong>t. : Echocordiographic parameteres <str<strong>on</strong>g>of</str<strong>on</strong>g> left ventriculfuncti<strong>on</strong>s (EF and FS) <strong>in</strong> thedifferent studied groups.


Results 90.10.8Mean0.60.40.20Group IIIGroup IGroup IIbGroup IIas1Group IIas2E-<strong>in</strong>tegral (Ei) (meter)0.60.50.4Mean0.30.20.10Group IIIGroup IGroup IIbGroup IIa S1A-<strong>in</strong>tegral (Ai) (meter)Group IIa S2Fig. (22) C<strong>on</strong>t. :Echocordiographic parameteres <str<strong>on</strong>g>of</str<strong>on</strong>g> leftventricular functi<strong>on</strong>s (E and A) <strong>in</strong>the different studied groups.


Results 91.Correlati<strong>on</strong> between L-<str<strong>on</strong>g>carnit<strong>in</strong>e</str<strong>on</strong>g> and high-density lipoprote<strong>in</strong>(HDL)In this study we found that there is significant positive correlati<strong>on</strong>between serum L-<str<strong>on</strong>g>carnit<strong>in</strong>e</str<strong>on</strong>g> level and serum level <str<strong>on</strong>g>of</str<strong>on</strong>g> HDL. High level <str<strong>on</strong>g>of</str<strong>on</strong>g>serum L-<str<strong>on</strong>g>carnit<strong>in</strong>e</str<strong>on</strong>g> was associated with <strong>in</strong>crease serum HDL level Fig. (23).140120Serum HDL (mg/dl)10080604020 00 5 10 15 20Serum L-<str<strong>on</strong>g>carnit<strong>in</strong>e</str<strong>on</strong>g> (mg/L)Fig. (23): Correlati<strong>on</strong> between L-<str<strong>on</strong>g>carnit<strong>in</strong>e</str<strong>on</strong>g> and HDL


Results 92.Correlati<strong>on</strong> between serum L-<str<strong>on</strong>g>carnit<strong>in</strong>e</str<strong>on</strong>g> and low-densitylipoprote<strong>in</strong>There is a significant negative correlati<strong>on</strong> between serum L-<str<strong>on</strong>g>carnit<strong>in</strong>e</str<strong>on</strong>g>level and serum level <str<strong>on</strong>g>of</str<strong>on</strong>g> LDL High level <str<strong>on</strong>g>of</str<strong>on</strong>g> serum L-<str<strong>on</strong>g>carnit<strong>in</strong>e</str<strong>on</strong>g> wasassociated with low level <str<strong>on</strong>g>of</str<strong>on</strong>g> serum LDL Fig. (24).350Serum LDL (mg/dl)30025020015010050 0-500 5 10 15 20Serum L-<str<strong>on</strong>g>carnit<strong>in</strong>e</str<strong>on</strong>g> (mg/L)Fig. (24): Correlati<strong>on</strong> between L-<str<strong>on</strong>g>carnit<strong>in</strong>e</str<strong>on</strong>g> and LDL


Results 93.Correlati<strong>on</strong> between serum L-<str<strong>on</strong>g>carnit<strong>in</strong>e</str<strong>on</strong>g> and TriglycerideA present study we found that there is significant negativecorrelati<strong>on</strong> between serum L-<str<strong>on</strong>g>carnit<strong>in</strong>e</str<strong>on</strong>g> level & serum T.G high serum level<str<strong>on</strong>g>of</str<strong>on</strong>g> L-<str<strong>on</strong>g>carnit<strong>in</strong>e</str<strong>on</strong>g> associated with low level <str<strong>on</strong>g>of</str<strong>on</strong>g> serum.T.G Fig. (25).400Serum tri-glyceride (mg/dl)300200100 0-1000 5 10 15 20Serum L-<str<strong>on</strong>g>carnit<strong>in</strong>e</str<strong>on</strong>g> (mg/L)Fig. (25): Correlati<strong>on</strong> between L-<str<strong>on</strong>g>carnit<strong>in</strong>e</str<strong>on</strong>g> and T.G


Results 94.Correlati<strong>on</strong> between serum L-<str<strong>on</strong>g>carnit<strong>in</strong>e</str<strong>on</strong>g> level and left ventend- diastolic dimensi<strong>on</strong>sFrom present study we found that there is significant negativecorrelati<strong>on</strong> between serum L-<str<strong>on</strong>g>carnit<strong>in</strong>e</str<strong>on</strong>g> level & LVEDd, high level <str<strong>on</strong>g>of</str<strong>on</strong>g> serumL-<str<strong>on</strong>g>carnit<strong>in</strong>e</str<strong>on</strong>g> associated with <strong>in</strong>crease <strong>in</strong> LVEDd Fig. (26).100<strong>Left</strong> ventricular end diastolic dimensi<strong>on</strong>s80604020 00 5 10 15 20Serum L-<str<strong>on</strong>g>carnit<strong>in</strong>e</str<strong>on</strong>g> (mg/L)Fig. (26): Correlati<strong>on</strong> between L-<str<strong>on</strong>g>carnit<strong>in</strong>e</str<strong>on</strong>g> and <strong>Left</strong> ventricularend diastolic dimensi<strong>on</strong>s


Results 95.Correlati<strong>on</strong> between serum L-<str<strong>on</strong>g>carnit<strong>in</strong>e</str<strong>on</strong>g> level and level and leftvent end- Systolic dimensi<strong>on</strong>sThere was a significant negative correlati<strong>on</strong> between serum L-<str<strong>on</strong>g>carnit<strong>in</strong>e</str<strong>on</strong>g> level and LVESd low level <str<strong>on</strong>g>of</str<strong>on</strong>g> serum L-<str<strong>on</strong>g>carnit<strong>in</strong>e</str<strong>on</strong>g> associated with<strong>in</strong>crease <strong>in</strong> LVESd Fig. (27).70<strong>Left</strong> ventricular end systolic dimensi<strong>on</strong>s6050403020 1000 5 10 15 20Serum L-<str<strong>on</strong>g>carnit<strong>in</strong>e</str<strong>on</strong>g> (mg/L)Fig. (27): Correlati<strong>on</strong> between L-<str<strong>on</strong>g>carnit<strong>in</strong>e</str<strong>on</strong>g> and <strong>Left</strong> ventricularend systolic dimensi<strong>on</strong>s


Results 96.Correlati<strong>on</strong> between serum L-<str<strong>on</strong>g>carnit<strong>in</strong>e</str<strong>on</strong>g> level and Ejecti<strong>on</strong>Fracti<strong>on</strong>There was a significant positive correlati<strong>on</strong> between serum L-<str<strong>on</strong>g>carnit<strong>in</strong>e</str<strong>on</strong>g>level and EF high level <str<strong>on</strong>g>of</str<strong>on</strong>g> serum L-<str<strong>on</strong>g>carnit<strong>in</strong>e</str<strong>on</strong>g> associated with <strong>in</strong>crease EF Fig.(28).Ejecti<strong>on</strong> fracti<strong>on</strong> (%)806040 2000 5 10 15 20Serum L-<str<strong>on</strong>g>carnit<strong>in</strong>e</str<strong>on</strong>g> (mg/L)Fig. (28): Correlati<strong>on</strong> between L-<str<strong>on</strong>g>carnit<strong>in</strong>e</str<strong>on</strong>g> and Ejecti<strong>on</strong> fracti<strong>on</strong>


Results 97.Correlati<strong>on</strong> between serum L-<str<strong>on</strong>g>carnit<strong>in</strong>e</str<strong>on</strong>g> and Fracti<strong>on</strong>alshorten<strong>in</strong>gThere was a significant positive correlati<strong>on</strong> between serum L-<str<strong>on</strong>g>carnit<strong>in</strong>e</str<strong>on</strong>g>level and FS high level <str<strong>on</strong>g>of</str<strong>on</strong>g> serum L-<str<strong>on</strong>g>carnit<strong>in</strong>e</str<strong>on</strong>g> associated with <strong>in</strong>crease FS Fig.(29).50Fracti<strong>on</strong>al shorten<strong>in</strong>g403020 1000 5 10 15 20Serum L-<str<strong>on</strong>g>carnit<strong>in</strong>e</str<strong>on</strong>g> (mg/L)Fig. (29): Correlati<strong>on</strong> between L-<str<strong>on</strong>g>carnit<strong>in</strong>e</str<strong>on</strong>g> and Fracti<strong>on</strong>alshorten<strong>in</strong>g


Results 98.Correlati<strong>on</strong> between serum L-<str<strong>on</strong>g>carnit<strong>in</strong>e</str<strong>on</strong>g> and E-<strong>in</strong>tegral (Ei)There was a significant positive correlati<strong>on</strong> between serum L-<str<strong>on</strong>g>carnit<strong>in</strong>e</str<strong>on</strong>g>level and Ei high level <str<strong>on</strong>g>of</str<strong>on</strong>g> serum L-<str<strong>on</strong>g>carnit<strong>in</strong>e</str<strong>on</strong>g> associated with <strong>in</strong>crease Ei Fig.(30).1.2E-<strong>in</strong>tegral (meter)10.80.60.4 0.200 5 10 15 20Serum L-<str<strong>on</strong>g>carnit<strong>in</strong>e</str<strong>on</strong>g> (mg/L)Fig. (30): Correlati<strong>on</strong> between L-<str<strong>on</strong>g>carnit<strong>in</strong>e</str<strong>on</strong>g> and Ei-<strong>in</strong>tegral


Results 99.Correlati<strong>on</strong> between serum L-<str<strong>on</strong>g>carnit<strong>in</strong>e</str<strong>on</strong>g> and A-<strong>in</strong>tegral (Ai)There was a significant negative correlati<strong>on</strong> between serum L-<str<strong>on</strong>g>carnit<strong>in</strong>e</str<strong>on</strong>g>level and Ai. High level <str<strong>on</strong>g>of</str<strong>on</strong>g> serum L-<str<strong>on</strong>g>carnit<strong>in</strong>e</str<strong>on</strong>g> associated with decrease Ai Fig.(31).1.2A-<strong>in</strong>tegral (meter)10.80.60.40.2 00 5 10 15 20Serum L-<str<strong>on</strong>g>carnit<strong>in</strong>e</str<strong>on</strong>g> (mg/L)Fig. (31): Correlati<strong>on</strong> between L-<str<strong>on</strong>g>carnit<strong>in</strong>e</str<strong>on</strong>g> and Ai-<strong>in</strong>tegral


Results 100.Correlati<strong>on</strong> between serum L-<str<strong>on</strong>g>carnit<strong>in</strong>e</str<strong>on</strong>g> and Ei/AiThere was a significant positive correlati<strong>on</strong> between serum L-<str<strong>on</strong>g>carnit<strong>in</strong>e</str<strong>on</strong>g> level and Ei/Ai. High serum L-<str<strong>on</strong>g>carnit<strong>in</strong>e</str<strong>on</strong>g> level associated with<strong>in</strong>crease Ei/Ai ratio Fig. (32).2.5E-<strong>in</strong>tegeral/A-<strong>in</strong>tegral21.510.5 00 5 10 15 20Serum L-<str<strong>on</strong>g>carnit<strong>in</strong>e</str<strong>on</strong>g> (mg/L)Fig. (32): Correlati<strong>on</strong> between L-<str<strong>on</strong>g>carnit<strong>in</strong>e</str<strong>on</strong>g> andEi-<strong>in</strong>tegeral/Ai-<strong>in</strong>tegral


Results 101.Correlati<strong>on</strong> between serum L-<str<strong>on</strong>g>carnit<strong>in</strong>e</str<strong>on</strong>g> & peak velocity <str<strong>on</strong>g>of</str<strong>on</strong>g>early fill<strong>in</strong>g(E)/ peak velocity <str<strong>on</strong>g>of</str<strong>on</strong>g> late fill<strong>in</strong>g (A)There was a significant positive correlati<strong>on</strong> between serum L-<str<strong>on</strong>g>carnit<strong>in</strong>e</str<strong>on</strong>g>level & E/A. High level <str<strong>on</strong>g>of</str<strong>on</strong>g> serum L.<str<strong>on</strong>g>carnit<strong>in</strong>e</str<strong>on</strong>g> associated with <strong>in</strong>crease E/Aratio Fig. (33).2.5E-<strong>in</strong>tegeral/A-<strong>in</strong>tegral21.510.5 00 5 10 15 20Serum L-<str<strong>on</strong>g>carnit<strong>in</strong>e</str<strong>on</strong>g> (mg/L)Fig. (33): Correlati<strong>on</strong> between L-<str<strong>on</strong>g>carnit<strong>in</strong>e</str<strong>on</strong>g> and E/A


Results 102.Correlati<strong>on</strong> between serum L-<str<strong>on</strong>g>carnit<strong>in</strong>e</str<strong>on</strong>g> and left ventricularmassThere was a significant negative correlati<strong>on</strong> between serum L-<str<strong>on</strong>g>carnit<strong>in</strong>e</str<strong>on</strong>g> level and LV mass. High serum L-<str<strong>on</strong>g>carnit<strong>in</strong>e</str<strong>on</strong>g> level associated withdecrease L.V mass Fig. (34)LV mass16014012010080 60402000 5 10 15 20Serum L-<str<strong>on</strong>g>carnit<strong>in</strong>e</str<strong>on</strong>g> (mg/L)Fig. (34): Correlati<strong>on</strong> between L-<str<strong>on</strong>g>carnit<strong>in</strong>e</str<strong>on</strong>g> and LV mass (g/m 2 )


Results 103.Correlati<strong>on</strong> between serum L-<str<strong>on</strong>g>carnit<strong>in</strong>e</str<strong>on</strong>g> and Hemoglob<strong>in</strong>levelThere was a significant positive correlati<strong>on</strong> between serum L-<str<strong>on</strong>g>carnit<strong>in</strong>e</str<strong>on</strong>g> level and Hemoglob<strong>in</strong> level. High serum L-<str<strong>on</strong>g>carnit<strong>in</strong>e</str<strong>on</strong>g> levelassociated with <strong>in</strong>crease Hemoglob<strong>in</strong> level Fig. (35)Hemoglob<strong>in</strong> (%)14121086 4200 5 10 15 20Serum L-<str<strong>on</strong>g>carnit<strong>in</strong>e</str<strong>on</strong>g> (mg/L)Fig. (35): Correlati<strong>on</strong> between L-<str<strong>on</strong>g>carnit<strong>in</strong>e</str<strong>on</strong>g> and hemoglob<strong>in</strong> level


105.formulae:STATISTICAL ANALYSISStatistical <str<strong>on</strong>g>of</str<strong>on</strong>g> the results were carried out accord<strong>in</strong>g to the follow<strong>in</strong>g1- Arithmetic mean ( X )Was calculated as follows:X∑ x=nWhere ; X = arithmetic mean∑ X = Sum <str<strong>on</strong>g>of</str<strong>on</strong>g> observati<strong>on</strong>sn= number <str<strong>on</strong>g>of</str<strong>on</strong>g> observati<strong>on</strong>s2- Standard deviati<strong>on</strong> (S.D.):Was calculated as follows:SD =( x)2 ∑∑ x −nn −12Where ; X = sum <str<strong>on</strong>g>of</str<strong>on</strong>g> squared observati<strong>on</strong>s( ∑ X ) 2 = square <str<strong>on</strong>g>of</str<strong>on</strong>g> the sum <str<strong>on</strong>g>of</str<strong>on</strong>g> observati<strong>on</strong>sn3- “t” test:t =S2PX1− X 22 1 1SP( +n n21S1( n1−1)+ S2( n 2=n + n − 21= number <str<strong>on</strong>g>of</str<strong>on</strong>g> observati<strong>on</strong>s2)22−1)2Where: S P = Pooled variance


106.2S 1 = Variance <str<strong>on</strong>g>of</str<strong>on</strong>g> sample (1)2S 2 = Variance <str<strong>on</strong>g>of</str<strong>on</strong>g> sample (2)n 1 = Size <str<strong>on</strong>g>of</str<strong>on</strong>g> sample (1)n 2 = Size <str<strong>on</strong>g>of</str<strong>on</strong>g> sample (2)X 1 = Mean <str<strong>on</strong>g>of</str<strong>on</strong>g> sample (1)X 2 = Mean <str<strong>on</strong>g>of</str<strong>on</strong>g> sample (2)S 1 = Standard deviati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> sample (1)S 2 = Standard deviati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> sample (2)4- Student t-test:F =2AS / S2 WWhereS 2 A = Mean square am<strong>on</strong>g groups.S 2 W = Mean square with<strong>in</strong> groups.5- Z test:Significance tests used to compare differences between proporti<strong>on</strong>s.Z =Mean −S.Dσ xSpecificity: The ability <str<strong>on</strong>g>of</str<strong>on</strong>g> a test to <strong>in</strong>dicate n<strong>on</strong>-disease when no diseaseis present.Specificity: The ability <str<strong>on</strong>g>of</str<strong>on</strong>g> a test to detect a disease when it is present.


107.6- Chi-square (X 2 ):For comparis<strong>on</strong> between distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> patients accord<strong>in</strong>g todifferent items <str<strong>on</strong>g>of</str<strong>on</strong>g> study and use this formula for calculati<strong>on</strong>:X 2 ( O − E)= ∑E2O = Observed resultsE = Expected results(O-E) 2 = difference squaredWhere E =Total row × total columnGrand total


Discussi<strong>on</strong> 108.DISCUSSIONCardiovascular diseases are the most frequent cause <str<strong>on</strong>g>of</str<strong>on</strong>g> death am<strong>on</strong>gdialysis patients, and mortality from cardiovascular causes is far higherthan that <strong>in</strong> the general populati<strong>on</strong>. (146)There is a high prevalence <str<strong>on</strong>g>of</str<strong>on</strong>g> left ventricular dysfuncti<strong>on</strong>s, leftventricular hypertrophy, and ventricular arrhythmias am<strong>on</strong>g the chr<strong>on</strong>ichemodialysis patients, and they c<strong>on</strong>stitute a comm<strong>on</strong> morbidity comparedwith the c<strong>on</strong>trol populati<strong>on</strong>. (147)Many risk factors are <strong>in</strong>volved <strong>in</strong> the pathogenesis <str<strong>on</strong>g>of</str<strong>on</strong>g> cardiovascularcomplicati<strong>on</strong>s <strong>in</strong> CRF <strong>in</strong>clud<strong>in</strong>g hypertensi<strong>on</strong>, diabetes mellitus, uremicdyslipidemia and smok<strong>in</strong>g. (148)Patients <strong>on</strong> chr<strong>on</strong>ic hemodialysis treatment are at elevatedatherogenic risk due to uremic dyslipidemia, which is a sec<strong>on</strong>dary form <str<strong>on</strong>g>of</str<strong>on</strong>g>complex dyslipidemia c<strong>on</strong>sist<strong>in</strong>g <str<strong>on</strong>g>of</str<strong>on</strong>g> quantitative and qualitativeabnormalities <strong>in</strong> serum lipoprote<strong>in</strong>s result<strong>in</strong>g from alterati<strong>on</strong> <strong>in</strong> lipoprote<strong>in</strong>metabolism and compositi<strong>on</strong> particularly the predictive value <str<strong>on</strong>g>of</str<strong>on</strong>g> lipoprote<strong>in</strong> aand the apolipoprote<strong>in</strong> ratios, as well as, the ratio <str<strong>on</strong>g>of</str<strong>on</strong>g> apolipoprot<strong>in</strong> AI toapolipoprote<strong>in</strong> CIII and to lipoprote<strong>in</strong> B. (149)Am<strong>on</strong>g the various metabolic abnormalities documented <strong>in</strong> dialysispatients, are abnormalities related to the metabolism <str<strong>on</strong>g>of</str<strong>on</strong>g> fatty acids.Abnormal fatty acid metabolism has been associated with the promoti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g>free- radical producti<strong>on</strong>, <strong>in</strong>sul<strong>in</strong> resistance, and cellular apoptosis. These


Discussi<strong>on</strong> 109.processes have been identified as important c<strong>on</strong>tributors to morbidityexperienced by dialysis patients. (150)Patients receiv<strong>in</strong>g hemodialysis have been shown to be <str<strong>on</strong>g>carnit<strong>in</strong>e</str<strong>on</strong>g>deficient,as manifested by reduced levels <str<strong>on</strong>g>of</str<strong>on</strong>g> plasma free <str<strong>on</strong>g>carnit<strong>in</strong>e</str<strong>on</strong>g> and an<strong>in</strong>crease <strong>in</strong> the acyl: free <str<strong>on</strong>g>carnit<strong>in</strong>e</str<strong>on</strong>g> ratio. The skeletal muscles and thecardiac muscle metabolism is largely oxidative and dependant <strong>on</strong> free aciddelivery and mitoch<strong>on</strong>drial transport, more over, the myocyte has <strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g>the highest <strong>in</strong>tracellular <str<strong>on</strong>g>carnit<strong>in</strong>e</str<strong>on</strong>g> c<strong>on</strong>centrati<strong>on</strong>s <strong>in</strong> the body. Sorecogniti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the deleterious effect <str<strong>on</strong>g>of</str<strong>on</strong>g> fatty acids and the effect <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>carnit<strong>in</strong>e</str<strong>on</strong>g>deficiency <strong>on</strong> myocardial cells is important <strong>in</strong> the aim to prevent andmanage the cardiovascular complicati<strong>on</strong>s <strong>in</strong> chr<strong>on</strong>ic hemodialysispatients. (151)Our study estimates the level <str<strong>on</strong>g>of</str<strong>on</strong>g> L- <str<strong>on</strong>g>carnit<strong>in</strong>e</str<strong>on</strong>g>, the lipid pr<str<strong>on</strong>g>of</str<strong>on</strong>g>ile, as wellas, the left ventricular functi<strong>on</strong>s <strong>in</strong> the different types <str<strong>on</strong>g>of</str<strong>on</strong>g> patients withchr<strong>on</strong>ic renal failure aim<strong>in</strong>g to evaluate the theraputic efficacy <str<strong>on</strong>g>of</str<strong>on</strong>g> L-<str<strong>on</strong>g>carnit<strong>in</strong>e</str<strong>on</strong>g> <strong>on</strong> the left ventricular functi<strong>on</strong>s and lipid pr<str<strong>on</strong>g>of</str<strong>on</strong>g>ile <strong>in</strong> thehemodialysis patients.In the present study, we estimated the level <str<strong>on</strong>g>of</str<strong>on</strong>g> serum L- <str<strong>on</strong>g>carnit<strong>in</strong>e</str<strong>on</strong>g> <strong>in</strong>60 pers<strong>on</strong>s divided <strong>in</strong>to three groups:- Group I: <strong>in</strong>cluded 10 patients with chr<strong>on</strong>ic renal <strong>in</strong>sufficiency <strong>on</strong>c<strong>on</strong>servative medical treatment with GFR <str<strong>on</strong>g>of</str<strong>on</strong>g> 20-50 ml / m<strong>in</strong>, they didn ’ treceive L- <str<strong>on</strong>g>carnit<strong>in</strong>e</str<strong>on</strong>g> supplementati<strong>on</strong>.


Discussi<strong>on</strong> 110.- Group II: <strong>in</strong>volved 40 patients with end- stage renal disease <strong>on</strong>ma<strong>in</strong>tenance hemodialysis for more than 6 m<strong>on</strong>ths, the dialysis schedulewas 4 hours, 3 times / week. This group was subdivided <strong>in</strong>to twosubgroups.- Group II a: <strong>in</strong>cluded 20 patients with end- stage renal disease <strong>on</strong>hemodialysis and received oral L-<str<strong>on</strong>g>carnit<strong>in</strong>e</str<strong>on</strong>g> supplement at a dose 1 gm /day for 6 m<strong>on</strong>ths- Group II b: <strong>in</strong>cluded 20 patients with end- stage renal disease <strong>on</strong>ma<strong>in</strong>tenance hemodialysis and didn’t receive L-<str<strong>on</strong>g>carnit<strong>in</strong>e</str<strong>on</strong>g>supplementati<strong>on</strong>.- Group III: presented with 10 healthy pers<strong>on</strong>s as a c<strong>on</strong>trol group.In our study, the c<strong>on</strong>trol group (III) showed normal parameters <str<strong>on</strong>g>of</str<strong>on</strong>g>echocardiography especially <strong>in</strong> wall thickness, and ejecti<strong>on</strong> fracti<strong>on</strong>, whileGI showed No statistical significant difference as regard<strong>in</strong>g theseparameters.Meanwhile group II b, and group II a S 1 showed abnormalities<strong>in</strong>clud<strong>in</strong>g left ventricular hypertrophy and reduced ejecti<strong>on</strong> fracti<strong>on</strong> ( lessthan 40%), reduced serum level <str<strong>on</strong>g>of</str<strong>on</strong>g> L- <str<strong>on</strong>g>carnit<strong>in</strong>e</str<strong>on</strong>g>, and abnormalities <strong>in</strong> thelipid pr<str<strong>on</strong>g>of</str<strong>on</strong>g>iles <strong>in</strong>clud<strong>in</strong>g <strong>in</strong>creased TG level, decreased HDL, and <strong>in</strong>crease <strong>in</strong>the LDL level.In the present study, the c<strong>on</strong>trol group ( group III) showed statisticalsignificant difference compared with patients <strong>in</strong> group I ( ESRD) asregard<strong>in</strong>g lipid pr<str<strong>on</strong>g>of</str<strong>on</strong>g>ile and L-<str<strong>on</strong>g>carnit<strong>in</strong>e</str<strong>on</strong>g> level.


Discussi<strong>on</strong> 111.These results were comparable to that <str<strong>on</strong>g>of</str<strong>on</strong>g> Ahmed’s et al <strong>in</strong> 2001. Wh<str<strong>on</strong>g>of</str<strong>on</strong>g>ound that L- <str<strong>on</strong>g>carnit<strong>in</strong>e</str<strong>on</strong>g> c<strong>on</strong>centrati<strong>on</strong> decreased by 75 % after ahemodialysis sessi<strong>on</strong> <strong>in</strong> the hemodialysis patients compared to normalc<strong>on</strong>trol subjects. (91)Rodriguez-Segade et al (103) found a gradual decrease <strong>in</strong> serum total<str<strong>on</strong>g>carnit<strong>in</strong>e</str<strong>on</strong>g> (Tc) levels, and Kudoh et al. (92) documented a gradual reducti<strong>on</strong> <strong>in</strong>predialysis plasma Tc levels <strong>in</strong> the hemodialyzed patients.Evans et al <strong>in</strong> 2004 (152) exam<strong>in</strong>ed the time course <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>carnit<strong>in</strong>e</str<strong>on</strong>g>depleti<strong>on</strong> <strong>in</strong> patients undergo<strong>in</strong>g dialysis, he found that with<strong>in</strong> the firstweek <str<strong>on</strong>g>of</str<strong>on</strong>g> dialysis, <str<strong>on</strong>g>carnit<strong>in</strong>e</str<strong>on</strong>g> levels had significantly decreased. After 12m<strong>on</strong>ths <str<strong>on</strong>g>of</str<strong>on</strong>g> dialysis, the mean level <str<strong>on</strong>g>of</str<strong>on</strong>g> plasma free <str<strong>on</strong>g>carnit<strong>in</strong>e</str<strong>on</strong>g> had fallen by40% and patients receiv<strong>in</strong>g dialysis for more than 12 m<strong>on</strong>ths had a furtherreducti<strong>on</strong> to a mean <str<strong>on</strong>g>of</str<strong>on</strong>g> 22.0 ± 5.4 μmol / L ( healthy adult normal level43.3± 8.6 μmol /L). Dur<strong>in</strong>g the first 12 m<strong>on</strong>ths <str<strong>on</strong>g>of</str<strong>on</strong>g> dialysis, total muscle<str<strong>on</strong>g>carnit<strong>in</strong>e</str<strong>on</strong>g> level had decreased by 20 %.The explanati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> development <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>carnit<strong>in</strong>e</str<strong>on</strong>g> deficiency <strong>in</strong> dialysisdependentpatients, <strong>in</strong>clude poor dietary <strong>in</strong>take <str<strong>on</strong>g>of</str<strong>on</strong>g> meat and dairy productsthat are significant source <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>carnit<strong>in</strong>e</str<strong>on</strong>g>, loss <str<strong>on</strong>g>of</str<strong>on</strong>g> the ability <str<strong>on</strong>g>of</str<strong>on</strong>g> the kidney tosynthesize <str<strong>on</strong>g>carnit<strong>in</strong>e</str<strong>on</strong>g>, and the loss <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>carnit<strong>in</strong>e</str<strong>on</strong>g> dur<strong>in</strong>g the dialysis procedure.Whereas decreased <strong>in</strong>take and synthesis c<strong>on</strong>tribute to the deficiency, themost significant cause <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>carnit<strong>in</strong>e</str<strong>on</strong>g> deficiency is substantial reducti<strong>on</strong> <strong>in</strong><str<strong>on</strong>g>carnit<strong>in</strong>e</str<strong>on</strong>g> with each dialysis sessi<strong>on</strong>. (153)


Discussi<strong>on</strong> 112.The L-<str<strong>on</strong>g>carnit<strong>in</strong>e</str<strong>on</strong>g> level decreased by approximately 70 % with eachdialysis sessi<strong>on</strong>, and the <strong>in</strong>ability <str<strong>on</strong>g>of</str<strong>on</strong>g> the dialysis membrane to reabsorbfiltered <str<strong>on</strong>g>carnit<strong>in</strong>e</str<strong>on</strong>g> as opposed to a healthy kidney. The absolute loss <str<strong>on</strong>g>of</str<strong>on</strong>g><str<strong>on</strong>g>carnit<strong>in</strong>e</str<strong>on</strong>g> dur<strong>in</strong>g dialysis exceeds normal ur<strong>in</strong>ary loss <strong>in</strong> most patients,whereas, patients with normal kidney functi<strong>on</strong> will reabsorb most <str<strong>on</strong>g>carnit<strong>in</strong>e</str<strong>on</strong>g><strong>on</strong>ce the serum <str<strong>on</strong>g>carnit<strong>in</strong>e</str<strong>on</strong>g> level is decreased, while the dialysis patientsc<strong>on</strong>t<strong>in</strong>ue to lose <str<strong>on</strong>g>carnit<strong>in</strong>e</str<strong>on</strong>g> because <str<strong>on</strong>g>of</str<strong>on</strong>g> the passive nature <str<strong>on</strong>g>of</str<strong>on</strong>g> the dialysismembrane. (153)In the present study, the c<strong>on</strong>trol group (group III), showed normalparameters <str<strong>on</strong>g>of</str<strong>on</strong>g> echocardiography especially <strong>in</strong>, ejecti<strong>on</strong> fracti<strong>on</strong> and showedno statistical significant difference with group I as regard<strong>in</strong>g theechocardiographic parameters. Meanwhile group II b and group II a S 1showed abnormalities expressed as left ventricular hypertrophy andreduced ejecti<strong>on</strong> fracti<strong>on</strong> (less than 40%). Group II a S 2 (after L-<str<strong>on</strong>g>carnit<strong>in</strong>e</str<strong>on</strong>g>supplementati<strong>on</strong>) showed statistical significant differences with G IIa S 1(before L-<str<strong>on</strong>g>carnit<strong>in</strong>e</str<strong>on</strong>g> supplementati<strong>on</strong>) expressed as <strong>in</strong>creased ejecti<strong>on</strong>fracti<strong>on</strong> with improvement <str<strong>on</strong>g>of</str<strong>on</strong>g> the other echocardiographic parameters.These results were matched with that <str<strong>on</strong>g>of</str<strong>on</strong>g> Romagnoli et al <strong>in</strong> 2002 (154)who studied the effect <str<strong>on</strong>g>of</str<strong>on</strong>g> L-<str<strong>on</strong>g>carnit<strong>in</strong>e</str<strong>on</strong>g> treatment <strong>on</strong> LVEF <strong>in</strong> HD patients,and he found a significant impairment <str<strong>on</strong>g>of</str<strong>on</strong>g> systolic dysfuncti<strong>on</strong>, after 8m<strong>on</strong>ths <str<strong>on</strong>g>of</str<strong>on</strong>g> levo<str<strong>on</strong>g>carnit<strong>in</strong>e</str<strong>on</strong>g> therapy. There was a marked improvement <strong>in</strong>LVEF.


Discussi<strong>on</strong> 113.Trovato et al <strong>in</strong> 1998. (155) documented the effect <str<strong>on</strong>g>of</str<strong>on</strong>g> l<strong>on</strong>g termlevo<str<strong>on</strong>g>carnit<strong>in</strong>e</str<strong>on</strong>g> therapy <strong>in</strong> HD patients with impairment <str<strong>on</strong>g>of</str<strong>on</strong>g> LVEF, he found asignificant rise <strong>in</strong> LVEF and significant decrease <strong>in</strong> LVED dimensi<strong>on</strong>s.Also Khoss et al <strong>in</strong> 1989 (156) studied the effect <str<strong>on</strong>g>of</str<strong>on</strong>g> L-<str<strong>on</strong>g>carnit<strong>in</strong>e</str<strong>on</strong>g> therapy <strong>on</strong>systolic functi<strong>on</strong> <strong>in</strong> a different hemodialysis populati<strong>on</strong> with low serum<str<strong>on</strong>g>carnit<strong>in</strong>e</str<strong>on</strong>g>, the patients had echocardiographic measurement <str<strong>on</strong>g>of</str<strong>on</strong>g> reduced FS andafter 18 m<strong>on</strong>ths <str<strong>on</strong>g>of</str<strong>on</strong>g> oral L- <str<strong>on</strong>g>carnit<strong>in</strong>e</str<strong>on</strong>g> therapy, the FS rose from 32 % to 45%.Van Es et al <strong>in</strong> 1992 (157) studied the effect <str<strong>on</strong>g>of</str<strong>on</strong>g> L- <str<strong>on</strong>g>carnit<strong>in</strong>e</str<strong>on</strong>g> therapy <strong>in</strong>chr<strong>on</strong>ic hemodialysis patients with reduced mean LVEF and who were<str<strong>on</strong>g>carnit<strong>in</strong>e</str<strong>on</strong>g> deficient; the L- <str<strong>on</strong>g>carnit<strong>in</strong>e</str<strong>on</strong>g> therapy was associated with asignificant <strong>in</strong>crease <strong>in</strong> LVEF.Matsumoto et al <strong>in</strong> 2000 (158) studied the effect <str<strong>on</strong>g>of</str<strong>on</strong>g> oral L-<str<strong>on</strong>g>carnit<strong>in</strong>e</str<strong>on</strong>g>adm<strong>in</strong>istrati<strong>on</strong> for 6 m<strong>on</strong>ths <strong>in</strong> chr<strong>on</strong>ic hemodialysis patients, he found thatLVEF <strong>in</strong>creased significantly from 44.9 ± 1.2 to 53.8 ±13.8, L- <str<strong>on</strong>g>carnit<strong>in</strong>e</str<strong>on</strong>g>treatment was also associated with a significant reducti<strong>on</strong> <strong>in</strong> left ventricularmass, and improvement <str<strong>on</strong>g>of</str<strong>on</strong>g> the cardiac symptoms such as dyspnea <strong>on</strong>exerti<strong>on</strong>, palpitati<strong>on</strong>s and chest pa<strong>in</strong>.Kurien et al. (159) showed that ventricular arrythmias can be <strong>in</strong>duced <strong>in</strong>experimental animals by the elevati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> plasma free fatty acids (FFAs)and that reducti<strong>on</strong> <strong>in</strong> FFA levels reduced the ventricular ectopy.Suzuki et al. (160) documented ventricular or supraventriculararrythmias <strong>in</strong> HD patients with low serum level <str<strong>on</strong>g>of</str<strong>on</strong>g> L- <str<strong>on</strong>g>carnit<strong>in</strong>e</str<strong>on</strong>g>, and high


Discussi<strong>on</strong> 114.level <str<strong>on</strong>g>of</str<strong>on</strong>g> plasma FFA, and with adm<strong>in</strong>istrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> L- <str<strong>on</strong>g>carnit<strong>in</strong>e</str<strong>on</strong>g> there was asignificant reducti<strong>on</strong> <strong>in</strong> both dialysis- <strong>in</strong>duced rise <strong>in</strong> FFA levels andfrequency <str<strong>on</strong>g>of</str<strong>on</strong>g> ventricular premature beats and their severity.The possible explanati<strong>on</strong> for the improvement <str<strong>on</strong>g>of</str<strong>on</strong>g> LVEF seen with L-<str<strong>on</strong>g>carnit<strong>in</strong>e</str<strong>on</strong>g> treatment <strong>in</strong>clude a reducti<strong>on</strong> <strong>in</strong> cardiomyocyte apoptosis or animprovement <strong>in</strong> cardiac energy metabolism. L- <str<strong>on</strong>g>carnit<strong>in</strong>e</str<strong>on</strong>g> also has beenshown to prevent both myocardial dysfuncti<strong>on</strong> and ceramide- <strong>in</strong>ducedcardiomyocyte apoptosis <strong>in</strong> rats exposed to adriamyc<strong>in</strong>, a potent <strong>in</strong>ducer <str<strong>on</strong>g>of</str<strong>on</strong>g>apoptosis <strong>in</strong> cardiac cells, (161,162) and <strong>in</strong>crease ATP producti<strong>on</strong> <strong>in</strong> ischemicperfusedrat hearts. (163)Many disorders <str<strong>on</strong>g>of</str<strong>on</strong>g> metabolism described <strong>in</strong> dialysis patients, <strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g>them is the dispositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> fatty acids, which c<strong>on</strong>sist <str<strong>on</strong>g>of</str<strong>on</strong>g> 3 elements:- Evidence <str<strong>on</strong>g>of</str<strong>on</strong>g> elevated plasma fatty acid levels <strong>in</strong> patients with chr<strong>on</strong>icrenal failure treated with hemodialysis.- Decreased tissue metabolism <str<strong>on</strong>g>of</str<strong>on</strong>g> fatty acids <strong>in</strong> these patients.- Alterati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>in</strong>dividual fatty-acid moieties and the acyl: free <str<strong>on</strong>g>carnit<strong>in</strong>e</str<strong>on</strong>g>ratio <strong>in</strong> the HD patients.Gadegbeku et al <strong>in</strong> 2004. (164) documented an elevated plasman<strong>on</strong>esterified fatty acid level <strong>in</strong> patients <strong>on</strong> HD.Bartel et al. (165) dem<strong>on</strong>strated an <strong>in</strong>crease <strong>in</strong> circulat<strong>in</strong>g plasma fattyacids <strong>in</strong> HD patients.


Discussi<strong>on</strong> 115.De Gomez Dumm et al <strong>in</strong> 2001. (166) reported an <strong>in</strong>crease <strong>in</strong> palmiticand m<strong>on</strong>ounsaturated fatty acids <strong>in</strong> the plasma <str<strong>on</strong>g>of</str<strong>on</strong>g> dialysis patients with acorresp<strong>on</strong>d<strong>in</strong>g decrease <strong>in</strong> polyunsaturated fatty acids.Maeda et al. (167) documented a significant reducti<strong>on</strong> <strong>in</strong> <strong>in</strong>tradialyticfree fatty acid c<strong>on</strong>centrati<strong>on</strong> <strong>in</strong> the plasma <str<strong>on</strong>g>of</str<strong>on</strong>g> HD patients after 12 weeks <str<strong>on</strong>g>of</str<strong>on</strong>g>the adm<strong>in</strong>istrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> oral L-<str<strong>on</strong>g>carnit<strong>in</strong>e</str<strong>on</strong>g>.In the present study, the c<strong>on</strong>trol group (G III) showed statisticalsignificant difference compared to GIIa S 1 , GIIa S 2 , GIIb regard<strong>in</strong>g serumlipids, meanwhile GIIb, GIIa S 1 (before L-<str<strong>on</strong>g>carnit<strong>in</strong>e</str<strong>on</strong>g> supplementati<strong>on</strong>)showed no statistical significant difference regard<strong>in</strong>g their lipid pr<str<strong>on</strong>g>of</str<strong>on</strong>g>ile<strong>in</strong>clud<strong>in</strong>g high TG level, <strong>in</strong>creased level <str<strong>on</strong>g>of</str<strong>on</strong>g> LDL and a low level <str<strong>on</strong>g>of</str<strong>on</strong>g> HDLcholesterol. There was statistical significant difference between GIIa S 1 andGIIa S 2 regard<strong>in</strong>g the lipid pr<str<strong>on</strong>g>of</str<strong>on</strong>g>ile, <strong>in</strong> GIIa S 2 (after L- <str<strong>on</strong>g>carnit<strong>in</strong>e</str<strong>on</strong>g>supplementati<strong>on</strong>) the level <str<strong>on</strong>g>of</str<strong>on</strong>g> TG deceased with reducti<strong>on</strong> also <str<strong>on</strong>g>of</str<strong>on</strong>g> LDLlevel and improvement <str<strong>on</strong>g>of</str<strong>on</strong>g> HDL level occurred.These results were matched with the result <str<strong>on</strong>g>of</str<strong>on</strong>g> Vesela et al <strong>in</strong>2001. (168) who found a significant improvement <strong>in</strong> the lipid parameters afterL- <str<strong>on</strong>g>carnit<strong>in</strong>e</str<strong>on</strong>g> adm<strong>in</strong>istrati<strong>on</strong> for 6 m<strong>on</strong>ths.Also the study <str<strong>on</strong>g>of</str<strong>on</strong>g> Guarnieri et al. (169) and Lacour et al. (170) reported asignificant decrease <strong>in</strong> serum triglyceride levels after L-<str<strong>on</strong>g>carnit<strong>in</strong>e</str<strong>on</strong>g>supplementati<strong>on</strong> for 14 weeks.


Discussi<strong>on</strong> 116.Bertoli et al <strong>in</strong> 1981. (171) documented an <strong>in</strong>crease <strong>in</strong> serum highdensity lipoprote<strong>in</strong> ( HDL) cholesterol <strong>in</strong> hemodialysis patients treated withL-<str<strong>on</strong>g>carnit<strong>in</strong>e</str<strong>on</strong>g>.Also the study <str<strong>on</strong>g>of</str<strong>on</strong>g> Vacha et al <strong>in</strong> 1983. (172) <strong>on</strong> hypertriglyceridemichemodialyzed patients who were treated with L-<str<strong>on</strong>g>carnit<strong>in</strong>e</str<strong>on</strong>g> for 3 m<strong>on</strong>ths,documented a significant reducti<strong>on</strong> <strong>in</strong> the level <str<strong>on</strong>g>of</str<strong>on</strong>g> TG.Many <str<strong>on</strong>g>of</str<strong>on</strong>g> the patients ma<strong>in</strong>ta<strong>in</strong>ed <strong>on</strong> HD are unable to achieve ahemoglob<strong>in</strong> level <str<strong>on</strong>g>of</str<strong>on</strong>g> 10 g /dl, despite the use <str<strong>on</strong>g>of</str<strong>on</strong>g> extremely high doses <str<strong>on</strong>g>of</str<strong>on</strong>g>rHuEPO. (173)Approximately 40 % <str<strong>on</strong>g>of</str<strong>on</strong>g> dialysis patients fail to achieve their goalhemoglob<strong>in</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> > 11 g/dl, despite the fact that 25 % <str<strong>on</strong>g>of</str<strong>on</strong>g> dialysis patients areprescribed rHuEPO doses equal to or > 270 units / kg per week. (174)The <strong>in</strong>ability to atta<strong>in</strong> adequate Hct been shown to be associated not<strong>on</strong>ly with a poorer patient's quality <str<strong>on</strong>g>of</str<strong>on</strong>g> life but with reduced patientssurvival as well, ir<strong>on</strong> deficiency, alum<strong>in</strong>um toxicity, and osteitis fibrosacystica have traditi<strong>on</strong>ally been cited as causes <str<strong>on</strong>g>of</str<strong>on</strong>g> an <strong>in</strong>adequate resp<strong>on</strong>se toeryhropoiet<strong>in</strong> therapy, but rHuEPO resistance has shown to be related todialysis patients morbidity and mortality. (175)Galucci et al <strong>in</strong> 1999. (176) studied the rHuEPO requirements <strong>in</strong>hemodialysis patients, there were 2 factors that dist<strong>in</strong>guished the patientswith a higher rHuEPO• Increased serum lactate dehydrogenase.• Increased Red cell membrane MDA level, an <strong>in</strong>dicator <str<strong>on</strong>g>of</str<strong>on</strong>g> lipidperoxidati<strong>on</strong> result<strong>in</strong>g from free radicals.


Discussi<strong>on</strong> 117.The mechanism by which the free radicals affect anemia, is throughan effect <strong>on</strong> the RBC membrane and c<strong>on</strong>sequent eythrocyte deformabilitywith reducti<strong>on</strong> <strong>in</strong> the red cell survival.Ly et al <strong>in</strong> 2004. (177) dem<strong>on</strong>strated a marked reducti<strong>on</strong> <strong>in</strong> red cellsurvival <strong>in</strong> hemodialysis patients, <strong>in</strong> additi<strong>on</strong> there was a significant higherosmotic fragility <str<strong>on</strong>g>of</str<strong>on</strong>g> the RBCs from patients <strong>on</strong> HD. (178)A similar study by Ibrahim et al <strong>in</strong> 2002. (179) documented an <strong>in</strong>crease<strong>in</strong> the RBCs osmotic fragility <strong>in</strong> RBCs from dialysis patients with a lowvalues <str<strong>on</strong>g>of</str<strong>on</strong>g> erythrocyte deformability.In the present study, it was observed that group I, group II b, andgroup II a S 1 had a low hemoglob<strong>in</strong> level and reduced Hct value with nosignificant differences between them, meanwhile group II a S 2 ( patients <strong>on</strong>HD and receiv<strong>in</strong>g L-<str<strong>on</strong>g>carnit<strong>in</strong>e</str<strong>on</strong>g> therapy) and group III ( c<strong>on</strong>trol group) had ahigher Hb level and Hct % with a statistical significant difference betweenthem and the other groups.Similar studies found that adm<strong>in</strong>istrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> L-<str<strong>on</strong>g>carnit<strong>in</strong>e</str<strong>on</strong>g> <strong>in</strong>hemodialysis patients has been shown to reduce RBC membrane MDAlevel, improve RBC deformability and osmotic fragility.Vlassopouos et al <strong>in</strong> 2002. (180) reported that adm<strong>in</strong>istrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> L-<str<strong>on</strong>g>carnit<strong>in</strong>e</str<strong>on</strong>g> for 1 year to hemodialysis patients with low RBC osmotic resistance(RBCOR), lead to improvement <strong>in</strong> the RBCOR and with no further reducti<strong>on</strong>.Also, Sotirakopoulos et al <strong>in</strong> 2000 (181) studied the effect <str<strong>on</strong>g>of</str<strong>on</strong>g> L-<str<strong>on</strong>g>carnit<strong>in</strong>e</str<strong>on</strong>g> supplementati<strong>on</strong> for 3 m<strong>on</strong>ths <strong>on</strong> the Hct and RBC deformability<strong>in</strong> HD patients, he found an <strong>in</strong>crease <strong>in</strong> the Hct level.


Discussi<strong>on</strong> 118.Trovato. (182) found that treatment <str<strong>on</strong>g>of</str<strong>on</strong>g> hemodialysis patients with L-<str<strong>on</strong>g>carnit<strong>in</strong>e</str<strong>on</strong>g> for 1 year was associated with a significant <strong>in</strong>crease <strong>in</strong> thehemoglob<strong>in</strong> and hematocrit levels.Caruso et al <strong>in</strong> 1998. (183) found that hemodialysis patients receiv<strong>in</strong>gL-<str<strong>on</strong>g>carnit<strong>in</strong>e</str<strong>on</strong>g> for 6 m<strong>on</strong>ths had a decreased rHuEPO / Hct ratio (an <strong>in</strong>dicati<strong>on</strong><str<strong>on</strong>g>of</str<strong>on</strong>g> EPO sensitivity), and after disc<strong>on</strong>t<strong>in</strong>uati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> L-<str<strong>on</strong>g>carnit<strong>in</strong>e</str<strong>on</strong>g> this ratio was<strong>in</strong>creased aga<strong>in</strong>. Dur<strong>in</strong>g L-<str<strong>on</strong>g>carnit<strong>in</strong>e</str<strong>on</strong>g> treatment period, there was asignificant correlati<strong>on</strong> between the level <str<strong>on</strong>g>of</str<strong>on</strong>g> L-<str<strong>on</strong>g>carnit<strong>in</strong>e</str<strong>on</strong>g> and the reducti<strong>on</strong> <strong>in</strong>the EPO / Hct ratio.A recent study was d<strong>on</strong>e by Vesela et al <strong>in</strong> 2001. (184) revealed thathemodialysis patients treated with L-<str<strong>on</strong>g>carnit<strong>in</strong>e</str<strong>on</strong>g> for 6 m<strong>on</strong>ths had asignificant rise <strong>in</strong> the hematocrit level and the corresp<strong>on</strong>d<strong>in</strong>g rHuEPOrequirement <strong>in</strong> the L-<str<strong>on</strong>g>carnit<strong>in</strong>e</str<strong>on</strong>g> treated patients was reduced byapproximately 40 %, meanwhile after 3 m<strong>on</strong>ths <str<strong>on</strong>g>of</str<strong>on</strong>g> disc<strong>on</strong>t<strong>in</strong>uati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g>L-<str<strong>on</strong>g>carnit<strong>in</strong>e</str<strong>on</strong>g> therapy the Hct level had fallen aga<strong>in</strong> with a corresp<strong>on</strong>d<strong>in</strong>g rise<strong>in</strong> the rHuEPO requirement.Also, the study <str<strong>on</strong>g>of</str<strong>on</strong>g> Matsumoto et al <strong>in</strong> 2001. (185) reported thatadm<strong>in</strong>istrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> 500 mg / day <str<strong>on</strong>g>of</str<strong>on</strong>g> L-<str<strong>on</strong>g>carnit<strong>in</strong>e</str<strong>on</strong>g>, resulted <strong>in</strong> an <strong>in</strong>crease <str<strong>on</strong>g>of</str<strong>on</strong>g> >2%<strong>in</strong> the Hct <strong>in</strong> 36 % <str<strong>on</strong>g>of</str<strong>on</strong>g> patients refractory to high dose rHuEPO therapy.Hurot et al <strong>in</strong> 2002. (186) c<strong>on</strong>cluded that there was a significantreducti<strong>on</strong> <strong>in</strong> the erythropoiet<strong>in</strong> resistance <strong>in</strong>dex (ERI), which <strong>in</strong>dicated abeneficial effect <str<strong>on</strong>g>of</str<strong>on</strong>g> L-<str<strong>on</strong>g>carnit<strong>in</strong>e</str<strong>on</strong>g> supplementati<strong>on</strong> <strong>on</strong> anemia treatment <strong>in</strong>hemodialysis patients.( the ERI = EPO weekly dose / g <str<strong>on</strong>g>of</str<strong>on</strong>g> Hb achieved).


Summary 119.SUMMARYCardiovascular diseases are the most important cause <str<strong>on</strong>g>of</str<strong>on</strong>g> death am<strong>on</strong>gpatients with chr<strong>on</strong>ic renal failure treated with ma<strong>in</strong>tenance hemodialysis.The aim <str<strong>on</strong>g>of</str<strong>on</strong>g> the study is to detect the role <str<strong>on</strong>g>of</str<strong>on</strong>g> L-<str<strong>on</strong>g>carnit<strong>in</strong>e</str<strong>on</strong>g> therapy <strong>in</strong>hemodialysis patients and its relati<strong>on</strong> to cardiovascular complicati<strong>on</strong>s.In this study, 60 pers<strong>on</strong>s were studied by tak<strong>in</strong>g detailed medicalhistory, full cl<strong>in</strong>ical exam<strong>in</strong>ati<strong>on</strong>, full laboratory <strong>in</strong>vestigati<strong>on</strong>s <strong>in</strong>clud<strong>in</strong>gestimat<strong>in</strong>g the serum level <str<strong>on</strong>g>of</str<strong>on</strong>g> L- <str<strong>on</strong>g>carnit<strong>in</strong>e</str<strong>on</strong>g>, lipid pr<str<strong>on</strong>g>of</str<strong>on</strong>g>ile andechocardiography to estimate the left ventricular functi<strong>on</strong>s.The subjects were divided <strong>in</strong>to three groups:♦Group I: 10 patients with chr<strong>on</strong>ic renal <strong>in</strong>sufficiency <strong>on</strong>c<strong>on</strong>servative medical treatment with GFR <str<strong>on</strong>g>of</str<strong>on</strong>g> 20-50 ml /m<strong>in</strong>t.♦Group II with 40 patients with end stage renal disease <strong>on</strong> ma<strong>in</strong>tenanceHD for more than 6 m<strong>on</strong>ths and this group subdivided <strong>in</strong>to- Group II a: <strong>in</strong>cluded 20 patients <strong>on</strong> HD and receiv<strong>in</strong>g oral L- <str<strong>on</strong>g>carnit<strong>in</strong>e</str<strong>on</strong>g>supplementati<strong>on</strong> as 1g daily dose for 6 m<strong>on</strong>ths.- Group II b: <strong>in</strong>cluded 20 patients <strong>on</strong> HD and didn’t receive L-<str<strong>on</strong>g>carnit<strong>in</strong>e</str<strong>on</strong>g>supplementati<strong>on</strong>.♦Group III: 10 normal healthy pers<strong>on</strong>s as a c<strong>on</strong>trol group.Patients with diabetes mellitus, ischemic heart diseases and extensivemyocardial calcificati<strong>on</strong>s were excluded from the study.


Summary 120.In the present study, group II b and group II a S 1 (patients <strong>on</strong> HDbefore receiv<strong>in</strong>g L-<str<strong>on</strong>g>carnit<strong>in</strong>e</str<strong>on</strong>g> supplementati<strong>on</strong>) showed low serum level <str<strong>on</strong>g>of</str<strong>on</strong>g>L-<str<strong>on</strong>g>carnit<strong>in</strong>e</str<strong>on</strong>g> and abnormalities <str<strong>on</strong>g>of</str<strong>on</strong>g> their echocardiographic parameters whichsuggest that hemodialysis reduce the serum level <str<strong>on</strong>g>of</str<strong>on</strong>g> L-<str<strong>on</strong>g>carnit<strong>in</strong>e</str<strong>on</strong>g> and suggestalso that the risk <str<strong>on</strong>g>of</str<strong>on</strong>g> cardiovascular morbidity and mortality <strong>in</strong> hemodialysispatients are partially related to the reduced levels <str<strong>on</strong>g>of</str<strong>on</strong>g> L-<str<strong>on</strong>g>carnit<strong>in</strong>e</str<strong>on</strong>g>.The c<strong>on</strong>trol group (group III) had no statistical significantdifferences with group II a S 2 (patients <strong>on</strong> HD after receiv<strong>in</strong>gL-<str<strong>on</strong>g>carnit<strong>in</strong>e</str<strong>on</strong>g> therapy) as regard<strong>in</strong>g serum level <str<strong>on</strong>g>of</str<strong>on</strong>g> L- <str<strong>on</strong>g>carnit<strong>in</strong>e</str<strong>on</strong>g> and theechocardiographic parameters.Also <strong>in</strong> the present study, the serum lipid levels showed that therewas no statistical difference between group II b and group II a S 1 (patient <strong>on</strong>HD before receiv<strong>in</strong>g L-<str<strong>on</strong>g>carnit<strong>in</strong>e</str<strong>on</strong>g> therapy) as both groups showed highlipids parameters (TG, LDL), meanwhile group II a S 2 (patient <strong>on</strong> HD afterreceiv<strong>in</strong>g L-<str<strong>on</strong>g>carnit<strong>in</strong>e</str<strong>on</strong>g> supplementati<strong>on</strong>) and group III were significantlydifferent from both groups. This could <strong>in</strong>dicate the relati<strong>on</strong> between thereduced L-<str<strong>on</strong>g>carnit<strong>in</strong>e</str<strong>on</strong>g> level and hypercholesteremia and hypertriglyceridemia.In the present study, the hemoglob<strong>in</strong> c<strong>on</strong>centrati<strong>on</strong> and hematocritlevels showed no statistical differences between group I, group II b, groupII a S 1 (patients <strong>on</strong> HD before receiv<strong>in</strong>g L-<str<strong>on</strong>g>carnit<strong>in</strong>e</str<strong>on</strong>g> supplementati<strong>on</strong>)which is expla<strong>in</strong>ed by the effect <str<strong>on</strong>g>of</str<strong>on</strong>g> chr<strong>on</strong>ic renal failure and HD <strong>on</strong> thehematological status. Meanwhile group II a S 2 (patients <strong>on</strong> HD afterreceiv<strong>in</strong>g L-<str<strong>on</strong>g>carnit<strong>in</strong>e</str<strong>on</strong>g> supplementati<strong>on</strong>) and group III were significantlydifferent from them , which may suggest the relati<strong>on</strong> between low serum L-<str<strong>on</strong>g>carnit<strong>in</strong>e</str<strong>on</strong>g> level and anemia <strong>in</strong> patients <strong>on</strong> hemodialysis.


C<strong>on</strong>clusi<strong>on</strong> 121.CONCLUSION• Uremic patients <strong>on</strong> ma<strong>in</strong>tenance hemodialysis are liable to L-<str<strong>on</strong>g>carnit<strong>in</strong>e</str<strong>on</strong>g>deficiency.• Hyperlipidemia, ma<strong>in</strong>ly hypertriglyceridemia, anemia, leftventricular dysfuncti<strong>on</strong> (expressed as <strong>in</strong>creased left ventriculardimensi<strong>on</strong>s, decreased ejecti<strong>on</strong> fracti<strong>on</strong>, and <strong>in</strong>creased leftventricular mass) were found <strong>in</strong> uremic patients <strong>on</strong> ma<strong>in</strong>tenance HDand were frequently associated with L-<str<strong>on</strong>g>carnit<strong>in</strong>e</str<strong>on</strong>g> deficiency.• Anemia, hypertriglyceridemia and left ventricular dysfuncti<strong>on</strong> werefound to improve significantly after L-<str<strong>on</strong>g>carnit<strong>in</strong>e</str<strong>on</strong>g> supplementati<strong>on</strong> <strong>in</strong>uremic patients <strong>on</strong> ma<strong>in</strong>tenance HD.


References 122.REFERENCES1. Robert G. Chr<strong>on</strong>ic renal failure. In: Cecil textbook <str<strong>on</strong>g>of</str<strong>on</strong>g> medic<strong>in</strong>e, 22 ndediti<strong>on</strong>. Goldmann L, Bennett JC (ed) Philadelphia, W.B. SaundersCompany (pub) 2004; pp.708-16.2. D<strong>on</strong>adia JV, Grande JP: A review <str<strong>on</strong>g>of</str<strong>on</strong>g> the pathogenesis, cl<strong>in</strong>icalfeatures, course and treatment <str<strong>on</strong>g>of</str<strong>on</strong>g> IgA nephropathy. N Engl J Med2002; 347:738-48.3. C<strong>on</strong>treras G, Roth D, Pando V, et al: A cl<strong>in</strong>ical review <str<strong>on</strong>g>of</str<strong>on</strong>g> thehistologic classes <str<strong>on</strong>g>of</str<strong>on</strong>g> lupus nephritis and their treatment. Cl<strong>in</strong>Nephrology 2002; 57: 95-107.4. Ross MJ, Klotman PE: Recent progress <strong>in</strong> HIV-associatednephropathy. J Am Soc Nephrol 2002; 13: 2997-3004.5. Guo X, Nzerue C: How to prevent, recognize and treat drug- <strong>in</strong>ducednephropathy. Cleve Cl<strong>in</strong> J Med 2002; 69: 289-90.6. Klahr S: Ur<strong>in</strong>ary tract obstructi<strong>on</strong>. Sem<strong>in</strong> Nephrol 2001; 21: 133-45.7. Webb JA: Ultras<strong>on</strong>ography <strong>in</strong> the diagnosis <str<strong>on</strong>g>of</str<strong>on</strong>g> renal obstructi<strong>on</strong>. B MJ 1990 Oct; (27): 301: 944-6.8. Jacobs<strong>on</strong> HR: Chr<strong>on</strong>ic renal failure: Patho-physiology. Lancet1991Aug (17): 338: 419-23.9. Mailloux LU: Hypertensi<strong>on</strong> <strong>in</strong> chr<strong>on</strong>ic renal failure and ESRD. Sem<strong>in</strong>Nephrol 2001 Marc; 21(2): 146-56.


References 123.10. Burt<strong>on</strong> C, Harris KP. The role <str<strong>on</strong>g>of</str<strong>on</strong>g> prote<strong>in</strong>uria <strong>in</strong> the progressi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g>chr<strong>on</strong>ic renal failure. Am J Kidney Dis 1996; 27: 765-70.11. Delmez JA, Slatopolsky E: Hyperphosphatemia: its c<strong>on</strong>sequences andtreatment <strong>in</strong> patients with chr<strong>on</strong>ic renal diseases. Am J Kidney Dis1992 Apr; 19(4): 303-17.12. Mass ZA, Kasiske BL. Hyperlipidemia and its management <strong>in</strong> renaldisease. Curr Op<strong>in</strong> Nephrol Hypertens 1996; 2: 141-6.13. USRD: Annual renal data system 2000 December; 36(6): S1-S238.14. Anders<strong>on</strong> S, Brenner BM: <str<strong>on</strong>g>Effect</str<strong>on</strong>g>s <str<strong>on</strong>g>of</str<strong>on</strong>g> ag<strong>in</strong>g <strong>on</strong> the renal glomerulus.Am J Med 1986 Marc; 80(3): 435-42.15. Hakim RM, Lazarus JM: Progressi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> chr<strong>on</strong>ic renal failure. Am JKidney Dis 1989 Nov; 14(5): 396-401.16. Remuzzi G, Ruggenenti P, Benigni A: Understand<strong>in</strong>g the nature <str<strong>on</strong>g>of</str<strong>on</strong>g>renal disease progressi<strong>on</strong>. Kidney Int 1997; 51: 2-15.17. Adams<strong>on</strong> JW, Eschbach JW: Erythropoiet<strong>in</strong> for end- stage renaldisease. Engl J Med 1998; 339(9): 625-7.18. Marascau B, Koch XM: Guanid<strong>in</strong>o compounds <strong>in</strong> serum, ur<strong>in</strong>e, liver,kidney and bra<strong>in</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> men and some animals. Kidney Int 1992; 41: 526-32.19. Mar<strong>on</strong>i BJ: A method for estimat<strong>in</strong>g nitrogen <strong>in</strong>take <str<strong>on</strong>g>of</str<strong>on</strong>g> patients withchr<strong>on</strong>ic renal failure. Kidney Int 1985; 27: 58-65.


References 124.20. Nor<strong>on</strong>ha IL, Nierm<strong>in</strong> Z, Ste<strong>in</strong> H, Waldherr R: Cytok<strong>in</strong>es and growthfactors <strong>in</strong> renal disease. Nephrol Dial Transplant 1995; 10: 775-86.21. Defr<strong>on</strong>zo RA: Pathogenesis <str<strong>on</strong>g>of</str<strong>on</strong>g> glucose <strong>in</strong>tolerance <strong>in</strong> uremia.Metabolism 1978; 27: 1866-80.22. Marks KH, Kilav R, Naveh-many T, et al: Calcium, phosphate,vitam<strong>in</strong> D, and the parathyroid. Pediatr Nephrol 1996; 10: 364-7.23. Mailloux LU, Haley WE: Hypertensi<strong>on</strong> <strong>in</strong> the ESRD patients. Am JKidney Dis 1998; 32; 5: 705-19.24. Ruggenenti P, Schieppati A, Remuzzi G: Progressi<strong>on</strong>, remissi<strong>on</strong>,regressi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> chr<strong>on</strong>ic renal diseases. Lancet 2001 May 19; 357(9268): 1601-8.25. All<strong>on</strong> M: Hyperkalemia <strong>in</strong> end-stage renal disease: mechanisms andmanagement. J Am Soc Nephrol 1995 Oct; 6(4): 1134-42.26. Slatopolsky E, Berkoben M, Kelber J: <str<strong>on</strong>g>Effect</str<strong>on</strong>g>s <str<strong>on</strong>g>of</str<strong>on</strong>g> calcitriol and n<strong>on</strong>calcemicvitam<strong>in</strong> D analogs <strong>on</strong> sec<strong>on</strong>dary hyperparathyroidism.Kidney Int Suppl 1992 Oct; 38: S43-9.27. Hurska KA, Teitelbaum SL: Renal osteodystrophy. N Engl J Med1995 Jul 20; 333(3): 166-74.28. Uribarri J: Acidosis <strong>in</strong> chr<strong>on</strong>ic renal <strong>in</strong>sufficiency. Sem<strong>in</strong> Dial 2000Jul-Aug; 13 (4): 232-4.


References 125.29. Peters S, Spiret L: <str<strong>on</strong>g>Effect</str<strong>on</strong>g>s <str<strong>on</strong>g>of</str<strong>on</strong>g> acidosis <strong>on</strong> rats muscle metabolism andperformance dur<strong>in</strong>g heavy exercise. Am J Physiol 1985; 248: C 337-47.30. Bush<strong>in</strong>sky DA: The c<strong>on</strong>tributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> acidosis to renal osteodystrophy.Kidney Int 1995; 47: 1816-21.31. Bailey MW: Glucocorticoids and acidosis stimulate prote<strong>in</strong> andam<strong>in</strong>o acid catabolism <strong>in</strong> vivo. Kidney Int 1996; 49: 679-83.32. Reaich D, Graham K, Chann<strong>on</strong> S: Correcti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> acidosis <strong>in</strong>hemodialysis decrease whole body prote<strong>in</strong> degradati<strong>on</strong>. J Am SocNephrol 1997; 8: 632-7.33. Brenner RM, Wr<strong>on</strong>e EM: The epidemic <str<strong>on</strong>g>of</str<strong>on</strong>g> cardiovascular disease <strong>in</strong>end- stage renal disease. Curr Op<strong>in</strong> Nephrol Hypertens 1999; 8(3):365-9.34. Bush A. The lungs <strong>in</strong> uremia. Sem<strong>in</strong> Respir Med 1989; 9: 273-82.35. Bergstr<strong>on</strong> J. Anorexia <strong>in</strong> dialysis patients. Sem<strong>in</strong> Nephrol 1996; 16:222-9.36. Bailie GR: Parenteral ir<strong>on</strong> use <strong>in</strong> the management <str<strong>on</strong>g>of</str<strong>on</strong>g> anemia <strong>in</strong> endstagerenal disease patients. Am J Kidney Dis 2000; 1: 35-40.37. Fraser CL, Sarnacki P, Arieff AL: Abnormal Na transport <strong>in</strong>synaptosomes from bra<strong>in</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> uremic rats. J Cl<strong>in</strong> Invest 1985; 75:2014-23.


References 126.38. Johns<strong>on</strong> RJ, Kivlighn SD, K<strong>in</strong> YG, Fogo AB: Reappraisal <str<strong>on</strong>g>of</str<strong>on</strong>g> thepathogenesis and c<strong>on</strong>sequences <str<strong>on</strong>g>of</str<strong>on</strong>g> hyperuricemia <strong>in</strong> hypertensi<strong>on</strong>,cardiovascular diseases and renal disease. Am J Kidney Dis 1999;33(2): 225-34.39. Kutzman NA(ed). In- depth review <str<strong>on</strong>g>of</str<strong>on</strong>g> the pathogenesis <str<strong>on</strong>g>of</str<strong>on</strong>g> the majorcomp<strong>on</strong>ents <str<strong>on</strong>g>of</str<strong>on</strong>g> the uremic syndrome, <strong>in</strong>clud<strong>in</strong>g effects <strong>on</strong> the immuneresp<strong>on</strong>ses, and the cardiovascular system. Sem<strong>in</strong> Nephrol 1996; 16(3): 220-5.40. Christoph W, Thomas M, Vera K. Cardiovascular complicati<strong>on</strong>s <strong>in</strong>uremia. Am J Kidney Dis 2001; S1 (38): 26-8.41. Kaysen GA. Hyperlipidemia <str<strong>on</strong>g>of</str<strong>on</strong>g> chr<strong>on</strong>ic renal failure. Blood Purif1994; 12: 60-7.42. Avram MM, Goldwasser P, Burrell DE, et al. The uremicdyslipidemia: A cross- secti<strong>on</strong>al and l<strong>on</strong>gitud<strong>in</strong>al study. Am J KidneyDis 1992; 20: 324-35.43. Krolewski AS, Lieb C. Hyercholesterolemia, a determ<strong>in</strong>ant <str<strong>on</strong>g>of</str<strong>on</strong>g> renalfuncti<strong>on</strong>s loss and deaths <strong>in</strong> IDDM patients with nephropathy. KidneyInt 1994; (45): S125-31.44. Sun X, J<strong>on</strong>es JA, et al. Apolipoprotien gene expressi<strong>on</strong> <strong>in</strong> thealbum<strong>in</strong>emic rat and <strong>in</strong> the rat with heyman nephritis.Am J Physiol1992; (262): 755-61.45. Gavish D, Azrolan N. Plasma LP (a) c<strong>on</strong>centrati<strong>on</strong> is <strong>in</strong>verselycorrelated with the ratio <str<strong>on</strong>g>of</str<strong>on</strong>g> Kr<strong>in</strong>gle I.V / Kr<strong>in</strong>gle V encod<strong>in</strong>g doma<strong>in</strong>s<strong>in</strong> the apo (a) gene. J Cl<strong>in</strong> Invest 1989; (84): 2021-7.


References 127.46. Dullaart RP, Gansevoort RT, et al. Role <str<strong>on</strong>g>of</str<strong>on</strong>g> elevated lecith<strong>in</strong>:cholesterol acyltransferase and cholesterol ester transfer prote<strong>in</strong>activities <strong>in</strong> abnormal lipoprote<strong>in</strong>s from prote<strong>in</strong>uric patients. KidneyInt 1993; 44: 91-7.47. Fuh, MMT, Lee-Jeng CY, et al. <str<strong>on</strong>g>Effect</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> chr<strong>on</strong>ic renal failure <strong>on</strong> highdensity lipoprote<strong>in</strong> k<strong>in</strong>etics. Kidney Int 1990; (37): 1295-300.48. Kowal RC, Herz J, Weisgraber KH, et al. Opos<strong>in</strong>g effects <str<strong>on</strong>g>of</str<strong>on</strong>g>apolipoprote<strong>in</strong>s E and C <strong>on</strong> lipoprote<strong>in</strong>s b<strong>in</strong>d<strong>in</strong>g to low densitylpoprote<strong>in</strong> receptor- related prote<strong>in</strong>. J Biol Chem 1990; (265):10771-9.49. Chung BH, Sergrest JP, Smith K, et al. Lipolytic surface remnants <str<strong>on</strong>g>of</str<strong>on</strong>g>triglyceride- rich lipoprote<strong>in</strong>s are cytotoxic to macrophages but not <strong>in</strong>the presence <str<strong>on</strong>g>of</str<strong>on</strong>g> high density lipoprote<strong>in</strong>. J Cl<strong>in</strong> Invest 1989; (83):1363-74.50. Tall AR. Plasma high density lipoprote<strong>in</strong>s metabolism andrelati<strong>on</strong>ship to atherogenesis. J Cl<strong>in</strong> Invest 1990; (86): 379-84.51. Eisenberg S. High density lipoprote<strong>in</strong> metabolism. J Lipid Res 1984;(25): 1017-58.52. Kasiske BL. Hyperlipidemia <strong>in</strong> patients with chr<strong>on</strong>ic renal disease.Am J Kidney dis 1998; 32: Suppl 5: S142-56.53. USRDS 1999. Annual Data Report: Causes <str<strong>on</strong>g>of</str<strong>on</strong>g> death, Chap. VII, theNati<strong>on</strong>al Institute <str<strong>on</strong>g>of</str<strong>on</strong>g> Health, Nati<strong>on</strong>al Institute <str<strong>on</strong>g>of</str<strong>on</strong>g> Diabetes andKidney Diseases. 1999; 79-90.


References 128.54. Zoccali C. Cardiovascular risk <strong>in</strong> uremic patients, is it fully expla<strong>in</strong>edby classical risk factors? Nephrol Dial Transplant 2000; 15: 454-7.55. Eknoyan G. On the epidemic <str<strong>on</strong>g>of</str<strong>on</strong>g> cardiovascular disease <strong>in</strong> patientswith chr<strong>on</strong>ic renal failure, a first step to improve the outcomes. Am JKidney Dis 1998; 32: 5: (S3): S1-S4.56. Ismail N, Neyra R, Hakim R. The medical and ec<strong>on</strong>omicaladvantages <str<strong>on</strong>g>of</str<strong>on</strong>g> early referral <str<strong>on</strong>g>of</str<strong>on</strong>g> chr<strong>on</strong>ic renal failure patients to renalspecialists. Nephrol Dial Transplant 1998; 13: 246-50.57. Owen WF, Madore F. An observati<strong>on</strong>al study <str<strong>on</strong>g>of</str<strong>on</strong>g> cardiovascularcharacteristics <str<strong>on</strong>g>of</str<strong>on</strong>g> l<strong>on</strong>g term ESRD survivors. Am J Kidney Dis 1996;28: 931-6.58. Mak W, Greene EL, Raij L. Cardiovascular risk factors <strong>in</strong> chr<strong>on</strong>icrenal failure and HD populati<strong>on</strong>s. Am J Kidney Dis 1992; 19: 505-13.59. Gulewitsch W, Krimberg R. Zur kenntnis der extrativst<str<strong>on</strong>g>of</str<strong>on</strong>g>fe dermuskeln. II. Mitteilung. Uber das <str<strong>on</strong>g>carnit<strong>in</strong>e</str<strong>on</strong>g>. Hoppe- Seyler ׳ s Z.Physiol Chem. 1905; 45: 326-30.60. Tomita M, Sendju Y. Uber die oxyam<strong>in</strong>o verb<strong>in</strong>dungen, weche diebiuretreakti<strong>on</strong> ziegen. III. Spaltung der m- am<strong>in</strong>o-b-oxybutersaure <strong>in</strong>die optisch-aktiven kompomenten. Hoppe-Seyler ́′ s Z. Physiol Chem1927; 169: 263-77.61. Kameko T, Yoshida R. On the absolute c<strong>on</strong>figurati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> L-<str<strong>on</strong>g>carnit<strong>in</strong>e</str<strong>on</strong>g>(vitam<strong>in</strong> BT). Bull Chem Soc JPn 1962; 35: 1153-5.


References 129.62. Kanter MM, Williams MH. Antioxidants, <str<strong>on</strong>g>carnit<strong>in</strong>e</str<strong>on</strong>g> and chol<strong>in</strong>e asputative ergogenic acids. Int J Sport Nutr 1995; 5: S1: 20-31.63. Rebouche CJ, Engel AG. K<strong>in</strong>etic compartmental analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>carnit<strong>in</strong>e</str<strong>on</strong>g>metabolism <strong>in</strong> the human <str<strong>on</strong>g>carnit<strong>in</strong>e</str<strong>on</strong>g> deficiency syndromes. Evidences <str<strong>on</strong>g>of</str<strong>on</strong>g>alterati<strong>on</strong>s <strong>in</strong> tissue <str<strong>on</strong>g>carnit<strong>in</strong>e</str<strong>on</strong>g> transport. J Cl<strong>in</strong> Invest 1984; 79: 857-67.64. Battistela PA, Vergani L, D<strong>on</strong>zelli F, Rubattelli A. Plasma and ur<strong>in</strong>e<str<strong>on</strong>g>carnit<strong>in</strong>e</str<strong>on</strong>g> level dur<strong>in</strong>g development. Pediatr Res 1980; 14: 1379-81.65. De Palo E, Gatti R, Sicolo N, Paclovan F. Plasma and ur<strong>in</strong>e free L-<str<strong>on</strong>g>carnit<strong>in</strong>e</str<strong>on</strong>g> <strong>in</strong> humane D.M. Acta Diabetol Let 1987; 18: 91-5.66. Davis AT, Hoppel CL. <str<strong>on</strong>g>Effect</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> starvati<strong>on</strong> <strong>on</strong> the dispositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> free andpeptide-l<strong>in</strong>ked trimethyl lys<strong>in</strong>e <strong>in</strong> the rat. J Nutr 1986; 116: 760-7.67. Siliprandi N, Dilisa F, Robert M, Ciman M. Transport and functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><str<strong>on</strong>g>carnit<strong>in</strong>e</str<strong>on</strong>g> <strong>in</strong> muscles. J Cl<strong>in</strong> Chem Cl<strong>in</strong> Biochem.1990; (28): 303-6.68. Charles JR. Quantitative estimati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> absorpti<strong>on</strong> and degradati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><str<strong>on</strong>g>carnit<strong>in</strong>e</str<strong>on</strong>g> supplementati<strong>on</strong> by human adults. Metabolism 1991; (4):12: 1305-10.69. Borum PR. Carnit<strong>in</strong>e. Annu Rev Nutr 1983; 3: 23-259.70. Hoppel CL, Davis AT. Inter-tissue relati<strong>on</strong>ships <strong>in</strong> the synthesis anddistributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>carnit<strong>in</strong>e</str<strong>on</strong>g>. Biochem Soc Trans. 1986; 14: 673-4.71. Rebouch CJ, Seim H. Carnit<strong>in</strong>e metabolism and functi<strong>on</strong>s <strong>in</strong> humans.Annu Rev Nutr 1986; 6: 41-66.


References 130.72. Ahmed S. Carnit<strong>in</strong>e, kidney and renal dialysis. In: L-<str<strong>on</strong>g>carnit<strong>in</strong>e</str<strong>on</strong>g> and itsrole <strong>in</strong> medic<strong>in</strong>e: From functi<strong>on</strong> to therapy. Ferrari, Di Mauo,Sherwood, G (eds), Academic Press, L<strong>on</strong>d<strong>on</strong> 1992; P: 381.73. Hokland BM, Bremer J. Metabolism and excreti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>carnit<strong>in</strong>e</str<strong>on</strong>g> andacyl-<str<strong>on</strong>g>carnit<strong>in</strong>e</str<strong>on</strong>g> <strong>in</strong> the perfused rat kidney. Biochem Biophys Acta1986; 886: 223-30.74. Bieber LL. Carnit<strong>in</strong>e. Annu Rev Biochem. 1983; 57: 201-83.75. Clouet P, Niot I, Bezard J. Pathway <str<strong>on</strong>g>of</str<strong>on</strong>g> alpha-l<strong>in</strong>olenic acid throughthe mitoch<strong>on</strong>drial outer membrane <strong>in</strong> the rat liver and <strong>in</strong>fluence <strong>on</strong> therate <str<strong>on</strong>g>of</str<strong>on</strong>g> oxidati<strong>on</strong>. Biochem J 1989; 1263: 867-73.76. Kerner J, Hoppel C. Fatty acid import <strong>in</strong>to mitoch<strong>on</strong>dria. Biochem.Biophys Acta 2000; 1486: 1-17.77. Parv<strong>in</strong> R, Pande SV. Enhancement <str<strong>on</strong>g>of</str<strong>on</strong>g> mitoch<strong>on</strong>drial <str<strong>on</strong>g>carnit<strong>in</strong>e</str<strong>on</strong>g> and<str<strong>on</strong>g>carnit<strong>in</strong>e</str<strong>on</strong>g> acyl-<str<strong>on</strong>g>carnit<strong>in</strong>e</str<strong>on</strong>g> translocase-mediated transort <str<strong>on</strong>g>of</str<strong>on</strong>g> fatty acids<strong>in</strong>to liver mitoch<strong>on</strong>dria under ketogenic c<strong>on</strong>diti<strong>on</strong>s. J Biol Chem1979; 254: 5423-9.78. Lysiak W, Lilly K, Dilisa F, Toth PP, Bieber LL. Quantitati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> theeffect <str<strong>on</strong>g>of</str<strong>on</strong>g> L-<str<strong>on</strong>g>carnit<strong>in</strong>e</str<strong>on</strong>g> <strong>on</strong> the levels <str<strong>on</strong>g>of</str<strong>on</strong>g> acid-soluble short-cha<strong>in</strong> acylcoAsH <strong>in</strong> rat heart and liver mitoch<strong>on</strong>dria. J Biol Chem 1988; 263:1151-6.79. Hiatt WR, Regenste<strong>in</strong>er JG, Wolfel EE, Ruffl BEP. Carnit<strong>in</strong>e andacyl-<str<strong>on</strong>g>carnit<strong>in</strong>e</str<strong>on</strong>g> metabolism dur<strong>in</strong>g exercise <strong>in</strong> humans, dependance <strong>on</strong>skeletal muscle metabolic state. J Cl<strong>in</strong> Invest 1989; 84: 1167-73.


References 131.80. Leightom F, Bergseth S, Rortveit B. Free acetate producti<strong>on</strong> by rathepatocytes dur<strong>in</strong>g peroxisomal fatty acid and dicarboxylic acidoxidati<strong>on</strong>. J Biochem 1989; 264: 1037-50.81. Brass EP, Beyer<strong>in</strong>ck RA. Efects <str<strong>on</strong>g>of</str<strong>on</strong>g> propi<strong>on</strong>ate and <str<strong>on</strong>g>carnit<strong>in</strong>e</str<strong>on</strong>g> <strong>on</strong> thehepatic oxidati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> short and medium- cha<strong>in</strong> length fatty acid.Biochem J 1988; 250: 819-25.82. Matsud O and N<strong>in</strong>omiya SA. Renal handl<strong>in</strong>g <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>carnit<strong>in</strong>e</str<strong>on</strong>g> <strong>in</strong> childrenwith <str<strong>on</strong>g>carnit<strong>in</strong>e</str<strong>on</strong>g> deficiency and hyperamm<strong>on</strong>imia associated withvalproate therapy. J Pedr July 1986; 15: 351-6.83. Arenas JR, Enc<strong>in</strong>as AR, Pola P, Diddio S. Carnit<strong>in</strong>e <strong>in</strong> muscle, serumand ur<strong>in</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> n<strong>on</strong>-pr<str<strong>on</strong>g>of</str<strong>on</strong>g>essi<strong>on</strong>al athletes: <str<strong>on</strong>g>Effect</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> physical exercise,tra<strong>in</strong><strong>in</strong>g and L-<str<strong>on</strong>g>carnit<strong>in</strong>e</str<strong>on</strong>g> adm<strong>in</strong>istrati<strong>on</strong>. Muscle and Nerve. July 1991;(14): 598-604.84. Van H<strong>in</strong>sbergh VW, Veerkamp JH, Cordewener JH. <str<strong>on</strong>g>Effect</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g><str<strong>on</strong>g>carnit<strong>in</strong>e</str<strong>on</strong>g> and branched-cha<strong>in</strong> acyl<str<strong>on</strong>g>carnit<strong>in</strong>e</str<strong>on</strong>g> <strong>on</strong> the 2-oxoaciddehydrogenase activity <strong>in</strong> <strong>in</strong>tact mitoch<strong>on</strong>dria <str<strong>on</strong>g>of</str<strong>on</strong>g> rat muscle. Int JBiochem 1980; 12: 559-65.85. Lysiak W, Toth PP, Suelter CH, Bieber LL. Quantitati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the efflux<str<strong>on</strong>g>of</str<strong>on</strong>g> acyl<str<strong>on</strong>g>carnit<strong>in</strong>e</str<strong>on</strong>g> from rat heart, bra<strong>in</strong>, and liver mitoch<strong>on</strong>dria. J BiolChem 1986; 261: 13698-703.86. Bieber LL. Carnit<strong>in</strong>e. Annu Rev Biochem 1988; 57: 261-83.


References 132.87. Ferrari R, Di Mauro S. L-<str<strong>on</strong>g>carnit<strong>in</strong>e</str<strong>on</strong>g> and its role <strong>in</strong> medic<strong>in</strong>e fromfuncti<strong>on</strong> to therapy. Academic Press. Harcourt Brace Jovanovich,Publishers, L<strong>on</strong>d<strong>on</strong> 1992; p: 205.88. Bremer J. The role <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>carnit<strong>in</strong>e</str<strong>on</strong>g> <strong>in</strong> <strong>in</strong>tracellular metabolism. J Cl<strong>in</strong>Chem Cl<strong>in</strong> Biochem 1990; 28: 297-301.89. Bremer J. The effect <str<strong>on</strong>g>of</str<strong>on</strong>g> fast<strong>in</strong>g <strong>on</strong> the activity <str<strong>on</strong>g>of</str<strong>on</strong>g> liver <str<strong>on</strong>g>carnit<strong>in</strong>e</str<strong>on</strong>g>palmitoyl transferase and its <strong>in</strong>hibiti<strong>on</strong> by mal<strong>on</strong>yl coA. BiochemBiophys Acta 1981; 656: 628-31.90. Guder WG, Wagner S. The role <str<strong>on</strong>g>of</str<strong>on</strong>g> kidney <strong>in</strong> <str<strong>on</strong>g>carnit<strong>in</strong>e</str<strong>on</strong>g> metabolism. JCl<strong>in</strong> Chem Cl<strong>in</strong> Biochem 1990; (28): 347-50.91. Ahmed S. L-<str<strong>on</strong>g>carnit<strong>in</strong>e</str<strong>on</strong>g> <strong>in</strong> dialysis patients. Sem<strong>in</strong> Dial 2001; 14:209-17.92. Kudoh Y, Shoji T, Oimatsu H. The role <str<strong>on</strong>g>of</str<strong>on</strong>g> L-<str<strong>on</strong>g>carnit<strong>in</strong>e</str<strong>on</strong>g> <strong>in</strong> thepathogenesis <str<strong>on</strong>g>of</str<strong>on</strong>g> cardiomegaly <strong>in</strong> patients with chr<strong>on</strong>ic HD. JPn Cl<strong>in</strong> J1983; 47: 1391-7.93. Bell<strong>in</strong>ghieri G, Savica V, Corsi M, Maccari F. Correlati<strong>on</strong> between<strong>in</strong>creased serum and tissue L-<str<strong>on</strong>g>carnit<strong>in</strong>e</str<strong>on</strong>g> levels and improved musclesymptoms <strong>in</strong> HD patients. Am J Cl<strong>in</strong> Nutr 1983; 38: 523-31.94. Rodriguez-Segade S, De la pena A, Paz M, Arcocha V. Carnit<strong>in</strong>ec<strong>on</strong>centrati<strong>on</strong>s <strong>in</strong> dialysed and undialysed patients with chr<strong>on</strong>ic renal<strong>in</strong>sufficiency. Ann Cl<strong>in</strong> Biochem 1986; 33: 671-5.


References 133.95. Golper TA, Wolfsor M, Ahmed S, et al. L-<str<strong>on</strong>g>carnit<strong>in</strong>e</str<strong>on</strong>g> c<strong>on</strong>centrati<strong>on</strong>sand lipid effects. Kidney Int 1990; 38: 904-11.96. Nilss<strong>on</strong>-Ehle P, Cederblad G, Tnysell H. Plasma lipoprote<strong>in</strong>s, liverfuncti<strong>on</strong> and glucose metabolism <strong>in</strong> hemodialysis patients. Scand JCl<strong>in</strong> Invest 1985; 45: 179-84.97. Rumpf KW, Beckerk KU, Scheler F. Quantitative assessment <str<strong>on</strong>g>of</str<strong>on</strong>g><str<strong>on</strong>g>carnit<strong>in</strong>e</str<strong>on</strong>g> loss dur<strong>in</strong>g hemodialysis and hem<str<strong>on</strong>g>of</str<strong>on</strong>g>ilterati<strong>on</strong>. Proc Eur DialTransplant Assoc 1983; 19: 298-301.98. Moorthy AV, Rosenblum M. A comparis<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> plasma and muscle<str<strong>on</strong>g>carnit<strong>in</strong>e</str<strong>on</strong>g> levels <strong>in</strong> patients <strong>on</strong> hemodialysis for chr<strong>on</strong>ic renal failure.Am J Nephrol 1983; 3: 205-8.99. Bazzi C, Di D<strong>on</strong>ato S, Corsi M. Carnit<strong>in</strong>e metabolism <strong>in</strong> short andl<strong>on</strong>g term ma<strong>in</strong>tenance hemodialysis. In: Borum PR (ed). Cl<strong>in</strong>icalaspects <str<strong>on</strong>g>of</str<strong>on</strong>g> human <str<strong>on</strong>g>carnit<strong>in</strong>e</str<strong>on</strong>g> deficiency. NewYork. Pergam<strong>on</strong> Press1986; 245.100. Guarnieri G, Toigo G, Situl<strong>in</strong> R, Bianco MA, Paviotti G. L-<str<strong>on</strong>g>carnit<strong>in</strong>e</str<strong>on</strong>g>metabolism <strong>in</strong> chr<strong>on</strong>ic renal failure. Kidney Int 1987; 32 (Suppl 22):S116-S27.101. Sakurauchi Y, Matsumoto Y, Takai I, Sato M, Miwa T, Maeda K.<str<strong>on</strong>g>Effect</str<strong>on</strong>g>s <str<strong>on</strong>g>of</str<strong>on</strong>g> L-<str<strong>on</strong>g>carnit<strong>in</strong>e</str<strong>on</strong>g> supplementati<strong>on</strong> <strong>on</strong> muscular symptoms <strong>in</strong> HDpatients. Am J Kidney Dis 1998; 32: 258-64.102. Hiatti WR, Koziol BJ, Brass EP, Shapiro JI. Carnit<strong>in</strong>e metabolismdur<strong>in</strong>g exercise <strong>in</strong> patients <strong>on</strong> HD. Kidney Int 1992; 41: 1613-9.


References 134.103. Rodriguez-Segade S, Al<strong>on</strong>so de la Pena C, Paz M, Romero R, et al.Carnit<strong>in</strong>e deficiency <strong>in</strong> HD patients. Cl<strong>in</strong> Ch<strong>in</strong> Acta 1986; 159: 249-56.104. Riley S, Rutherford S, Rutherford PA. Low <str<strong>on</strong>g>carnit<strong>in</strong>e</str<strong>on</strong>g> levels <strong>in</strong> HDpatients with functi<strong>on</strong>al activity status and <strong>in</strong>fra-dialytic hypotensi<strong>on</strong>.Cl<strong>in</strong> Nephrol 1997; 48: 392-3.105. Gilbert H. Carnit<strong>in</strong>e. Biochemie and Kl<strong>in</strong>ik. Inf. Ther. Kl<strong>in</strong>. Ernahr1985; 12: 60-9.106. Scholte HR, Rodrigues R, de J<strong>on</strong>ge PC, Inez EM, Houwen V. Primary<str<strong>on</strong>g>carnit<strong>in</strong>e</str<strong>on</strong>g> deficiency. J Cl<strong>in</strong> Chem Cl<strong>in</strong> Biochem 1990; (28): 351-7.107. Rebouche CL, Engel AG. K<strong>in</strong>etic compartmental analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>carnit<strong>in</strong>e</str<strong>on</strong>g>metabolism <strong>in</strong> human <str<strong>on</strong>g>carnit<strong>in</strong>e</str<strong>on</strong>g> deficiency syndrome (evidences <str<strong>on</strong>g>of</str<strong>on</strong>g>altered tissue <str<strong>on</strong>g>carnit<strong>in</strong>e</str<strong>on</strong>g> transport). J Cl<strong>in</strong> Invest 1984; 73: 857-67.108. Coates PM, Hale DM, F<strong>in</strong>occhiaro N, Gilbert EF. Genetic deficiency<str<strong>on</strong>g>of</str<strong>on</strong>g> short cha<strong>in</strong> acyl-coA dehydrogenase <strong>in</strong> cultured fibroblasts from apatient with muscle <str<strong>on</strong>g>carnit<strong>in</strong>e</str<strong>on</strong>g> deficiency and severe skeletal muscleweakness. J Cl<strong>in</strong> Invest 1987; 81: 171-5.109. Devivo M, Te<strong>in</strong> TR. Systemic <str<strong>on</strong>g>carnit<strong>in</strong>e</str<strong>on</strong>g> deficiency stimulat<strong>in</strong>g Reyesyndrome. Int Pediatr 1990; 5(2): 134-41.110. Roe CR, Bohan TP. L-<str<strong>on</strong>g>carnit<strong>in</strong>e</str<strong>on</strong>g> therapy <strong>in</strong> propi<strong>on</strong>ic academia.Lancet 1982; 1411-12.


References 135.111. Bernard<strong>in</strong>i I, Rizzo WB, Dalakas, M, Brener JG. Plasma and muscle<str<strong>on</strong>g>carnit<strong>in</strong>e</str<strong>on</strong>g> <strong>in</strong> patients with selective tubulopathy and Fanc<strong>on</strong>isyndrome. Pediatr Res 1985; 21: 201-4.112. Rebouche CJ. Carnit<strong>in</strong>e. In: Shils ME, Osl<strong>on</strong> ZA, Shike M, Ross AC.Nutriti<strong>on</strong> <strong>in</strong> health and disease. 9 th ed. Baltimore: Williams& Wilk<strong>in</strong>s;1999: 505-12.113. Alk<strong>on</strong>yi I, Cseko J, Sandor A. Role <str<strong>on</strong>g>of</str<strong>on</strong>g> liver <strong>in</strong> <str<strong>on</strong>g>carnit<strong>in</strong>e</str<strong>on</strong>g> metabolism. JCl<strong>in</strong> Chem Cl<strong>in</strong> Biochem 1990; (28): 319-21.114. Hagen TM, Ingersoll RT, Wehr CM, et al. Food and Nutriti<strong>on</strong> Board,Institute <str<strong>on</strong>g>of</str<strong>on</strong>g> Medic<strong>in</strong>e. Vitam<strong>in</strong> C. Dietary food <strong>in</strong>take for vitam<strong>in</strong> C.Wash<strong>in</strong>gt<strong>on</strong> Nati<strong>on</strong>al Academy Press; 2000: 95-185.115. Benna P, Lacquaniti F, Ferrero P, Bergamasco B. Acute neurologiccomplicati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> HD. Ital J Neurol Sci 1981; 2: 53-7.116. Golper TA, Ahmed S. L-<str<strong>on</strong>g>carnit<strong>in</strong>e</str<strong>on</strong>g> adm<strong>in</strong>istrati<strong>on</strong> to HD patients: Hasits time comme? Sem<strong>in</strong> Dial 1992; 5: 94-8.117. Foley RN, Parfrey PS, Kent GM, Barre PE. L<strong>on</strong>g-term evoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g>cardiomyopathy <strong>in</strong> dialysis patients. Kidney Int 1998; 54: 1720-5.118. Spagnoli LG, Corsi M, Palmieri G, Maccari F. Myocardial <str<strong>on</strong>g>carnit<strong>in</strong>e</str<strong>on</strong>g>deficiency <strong>in</strong> acute myocardial <strong>in</strong>farcti<strong>on</strong>. Lancet 1982; 1: 1419-20.119. Kooistra MP, Van ES A, Struyvenberg A. The resp<strong>on</strong>se torecomb<strong>in</strong>ant human erythropoiete<strong>in</strong> <strong>in</strong> patients with the anemia <str<strong>on</strong>g>of</str<strong>on</strong>g>ESRD is correlated with serum <str<strong>on</strong>g>carnit<strong>in</strong>e</str<strong>on</strong>g> levels. Nephr<strong>on</strong> 1991; 57:127-8.


References 136.120. Matsumura M, Hatakeyama S, Muramoto H. Correlati<strong>on</strong> betweenserum <str<strong>on</strong>g>carnit<strong>in</strong>e</str<strong>on</strong>g> levels and erythrocyte osmotic fragility <strong>in</strong> HDpatients. Nephr<strong>on</strong> 1996; 72: 574-8.121. Brass EP. Pharmacok<strong>in</strong>etic c<strong>on</strong>siderati<strong>on</strong>s for the theraputic use <str<strong>on</strong>g>of</str<strong>on</strong>g><str<strong>on</strong>g>carnit<strong>in</strong>e</str<strong>on</strong>g> <strong>in</strong> HD patients. Cl<strong>in</strong> Ther 1995; 17: 176-85.122. Lopaschuk G. Regulati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> carbohydrate metabolism <strong>in</strong> ischemia andreperfusi<strong>on</strong>. Am Heart J 2000; 139(2 pt 3): S115-9.123. Trupp RJ, Abraham WT. C<strong>on</strong>gestive heart failure. In: Rakel RE,Bope ET, eds. Rakel: C<strong>on</strong>ńs Current Thrapy 2002. 54 th ed. NewYork:W.B.Saunders Company; 2002: 306-13.124. Anand I, Chandrashekhan Y, De Giuli F, et al. Acute and chr<strong>on</strong>iceffect <str<strong>on</strong>g>of</str<strong>on</strong>g> propi<strong>on</strong>yl L-<str<strong>on</strong>g>carnit<strong>in</strong>e</str<strong>on</strong>g> <strong>on</strong> the hemodynamics, exercisecapacity and horm<strong>on</strong>al <strong>in</strong> patients with c<strong>on</strong>gestive heart failure.Cardiovas Drugs Ther.1998; 290-9.125. Iyer RN, Khan AA, Gupta A, Vajifdar BU. L-<str<strong>on</strong>g>carnit<strong>in</strong>e</str<strong>on</strong>g> moderatelyimproves the exercise tolerance <strong>in</strong> chr<strong>on</strong>ic stable ang<strong>in</strong>a. J APhysicians India. 2000; 48(11): 1050-2.126. Mills JL. Peripheral arterial disease. In: Rakel RE, Bope ET, eds.Rakel: C<strong>on</strong>n s Current Therapy 2002. 54 th ed. NewYork:W.B.Saunders Company 2002: 340-3.127. Brevetti G, Diehm C, Lambert D. European multicenter study <strong>on</strong>propi<strong>on</strong>yl L-<str<strong>on</strong>g>carnit<strong>in</strong>e</str<strong>on</strong>g> <strong>in</strong> <strong>in</strong>termittent claudicati<strong>on</strong>. J Am Coll Cardiol1999; 34(5): 161-3.


References 137.128. Thal LJ, Calvani M, Armato A, Carta A. A 1-year c<strong>on</strong>trolled trial <str<strong>on</strong>g>of</str<strong>on</strong>g><str<strong>on</strong>g>carnit<strong>in</strong>e</str<strong>on</strong>g> therapy <strong>in</strong> early-<strong>on</strong>set AD. Neurology 2000; 55(6): 805-10.129. Moretti S, Famularo G, Marcell<strong>in</strong>i S, et al. L-<str<strong>on</strong>g>carnit<strong>in</strong>e</str<strong>on</strong>g> reduceslymphocytes apoptosis and oxidant stress <strong>in</strong> HIV-1-<strong>in</strong>fected subjecttreated with zidovad<strong>in</strong>e and didanos<strong>in</strong>e. Antioxid Redox Signal 2002;4(3): 391-403.130. Arrig<strong>on</strong>i-Martelli E, Caso V. Carnit<strong>in</strong>e protects mitoch<strong>on</strong>dria andremove toxic acyls from xenobiotics. Drugs Exp Cl<strong>in</strong> Res 2001;27(1): 27-49.131. Famularo G, Moretti S, Marcell<strong>in</strong>i S, et al. Acetyl-L- <str<strong>on</strong>g>carnit<strong>in</strong>e</str<strong>on</strong>g>deficiency <strong>in</strong> AIDS patients with neurotoxicity <strong>on</strong> treatment withantiretroviral nucleoside analogues. AIDS 1997; 2(3): 250-2.132. Scarp<strong>in</strong>i E, Sacilotto G, Bar<strong>on</strong> P, Cus<strong>in</strong>i M. <str<strong>on</strong>g>Effect</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> acetyl-<str<strong>on</strong>g>carnit<strong>in</strong>e</str<strong>on</strong>g><strong>in</strong> the treatment <str<strong>on</strong>g>of</str<strong>on</strong>g> pa<strong>in</strong>ful peripheral neuropathies <strong>in</strong> HIV +vepatients. Peripher New Syst 1997; 2(3): 250-2.133. Jeul<strong>in</strong> C, Lew<strong>in</strong> LM. Role <str<strong>on</strong>g>of</str<strong>on</strong>g> free L-<str<strong>on</strong>g>carnit<strong>in</strong>e</str<strong>on</strong>g> and acetyl-<str<strong>on</strong>g>carnit<strong>in</strong>e</str<strong>on</strong>g> <strong>in</strong>g<strong>on</strong>adal maturati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> mammalian spermatozoa. Hum Reprod Update1991; 3(2): 87-102.134. Vitali G, Parente R, Melotti C. Carnit<strong>in</strong>e supplementati<strong>on</strong> <strong>in</strong> humanidasthenospermia: cl<strong>in</strong>ical results. Drugs Exp Cl<strong>in</strong> Res 1995; 21(4):157-9.


References 138.135. Matalliotakis I, Koumantaki Y, Evageliou A, Koumantakis E. L-<str<strong>on</strong>g>carnit<strong>in</strong>e</str<strong>on</strong>g> levels <strong>in</strong> the sem<strong>in</strong>al plasma <str<strong>on</strong>g>of</str<strong>on</strong>g> fertile and <strong>in</strong>fertile men.Correlati<strong>on</strong> with sperm quality. Int J Fertil Women’s Med 2000; 45:237-40.136. Chaney AL, Marbach EP. Modified reagents for determ<strong>in</strong>ati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g>urea and amm<strong>on</strong>ia. Cl<strong>in</strong> Chem. 1962; 8: 130-2.137. Butter AR. The jaffe reacti<strong>on</strong>: Identificati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the colored species.Cl<strong>in</strong> Chem Acta. 1976; 59: 227-32.138. Carl A, Edward R. Tietz Text book <str<strong>on</strong>g>of</str<strong>on</strong>g> cl<strong>in</strong>ical chemistry. 2 nd ed,Philadelphia; WB Saunders Company. 1994; 1536-7.139. Silverman LM, Christens<strong>on</strong> RH. Am<strong>in</strong>o acids and prote<strong>in</strong>s. In : BurtisCA, Ashwood ER. Tietz Text book <str<strong>on</strong>g>of</str<strong>on</strong>g> cl<strong>in</strong>ical chemistry. 2 ndPhiladelphia; WB Saunders Company. 1994; 625-734.ed,140. Rock RC. Nitrogen metabolities and renal functi<strong>on</strong>. In: Ashwood ER.Tietz Text book <str<strong>on</strong>g>of</str<strong>on</strong>g> cl<strong>in</strong>ical chemistry. 47 thCompany Philadelphia. 1996; 1539-44.ed. WB Saunders141. Norbert W, Elizabeth L. Electrolytes. In: Carl A, Edward R. TietzText book <str<strong>on</strong>g>of</str<strong>on</strong>g> cl<strong>in</strong>ical chemistry 2 ndPhiladelphia. 1994; 1354-63.ed. WB Saunders Company142. Ste<strong>in</strong> A, Myers GL. Lipids, apolipoprote<strong>in</strong>s. Burtis AC, Ashwood ER(eds). In: Tietz Fundamentals <str<strong>on</strong>g>of</str<strong>on</strong>g> cl<strong>in</strong>ical chemistry. 47 thSaunders Company Philadelphia. 1996; 22: 375-401.ed. WB


References 139.143. Dacie JV, Lewis SM. Practical hematology. 7 tH ed.Ed<strong>in</strong>burgh,L<strong>on</strong>d<strong>on</strong>: Churchill Liv<strong>in</strong>gst<strong>on</strong>e.1991; 796-9.144. Wieland OH, et al. In: Methods <str<strong>on</strong>g>of</str<strong>on</strong>g> enzymatic analysis (Bergmyer HU,ed.), 1965; 3 rd editi<strong>on</strong>, vol VIII, VCH verlagsgesells chaft, We<strong>in</strong>heim,Deerfield Beach (Florida), pp.481-8.145. Bohmer T, et al. Cl<strong>in</strong> Chem Acta.1974; 57: 55-61.146. United states renal data system 2000 Annual data report, p 139.Acessed January 11, 2005.147. Eren C, Kulan K, Tuncer C, Bostan M, Mocan L. Cardiac arrythmias <strong>in</strong>patients <strong>on</strong> ma<strong>in</strong>tenance hemodialysis. Acta Cardiol. 1997;52: 25-36.148. Bloembergen W. Cariac disease <strong>in</strong> chr<strong>on</strong>ic uremia: epidemiology.Adv Ren Replace Ther. 1997; 4: 185-93.149. Senti M, Romero R, Pedro- Bolet J, Rubies- Prat J. Lipoprote<strong>in</strong>abnormalities <strong>in</strong> hyperlipidemic and normolipidemic men <strong>on</strong>hemodialysis with chr<strong>on</strong>ic renal failure. Kidney Int.1992; 41: 1394- 9.150. Gulewitsch W, Krimuberg R. Hoppe Seyler Z. Physiol Chem.1905;45: 326-30.151. Retter AS. Carnit<strong>in</strong>e and its role <strong>in</strong> cardiovascular disease. Heart Dis.1999; 1: 108-13.152. Evans AM, Faull RJ, Nati<strong>on</strong> RL, et al. Impact <str<strong>on</strong>g>of</str<strong>on</strong>g> hemodialysis <strong>on</strong>endogenous plasma and muscle <str<strong>on</strong>g>carnit<strong>in</strong>e</str<strong>on</strong>g> levels <strong>in</strong> patients with endstage renal disease. Kidney Int. 2004; 66: 1527-34.


References 140.153. Evans A. Dialysis related <str<strong>on</strong>g>carnit<strong>in</strong>e</str<strong>on</strong>g> disorder and levo<str<strong>on</strong>g>carnit<strong>in</strong>e</str<strong>on</strong>g>pharmacology. Am J Kidney Dis. 2003; 41(4 suppl 4): S13- S26.154. Romagnoli GF, Nasco A, Carraro G. Beneficial effects <str<strong>on</strong>g>of</str<strong>on</strong>g> L-carnir<strong>in</strong>e<strong>in</strong> dialysis patients with impaired left ventricular functi<strong>on</strong>. Curr MedRes Op<strong>in</strong>. 2002; 18: 172-5.155. Trovato GM, Inetti A, Murgo AM. Body compositi<strong>on</strong> andlevo<str<strong>on</strong>g>carnit<strong>in</strong>e</str<strong>on</strong>g> supplementati<strong>on</strong>. Cl<strong>in</strong> Ter. 1998; 149: 209-14.156. Khoss AE, Steger H, Legenste<strong>in</strong> E, et al. L-<str<strong>on</strong>g>carnit<strong>in</strong>e</str<strong>on</strong>g> therapy andmyocardial functi<strong>on</strong> <strong>in</strong> children treated with chr<strong>on</strong>ic hemodialysis.Wien Kl<strong>in</strong> Wochensch. 1989; 101: 17-20.157. Van ES A, Henny FC, Kooistra MP, LobattoS. Ameliorati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g>cardiac functi<strong>on</strong> by L-<str<strong>on</strong>g>carnit<strong>in</strong>e</str<strong>on</strong>g> adm<strong>in</strong>istrati<strong>on</strong> <strong>in</strong> patients <strong>on</strong>hemodialysis. C<strong>on</strong>trib Nephrol. 1992; 98: 28-35.158. Matsumoto Y, Sato M, Ohashi H, et al. <str<strong>on</strong>g>Effect</str<strong>on</strong>g>s <str<strong>on</strong>g>of</str<strong>on</strong>g> L-<str<strong>on</strong>g>carnit<strong>in</strong>e</str<strong>on</strong>g>supplementati<strong>on</strong> <strong>on</strong> cardiac morbidity <strong>in</strong> hemodialysis patients. Am JNephrol. 2000; 20: 201-7.159. Kurien VA, Yates PA, Oliven MF. The role <str<strong>on</strong>g>of</str<strong>on</strong>g> free fatty acids <strong>in</strong> theproducti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> ventricular arrythmias after acute cor<strong>on</strong>ary arteryoclussi<strong>on</strong>. Eur J Cl<strong>in</strong> Invest. 1971; 1: 225-41.160. Suzuki Y, Narita M, Yamazaki N. <str<strong>on</strong>g>Effect</str<strong>on</strong>g>s <str<strong>on</strong>g>of</str<strong>on</strong>g> L-<str<strong>on</strong>g>carnit<strong>in</strong>e</str<strong>on</strong>g> <strong>on</strong>arrythmias dur<strong>in</strong>g hemodialysis. Jpn Heart J 1982; 23: 349-59.161. McFalls E, Pauls<strong>on</strong> D, Gilbert E, Shut A. Carnit<strong>in</strong>e protecti<strong>on</strong> aga<strong>in</strong>stadriamc<strong>in</strong>-<strong>in</strong>duced cardiomyopathy <strong>in</strong> rats.Life Sci. 1985; 38: 497-505.


References 141.162. Andrieu-Abadie N, Jaffrezou J, Hatem S, t al. L-<str<strong>on</strong>g>carnit<strong>in</strong>e</str<strong>on</strong>g> preventsdoxorubic<strong>in</strong> –<strong>in</strong>duced apoptosis <str<strong>on</strong>g>of</str<strong>on</strong>g> cardiac myocytes: role <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>in</strong>hibiti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g>ceramide generati<strong>on</strong>. FASEBJ. 1999; 13: 1501-10.163. Kobayashi A, Fijisawa S. <str<strong>on</strong>g>Effect</str<strong>on</strong>g>s <str<strong>on</strong>g>of</str<strong>on</strong>g> L- <str<strong>on</strong>g>carnit<strong>in</strong>e</str<strong>on</strong>g> <strong>on</strong> mitoch<strong>on</strong>drialacyl co A esters <strong>in</strong> the ischemic dog heart. J mol Cell Cardiol. 1994;26: 499-508.164. Gadegbeku CA, LaPorte FB, Egan BM. Lipids enhance alpha Iadrenoreceptor- pressor sensitivity <strong>in</strong> patients with chr<strong>on</strong>ic kidneydisease. Am J Kidney Dis. 2004; 44: 446-54.165. Bartel LL, Hussey JL, Shrago E. <str<strong>on</strong>g>Effect</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> dailysis <strong>on</strong> serum <str<strong>on</strong>g>carnit<strong>in</strong>e</str<strong>on</strong>g>,free fatty acids and triglycerid levels <strong>in</strong> man and rat. Metabolism.1982; 31: 944-7.166. de Gomez Dumm NT, Touceda LA, Raim<strong>on</strong>di C. Lipid abnormalities<strong>in</strong> chr<strong>on</strong>ic renal failure patients undergo<strong>in</strong>g hemodialysis. Medic<strong>in</strong>a(B Aires). 2001; 61: 142-6.167. Maeda K, Sh<strong>in</strong>zato T, Kobayakawa H. <str<strong>on</strong>g>Effect</str<strong>on</strong>g>s <str<strong>on</strong>g>of</str<strong>on</strong>g> L-<str<strong>on</strong>g>carnit<strong>in</strong>e</str<strong>on</strong>g>adm<strong>in</strong>istrati<strong>on</strong> <strong>on</strong> short cha<strong>in</strong> fatty acid (acetic acid) and l<strong>on</strong>g cha<strong>in</strong> fattyacid metabolism dur<strong>in</strong>g hemodialysis.Nephr<strong>on</strong>.1989; 51: 355-61.168. Vesela E, Racek J, Trefil L, Pojer M. <str<strong>on</strong>g>Effect</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> L-<str<strong>on</strong>g>carnit<strong>in</strong>e</str<strong>on</strong>g>supplementati<strong>on</strong> <strong>in</strong> hemodialysis patients. Nephr<strong>on</strong>. 2001; 88: 218-23.169. Guarmieri GF, Ramieri F, Toigo G, et al. Lipid- lower<strong>in</strong>g effect <str<strong>on</strong>g>of</str<strong>on</strong>g><str<strong>on</strong>g>carnit<strong>in</strong>e</str<strong>on</strong>g> <strong>in</strong> chr<strong>on</strong>ically uremic patients treated with ma<strong>in</strong>tenancehemodialysis. Am J Cl<strong>in</strong> Nutr. 1980; 33: 1489-92.


References 142.170. Lacour B, Digiulo S, Chanard J, et al. Carnit<strong>in</strong>e improve lipidanomalies <strong>in</strong> hemodialysis patients. Lancet. 1980; 2: 763-4.171. Bertoli M, Batistella PA, Vergani L, et al. Carnit<strong>in</strong>e deficiency<strong>in</strong>duced dur<strong>in</strong>g hemodialysis and hyperlipidemia: effect <str<strong>on</strong>g>of</str<strong>on</strong>g>replacement therapy. Am J Cl<strong>in</strong> Nutr. 1981; 34: 1496-500.172. Vacha GM, Giorcelli G, Siliprandi N, Corsi M. Favorable effects <str<strong>on</strong>g>of</str<strong>on</strong>g>L-<str<strong>on</strong>g>carnit<strong>in</strong>e</str<strong>on</strong>g> treatment <strong>on</strong> hypertriglyceridemia <strong>in</strong> hemodialysispatients. AM J Cl<strong>in</strong> Nutr. 1983; 38: 532-40.173. Eschbach JW, Varma A, Stivelman JC. Is it time for a paradigm shift ?Is erythropoite<strong>in</strong> deficiency still the ma<strong>in</strong> cause <str<strong>on</strong>g>of</str<strong>on</strong>g> renal anemia ?Nephrol Dial Transplant. 2002; 17 (suppl 5): 2-7.174. Reddan DN, Frankenfield DL, Kasen PS, et al. Regi<strong>on</strong>al variability <strong>in</strong>anemia management and hemoglob<strong>in</strong> <strong>in</strong> the US.Nephrol DialTransplant. 2003; 18: 147-52.175. Ifudu O, Uribari J, Rajwani I, et al. Low hematocrit may c<strong>on</strong>nte amalnutriti<strong>on</strong> / <strong>in</strong>flammati<strong>on</strong> syndrome <strong>in</strong> hemodialysis patients. DialTransplant. 2002; 31: 845-8.176. Galluci MT, Lubrano R, Mel<strong>on</strong>i C, et al. Red blod cell membrane lipidperoxidati<strong>on</strong> and resistance to erythropoiet<strong>in</strong> therapy <strong>in</strong> hemodialysispatients. Cl<strong>in</strong> Nephrol. 1999; 52: 239-45.177. Ly J, Maticorena R, D<strong>on</strong>nelly S. Red blood cell survival <strong>in</strong> chr<strong>on</strong>icrenal failure. Am J Kidney Diss. 2004; 44: 715-9.178. Wu SG, Jeng FR, Wei Sy, et al. Red blood cell osmotic fragility <strong>in</strong>chr<strong>on</strong>ically hemodialysis patients. Nephr<strong>on</strong>. 1998; 78: 28-32.


References 143.179. Ibrahim FF, Ghannam MM, Ali FM. <str<strong>on</strong>g>Effect</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> dailysis <strong>on</strong> erythrocytemembrane <str<strong>on</strong>g>of</str<strong>on</strong>g> chr<strong>on</strong>ically hemodialysis patients. Renal Fail. 2002; 24:779-90.180. Vlassopoulos DA, Hadjiyannakos DK, Anogitis AG, et al. Carnit<strong>in</strong>eacti<strong>on</strong> <strong>on</strong> red blood cell osmotic resistance <strong>in</strong> hemodialysis patients. JNephrol. 2002; 15: 68-73.181. Sotirakopoulos N, Athamasiou G, Missirlis Y. <str<strong>on</strong>g>Effect</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> L- <str<strong>on</strong>g>carnit<strong>in</strong>e</str<strong>on</strong>g>supplementati<strong>on</strong> <strong>on</strong> red blood cells deformability <strong>in</strong> hemodialysispatients. Ren Fail. 2000; 22: 73-80.182. Trovato GM. L<strong>on</strong>g term L-<str<strong>on</strong>g>carnit<strong>in</strong>e</str<strong>on</strong>g> treatment <str<strong>on</strong>g>of</str<strong>on</strong>g> chr<strong>on</strong>ic anemia <str<strong>on</strong>g>of</str<strong>on</strong>g>patients with end stage renal failure. Curr Ther Res. 1982; 31: 1042-9.183. Caruso U, Le<strong>on</strong>e L, Nava D. <str<strong>on</strong>g>Effect</str<strong>on</strong>g>s <str<strong>on</strong>g>of</str<strong>on</strong>g> L-<str<strong>on</strong>g>carnit<strong>in</strong>e</str<strong>on</strong>g> <strong>on</strong> anemia <strong>in</strong> agedhemodialysis patients treated with recomb<strong>in</strong>ant human erythropoiet<strong>in</strong>.Dial Transplant. 1998; 27: 498-506.184. Vesela E, Racek J, Pojer M, Trefil L. <str<strong>on</strong>g>Effect</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> L-<str<strong>on</strong>g>carnit<strong>in</strong>e</str<strong>on</strong>g>supplementati<strong>on</strong> <strong>in</strong> hemodialysis patients. Nephr<strong>on</strong>. 2001; 88: 218-23.185. Matsumoto Y, Amano I, Hirose S, et al. <str<strong>on</strong>g>Effect</str<strong>on</strong>g>s <str<strong>on</strong>g>of</str<strong>on</strong>g> L-<str<strong>on</strong>g>carnit<strong>in</strong>e</str<strong>on</strong>g>supplementati<strong>on</strong> <strong>on</strong> renal anemia <strong>in</strong> poor resp<strong>on</strong>ders to erythropoiet<strong>in</strong>.Blood Purif. 2001; 19: 24-32.186. Hurot JM, Cucherat M, Haugh M, Fouque D. <str<strong>on</strong>g>Effect</str<strong>on</strong>g>s <str<strong>on</strong>g>of</str<strong>on</strong>g> L-<str<strong>on</strong>g>carnit<strong>in</strong>e</str<strong>on</strong>g>supplementati<strong>on</strong> <strong>in</strong> ma<strong>in</strong>tenance hemodialysis patients: a systemicreview. J Am Soc Nephrol. 2002; 13: 708-14.


-الملخص العربىتعتبر أمراض القلب من أهم أسباب الوفاة لدى مرضى الفشل الكلوى المزمن والمعاشينعلى الاستصفاء الدموى.‏هدف هذا البحث دراسة دور ل آارنتين فى مرضى الفشل الكلوى المزمن المعاشين علىالاستصفاء الدموى وعلاقته بمضاعفات القلب والأوعية الدموية لدى هؤلاء المرضى.‏وقد اشتمل هذا البحث على 60 شخص آالآتى:‏المجموعة الأولى:‏ اشتملت علىبالعلاج التحفظى,‏1040مرضى يعانون من قصور فى وظائف الكلى ويعالجونالمجموعة الثانية:‏ اشتملت على مريض يعانون من فشل آلوى مزمن ويعالجون بالاستصفاءالدموى لمدة أآثر من6 شهور.‏وانقسمت هذه المجموعة إلى مجموعتين فرعيتين:‏–اشتملت هذه المجموعة على 20 مريض يعانون من فشل آلوى مزمن ومعاشين علىالاستصفاء الدموى وتم علاجهم بأقراص ل آارنتين 1 جم فى اليوم ولمدة6 شهور.‏•–•اشتملت هذه المجموعة على 20 مريض يعانون من فشل آلوى مزمن ومعاشين علىالاستفصاء الدموى ولم يتم علاجهم با ل آارنتين.‏المجموعة الثالثة:‏ اشتملت على–10أشخاص أصحاء وهى المجموعة الضابطة.‏تم أخذ التاريخ المرضى للمرضى وعمل فحص شامل وعمل تحليلات روتينية آاملة لكلمن شملتهم الدراسة مع قياس مستوى ل آارنتين بالدم ومستوى الدهون بالدم وآذلك عمل موجاتفوق صوتية على القلب.‏


أسفرت النتائج فى الدراسة عن الآتي:‏أظهرت الدراسة أن آلاً‏ من المجموعتين الثانية ‏[مرضى الفشل الكلوى المعاشين على‏[مرضى الفشل الكلوىالاستصفاء الدموى والذين لم يعالجوا با ل آارنتين]‏المعاشين على الاستصفاء الدموى قبل علاجهم با ل آارنتين]‏ بها اختلافات عن المقاييس الطبيعيةفى فحص القلب بالموجات وآذلك انخفاض بمستوى ل آارنتين بالدم وذلك قد يفسر أنالاستصفاء الدموى المتكرر يقلل من مستوى ل آارنتين بالدم وهو ما قد يفسر العلاقة بين ارتفاعمعدلات الإصابة والوفاة بأمراض القلب والأوعية الدموية وانخفاض مستوى ل آارنتين بالدم فىمرضى الفشل الكلوى المزمن المعاشين على الاستصفاء الدموى.‏–bوالثانية II as1–––––آما أظهرت الدراسة أن المجموعة الضابطة ‏(الثالثة)‏ لا توجد بها فروق ذات دلالةإحصائية مع المجموعة الثانية II as2 ‏[مرضى الفشل الكلوى المعاشين على الاستصفاء الدموىبعد علاجهك با ل آارنتين]‏ من حيث مستوى ل-‏ آارنتين فى الدم وآذلك من ناحية فحص القلببالموجات الصوتية.‏آذلك أظهرت هذه الدراسة أنه لا يوجد اختلاف معنوى فى مستوى الدهون فى الدم بين‏[مرضى الفشل الكلوى المعاشين على الاستصفاء الدموى والذين لم يعالجوا با لآارنتين]‏ ‏[مرضى الفشل الكلوى المعاشين على الاستصفاء الدموى قبل علاجهم با لآارنتين]‏ حيث أن آلتا المجموعتين من المرضى يعانون من ارتفاع مستوى الدهون بالدم بينما‏[مرضى الفشل الكلوى المعاشينيوجد اختلاف معنوى بين هاتين المجموعتينعلى الاستصفاء الدموى بعد علاجهم با ل – آارنتين]‏ والمجموعة الضابطة حيث آان مستوىالدهون بالدم أقل فى المجموعتين الأخيرتين مما يشير إلى احتمال وجود علاقة بين انخفاض مستوىآارنتين بالدم وارتفاع مستوى الدهون.‏والمجموعة IIas2Iالمجموعتين II b– و II as1–ل –وأظهرت الدراسةأيضاً‏ عدم وجود فروق معنوية فى مستوى الهيموجلوبين أو نسبة‏[مرضى القصور الكلوى المعالجون بالعلاج التحفظى]‏هيماتوآريت بين آل من المجموعة ‏[مرضى الفشل الكلوى المعاشين على الاستصفاء الدموى والذين لم يعالجوا با‏[مرضى الفشل الكلوى المعاشين على الاستصفاء الدموى قبلآارنتين]‏ل آارنتين]‏ وذلك يشير إلى تأثير مرض الفشل الكلوى والاستصفاء الدموى المتكررعلاجهم با ل على مستوى الهيموجلوبين بينما فى نفس الوقت هناك فرق معنوى بين هذه المجموعاتوالمجموعة الضابطة فى مستوى الهيموجلوبين بالدم مما قد يشير إلى العلاقةبين انخفاض مستوى ل – آارنتين بالدم والأنيميا فى مرضى الفشل الكلوى المعاشين علىالاستصفاء الدموى المتكرروالمجموعة IIb– والمجموعة IIas1–والمجموعة IIas2ويستخلص من الدراسة أهمية الحفاظ على مستوى ل ‏–آارنتين بالدم فى المعدلات الطبيعيةلتجنب المضاعفات الناتجة عن انخفاض مستوى ل – آارنتين فى مرضى الفشل الكلوى المزمنالمعاشين على الاستصفاء الدموى المتكرر.‏

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!