12.07.2015 Views

Influence of the Outer Surface Layers of Crystals on the X-Ray ...

Influence of the Outer Surface Layers of Crystals on the X-Ray ...

Influence of the Outer Surface Layers of Crystals on the X-Ray ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Author manuscript, published in "Clays and Clay Minerals 52, 6 (2004) 680-692"DOI : 10.1346/ccmn.2004.0520602<str<strong>on</strong>g>Influence</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>Outer</str<strong>on</strong>g> <str<strong>on</strong>g>Surface</str<strong>on</strong>g> <str<strong>on</strong>g>Layers</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Crystals</str<strong>on</strong>g> <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> X-<strong>Ray</strong>Diffracti<strong>on</strong> Intensity <str<strong>on</strong>g>of</str<strong>on</strong>g> Basal Reflecti<strong>on</strong>sBoris A. Sakharov 1Alain Planç<strong>on</strong> 2Bruno Lans<strong>on</strong> 3,*Victor A. Drits 11 – Geological Institute, Russian Academy <str<strong>on</strong>g>of</str<strong>on</strong>g> Sciences, 7 Pyzhevsky street, 119017hal-00193925, versi<strong>on</strong> 1 - 5 Dec 2007Moscow, Russia.2 – Crystallography Laboratory, ISTO, University <str<strong>on</strong>g>of</str<strong>on</strong>g> Orléans - CNRS, 45067 OrléansCedex 2, France.3 – Envir<strong>on</strong>mental Geochemistry Group, LGIT – Mais<strong>on</strong> des GéoSciences, CNRS –University <str<strong>on</strong>g>of</str<strong>on</strong>g> Grenoble, 38041 Grenoble Cedex 9, France.* Author to whom corresp<strong>on</strong>dence should be addressed.e-mail: bruno.lans<strong>on</strong>@obs.ujf-grenoble.fr


2AbstractThis study presents a ma<str<strong>on</strong>g>the</str<strong>on</strong>g>matical formalism describing diffracti<strong>on</strong> effects fromperiodic and mixed-layer minerals in which <str<strong>on</strong>g>the</str<strong>on</strong>g> outer surface layers <str<strong>on</strong>g>of</str<strong>on</strong>g> crystals differ fromlayers forming <str<strong>on</strong>g>the</str<strong>on</strong>g> core <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> crystals. XRD patterns calculated for structure models <str<strong>on</strong>g>of</str<strong>on</strong>g> chloriteand irregular chlorite-smectites terminated <strong>on</strong> both sides <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> crystals by ei<str<strong>on</strong>g>the</str<strong>on</strong>g>r brucite-like or2:1 layers show <str<strong>on</strong>g>the</str<strong>on</strong>g> str<strong>on</strong>g influence that different outer surface layers make <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> distributi<strong>on</strong><str<strong>on</strong>g>of</str<strong>on</strong>g> basal reflecti<strong>on</strong> intensities. Simulati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> experimental XRD patterns from two chloritesamples having different Fe-c<strong>on</strong>tent shows that in <str<strong>on</strong>g>the</str<strong>on</strong>g>se two samples <str<strong>on</strong>g>the</str<strong>on</strong>g> chlorite crystals wereterminated by brucite-like layers <strong>on</strong> both sides. In c<strong>on</strong>trast, crystals in a corrensite sample werehal-00193925, versi<strong>on</strong> 1 - 5 Dec 2007terminated by water molecules and exchangeable cati<strong>on</strong>s. The nature <str<strong>on</strong>g>of</str<strong>on</strong>g> diffracti<strong>on</strong> effects dueto outer surface layers is discussed.INTRODUCTIONMixed-layer structures (MLSs) are remarkable examples <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>on</strong>e-dimensi<strong>on</strong>al orderdisordercomm<strong>on</strong>ly observed in lamellar crystals. They are composed <str<strong>on</strong>g>of</str<strong>on</strong>g> layers with differentstacking sequences and compositi<strong>on</strong>s that alternate in variable proporti<strong>on</strong>s and with differentdistributi<strong>on</strong>s. Interstratificati<strong>on</strong> effects have been found in structures <str<strong>on</strong>g>of</str<strong>on</strong>g> various natural andsyn<str<strong>on</strong>g>the</str<strong>on</strong>g>tic compounds: layer silicates, phyllomanganates, hydrotalcites and syn<str<strong>on</strong>g>the</str<strong>on</strong>g>tic layereddouble hydroxides, sulfides, high-temperature superc<strong>on</strong>ductors, intercalated graphites, ando<str<strong>on</strong>g>the</str<strong>on</strong>g>r lamellar compounds. In natural envir<strong>on</strong>ments, interlayering is especially widespreadam<strong>on</strong>g clay minerals (phyllosilicates) which differ in <str<strong>on</strong>g>the</str<strong>on</strong>g> type <str<strong>on</strong>g>of</str<strong>on</strong>g> interstratified layers and in<str<strong>on</strong>g>the</str<strong>on</strong>g>ir stacking sequences. Two categories may be singled out depending <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g>interstratified layer types: first, regular structures in which different layer types alternateperiodically al<strong>on</strong>g <str<strong>on</strong>g>the</str<strong>on</strong>g> c* axis and, sec<strong>on</strong>d, irregular MLSs in which different layer types mayei<str<strong>on</strong>g>the</str<strong>on</strong>g>r alternate at random or tend to some sort <str<strong>on</strong>g>of</str<strong>on</strong>g> ordering or segregati<strong>on</strong>.


3C<strong>on</strong>venti<strong>on</strong>al X-ray diffracti<strong>on</strong> (XRD) methods are unsuitable for <str<strong>on</strong>g>the</str<strong>on</strong>g> structural study <str<strong>on</strong>g>of</str<strong>on</strong>g>irregular MLSs because <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>ir n<strong>on</strong>-periodic structures, and indirect methods based <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g>simulati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> XRD patterns for different MLS models have been developed. In particular, amatrix formalism has been developed to describe <str<strong>on</strong>g>the</str<strong>on</strong>g> intensity diffracted by a set <str<strong>on</strong>g>of</str<strong>on</strong>g> crystalsc<strong>on</strong>taining different layer types both for basal and hkl reflecti<strong>on</strong>s (Kakinoki and Komura,1952, 1954a, b, 1965; Drits and Sakharov, 1976; Planç<strong>on</strong> and Tchoubar, 1976; Planç<strong>on</strong>, 1981,2002; Sakharov et al., 1982a, b). In <str<strong>on</strong>g>the</str<strong>on</strong>g>se works it has been systematically assumed that <str<strong>on</strong>g>the</str<strong>on</strong>g>layers c<strong>on</strong>stituting <str<strong>on</strong>g>the</str<strong>on</strong>g> outer surfaces <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> crystals are identical to those in <str<strong>on</strong>g>the</str<strong>on</strong>g> core <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>crystals.hal-00193925, versi<strong>on</strong> 1 - 5 Dec 2007Ano<str<strong>on</strong>g>the</str<strong>on</strong>g>r approach for calculati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> XRD patterns from mixed-layer clay minerals wasdeveloped by Reynolds (1967, 1980). It is based <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> direct summati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>tributi<strong>on</strong>sto diffracted intensity coming from waves scattered by all possible layer subsequences existingin <str<strong>on</strong>g>the</str<strong>on</strong>g> mixed-layer crystals. In <str<strong>on</strong>g>the</str<strong>on</strong>g> derived algorithm it was assumed that mixed-layer illitesmectitesand chlorite-smectites always end <strong>on</strong> 2:1 layers. Thus, nei<str<strong>on</strong>g>the</str<strong>on</strong>g>r formalism can accountfor <str<strong>on</strong>g>the</str<strong>on</strong>g> possibility that in natural envir<strong>on</strong>ments <str<strong>on</strong>g>the</str<strong>on</strong>g> structure and compositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> surface layers<str<strong>on</strong>g>of</str<strong>on</strong>g> crystals may differ from those <str<strong>on</strong>g>of</str<strong>on</strong>g> “core” layers. However, according to high-resoluti<strong>on</strong>transmissi<strong>on</strong> electr<strong>on</strong> microscopy (HRTEM) illite crystals c<strong>on</strong>sisting <str<strong>on</strong>g>of</str<strong>on</strong>g> 2:1 layers mayterminate <strong>on</strong> a 1:1 kaolinite layer (Tsipursky et al., 1992) whereas kaolinite crystals may havepyrophyllite or smectite 2:1 layers as surface terminati<strong>on</strong>s (Ma and Egglet<strong>on</strong>, 1999).This article proposes a ma<str<strong>on</strong>g>the</str<strong>on</strong>g>matical formalism to simulate XRD patterns from periodicand irregular two-comp<strong>on</strong>ent mixed-layer crystals having any kind <str<strong>on</strong>g>of</str<strong>on</strong>g> outer surface layers(OSLs). Two useful applicati<strong>on</strong>s may be related to this formalism. First, it allows estimating<str<strong>on</strong>g>the</str<strong>on</strong>g> effect <str<strong>on</strong>g>of</str<strong>on</strong>g> OSLs <strong>on</strong> diffracted intensity and taking it into account during simulati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>experimental XRD patterns; sec<strong>on</strong>d, determinati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> nature <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> microcrystal outersurfaces is essential to <str<strong>on</strong>g>the</str<strong>on</strong>g> study <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>ir surface properties.


4THEORYAmplitude and intensity diffracted by a crystal c<strong>on</strong>sisting <str<strong>on</strong>g>of</str<strong>on</strong>g> N layersThe amplitude diffracted by a layer can be expressed as <str<strong>on</strong>g>the</str<strong>on</strong>g> product <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> layerstructure factor F i , and <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> shape factor D. Therefore, <str<strong>on</strong>g>the</str<strong>on</strong>g> amplitude diffracted by a crystalis:r N r rr rA(s) = ∑ F (s) exp( −2πisr)D(s)j=1joj(1)wherersis <str<strong>on</strong>g>the</str<strong>on</strong>g> diffusi<strong>on</strong> vector.rojdefines <str<strong>on</strong>g>the</str<strong>on</strong>g> positi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> j th layer relative to an arbitraryorigin, and N is <str<strong>on</strong>g>the</str<strong>on</strong>g> number <str<strong>on</strong>g>of</str<strong>on</strong>g> layers in <str<strong>on</strong>g>the</str<strong>on</strong>g> crystal. Note that all layers have <str<strong>on</strong>g>the</str<strong>on</strong>g> same D( r s)andhal-00193925, versi<strong>on</strong> 1 - 5 Dec 2007this term will be omitted in <str<strong>on</strong>g>the</str<strong>on</strong>g> following developments. In this case, <str<strong>on</strong>g>the</str<strong>on</strong>g> intensity diffracted bya crystal is:whererF * k(s)r rI(s) = A(s)A*r N(s) = ∑j=1N r∑ F (s)Fk=1is <str<strong>on</strong>g>the</str<strong>on</strong>g> complex amplitude c<strong>on</strong>jugate <str<strong>on</strong>g>of</str<strong>on</strong>g>This double summati<strong>on</strong> can be transformed as:j*kr r(s)exp( −2πis(rrF k(s) .N rN−1* r r * r rr* r r rr∑F(s)F (s) + ∑[ F (s)F (s) exp( −2πisr) + F (s)F (s)exp(2πisr]+j=1j jj j+1j, j+1 j j+1j, j+1)j=1oj− rok))(2)N−2∑j=1r * r rr* r r rr[ F (s)F (s) exp( −2πisr) + F (s)F (s) exp(2πisr)] + +jj+ 2j, j+2 j j+2j, j+2......r * r rr * r r rr[ F (s)F (s)exp( − 2πisr) + F (s)F (s)exp(2πisr)]1N1,N1N1, N(3)becomes:At a fixed j value, <str<strong>on</strong>g>the</str<strong>on</strong>g> two terms in each bracket are c<strong>on</strong>jugates, and equati<strong>on</strong> (3)N rN 1Nn* r− − r * r rr∑ Fj(s)Fj(s) + 2 Re ∑∑F j(s)Fj+n(s)exp( −2πisrj=1n=1 j=1j, j+n)(4)where Re is <str<strong>on</strong>g>the</str<strong>on</strong>g> real part <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> terms in <str<strong>on</strong>g>the</str<strong>on</strong>g> double summati<strong>on</strong>.As can be seen in equati<strong>on</strong> (3) <str<strong>on</strong>g>the</str<strong>on</strong>g> development <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> double summati<strong>on</strong> leads to Nterms corresp<strong>on</strong>ding to structure factors <str<strong>on</strong>g>of</str<strong>on</strong>g> individual layers in <str<strong>on</strong>g>the</str<strong>on</strong>g> crystal and to 2(N-n) terms


5corresp<strong>on</strong>ding to <str<strong>on</strong>g>the</str<strong>on</strong>g> product <str<strong>on</strong>g>of</str<strong>on</strong>g> structure factors <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> first and final layers in all possible(n+1) layer subsequences. Each product is multiplied by <str<strong>on</strong>g>the</str<strong>on</strong>g> corresp<strong>on</strong>ding phase term whichtakes into account <str<strong>on</strong>g>the</str<strong>on</strong>g> phase difference <str<strong>on</strong>g>of</str<strong>on</strong>g> waves scattered by <str<strong>on</strong>g>the</str<strong>on</strong>g> terminal layers in each <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>(n+1) layer subsequences. As follows from equati<strong>on</strong> (3), n varies from 0 to N-1 and equati<strong>on</strong>(3) thus c<strong>on</strong>sists <str<strong>on</strong>g>of</str<strong>on</strong>g>:- N terms for n=0 (j=1, 2, …, N)- 2(N-1) terms for n=1 (j=1, 2, …, N)- and 2(N-n) terms for a given n th neighbour <str<strong>on</strong>g>of</str<strong>on</strong>g> a layer (2 ≤ n ≤ N-1).The intensity diffracted by a set <str<strong>on</strong>g>of</str<strong>on</strong>g> M crystals each c<strong>on</strong>taining N layers can be written:hal-00193925, versi<strong>on</strong> 1 - 5 Dec 2007The calculati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g>rInt( s) =Int( s)rrr12MM[ I(s) ] + [ I(s) ] + ... + [ I(s) ] = [ I(s) ] mr∑m=1requires knowing <str<strong>on</strong>g>the</str<strong>on</strong>g> nature <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> layers at each level <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>crystal and for all crystals. Obviously this is never possible and intensity calculati<strong>on</strong>s should becarried out for models characterized by average structural parameters. As in previous works(Kakinoki and Komura, 1965; Drits and Sakharov, 1976; Planç<strong>on</strong> and Tchoubar, 1976;Planç<strong>on</strong>, 1981; Sakharov et al., 1982a, b) it is assumed in <str<strong>on</strong>g>the</str<strong>on</strong>g> present study that <str<strong>on</strong>g>the</str<strong>on</strong>g> layer typedistributi<strong>on</strong>s in powdered mixed-layer samples obey Markovian statistics.An important parameter in this model is <str<strong>on</strong>g>the</str<strong>on</strong>g> short-range order factor R defined as <str<strong>on</strong>g>the</str<strong>on</strong>g>r(5)number <str<strong>on</strong>g>of</str<strong>on</strong>g> preceding layers that influence <str<strong>on</strong>g>the</str<strong>on</strong>g> occurrence probability for a final layer <str<strong>on</strong>g>of</str<strong>on</strong>g> a giventype. If two layer types, A and B, alternate with R=1, <str<strong>on</strong>g>the</str<strong>on</strong>g>n six probability parameters (W A , W B ,P AA , P AB , P BA , P BB ) are necessary to describe <str<strong>on</strong>g>the</str<strong>on</strong>g> layer stacking sequence. W j is <str<strong>on</strong>g>the</str<strong>on</strong>g> occurrenceprobability for layers <str<strong>on</strong>g>of</str<strong>on</strong>g> type j, P jk is <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>diti<strong>on</strong>al probability <str<strong>on</strong>g>of</str<strong>on</strong>g> a layer type k following alayer type j (j,k = A,B). Using this set <str<strong>on</strong>g>of</str<strong>on</strong>g> probability parameters <str<strong>on</strong>g>the</str<strong>on</strong>g> occurrence probability forany layer subsequence can be easily calculated for a given R value. For example, when R=1:W AA = W A P AA , W AB = W A P AB , W ABA = W A P AB P BA , etcIn additi<strong>on</strong>:


6∑ W = , ∑ P = , and ∑ W P = W (j,k = A,B) (6)jj1kjk1To fur<str<strong>on</strong>g>the</str<strong>on</strong>g>r develop equati<strong>on</strong> (3) let us c<strong>on</strong>sider at first <str<strong>on</strong>g>the</str<strong>on</strong>g> term with n=1, <str<strong>on</strong>g>the</str<strong>on</strong>g>n n = 2,<str<strong>on</strong>g>the</str<strong>on</strong>g>n deduce a general term for 1 ≤ n ≤ N-2, and finally calculate <str<strong>on</strong>g>the</str<strong>on</strong>g> two particular cases withn = 0 and n = N-1.jjjkkC<strong>on</strong>tributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> 1 st neighbor term, T 1 , to <str<strong>on</strong>g>the</str<strong>on</strong>g> diffracted intensity. Let us assume that <str<strong>on</strong>g>the</str<strong>on</strong>g>“core” <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> crystals (i.e. apart from <str<strong>on</strong>g>the</str<strong>on</strong>g> OSLs) c<strong>on</strong>sist <str<strong>on</strong>g>of</str<strong>on</strong>g> A and B layers and that N c = N-2 is<str<strong>on</strong>g>the</str<strong>on</strong>g> number <str<strong>on</strong>g>of</str<strong>on</strong>g> layers in <str<strong>on</strong>g>the</str<strong>on</strong>g> “core” <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> crystal. A' and B' represent <str<strong>on</strong>g>the</str<strong>on</strong>g> type <str<strong>on</strong>g>of</str<strong>on</strong>g> layers <strong>on</strong> <strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g><str<strong>on</strong>g>the</str<strong>on</strong>g> outer surfaces (j = 1) and A'' and B'' <str<strong>on</strong>g>the</str<strong>on</strong>g> layer types <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> o<str<strong>on</strong>g>the</str<strong>on</strong>g>r outer surface (j = N). Thehal-00193925, versi<strong>on</strong> 1 - 5 Dec 2007c<strong>on</strong>tributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> all layer pairs in <str<strong>on</strong>g>the</str<strong>on</strong>g> crystal is <str<strong>on</strong>g>the</str<strong>on</strong>g>n:1[ ] mr rT ∑ −rrM N−*1= 2Re ∑ Fj(s)Fj+1(s)exp(2πisrj,j+1)m=1 j=1which is <str<strong>on</strong>g>the</str<strong>on</strong>g> sum <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>tributi<strong>on</strong>s from all layer pairs in <str<strong>on</strong>g>the</str<strong>on</strong>g> cores <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> crystals as well asfrom layer pairs formed by each OSL with <str<strong>on</strong>g>the</str<strong>on</strong>g> o<str<strong>on</strong>g>the</str<strong>on</strong>g>r layers <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> crystals. Using <str<strong>on</strong>g>the</str<strong>on</strong>g> Markovianstatistics <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>tributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> “core” layer pairs can be represented as:****( N 1)( W F F ϕ + W F F ϕ + W F F ϕ + W F F )2M Re − ϕ (8)CAAAAAAABr r rrr rwhere ϕjk= exp( −2πis(roj−ok)) = exp( −2πistjk) and tjkare <str<strong>on</strong>g>the</str<strong>on</strong>g> translati<strong>on</strong>s relating j- and k-ABABBABABABBBBBB(7)type layers (j,k = A,B).To obtain <str<strong>on</strong>g>the</str<strong>on</strong>g> total term T 1 , c<strong>on</strong>tributi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> two OSLs should be added:T = 2M Re****[ W ' F ' FAϕ ' + W ' F ' FA A A B A Bϕ' + W ' F ' FA A AA B B A B Aϕ' + W ' F ' FB A B B B BϕBB1 '****( N −1)( W F F ϕ + W F F ϕ + W F F ϕ + W F F ϕ )+ (9)CAAAAAAABABABBABABABBBBBB+ WAA''FAF*A''ϕAA''+ WAB''FAF*B''ϕAB''+ WBA''FBF*A''ϕBA''+ WBB''FBF*B''ϕBB'']In additi<strong>on</strong>, occurrence probability and phase terms <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> A'A layer pairs are identicalto that <str<strong>on</strong>g>of</str<strong>on</strong>g> AA layer pairs (<str<strong>on</strong>g>the</str<strong>on</strong>g> A' layer is merely a “scratched” or “covered” A layer) so that


W A'A = W AA . The same is true for A'B and AB, B'A and BA, B'B and BB, for AA'' and AA,AB'' and AB, BA'' and BA, and for BB'' and BB. Then,7T****1= 2M Re[ WAAF' FAϕAA+ WAABF' FA BϕAB+ WBAF' FB AϕBA+ WBBF' FB BϕBB****( N −1)( W F F ϕ + W F F ϕ + W F F ϕ + W F F ϕ )+ (10)CAAAAAAABABABBABABABBBBBB+ WAAFAF*''AϕAA+ WABFAF*B''ϕAB+ WBAFBF*A''ϕBA+ WBBFBF*''BϕBB]Thus, <str<strong>on</strong>g>the</str<strong>on</strong>g> term T 1 can be presented using <str<strong>on</strong>g>the</str<strong>on</strong>g> matrix formalism proposed by differentauthors (Drits and Sakharov, 1976; Planç<strong>on</strong> and Tchoubar, 1976; Planç<strong>on</strong>, 1981, Sakharov etal., 1982a) for crystals without specific outer surfaces.T 1 = 2 M Spur(Re((Φ 1C + (N C -1)Φ CC + Φ CN )WQ 1 )) (11)hal-00193925, versi<strong>on</strong> 1 - 5 Dec 2007where matrices <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> sec<strong>on</strong>d rank Φ 1C , Φ CC , Φ CN , W and Q are presented as:* ** *⎛F' F ⎞AF ' FA⎛F⎞Φ 1C = ⎜ A B ⎟AFAFBFAΦ* *CC = ⎜ ⎟ Φ⎝ F ' FA BF ' F* *B B ⎠ ⎝ FAFBFBFB⎠⎛ WA0 ⎞ ⎛pW = ⎜ ⎟ Q = ⎜⎝ 0 WB⎠ ⎝ pAABAϕϕAABAppABBBCN =ϕϕABBB⎛FAF⎜⎝ FAF⎞⎟⎠*''A*''BFFF*B ''A*BF''Bwhere <str<strong>on</strong>g>the</str<strong>on</strong>g> subscript C refers to layers in <str<strong>on</strong>g>the</str<strong>on</strong>g> “core” <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> crystals, 1 refers to <str<strong>on</strong>g>the</str<strong>on</strong>g> first (i.e. <strong>on</strong>e<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> outer surfaces) and N to <str<strong>on</strong>g>the</str<strong>on</strong>g> N th layer (i.e <str<strong>on</strong>g>the</str<strong>on</strong>g> o<str<strong>on</strong>g>the</str<strong>on</strong>g>r outer surface).⎞⎟⎠(12)C<strong>on</strong>tributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> 2 nd neighbor terms, T 2 , to <str<strong>on</strong>g>the</str<strong>on</strong>g> diffracted intensity. The term T 2 whichincludes <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>tributi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> all layer triplets in <str<strong>on</strong>g>the</str<strong>on</strong>g> crystals is equal to:T= 2Re[2[ ] mr rT ∑ −rrM N−*2= 2Re ∑ Fj(s)Fj+2(s)exp 2πisrj,j+2m=1 j=1or (13)****{ W ' F ' FAϕ ' + W ' F ' FA AA A BA A Aϕ' + W ' F ' FA AA AA BA A AB A Bϕ' + W ' F ' FA AB A BB A BϕABB2 '+ WB'AAFB'+(N c -2) [ WBAAF*AAAABϕF*AAB'AAF*A+ WϕBAAAAAB'BAF+ WBBAB'FABAB*AF*AϕAB'BAF*ABBAϕ+ WABAB'AB+ WBABFB'AABBF*BF*BϕAFB'AB*BBABϕ+ WAABB'BB+ WBBBFB'ABBB*BFF*BAϕFB'BB]+ W F F ϕ + W F F ϕ + W F F ϕ + W F F ϕ (14)*BϕBBB]ABB


8****+ [ W '' F F '' ϕ '' + W '' F F '' ϕ '' + W '' F F '' ϕ '' + W '' F F '' ϕ "AAA+ WBAA"AAF F*B "AϕAAABAA''+ WABABBA''AF FA*B ''AϕABABBA''+ WAABBAB''ABF F ϕ*B ''BBABAAB''+ WBBBABB"A*B ''BBF F ϕAs for T 1 , <str<strong>on</strong>g>the</str<strong>on</strong>g> term T 2 can also be expressed using <str<strong>on</strong>g>the</str<strong>on</strong>g> matrix formalism:T 2 = 2 M Spur(Re((Φ 1C + (N C -2)Φ CC + Φ CN )WQ 2 )) (15)BBB''ABB]}C<strong>on</strong>tributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> n th neighbor term, T n (1 ≤ n ≤ N-2), to <str<strong>on</strong>g>the</str<strong>on</strong>g> diffracted intensity. This term canbe obtained recursively and may be expressed as:T n = 2 M Spur(Re((Φ 1C + (N C -n)Φ CC + Φ CN )WQ n )) (16)hal-00193925, versi<strong>on</strong> 1 - 5 Dec 2007C<strong>on</strong>tributi<strong>on</strong> to <str<strong>on</strong>g>the</str<strong>on</strong>g> diffracti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> (N-1) th neighbor term. This term involves <strong>on</strong>ly <str<strong>on</strong>g>the</str<strong>on</strong>g> layers<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> two outer surfaces:T N-1 = 2 M Spur(Re(Φ 1N WQ N-1 )) (17)**⎛F' F '' F ' F ''⎞with Φ 1N = ⎜ A A B A ⎟ .**' '' ' ''⎝ F F F FA B B B ⎠C<strong>on</strong>tributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> 0 th neighbor term, T 0 , to <str<strong>on</strong>g>the</str<strong>on</strong>g> diffracted intensity. This term describes <str<strong>on</strong>g>the</str<strong>on</strong>g>c<strong>on</strong>tributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> individual layers without interacti<strong>on</strong>s with neighboring layers.T 0 = M Spur(Re((Φ 11 + N C Φ CC + Φ NN )W)) (18)⎛F' Fwith Φ 11 = ⎜ A⎝ 0*'AF0'BF*'B*⎞ ⎛F'' F '' 0 ⎞⎟ , and ΦNN = ⎜ A A ⎟ .*'' ''⎠ ⎝ 0 F FB B ⎠Grouping all terms toge<str<strong>on</strong>g>the</str<strong>on</strong>g>r. Summing up all <str<strong>on</strong>g>the</str<strong>on</strong>g> above T n terms, <str<strong>on</strong>g>the</str<strong>on</strong>g> intensity equati<strong>on</strong>becomes:


Int⎛⎜⎝⎛⎜⎝9⎞⎞11 C CC NN ∑ 1C C CC CN1N ⎟⎟ n=1⎠N CnN−1() s = MSpur Re ( φ + N φ + φ ) W + 2 ( φ + ( N − n)φ + φ ) WQ + 2φWQ (19)If <str<strong>on</strong>g>the</str<strong>on</strong>g> layers <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> outer surfaces are <str<strong>on</strong>g>the</str<strong>on</strong>g> same as those <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> core <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> crystals (i.e.A'≡A≡A'' and B'≡B≡B''), <str<strong>on</strong>g>the</str<strong>on</strong>g>n <str<strong>on</strong>g>the</str<strong>on</strong>g> intensity equati<strong>on</strong> is simplified because Φ 11 = Φ CC = Φ NN =Φ 1C = Φ CN = Φ 1N = Φ and becomes, as described earlier (Drits and Sakharov, 1976; Planç<strong>on</strong>and Tchoubar, 1976; Planç<strong>on</strong>, 1981, 2003; Sakharov et al., 1982a):⎛N−1⎞()⎛⎜⎛ns = MSpur Re φWNE + 2 ( N − n) Q⎞⎞⎟⎠Int r ⎜ ⎜ ∑ ⎟⎟, (20)⎝ ⎝ ⎝n=1 ⎠⎠where E is <str<strong>on</strong>g>the</str<strong>on</strong>g> unit matrix.The average intensity diffracted by a crystal c<strong>on</strong>sisting <str<strong>on</strong>g>of</str<strong>on</strong>g> N layers is thus equal to⎠hal-00193925, versi<strong>on</strong> 1 - 5 Dec 2007____r rInt(s) = Int(s) / M .If <str<strong>on</strong>g>the</str<strong>on</strong>g> range <str<strong>on</strong>g>of</str<strong>on</strong>g> interacti<strong>on</strong> between layers is greater than 1 <str<strong>on</strong>g>the</str<strong>on</strong>g> basis <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> formalismremains <str<strong>on</strong>g>the</str<strong>on</strong>g> same, but <str<strong>on</strong>g>the</str<strong>on</strong>g> rank <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> matrices increases as explained by Drits and Sakharov(1976), Planç<strong>on</strong> (1981), Sakharov et al. (1982a), and Drits and Tchoubar (1990). In particular,for a two-comp<strong>on</strong>ent MLS with R=2 <str<strong>on</strong>g>the</str<strong>on</strong>g> matrices are:⎛ WAA⎞⎜⎟⎜ WAB⎟W = ⎜⎟ ,(21)WBA⎜⎟⎝WBB⎠⎛PAAAϕAAPAABϕAA⎞⎜⎟⎜PABAϕABPABBϕAB⎟Q = ⎜⎟ ,PBAAϕBAPBABϕBA⎜⎟⎝PBBAϕBBPBBBϕBB⎠(22)ΦCC⎛FAF⎜⎜FAF= ⎜⎜FAF⎝ FAF*A*A*B*BFF*A A*AFA*AFB*AFBFFFF FF*B A*BFA*BFB*BFBFF*F ⎞BFA⎟*FBFA⎟* ⎟ , (23)FBFB⎟*FBFB⎠


10Φ1C⎛F' F⎜ A⎜F' FA= ⎜⎜F ' FA⎝ F ' FA*A*A*B*BFF'A'AFF'A'AFF*A*A*B*BFFFF'B'BFF'B'BFF*A*A*B*BFF*F ' F ⎞B A⎟*F ' F ⎟B A* ⎟ , (24)F ' FB B ⎟*F F'B B ⎠ΦCN⎛FAF⎜⎜FAF= ⎜⎜FAF⎝ FAF*''A*''A*''B*''BFF*A ''A*AF''A*AF''B*AF''BFFFF FF*B ''A*BF''A*BF''B*BF''BFFF FF*B ''A*BF''A*BF''B*BF''BFF⎞⎟⎟⎟ , (25)⎟⎠Φ11⎛F⎜⎜F= ⎜⎜⎝'A'AFF*'A*'AFF'A'AFF*'A*'AFF'B'BFF*'B*'BFF'B'BFF*'B*'B⎞⎟⎟⎟ , and (26)⎟⎠hal-00193925, versi<strong>on</strong> 1 - 5 Dec 2007ΦNN⎛F⎜⎜F= ⎜⎜⎝''A''AFF*''A*''AFF''A''AFF*''A*''AFF''B''BFF*''B*''BFF''B''BFF*''B*''B⎞⎟⎟⎟ . (27)⎟⎠In this case, P ijk defines <str<strong>on</strong>g>the</str<strong>on</strong>g> probability <str<strong>on</strong>g>of</str<strong>on</strong>g> layer type k to follow a layer pair ij, and <str<strong>on</strong>g>the</str<strong>on</strong>g>following relati<strong>on</strong>ships ∑∑ W = , ∑ P = , and ∑ W P = W complement equati<strong>on</strong> (6).jkjk1ljkl1In terms <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Markovian statistics <str<strong>on</strong>g>the</str<strong>on</strong>g> probability parameters are interrelated and <str<strong>on</strong>g>the</str<strong>on</strong>g> number<str<strong>on</strong>g>of</str<strong>on</strong>g> independent parameters for a given R value is <str<strong>on</strong>g>the</str<strong>on</strong>g>refore relatively small. For example, in ajjkjklklstructure with R=1 and W A >W B two independent parameters are required to determine all o<str<strong>on</strong>g>the</str<strong>on</strong>g>rprobability parameters and thus to describe any layer subsequence. Similarly, for a twocomp<strong>on</strong>entsystem with R=2 and W A >W B <strong>on</strong>ly four independent parameters are required (Dritsand Tchoubar, 1990).Alternate modelThis model describes <str<strong>on</strong>g>the</str<strong>on</strong>g> case when <str<strong>on</strong>g>the</str<strong>on</strong>g> OSL is defined by <str<strong>on</strong>g>the</str<strong>on</strong>g> type <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> preceding orfollowing “core” layer. For example, if we assume that an A-type layer is <str<strong>on</strong>g>the</str<strong>on</strong>g> final core layer,A'–type and A''-type layers are respectively after and before <str<strong>on</strong>g>the</str<strong>on</strong>g> A-type core layer and it is <str<strong>on</strong>g>the</str<strong>on</strong>g>n


11possible to define new OSLs. Each <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> A'-, B'-, A''- and B''-type layers can be combined with<str<strong>on</strong>g>the</str<strong>on</strong>g> nearest core layer (A- or B-type) to form new layers: A u = A + A', B u =B + B', A l = A''+ A,and B l = B'' + B, where u and l denote <str<strong>on</strong>g>the</str<strong>on</strong>g> upper and lower surface layers <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> crystal. Thismodificati<strong>on</strong> makes it possible to keep <str<strong>on</strong>g>the</str<strong>on</strong>g> juncti<strong>on</strong> probabilities (P ij ) c<strong>on</strong>stant over <str<strong>on</strong>g>the</str<strong>on</strong>g> wholecrystal, which in turn facilitates <str<strong>on</strong>g>the</str<strong>on</strong>g> calculati<strong>on</strong> using <str<strong>on</strong>g>the</str<strong>on</strong>g> proposed matrix formalism. Newstructural amplitudes F Au , F Bu , F Al and F Bl are introduced in <str<strong>on</strong>g>the</str<strong>on</strong>g> matrices Φ 1C , Φ CN , Φ NN , Φ 11and Φ 1N to replace F , F , F and . The intensity equati<strong>on</strong> is <str<strong>on</strong>g>the</str<strong>on</strong>g> same as (19) but <str<strong>on</strong>g>the</str<strong>on</strong>g>'A'Bnumber <str<strong>on</strong>g>of</str<strong>on</strong>g> core layers in a crystal is reduced to Nc-2.''AF B''hal-00193925, versi<strong>on</strong> 1 - 5 Dec 2007Intensity diffracted by a set <str<strong>on</strong>g>of</str<strong>on</strong>g> crystals having different number <str<strong>on</strong>g>of</str<strong>on</strong>g> layersIf p(N i ) is <str<strong>on</strong>g>the</str<strong>on</strong>g> proporti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> crystals c<strong>on</strong>taining N i layers, and N min and N max are <str<strong>on</strong>g>the</str<strong>on</strong>g>minimum and <str<strong>on</strong>g>the</str<strong>on</strong>g> maximum number <str<strong>on</strong>g>of</str<strong>on</strong>g> layers in <str<strong>on</strong>g>the</str<strong>on</strong>g> crystals, <str<strong>on</strong>g>the</str<strong>on</strong>g>nN max∑ p(N ) =N j = N minj1chosen as 1 (p(1) = 0 if <str<strong>on</strong>g>the</str<strong>on</strong>g>re is no isolated layers). The case N min = 1 is a particular case. Nmin can bebecause an isolated layer is not A, Aˈ, Aˈˈ, or B, Bˈ, Bˈˈ. An isolated A layer must have <strong>on</strong>esurface like Aˈ and its o<str<strong>on</strong>g>the</str<strong>on</strong>g>r surface like Aˈˈ; it is an Aˈˈˈ layer with a structure factor<str<strong>on</strong>g>the</str<strong>on</strong>g> same is true for B. As a c<strong>on</strong>sequence, a new matrix must be introduced:''' F Aand*⎛F''' F ''' 0 ⎞φ = ⎜ A A ⎟ ,1' 1 '*''' '''⎝ 0 F FB B ⎠(28)In turn:____rInt(s)⎛ ⎛= Spur⎜Re⎜⎝ ⎝p (1)( φ'1 ' 1W)+ p(2)((φ11 + φNN)W + 2φ1NWQ)12+ p(3)(( φ + φ + φ )W + 2( φ + φ )WQ + 2 WQ )(29)11 CC NN1C CNφ1N+ ...


⎛p (Nj)⎜(φ⎝11+ (Nj− 2) φCC+ φNN)W + 2N j −2∑n = 1( φ121C+ ...+ (Nj− 2 − n) φCC+ φCN)WQn+ 2φ1NWQN j −1⎞⎟⎠+ p (Nmax)⎛⎜(φ⎝11+ (Nmax− 2) φCC+ φNN)W + 2Nmax−2∑n=1( φ1C+ (Nmax− 2 − n) φCC+ φCN)WQn+ 2φ1NWQNmax−1⎞⎟⎠⎞⎞⎟⎟⎠⎠All terms can be grouped toge<str<strong>on</strong>g>the</str<strong>on</strong>g>r as a functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> exp<strong>on</strong>ent <str<strong>on</strong>g>of</str<strong>on</strong>g> Q (i.e. as a functi<strong>on</strong><str<strong>on</strong>g>of</str<strong>on</strong>g> n):n = 0 term,⎛⎜φ⎝N maxN max0' ' + ( φ11+ φ11NN)∑ p(Nj)+ φCC∑ p(Nj)(Nj− 2) WQN j = 2N j = 3⎟⎠⎞(30)hal-00193925, versi<strong>on</strong> 1 - 5 Dec 2007⎛N maxN max⎞n = 1, 2⎜p(2)φ1N+ ( φ1C+ φCN)∑ p(Nj)+ φCC∑ p(Nj)(Nj− 3) ⎟WQ⎝N j = 3N j = 4⎠⎛N maxN max⎞n = 2, 2⎜p(3)φ1N+ ( φ1C+ φCN)∑ p(Nj)+ φCC∑ p(Nj)(Nj− 4) ⎟WQ⎝N j = 4N j = 5⎠This can be defined recursively for <str<strong>on</strong>g>the</str<strong>on</strong>g> first N max -3 terms as:1≤n≤N max -3,⎛N maxN max⎞ n2 ⎜p(n+ 1) φ1N+ ( φ1C+ φCN)∑ p(Nj)+ φCC∑ p(Nj)(Nj− n − 2) ⎟WQ,⎝N j = n + 2N j = n + 3⎠In additi<strong>on</strong>, we have two specific expressi<strong>on</strong>s:⎛n = N max -2, 2⎜⎝p(N12(31)(32)(33)Nmax−2max− 1) φ1N+ ( φ1C+ φCC)p(Nmax) ⎟WQ(34)⎞⎠⎛n = N max-1 , 2⎜⎝p(N⎞Nmax−1max) φ1N ⎟WQ(35)⎠So, for N max > 2____Int(s)r = Spur(Re((p(1) φ' '11+ ( φ11+ φN maxN max) ∑ p(N ) + ∑ p(N )(N − 2) φNNjN j = 2N j = 3jjCC)WN max −2N maxn+ 2 ∑ (p(n + 1) φ + ( φ + φ ) ∑ p(N ) + φ ∑ p(N )(N − n − 2))WQ (36)N max1N 1C CNj CCn = 1N j = n + 2N j = n + 3+ 2p(Nmax) φ1NWQNmax −1))jj


13or____rInt(s)= Spur(Re((С φ1 ' '11+ С ( φ211+ φNN) + С φ3СС)W+Nmax∑−2n=1n( K (n) φ + K (n)( φ + φ ) + K (n) φ )WQ(37)11N2+ C φ41N1CWQCNNmax −1))3CCwith C 1 = p(1),N maxC2= ∑ p(Nj),C3 = ∑ p(Nj)(Nj− 2),N j = 2N maxN j = 3C4 =2p(N max ), K 1 (n) = 2p(n+1),N maxK2(n) = 2 ∑ p(Nj),K (n) = 2 ∑ p(Nj)(Nj− n − 2N j = n + 2N max3)N j = n + 3hal-00193925, versi<strong>on</strong> 1 - 5 Dec 2007RESULTSCalculati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> XRD patterns for hypo<str<strong>on</strong>g>the</str<strong>on</strong>g>tical structure models having different outer surfacelayers <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> crystalsThe formalism described above was used to implement an algorithm for <str<strong>on</strong>g>the</str<strong>on</strong>g> calculati<strong>on</strong><str<strong>on</strong>g>of</str<strong>on</strong>g> XRD patterns c<strong>on</strong>taining <strong>on</strong>ly 00l basal reflecti<strong>on</strong>s. Correcti<strong>on</strong>s for <str<strong>on</strong>g>the</str<strong>on</strong>g> Lorentz-polarizati<strong>on</strong>factor and instrumental variables such as horiz<strong>on</strong>tal and vertical beam divergences, g<strong>on</strong>iometerradius, and dimensi<strong>on</strong> and thickness <str<strong>on</strong>g>of</str<strong>on</strong>g> samples have been introduced according to <str<strong>on</strong>g>the</str<strong>on</strong>g>recommendati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Reynolds (1986) and Drits et al. (1993). These correcti<strong>on</strong>s allow <str<strong>on</strong>g>the</str<strong>on</strong>g>simulati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> XRD patterns that can be directly compared with experimental <strong>on</strong>es (Drits et al.,1997a; Sakharov et al., 1999; Lindgreen et al., 2000; Claret et al., 2002, 2004).XRD patterns showing <str<strong>on</strong>g>the</str<strong>on</strong>g> influence <str<strong>on</strong>g>of</str<strong>on</strong>g> different OSLs were calculated for chlorite andmixed-layer chlorite-smectite (Ch-S) structure models. Chlorite is usually a trioctahedralmineral and <str<strong>on</strong>g>the</str<strong>on</strong>g> idealized compositi<strong>on</strong> for its 2:1 and 0:1 layers may be represented as (Si 4-xAl x )(Mg,Fe 2+ ) 3 O 10 (OH) 2 and (Mg,Fe 2+ ) 3-x Al x (OH) 6 , respectively. z-coordinates <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>c<strong>on</strong>stituting atoms were taken from Moore and Reynolds (1989). Three chlorite models whichdiffer from each o<str<strong>on</strong>g>the</str<strong>on</strong>g>r by <str<strong>on</strong>g>the</str<strong>on</strong>g>ir OSLs were c<strong>on</strong>sidered. In <str<strong>on</strong>g>the</str<strong>on</strong>g> first two models chlorite crystals


14are terminated by 2:1 and 0:1 layers, respectively, whereas <str<strong>on</strong>g>the</str<strong>on</strong>g> third model corresp<strong>on</strong>ds to aperiodic chlorite structure in which each crystal is terminated by a 2:1 layer <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>on</strong>e side andby a 0:1 layer <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> o<str<strong>on</strong>g>the</str<strong>on</strong>g>r. XRD patterns calculated for such (Fe-free) chlorite models areshown <strong>on</strong> Figure 1. A dramatic redistributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> 00l reflecti<strong>on</strong>s intensities is observed when<strong>on</strong>ly <strong>on</strong>e outer 0:1 layer is added to <str<strong>on</strong>g>the</str<strong>on</strong>g> 2:1 surface layer <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> periodic chlorite crystals. Inparticular, relative intensity <str<strong>on</strong>g>of</str<strong>on</strong>g> 001 reflecti<strong>on</strong> is str<strong>on</strong>gly increased or decreased when bothsurface layers <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> chlorite crystals are represented by 2:1 or 0:1 layers, respectively. XRDpatterns calculated for different cati<strong>on</strong> compositi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> 2:1 and 0:1 layers dem<strong>on</strong>strate <str<strong>on</strong>g>the</str<strong>on</strong>g> sameeffect. For each given compositi<strong>on</strong> and mean thickness <str<strong>on</strong>g>of</str<strong>on</strong>g> chlorite crystals <str<strong>on</strong>g>the</str<strong>on</strong>g> intensity <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>hal-00193925, versi<strong>on</strong> 1 - 5 Dec 2007001 reflecti<strong>on</strong> significantly decreases when OSLs are 0:1 layers, even if <str<strong>on</strong>g>the</str<strong>on</strong>g> mean andmaximum numbers <str<strong>on</strong>g>of</str<strong>on</strong>g> chlorite layers are high. Similarly, a str<strong>on</strong>g increase <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> 001 reflecti<strong>on</strong>intensity is observed when 2:1 layers are present <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> outer surface whatever <str<strong>on</strong>g>the</str<strong>on</strong>g> chloritecompositi<strong>on</strong>.In a chlorite-smectite (Ch-S) mixed-layer clay, 2:1 layers are separated from each o<str<strong>on</strong>g>the</str<strong>on</strong>g>rei<str<strong>on</strong>g>the</str<strong>on</strong>g>r by brucite-like sheets (chlorite interlayers) or by exchangeable cati<strong>on</strong>s and water orethylene glycol (EG) molecules (smectite interlayers). Structure models were c<strong>on</strong>structed using<str<strong>on</strong>g>the</str<strong>on</strong>g> parameters given by Moore and Reynolds (1989). In additi<strong>on</strong>, three different types <str<strong>on</strong>g>of</str<strong>on</strong>g> OSLswere c<strong>on</strong>sidered for Ch-S crystals when both <str<strong>on</strong>g>the</str<strong>on</strong>g>ir sides are terminated by 2:1 layers, bysmectite interlayers and by brucite-like sheets. Ch-S structures terminated by 2:1 layerscorresp<strong>on</strong>d to Reynolds model <str<strong>on</strong>g>of</str<strong>on</strong>g> Ch-S. XRD patterns were calculated for Ch-S core models inwhich 60% <str<strong>on</strong>g>of</str<strong>on</strong>g> chlorite and 40% <str<strong>on</strong>g>of</str<strong>on</strong>g> smectite interlayers are interstratified at random. Figure 2shows that <strong>on</strong>ly <str<strong>on</strong>g>the</str<strong>on</strong>g> reflecti<strong>on</strong> near 15-16 Å is sensitive to <str<strong>on</strong>g>the</str<strong>on</strong>g> OSL nature in Ch-S crystals. Itsintensity significantly decreases for <str<strong>on</strong>g>the</str<strong>on</strong>g> model in which both OSLs are 0:1 layers. This is truewhatever <str<strong>on</strong>g>the</str<strong>on</strong>g> amount and <str<strong>on</strong>g>the</str<strong>on</strong>g> distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Fe atoms in <str<strong>on</strong>g>the</str<strong>on</strong>g> 2:1 and 0:1 layers. Figure 2 showstwo o<str<strong>on</strong>g>the</str<strong>on</strong>g>r varieties al<strong>on</strong>g with Fe-free Ch-S (top part <str<strong>on</strong>g>of</str<strong>on</strong>g> figure 2). In <str<strong>on</strong>g>the</str<strong>on</strong>g> first <strong>on</strong>e, Fe atoms are


15located <strong>on</strong>ly in <str<strong>on</strong>g>the</str<strong>on</strong>g> 2:1 layers (middle part <str<strong>on</strong>g>of</str<strong>on</strong>g> figure 2) and <strong>on</strong>ly in 0:1 sheets in <str<strong>on</strong>g>the</str<strong>on</strong>g> o<str<strong>on</strong>g>the</str<strong>on</strong>g>r model(bottom part <str<strong>on</strong>g>of</str<strong>on</strong>g> figure 2).Analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> XRD patterns calculated for Ch-S differing by <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>tent and cati<strong>on</strong>compositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>ir interstratified layers has revealed <str<strong>on</strong>g>the</str<strong>on</strong>g> following features: (1) <str<strong>on</strong>g>the</str<strong>on</strong>g> influence<str<strong>on</strong>g>of</str<strong>on</strong>g> different OSLs is significant even for relatively high smectite c<strong>on</strong>tent (40%), but decreaseswith increasing smectite c<strong>on</strong>tent; (2) <str<strong>on</strong>g>the</str<strong>on</strong>g> nature <str<strong>on</strong>g>of</str<strong>on</strong>g> OSLs modifies mostly <str<strong>on</strong>g>the</str<strong>on</strong>g> intensity <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>first low-angle basal reflecti<strong>on</strong>s whereas <str<strong>on</strong>g>the</str<strong>on</strong>g> relative intensities <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> o<str<strong>on</strong>g>the</str<strong>on</strong>g>r reflecti<strong>on</strong>s aremostly unaffected by <str<strong>on</strong>g>the</str<strong>on</strong>g> terminating layer type, independently <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> layer type, cati<strong>on</strong>compositi<strong>on</strong> and distributi<strong>on</strong>; (3) for a given Ch:S ratio <str<strong>on</strong>g>the</str<strong>on</strong>g> intensity <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> first basal reflecti<strong>on</strong>decreases for Ch-S crystals terminated by a 0:1 layer, whereas more subtle differences arehal-00193925, versi<strong>on</strong> 1 - 5 Dec 2007observed between XRD patterns calculated for Ch-S crystals that end <strong>on</strong> 2:1 layers or smectiteinterlayers; (4) different terminating layers change not <strong>on</strong>ly <str<strong>on</strong>g>the</str<strong>on</strong>g> intensity but also <str<strong>on</strong>g>the</str<strong>on</strong>g> positi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><str<strong>on</strong>g>the</str<strong>on</strong>g> first basal reflecti<strong>on</strong>.On <str<strong>on</strong>g>the</str<strong>on</strong>g> o<str<strong>on</strong>g>the</str<strong>on</strong>g>r hand, XRD patterns calculated for EG-solvated kaolinite-smectite MLSs(K-S) differing by <str<strong>on</strong>g>the</str<strong>on</strong>g>ir OSLs are almost identical for a given compositi<strong>on</strong>, whatever <str<strong>on</strong>g>the</str<strong>on</strong>g> nature<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> OSL (kaolinite or smectite layer – data not shown). Likewise, similar XRD patterns arecalculated for EG-solvated illite-smectite MLSs (I-S) with ei<str<strong>on</strong>g>the</str<strong>on</strong>g>r 2:1 layers <strong>on</strong> both sides orwith a 2:1 layer <strong>on</strong> <strong>on</strong>e side and ei<str<strong>on</strong>g>the</str<strong>on</strong>g>r smectite or illite layer (depending <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> I-Scompositi<strong>on</strong>) <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> o<str<strong>on</strong>g>the</str<strong>on</strong>g>r. When I-S crystals are terminated <strong>on</strong> both sides by <strong>on</strong>e sheet <str<strong>on</strong>g>of</str<strong>on</strong>g> EGmolecules significant modificati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> positi<strong>on</strong> and pr<str<strong>on</strong>g>of</str<strong>on</strong>g>ile are observed for <str<strong>on</strong>g>the</str<strong>on</strong>g> sec<strong>on</strong>d orderbasal reflecti<strong>on</strong> at 8.5-10.0 Å (data not shown). However, according to our experience, similardiffracti<strong>on</strong> effects may be result from <str<strong>on</strong>g>the</str<strong>on</strong>g> modificati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> o<str<strong>on</strong>g>the</str<strong>on</strong>g>r structural, chemical andprobability parameters describing such I-S structures, and it is not clear if <str<strong>on</strong>g>the</str<strong>on</strong>g> nature <str<strong>on</strong>g>of</str<strong>on</strong>g> OSLscan be determined from XRD modelling for I-S MLSs.


16Simulati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> experimental XRD patternsThe actual structure <str<strong>on</strong>g>of</str<strong>on</strong>g> OSLs was studied for two m<strong>on</strong>omineralic chlorites and <strong>on</strong>eregular Ch-S (corrensite). The two chlorite samples have different c<strong>on</strong>tents <str<strong>on</strong>g>of</str<strong>on</strong>g> octahedral Fecati<strong>on</strong>s and <str<strong>on</strong>g>the</str<strong>on</strong>g>ir structural formulae are given in Table 1. For structure models <str<strong>on</strong>g>of</str<strong>on</strong>g> chlorite z-coordinates <str<strong>on</strong>g>of</str<strong>on</strong>g> atoms have been derived from <str<strong>on</strong>g>the</str<strong>on</strong>g> single-crystal refinements <str<strong>on</strong>g>of</str<strong>on</strong>g> chloritestructures with cati<strong>on</strong> compositi<strong>on</strong>s close to those <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> studied samples (Drits and Smoliar-Zvyagina, 1992). XRD patterns were calculated for chlorite models having <str<strong>on</strong>g>the</str<strong>on</strong>g> three possiblecombinati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> layer terminati<strong>on</strong>s menti<strong>on</strong>ed above. For each model <str<strong>on</strong>g>the</str<strong>on</strong>g> number <str<strong>on</strong>g>of</str<strong>on</strong>g> layers incrystals was described by a log-normal distributi<strong>on</strong> with mean and maximum N equal to 30 and150 layers (Drits et al., 1997b). Figures 3 and 4 show that for both samples <str<strong>on</strong>g>the</str<strong>on</strong>g> best fit to <str<strong>on</strong>g>the</str<strong>on</strong>g>hal-00193925, versi<strong>on</strong> 1 - 5 Dec 2007experimental intensity distributi<strong>on</strong> is obtained when crystals are terminated by brucite layers <strong>on</strong>both ends. For <str<strong>on</strong>g>the</str<strong>on</strong>g> o<str<strong>on</strong>g>the</str<strong>on</strong>g>r two models a significant disagreement between experimental andcalculated intensities <str<strong>on</strong>g>of</str<strong>on</strong>g> 00l reflecti<strong>on</strong>s is observed (Figures 3b,c, and 4b,c).Similar calculati<strong>on</strong>s were carried out for a corrensite sample in both air-dried and EGsolvatedstates. Corrensite structural formula is given in Table 1 and z-coordinates <str<strong>on</strong>g>of</str<strong>on</strong>g> atoms forsmectite and chlorite layers were taken from Moore and Reynolds (1989). XRD patterns werecalculated for structure models having different OSLs: brucite-like sheets; 2:1 layers orsmectite interlayers. Comparis<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> experimental and calculated XRD patterns shows that forboth EG-solvated and air-dried states <str<strong>on</strong>g>the</str<strong>on</strong>g> best fit is obtained when corrensite crystals areterminated by smectite interlayers (Figures 5, 6). Thus, <str<strong>on</strong>g>the</str<strong>on</strong>g> nature <str<strong>on</strong>g>of</str<strong>on</strong>g> crystal outer surfacesdepends <strong>on</strong> a mineral structure and can reflect physico-chemical c<strong>on</strong>diti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> its formati<strong>on</strong>.For <str<strong>on</strong>g>the</str<strong>on</strong>g> studied chlorite crystals it is represented by (OH) groups and for corrensite crystals byexchangeable cati<strong>on</strong>s and water molecules.


17DISCUSSIONFor irregular MLSs <str<strong>on</strong>g>the</str<strong>on</strong>g> influence <str<strong>on</strong>g>of</str<strong>on</strong>g> OSLs <strong>on</strong> diffracti<strong>on</strong> intensities cannot be predictedbecause it is not possible to c<strong>on</strong>sider separately <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>tributi<strong>on</strong>s to diffracti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>interference functi<strong>on</strong> and <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> scattering power for different layer types in such structures. Inc<strong>on</strong>trast, <str<strong>on</strong>g>the</str<strong>on</strong>g> influence <str<strong>on</strong>g>of</str<strong>on</strong>g> OSL nature <strong>on</strong> diffracted intensity can be estimated for structuresc<strong>on</strong>taining <strong>on</strong>ly <strong>on</strong>e L-type layer. One can show that an intensity distributi<strong>on</strong> al<strong>on</strong>g <str<strong>on</strong>g>the</str<strong>on</strong>g> c * axisfor a microcrystal c<strong>on</strong>sisting <str<strong>on</strong>g>of</str<strong>on</strong>g> N identical layers and ending <strong>on</strong> <strong>on</strong>e side by L l and <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> o<str<strong>on</strong>g>the</str<strong>on</strong>g>rside by L u layers can be expressed as:hal-00193925, versi<strong>on</strong> 1 - 5 Dec 2007N−1* **I (z ) = FF [ N + 2Re ∑ (N − n)exp( −2πinzd ) ]+n=1N−1l l u ulu001)n=1* ** **F F + F F + 2Re(F F + F F ) ∑exp(−2πinzd + (38)**2 Re FlFuexp( − 2πi(N−1)zd001)where F, F l and F u are <str<strong>on</strong>g>the</str<strong>on</strong>g> structure factors <str<strong>on</strong>g>of</str<strong>on</strong>g> L, L l and L u layers, z * is <str<strong>on</strong>g>the</str<strong>on</strong>g> coordinate al<strong>on</strong>g <str<strong>on</strong>g>the</str<strong>on</strong>g>c * axis, and d 001 is <str<strong>on</strong>g>the</str<strong>on</strong>g> periodicity <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> core crystal al<strong>on</strong>g <str<strong>on</strong>g>the</str<strong>on</strong>g> c* axis. When z * d 001 = l thisintensity may be expressed as:I = N 2 F 2 + F 2 l + F 2 u + 2NRe(F * l F + F * F u ) + 2Re(F * l F u ) (39)001In this formula numerical values <str<strong>on</strong>g>of</str<strong>on</strong>g> each term can be calculated separately for eachgiven z * if structures <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> core layers and <str<strong>on</strong>g>of</str<strong>on</strong>g> each OSL are known. For example, Tables 2 and3 c<strong>on</strong>tain <str<strong>on</strong>g>the</str<strong>on</strong>g>se values calculated for chlorite crystals differing from each o<str<strong>on</strong>g>the</str<strong>on</strong>g>r by <str<strong>on</strong>g>the</str<strong>on</strong>g>ir OSLs.It is remarkable that <str<strong>on</strong>g>the</str<strong>on</strong>g> values reflecting <str<strong>on</strong>g>the</str<strong>on</strong>g> interacti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> an outer brucite-like layer with corelayers <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> core crystal in all layer subsequences in which <str<strong>on</strong>g>the</str<strong>on</strong>g> first <strong>on</strong>e is <str<strong>on</strong>g>the</str<strong>on</strong>g> outer brucite-likelayer (2NRe(F * b F) – 4 th column, Table 2) are compatible with those corresp<strong>on</strong>ding to <str<strong>on</strong>g>the</str<strong>on</strong>g> corelayers (NF 2 (00l) – 2 nd column, Table 2). Moreover, <str<strong>on</strong>g>the</str<strong>on</strong>g> former values may be positive ornegative for different l values. These specific features explain why adding <strong>on</strong>ly <strong>on</strong>e brucite-likesheet to <str<strong>on</strong>g>the</str<strong>on</strong>g> core chlorite crystals (5 layers – 70 Å) dramatically modifies <str<strong>on</strong>g>the</str<strong>on</strong>g> intensity


18distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> basal reflecti<strong>on</strong>s when both sides <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> chlorite crystals are terminated bybrucite-like layers (see <str<strong>on</strong>g>the</str<strong>on</strong>g> 2 nd and last two columns in Table 2).In Table 3, similar calculati<strong>on</strong>s are reported for chlorite crystals (four 2:1:1 layers in <str<strong>on</strong>g>the</str<strong>on</strong>g>core crystal) with 2:1 layers as OSLs. Despite <str<strong>on</strong>g>the</str<strong>on</strong>g> low values <str<strong>on</strong>g>of</str<strong>on</strong>g> F 2 t corresp<strong>on</strong>ding to <str<strong>on</strong>g>the</str<strong>on</strong>g> 2:1layer, <str<strong>on</strong>g>the</str<strong>on</strong>g> interacti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> such OSLs with core layers c<strong>on</strong>tributes significantly to <str<strong>on</strong>g>the</str<strong>on</strong>g> diffractedintensity (2NRe(F * t F) – 4 th column, Table 3). This is especially so for <str<strong>on</strong>g>the</str<strong>on</strong>g> first two reflecti<strong>on</strong>sas <str<strong>on</strong>g>the</str<strong>on</strong>g> term 2NRe(F * F t ) is respectively positive and negative signs for <str<strong>on</strong>g>the</str<strong>on</strong>g> first and sec<strong>on</strong>dorder reflecti<strong>on</strong>s. As a c<strong>on</strong>sequence chlorite crystals terminated <strong>on</strong> both sides by 2:1 layershave str<strong>on</strong>ger 001 reflecti<strong>on</strong> than purely periodic chlorite crystals with <strong>on</strong>e 2:1 layer <strong>on</strong> <strong>on</strong>eside and a brucite layer <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> o<str<strong>on</strong>g>the</str<strong>on</strong>g>r side.hal-00193925, versi<strong>on</strong> 1 - 5 Dec 2007Equati<strong>on</strong> (39) can be used in a similar way to calculate diffracti<strong>on</strong> effects for anyperiodic layer structure whatever <str<strong>on</strong>g>the</str<strong>on</strong>g>ir OSLs. For example, <str<strong>on</strong>g>the</str<strong>on</strong>g> 001 reflecti<strong>on</strong> calculated for 10-layer thick periodic kaolinite crystals is ~30% more intense than that calculated for <str<strong>on</strong>g>the</str<strong>on</strong>g> samekaolinite crystals assuming a pyrophillite-like outer layer forming hydrogen b<strong>on</strong>ds with <str<strong>on</strong>g>the</str<strong>on</strong>g> lastkaolinite core layer.It is also clear from equati<strong>on</strong> (39) that <str<strong>on</strong>g>the</str<strong>on</strong>g> influence <str<strong>on</strong>g>of</str<strong>on</strong>g> OSLs <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> calculated XRDpatterns decreases with <str<strong>on</strong>g>the</str<strong>on</strong>g> increasing number <str<strong>on</strong>g>of</str<strong>on</strong>g> core layers. However, this influence depends<strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> structure <str<strong>on</strong>g>of</str<strong>on</strong>g> both core and OS layers and significant modificati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> basal-reflecti<strong>on</strong>intensity distributi<strong>on</strong> may be observed even for 30-layer thick (>420 Å) chlorite crystals(Figures 3, 4).Finally, equati<strong>on</strong> (39) shows that <str<strong>on</strong>g>the</str<strong>on</strong>g> main influence <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> diffracted intensitydistributi<strong>on</strong> arises from <str<strong>on</strong>g>the</str<strong>on</strong>g> interacti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> OSLs with crystal core layers. The effect resultingfrom <str<strong>on</strong>g>the</str<strong>on</strong>g>se interacti<strong>on</strong>s str<strong>on</strong>gly depends <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> structural amplitudes <str<strong>on</strong>g>of</str<strong>on</strong>g> both core and OSlayers and may be significant even when <str<strong>on</strong>g>the</str<strong>on</strong>g> scattering power <str<strong>on</strong>g>of</str<strong>on</strong>g> OSLs is negligible. Forperiodic structures <str<strong>on</strong>g>the</str<strong>on</strong>g> diffracti<strong>on</strong> effects resulting from <str<strong>on</strong>g>the</str<strong>on</strong>g> presence <str<strong>on</strong>g>of</str<strong>on</strong>g> different OSLs may bepredicted whereas such a predicti<strong>on</strong> is not possible for MLSs even though similar interacti<strong>on</strong>s


19are involved. Preliminary calculati<strong>on</strong>s have shown that am<strong>on</strong>g <str<strong>on</strong>g>the</str<strong>on</strong>g> three main groups <str<strong>on</strong>g>of</str<strong>on</strong>g> naturalmixed-layer clays (I-S, Ch-S, and K-S) <str<strong>on</strong>g>the</str<strong>on</strong>g> influence <str<strong>on</strong>g>of</str<strong>on</strong>g> OSLs <strong>on</strong> XRD patterns is significant<strong>on</strong>ly for MLSs c<strong>on</strong>taining chlorite layers. For o<str<strong>on</strong>g>the</str<strong>on</strong>g>r MLSs, additi<strong>on</strong>al hindrance to <str<strong>on</strong>g>the</str<strong>on</strong>g>characterizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> OSL nature by XRD is related to <str<strong>on</strong>g>the</str<strong>on</strong>g> influence <str<strong>on</strong>g>of</str<strong>on</strong>g> chemical and structuralparameters <strong>on</strong> XRD patterns, as diffracti<strong>on</strong> effects similar to those resulting from <str<strong>on</strong>g>the</str<strong>on</strong>g> presence<str<strong>on</strong>g>of</str<strong>on</strong>g> different OSLs can be obtained, for example, by varying <str<strong>on</strong>g>the</str<strong>on</strong>g> layer chemistry and/or stackingsequence.CONCLUSIONhal-00193925, versi<strong>on</strong> 1 - 5 Dec 2007The <str<strong>on</strong>g>the</str<strong>on</strong>g>oretical approach described in <str<strong>on</strong>g>the</str<strong>on</strong>g> present work provides <str<strong>on</strong>g>the</str<strong>on</strong>g> opportunity todetermine <str<strong>on</strong>g>the</str<strong>on</strong>g> nature <str<strong>on</strong>g>of</str<strong>on</strong>g> OSLs in MLS from <str<strong>on</strong>g>the</str<strong>on</strong>g> simulati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> XRD patterns. With this respect<str<strong>on</strong>g>the</str<strong>on</strong>g> results obtained in <str<strong>on</strong>g>the</str<strong>on</strong>g> present study for <str<strong>on</strong>g>the</str<strong>on</strong>g> chlorite samples are remarkable as <str<strong>on</strong>g>the</str<strong>on</strong>g>ydem<strong>on</strong>strate that relative intensities <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> odd reflecti<strong>on</strong>s depend not <strong>on</strong>ly <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g>Fe in <str<strong>on</strong>g>the</str<strong>on</strong>g> chlorite structure over <str<strong>on</strong>g>the</str<strong>on</strong>g> 2:1 and 0:1 layers, but also <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> nature <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>se OSLs.For periodic structures c<strong>on</strong>taining <strong>on</strong>ly <strong>on</strong>e layer type, <str<strong>on</strong>g>the</str<strong>on</strong>g> influence OSLs may bepredicted from simple calculati<strong>on</strong>s, and is independent <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> scattering power <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> OSL.Such a predicti<strong>on</strong> is not possible for MLSs. In additi<strong>on</strong>, comparis<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> OSL naturedetermined from XRD pr<str<strong>on</strong>g>of</str<strong>on</strong>g>ile modeling with that deduced from direct observati<strong>on</strong>s usingelectr<strong>on</strong> or atomic force microscopies (e.g.) is crucial for MLSs because <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> similardiffracti<strong>on</strong> effects that may be obtained by varying structural and chemical parameters <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>MLS <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>on</strong>e hand and <str<strong>on</strong>g>the</str<strong>on</strong>g> OSL nature <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> o<str<strong>on</strong>g>the</str<strong>on</strong>g>r. Am<strong>on</strong>g <str<strong>on</strong>g>the</str<strong>on</strong>g> usual MLSs found innatural samples, most significant effects have been calculated for those c<strong>on</strong>taining elementarychlorite layers.The knowledge <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> OSL nature may be used to understand better surface properties<str<strong>on</strong>g>of</str<strong>on</strong>g> MLSs, and more especially <str<strong>on</strong>g>of</str<strong>on</strong>g> layer silicates, and/or to derive c<strong>on</strong>strains <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g>ir growth


c<strong>on</strong>diti<strong>on</strong>s. Accordingly, <str<strong>on</strong>g>the</str<strong>on</strong>g> systematic presence <str<strong>on</strong>g>of</str<strong>on</strong>g> 0:1 layers <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> two sides <str<strong>on</strong>g>of</str<strong>on</strong>g> crystals in<str<strong>on</strong>g>the</str<strong>on</strong>g> reported chlorite structures may reflect specific growth c<strong>on</strong>diti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>se chlorites.20ACKNOWLEDGMENTSThe authors thank S. Hillier for chlorite samples and D.K. McCarty for recording XRDpatterns and for improving <str<strong>on</strong>g>the</str<strong>on</strong>g> English and <str<strong>on</strong>g>the</str<strong>on</strong>g> clarity <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> manuscript. BAS is grateful to <str<strong>on</strong>g>the</str<strong>on</strong>g>University <str<strong>on</strong>g>of</str<strong>on</strong>g> Orléans for financial support. BAS and VAD thank <str<strong>on</strong>g>the</str<strong>on</strong>g> Russian ScienceFoundati<strong>on</strong> for partial financial support. BL acknowledges financial support from <str<strong>on</strong>g>the</str<strong>on</strong>g>CNRS/PICS 709 program. AE R.T. Cygan, R.C. Reynolds, and an an<strong>on</strong>ymous reviewer arehal-00193925, versi<strong>on</strong> 1 - 5 Dec 2007thanked for <str<strong>on</strong>g>the</str<strong>on</strong>g>ir helpful suggesti<strong>on</strong>s.REFERENCESClaret, F., Bauer, A., Schafer, T., Griffault, L. and Lans<strong>on</strong>, B. (2002) Experimentalinvestigati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> interacti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> clays with high-pH soluti<strong>on</strong>s: A case study from <str<strong>on</strong>g>the</str<strong>on</strong>g>Callovo-Oxfordian formati<strong>on</strong>, Meuse-Haute Marne underground laboratory (France).Clays and Clay Minerals, 50, 633-646.Claret F., Sakharov B.A., Drits V.A., Velde B., Meunier A., Griffault L. and Lans<strong>on</strong> B. (2004)Clay minerals in <str<strong>on</strong>g>the</str<strong>on</strong>g> Meuse - Haute Marne underground laboratory (France): Possibleinfluence <str<strong>on</strong>g>of</str<strong>on</strong>g> organic matter <strong>on</strong> clay mineral evoluti<strong>on</strong>? Clays & Clay Minerals, in press.Drits, V.A. and Sakharov B.A. (1976) X-ray structure analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> interstratified minerals.Nauka, Moscow, 256pp. (in Russian).Drits, V.A. and Smoliar-Zvyagina, B.B. (1992) Relati<strong>on</strong>s between unit-cell parameters andcati<strong>on</strong> compositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> sheet silicates. II. Trioctahedral chlorites. Geologica Carpathica –Clays, 1, 35-40.


21Drits, V.A. and Tchoubar, C. (1990) X-ray diffracti<strong>on</strong> by disordered lamellar structures.Springer Verlag, Berlin, 371pp.Drits, V.A., Kameneva, M.Yu., Sakharov, B.A., Dainyak, L.G., Tsipursky, S.I., Smoliar-Zvyagina, B.B., Bookin, A.S. and Salyn, A.L. (1993) Problems <str<strong>on</strong>g>of</str<strong>on</strong>g> determinati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>actual structure <str<strong>on</strong>g>of</str<strong>on</strong>g> glauc<strong>on</strong>ites and related fine-dispersed minerals. Nauka, Novosibirsk,200pp. (in Russian).Drits, V.A., Sakharov, B.A., Lindgreen, H. and Salyn, A.L. (1997a) Sequential structuretransformati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> illite-smectite-vermiculite during diagenesis <str<strong>on</strong>g>of</str<strong>on</strong>g> Upper Jurassic shalesfrom <str<strong>on</strong>g>the</str<strong>on</strong>g> North Sea and Denmark. Clay Minerals, 32, 351-371.Drits, V.A., Środoń, J. and Eberl, D.D. (1997b) XRD measurement <str<strong>on</strong>g>of</str<strong>on</strong>g> mean crystallitehal-00193925, versi<strong>on</strong> 1 - 5 Dec 2007thickness <str<strong>on</strong>g>of</str<strong>on</strong>g> illite and illite/smectite: Reappraisal <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Kubler index and <str<strong>on</strong>g>the</str<strong>on</strong>g> Scherrerequati<strong>on</strong>. Clays and Clay Minerals, 45, 461-475.Kakinoki, J. and Komura, Y. (1952) Intensity <str<strong>on</strong>g>of</str<strong>on</strong>g> X-ray diffracti<strong>on</strong> by <strong>on</strong>e dimensi<strong>on</strong>allydisordered crystals. I: General derivati<strong>on</strong> in <str<strong>on</strong>g>the</str<strong>on</strong>g> case <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> “Reichweite” S=0 and 1.Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Physical Society <str<strong>on</strong>g>of</str<strong>on</strong>g> Japan, 7, 30-35.Kakinoki, J. and Komura, Y. (1954a) Intensity <str<strong>on</strong>g>of</str<strong>on</strong>g> X-ray diffracti<strong>on</strong> by <strong>on</strong>e-dimensi<strong>on</strong>allydisordered crystals. The close packed structure. Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Physical Society <str<strong>on</strong>g>of</str<strong>on</strong>g>Japan, 9, 177-183.Kakinoki, J. and Komura, Y. (1954b) Intensity <str<strong>on</strong>g>of</str<strong>on</strong>g> X-ray diffracti<strong>on</strong> by <strong>on</strong>e dimensi<strong>on</strong>allydisordered crystals. II: General derivati<strong>on</strong> in <str<strong>on</strong>g>the</str<strong>on</strong>g> case <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> correlati<strong>on</strong> range S≥ 2.Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Physical Society <str<strong>on</strong>g>of</str<strong>on</strong>g> Japan, 9, 169-176.Kakinoki, J. and Komura, Y. (1965) Diffracti<strong>on</strong> by a <strong>on</strong>e-dimensi<strong>on</strong>ally disordered crystal. I:The intensity equati<strong>on</strong>. Acta Crystallographica, 19, 137-147.Lindgreen, H., Drits, V.A., Sakharov, B.A., Salyn, A.L., Wrang, P. and Dainyak, L.G. (2000)Illite-smectite structural changes during metamorphism in black Cambrian Alum shalesfrom <str<strong>on</strong>g>the</str<strong>on</strong>g> Baltic area. American Mineralogist, 85, 1223-1238.


22Ma, C. and Egglet<strong>on</strong>, R.A. (1999) <str<strong>on</strong>g>Surface</str<strong>on</strong>g> layer types <str<strong>on</strong>g>of</str<strong>on</strong>g> kaolinite: high resoluti<strong>on</strong> transmissi<strong>on</strong>electr<strong>on</strong> microscopy study. Clays and Clay Minerals, 47, 181-191.Moore, D.M. and Reynolds, R.C. (1989) X-ray diffracti<strong>on</strong> and <str<strong>on</strong>g>the</str<strong>on</strong>g> identificati<strong>on</strong> and analysis <str<strong>on</strong>g>of</str<strong>on</strong>g>clay minerals. Oxford University Press, Oxford, 332 pp.Planç<strong>on</strong> A. (1981) Diffracti<strong>on</strong> by layer structures c<strong>on</strong>taining different kinds <str<strong>on</strong>g>of</str<strong>on</strong>g> layers andstacking faults. Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Applied Crystallography, 14, 300-304.Planç<strong>on</strong> A. (2002) New modeling <str<strong>on</strong>g>of</str<strong>on</strong>g> X-ray diffracti<strong>on</strong> by disordered lamellar structures, suchas phyllosilicates. American Mineralogist, 87, 1672-1677.Planç<strong>on</strong> A. (2003) Modelling X-ray diffracti<strong>on</strong> by lamellar structures composed <str<strong>on</strong>g>of</str<strong>on</strong>g> electricallycharged layers. Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Applied Crystallography, 36, 146-153.hal-00193925, versi<strong>on</strong> 1 - 5 Dec 2007Planç<strong>on</strong>, A. and Tchoubar, C. (1976) Etude des fautes d’empilement dans les kaolinitespartiellement désord<strong>on</strong>nées. Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Applied Crystallography, 9, 279-285.Reynolds R.C. (1967) Interstratified clay system: calculati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> total <strong>on</strong>e-dimensi<strong>on</strong>aldiffracti<strong>on</strong> functi<strong>on</strong>. American Mineralogist, 52, 661-672.Reynolds R.C. (1980) Interstratified clay minerals. Pp. 249-303 in: Crystal Structures <str<strong>on</strong>g>of</str<strong>on</strong>g> ClayMinerals and Their X-ray Identificati<strong>on</strong> (G.W. Brindley and G. Brown, editors).Mineralogical Society, L<strong>on</strong>d<strong>on</strong>.Reynolds R.C. (1986) The Lorentz factor and preferred orientati<strong>on</strong> in oriented clay aggregates.Clays and Clay Minerals, 34, 359-367.Sakharov, B.A., Naumov, A.S. and Drits, V.A. (1982a) X-ray diffracti<strong>on</strong> by mixed-layerstructures with random distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> stacking faults. Doklady Akademii Nauk SSSR,265, 339-343 (in Russian).Sakharov, B.A., Naumov, A.S. and Drits, V.A. (1982b) X-ray intensities scattered by layerstructure with short range ordering parameters S ≥ 1 and G ≥ 1. Doklady Akademii NaukSSSR, 265, 871-874 (in Russian).


23Sakharov, B.A., Lindgreen, H., Salyn, A.L. and Drits, V.A. (1999) Determinati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> illitesmectitestructures using multispecimen X-ray diffracti<strong>on</strong> pr<str<strong>on</strong>g>of</str<strong>on</strong>g>ile fitting. Clays and ClayMinerals, 47, 555-566.Tsipursky, S.J., Eberl, D.D. and Buseck, P.R. (1992) Unusual tops (bottoms ?) <str<strong>on</strong>g>of</str<strong>on</strong>g> particles <str<strong>on</strong>g>of</str<strong>on</strong>g>1M illite from <str<strong>on</strong>g>the</str<strong>on</strong>g> Silvert<strong>on</strong> caldera (Co). Pp. 381-382 in: Proceedings <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> AmericanSociety <str<strong>on</strong>g>of</str<strong>on</strong>g> Agr<strong>on</strong>omy annual meeting, Minneapolis, 1992. American Society <str<strong>on</strong>g>of</str<strong>on</strong>g>Agr<strong>on</strong>omy, Madis<strong>on</strong>, WI.hal-00193925, versi<strong>on</strong> 1 - 5 Dec 2007


24FIGURE CAPTIONFigure 1. XRD patterns calculated for Fe-free periodic chlorite crystals (b) and crystalsterminated by 2:1 (a) and 0:1 (c) layers. XRD patterns were calculated using <str<strong>on</strong>g>the</str<strong>on</strong>g> followingparameters: size <str<strong>on</strong>g>of</str<strong>on</strong>g> both Soller slits was 2.3º, length <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> sample - 30 mm, angularaperture <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> divergence slit - 0.5º, g<strong>on</strong>iometer radius – 175 mm, orientati<strong>on</strong> parameterσ* - 12°, mean and maximum number <str<strong>on</strong>g>of</str<strong>on</strong>g> chlorite layers were 8 and 50, respectively, for allcalculati<strong>on</strong>s. Layer structure models were c<strong>on</strong>structed using <str<strong>on</strong>g>the</str<strong>on</strong>g> parameters given byMoore and Reynolds (1989) and a layer thickness <str<strong>on</strong>g>of</str<strong>on</strong>g> 14.2 Å.hal-00193925, versi<strong>on</strong> 1 - 5 Dec 2007Figure 2. XRD patterns calculated for random mixed-layer chlorite-smectite models c<strong>on</strong>taining60% <str<strong>on</strong>g>of</str<strong>on</strong>g> chlorite layers. The models differ from each o<str<strong>on</strong>g>the</str<strong>on</strong>g>r by amount and distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Fein 2:1 and 0:1 layers. For each given c<strong>on</strong>tent and distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Fe <str<strong>on</strong>g>the</str<strong>on</strong>g> upper, middle andlower XRD patterns corresp<strong>on</strong>d to Ch-S crystals terminated by 2:1 layers, smectiteinterlayers, or brucite sheets, respectively. Layer thickness for EG-solvated smectite layerswas assumed to be 16.9 Å, whereas mean and maximum numbers <str<strong>on</strong>g>of</str<strong>on</strong>g> layers building upcoherent scattering domains were 8 and 20, respectively, for all calculati<strong>on</strong>s. O<str<strong>on</strong>g>the</str<strong>on</strong>g>rcalculati<strong>on</strong> parameters as in Figure 1.Figure 3. Comparis<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> experimental XRD pattern <str<strong>on</strong>g>of</str<strong>on</strong>g> chlorite 1 (see Table 1 forcompositi<strong>on</strong>) with those calculated for chlorite crystals terminated by brucite sheets (a),<strong>on</strong>e 2:1 layer and <strong>on</strong>e brucite sheet (b) and 2:1 layers (c). Experimental and calculatedXRD patterns are shown as crosses and solid line, respectively, whereas intensities <str<strong>on</strong>g>of</str<strong>on</strong>g> 00lreflecti<strong>on</strong>s are indicated by solid and dashed arrows for calculated and experimentalpatterns, respectively. Difference plots are shown below <str<strong>on</strong>g>the</str<strong>on</strong>g> compared XRD patterns.Experimental XRD patterns <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>se samples were recorded using CuKα radiati<strong>on</strong> withScintag powder diffractometer equipped with Kevex Si (Li) solid detector. Two Soller slits(2.5 o ) and <strong>on</strong>e divergence slit (0.5 o ) have been used. Intensity <str<strong>on</strong>g>of</str<strong>on</strong>g> 00l reflecti<strong>on</strong>s were


25measured for 30 sec. per 0.02 o 2θ step in <str<strong>on</strong>g>the</str<strong>on</strong>g> interval 1.5 – 35.0 o 2θ. Length <str<strong>on</strong>g>of</str<strong>on</strong>g> samples was35 mm. Layer thickness for chlorite layers was 14.165 Å, whereas mean and maximumnumbers <str<strong>on</strong>g>of</str<strong>on</strong>g> chlorite layers were 30 and 150, respectively. O<str<strong>on</strong>g>the</str<strong>on</strong>g>r calculati<strong>on</strong> parameters asin Figure 1.Figure 4. Comparis<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> experimental XRD pattern <str<strong>on</strong>g>of</str<strong>on</strong>g> chlorite 2 (see Table 1 forcompositi<strong>on</strong>) with those calculated for chlorite crystals terminated by brucite sheets (a),<strong>on</strong>e 2:1 layer and <strong>on</strong>e brucite sheet (b) and 2:1 layers (c). Patterns and calculati<strong>on</strong>parameters as in Figure 3, except for <str<strong>on</strong>g>the</str<strong>on</strong>g> chlorite layer thickness (14.190 Å).Figure 5. Comparis<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> experimental XRD pattern <str<strong>on</strong>g>of</str<strong>on</strong>g> EG-solvated corrensite sample withhal-00193925, versi<strong>on</strong> 1 - 5 Dec 2007those calculated for corrensite crystals terminated by smectite interlayers (a), brucite sheets(b) and 2:1 layers (c). Patterns as in Figure 3. Experimental XRD patterns were recordedusing CoKα radiati<strong>on</strong> with Philips PW3040 powder diffractometer equipped with a curvedgraphite diffracted-beam m<strong>on</strong>ochromator. Two Soller slits (2.5 o ), <strong>on</strong>e divergence slit(0.25 o ) and <strong>on</strong>e anti-scatter slit (0.25 o ) have been used. Intensity <str<strong>on</strong>g>of</str<strong>on</strong>g> 00l reflecti<strong>on</strong>s weremeasured for 10 sec. per 0.02 o 2θ step in <str<strong>on</strong>g>the</str<strong>on</strong>g> interval 1.5 – 35.0 o 2θ. Length <str<strong>on</strong>g>of</str<strong>on</strong>g> samples was35 mm. Layer thickness for chlorite and EG-solvated smectite layers were 14.20 Å and16.80 Å, respectively, whereas mean and maximum number <str<strong>on</strong>g>of</str<strong>on</strong>g> layers building up coherentscattering domains were 12 and 70, respectively, for both calculati<strong>on</strong>s. A 50:50smectite:chlorite ratio, and maximum possible degree <str<strong>on</strong>g>of</str<strong>on</strong>g> ordering (R=1) were assumed todescribe layer stacking in corrensite. O<str<strong>on</strong>g>the</str<strong>on</strong>g>r calculati<strong>on</strong> parameters as for Figure 1.Figure 6. Comparis<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> experimental XRD pattern <str<strong>on</strong>g>of</str<strong>on</strong>g> corrensite sample in air-dried statewith those calculated for corrensite crystals terminated by smectite interlayers (a), brucitesheets (b) and 2:1 layers (c) . Patterns as in Figure 3. Layer thickness for AD smectitelayers was 15.20 Å. O<str<strong>on</strong>g>the</str<strong>on</strong>g>r calculati<strong>on</strong> parameters as in Figure 5.


Table 1. Structural formulae <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> two chlorite and <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> corrensite samples.26Sample2:1 layer 0:1 layer interlayerSi Al IV Al VI Fe Mg Al VI Fe Mg CaChlorite 1 2.95 1.05 - 0.33 2.67 1.11 0.24 1.61 -Chlorite 2 2.78 1.22 - 1.10 1.90 1.26 0.81 0.91 -Corrensite 6.80 1.20 - 0.44 5.56 0.80 0.24 1.96 0.20Note: Chemical compositi<strong>on</strong>s were determined from wet chemical analysisafter dissoluti<strong>on</strong> using str<strong>on</strong>g acids to quantify independently Fe 2+ and Fe 3+hal-00193925, versi<strong>on</strong> 1 - 5 Dec 2007Table 2. Respective c<strong>on</strong>tributi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> core layers (NF 2 ), outer brucite layers (F 2 b ), and outerbrucite layers interacting with core layers (2NReF * b F) to <str<strong>on</strong>g>the</str<strong>on</strong>g> diffracted intensity <str<strong>on</strong>g>of</str<strong>on</strong>g> 00lreflecti<strong>on</strong>s.00l NF 2(× 10 3 )F b22NReF * b F ΣΣ(× 10 3 ) (× 10 3 )(norm.)001 96 27 -102 21 2002 440 16 169 625 45003 843 6.2 145 994 72004 1302 1.2 78 1381 100005 742 0.01 -5.9 736 53


Table 3. Respective c<strong>on</strong>tributi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> core layers (NF 2 ) outer 2:1 layers (F t 2 ), and outer 2:1layers interacting with core layers (2NReF t F * ) to <str<strong>on</strong>g>the</str<strong>on</strong>g> diffracted intensity <str<strong>on</strong>g>of</str<strong>on</strong>g> 00l reflecti<strong>on</strong>s.2700l NF 2F t22NReF * F tΣΣ(× 10 3 )(× 10 3 )(× 10 3 )(norm.)001 74 42 110 226 18002 337 1.9 -51 288 24003 645 1.3 58 704 58004 996 12 216 1224 100hal-00193925, versi<strong>on</strong> 1 - 5 Dec 2007005 568 12 168 748 61


14.27.104.74 3.55ahal-00193925, versi<strong>on</strong> 1 - 5 Dec 2007bc4 8 12 16 20 24 282θSakharov et al., Fig. 1


<str<strong>on</strong>g>Outer</str<strong>on</strong>g> surfacelayershal-00193925, versi<strong>on</strong> 1 - 5 Dec 200715.52:1 layers Fe - free7.63 3.481 2.836SmectiteinterlayerBrucite2:1 layersSmectiteinterlayer15.615.815.615.6Brucite 16.12:1 layersSmectiteinterlayer15.715.8Brucite 16.67.61 2.8363.4817.65 3.479 2.8362 836Fe – in 2:1 layers7.66 (1.0 per O 10 (OH) 2 ) 3.481 2.8367.60 3.480 2.8367.66 3.478 2.836Fe – in 0:1 layers7.61 1.0 per (OH) 6 3.483 2.8367.57 3.482 2.8367.61 3.481 2.8362 7 12 17 22 27 322θSakharov et al., Fig. 2


7.0834.7283.548Mg>>Fe14.102.839ahal-00193925, versi<strong>on</strong> 1 - 5 Dec 2007bc5 15 252θSakharov et al., Fig. 3


7.0733.540Mg=Fe14.124.7192.839ahal-00193925, versi<strong>on</strong> 1 - 5 Dec 2007bc5 15 252θSakharov et al., Fig. 4


31.915.677.7885.1914.4553.4593.885a2.830hal-00193925, versi<strong>on</strong> 1 - 5 Dec 2007bc2 12 22 322θSakharov et al., Fig. 5


29.914.789.8327.371 4.9083.6743.2712.942ahal-00193925, versi<strong>on</strong> 1 - 5 Dec 2007bc2 12 22 322θSakharov et al., Fig. 6

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!