12.07.2015 Views

Effects of plant nutrient availability and host plant species on the ...

Effects of plant nutrient availability and host plant species on the ...

Effects of plant nutrient availability and host plant species on the ...

SHOW MORE
SHOW LESS
  • No tags were found...

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Biochemical Systematics <str<strong>on</strong>g>and</str<strong>on</strong>g> Ecology 36 (2008) 505–513C<strong>on</strong>tents lists available at ScienceDirectBiochemical Systematics <str<strong>on</strong>g>and</str<strong>on</strong>g> Ecologyjournal homepage: www.elsevier.com/locate/biochemsyseco<str<strong>on</strong>g>Effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>plant</str<strong>on</strong>g> <str<strong>on</strong>g>nutrient</str<strong>on</strong>g> <str<strong>on</strong>g>availability</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>host</str<strong>on</strong>g> <str<strong>on</strong>g>plant</str<strong>on</strong>g> <str<strong>on</strong>g>species</str<strong>on</strong>g> <strong>on</strong> <strong>the</strong>performance <str<strong>on</strong>g>of</str<strong>on</strong>g> two Pieris butterflies (Lepidoptera: Pieridae)Shaw-Yhi Hwang * , Cheng-Hsiang Liu, Tse-Chi ShenDepartment <str<strong>on</strong>g>of</str<strong>on</strong>g> Entomology, Nati<strong>on</strong>al Chung Hsing University, 250 Kuo Kuang Road, Taichung 402, TaiwanarticleinfoabstractArticle history:Received 14 August 2007Accepted 1 March 2008Keywords:Pieris rapae crucivoraPieris canidia canidiaHost <str<strong>on</strong>g>plant</str<strong>on</strong>g> <str<strong>on</strong>g>species</str<strong>on</strong>g>Nutrient ecologyNitrogenWaterGlucosinolatesWe assayed <strong>the</strong> interacti<strong>on</strong> <strong>on</strong> <strong>the</strong> <str<strong>on</strong>g>availability</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>plant</str<strong>on</strong>g> <str<strong>on</strong>g>nutrient</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>species</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>host</str<strong>on</strong>g> <str<strong>on</strong>g>plant</str<strong>on</strong>g> <strong>on</strong><strong>the</strong> performance <str<strong>on</strong>g>of</str<strong>on</strong>g> two <str<strong>on</strong>g>species</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> Pieris butterfly. The results indicated that c<strong>on</strong>stant applicati<strong>on</strong><str<strong>on</strong>g>of</str<strong>on</strong>g> different levels <str<strong>on</strong>g>of</str<strong>on</strong>g> fertilizers to <strong>the</strong> four different <str<strong>on</strong>g>host</str<strong>on</strong>g> <str<strong>on</strong>g>plant</str<strong>on</strong>g>s resulted to an increasein <strong>the</strong>ir c<strong>on</strong>tent <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>plant</str<strong>on</strong>g> <str<strong>on</strong>g>nutrient</str<strong>on</strong>g>s. The chemical analysis showed that <strong>the</strong> added<str<strong>on</strong>g>nutrient</str<strong>on</strong>g>s increased foliar nitrogen <str<strong>on</strong>g>and</str<strong>on</strong>g> water c<strong>on</strong>tents, but <strong>the</strong>re was no effect <strong>on</strong> <strong>the</strong> level<str<strong>on</strong>g>of</str<strong>on</strong>g> glucosinolates. Larvae that fed <strong>on</strong> highly-nutritious foliage increased <strong>the</strong>ir growth rates<str<strong>on</strong>g>and</str<strong>on</strong>g> showed a shorter development period. The results <str<strong>on</strong>g>of</str<strong>on</strong>g> feeding trials revealed that <strong>the</strong>4th-instar larvae, which had fed <strong>on</strong> <str<strong>on</strong>g>host</str<strong>on</strong>g> <str<strong>on</strong>g>plant</str<strong>on</strong>g>s with higher levels <str<strong>on</strong>g>of</str<strong>on</strong>g> fertilizati<strong>on</strong> hada shorter durati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> development, less c<strong>on</strong>sumpti<strong>on</strong> rate, higher growth rate <str<strong>on</strong>g>and</str<strong>on</strong>g> foodprocessing efficiency. To summarize, this research revealed that both <strong>the</strong> <str<strong>on</strong>g>availability</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g><str<strong>on</strong>g>plant</str<strong>on</strong>g> <str<strong>on</strong>g>nutrient</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>species</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>host</str<strong>on</strong>g> <str<strong>on</strong>g>plant</str<strong>on</strong>g> can str<strong>on</strong>gly influence <strong>the</strong> physiology <str<strong>on</strong>g>and</str<strong>on</strong>g> foliarchemistry <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>host</str<strong>on</strong>g> <str<strong>on</strong>g>plant</str<strong>on</strong>g>s. Moreover, <strong>the</strong> changes <str<strong>on</strong>g>of</str<strong>on</strong>g> phytochemical in <strong>the</strong> <str<strong>on</strong>g>host</str<strong>on</strong>g> <str<strong>on</strong>g>plant</str<strong>on</strong>g>smay play an important role in affecting <strong>the</strong> performance (growth <str<strong>on</strong>g>and</str<strong>on</strong>g> food utilizati<strong>on</strong>efficiency) <str<strong>on</strong>g>of</str<strong>on</strong>g> both <str<strong>on</strong>g>species</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> Pieris butterflies.Ó 2008 Elsevier Ltd. All rights reserved.1. Introducti<strong>on</strong>Many sec<strong>on</strong>dary <str<strong>on</strong>g>plant</str<strong>on</strong>g> metabolites are c<strong>on</strong>sidered as str<strong>on</strong>g defense <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>plant</str<strong>on</strong>g>s against herbivores <str<strong>on</strong>g>and</str<strong>on</strong>g> pathogens. The qualitative<str<strong>on</strong>g>and</str<strong>on</strong>g> quantitative difference in sec<strong>on</strong>dary metabolites am<strong>on</strong>g <str<strong>on</strong>g>plant</str<strong>on</strong>g>s is a c<strong>on</strong>founding argument in <strong>the</strong> study <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>plant</str<strong>on</strong>g>insectinteracti<strong>on</strong>. Although <strong>the</strong> evoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> various defense traits is genetically based (Berenbaum et al., 1986; Adler et al.,1995; Hwang <str<strong>on</strong>g>and</str<strong>on</strong>g> Lindroth, 1997), <strong>the</strong> expressi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> such traits may be modulated by envir<strong>on</strong>mental factors (Bryant et al.,1983; Herms <str<strong>on</strong>g>and</str<strong>on</strong>g> Matts<strong>on</strong>, 1992). Physiological <str<strong>on</strong>g>and</str<strong>on</strong>g> biochemical changes in a <str<strong>on</strong>g>plant</str<strong>on</strong>g>, due to envir<strong>on</strong>mental factors, may alterits nutriti<strong>on</strong>al value for herbivores. In some cases, <strong>the</strong>se <str<strong>on</strong>g>host</str<strong>on</strong>g> <str<strong>on</strong>g>plant</str<strong>on</strong>g>s’ nutriti<strong>on</strong>al <str<strong>on</strong>g>and</str<strong>on</strong>g> allelochemical changes might improve<strong>the</strong> quality <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> <str<strong>on</strong>g>host</str<strong>on</strong>g> <str<strong>on</strong>g>plant</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g>, <strong>the</strong>refore, can be c<strong>on</strong>sidered beneficial to herbivores (Matts<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> Haack, 1987). However,most studies have indicated various resp<strong>on</strong>ses <str<strong>on</strong>g>of</str<strong>on</strong>g> herbivores against <str<strong>on</strong>g>host</str<strong>on</strong>g> <str<strong>on</strong>g>plant</str<strong>on</strong>g>s, which are envir<strong>on</strong>mentally induced withphytochemical changes (Waring <str<strong>on</strong>g>and</str<strong>on</strong>g> Cobb, 1992).Various envir<strong>on</strong>mental factors are c<strong>on</strong>sidered to affect <str<strong>on</strong>g>plant</str<strong>on</strong>g>s’ allocati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> resources to sec<strong>on</strong>dary metabolites (Bryantet al., 1983; Herms <str<strong>on</strong>g>and</str<strong>on</strong>g> Matts<strong>on</strong>, 1992). The <str<strong>on</strong>g>availability</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>nutrient</str<strong>on</strong>g>s has been c<strong>on</strong>sidered as an important factor that influences<str<strong>on</strong>g>plant</str<strong>on</strong>g> growth <str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>the</strong> allocati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> defense compounds (Bryant et al., 1983; Hemming <str<strong>on</strong>g>and</str<strong>on</strong>g> Lindroth, 1999). The applicati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g>fertilizer is <strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> primary methods <str<strong>on</strong>g>of</str<strong>on</strong>g> improving <strong>the</strong> <str<strong>on</strong>g>availability</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> soil <str<strong>on</strong>g>nutrient</str<strong>on</strong>g>s for <str<strong>on</strong>g>plant</str<strong>on</strong>g>s. Studies have shown that <strong>the</strong>morphology <str<strong>on</strong>g>and</str<strong>on</strong>g> physiology <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>plant</str<strong>on</strong>g>s can be influenced by <strong>the</strong> applicati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> fertilizers. Fertilizati<strong>on</strong> can change growth rates<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>plant</str<strong>on</strong>g>s, time <str<strong>on</strong>g>of</str<strong>on</strong>g> maturity, sizes <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>plant</str<strong>on</strong>g> parts <str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>the</strong> phytochemical c<strong>on</strong>tent <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>plant</str<strong>on</strong>g>s (Myers, 1985; Hemming <str<strong>on</strong>g>and</str<strong>on</strong>g> Lindroth,* Corresp<strong>on</strong>ding author. Tel.: þ886 4 2284 0363; fax: þ886 4 2287 5024.E-mail address: ole<str<strong>on</strong>g>and</str<strong>on</strong>g>er@drag<strong>on</strong>.nchu.edu.tw (S.-Y. Hwang).0305-1978/$ – see fr<strong>on</strong>t matter Ó 2008 Elsevier Ltd. All rights reserved.doi:10.1016/j.bse.2008.03.001


S.-Y. Hwang et al. / Biochemical Systematics <str<strong>on</strong>g>and</str<strong>on</strong>g> Ecology 36 (2008) 505–513 507had been cultivated in a greenhouse (25 C, 16:8 h light:dark photoperiod) for about 45 days prior to <strong>the</strong>ir usages for <strong>the</strong> bioassays.For <strong>the</strong> experimental bioassays, <strong>the</strong> insects were reared in a Percival growth chamber (16:8 h light:dark photoperiod)at a c<strong>on</strong>stant temperature <str<strong>on</strong>g>of</str<strong>on</strong>g> 22 C.L<strong>on</strong>g-term developmental trials were c<strong>on</strong>ducted to assess <strong>the</strong> effects <str<strong>on</strong>g>of</str<strong>on</strong>g> phytochemical variati<strong>on</strong>s based <strong>on</strong> <strong>the</strong> <str<strong>on</strong>g>species</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g><str<strong>on</strong>g>plant</str<strong>on</strong>g>s <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>availability</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>plant</str<strong>on</strong>g> <str<strong>on</strong>g>nutrient</str<strong>on</strong>g>s <strong>on</strong> <strong>the</strong> development <str<strong>on</strong>g>and</str<strong>on</strong>g> growth <str<strong>on</strong>g>of</str<strong>on</strong>g> insects during <strong>the</strong> entire larval feeding <str<strong>on</strong>g>and</str<strong>on</strong>g> pupalstages. Feeding trials began when <strong>the</strong> eggs hatched. Every ten newly hatched larvae <str<strong>on</strong>g>of</str<strong>on</strong>g> each <str<strong>on</strong>g>species</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> insect were weighed<str<strong>on</strong>g>and</str<strong>on</strong>g> reared in a 250 ml plastic rearing cup until <strong>the</strong>y molted to sec<strong>on</strong>d instars <strong>on</strong> <strong>the</strong> leaves from <strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> 12 treatments(four <str<strong>on</strong>g>species</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>host</str<strong>on</strong>g> <str<strong>on</strong>g>plant</str<strong>on</strong>g>s three levels <str<strong>on</strong>g>of</str<strong>on</strong>g> fertilizati<strong>on</strong>). After molting to sec<strong>on</strong>d instars, <strong>the</strong> larva <str<strong>on</strong>g>of</str<strong>on</strong>g> each <str<strong>on</strong>g>species</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> insectswas individually reared until it pupated in <strong>the</strong> plastic rearing cups <strong>on</strong> leaves from <strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> 12 treatments (four <str<strong>on</strong>g>species</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g><str<strong>on</strong>g>host</str<strong>on</strong>g> <str<strong>on</strong>g>plant</str<strong>on</strong>g>s three levels <str<strong>on</strong>g>of</str<strong>on</strong>g> fertilizati<strong>on</strong>). Ten individuals <str<strong>on</strong>g>of</str<strong>on</strong>g> P. rapae crucivora were reared for every treatment (i.e., 10 replicates/treatment 12 treatments ¼ 120 larvae) <str<strong>on</strong>g>and</str<strong>on</strong>g> ano<strong>the</strong>r 8 individuals <str<strong>on</strong>g>of</str<strong>on</strong>g> P. canidia canidia were also reared per treatment(i.e., 8 replicates/treatment 12 treatments ¼ 96 larvae). Leaf material was changed every day to ensure freshness. Thefollowing traits were measured for each individual insect: development time from hatching to pupati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> adult eclosi<strong>on</strong>;pupal <str<strong>on</strong>g>and</str<strong>on</strong>g> adult weight; <str<strong>on</strong>g>and</str<strong>on</strong>g> growth rate. Each pupa was weighed <strong>on</strong>e day after pupati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> was enclosed in a rearing cupuntil an adult emerged. Larval durati<strong>on</strong> was calculated as <strong>the</strong> time that had elapsed from egg hatching to pupati<strong>on</strong>. Pupal durati<strong>on</strong>was calculated as <strong>the</strong> time between pupati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> adult emergence. The individual growth rate <str<strong>on</strong>g>of</str<strong>on</strong>g> each larva was calculatedaccording to <strong>the</strong> method used by Gotthard et al. (1994): Growth rate ¼ [ln (pupal weight) ¼ ln (hatching weight)]/larval time; this relative growth rate indicated <strong>the</strong> mean weight gain per day. Mean <str<strong>on</strong>g>and</str<strong>on</strong>g> st<str<strong>on</strong>g>and</str<strong>on</strong>g>ard errors were calculatedfor larval weights, pupal weights, adult weights, larval durati<strong>on</strong>, pupal durati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> growth rate for insects, which fed <strong>on</strong> foliage<str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> 12 different treatments. Additi<strong>on</strong>al leaf material from <strong>the</strong> test <str<strong>on</strong>g>plant</str<strong>on</strong>g>s was also collected during <strong>the</strong> bioassay todetermine <strong>the</strong> c<strong>on</strong>tents <str<strong>on</strong>g>of</str<strong>on</strong>g> water, nitrogen <str<strong>on</strong>g>and</str<strong>on</strong>g> glucosinolates in <strong>the</strong> leaf.Fourth instar performance trials were c<strong>on</strong>ducted to evaluate <strong>the</strong> foliar quality effects <strong>on</strong> growth rates, food c<strong>on</strong>sumpti<strong>on</strong>rates, <str<strong>on</strong>g>and</str<strong>on</strong>g> efficiencies <str<strong>on</strong>g>of</str<strong>on</strong>g> food processing <strong>on</strong> fourth instar larvae <str<strong>on</strong>g>of</str<strong>on</strong>g> both <str<strong>on</strong>g>species</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> insects. First, about 150 newly hatched larvae,from each <str<strong>on</strong>g>species</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> insects, were grown <strong>on</strong> cabbage foliage in a Percival growth chamber (16:8 h light:dark photoperiod)at a c<strong>on</strong>stant temperature <str<strong>on</strong>g>of</str<strong>on</strong>g> 22 C until <strong>the</strong>y molted to fourth instars. Each assay c<strong>on</strong>sisted <str<strong>on</strong>g>of</str<strong>on</strong>g> a newly molted <str<strong>on</strong>g>and</str<strong>on</strong>g> weighedlarva which was placed into a rearing cup (250 ml) that c<strong>on</strong>tains a leaf from a <str<strong>on</strong>g>plant</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> 12 different treatments(n ¼ 12 replicates per treatment for P. rapae crucivora <str<strong>on</strong>g>and</str<strong>on</strong>g> 8 replicates per treatment for P. canidia canidia). Leaves werechanged every 1–2 days, or if necessary during <strong>the</strong> period <str<strong>on</strong>g>of</str<strong>on</strong>g> bioassay. Up<strong>on</strong> molting to fifth instars, <strong>the</strong> larvae were frozen,oven dried for a week at 50 C, <str<strong>on</strong>g>and</str<strong>on</strong>g> reweighed. Nutriti<strong>on</strong>al indices were calculated to assess insect growth, c<strong>on</strong>sumpti<strong>on</strong>, <str<strong>on</strong>g>and</str<strong>on</strong>g>food utilizati<strong>on</strong> efficiency (Hare, 1998). These indices were calculated according to <strong>the</strong> st<str<strong>on</strong>g>and</str<strong>on</strong>g>ard formulae for approximatedigestibility (AD ¼ (Ingesti<strong>on</strong> Feces)/Ingesti<strong>on</strong>), efficiency <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>versi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> digested food (ECD ¼ Biomass gained/(Ingesti<strong>on</strong>Feces)), <str<strong>on</strong>g>and</str<strong>on</strong>g> efficiency <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>versi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> ingested food (ECI ¼ Biomass gained/Ingesti<strong>on</strong>) as described by Waldbauer(1968) <str<strong>on</strong>g>and</str<strong>on</strong>g> Hare (1998). The initial, ra<strong>the</strong>r than average weights <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> larvae, were used to calculate relative growth rate(RGR) <str<strong>on</strong>g>and</str<strong>on</strong>g> relative c<strong>on</strong>sumpti<strong>on</strong> rate (RCR) (Farrar et al., 1989). The initial dry weight <str<strong>on</strong>g>of</str<strong>on</strong>g> test insects was estimated based<strong>on</strong> a wet-to-dry weight c<strong>on</strong>versi<strong>on</strong> factor (¼0.148), determined from 10 newly molted fourth instars for both <str<strong>on</strong>g>species</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> insect.Likewise, <strong>the</strong> initial dry weight <str<strong>on</strong>g>of</str<strong>on</strong>g> leaves fed to insects was also estimated by dry weight c<strong>on</strong>versi<strong>on</strong>s using <strong>the</strong> foliagecollected from each <str<strong>on</strong>g>species</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>plant</str<strong>on</strong>g> during bioassay. Means <str<strong>on</strong>g>and</str<strong>on</strong>g> st<str<strong>on</strong>g>and</str<strong>on</strong>g>ard errors were calculated for <strong>the</strong> durati<strong>on</strong>, RGR,RCR, total c<strong>on</strong>sumpti<strong>on</strong> (TC), AD, ECD, <str<strong>on</strong>g>and</str<strong>on</strong>g> ECI for <strong>the</strong> insects, which fed <strong>on</strong> <strong>the</strong> foliage <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> 12 different treatments. Aswith <strong>the</strong> l<strong>on</strong>g-term feeding study, <strong>the</strong> additi<strong>on</strong>al leaf material from <strong>the</strong> test <str<strong>on</strong>g>plant</str<strong>on</strong>g>s was also collected during <strong>the</strong> bioassayfor <strong>the</strong> measurement <str<strong>on</strong>g>of</str<strong>on</strong>g> foliar water, nitrogen, <str<strong>on</strong>g>and</str<strong>on</strong>g> glucosinolate c<strong>on</strong>tent.2.4. Foliar chemistry <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>plant</str<strong>on</strong>g> materialsC<strong>on</strong>comitant with <strong>the</strong> insect feeding studies, extra foliage (similar leaves to those used in <strong>the</strong> bioassays, 12 samples/treatment)was collected from <strong>the</strong> <str<strong>on</strong>g>plant</str<strong>on</strong>g>s used in <strong>the</strong> bioassays <str<strong>on</strong>g>and</str<strong>on</strong>g> flash frozen in liquid nitrogen, freeze-dried, grounded, <str<strong>on</strong>g>and</str<strong>on</strong>g>stored in a freezer at a temperature <str<strong>on</strong>g>of</str<strong>on</strong>g> 20 C. Water, total nitrogen, <str<strong>on</strong>g>and</str<strong>on</strong>g> total c<strong>on</strong>tent <str<strong>on</strong>g>of</str<strong>on</strong>g> glucosinolates were quantifiedfor each foliar sample. The c<strong>on</strong>tent <str<strong>on</strong>g>of</str<strong>on</strong>g> water was determined by <strong>the</strong> difference between <strong>the</strong> wet <str<strong>on</strong>g>and</str<strong>on</strong>g> dry weights <str<strong>on</strong>g>of</str<strong>on</strong>g> leafsamples. Kjeldahl nitrogen was determined by a micro-Nesslerizati<strong>on</strong> technique (Lang, 1958) following acid digesti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g>leaf samples (Parkins<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> Allen, 1975). Glycine p-toluenesulf<strong>on</strong>ate (5.665%N) was used as <strong>the</strong> st<str<strong>on</strong>g>and</str<strong>on</strong>g>ard. Total glucosinolateswere quantified based <strong>on</strong> <strong>the</strong> determinati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> glucose released after <strong>the</strong> digesti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> myrosinase <str<strong>on</strong>g>and</str<strong>on</strong>g> subsequent deproteinizati<strong>on</strong>(Saini <str<strong>on</strong>g>and</str<strong>on</strong>g> Wratten, 1987). A glucose-peroxidase system was used with 4-aminophenaz<strong>on</strong>e as <strong>the</strong> oxygen acceptor.Means <str<strong>on</strong>g>and</str<strong>on</strong>g> st<str<strong>on</strong>g>and</str<strong>on</strong>g>ard errors for foliar water, total nitrogen, <str<strong>on</strong>g>and</str<strong>on</strong>g> total c<strong>on</strong>centrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> glucosinolates, for each <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> treatments,were calculated.2.5. Statistical analysisDuring <strong>the</strong> bioassays, means <str<strong>on</strong>g>and</str<strong>on</strong>g> st<str<strong>on</strong>g>and</str<strong>on</strong>g>ard errors were calculated for <strong>the</strong> performance parameters (survival, durati<strong>on</strong>, larvalweight, pupal weight, growth rate, c<strong>on</strong>sumpti<strong>on</strong> rate, <str<strong>on</strong>g>and</str<strong>on</strong>g> food utilizati<strong>on</strong> efficiencies) <str<strong>on</strong>g>of</str<strong>on</strong>g> insects <str<strong>on</strong>g>and</str<strong>on</strong>g> for <strong>the</strong> <str<strong>on</strong>g>plant</str<strong>on</strong>g> chemistry.The data were analyzed using SAS (1988) for Windows V8. Analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> variance (ANOVA) was used to test <strong>the</strong> effects <str<strong>on</strong>g>of</str<strong>on</strong>g><strong>the</strong> <str<strong>on</strong>g>species</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>host</str<strong>on</strong>g> <str<strong>on</strong>g>plant</str<strong>on</strong>g>s, <str<strong>on</strong>g>availability</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>plant</str<strong>on</strong>g> <str<strong>on</strong>g>nutrient</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>the</strong>ir interacti<strong>on</strong> <strong>on</strong> <str<strong>on</strong>g>plant</str<strong>on</strong>g> chemistry <str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>on</strong> <strong>the</strong> measured performanceparameters <str<strong>on</strong>g>of</str<strong>on</strong>g> insects.


508S.-Y. Hwang et al. / Biochemical Systematics <str<strong>on</strong>g>and</str<strong>on</strong>g> Ecology 36 (2008) 505–5133. Results3.1. Host-<str<strong>on</strong>g>plant</str<strong>on</strong>g> qualityThe effects <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>host</str<strong>on</strong>g>-<str<strong>on</strong>g>plant</str<strong>on</strong>g> <str<strong>on</strong>g>species</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>plant</str<strong>on</strong>g> <str<strong>on</strong>g>nutrient</str<strong>on</strong>g> <str<strong>on</strong>g>availability</str<strong>on</strong>g> <strong>on</strong> <strong>the</strong> c<strong>on</strong>centrati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>nutrient</str<strong>on</strong>g>s <str<strong>on</strong>g>and</str<strong>on</strong>g> nitrogen based sec<strong>on</strong>darycompounds varied (Fig. 1). Nitrogen levels generally increased with <strong>the</strong> elevated c<strong>on</strong>centrati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> fertilizer, where<strong>the</strong> level increased more than 100% in two <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> <str<strong>on</strong>g>plant</str<strong>on</strong>g>-<str<strong>on</strong>g>species</str<strong>on</strong>g> (B. oleracea <str<strong>on</strong>g>and</str<strong>on</strong>g> R. indica), dem<strong>on</strong>strating that <strong>the</strong> <str<strong>on</strong>g>availability</str<strong>on</strong>g><str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>nutrient</str<strong>on</strong>g>s, differently influence <strong>the</strong> c<strong>on</strong>tents <str<strong>on</strong>g>of</str<strong>on</strong>g> nitrogen in different <str<strong>on</strong>g>host</str<strong>on</strong>g> <str<strong>on</strong>g>plant</str<strong>on</strong>g>s (a significant <str<strong>on</strong>g>plant</str<strong>on</strong>g> <str<strong>on</strong>g>nutrient</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>plant</str<strong>on</strong>g> <str<strong>on</strong>g>species</str<strong>on</strong>g>interacti<strong>on</strong> effect). The water c<strong>on</strong>tents <str<strong>on</strong>g>of</str<strong>on</strong>g> two <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> fertilized <str<strong>on</strong>g>plant</str<strong>on</strong>g> <str<strong>on</strong>g>species</str<strong>on</strong>g> (R. indica <str<strong>on</strong>g>and</str<strong>on</strong>g> C. flexuosa) were slightly higherthan that <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> unfertilized <str<strong>on</strong>g>plant</str<strong>on</strong>g>s, where <strong>the</strong> water c<strong>on</strong>tent also differed significantly am<strong>on</strong>g <str<strong>on</strong>g>plant</str<strong>on</strong>g> <str<strong>on</strong>g>species</str<strong>on</strong>g>. This indicatedthat <strong>the</strong> <str<strong>on</strong>g>availability</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>nutrient</str<strong>on</strong>g>s differently influenced <strong>the</strong> water c<strong>on</strong>tents in different <str<strong>on</strong>g>host</str<strong>on</strong>g> <str<strong>on</strong>g>plant</str<strong>on</strong>g>s (Fig. 1). The total level <str<strong>on</strong>g>of</str<strong>on</strong>g>glucosinolates, however, was <strong>on</strong>ly affected in <strong>the</strong> <str<strong>on</strong>g>plant</str<strong>on</strong>g> <str<strong>on</strong>g>species</str<strong>on</strong>g> treatment; total c<strong>on</strong>centrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> glucosinolates was 3-foldmore in foliage <str<strong>on</strong>g>of</str<strong>on</strong>g> B. oleracea than in <strong>the</strong> o<strong>the</strong>r three <str<strong>on</strong>g>plant</str<strong>on</strong>g> <str<strong>on</strong>g>species</str<strong>on</strong>g>. The effect <str<strong>on</strong>g>of</str<strong>on</strong>g> fertilizati<strong>on</strong> <strong>on</strong> <strong>the</strong> total c<strong>on</strong>tent <str<strong>on</strong>g>of</str<strong>on</strong>g>Nitrogen (% dry wt.)8642High NutrModerate NutrNo NutrP valuesNutr


S.-Y. Hwang et al. / Biochemical Systematics <str<strong>on</strong>g>and</str<strong>on</strong>g> Ecology 36 (2008) 505–513 509glucosinolates was not significant. In additi<strong>on</strong>, interactive effect <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>plant</str<strong>on</strong>g> <str<strong>on</strong>g>nutrient</str<strong>on</strong>g>s <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>plant</str<strong>on</strong>g> <str<strong>on</strong>g>species</str<strong>on</strong>g> <strong>on</strong> <strong>the</strong> total level <str<strong>on</strong>g>of</str<strong>on</strong>g> glucosinolatewas significant: in B. oleracea <str<strong>on</strong>g>and</str<strong>on</strong>g> R. indica treatments with different fertilizers had varied effects. The leaves <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong>fertilized <str<strong>on</strong>g>plant</str<strong>on</strong>g>s appeared to be a darker green in colour.3.2. Larval growth <str<strong>on</strong>g>and</str<strong>on</strong>g> performance trials3.2.1. L<strong>on</strong>g-term developmental trialThe results indicated that <strong>the</strong> <str<strong>on</strong>g>species</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>host</str<strong>on</strong>g> <str<strong>on</strong>g>plant</str<strong>on</strong>g>s <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>availability</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>nutrient</str<strong>on</strong>g>s in <str<strong>on</strong>g>plant</str<strong>on</strong>g>s had various effects <strong>on</strong> <strong>the</strong> performance<str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong>se two <str<strong>on</strong>g>species</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> butterfly (Fig. 2). For P. rapae crucivora, <strong>the</strong>ir larval durati<strong>on</strong>s, pupal weights, adult weights,<str<strong>on</strong>g>and</str<strong>on</strong>g> larval growth rates, were significantly altered, however, by both <str<strong>on</strong>g>plant</str<strong>on</strong>g> <str<strong>on</strong>g>nutrient</str<strong>on</strong>g> <str<strong>on</strong>g>availability</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>plant</str<strong>on</strong>g> <str<strong>on</strong>g>species</str<strong>on</strong>g> (Fig. 2). Overall,<strong>the</strong> elevated level <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>nutrient</str<strong>on</strong>g>s decreased <strong>the</strong> larval <str<strong>on</strong>g>and</str<strong>on</strong>g> pupal durati<strong>on</strong>s. The larval durati<strong>on</strong> also significantly variedam<strong>on</strong>g P. rapae crucivora which was reared <strong>on</strong> foliage <str<strong>on</strong>g>of</str<strong>on</strong>g> different <str<strong>on</strong>g>species</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>plant</str<strong>on</strong>g>s; however, <strong>the</strong> effects <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> <str<strong>on</strong>g>availability</str<strong>on</strong>g><str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>plant</str<strong>on</strong>g> <str<strong>on</strong>g>nutrient</str<strong>on</strong>g>s <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>species</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>host</str<strong>on</strong>g> <str<strong>on</strong>g>plant</str<strong>on</strong>g>s <strong>on</strong> larval durati<strong>on</strong>s were independent <str<strong>on</strong>g>of</str<strong>on</strong>g> each o<strong>the</strong>r (no significant interacti<strong>on</strong>).In additi<strong>on</strong>, increased levels <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>nutrient</str<strong>on</strong>g>s generally increased pupal weights, adult weights, <str<strong>on</strong>g>and</str<strong>on</strong>g> larval growth rates. Moreover,pupal weights, adult weights, <str<strong>on</strong>g>and</str<strong>on</strong>g> larval growth rates also varied significantly am<strong>on</strong>g <str<strong>on</strong>g>host</str<strong>on</strong>g> <str<strong>on</strong>g>plant</str<strong>on</strong>g> <str<strong>on</strong>g>species</str<strong>on</strong>g>. P. rapae crucivora thatwere reared <strong>on</strong> <strong>the</strong> foliage <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> two cultivated <str<strong>on</strong>g>host</str<strong>on</strong>g> <str<strong>on</strong>g>plant</str<strong>on</strong>g>s (B. oleracea <str<strong>on</strong>g>and</str<strong>on</strong>g> B. campestris) were heavier (w1.5 fold) <str<strong>on</strong>g>and</str<strong>on</strong>g> grewfaster than those fed <strong>on</strong> <strong>the</strong> foliage <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> two <str<strong>on</strong>g>species</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> wild <str<strong>on</strong>g>plant</str<strong>on</strong>g>s (R. indica <str<strong>on</strong>g>and</str<strong>on</strong>g> C. flexuosa). However, <strong>the</strong> effects <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>availability</str<strong>on</strong>g><str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>nutrient</str<strong>on</strong>g>s <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>host</str<strong>on</strong>g> <str<strong>on</strong>g>plant</str<strong>on</strong>g> <str<strong>on</strong>g>species</str<strong>on</strong>g> <strong>on</strong> pupal weights, adult weights, <str<strong>on</strong>g>and</str<strong>on</strong>g> larval growth rates were also independent <str<strong>on</strong>g>of</str<strong>on</strong>g>each o<strong>the</strong>r (no significant interacti<strong>on</strong>). Survival rates <str<strong>on</strong>g>of</str<strong>on</strong>g> P. rapae crucivora, however, were not different am<strong>on</strong>g <str<strong>on</strong>g>nutrient</str<strong>on</strong>g> <str<strong>on</strong>g>availability</str<strong>on</strong>g>or <str<strong>on</strong>g>plant</str<strong>on</strong>g> <str<strong>on</strong>g>species</str<strong>on</strong>g> treatments.For P. canidia canidia, larval durati<strong>on</strong>s, pupal durati<strong>on</strong>s, pupal weights, adult weights, <str<strong>on</strong>g>and</str<strong>on</strong>g> larval growth rates, were all significantlyaltered by <str<strong>on</strong>g>plant</str<strong>on</strong>g> <str<strong>on</strong>g>nutrient</str<strong>on</strong>g> <str<strong>on</strong>g>availability</str<strong>on</strong>g> (Fig. 2). Generally, elevated <str<strong>on</strong>g>nutrient</str<strong>on</strong>g> levels decreased larval durati<strong>on</strong>s but <strong>the</strong>effect <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>nutrient</str<strong>on</strong>g> <str<strong>on</strong>g>availability</str<strong>on</strong>g> was influenced by <strong>the</strong> <str<strong>on</strong>g>host</str<strong>on</strong>g> <str<strong>on</strong>g>plant</str<strong>on</strong>g> <str<strong>on</strong>g>species</str<strong>on</strong>g>. Increased <str<strong>on</strong>g>nutrient</str<strong>on</strong>g> levels generally increased pupalweights, adult weights, <str<strong>on</strong>g>and</str<strong>on</strong>g> larval growth rates. Moreover, pupal weights <str<strong>on</strong>g>and</str<strong>on</strong>g> adult weights also varied significantly am<strong>on</strong>g<str<strong>on</strong>g>host</str<strong>on</strong>g> <str<strong>on</strong>g>plant</str<strong>on</strong>g> <str<strong>on</strong>g>species</str<strong>on</strong>g>. The results for P. canidia canidia reared <strong>on</strong> <strong>the</strong> foliage <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> two cultivated <str<strong>on</strong>g>host</str<strong>on</strong>g> <str<strong>on</strong>g>plant</str<strong>on</strong>g>s (B. oleracea <str<strong>on</strong>g>and</str<strong>on</strong>g>B. campestris) were similar to those for P. rapae crucivora which became much heavier (w1.4 fold) than those that fed <strong>on</strong><strong>the</strong> foliage <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> two wild <str<strong>on</strong>g>plant</str<strong>on</strong>g> <str<strong>on</strong>g>species</str<strong>on</strong>g> (R. indica <str<strong>on</strong>g>and</str<strong>on</strong>g> C. flexuosa). The <str<strong>on</strong>g>plant</str<strong>on</strong>g> <str<strong>on</strong>g>nutrient</str<strong>on</strong>g> <str<strong>on</strong>g>availability</str<strong>on</strong>g> also influenced <strong>the</strong> pupalweights but differed depending <strong>on</strong> <strong>the</strong> <str<strong>on</strong>g>host</str<strong>on</strong>g> <str<strong>on</strong>g>plant</str<strong>on</strong>g>. Moreover, <strong>the</strong> effect <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>plant</str<strong>on</strong>g> <str<strong>on</strong>g>nutrient</str<strong>on</strong>g> <str<strong>on</strong>g>availability</str<strong>on</strong>g> <strong>on</strong> larval growth rateswas influenced by <strong>the</strong> <str<strong>on</strong>g>species</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>host</str<strong>on</strong>g> <str<strong>on</strong>g>plant</str<strong>on</strong>g>. Larval survival rate for this <str<strong>on</strong>g>species</str<strong>on</strong>g> varied significantly am<strong>on</strong>g <str<strong>on</strong>g>plant</str<strong>on</strong>g> <str<strong>on</strong>g>species</str<strong>on</strong>g>, thosethat fed <strong>on</strong> <strong>the</strong> foliage <str<strong>on</strong>g>of</str<strong>on</strong>g> B. oleracea had <strong>the</strong> lowest survival rate.3.2.2. Fourth instar performance trialResults <str<strong>on</strong>g>of</str<strong>on</strong>g> this performance trial indicated that <str<strong>on</strong>g>host</str<strong>on</strong>g> <str<strong>on</strong>g>plant</str<strong>on</strong>g> <str<strong>on</strong>g>species</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>plant</str<strong>on</strong>g> <str<strong>on</strong>g>nutrient</str<strong>on</strong>g> <str<strong>on</strong>g>availability</str<strong>on</strong>g> had more significant effects<strong>on</strong> performance <str<strong>on</strong>g>of</str<strong>on</strong>g> fourth instar, P. canidia canidia than <strong>on</strong> those <str<strong>on</strong>g>of</str<strong>on</strong>g> P. rapae crucivora (Fig. 3). For P. rapae crucivora, <strong>the</strong>durati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> fourth instar <str<strong>on</strong>g>and</str<strong>on</strong>g> larval growth rate were significantly altered by <str<strong>on</strong>g>plant</str<strong>on</strong>g> <str<strong>on</strong>g>nutrient</str<strong>on</strong>g> <str<strong>on</strong>g>availability</str<strong>on</strong>g> (Fig. 3). Overall, <strong>the</strong>elevated <str<strong>on</strong>g>plant</str<strong>on</strong>g> <str<strong>on</strong>g>nutrient</str<strong>on</strong>g> levels decreased larval durati<strong>on</strong> but increased larval growth rate. Larval c<strong>on</strong>sumpti<strong>on</strong> (TC <str<strong>on</strong>g>and</str<strong>on</strong>g> RCR)<str<strong>on</strong>g>and</str<strong>on</strong>g> food utilizati<strong>on</strong> efficiencies (AD, ECD, <str<strong>on</strong>g>and</str<strong>on</strong>g> ECI) were all significantly altered by both <str<strong>on</strong>g>plant</str<strong>on</strong>g> <str<strong>on</strong>g>nutrient</str<strong>on</strong>g> <str<strong>on</strong>g>availability</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>plant</str<strong>on</strong>g><str<strong>on</strong>g>species</str<strong>on</strong>g>. Increased <str<strong>on</strong>g>host</str<strong>on</strong>g> <str<strong>on</strong>g>plant</str<strong>on</strong>g>’s <str<strong>on</strong>g>nutrient</str<strong>on</strong>g> levels generally decreased fourth instar’s c<strong>on</strong>sumpti<strong>on</strong> rate <str<strong>on</strong>g>and</str<strong>on</strong>g> increased its food utilizati<strong>on</strong>efficiencies. P. rapae crucivora reared <strong>on</strong> foliage <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> two cultivated <str<strong>on</strong>g>host</str<strong>on</strong>g> <str<strong>on</strong>g>plant</str<strong>on</strong>g>s (B. oleracea <str<strong>on</strong>g>and</str<strong>on</strong>g> B. campestris) hadhigher (w1.5 fold) growth efficiency (ECI) than those that fed <strong>on</strong> <strong>the</strong> foliage <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> two wild <str<strong>on</strong>g>plant</str<strong>on</strong>g> <str<strong>on</strong>g>species</str<strong>on</strong>g> (R. indica <str<strong>on</strong>g>and</str<strong>on</strong>g>C. flexuosa). In additi<strong>on</strong>, <strong>the</strong> effects <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>plant</str<strong>on</strong>g> <str<strong>on</strong>g>nutrient</str<strong>on</strong>g> <strong>on</strong> larval c<strong>on</strong>sumpti<strong>on</strong> rate <str<strong>on</strong>g>and</str<strong>on</strong>g> food utilizati<strong>on</strong> efficiencies were influencedby <strong>the</strong> <str<strong>on</strong>g>host</str<strong>on</strong>g> <str<strong>on</strong>g>plant</str<strong>on</strong>g> <str<strong>on</strong>g>species</str<strong>on</strong>g>; <strong>the</strong> effects varied am<strong>on</strong>g <str<strong>on</strong>g>species</str<strong>on</strong>g> (a significantly interactive effect).For P. canidia canidia, <strong>the</strong> durati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> fourth instar, larval growth rate, total c<strong>on</strong>sumpti<strong>on</strong>, absorpti<strong>on</strong> efficiency (AD),<str<strong>on</strong>g>and</str<strong>on</strong>g> growth efficiency (ECI) were all significantly altered by both <strong>the</strong> <str<strong>on</strong>g>availability</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>plant</str<strong>on</strong>g> <str<strong>on</strong>g>nutrient</str<strong>on</strong>g>s <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>plant</str<strong>on</strong>g> <str<strong>on</strong>g>species</str<strong>on</strong>g> (Fig. 3). Ingeneral, increased levels <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>plant</str<strong>on</strong>g> <str<strong>on</strong>g>nutrient</str<strong>on</strong>g>s decreased <strong>the</strong> fourth instar’s c<strong>on</strong>sumpti<strong>on</strong> rate, total c<strong>on</strong>sumpti<strong>on</strong>, <str<strong>on</strong>g>and</str<strong>on</strong>g> increasedits growth rate, absorpti<strong>on</strong> efficiency <str<strong>on</strong>g>and</str<strong>on</strong>g> growth efficiency. The results also indicated that <strong>the</strong> effects <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>plant</str<strong>on</strong>g> <str<strong>on</strong>g>nutrient</str<strong>on</strong>g> <str<strong>on</strong>g>availability</str<strong>on</strong>g><strong>on</strong> instar durati<strong>on</strong>, larval growth rate, total c<strong>on</strong>sumpti<strong>on</strong>, absorpti<strong>on</strong> efficiency (AD), <str<strong>on</strong>g>and</str<strong>on</strong>g> growth efficiency (ECI) wereinfluenced by <strong>the</strong> <str<strong>on</strong>g>host</str<strong>on</strong>g> <str<strong>on</strong>g>plant</str<strong>on</strong>g> <str<strong>on</strong>g>species</str<strong>on</strong>g>; <strong>the</strong> effects varied am<strong>on</strong>g <str<strong>on</strong>g>species</str<strong>on</strong>g> (a significantly interactive effect).4. Discussi<strong>on</strong>The results c<strong>on</strong>firm that fertilizati<strong>on</strong> can significantly influence <strong>the</strong> phytochemical c<strong>on</strong>tents <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> <str<strong>on</strong>g>host</str<strong>on</strong>g> <str<strong>on</strong>g>plant</str<strong>on</strong>g>s (Wolfs<strong>on</strong>,1980, 1982; Myers, 1985). Changes in <str<strong>on</strong>g>host</str<strong>on</strong>g> <str<strong>on</strong>g>plant</str<strong>on</strong>g> quality, due to increased levels <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>plant</str<strong>on</strong>g> <str<strong>on</strong>g>nutrient</str<strong>on</strong>g>s, can influence <strong>the</strong> performance<str<strong>on</strong>g>of</str<strong>on</strong>g> both <str<strong>on</strong>g>species</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> Pieris. The resp<strong>on</strong>se <str<strong>on</strong>g>of</str<strong>on</strong>g> insect herbivores to phytochemical changes, however, varied am<strong>on</strong>g <strong>the</strong> <str<strong>on</strong>g>species</str<strong>on</strong>g><str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>host</str<strong>on</strong>g> <str<strong>on</strong>g>plant</str<strong>on</strong>g>s.4.1. Foliar chemistryLevels <str<strong>on</strong>g>of</str<strong>on</strong>g> foliar nitrogen typically increased from 50 w 220% under l<strong>on</strong>g-term fertilizati<strong>on</strong> (Slansky <str<strong>on</strong>g>and</str<strong>on</strong>g> Feeny, 1977; Myers,1985; Estiarte et al., 1994; Chen et al., 2004); thus, <strong>the</strong> overall increase <str<strong>on</strong>g>of</str<strong>on</strong>g> 1 w 2 folds, observed in this study, is c<strong>on</strong>sistent witho<strong>the</strong>r studies. The results <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> c<strong>on</strong>tents <str<strong>on</strong>g>of</str<strong>on</strong>g> water in <strong>the</strong> leaf is also similar with earlier studies showing that soil <str<strong>on</strong>g>nutrient</str<strong>on</strong>g>


510S.-Y. Hwang et al. / Biochemical Systematics <str<strong>on</strong>g>and</str<strong>on</strong>g> Ecology 36 (2008) 505–513P. rapae crucivoraP. canidia canidiaLarval time (days)252015105P valuesNutr


S.-Y. Hwang et al. / Biochemical Systematics <str<strong>on</strong>g>and</str<strong>on</strong>g> Ecology 36 (2008) 505–513 511DUR (days)765432P. rapae crucivorap valuesNutr


512S.-Y. Hwang et al. / Biochemical Systematics <str<strong>on</strong>g>and</str<strong>on</strong>g> Ecology 36 (2008) 505–513The physiological resp<strong>on</strong>ses <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> four <str<strong>on</strong>g>species</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>plant</str<strong>on</strong>g>s to fertilizati<strong>on</strong> were all different from each o<strong>the</strong>r. Specifically, <strong>the</strong>glucosinolate c<strong>on</strong>tent varied by 8-fold between <strong>the</strong> foliage <str<strong>on</strong>g>of</str<strong>on</strong>g> B. oleracea compared to those <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> o<strong>the</strong>r three <str<strong>on</strong>g>host</str<strong>on</strong>g> <str<strong>on</strong>g>plant</str<strong>on</strong>g>s.These differences likely reflect <strong>the</strong> variati<strong>on</strong>s in <strong>the</strong> life history patterns am<strong>on</strong>g <strong>the</strong>se four <str<strong>on</strong>g>species</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>plant</str<strong>on</strong>g>. The two weed <str<strong>on</strong>g>species</str<strong>on</strong>g>,R. indica <str<strong>on</strong>g>and</str<strong>on</strong>g> C. flexuosa, <str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>the</strong> cultivated <str<strong>on</strong>g>species</str<strong>on</strong>g>, B. campestris are relatively short-lived <str<strong>on</strong>g>and</str<strong>on</strong>g> fast-growing, compared toB. oleracea. These inherent differences in its life history patterns may allow B. oleracea to have greater plasticity in resp<strong>on</strong>se tochanges <str<strong>on</strong>g>of</str<strong>on</strong>g> resources such as fertilizers <str<strong>on</strong>g>and</str<strong>on</strong>g> water.4.2. Insect resp<strong>on</strong>sesThe experiment <strong>on</strong> <strong>the</strong> performance <str<strong>on</strong>g>of</str<strong>on</strong>g> larvae was planned to assess whe<strong>the</strong>r <strong>the</strong> <str<strong>on</strong>g>plant</str<strong>on</strong>g> <str<strong>on</strong>g>nutrient</str<strong>on</strong>g>s <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>plant</str<strong>on</strong>g> <str<strong>on</strong>g>species</str<strong>on</strong>g> haveinteractive effects <strong>on</strong> <strong>the</strong> performance <str<strong>on</strong>g>and</str<strong>on</strong>g> utilizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> food by <strong>the</strong>se two <str<strong>on</strong>g>species</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> butterfly. The combined effects <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong><str<strong>on</strong>g>availability</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>plant</str<strong>on</strong>g> <str<strong>on</strong>g>nutrient</str<strong>on</strong>g>s <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>species</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>host</str<strong>on</strong>g> <str<strong>on</strong>g>plant</str<strong>on</strong>g> <strong>on</strong> <strong>the</strong> larval performance, have received relatively little c<strong>on</strong>siderati<strong>on</strong>,while <str<strong>on</strong>g>plant</str<strong>on</strong>g> <str<strong>on</strong>g>nutrient</str<strong>on</strong>g>s <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>plant</str<strong>on</strong>g> <str<strong>on</strong>g>species</str<strong>on</strong>g>, separately, have been shown to influence <strong>the</strong> performance <str<strong>on</strong>g>of</str<strong>on</strong>g> insects. Variati<strong>on</strong>s in <strong>the</strong>degree <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>plant</str<strong>on</strong>g> <str<strong>on</strong>g>nutrient</str<strong>on</strong>g> <str<strong>on</strong>g>availability</str<strong>on</strong>g> were transformed into significant treatment effects <strong>on</strong> <strong>the</strong> larval performance <str<strong>on</strong>g>of</str<strong>on</strong>g> both<str<strong>on</strong>g>species</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> butterfly. In general, larvae that fed <strong>on</strong> highly-nutritious foliage had increased growth rates <str<strong>on</strong>g>and</str<strong>on</strong>g> shorter period<str<strong>on</strong>g>of</str<strong>on</strong>g> development compared to those larvae that fed <strong>on</strong> low-<str<strong>on</strong>g>nutrient</str<strong>on</strong>g> foliage. This result is similar to our previous <str<strong>on</strong>g>and</str<strong>on</strong>g> o<strong>the</strong>rrelated studies which showed that Pieris butterflies grew faster when fed <strong>on</strong> fertilized <str<strong>on</strong>g>host</str<strong>on</strong>g> <str<strong>on</strong>g>plant</str<strong>on</strong>g>s (Myers, 1985; Chenet al., 2004). Larvae that fed <strong>on</strong> unfertilized foliage c<strong>on</strong>sumed more food (higher c<strong>on</strong>sumpti<strong>on</strong> rate <str<strong>on</strong>g>and</str<strong>on</strong>g> l<strong>on</strong>ger feedingperiod); but <strong>the</strong> overall performance was poor than larvae that fed <strong>on</strong> more nutritious foliage (higher growth rate <str<strong>on</strong>g>and</str<strong>on</strong>g>food processing efficiencies). From a <str<strong>on</strong>g>plant</str<strong>on</strong>g> chemistry perspective, highly-fertilized <str<strong>on</strong>g>plant</str<strong>on</strong>g>s have higher nitrogen <str<strong>on</strong>g>and</str<strong>on</strong>g> waterc<strong>on</strong>tents, but have similar amount <str<strong>on</strong>g>of</str<strong>on</strong>g> defensive compounds (glucosinolates).The performance, <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> two <str<strong>on</strong>g>species</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> Pieris larvae, varied significantly am<strong>on</strong>g different <str<strong>on</strong>g>species</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>host</str<strong>on</strong>g> <str<strong>on</strong>g>plant</str<strong>on</strong>g>s. Except forbody weight, larvae did not perform best, c<strong>on</strong>sistently, <strong>on</strong> <strong>the</strong> cultivated <str<strong>on</strong>g>host</str<strong>on</strong>g> <str<strong>on</strong>g>plant</str<strong>on</strong>g>s. The larvae <str<strong>on</strong>g>of</str<strong>on</strong>g> both <str<strong>on</strong>g>species</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> butterflygained more body weights when raised <strong>on</strong> <strong>the</strong> foliage <str<strong>on</strong>g>of</str<strong>on</strong>g> cultivated B. oleracea <str<strong>on</strong>g>and</str<strong>on</strong>g> B. campestris, which were <strong>the</strong> preferred<str<strong>on</strong>g>host</str<strong>on</strong>g> <str<strong>on</strong>g>plant</str<strong>on</strong>g>s for P. rapae crucivora; no significant difference in larval feeding <str<strong>on</strong>g>and</str<strong>on</strong>g> development was found am<strong>on</strong>g <strong>the</strong> cultivated<str<strong>on</strong>g>and</str<strong>on</strong>g> weed <str<strong>on</strong>g>host</str<strong>on</strong>g> <str<strong>on</strong>g>plant</str<strong>on</strong>g>s. Similar observati<strong>on</strong>s were found for P. canidia canidia. There is little literature menti<strong>on</strong>ing <strong>the</strong> performance<str<strong>on</strong>g>of</str<strong>on</strong>g> Pieris butterflies am<strong>on</strong>g cultivated <str<strong>on</strong>g>and</str<strong>on</strong>g> wild <str<strong>on</strong>g>host</str<strong>on</strong>g> <str<strong>on</strong>g>plant</str<strong>on</strong>g>s. It was found that P. brassicae larvae that fed <strong>on</strong> cultivatedB. oleracea var. capitata had <strong>the</strong> highest food c<strong>on</strong>sumpti<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> assimilati<strong>on</strong> rates, but lowest for those that fed <strong>on</strong> <strong>the</strong> weedNasturtium m<strong>on</strong>tanum (Kaushal <str<strong>on</strong>g>and</str<strong>on</strong>g> Vats, 1983). Our current results, however, did not indicate any significant difference in<str<strong>on</strong>g>host</str<strong>on</strong>g>-<str<strong>on</strong>g>plant</str<strong>on</strong>g> suitability am<strong>on</strong>g different <str<strong>on</strong>g>host</str<strong>on</strong>g> <str<strong>on</strong>g>plant</str<strong>on</strong>g> <str<strong>on</strong>g>species</str<strong>on</strong>g> for both Pieris butterflies.The interacti<strong>on</strong> between resource <str<strong>on</strong>g>availability</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>host</str<strong>on</strong>g> <str<strong>on</strong>g>plant</str<strong>on</strong>g> <str<strong>on</strong>g>species</str<strong>on</strong>g> <strong>on</strong> insect performance varied between <strong>the</strong> two Pierisbutterflies. Interacti<strong>on</strong> did not occur for all <strong>the</strong> performance variables which were tested for P. rapae crucivora. Most variablesfor P. canidia canidia showed some interacti<strong>on</strong>s between <str<strong>on</strong>g>plant</str<strong>on</strong>g> <str<strong>on</strong>g>nutrient</str<strong>on</strong>g>s <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>species</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>host</str<strong>on</strong>g> <str<strong>on</strong>g>plant</str<strong>on</strong>g>s, suggesting that interacti<strong>on</strong>sbetween resource <str<strong>on</strong>g>availability</str<strong>on</strong>g> in <str<strong>on</strong>g>host</str<strong>on</strong>g> <str<strong>on</strong>g>plant</str<strong>on</strong>g>s <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>species</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>host</str<strong>on</strong>g> <str<strong>on</strong>g>plant</str<strong>on</strong>g>s are comm<strong>on</strong>.In c<strong>on</strong>clusi<strong>on</strong>, this research has dem<strong>on</strong>strated that <str<strong>on</strong>g>availability</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>plant</str<strong>on</strong>g> <str<strong>on</strong>g>nutrient</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>species</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>host</str<strong>on</strong>g> <str<strong>on</strong>g>plant</str<strong>on</strong>g> can str<strong>on</strong>gly influence<strong>the</strong> physiology <str<strong>on</strong>g>and</str<strong>on</strong>g> foliar chemistry <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>host</str<strong>on</strong>g> <str<strong>on</strong>g>plant</str<strong>on</strong>g>s. Moreover, phytochemical changes in <str<strong>on</strong>g>host</str<strong>on</strong>g> <str<strong>on</strong>g>plant</str<strong>on</strong>g>s can affect <strong>the</strong> performance<str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong>se <str<strong>on</strong>g>species</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> Pieris butterfly. More studies involving a variety <str<strong>on</strong>g>of</str<strong>on</strong>g> soil-fertility management methods are inprogress to address <strong>the</strong> potential <str<strong>on</strong>g>host</str<strong>on</strong>g> <str<strong>on</strong>g>plant</str<strong>on</strong>g> preferences <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>host</str<strong>on</strong>g> <str<strong>on</strong>g>plant</str<strong>on</strong>g> selecti<strong>on</strong>s by <strong>the</strong>se two <str<strong>on</strong>g>species</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> Pieris butterflies.AcknowledgementsWe thank C.M. Cheng, C.W. Tang, for <strong>the</strong>ir assistance in c<strong>on</strong>ducting bioassays, <str<strong>on</strong>g>and</str<strong>on</strong>g> Mr. R. Haesevoets, for his comments <strong>on</strong><strong>the</strong> manuscript. Two an<strong>on</strong>ymous reviewers also provided valuable input to improve <strong>the</strong> manuscript. This research was fundedby a grant, NSC-91-2313-B-005-119, given to S.Y. Hwang.ReferencesAdler, L.S., Schmitt, J., Bowers, M.D., 1995. Genetic variati<strong>on</strong> in defensive chemistry in Plantago lanceolata <str<strong>on</strong>g>and</str<strong>on</strong>g> its effect <strong>on</strong> <strong>the</strong> specialist herbivore Jun<strong>on</strong>iacoenia. Oecologia 101, 75–85.Altieri, M.A., Nicholls, C.I., 2003. Soil fertility management <str<strong>on</strong>g>and</str<strong>on</strong>g> insect pests: harm<strong>on</strong>izing soil <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>plant</str<strong>on</strong>g> health in agroecosystems. Soil Tillage Res. 72,203–211.Berenbaum, M.R., Zangerl, A.R., Nitao, J.K., 1986. C<strong>on</strong>straints <strong>on</strong> chemical coevoluti<strong>on</strong>: wild parsnip <str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>the</strong> parsnip webworm. Evoluti<strong>on</strong> 40, 1215–1228.Blua, M.J., Collier, B.D., Hanscom, Z., 1988. Glucocapparin variability am<strong>on</strong>g four populati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> Isomeris arborea. J. Chem. Ecol. 14, 623–633.Bryant, J.P., Chapin III, F.S., Klein, D.R., 1983. Carb<strong>on</strong>/<str<strong>on</strong>g>nutrient</str<strong>on</strong>g> balance <str<strong>on</strong>g>of</str<strong>on</strong>g> boreal <str<strong>on</strong>g>plant</str<strong>on</strong>g>s in relati<strong>on</strong> to vertebrate herbivory. Oikos 40, 357–368.Chen, Y.Z., Lin, L., Wang, C.W., Yeh, C.C., Hwang, S.Y., 2004. Resp<strong>on</strong>ses <str<strong>on</strong>g>of</str<strong>on</strong>g> two Pieris <str<strong>on</strong>g>species</str<strong>on</strong>g> to fertilizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a <str<strong>on</strong>g>host</str<strong>on</strong>g> <str<strong>on</strong>g>plant</str<strong>on</strong>g>. Zool. Stud. 43, 778–786.Dethier, V.G., 1982. Mechanisms <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>host</str<strong>on</strong>g>-<str<strong>on</strong>g>plant</str<strong>on</strong>g> recogniti<strong>on</strong>. Entomol. Exp. Appl. 31, 49–56.Estiarte, M., Filella, I., Serra, J., Peñuelas, J., 1994. <str<strong>on</strong>g>Effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>nutrient</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> water stress <strong>on</strong> leaf phenolic c<strong>on</strong>tent <str<strong>on</strong>g>of</str<strong>on</strong>g> peppers <str<strong>on</strong>g>and</str<strong>on</strong>g> susceptibility to generalis<strong>the</strong>rbivore Helicoverpa amigera (Hubner). Oecologia 99, 387–391.Farrar, R.R.J., Barbour, J.D., Kennedy, G.G., 1989. Quantifying food c<strong>on</strong>sumpti<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> growth in insects. Ann. Entomol. Soc. Am. 82, 593–598.Feeny, P., 1977. Defensive ecology <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> Cruciferae. Ann. Mo. Bot. Gard. 64, 221–234.Finch, S., Ackley, C.M., 1977. Cultivated <str<strong>on</strong>g>and</str<strong>on</strong>g> wild <str<strong>on</strong>g>host</str<strong>on</strong>g> <str<strong>on</strong>g>plant</str<strong>on</strong>g>s supporting populati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> cabbage root fly. Ann. Appl. Biol. 85, 13–22.Gotthard, K., Nylin, S., Wiklund, C., 1994. Adaptive variati<strong>on</strong> in growth rate: Life history costs <str<strong>on</strong>g>and</str<strong>on</strong>g> c<strong>on</strong>sequences in <strong>the</strong> speckled wood butterfly. Parargeaegeria. Oecologia. 99, 281–289.Hare, J.D., 1998. Bioassay methods with terrestrial invertebrates. In: Haynes, K.F., Miller, J.G. (Eds.), Methods in Chemical Ecology, Vol. 2. Kluwer Academic,Norwell, pp. 212–270.


S.-Y. Hwang et al. / Biochemical Systematics <str<strong>on</strong>g>and</str<strong>on</strong>g> Ecology 36 (2008) 505–513 513Hemming, J.D.C., Lindroth, R.L., 1999. <str<strong>on</strong>g>Effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> light <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>nutrient</str<strong>on</strong>g> <str<strong>on</strong>g>availability</str<strong>on</strong>g> <strong>on</strong> aspen: growth, phytochemistry, <str<strong>on</strong>g>and</str<strong>on</strong>g> insect performance. J. Chem. Ecol. 25,1687–1714.Herms, D.A., Matts<strong>on</strong>, W.J., 1992. The dilemma <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>plant</str<strong>on</strong>g>s: to grow or defend. Q. Rev. Biol. 67, 283–335.Huang, X., Renwick, J.A.A., 1993. Differential selecti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>host</str<strong>on</strong>g> <str<strong>on</strong>g>plant</str<strong>on</strong>g>s by two Pieris <str<strong>on</strong>g>species</str<strong>on</strong>g>: <strong>the</strong> role <str<strong>on</strong>g>of</str<strong>on</strong>g> ovipositi<strong>on</strong> stimulants <str<strong>on</strong>g>and</str<strong>on</strong>g> deterrents. Entomol. Exp.Appl. 68, 59–69.Hwang, S.Y., Lindroth, R.L., 1997. Cl<strong>on</strong>al variati<strong>on</strong> in foliar chemistry <str<strong>on</strong>g>of</str<strong>on</strong>g> aspen: effects <strong>on</strong> gypsy moths <str<strong>on</strong>g>and</str<strong>on</strong>g> forest tent caterpillars. Oecologia 111, 99–108.Kaushal, B.R., Vats, L.K., 1983. Energy budget <str<strong>on</strong>g>of</str<strong>on</strong>g> Pieris brassicae L. larvae fed <strong>on</strong> four <str<strong>on</strong>g>host</str<strong>on</strong>g> <str<strong>on</strong>g>plant</str<strong>on</strong>g> <str<strong>on</strong>g>species</str<strong>on</strong>g>. Agri. Ecosyst. Envir<strong>on</strong>. 10, 385–398.Lang, C.A., 1958. Simple microdeterminati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Kjeldahl nitrogen in biological materials. Anal. Chem. 30, 1692–1694.Matts<strong>on</strong>, W.J., Haack, R.A., 1987. The role <str<strong>on</strong>g>of</str<strong>on</strong>g> drought in outbreaks <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>plant</str<strong>on</strong>g>-eating insects. Bioscience 37, 110–118.Mevi-Schütz, J., Goverde, M., Erhardt, A., 2003. <str<strong>on</strong>g>Effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> fertilizati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> elevated CO 2 <strong>on</strong> larval food <str<strong>on</strong>g>and</str<strong>on</strong>g> butterfly nectar amino acid preference inCoen<strong>on</strong>ympha pamphilus L. Behav. Ecol. Sociobiol. 54, 36–43.Myers, J.H., 1985. Effect <str<strong>on</strong>g>of</str<strong>on</strong>g> physiological c<strong>on</strong>diti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> <str<strong>on</strong>g>host</str<strong>on</strong>g> <str<strong>on</strong>g>plant</str<strong>on</strong>g> <strong>on</strong> <strong>the</strong> ovipositi<strong>on</strong>al choice <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> cabbage white butterfly, Pieris rapae. J. Anim. Ecol. 54,193–204.Nielsen, J.K., 1978. Host <str<strong>on</strong>g>plant</str<strong>on</strong>g> discriminati<strong>on</strong> within Cruciferae: feeding resp<strong>on</strong>ses <str<strong>on</strong>g>of</str<strong>on</strong>g> four leaf beetles to glucosinolates, cucurbitacins <str<strong>on</strong>g>and</str<strong>on</strong>g> cardenolides.Entomol. Exp. Appl. 24, 41–54.Parkins<strong>on</strong>, J.A., Allen, S.E., 1975. A wet oxidati<strong>on</strong> procedure suitable for <strong>the</strong> determinati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> nitrogen <str<strong>on</strong>g>and</str<strong>on</strong>g> mineral <str<strong>on</strong>g>nutrient</str<strong>on</strong>g>s in biological material. Comm.Soil Sci. Plant Anal. 6, 1–11.Renwick, J.A.A., Radke, C.D., 1985. C<strong>on</strong>stituents <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>host</str<strong>on</strong>g>- <str<strong>on</strong>g>and</str<strong>on</strong>g> n<strong>on</strong>-<str<strong>on</strong>g>host</str<strong>on</strong>g> <str<strong>on</strong>g>plant</str<strong>on</strong>g>s deterring ovipositi<strong>on</strong> by <strong>the</strong> cabbage butterfly, Pieris rapae. Entomol. Exp. Appl.39, 21–26.Renwick, J.A.A., Radke, C.D., 1988. Sensory cues in <str<strong>on</strong>g>host</str<strong>on</strong>g> selecti<strong>on</strong> for ovipositi<strong>on</strong> by <strong>the</strong> cabbage butterfly, Pieris rapae. J. Insect Physiol. 34, 254–257.Saini, H.S., Wratten, N., 1987. Quantitative determinati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> total glucosinolates in rapseed <str<strong>on</strong>g>and</str<strong>on</strong>g> meal digests. J. Assoc. Anal. Chem. 70, 141–145.SAS, 1988. SAS User’s Guide: Statistics. SAS Institute, Cary, NC.Scho<strong>on</strong>hoven, L.M., 1968. Chemosensory basis <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>host</str<strong>on</strong>g> <str<strong>on</strong>g>plant</str<strong>on</strong>g> selecti<strong>on</strong>. Annu. Rev. Entomol. 13, 115–136.Slansky, F., Feeny, P., 1977. Stabilizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> rate <str<strong>on</strong>g>of</str<strong>on</strong>g> nitrogen accumulati<strong>on</strong> by larvae <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> cabbage butterfly <strong>on</strong> wild <str<strong>on</strong>g>and</str<strong>on</strong>g> cultivated food <str<strong>on</strong>g>plant</str<strong>on</strong>g>s. Ecol.M<strong>on</strong>ogr. 47, 209–228.Theunissen, J., Ouden, H.D., Wit, A.K.H., 1985. Feeding capacity <str<strong>on</strong>g>of</str<strong>on</strong>g> caterpillars <strong>on</strong> cabbage, a factor in crop loss assessment. Entomol. Exp. Appl. 39, 255–260.Waldbauer, G.P., 1968. The c<strong>on</strong>sumpti<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> utilizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> food by insects. Adv. Insect Physiol. 5, 229–288.Waring, G.L., Cobb, N.S., 1992. The impact <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>plant</str<strong>on</strong>g> stress <strong>on</strong> herbivore populati<strong>on</strong> dynamics. In: Bernays, E.A. (Ed.), Insect-<str<strong>on</strong>g>plant</str<strong>on</strong>g> Interacti<strong>on</strong>s, Vol. IV. CRCPress, Boca Rat<strong>on</strong>, pp. 167–226.Wolfs<strong>on</strong>, J.L., 1980. Ovipositi<strong>on</strong> resp<strong>on</strong>se <str<strong>on</strong>g>of</str<strong>on</strong>g> Pieris rapae to envir<strong>on</strong>mentally induced variati<strong>on</strong> in Brassica nigra. Entomol. Exp. Appl. 27, 223–232.Wolfs<strong>on</strong>, J.L., 1982. Developmental resp<strong>on</strong>ses <str<strong>on</strong>g>of</str<strong>on</strong>g> Pieris rapae <str<strong>on</strong>g>and</str<strong>on</strong>g> Spodoptera eridania to envir<strong>on</strong>mentally induced variati<strong>on</strong> in Brassica nigra. J. Ec<strong>on</strong>. Entomol.11, 207–213.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!