12.07.2015 Views

Quasiparticles and vortices in the high temperature cuprate ...

Quasiparticles and vortices in the high temperature cuprate ...

Quasiparticles and vortices in the high temperature cuprate ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

QUASIPARTICLES AND VORTICES IN THE HIGHTEMPERATURE CUPRATE SUPERCONDUCTORSbyOskar VafekA dissertation submitted to The Johns Hopk<strong>in</strong>s University <strong>in</strong> conformity with <strong>the</strong>requirements for <strong>the</strong> degree of Doctor of Philosophy.Baltimore, Maryl<strong>and</strong>August, 2003c○ Oskar Vafek 2003All rights reserved


AbstractIn this <strong>the</strong>sis I present a study of <strong>the</strong> <strong>in</strong>terplay of <strong>vortices</strong> <strong>and</strong> <strong>the</strong> fermionic quasiparticlestates <strong>in</strong> a quasi 2-dimensional d-wave superconductors, such as <strong>high</strong> <strong>temperature</strong><strong>cuprate</strong> superconductors. In <strong>the</strong> first part, I start by analyz<strong>in</strong>g <strong>the</strong> quasiparticlestates <strong>in</strong> <strong>the</strong> presence of <strong>the</strong> magnetic field <strong>in</strong>duced vortex lattice. Unlike <strong>in</strong> <strong>the</strong> s-wave superconductor, <strong>the</strong>re are no vortex bound states, ra<strong>the</strong>r all <strong>the</strong> quasiparticlestates are extended. By us<strong>in</strong>g general arguments based on symmetry pr<strong>in</strong>ciples <strong>and</strong>by direct (numerical) computation, I show that <strong>the</strong>se extended quasiparticle statesare gapped. In addition, <strong>the</strong>y are characterized by a topological <strong>in</strong>variant with regardto <strong>the</strong>ir sp<strong>in</strong> Hall conduction. F<strong>in</strong>ally, I relate <strong>the</strong> sp<strong>in</strong> Hall conductivity tensor σ sp<strong>in</strong>xyto <strong>the</strong> <strong>the</strong>rmal Hall conductivity κ xy by deriv<strong>in</strong>g <strong>the</strong> appropriate “Wiedemann-Franz”law. In <strong>the</strong> second part, I analyze <strong>the</strong> fluctuations around an ordered d-wave superconductor(<strong>in</strong> <strong>the</strong> absence of <strong>the</strong> external magnetic field), focus<strong>in</strong>g on <strong>the</strong> <strong>in</strong>teractionbetween <strong>the</strong> low energy nodal fermions <strong>and</strong> <strong>the</strong> vortex-antivortex phase excitations.It is shown that <strong>the</strong> correspond<strong>in</strong>g low energy effective <strong>the</strong>ory for <strong>the</strong> nodal fermions<strong>in</strong> <strong>the</strong> normal (non-superconduct<strong>in</strong>g) state is QED 3 or quantum electrodynamics <strong>in</strong>2+1 space time dimensions. The massless U(1) gauge field encodes <strong>the</strong> topological<strong>in</strong>teraction between <strong>the</strong> quasiparticles <strong>and</strong> <strong>the</strong> hc/2e <strong>vortices</strong> at long wavelengths.I analyze <strong>the</strong> symmetries, correlations <strong>and</strong> stability of this state.In particular, Istudy <strong>the</strong> role of Dirac cone anisotropy <strong>and</strong> residual <strong>in</strong>teractions <strong>in</strong> QED 3 as well as<strong>the</strong> physical mean<strong>in</strong>g of <strong>the</strong> chiral symmetry break<strong>in</strong>g. Remarkably, <strong>the</strong> sp<strong>in</strong> densitywave corresponds to an <strong>in</strong>stability of a phase fluctuat<strong>in</strong>g d-wave superconductor.Advisor: Zlatko B. Tesanovic.ii


iii


AcknowledgementsI wish to express my deep gratitude to Prof. Zlatko Tešanovic for shar<strong>in</strong>g his<strong>in</strong>sights <strong>and</strong> library of knowledge with me, <strong>and</strong> for constant <strong>and</strong> uncompromis<strong>in</strong>gquest for <strong>the</strong> profound that he <strong>in</strong>spires.I also wish to thank Ashot Melikyan for many <strong>in</strong>valuable discussions <strong>and</strong> debates,<strong>and</strong> for his exceptional selflessness <strong>in</strong> help<strong>in</strong>g me <strong>and</strong> o<strong>the</strong>rs.iv


ContentsAbstractAcknowledgementsList of Figuresiiivvii1 Introduction 11.1 Phenomenology of High Temperature Cuprate Superconductors . . . 32 <strong>Quasiparticles</strong> <strong>in</strong> <strong>the</strong> mixed state of HTS 92.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92.2 Quasiparticle excitation spectrum of a d-wave superconductor <strong>in</strong> <strong>the</strong>mixed state . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162.2.1 Particle-Hole Symmetry . . . . . . . . . . . . . . . . . . . . . 192.2.2 Franz-Tešanović Transformation <strong>and</strong> Translation Symmetry . 192.2.3 Vortex Lattice Inversion Symmetry <strong>and</strong> Level Cross<strong>in</strong>g . . . . 222.3 Topological quantization of sp<strong>in</strong> <strong>and</strong> <strong>the</strong>rmal Hall conductivities . . . 252.3.1 Sp<strong>in</strong> Conductivity . . . . . . . . . . . . . . . . . . . . . . . . . 262.3.2 Thermal Conductivity . . . . . . . . . . . . . . . . . . . . . . 312.4 Discussion <strong>and</strong> Conclusion . . . . . . . . . . . . . . . . . . . . . . . . 333 QED 3 <strong>the</strong>ory of <strong>the</strong> phase disordered d-wave superconductors 363.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 363.2 Vortex quasiparticle <strong>in</strong>teraction . . . . . . . . . . . . . . . . . . . . . 383.2.1 Protectorate of <strong>the</strong> pair<strong>in</strong>g pseudogap . . . . . . . . . . . . . . 383.2.2 Topological frustration . . . . . . . . . . . . . . . . . . . . . . 393.2.3 “Coarse-gra<strong>in</strong>ed” Doppler <strong>and</strong> Berry U(1) gauge fields . . . . 433.2.4 Fur<strong>the</strong>r remarks on FT gauge . . . . . . . . . . . . . . . . . . 463.2.5 Maxwellian form of <strong>the</strong> Jacobian L 0 [v µ , a µ ] . . . . . . . . . . . 483.3 Low energy effective <strong>the</strong>ory . . . . . . . . . . . . . . . . . . . . . . . 553.3.1 Effective Lagrangian for <strong>the</strong> pseudogap state . . . . . . . . . . 583.3.2 Berryon propagator . . . . . . . . . . . . . . . . . . . . . . . . 60v


3.3.3 TF self energy <strong>and</strong> propagator . . . . . . . . . . . . . . . . . . 623.4 Effects of Dirac anisotropy <strong>in</strong> symmetric QED 3 . . . . . . . . . . . . 643.4.1 Anisotropic QED 3 . . . . . . . . . . . . . . . . . . . . . . . . 653.4.2 Gauge field propagator . . . . . . . . . . . . . . . . . . . . . . 663.4.3 TF self energy . . . . . . . . . . . . . . . . . . . . . . . . . . . 693.4.4 Dirac anisotropy <strong>and</strong> its β function . . . . . . . . . . . . . . . 703.5 F<strong>in</strong>ite <strong>temperature</strong> extensions of QED 3 . . . . . . . . . . . . . . . . . 723.5.1 Specific heat <strong>and</strong> scal<strong>in</strong>g of <strong>the</strong>rmodynamics . . . . . . . . . . 753.5.2 Uniform sp<strong>in</strong> susceptibility . . . . . . . . . . . . . . . . . . . . 763.6 Chiral symmetry break<strong>in</strong>g . . . . . . . . . . . . . . . . . . . . . . . . 783.7 Summary <strong>and</strong> conclusions . . . . . . . . . . . . . . . . . . . . . . . . 85A Quasiparticle correlation functions <strong>in</strong> <strong>the</strong> mixed state 87A.1 Green’s functions: def<strong>in</strong>itions <strong>and</strong> identities . . . . . . . . . . . . . . 87A.2 Sp<strong>in</strong> current <strong>and</strong> sp<strong>in</strong> conductivity tensor . . . . . . . . . . . . . . . . 89A.3 Thermal current <strong>and</strong> <strong>the</strong>rmal conductivity tensor . . . . . . . . . . . 91B Field <strong>the</strong>ory of quasiparticles <strong>and</strong> <strong>vortices</strong> 98B.1 Jacobian L 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98B.1.1 2D <strong>the</strong>rmal vortex-antivortex fluctuations . . . . . . . . . . . 98B.1.2 Quantum fluctuations of (2+1)D vortex loops . . . . . . . . . 101B.2 Feynman <strong>in</strong>tegrals <strong>in</strong> QED 3 . . . . . . . . . . . . . . . . . . . . . . . 106B.2.1 Vacuum polarization bubble . . . . . . . . . . . . . . . . . . . 106B.2.2 TF self energy: Lorentz gauge . . . . . . . . . . . . . . . . . . 107B.3 Feynman <strong>in</strong>tegrals for anisotropic case . . . . . . . . . . . . . . . . . 108B.3.1 Self energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108B.4 Physical modes of a f<strong>in</strong>ite T QED 3 . . . . . . . . . . . . . . . . . . . 110B.5 F<strong>in</strong>ite Temperature Vacuum Polarization . . . . . . . . . . . . . . . . 113B.6 Free energy scal<strong>in</strong>g of QED 3 . . . . . . . . . . . . . . . . . . . . . . . 118Bibliography 120Vita 127vi


List of Figures1.1 (A) The unit cell of La 2−x Sr x CuO 4 family of <strong>high</strong> <strong>temperature</strong> superconductors.It is believed that most of <strong>the</strong> <strong>in</strong>terest<strong>in</strong>g physics happens<strong>in</strong> <strong>the</strong> Cu-O 2 plane, which extends <strong>in</strong> <strong>the</strong> a − b directions. The c−axiselectronic coupl<strong>in</strong>g is very small. In this family of materials, dop<strong>in</strong>g isachieved by replac<strong>in</strong>g some of <strong>the</strong> La atoms for Sr, or by add<strong>in</strong>g <strong>in</strong>terstitialoxygen atoms. This crystall<strong>in</strong>e structure is slightly modified<strong>in</strong> different <strong>high</strong>-T c <strong>cuprate</strong>s, but all share <strong>the</strong> weakly coupled Cu-O 2planes. (B) Arrows <strong>in</strong>dicate sp<strong>in</strong> alignment <strong>in</strong> <strong>the</strong> antiferromagenticstate, <strong>the</strong> parent state of HTS. (Taken from [3]) . . . . . . . . . . . . 41.2 Phase diagram of electron <strong>and</strong> hole doped High Temperature superconductorsshow<strong>in</strong>g <strong>the</strong> superconduct<strong>in</strong>g (SC), antiferromagnetic (AF),pseudogap <strong>and</strong> metallic phases. (Taken from [4]). . . . . . . . . . . . 51.3 The magnetic flux thread<strong>in</strong>g through a polycrystall<strong>in</strong>e YBCO r<strong>in</strong>g,monitored with a SQUID magnetometer as a function of time. The fluxjumps occur <strong>in</strong> <strong>in</strong>tegral multiples of <strong>the</strong> superconduct<strong>in</strong>g flux quantumΦ 0 = hc/2e. This experiment demonstrates that <strong>the</strong> superconductivity<strong>in</strong> <strong>high</strong> <strong>temperature</strong> <strong>cuprate</strong>s is due to Cooper pair<strong>in</strong>g. (taken from [5]) 61.4 The pair<strong>in</strong>g gap of HTS has d x 2 −y2-wave symmetry (left). The po<strong>in</strong>tson <strong>the</strong> Fermi surface at which <strong>the</strong> gap disappears (<strong>the</strong> nodal po<strong>in</strong>ts)can be identified <strong>in</strong> <strong>the</strong> angle resolved photoemission spectra (right) [4]. 71.5 Contours of <strong>the</strong> constant Nernst coefficient <strong>in</strong> <strong>the</strong> Temperature vs. dop<strong>in</strong>gphase diagram. The units of <strong>the</strong> Nernst coefficient are nanoVolt perKelv<strong>in</strong> per Tesla. At low <strong>temperature</strong> <strong>and</strong> <strong>in</strong> <strong>the</strong> strongly underdopedregion <strong>the</strong> Nernst signal is almost three orders of magnitude greaterthan it would be <strong>in</strong> a normal metal. Such a large signal is typicallyobserved <strong>in</strong> <strong>the</strong> vortex liquid state, where it is associated with Josephsonphase-slips produced across <strong>the</strong> sample due to <strong>the</strong>rmally diffus<strong>in</strong>g<strong>vortices</strong>. In this experiment, however, this signal is seen several tensof Kelv<strong>in</strong>s above <strong>the</strong> superconduct<strong>in</strong>g transition <strong>temperature</strong> T c ! [8] 8vii


Chapter 1IntroductionThe properties of matter at low <strong>temperature</strong> amplify nature’s most fasc<strong>in</strong>at<strong>in</strong>g<strong>and</strong> least comprehensible laws: <strong>the</strong> laws of quantum mechanics. This amplificationprocess occurs via a pr<strong>in</strong>ciple of symmetry break<strong>in</strong>g: when <strong>the</strong> available phase spaceis sufficiently restricted, <strong>in</strong>teract<strong>in</strong>g systems with a macroscopically large number ofdegrees of freedom tend to seek a <strong>high</strong>ly organized state. In o<strong>the</strong>r words, <strong>the</strong> lowenergy state of a many particle system possesses less symmetry than <strong>the</strong> laws whichare obeyed by its constituents. A commonplace example are solids. Despite <strong>the</strong>fact that <strong>the</strong> laws of quantum mechanics are <strong>in</strong>variant under spatial translation, <strong>the</strong>atoms <strong>in</strong> a solid occupy a regular array which is only disrupted by small amplitudevibrations <strong>and</strong> occasional dislocation defects. It is <strong>the</strong> translational symmetry thatis broken by <strong>the</strong> solid state of matter. This symmetry break<strong>in</strong>g has an importantramification: <strong>the</strong> emergence of Goldstone modes, or long lived degrees of freedom,which tend to restore <strong>the</strong> symmetry. In <strong>the</strong> case of a solid, this is embodied by <strong>the</strong>emergence of transverse elastic waves. In addition, symmetry break<strong>in</strong>g generally leadsto stable topological defects; <strong>in</strong> solids <strong>the</strong>se are lattice dislocations <strong>and</strong> discl<strong>in</strong>ations.While such topological defects are quite rare deep <strong>in</strong>side an ordered state, <strong>the</strong>y canbe crucial <strong>in</strong> destroy<strong>in</strong>g <strong>the</strong> order near a phase transition.A less commonplace example of symmetry break<strong>in</strong>g is a superconductor. While<strong>the</strong> laws of quantum mechanics are <strong>in</strong>variant under a local U(1) transformation, i.e.multiplication of <strong>the</strong> wavefunction by a space dependent s<strong>in</strong>gle valued phase factor,1


<strong>the</strong> superconduct<strong>in</strong>g state is not. In a superconductor <strong>the</strong> many body wavefunctionacquires rigidity under a phase twist. This leads to most of <strong>the</strong> fasc<strong>in</strong>at<strong>in</strong>g propertiesof superconductors such as <strong>the</strong> passage of current without any voltage drop, <strong>the</strong>Meissner effect, or even <strong>the</strong> magnetic levitation. The density of low energy fermionicexcitations is generically appreciably reduced compared to <strong>the</strong> non-superconduct<strong>in</strong>gstate. The Goldstone mode that accompanies <strong>the</strong> symmetry break<strong>in</strong>g corresponds tosmooth (longitud<strong>in</strong>al) space-time variations of <strong>the</strong> phase of <strong>the</strong> many body wavefunction.On <strong>the</strong> o<strong>the</strong>r h<strong>and</strong>, 2π phase twists of <strong>the</strong> wavefunction, or <strong>vortices</strong>, are <strong>the</strong>analog of <strong>the</strong> dislocations <strong>in</strong> <strong>the</strong> solid. They form <strong>the</strong> topological defects <strong>in</strong> <strong>the</strong> type-IIsuperconductors. At a phase transition, <strong>temperature</strong> T = T c , such a superconductorlooses its phase rigidity due to <strong>the</strong> free motion of vortex defects. The <strong>temperature</strong><strong>in</strong>terval around T c <strong>in</strong> which this physics applies is typically barely detectable <strong>in</strong> <strong>the</strong>conventional low T c superconductors, but <strong>the</strong>re is grow<strong>in</strong>g experimental evidencethat <strong>in</strong> <strong>the</strong> <strong>high</strong> T c <strong>cuprate</strong> superconductors (HTS) vortex unb<strong>in</strong>d<strong>in</strong>g is <strong>the</strong> dom<strong>in</strong>antmechanism of <strong>the</strong> loss of long range order. In particular, <strong>the</strong> underdoped materialsappear to exhibit many characteristics associated with vortex physics, <strong>in</strong> some casesall <strong>the</strong> way down to zero <strong>temperature</strong>! Such observations suggest that <strong>the</strong> quantumanalog of vortex unb<strong>in</strong>d<strong>in</strong>g occurs at <strong>the</strong> superconductor-<strong>in</strong>sulator quantum phasetransition.The underly<strong>in</strong>g <strong>the</strong>me <strong>in</strong> this work is <strong>the</strong> <strong>in</strong>terplay of <strong>vortices</strong> <strong>and</strong> <strong>the</strong> fermionicquasiparticles, <strong>the</strong> s<strong>in</strong>gle particle excitations of <strong>the</strong> superconductor. I start by brieflyreview<strong>in</strong>g <strong>the</strong> phenomenology of HTS. In Chapter 2, I analyze <strong>the</strong> quasiparticle states<strong>in</strong> <strong>the</strong> presence of <strong>the</strong> magnetic field <strong>in</strong>duced vortex lattice <strong>in</strong> a planar d-wave superconductor.Several <strong>in</strong>terest<strong>in</strong>g <strong>and</strong> non-trivial properties of such a state are derived.In Chapter 3, I <strong>the</strong>n go on to analyze <strong>the</strong> nature of <strong>the</strong> fermionic excitations <strong>in</strong> aquantum phase disordered superconductor. It is shown that quantum unb<strong>in</strong>d<strong>in</strong>g ofhc/2e vortex defects produces gauge <strong>in</strong>teractions between quasiparticles. The lowenergy effective field <strong>the</strong>ory for such a state is argued to be QED 3 (2+1 dimensionalelectrodynamics with massless fermions). This <strong>the</strong>ory has a very rich structure: ithas a phase characterized by very strong <strong>in</strong>teraction between fermions <strong>and</strong> <strong>the</strong> gaugefield, but <strong>in</strong> which no symmetries are broken. In addition it also has a broken symme-2


try phase <strong>in</strong> which <strong>the</strong> fermions ga<strong>in</strong> mass. Remarkably, this state can be associatedwith a sp<strong>in</strong> density wave, a state adiabatically connected to an antiferromagnet, <strong>the</strong>parent state of all <strong>cuprate</strong> superconductors.1.1 Phenomenology of High Temperature CuprateSuperconductorsHigh <strong>temperature</strong> <strong>cuprate</strong> superconductors were discovered by Bednorz <strong>and</strong> Müller<strong>in</strong> 1986 [1]. Soon <strong>the</strong>reafter, Anderson po<strong>in</strong>ted out three essential features of <strong>the</strong> newmaterials [2]. First, <strong>the</strong>y are quasi 2-dimensional with weakly coupled CuO 2 planes(Fig. 1.1). Second, <strong>the</strong> superconductor is created by dop<strong>in</strong>g a Mott <strong>in</strong>sulator, <strong>and</strong>third, Anderson proposed that <strong>the</strong> comb<strong>in</strong>ation of proximity to a Mott <strong>in</strong>sulator <strong>and</strong>low dimensionality would cause <strong>the</strong> doped material to exhibit fundamentally newbehavior, impossible to expla<strong>in</strong> by conventional paradigms of metal physics [2, 3].In a Mott <strong>in</strong>sulator, charge transport is prohibited not merely by <strong>the</strong> Pauli exclusionpr<strong>in</strong>ciple (as <strong>in</strong> a b<strong>and</strong> <strong>in</strong>sulator), but also by strong electron-electron repulsionthat p<strong>in</strong>s <strong>the</strong> electrons to <strong>the</strong> lattice sites. This <strong>in</strong>sulat<strong>in</strong>g state is stable when <strong>the</strong>reis exactly one electron per each site <strong>in</strong> <strong>the</strong> valence b<strong>and</strong>, s<strong>in</strong>ce motion of electrons requiresenergetically expensive double occupancy. Virtual charge excitations generatea ”super-exchange” <strong>in</strong>teraction that favors antiferromagnetic alignment of sp<strong>in</strong>s (Fig.1.1).Upon dop<strong>in</strong>g, <strong>the</strong> system becomes a weak conductor <strong>and</strong> eventually a superconductor,Fig. (1.2). However, <strong>the</strong> <strong>cuprate</strong>s are <strong>the</strong> only Mott <strong>in</strong>sulators whichbecome superconduct<strong>in</strong>g when doped [3]. It was established soon after <strong>the</strong> discoveryof HTS that <strong>the</strong> superconductivity is due to <strong>the</strong> electrons form<strong>in</strong>g Cooper pairs (seeFig. 1.3). However, unlike <strong>in</strong> conventional s-wave superconductors, <strong>the</strong> gap functionchanges sign upon 90 degree rotation i.e. it has d x 2 −y2 symmetry. As such, it vanishesat four po<strong>in</strong>ts on <strong>the</strong> Fermi surface, lead<strong>in</strong>g to gapless Fermi po<strong>in</strong>ts. These po<strong>in</strong>tswere identified by angle–resolved photoemission spectroscopy (ARPES) (Fig. 1.4). Inaddition, several <strong>in</strong>genious phase sensitive tests, based on Josephson tunnel<strong>in</strong>g, were3


Figure 1.1: (A) The unit cell of La 2−x Sr x CuO 4 family of <strong>high</strong> <strong>temperature</strong> superconductors.It is believed that most of <strong>the</strong> <strong>in</strong>terest<strong>in</strong>g physics happens <strong>in</strong> <strong>the</strong> Cu-O 2plane, which extends <strong>in</strong> <strong>the</strong> a − b directions. The c−axis electronic coupl<strong>in</strong>g is verysmall. In this family of materials, dop<strong>in</strong>g is achieved by replac<strong>in</strong>g some of <strong>the</strong> Laatoms for Sr, or by add<strong>in</strong>g <strong>in</strong>terstitial oxygen atoms. This crystall<strong>in</strong>e structure isslightly modified <strong>in</strong> different <strong>high</strong>-T c <strong>cuprate</strong>s, but all share <strong>the</strong> weakly coupled Cu-O 2 planes. (B) Arrows <strong>in</strong>dicate sp<strong>in</strong> alignment <strong>in</strong> <strong>the</strong> antiferromagentic state, <strong>the</strong>parent state of HTS. (Taken from [3])developed to demonstrate <strong>the</strong> change of sign of <strong>the</strong> pair<strong>in</strong>g amplitude (for a reviewsee [5]). The low energy properties of such d-wave superconductors are governed by<strong>the</strong> excitations around <strong>the</strong> four nodal po<strong>in</strong>ts. These correspond to nodal BCS quasiparticleswhose existence was demonstrated by several techniques, but most directlyby ARPES. These low energy BCS quasiparticles are responsible, for example, for <strong>the</strong>l<strong>in</strong>ear <strong>in</strong> <strong>temperature</strong> depletion of superfluid density [6] or ”universal” longitud<strong>in</strong>al<strong>the</strong>rmal conductivity, which was demonstrated experimentally [7] to depend only on<strong>the</strong> ratio of <strong>the</strong> quasiparticle velocity perpendicular <strong>and</strong> parallel to <strong>the</strong> Fermi surfaceat <strong>the</strong> Fermi po<strong>in</strong>ts.The boundary <strong>in</strong> <strong>the</strong> phase diagram between <strong>the</strong> antiferromagnet <strong>and</strong> <strong>the</strong> superconductorcorresponds to a fasc<strong>in</strong>at<strong>in</strong>g phase: <strong>the</strong> pseudogap state. This state is nota superconductor, but spectroscopically it is nearly <strong>in</strong>dist<strong>in</strong>guishable from <strong>the</strong> superconductoras <strong>the</strong>re is a suppression of s<strong>in</strong>gle particle states at <strong>the</strong> Fermi surface aswell as <strong>the</strong> nodal po<strong>in</strong>ts. While <strong>the</strong> sp<strong>in</strong> fluctuations are gapped, <strong>the</strong> <strong>in</strong>-plane charge4


Figure 1.2: Phase diagram of electron <strong>and</strong> hole doped High Temperature superconductorsshow<strong>in</strong>g <strong>the</strong> superconduct<strong>in</strong>g (SC), antiferromagnetic (AF), pseudogap <strong>and</strong>metallic phases. (Taken from [4]).transport seems unaffected, whereas <strong>the</strong> c-axis transport is suppressed. Moreover,strong superconduct<strong>in</strong>g fluctuations seem to be prom<strong>in</strong>ent <strong>in</strong> this state. Especiallystrik<strong>in</strong>g are <strong>the</strong> recent observations of anomalously large Nernst signal [8] above T c <strong>in</strong>s<strong>in</strong>gle crystal underdoped <strong>cuprate</strong>s (see Fig. 1.5). In this measurement, a magneticfield is applied perpendicular to <strong>the</strong> CuO 2 planes, along with a weak <strong>the</strong>rmal gradientswith<strong>in</strong> <strong>the</strong> plane. One <strong>the</strong>n measures <strong>the</strong> electrical voltage drop perpendicular to<strong>the</strong> <strong>the</strong>rmal current flow. The signal seen is nearly three orders of magnitude largerthan <strong>in</strong> conventional metals, not unlike <strong>in</strong> vortex liquid state. However, it is observedseveral tens on Kelv<strong>in</strong> above T c ! This suggests that <strong>the</strong> physics of pseudogap isdom<strong>in</strong>ated by strong pair<strong>in</strong>g fluctuations.In what follows, I shall first study <strong>the</strong> BCS quasiparticles of a d-wave superconductorwith magnetic field <strong>in</strong>duced array of Abrikosov <strong>vortices</strong>. I shall assume that weare at T = 0 far away from any phase transition so that fluctuations can be neglected(e.g. <strong>the</strong> region between optimally doped <strong>and</strong> slightly overdoped <strong>in</strong> <strong>the</strong> phase diagram(1.2)). Later, I shall concentrate on <strong>the</strong> pseudogap region, <strong>and</strong> assume that it isdom<strong>in</strong>ated by phase fluctuations, <strong>in</strong> particular that <strong>the</strong> pseudogap region is noth<strong>in</strong>g5


Figure 1.3: The magnetic flux thread<strong>in</strong>g through a polycrystall<strong>in</strong>e YBCO r<strong>in</strong>g, monitoredwith a SQUID magnetometer as a function of time. The flux jumps occur <strong>in</strong><strong>in</strong>tegral multiples of <strong>the</strong> superconduct<strong>in</strong>g flux quantum Φ 0 = hc/2e. This experimentdemonstrates that <strong>the</strong> superconductivity <strong>in</strong> <strong>high</strong> <strong>temperature</strong> <strong>cuprate</strong>s is dueto Cooper pair<strong>in</strong>g. (taken from [5])but a phase disordered d-wave superconductor.6


−k F+ +−Figure 1.4: The pair<strong>in</strong>g gap of HTS has d x 2 −y2-wave symmetry (left). The po<strong>in</strong>ts on<strong>the</strong> Fermi surface at which <strong>the</strong> gap disappears (<strong>the</strong> nodal po<strong>in</strong>ts) can be identified <strong>in</strong><strong>the</strong> angle resolved photoemission spectra (right) [4].7


120Bi 2Sr 2-yLa yCuO 61008010nV/KTT (K)6040202040100200T onsetT c400100001.0 0.8 0.6 0.4 0.2 0.0La content yFigure 1.5: Contours of <strong>the</strong> constant Nernst coefficient <strong>in</strong> <strong>the</strong> Temperature vs. dop<strong>in</strong>gphase diagram. The units of <strong>the</strong> Nernst coefficient are nanoVolt per Kelv<strong>in</strong> per Tesla.At low <strong>temperature</strong> <strong>and</strong> <strong>in</strong> <strong>the</strong> strongly underdoped region <strong>the</strong> Nernst signal is almostthree orders of magnitude greater than it would be <strong>in</strong> a normal metal. Such a largesignal is typically observed <strong>in</strong> <strong>the</strong> vortex liquid state, where it is associated withJosephson phase-slips produced across <strong>the</strong> sample due to <strong>the</strong>rmally diffus<strong>in</strong>g <strong>vortices</strong>.In this experiment, however, this signal is seen several tens of Kelv<strong>in</strong>s above <strong>the</strong>superconduct<strong>in</strong>g transition <strong>temperature</strong> T c ! [8]8


Chapter 2<strong>Quasiparticles</strong> <strong>in</strong> <strong>the</strong> mixed stateof HTS2.1 IntroductionIn this section we give a brief review of <strong>the</strong> fermionic quasiparticle excitations <strong>in</strong><strong>the</strong> superconductors, both conventional <strong>and</strong> unconventional.In conventional (s-wave) superconductors <strong>the</strong> effective attraction between electronsis ma<strong>in</strong>ly due to exchange of phonons [9]. The evidence of <strong>the</strong> phonon mediated<strong>in</strong>teraction comes from <strong>the</strong> isotope effect i.e. <strong>the</strong> shift of <strong>the</strong> transition <strong>temperature</strong>upon <strong>the</strong> replacement of <strong>the</strong> crystal ions with <strong>the</strong>ir isotopes. The electrons pair <strong>in</strong><strong>the</strong> lowest angular momentum channel, l = 0 or s-wave, <strong>and</strong> <strong>the</strong> pair<strong>in</strong>g amplitudedoes not vary appreciably around <strong>the</strong> Fermi surface. As a result, <strong>the</strong> s<strong>in</strong>gle particlefermionic excitations (quasiparticles) are fully gapped everywhere on <strong>the</strong> Fermisurface <strong>and</strong> <strong>the</strong> quasiparticle density of states vanishes below a specific energy. Thishas profound consequences for <strong>the</strong> traditional phenomenology of superconductors.The gap <strong>in</strong> <strong>the</strong> fermionic spectrum leads to <strong>the</strong> well known activated form of <strong>the</strong>quasiparticle contribution to various <strong>the</strong>rmodynamic <strong>and</strong> transport properties, <strong>and</strong>can be directly observed <strong>in</strong> tunnel<strong>in</strong>g spectroscopy (see e.g. [5]). Fur<strong>the</strong>rmore, evenbeyond <strong>the</strong> mean-field <strong>the</strong>ory, <strong>the</strong> presence of <strong>the</strong> pair<strong>in</strong>g gap <strong>in</strong> <strong>the</strong> superconduct<strong>in</strong>gstate cuts off <strong>the</strong> <strong>in</strong>fra-red s<strong>in</strong>gularities which allows perturbative treatment of various9


types of quasiparticle <strong>in</strong>teractions.High <strong>temperature</strong> <strong>cuprate</strong> superconductors (HTS), however, are different. While<strong>the</strong> orig<strong>in</strong> of pair<strong>in</strong>g rema<strong>in</strong>s an unsolved problem, <strong>the</strong> <strong>cuprate</strong>s appear to be accuratelydescribed by <strong>the</strong> d x 2 −y2-wave order parameter [10], i.e. <strong>the</strong> pair<strong>in</strong>g happens<strong>in</strong> l = 2 channel whose degeneracy is fur<strong>the</strong>r split by <strong>the</strong> crystal field <strong>in</strong> favor ofd x 2 −y2. As a result, quasiparticle excitations occur at arbitrarily low energy near <strong>the</strong>nodal po<strong>in</strong>ts. These low energy fermionic excitations appear to govern much of <strong>the</strong><strong>the</strong>rmodynamics <strong>and</strong> transport <strong>in</strong> <strong>the</strong> HTS materials. This represents a new <strong>in</strong>tellectualchallenge [11]: one must devise methods that can <strong>in</strong>corporate <strong>the</strong> low energyfermionic excitations <strong>in</strong>to <strong>the</strong> phenomenology of superconductors, both with<strong>in</strong> <strong>the</strong>mean-field BCS-like <strong>the</strong>ory <strong>and</strong> beyond.This challenge is not trivial <strong>and</strong> has many diverse components. Low energy quasiparticlesare scattered by impurities <strong>in</strong> novel <strong>and</strong> unusual ways, depend<strong>in</strong>g on <strong>the</strong>low energy density of states [12]. They <strong>in</strong>teract with external perturbations <strong>in</strong> waysnot encountered <strong>in</strong> conventional superconductors, <strong>and</strong> <strong>the</strong>se <strong>in</strong>teractions give rise tonew phenomena [13, 14]. The low energy quasiparticles are thus expected to qualitativelyaffect <strong>the</strong> quantum critical behavior of HTS (see Chapter 3). Among <strong>the</strong>many aspects of this new quasiparticle phenomenology a particularly prom<strong>in</strong>ent roleis played by <strong>the</strong> low ly<strong>in</strong>g quasiparticle excitations <strong>in</strong> <strong>the</strong> mixed (or vortex) state [15].All HTS are extreme type-II systems <strong>and</strong> have a huge mixed phase extend<strong>in</strong>g from<strong>the</strong> lower critical field H c1 which is <strong>in</strong> <strong>the</strong> range of 10-100 Gauss to <strong>the</strong> upper criticalfield H c2 which can be as large as 100-200 T. In this large region <strong>the</strong> <strong>in</strong>teractionsbetween quasiparticles <strong>and</strong> <strong>vortices</strong> play <strong>the</strong> essential role <strong>in</strong> def<strong>in</strong><strong>in</strong>g <strong>the</strong> nature of<strong>the</strong>rmodynamic <strong>and</strong> transport properties.Thermodynamic <strong>and</strong> transport properties are expected to be ra<strong>the</strong>r different fordist<strong>in</strong>ct classes of unconventional superconductors. The difference stems from a complexmotion of <strong>the</strong> quasiparticles under <strong>the</strong> comb<strong>in</strong>ed effects of both <strong>the</strong> magneticfield B <strong>and</strong> <strong>the</strong> local drift produced by chiral supercurrents of <strong>the</strong> vortex state. Forexample, <strong>in</strong> HTS <strong>the</strong> d x 2 −y2-wave nature of <strong>the</strong> gap function results <strong>in</strong> its vanish<strong>in</strong>galong nodal directions. Along <strong>the</strong>se nodal directions <strong>the</strong> pair-break<strong>in</strong>g <strong>in</strong>duced bysupercurrents has a particularly strong effect. On <strong>the</strong> o<strong>the</strong>r h<strong>and</strong>, <strong>in</strong> unconventional10


superconductors with <strong>the</strong> p x±iy pair<strong>in</strong>g, Sr 2 RuO 4 be<strong>in</strong>g a possible c<strong>and</strong>idate [16], <strong>the</strong>spectrum is fully gapped but <strong>the</strong> order parameter is chiral even <strong>in</strong> <strong>the</strong> absence ofexternal magnetic field. This leads to two different types of <strong>vortices</strong> for two differentfield orientations [17, 18].Still, <strong>in</strong> all <strong>the</strong>se different situations, <strong>the</strong> quantum dynamics of quasiparticles<strong>in</strong> <strong>the</strong> vortex state conta<strong>in</strong>s two essential common <strong>in</strong>gredients. First, <strong>the</strong>re is <strong>the</strong>purely classical effect of <strong>the</strong> Doppler shift [13, 14]: quasiparticles’ energy is shiftedby a locally drift<strong>in</strong>g superfluid, E(k) → E(k) − v s (r) · k, where v s (r) is <strong>the</strong> localsuperfluid velocity. v s (r) conta<strong>in</strong>s <strong>in</strong>formation about vortex configurations, allow<strong>in</strong>gus to connect quasiparticle spectral properties to various cooperative phenomena <strong>in</strong><strong>the</strong> system of <strong>vortices</strong> [19, 20, 21]. The Doppler shift effect is not peculiar to <strong>the</strong> vortexstate. It also occurs <strong>in</strong> <strong>the</strong> Meissner phase [14] <strong>and</strong> is generally present whenever aquasiparticle experiences a locally uniform drift <strong>in</strong> <strong>the</strong> superfluid velocity. Second,<strong>the</strong>re is also a purely quantum effect which is <strong>in</strong>timately tied to <strong>the</strong> vortex state:as a quasiparticle circles around a vortex while ma<strong>in</strong>ta<strong>in</strong><strong>in</strong>g its quantum coherence,<strong>the</strong> accumulated phase through a Doppler shift is ±π. This implies that <strong>the</strong>re mustbe an additional compensat<strong>in</strong>g ±π contribution to <strong>the</strong> phase on top of <strong>the</strong> one dueto <strong>the</strong> Doppler shift <strong>in</strong> order for <strong>the</strong> wavefunction to rema<strong>in</strong> s<strong>in</strong>gle-valued [22]. Therequired ±π contribution is supplied by a “Berry phase” effect <strong>and</strong> can be built <strong>in</strong> at<strong>the</strong> Hamiltonian level as a half-flux Aharonov-Bohm scatter<strong>in</strong>g of quasiparticles by<strong>vortices</strong> [22]. This <strong>in</strong>terplay between <strong>the</strong> classical (Doppler shift) <strong>and</strong> purely quantumeffect (“Berry phase”) is what makes <strong>the</strong> problem of quasiparticle-vortex <strong>in</strong>teractionparticularly fasc<strong>in</strong>at<strong>in</strong>g.Let us briefly review what is already known about <strong>the</strong> quasiparticles <strong>in</strong> <strong>the</strong> vortexstate. The <strong>in</strong>itial <strong>the</strong>oretical <strong>in</strong>vestigations of gapped <strong>and</strong> gapless superconductors<strong>in</strong> <strong>the</strong> vortex state were directed along ra<strong>the</strong>r separate l<strong>in</strong>es. The low energy quasiparticlespectrum of an s-wave superconductor <strong>in</strong> <strong>the</strong> mixed state was orig<strong>in</strong>allystudied by Caroli, de Gennes <strong>and</strong> Matricon (CdGM) [23] with<strong>in</strong> <strong>the</strong> framework of <strong>the</strong>Bogoliubov-de Gennes equations [24]. Their solution yields well known bound states<strong>in</strong> <strong>the</strong> vortex cores. These states are localized <strong>in</strong> <strong>the</strong> core <strong>and</strong> have an exponentialenvelope, <strong>the</strong> scale of which is set by <strong>the</strong> BCS coherence length. The low energy11


end of <strong>the</strong> spectrum is given by ɛ µ ∼ µ(∆ 2 0/E F ), where µ = 1/2, 3/2, . . . , ∆ 0 is <strong>the</strong>overall BCS gap, <strong>and</strong> E F is <strong>the</strong> Fermi energy. This solution can be relatively straightforwardlygeneralized to a fully gapped, chiral p-wave superconductor. In this case<strong>the</strong> low energy quasiparticle spectrum also displays bound vortex core states, whoseenergy quantization is, however, modified relative to its s-wave counterpart, preciselybecause of <strong>the</strong> chiral character of a p x±iy -wave superconductor <strong>and</strong> <strong>the</strong> ensu<strong>in</strong>g shift<strong>in</strong> <strong>the</strong> angular momentum. For example, <strong>the</strong> low energy spectrum of quasiparticles<strong>in</strong> <strong>the</strong> s<strong>in</strong>gly quantized vortex of <strong>the</strong> p x±iy -wave superconductor, possesses a state atexactly zero energy [17, 18].By comparison, <strong>the</strong> spectrum of a gapless d-wave superconductor <strong>in</strong> <strong>the</strong> mixedphase has become <strong>the</strong> subject of an active debate only relatively recently, fueled by<strong>the</strong> <strong>in</strong>terest <strong>in</strong> HTS. Naturally, <strong>the</strong> first question that arises is what is <strong>the</strong> analogof <strong>the</strong> CdGM solution for a s<strong>in</strong>gle vortex. It is important to realize here that <strong>the</strong>situation <strong>in</strong> a d x 2 −y 2superconductor is qualitatively different from <strong>the</strong> classic s-wavecase [25]: when <strong>the</strong> pair<strong>in</strong>g state has a f<strong>in</strong>ite angular momentum <strong>and</strong> is not a globaleigenstate of <strong>the</strong> angular momentum L z (a d x 2 −y2 superconductor is an equal admixtureof L z = ±2 states), <strong>the</strong> problem of fermionic excitations <strong>in</strong> <strong>the</strong> core cannotbe reduced to a collection of decoupled 1D dimensional eigenvalue equations for eachangular momentum channel, <strong>the</strong> key feature of <strong>the</strong> CdGM solution. Instead, all channelsrema<strong>in</strong> coupled <strong>and</strong> one must solve a full 2D problem. The fully self-consistentnumerical solution of <strong>the</strong> BdG equations [25, 26] reveals <strong>the</strong> most important physicalconsequence of this qualitatively new situation: <strong>the</strong> vortex core quasiparticle states <strong>in</strong>a pure d x 2 −y 2superconductor are delocalized with wave functions extended along <strong>the</strong>nodal directions. The low ly<strong>in</strong>g states have a cont<strong>in</strong>uous spectrum <strong>and</strong>, <strong>in</strong> a broadrange of parameters, do not seem to exhibit strong resonant behavior.This is <strong>in</strong>sharp contrast with a discrete spectrum <strong>and</strong> true bound quasiparticle states of <strong>the</strong>CdGM s-wave solution.A particularly important issue <strong>in</strong> this context is <strong>the</strong> nature of <strong>the</strong> quasiparticleexcitations at very low fields, <strong>in</strong> <strong>the</strong> presence of a vortex lattice.This is a novelchallenge s<strong>in</strong>ce <strong>the</strong> spectrum starts as gapless at zero field <strong>and</strong> at issue is <strong>the</strong> <strong>in</strong>teractionof <strong>the</strong>se low ly<strong>in</strong>g quasiparticles with <strong>the</strong> vortex lattice.12This problem has


een addressed via numerical solution of <strong>the</strong> tight b<strong>in</strong>d<strong>in</strong>g model [27], a numericaldiagonalization of <strong>the</strong> cont<strong>in</strong>uum model [28] <strong>and</strong> a semiclassical analysis [13]. Gorkov,Schrieffer [29] <strong>and</strong>, <strong>in</strong> a somewhat different context, Anderson [61], predicted that <strong>the</strong>quasiparticle spectrum is described by a Dirac-like L<strong>and</strong>au quantization of energylevelsE n = ±ω H√ n, n = 0, 1, ... (2.1)where ω H = √ 2ω c ∆ 0 /, ω c = eB/mc is <strong>the</strong> cyclotron frequency <strong>and</strong> ∆ 0 is <strong>the</strong>maximum superconduct<strong>in</strong>g gap. The Dirac-like spectrum of L<strong>and</strong>au levels arises from<strong>the</strong> l<strong>in</strong>ear dispersion of nodal quasiparticles at zero field. This argument neglects <strong>the</strong>effect of spatially vary<strong>in</strong>g supercurrents <strong>in</strong> <strong>the</strong> vortex array which were shown tostrongly mix <strong>in</strong>dividual L<strong>and</strong>au levels [31].Recently, Franz <strong>and</strong> Tešanović (FT) [22] po<strong>in</strong>ted out that <strong>the</strong> low energy quasiparticlestates of a d x 2 −y2-wave superconductor <strong>in</strong> <strong>the</strong> vortex state are most naturallydescribed by strongly dispersive Bloch waves. This conclusion was based on <strong>the</strong> particularchoice of a s<strong>in</strong>gular gauge transformation, which allows for <strong>the</strong> treatment of<strong>the</strong> uniform external magnetic field <strong>and</strong> <strong>the</strong> effects produced by chiral supercurrentson equal foot<strong>in</strong>g. The start<strong>in</strong>g po<strong>in</strong>t was <strong>the</strong> Bogoliubov-de Gennes (BdG) equationl<strong>in</strong>earized around a Dirac node. By employ<strong>in</strong>g <strong>the</strong> s<strong>in</strong>gular gauge transformation FTmapped <strong>the</strong> orig<strong>in</strong>al problem onto that of a Dirac Hamiltonian <strong>in</strong> periodic vector<strong>and</strong> scalar potentials, comprised of an array of an effective magnetic Aharonov-Bohmhalf-fluxes, <strong>and</strong> with a vanish<strong>in</strong>g overall magnetic flux per unit cell. The FT gaugetransformation allows use of st<strong>and</strong>ard b<strong>and</strong> structure <strong>and</strong> o<strong>the</strong>r zero-field techniquesto study <strong>the</strong> quasiparticle dynamics <strong>in</strong> <strong>the</strong> presence of vortex arrays, ordered or disordered.Its utility was illustrated <strong>in</strong> Ref. [22] through computation of <strong>the</strong> quasiparticlespectra of a square vortex lattice. A remarkable feature of <strong>the</strong>se spectra is <strong>the</strong> persistenceof <strong>the</strong> massless Dirac node at f<strong>in</strong>ite fields <strong>and</strong> <strong>the</strong> appearance of <strong>the</strong> “l<strong>in</strong>esof nodes” <strong>in</strong> <strong>the</strong> gap at large values of <strong>the</strong> anisotropy ratio α D = v F /v ∆ , start<strong>in</strong>g atα D ≃ 15. Fur<strong>the</strong>rmore, <strong>the</strong> FT transformation directly reveals that a quasiparticlemov<strong>in</strong>g coherently through a vortex array experiences not only a Doppler shift causedby circulat<strong>in</strong>g supercurrents but also an additional, “Berry phase” effect: <strong>the</strong> latter13


is a purely quantum mechanical phenomenon <strong>and</strong> is absent from a typical semiclassicalapproach. Interest<strong>in</strong>gly, <strong>the</strong> cyclotron motion <strong>in</strong> Dirac cones is entirely causedby such “Berry phase” effect, which takes <strong>the</strong> form of a half-flux Aharonov-Bohmscatter<strong>in</strong>g of quasiparticles by <strong>vortices</strong>, <strong>and</strong> does not explicitly <strong>in</strong>volve <strong>the</strong> externalmagnetic field. It is for this reason that <strong>the</strong> Dirac-like L<strong>and</strong>au level quantization isabsent from <strong>the</strong> exact quasiparticle spectrum.Fur<strong>the</strong>r progress was achieved by Mar<strong>in</strong>elli, Halper<strong>in</strong> <strong>and</strong> Simon [32] who presenteda detailed perturbative analysis of <strong>the</strong> l<strong>in</strong>earized Hamiltonian of Ref. [22].They showed that <strong>the</strong> presence of <strong>the</strong> particle-hole symmetry is of key importance <strong>in</strong>determ<strong>in</strong><strong>in</strong>g <strong>the</strong> nature of <strong>the</strong> spectrum of low energy excitations. If <strong>the</strong> <strong>vortices</strong> arearranged <strong>in</strong> a Bravais lattice, <strong>the</strong>y showed that, to all orders <strong>in</strong> perturbation <strong>the</strong>ory,<strong>the</strong> Dirac node is preserved at f<strong>in</strong>ite fields, i.e <strong>the</strong> quasiparticle spectrum rema<strong>in</strong>sgapless at <strong>the</strong> Γ po<strong>in</strong>t. This result masks <strong>in</strong>tense mix<strong>in</strong>g of <strong>in</strong>dividual basis vectors(<strong>in</strong> <strong>the</strong> case of Ref. [32] <strong>the</strong>se are Dirac plane waves), <strong>in</strong>clud<strong>in</strong>g strong mix<strong>in</strong>g ofstates far removed <strong>in</strong> energy. The cont<strong>in</strong>u<strong>in</strong>g presence of <strong>the</strong> massless Dirac node at<strong>the</strong> Γ po<strong>in</strong>t after <strong>the</strong> application of <strong>the</strong> external field is thus not due to <strong>the</strong> lack ofscatter<strong>in</strong>g which is actually remarkably strong. Ra<strong>the</strong>r, it is dictated by symmetry:Mar<strong>in</strong>elli et al. demonstrated that <strong>the</strong> crucial agent responsible for <strong>the</strong> presence of<strong>the</strong> Dirac node is <strong>the</strong> particle-hole symmetry, present at every po<strong>in</strong>t <strong>in</strong> <strong>the</strong> Brillou<strong>in</strong>zone. The fact that it is <strong>the</strong> particle-hole symmetry ra<strong>the</strong>r than <strong>the</strong> lack of scatter<strong>in</strong>gthat protects <strong>the</strong> Dirac node is clearly revealed <strong>in</strong> <strong>the</strong> related problem of aSchröd<strong>in</strong>ger electron <strong>in</strong> <strong>the</strong> presence of a s<strong>in</strong>gle Aharonov-Bohm half-flux, where <strong>the</strong>density of states acquires a δ function depletion at k = 0 [33], thus shift<strong>in</strong>g part of<strong>the</strong> spectral weight to <strong>in</strong>f<strong>in</strong>ity due to remarkably strong scatter<strong>in</strong>g. The authors ofRef. [32] also corrected Ref. [22] by show<strong>in</strong>g that <strong>the</strong> “l<strong>in</strong>es of nodes” must actuallybe <strong>the</strong> “l<strong>in</strong>es of near nodes” s<strong>in</strong>ce true zeroes of <strong>the</strong> energy away from Dirac nodeare prohibited on symmetry grounds. Still, <strong>the</strong>se “l<strong>in</strong>es” will act as true nodes <strong>in</strong> allrealistic circumstances, due to extraord<strong>in</strong>arily small excitation energies.In this work I extend <strong>the</strong> orig<strong>in</strong>al analysis which was based solely on <strong>the</strong> cont<strong>in</strong>uumdescription by <strong>in</strong>troduc<strong>in</strong>g a tight b<strong>in</strong>d<strong>in</strong>g “regularization” of <strong>the</strong> full lattice BdGHamiltonian, to which we <strong>the</strong>n apply <strong>the</strong> FT gauge transformation. The lattice for-14


mulation allows us to study what, if any, role is played by <strong>in</strong>ternodal scatter<strong>in</strong>g whichis simply not a part of <strong>the</strong> l<strong>in</strong>earized description. This is important <strong>and</strong> necessarys<strong>in</strong>ce <strong>the</strong> straightforward l<strong>in</strong>earization of BdG equations drops curvature terms <strong>and</strong>results <strong>in</strong> <strong>the</strong> <strong>the</strong>rmal Hall conductivity: κ xy = 0[15, 34]. We employ <strong>the</strong> Franz <strong>and</strong>Tešanović (FT) transformation so that we can use <strong>the</strong> familiar Bloch representationof <strong>the</strong> translation group <strong>in</strong> which <strong>the</strong> overall chirality of <strong>the</strong> problem vanishes. Thisshould be contrasted with <strong>the</strong> orig<strong>in</strong>al problem where <strong>the</strong> overall chirality is f<strong>in</strong>ite<strong>and</strong> <strong>the</strong> magnetic translation group states must be used <strong>in</strong>stead. Naively, it mightappear that after an FT s<strong>in</strong>gular gauge transformation <strong>the</strong> effects of <strong>the</strong> magneticfield have somehow been transformed away s<strong>in</strong>ce <strong>the</strong> new problem is found to havezero average effective magnetic field. Of course, this is not true. The presence ofmagnetic field <strong>in</strong> <strong>the</strong> orig<strong>in</strong>al problem reveals itself fully <strong>in</strong> <strong>the</strong> FT transformed quasiparticlewavefunctions. Alternatively, <strong>the</strong>re is an “<strong>in</strong>tr<strong>in</strong>sic” chirality imposed on <strong>the</strong>system which cannot be transformed away by a choice of <strong>the</strong> basis. One manifestationof this chirality is <strong>the</strong> Hall effect. The utility of <strong>the</strong> s<strong>in</strong>gular gauge transformation<strong>in</strong> <strong>the</strong> calculation of <strong>the</strong> electrical Hall conductivity <strong>in</strong> <strong>the</strong> normal 2D electron gas<strong>in</strong> a (non-uniform) magnetic field was realized by Nielsen <strong>and</strong> Hedegård [35]. Theydemonstrated that us<strong>in</strong>g s<strong>in</strong>gularly gauge transformed wavefunctions one still obta<strong>in</strong>s<strong>the</strong> correct result, giv<strong>in</strong>g <strong>the</strong> electrical Hall conductance quantized <strong>in</strong> units of e 2 /h if<strong>the</strong> chemical potential lies <strong>in</strong> <strong>the</strong> energy gap. In a superconductor, <strong>the</strong> question ofHall response becomes ra<strong>the</strong>r <strong>in</strong>terest<strong>in</strong>g as <strong>the</strong>re is a strong mix<strong>in</strong>g between particles<strong>and</strong> holes. Evidently, <strong>the</strong> electrical Hall response is very different from <strong>the</strong> normalstate, s<strong>in</strong>ce charge is not conserved <strong>in</strong> <strong>the</strong> state with broken U(1) symmetry. Therefore,as po<strong>in</strong>ted out <strong>in</strong> Ref. [36], charge cannot be transported by diffusion. On <strong>the</strong>o<strong>the</strong>r h<strong>and</strong>, <strong>the</strong> sp<strong>in</strong> is still a good quantum number[36] <strong>and</strong> it is natural to ask whatis <strong>the</strong> sp<strong>in</strong> Hall conductivity <strong>in</strong> <strong>the</strong> vortex state of an extreme type-II superconductor[37]. Moreover, every channel of sp<strong>in</strong> conduction simultaneously transports entropy[36, 38, 39] <strong>and</strong> we would expect some variation of <strong>the</strong> Wiedemann-Franz law to holdbetween sp<strong>in</strong> <strong>and</strong> <strong>the</strong>rmal conductivity.As one of our ma<strong>in</strong> results, we derive <strong>the</strong> Wiedemann-Franz law connect<strong>in</strong>g <strong>the</strong>sp<strong>in</strong> <strong>and</strong> <strong>the</strong>rmal Hall transport <strong>in</strong> <strong>the</strong> vortex state of a d-wave superconductor. In15


<strong>the</strong> process, we show that <strong>the</strong> sp<strong>in</strong> Hall conductivity, σxy, s just like <strong>the</strong> electricalHall conductivity of a normal state <strong>in</strong> a magnetic field, is topological <strong>in</strong> nature <strong>and</strong>can be explicitly evaluated as a first Chern number characteriz<strong>in</strong>g <strong>the</strong> eigenstatesof our s<strong>in</strong>gularly gauge transformed problem [37, 40, 41]. Consequently, as T →0, <strong>the</strong> sp<strong>in</strong> Hall conductivity is quantized <strong>in</strong> <strong>the</strong> units of /8π when <strong>the</strong> energyspectrum is gapped, which, comb<strong>in</strong>ed with <strong>the</strong> Wiedemann-Franz law, implies <strong>the</strong>quantization of κ xy /T . We <strong>the</strong>n explicitly compute <strong>the</strong> quantized values of σxy s fora sequence of gapped states us<strong>in</strong>g our lattice d-wave superconductor model <strong>in</strong> <strong>the</strong>case of an <strong>in</strong>version-symmetric vortex lattice. With<strong>in</strong> this model one is naturallyled to consider <strong>the</strong> BCS-Hofstadter problem: <strong>the</strong> BCS pair<strong>in</strong>g problem def<strong>in</strong>ed on auniformly frustrated tight-b<strong>in</strong>d<strong>in</strong>g lattice. We f<strong>in</strong>d a sequence of plateau transitions,separat<strong>in</strong>g gapped states characterized by different quantized values of σxy s . At aplateau transition, level cross<strong>in</strong>gs take place <strong>and</strong> σxy s changes by an even <strong>in</strong>teger [42].Both <strong>the</strong> orig<strong>in</strong> of <strong>the</strong> gaps <strong>in</strong> quasiparticle spectra <strong>and</strong> <strong>the</strong> sequence of values forσxy s are ra<strong>the</strong>r different than <strong>in</strong> <strong>the</strong> normal state, i.e. <strong>in</strong> <strong>the</strong> st<strong>and</strong>ard Hofstadterproblem [43]. In a superconductor, <strong>the</strong> gaps are strongly affected by <strong>the</strong> pair<strong>in</strong>g <strong>and</strong><strong>the</strong> <strong>in</strong>teractions of quasiparticles with a vortex array. The sequence of σxy s changesas a function of <strong>the</strong> pair<strong>in</strong>g strength (<strong>and</strong> <strong>the</strong>refore <strong>in</strong>teractions), measured by <strong>the</strong>maximum value of <strong>the</strong> gap function ∆ [44].2.2 Quasiparticle excitation spectrum of a d-wavesuperconductor <strong>in</strong> <strong>the</strong> mixed stateThe experimental evidence po<strong>in</strong>ts towards well def<strong>in</strong>ed d-wave quasiparticles <strong>in</strong><strong>cuprate</strong> superconductors <strong>in</strong> <strong>the</strong> absence of <strong>the</strong> external magnetic field. This suggeststhat to zeroth order fluctuations can be ignored <strong>and</strong> that one can th<strong>in</strong>k <strong>in</strong> terms of aneffective BCS Hamiltonian, <strong>the</strong> simplest of which is written on <strong>the</strong> 2-D tight-b<strong>in</strong>d<strong>in</strong>glattice with <strong>the</strong> nearest neighbor <strong>in</strong>teraction thus naturally implement<strong>in</strong>g d x 2 −y 2 pair<strong>in</strong>g.In question is <strong>the</strong>n <strong>the</strong> response of such a superconductor to an externally appliedmagnetic field B. All <strong>high</strong> <strong>temperature</strong> superconductors are extreme type-II form-16


<strong>in</strong>g a vortex state <strong>in</strong> a wide range of magnetic fields. This immediately sets up <strong>the</strong>contrast between B = 0 <strong>and</strong> B ≠ 0 situations: first, <strong>the</strong> problem is not spatiallyuniform <strong>and</strong> <strong>the</strong>refore momentum is not a good quantum number <strong>and</strong> second, <strong>the</strong>array of hc vortex fluxes poses topological constra<strong>in</strong>t on <strong>the</strong> quasi-particles encircl<strong>in</strong>g2e<strong>the</strong> <strong>vortices</strong>. Therefore, despite ignor<strong>in</strong>g any fluctuations, <strong>the</strong> problem is far fromtrivial <strong>and</strong> dem<strong>and</strong>s careful exam<strong>in</strong>ation.The natural start<strong>in</strong>g po<strong>in</strong>t is <strong>the</strong>refore <strong>the</strong> mean-field BCS Hamiltonian written<strong>in</strong> second quantized form [45]:∫ ( 1H = dx ψ α † (x) 2m (p − e )∗ c A)2 − µ ψ α (x)+∫ ∫dx dy[∆(x, y)ψ † ↑ (x)ψ† ↓ (y) + ∆∗ (x, y)ψ ↓ (y)ψ ↑ (x)] (2.2)where A(x) is <strong>the</strong> vector potential associated with <strong>the</strong> uniform external magneticfield B, s<strong>in</strong>gle electron energy is measured relative to <strong>the</strong> chemical potential µ, ψ α (x)is <strong>the</strong> fermion field operator with sp<strong>in</strong> <strong>in</strong>dex α, <strong>and</strong> ∆(x, y) is <strong>the</strong> pair<strong>in</strong>g field. Forconvenience we will def<strong>in</strong>e an <strong>in</strong>tegral operator ˆ∆ such that:∫ˆ∆ψ(x) = dy∆(x, y)ψ(y). (2.3)In <strong>the</strong> strictest sense, on <strong>the</strong> mean field level this problem must be solved selfconsistentlywhich renders any analytical solution virtually <strong>in</strong>tractable. On <strong>the</strong> o<strong>the</strong>rh<strong>and</strong>, <strong>in</strong> <strong>the</strong> case at h<strong>and</strong> <strong>the</strong> vortex lattice is dilute for a wide range of magneticfields, <strong>and</strong> by <strong>the</strong> very nature of <strong>cuprate</strong> superconductors hav<strong>in</strong>g short coherencelength, <strong>the</strong> size of <strong>the</strong> vortex core can be ignored relative to <strong>the</strong> distance between<strong>the</strong> <strong>vortices</strong>. Thus, to <strong>the</strong> first approximation, all essential physics is captured byfix<strong>in</strong>g <strong>the</strong> amplitude of <strong>the</strong> order parameter ∆ while allow<strong>in</strong>g vortex defects <strong>in</strong> itsphase. Moreover, on a tight-b<strong>in</strong>d<strong>in</strong>g lattice <strong>the</strong> vortex flux is concentrated <strong>in</strong>side <strong>the</strong>plaquette <strong>and</strong> thus <strong>the</strong> length-scale associated with <strong>the</strong> core is implicitly <strong>the</strong> latticespac<strong>in</strong>g δ of <strong>the</strong> underly<strong>in</strong>g tight-b<strong>in</strong>d<strong>in</strong>g lattice. As shown <strong>in</strong> Ref.[45], under <strong>the</strong>seapproximations <strong>the</strong> d-wave pair<strong>in</strong>g operator <strong>in</strong> <strong>the</strong> vortex state can be written as adifferential operator:∑ˆ∆ = ∆ 0 η δ e iφ(x)/2 e iδ·p e iφ(x)/2 . (2.4)δ17


The sums are over nearest neighbors <strong>and</strong> on <strong>the</strong> square tight-b<strong>in</strong>d<strong>in</strong>g lattice δ =±ˆx, ±ŷ; <strong>the</strong> vortex phase fields satisfy ∇×∇φ(x) = 2πẑ ∑ i δ(x−x i) with x i denot<strong>in</strong>g<strong>the</strong> vortex positions <strong>and</strong> δ(x − x i ) be<strong>in</strong>g a 2D Dirac delta function; p is a momentumoperator, <strong>and</strong>η δ ={1 if δ = ±ˆx−1if δ = ±ŷ.(2.5)The operator η δ follows from <strong>the</strong> d-wave pair<strong>in</strong>g: ∆ = 2∆ 0 [cos(k x δ x ) − cos(k y δ y )]. Fornotational convenience we will use units where = 1 <strong>and</strong> return to <strong>the</strong> conventionalunits when necessary.It is straightforward to derive <strong>the</strong> cont<strong>in</strong>uum version of <strong>the</strong> tight b<strong>in</strong>d<strong>in</strong>g latticeoperator ˆ∆ (see Ref.[45]):ˆ∆ = 1 {∂2p 2 x , {∂ x , ∆(x)}} − 1 {∂F2p 2 y , {∂ y , ∆(x)}} +F+ i ∆(x) [ (∂8pxφ) 2 − (∂yφ) ] 2 , (2.6)2Fbut for convenience we will keep <strong>the</strong> lattice def<strong>in</strong>ition (2.4) throughout.One canalways def<strong>in</strong>e cont<strong>in</strong>uum as an appropriate limit of <strong>the</strong> tight-b<strong>in</strong>d<strong>in</strong>g lattice <strong>the</strong>ory.With <strong>the</strong> above def<strong>in</strong>itions, <strong>the</strong> Hamiltonian (2.2) can now be written <strong>in</strong> <strong>the</strong> Nambuformalism as∫H =dx Ψ † (x) Ĥ0 Ψ(x) (2.7)where <strong>the</strong> Nambu sp<strong>in</strong>or Ψ † = (ψ † ↑ , ψ ↓) <strong>and</strong> <strong>the</strong> matrix differential operatorĤ 0 =( )ĥ ˆ∆. (2.8)ˆ∆ ∗ −ĥ∗In <strong>the</strong> cont<strong>in</strong>uum formulation ĥ = 12m ∗ (p − e c A)2 − µ, while on <strong>the</strong> tight-b<strong>in</strong>d<strong>in</strong>glattice:ĥ = −t ∑ e i x+δx (p− e c A)·dl − µ. (2.9)δt is <strong>the</strong> hopp<strong>in</strong>g constant <strong>and</strong> µ is <strong>the</strong> chemical potential. The equations of motionof <strong>the</strong> Nambu fields Ψ are <strong>the</strong>n:i ˙Ψ = [Ψ, H] = Ĥ0Ψ. (2.10)18


2.2.1 Particle-Hole SymmetryThe equations of motion (2.10) for stationary states lead to Bogoliubov-de Gennesequations [45]Ĥ 0 Φ n = ɛ n Φ n . (2.11)The solution of <strong>the</strong>se coupled differential equations are quasi-particle wavefunctionsthat are rank two sp<strong>in</strong>ors <strong>in</strong> <strong>the</strong> Nambu space, Φ T (r) = (u(r), v(r)).The s<strong>in</strong>gleparticle excitations of <strong>the</strong> system are completely specified once <strong>the</strong> quasi-particlewavefunctions are given, <strong>and</strong> as discussed later, transverse transport coefficients canbe computed solely on <strong>the</strong> basis of Φ’s. It is a general symmetry of <strong>the</strong> BdG equationsthat if (u n (r), v n (r)) is a solution with energy ɛ n , <strong>the</strong>n <strong>the</strong>re is always ano<strong>the</strong>r solution(−v ∗ n (r), u∗ n (r)) with energy −ɛ n (see for example Ref. [24]).In addition, on <strong>the</strong> tight-b<strong>in</strong>d<strong>in</strong>g lattice, if <strong>the</strong> chemical potential µ = 0 <strong>in</strong> <strong>the</strong>above BdG Hamiltonian (2.8), <strong>the</strong>n <strong>the</strong>re is a particle-hole symmetry <strong>in</strong> <strong>the</strong> follow<strong>in</strong>gsense: if (u n (r), v n (r)) is a solution with energy ɛ n , <strong>the</strong>n <strong>the</strong>re is always ano<strong>the</strong>rsolution e iπ(rx+ry) (u n (r), v n (r)) with energy −ɛ n . Thus we can choose:((−) u n (r)v n(−) (r))((+) u= e iπ(rx+ry) n (r)v n(+) (r)), (2.12)where + (−) corresponds to a solution with positive (negative) energy eigenvalue.We will refer to this as particle hole transformation ˆP H .2.2.2 Franz-Tešanović Transformation <strong>and</strong> Translation SymmetryIn order to elucidate ano<strong>the</strong>r important symmetry of <strong>the</strong> Hamiltonian (2.8), wefollow FT [22, 45] <strong>and</strong> perform a “bipartite” s<strong>in</strong>gular gauge transformation on <strong>the</strong>Bogoliubov-de Gennes Hamiltonian (2.11),( )eiφ e(r)Ĥ 0 → U −1 0Ĥ 0 U, U =, (2.13)0 e −iφ h(r)19


magnetic unit cellABlδFigure 2.1: Example of A <strong>and</strong> B sublattices for <strong>the</strong> square vortex arrangement. Theunderly<strong>in</strong>g tight-b<strong>in</strong>d<strong>in</strong>g lattice, on which <strong>the</strong> electrons <strong>and</strong> holes are allowed to move,is also <strong>in</strong>dicated.where φ e (r) <strong>and</strong> φ h (r) are two auxiliary vortex phase functions satisfy<strong>in</strong>gφ e (r) + φ h (r) = φ(r). (2.14)This transformation elim<strong>in</strong>ates <strong>the</strong> phase of <strong>the</strong> order parameter from <strong>the</strong> pair<strong>in</strong>gterm of <strong>the</strong> Hamiltonian. The phase fields φ e (r) <strong>and</strong> φ h (r) can be chosen <strong>in</strong> a waythat avoids multiple valuedness of <strong>the</strong> wavefunctions. The way to accomplish this isto assign <strong>the</strong> s<strong>in</strong>gular part of <strong>the</strong> phase field generated by any given vortex to ei<strong>the</strong>rφ e (r) or φ h (r), but not both. Physically, a vortex assigned to φ e (r) will be seen byelectrons <strong>and</strong> be <strong>in</strong>visible to holes, while vortex assigned to φ h (r) will be seen by holes<strong>and</strong> be <strong>in</strong>visible to electrons. For periodic Abrikosov vortex array, we implement <strong>the</strong>above transformation by divid<strong>in</strong>g <strong>vortices</strong> <strong>in</strong>to two groups A <strong>and</strong> B, positioned at{r A i } <strong>and</strong> {rB i } respectively (see Fig. 2.1). We <strong>the</strong>n def<strong>in</strong>e two phase fields φA (r) <strong>and</strong>φ B (r) such that∇ × ∇φ α (r) = 2πẑ ∑ iδ(r − r α i ), α = A, B, (2.15)20


<strong>and</strong> identify φ e = φ A <strong>and</strong> φ h = φ B . On <strong>the</strong> tight-b<strong>in</strong>d<strong>in</strong>g lattice <strong>the</strong> transformedHamiltonian becomesĤ N = ∑ δ{σ 3(−teir+δ(a−σ r 3 v)·dl e iδ·p − µ ) }+ σ 1 ∆ 0 η δ e i r+δr a·dl e iδ·p(2.16)wherev = 1 2 ∇φ − e c A; a = 1 2 (∇φA − ∇φ B ), (2.17)σ 1 <strong>and</strong> σ 3 are Pauli matrices operat<strong>in</strong>g <strong>in</strong> Nambu space, <strong>and</strong> <strong>the</strong> sum is aga<strong>in</strong> over<strong>the</strong> nearest neighbors. Note that <strong>the</strong> <strong>in</strong>tegr<strong>and</strong> of Eq. (2.16) is proportional to <strong>the</strong>superfluid velocitiesvs α = 1 m ∗ (∇φα − e A), α = A, B. (2.18)c<strong>and</strong> is <strong>the</strong>refore explicitly gauge <strong>in</strong>variant as are <strong>the</strong> off-diagonal pair<strong>in</strong>g terms.From <strong>the</strong> perspective of quasiparticles v A s <strong>and</strong> vB s can be thought of as effectivevector potentials act<strong>in</strong>g on electrons <strong>and</strong> holes respectively. Correspond<strong>in</strong>g effectivemagnetic field seen by <strong>the</strong> quasiparticles is B α eff = − m∗ ce(∇×vα s ), <strong>and</strong> can be expressedus<strong>in</strong>g Eqs. (2.15) <strong>and</strong> (2.16) asB α eff = B − φ 0 ẑ ∑ iδ(r − r α i ), α = A, B, (2.19)where B = ∇ × A is <strong>the</strong> physical magnetic field <strong>and</strong> φ 0 = hc/e is <strong>the</strong> flux quantum.We observe that quasi-electrons <strong>and</strong> quasi-holes propagate <strong>in</strong> <strong>the</strong> effective field whichconsists of (almost) uniform physical magnetic field B <strong>and</strong> an array of oppos<strong>in</strong>g deltafunction “spikes” of unit fluxes associated with vortex s<strong>in</strong>gularities. The latter aredifferent for electrons <strong>and</strong> holes. As discussed <strong>in</strong> [22, 45] this choice guarantees that<strong>the</strong> effective magnetic field vanishes on average, i.e. 〈B α eff 〉 = 0 s<strong>in</strong>ce we have preciselyone flux spike (of A <strong>and</strong> B type) per flux quantum of <strong>the</strong> physical magnetic field.Flux quantization guarantees that <strong>the</strong> right h<strong>and</strong> side of Eq. (2.19) vanishes whenaveraged over a vortex lattice unit cell conta<strong>in</strong><strong>in</strong>g two physical <strong>vortices</strong>. It also impliesthat <strong>the</strong>re must be equal numbers of A <strong>and</strong> B <strong>vortices</strong> <strong>in</strong> <strong>the</strong> system.The essential advantage of <strong>the</strong> choice with vanish<strong>in</strong>g 〈B α eff 〉 is that vA s <strong>and</strong> v B s canbe chosen periodic <strong>in</strong> space with periodicity of <strong>the</strong> magnetic unit cell conta<strong>in</strong><strong>in</strong>g an21


<strong>in</strong>teger number of electronic flux quanta hc/e. Notice that vector potential of a fieldthat does not vanish on average can never be periodic <strong>in</strong> space. Condition 〈B α eff 〉 = 0 is<strong>the</strong>refore crucial <strong>in</strong> this respect. The s<strong>in</strong>gular gauge transformation (2.13) thus maps<strong>the</strong> orig<strong>in</strong>al Hamiltonian of fermionic quasiparticles <strong>in</strong> f<strong>in</strong>ite magnetic field onto anew Hamiltonian which is formally <strong>in</strong> zero average field <strong>and</strong> has only ”neutralized”s<strong>in</strong>gular phase w<strong>in</strong>d<strong>in</strong>gs <strong>in</strong> <strong>the</strong> off-diagonal components.The result<strong>in</strong>g new Hamiltonian now commutes with translations spanned by <strong>the</strong>magnetic unit cell i.e.[ ˆT R , ĤN] = 0, (2.20)where <strong>the</strong> translation operator ˆT R = exp(iR · p). We can <strong>the</strong>refore label eigenstateswith a “vortex” crystal momentum quantum number k <strong>and</strong> use <strong>the</strong> familiar Blochstates as <strong>the</strong> natural basis for <strong>the</strong> eigen-problem. In particular we seek <strong>the</strong> eigensolutionof <strong>the</strong> BdG equation ĤNψ = ɛψ <strong>in</strong> <strong>the</strong> Bloch form( )ψ nk (r) = e ik·r Φ nk (r) = e ik·r Unk (r), (2.21)V nk (r)where (U nk , V nk ) are periodic on <strong>the</strong> correspond<strong>in</strong>g unit cell, n is a b<strong>and</strong> <strong>in</strong>dex <strong>and</strong> kis a crystal wave vector. Bloch wavefunction Φ nk (r) satisfies <strong>the</strong> “off-diagonal” Blochequation Ĥ(k)Φ nk = ɛ nk Φ nk with <strong>the</strong> Hamiltonian of <strong>the</strong> formĤ(k) = e −ik·r Ĥ N e ik·r . (2.22)Note, that <strong>the</strong> dependence on k, which is bounded to lie <strong>in</strong> <strong>the</strong> first Brillou<strong>in</strong> zone, iscont<strong>in</strong>uous. This will become important when topological properties of sp<strong>in</strong> transportare discussed.2.2.3 Vortex Lattice Inversion Symmetry <strong>and</strong> Level Cross<strong>in</strong>gGeneral features of <strong>the</strong> quasi-particle spectrum can be understood on <strong>the</strong> basisof symmetry alone. S<strong>in</strong>ce <strong>the</strong> time-reversal symmetry is broken, <strong>the</strong> BogoliubovdeGennes Hamiltonian H 0 (2.11) must be, <strong>in</strong> general, complex. Accord<strong>in</strong>g to <strong>the</strong>“non-cross<strong>in</strong>g” <strong>the</strong>orem of von Neumann <strong>and</strong> Wigner [46], a complex Hamiltonian can22


have degenerate eigenvalues unrelated to symmetry only if <strong>the</strong>re are at least threeparameters which can be varied simultaneously.S<strong>in</strong>ce <strong>the</strong> system is two dimensional, with <strong>the</strong> <strong>vortices</strong> arranged on <strong>the</strong> lattice,<strong>the</strong>re are two parameters <strong>in</strong> <strong>the</strong> HamiltonianĤ(k) (2.22): vortex crystal momentak x <strong>and</strong> k y which vary <strong>in</strong> <strong>the</strong> first Brillou<strong>in</strong> zone. Therefore, we should not expectany degeneracy to occur, <strong>in</strong> general, unless <strong>the</strong>re is some symmetry which protectsit. Away from half-fill<strong>in</strong>g (µ ≠ 0) <strong>and</strong> with unspecified arrangement of <strong>vortices</strong> <strong>in</strong><strong>the</strong> magnetic unit cell <strong>the</strong>re is not enough symmetry to cause degeneracy. There isonly global Bogoliubov-de Gennes symmetry relat<strong>in</strong>g quasi-particle energy ɛ k at somepo<strong>in</strong>t k <strong>in</strong> <strong>the</strong> first Brillou<strong>in</strong> zone to −ɛ −k .In order for every quasiparticle b<strong>and</strong> to be ei<strong>the</strong>r completely below or completelyabove <strong>the</strong> Fermi energy, it is sufficient for <strong>the</strong> vortex lattice to have <strong>in</strong>version symmetry.This can be readily seen by <strong>the</strong> follow<strong>in</strong>g argument: Consider a vortex lattice with<strong>in</strong>version symmetry. Then, by <strong>the</strong> very nature of <strong>the</strong> superconduct<strong>in</strong>g vortex carry<strong>in</strong>ghc2eflux, <strong>the</strong>re must be even number of <strong>vortices</strong> per magnetic unit cell <strong>and</strong> we are <strong>the</strong>nfree to choose Franz-Tesanovic labels A <strong>and</strong> B <strong>in</strong> such a way that v A (−r) = −v B (r).To see this note that <strong>the</strong> explicit form of <strong>the</strong> superfluid velocities can be written as[45]:where α = A or B <strong>and</strong> r α i∫vs α 2π(r) =m ∗d 2 k ik × ẑ(2π) 2 k 2vortex lattice has <strong>in</strong>version symmetry <strong>the</strong>n for every r A isuch that r A i∑e ik·(r−rα i ) , (2.23)idenotes <strong>the</strong> position of <strong>the</strong> vortex with label α. If <strong>the</strong>= −r B i . Therefore, under space <strong>in</strong>version I<strong>the</strong>re is a correspond<strong>in</strong>g −r B iIv A (r) = v A (−r) = −v B (r). (2.24)Recall that <strong>the</strong> tight-b<strong>in</strong>d<strong>in</strong>g lattice Bogoliubov-de Gennes Hamiltonian written <strong>in</strong><strong>the</strong> Bloch basis (2.22) reads:Ĥ(k) = ∑ { ( r+δσ 3 −tei r (a−σ 3 v)·dl e iδ·(k+p) − µ ) }+ σ 1 ∆ 0 η δ e i r+δr a·dl e iδ·(k+p)δ(2.25)wherev(r) ≡ 1 2(v A (r) + v B (r) ) ; a(r) ≡ 1 2(v A (r) − v B (r) ) . (2.26)23


As before σ 1 <strong>and</strong> σ 3 are Pauli matrices operat<strong>in</strong>g <strong>in</strong> Nambu space <strong>and</strong> <strong>the</strong> sum isaga<strong>in</strong> over <strong>the</strong> nearest neighbors. It can be easily seen that upon apply<strong>in</strong>g <strong>the</strong> space<strong>in</strong>version I to Ĥ(k) followed by complex conjugation C <strong>and</strong> iσ 2 we have a symmetrythat for every ɛ k <strong>the</strong>re is −ɛ k , that is:−iσ 2 CI Ĥ(k) ICiσ 2 = −Ĥ(k) (2.27)which holds for every po<strong>in</strong>t <strong>in</strong> <strong>the</strong> Brillou<strong>in</strong> zone. Therefore, <strong>in</strong> order for <strong>the</strong> spectrumnot to be gapped, we would need b<strong>and</strong> cross<strong>in</strong>g at <strong>the</strong> Fermi level. But by <strong>the</strong> noncross<strong>in</strong>g<strong>the</strong>orem this cannot happen <strong>in</strong> general. Thus, <strong>the</strong> quasi-particle spectrum ofan <strong>in</strong>version symmetric vortex lattice is gapped, unless an external parameter o<strong>the</strong>rthan k x <strong>and</strong> k y is f<strong>in</strong>e-tuned.As will be established <strong>in</strong> <strong>the</strong> next section, gapped quasi-particle spectrum impliesquantization of <strong>the</strong> transverse sp<strong>in</strong> conductivity σxy s as well as κ xy/T for T sufficientlylow. Precisely at half-fill<strong>in</strong>g (µ = 0) σxy s must vanish on <strong>the</strong> basis of particle-holesymmetry (see <strong>the</strong> next section). We can <strong>the</strong>n vary <strong>the</strong> chemical potential so thatµ ≠ 0 <strong>and</strong> break particle-hole symmetry. Hence, <strong>the</strong> chemical potential µ can serveas <strong>the</strong> third parameter necessary for creat<strong>in</strong>g <strong>the</strong> accidental degeneracy, i.e. at somespecial values of µ ∗ <strong>the</strong> gap at <strong>the</strong> Fermi level will close (see Fig. 2.2). This results<strong>in</strong> a possibility of chang<strong>in</strong>g <strong>the</strong> quantized value of σxy s by an <strong>in</strong>teger <strong>in</strong> units of /8π(Fig. 2.2) [42]. By <strong>the</strong> very nature of <strong>the</strong> superconduct<strong>in</strong>g state, we achieve plateaudependence on <strong>the</strong> chemical potential. This is to be contrasted to <strong>the</strong> plateaus <strong>in</strong> <strong>the</strong>“ord<strong>in</strong>ary” <strong>in</strong>teger quantum Hall effect which are due to <strong>the</strong> presence of disorder. Inour case, <strong>the</strong> system is clean <strong>and</strong> <strong>the</strong> plateaus are due to <strong>the</strong> magnetic field <strong>in</strong>ducedgap <strong>and</strong> superconduct<strong>in</strong>g pair<strong>in</strong>g.Similarly, we can change <strong>the</strong> strength of <strong>the</strong> electron-electron attraction, whichis proportional to <strong>the</strong> maximum value of <strong>the</strong> superconduct<strong>in</strong>g order parameter ∆ 0while keep<strong>in</strong>g <strong>the</strong> chemical potential µ fixed. Aga<strong>in</strong>, as can be seen <strong>in</strong> Fig. 2.3, atsome special values ∆ ∗ 0undergoes a transition.<strong>the</strong> spectrum is gapless <strong>and</strong> <strong>the</strong> quantized Hall conductance24


σ (s)xy [h - /8π]121086420-2-4∆ m[10 -2 t]864200.0 0.2 0.4 0.6 0.8 1.0chemical potential µ[t]Figure 2.2: The mechanism for chang<strong>in</strong>g <strong>the</strong> quantized sp<strong>in</strong> Hall conductivity isthrough exchang<strong>in</strong>g <strong>the</strong> topological quanta via (“accidental”) gap clos<strong>in</strong>g. The upperpanel displays sp<strong>in</strong> Hall conductivity σxy s as a function of <strong>the</strong> chemical potential µ. Thelower panel shows <strong>the</strong> magnetic field <strong>in</strong>duced gap ∆ m <strong>in</strong> <strong>the</strong> quasiparticle spectrum.Note that <strong>the</strong> change <strong>in</strong> <strong>the</strong> sp<strong>in</strong> Hall conductivity occurs precisely at those values ofchemical potential at which <strong>the</strong> gap closes. Hence <strong>the</strong> mechanism beh<strong>in</strong>d <strong>the</strong> changesof σxy s is <strong>the</strong> exchange of <strong>the</strong> topological quanta at <strong>the</strong> b<strong>and</strong> cross<strong>in</strong>gs. The parametersfor <strong>the</strong> above calculation were: square vortex lattice, magnetic length l = 4δ, ∆ = 0.1tor equivalently <strong>the</strong> Dirac anisotropy α D = 10.2.3 Topological quantization of sp<strong>in</strong> <strong>and</strong> <strong>the</strong>rmalHall conductivitiesNote, that <strong>the</strong> Hamiltonian <strong>in</strong> Eq. (2.2) is our start<strong>in</strong>g unperturbed Hamiltonian.In order to compute <strong>the</strong> l<strong>in</strong>ear response to externally applied perturbations we willhave to add terms to Eq. (2.2). In particular, we will consider two types of perturbations<strong>in</strong> <strong>the</strong> later sections: First, partly for <strong>the</strong>oretical convenience, we will considera weak gradient of magnetic field (∇B) on top of <strong>the</strong> uniform B already taken <strong>in</strong>toaccount fully by Eq. (2.2). The ∇B term <strong>in</strong>duces sp<strong>in</strong> current <strong>in</strong> <strong>the</strong> superconductor[47]. The response is <strong>the</strong>n characterized by sp<strong>in</strong> conductivity tensor σ s which25


σ (s)xy [h - /8π]86420-2-4∆ m[10 -2 t]64200.0 0.1 0.2 0.3 0.4 0.5∆ 0[t]Figure 2.3: The upper panel displays sp<strong>in</strong> Hall conductivity σxy s as a function of <strong>the</strong>maximum superconduct<strong>in</strong>g order parameter ∆ 0 . The lower panel shows <strong>the</strong> magneticfield <strong>in</strong>duced gap <strong>in</strong> <strong>the</strong> quasiparticle spectrum. The change <strong>in</strong> <strong>the</strong> sp<strong>in</strong> Hall conductivityoccurs at those values of ∆ 0 at which <strong>the</strong> gap closes. The parameters for <strong>the</strong>above calculation were: square vortex lattice, magnetic length l = 4δ, µ = 2.2t.<strong>in</strong> general has non-zero off-diagonal components. Second, we consider perturb<strong>in</strong>g<strong>the</strong> system by pseudo-gravitational field, which formally <strong>in</strong>duces flow of energy (see[48, 49, 50, 51]) <strong>and</strong> allows us to compute <strong>the</strong>rmal conductivity κ xy via l<strong>in</strong>ear response.2.3.1 Sp<strong>in</strong> ConductivityWith<strong>in</strong> <strong>the</strong> framework of l<strong>in</strong>ear-response <strong>the</strong>ory [52], sp<strong>in</strong> dc conductivity can berelated to <strong>the</strong> sp<strong>in</strong> current-current retarded correlation function D R µν through :σµν s = lim lim − 1 ()Dµν R Ω→0 q 1 ,q 2 →0 iΩ(q 1, q 2 , Ω) − Dµν R (q 1, q 2 , 0) . (2.28)The retarded correlation function Dµν R (Ω) can <strong>in</strong> turn be related to <strong>the</strong> Matsubaraf<strong>in</strong>ite <strong>temperature</strong> correlation function∫ βD µν (iΩ) = − e iτΩ 〈T τ jµ(τ)j s ν(0)〉dτ s (2.29)026


aslimq 1 ,q 2 →0 DR µν(q 1 , q 2 , Ω) = D µν (iΩ → Ω + i0). (2.30)In <strong>the</strong> Eq. (2.29) <strong>the</strong> spatial average of <strong>the</strong> sp<strong>in</strong> current j s (τ) is implicit, s<strong>in</strong>ce we arelook<strong>in</strong>g for dc response of spatially <strong>in</strong>homogeneous system. In <strong>the</strong> next section wederive <strong>the</strong> sp<strong>in</strong> current <strong>and</strong> evaluate <strong>the</strong> above formulae.Sp<strong>in</strong> CurrentIn order to f<strong>in</strong>d <strong>the</strong> dc sp<strong>in</strong> conductivity, we must first f<strong>in</strong>d <strong>the</strong> sp<strong>in</strong> current. Moreprecisely, s<strong>in</strong>ce we are look<strong>in</strong>g only for <strong>the</strong> spatial average of <strong>the</strong> sp<strong>in</strong> current j s (τ)we just need its k → 0 component. In direct analogy with <strong>the</strong> B = 0 situation [38],we can def<strong>in</strong>e <strong>the</strong> sp<strong>in</strong> current by <strong>the</strong> cont<strong>in</strong>uity equation:˙ ρ s + ∇ · j s = 0 (2.31)where ρ s = 2 (ψ† ↑x ψ ↑x − ψ † ↓x ψ ↓x) is <strong>the</strong> sp<strong>in</strong> density projected onto z-axis. We can <strong>the</strong>nuse equations of motion for <strong>the</strong> ψ fields (2.10) <strong>and</strong> compute <strong>the</strong> current density j sfrom (2.31).In <strong>the</strong> limit of q → 0 <strong>the</strong> sp<strong>in</strong> current can be written as (see A.2)j s µ = 2 Ψ† V µ Ψ, (2.32)where <strong>the</strong> Nambu field Ψ † = (ψ † ↑ , ψ ↓) <strong>and</strong> <strong>the</strong> generalized velocity matrix operator V µsatisfies <strong>the</strong> follow<strong>in</strong>g commutator identityV µ = 1i [x µ, Ĥ0]. (2.33)The equation (2.33) is a direct restatement of <strong>the</strong> fact that sp<strong>in</strong> can be transported bydiffusion, i.e. it is a good quantum number <strong>in</strong> a superconductor, <strong>and</strong> that <strong>the</strong> averagevelocity of its propagation is just <strong>the</strong> group velocity of <strong>the</strong> quantum mechanical wave.In <strong>the</strong> clean limit, <strong>the</strong> transverse sp<strong>in</strong> conductivity σ s xy def<strong>in</strong>ed <strong>in</strong> Eq. (2.28) isσxy s 2(T ) =4i∑Vymn Vxnm(f n − f m )(ɛ n − ɛ m + i0) , (2.34)2m,n27


where f m = ( 1 + exp(βɛ n ) ) −1 is <strong>the</strong> Fermi-Dirac distribution function evaluated atenergy ɛ m . For details of <strong>the</strong> derivation see A.2. The <strong>in</strong>dices m <strong>and</strong> n label quantumnumbers of particular states. The matrix elements V mnµ areV mnµ = 〈 m ∣ ∣ Vµ∣ ∣n〉=∫dx (u ∗ m, v ∗ m)V µ(unv n)(2.35)where <strong>the</strong> particle-hole wavefunctions u m , v n satisfy <strong>the</strong> Bogoliubov-deGennes equation(2.11). Note that unlike <strong>the</strong> longitud<strong>in</strong>al dc conductivity, transverse conductivityis well def<strong>in</strong>ed even <strong>in</strong> <strong>the</strong> absence of impurity scatter<strong>in</strong>g. This demonstrates <strong>the</strong> factthat <strong>the</strong> transverse conductivity is not dissipative <strong>in</strong> orig<strong>in</strong>.topological.In <strong>the</strong> limit of T → 0 <strong>the</strong> expression (2.34) for σ s xy becomesσ s xy = 24i∑Vxmnɛ m


not straightforward, s<strong>in</strong>ce <strong>the</strong> quasiparticle motion is irreducibly quantum mechanical.Here we present an argument for <strong>the</strong> full quantum mechanical problem, withoutrely<strong>in</strong>g on <strong>the</strong> semiclassical analysis. We show that sp<strong>in</strong> conductivity tensor (2.34)vanishes at µ = 0 due to particle hole symmetry (2.12). First note that <strong>the</strong> Fermi-Dirac distribution function satisfies f(ɛ) = 1 − f(−ɛ). Therefore, <strong>the</strong> factor f m − f nchanges sign under <strong>the</strong> particle-hole transformation ˆP H (2.12) while <strong>the</strong> denom<strong>in</strong>ator(ɛ m − ɛ n ) 2 clearly rema<strong>in</strong>s unchanged. In addition, each of <strong>the</strong> matrix elements V mnµchanges sign under ˆP H . Thus <strong>the</strong> double summation over all states <strong>in</strong> Eq. (2.34)yields zero.Consequently <strong>the</strong> sp<strong>in</strong> transport vanishes for a clean strongly type-II BCS d-wavesuperconductor on a tight b<strong>in</strong>d<strong>in</strong>g lattice at half fill<strong>in</strong>g. Due to Wiedemann-Franzlaw, which we derive <strong>in</strong> <strong>the</strong> next section, <strong>the</strong>rmal Hall conductivity also vanishes athalf fill<strong>in</strong>g at sufficiently low <strong>temperature</strong>s. Note that this result is <strong>in</strong>dependent of<strong>the</strong> vortex arrangement i.e. it holds even for disordered vortex array <strong>and</strong> does notrely on any approximation regard<strong>in</strong>g <strong>in</strong>ter- or <strong>in</strong>tra- nodal scatter<strong>in</strong>g.Topological Nature of Sp<strong>in</strong> Hall Conductivity at T=0In order to elucidate <strong>the</strong> topological nature of σxy s , we make use of <strong>the</strong> translationalsymmetry discussed <strong>in</strong> Section 2.2.2 <strong>and</strong> formally assume that <strong>the</strong> vortex arrangementis periodic. However, <strong>the</strong> detailed nature of <strong>the</strong> vortex lattice will not be specified <strong>and</strong>thus any vortex arrangement is allowed with<strong>in</strong> <strong>the</strong> magnetic unit cell. The conclusionswe reach are <strong>the</strong>refore quite general.We will first rewrite <strong>the</strong> velocity matrix elements V mnµ us<strong>in</strong>g <strong>the</strong> s<strong>in</strong>gularly gaugetransformed basis as discussed <strong>in</strong> Section 2.2.2. Insert<strong>in</strong>g unity <strong>in</strong> <strong>the</strong> form of <strong>the</strong> FTgauge transformation (2.13)V mnµ = 〈 m ∣ ∣ Vµ∣ ∣n〉=〈m∣ ∣U U −1 V µ U U −1∣ ∣ n〉. (2.37)The transformed basis states U −1∣ ∣ n〉can now be written <strong>in</strong> <strong>the</strong> Bloch form as eik·r ∣ ∣ nk〉<strong>and</strong> <strong>the</strong>refore <strong>the</strong> matrix element becomesV mnµ = 〈 m k∣ ∣e −ik·r U −1 V µ Ue ik·r∣ ∣ nk〉=〈mk∣ ∣Vµ (k) ∣ ∣ nk〉. (2.38)29


We used <strong>the</strong> same symbol k for both bra <strong>and</strong> ket because <strong>the</strong> crystal momentum<strong>in</strong> <strong>the</strong> first Brillou<strong>in</strong> zone is conserved. The result<strong>in</strong>g velocity operator can now besimply expressed asV µ (k) = 1 ∂Ĥ(k) , (2.39) ∂k µwhere Ĥ0(k) was def<strong>in</strong>ed <strong>in</strong> (2.22). Fur<strong>the</strong>rmore <strong>the</strong> matrix elements of <strong>the</strong> partialderivatives of Ĥ(k) can be simplified accord<strong>in</strong>g to〈 ∣mk ∂Ĥ(k) ∣ 〉 ∣nk = (ɛn∂k k − ɛ m k )〈 ∣m k ∂n k〉= −(ɛnµ∂k k − ɛ m k )〈 ∂m k∣ 〉 ∣nk , (2.40)µ ∂k µfor m ≠ n. Utiliz<strong>in</strong>g Eqs. (2.39) <strong>and</strong> (2.40), Eq. (2.36) for σxy s can now be written asσxy s = ∫dk ∑ 〈∂m k∣ 〉〈 ∣ ∣nk nk ∂m k〉 〈∂m k∣ 〉〈 ∣− ∣nk nk ∂m k〉. (2.41)4i (2π) 2 ∂kɛ m


where C 1 is a first Chern number that is an <strong>in</strong>teger. Therefore, a contribution of eachfilled b<strong>and</strong> to σ s xy isσ s,mxy= 8π N (2.46)where N is an <strong>in</strong>teger. The assumption that <strong>the</strong> b<strong>and</strong> must be separated from <strong>the</strong> restof <strong>the</strong> spectrum can be relaxed. If two or more fully filled b<strong>and</strong>s cross each o<strong>the</strong>r <strong>the</strong>sum total of <strong>the</strong>ir contributions to sp<strong>in</strong> Hall conductance is quantized even thoughnoth<strong>in</strong>g guarantees <strong>the</strong> quantization of <strong>the</strong> <strong>in</strong>dividual contributions. The quantizationof <strong>the</strong> total sp<strong>in</strong> Hall conductance requires a gap <strong>in</strong> <strong>the</strong> s<strong>in</strong>gle particle spectrum at <strong>the</strong>Fermi energy. As discussed <strong>in</strong> <strong>the</strong> Section 2.2.3, <strong>the</strong> general s<strong>in</strong>gle particle spectrumof <strong>the</strong> d-wave superconductor <strong>in</strong> <strong>the</strong> vortex state with <strong>in</strong>version-symmetric vortexlattice is gapped <strong>and</strong> <strong>the</strong>refore <strong>the</strong> quantization of σ s xyis guaranteed.2.3.2 Thermal ConductivityBefore discuss<strong>in</strong>g <strong>the</strong> nature of <strong>the</strong> quasi-particle spectrum, we will establish aWiedemann-Franz law between sp<strong>in</strong> conductivity <strong>and</strong> <strong>the</strong>rmal conductivity for a d-wave superconductor. This relation is naturally expected to hold for a very generalsystem <strong>in</strong> which <strong>the</strong> quasi-particles form a degenerate assembly i.e. it holds even <strong>in</strong><strong>the</strong> presence of elastically scatter<strong>in</strong>g impurities.Follow<strong>in</strong>g Lutt<strong>in</strong>ger [48], <strong>and</strong> Smrčka <strong>and</strong> Středa [50] we <strong>in</strong>troduce a pseudogravitationalpotential χ = x · g/c 2 <strong>in</strong>to <strong>the</strong> Hamiltonian (2.7) where g is a constantvector. The purpose is to <strong>in</strong>clude a coupl<strong>in</strong>g to <strong>the</strong> energy density on <strong>the</strong> Hamiltonianlevel. This formal trick allows us to equate statistical (T ∇(1/T )) <strong>and</strong> mechanical (g)forces so that <strong>the</strong> <strong>the</strong>rmal current j Q , <strong>in</strong> <strong>the</strong> long wavelength limit given byj Q = L Q (T )(T ∇ 1 )T − ∇χ , (2.47)will vanish <strong>in</strong> equilibrium. Therefore it is enough to consider only <strong>the</strong> dynamical forceg to calculate <strong>the</strong> phenomenological coefficient L Q µν. Note that <strong>the</strong>rmal conductivityκ xy isκ µν (T ) = 1 T LQ µν(T ). (2.48)31


When <strong>the</strong> BCS Hamiltonian H <strong>in</strong>troduced <strong>in</strong> Eq.(2.2) becomes perturbed by <strong>the</strong>pseudo-gravitational field, <strong>the</strong> result<strong>in</strong>g Hamiltonian H T has <strong>the</strong> formH T = H + F (2.49)where F <strong>in</strong>corporates <strong>the</strong> <strong>in</strong>teraction with <strong>the</strong> perturb<strong>in</strong>g field:F = 1 ∫dx Ψ † (x) (Ĥ0χ + χĤ0) Ψ(x). (2.50)2S<strong>in</strong>ce χ is a small perturbation, to <strong>the</strong> first order <strong>in</strong> χ <strong>the</strong> Hamiltonian H Twritten as∫H T =can bedx (1 + χ 2 )Ψ† (x) Ĥ0 (1 + χ )Ψ(x) (2.51)2i.e. <strong>the</strong> application of <strong>the</strong> pseudo-gravitational field results <strong>in</strong> rescal<strong>in</strong>g of <strong>the</strong> fermionoperators:Ψ → ˜Ψ = (1 + χ )Ψ. (2.52)2If we measure <strong>the</strong> energy relative to <strong>the</strong> Fermi level, <strong>the</strong> transport of heat isequivalent to <strong>the</strong> transport of energy. In analogy with <strong>the</strong> Section 2.3.1, we def<strong>in</strong>e<strong>the</strong> heat current j Q through diffusion of <strong>the</strong> energy-density h T . From conservation of<strong>the</strong> energy-density <strong>the</strong> cont<strong>in</strong>uity equation followsIn <strong>the</strong> limit of q → 0 <strong>the</strong> <strong>the</strong>rmal current isḣ T + ∇ · j Q = 0. (2.53)jµ Q = i ( )˜Ψ† V µ˙˜Ψ − ˙˜Ψ† V µ ˜Ψ . (2.54)2For details see A.3. Note that <strong>the</strong> quantum statistical average of <strong>the</strong> current has twocontributions, both l<strong>in</strong>ear <strong>in</strong> χ,〈j Q µ 〉 = 〈j Q 0µ〉 + 〈j Q 1µ〉≡ − (K Q µν + M Q µν)∂ ν χ. (2.55)The first term is <strong>the</strong> usual Kubo contribution to L Q µνwhile <strong>the</strong> second term is relatedto magnetization of <strong>the</strong> sample [54] for transverse components of κ µν <strong>and</strong> vanishesfor <strong>the</strong> longitud<strong>in</strong>al components. In A.3 we show that at T = 0 <strong>the</strong> term related32


to magnetization cancels <strong>the</strong> Kubo term <strong>and</strong> <strong>the</strong>refore <strong>the</strong> transverse component ofκ µν is zero at T = 0. To obta<strong>in</strong> f<strong>in</strong>ite <strong>temperature</strong> response, we perform Sommerfeldexpansion <strong>and</strong> derive Wiedemann-Franz law for sp<strong>in</strong> <strong>and</strong> <strong>the</strong>rmal Hall conductivity.whereAs shown <strong>in</strong> <strong>the</strong> A.3L Q µν (T ) = − ( 2˜σ s xy(ξ) = 24i∑) 2 ∫Vxmnɛ m


conductivity σ s xy <strong>in</strong> units of /8π [42]. The topological nature of this phenomenon isdiscussed. The size of <strong>the</strong> magnetic field <strong>in</strong>duced gap ∆ m <strong>in</strong> unconventional d-wavesuperconductors is not universal <strong>and</strong> <strong>in</strong> pr<strong>in</strong>ciple can be as large as several percentof <strong>the</strong> maximum superconduct<strong>in</strong>g gap ∆ 0 . By virtue of <strong>the</strong> Wiedemann-Franz law,which we derive for <strong>the</strong> d-wave Bogoliubov-de( )Gennes equation <strong>in</strong> <strong>the</strong> vortex state,2k BT σxy s as T → 0. Thus at T ≪ ∆ m <strong>the</strong><strong>the</strong> <strong>the</strong>rmal conductivity κ xy= 4π23quantization of κ xy /T will be observable <strong>in</strong> clean samples with negligible L<strong>and</strong>e g factor<strong>and</strong> with well ordered Abrikosov vortex lattice. In conventional superconductors,<strong>the</strong> size of ∆ m is given by Matricon-Caroli-deGennes vortex bound states ∼ ∆ 2 /ɛ F .In real experimental situations, L<strong>and</strong>e g factor is not necessarily small. In fact itis close to 2 <strong>in</strong> <strong>cuprate</strong>s [55]. The Zeeman effect must <strong>the</strong>refore be <strong>in</strong>cluded <strong>in</strong> <strong>the</strong>analysis. Fur<strong>the</strong>rmore, <strong>the</strong> Zeeman splitt<strong>in</strong>g, where<strong>in</strong> <strong>the</strong> magnetic field acts as achemical potential for <strong>the</strong> (sp<strong>in</strong>ful) quasiparticles, shifts <strong>the</strong> levels that are populatedbelow <strong>the</strong> gap by ±µ sp<strong>in</strong> B = ±g e4mc B or <strong>in</strong> <strong>the</strong> tight b<strong>in</strong>d<strong>in</strong>g units by ±gπt ( a 0l) 2.In <strong>the</strong> absence of any Zeeman effect <strong>the</strong> spectrum is gapped. S<strong>in</strong>ce this (m<strong>in</strong>i)gap∆ mis associated with <strong>the</strong> curvature terms <strong>in</strong> <strong>the</strong> cont<strong>in</strong>uum BdG equation, it isexpected to scale as B.S<strong>in</strong>ce <strong>the</strong> Zeeman effect also scales as B <strong>the</strong> topologicalquantization studied depends on <strong>the</strong> magnitude of <strong>the</strong> coefficients. While this coefficientis known for <strong>the</strong> Zeeman effect (g ≈ 2), <strong>the</strong> exact form of ∆ m is not known.However, quite generally, we expect that ∆ m <strong>in</strong>creases with <strong>in</strong>creas<strong>in</strong>g <strong>the</strong> maximumzero field gap ∆ 0 . Therefore we could (at least <strong>the</strong>oretically) always arrange for <strong>the</strong>quantization to persist despite <strong>the</strong> competition from <strong>the</strong> Zeeman splitt<strong>in</strong>g.Detailed numerical exam<strong>in</strong>ation of <strong>the</strong> quasiparticle spectra reveals that <strong>the</strong> spectrumrema<strong>in</strong>s gapped for some parameters even if g = 2. Thus, although <strong>the</strong> Zeemansplitt<strong>in</strong>g is a compet<strong>in</strong>g effect, <strong>in</strong> some situations it is not enough to prevent <strong>the</strong>quantization of σ s xy <strong>and</strong> consequently of κ xy/T .We have explicitly evaluated <strong>the</strong> quantized values of σ s xyon <strong>the</strong> tight-b<strong>in</strong>d<strong>in</strong>glattice model of d x 2 −y2-wave BCS superconductor <strong>in</strong> <strong>the</strong> vortex state <strong>and</strong> showed that<strong>in</strong> pr<strong>in</strong>ciple a wide range of <strong>in</strong>teger values can be obta<strong>in</strong>ed. This should be contrastedwith <strong>the</strong> notion that <strong>the</strong> effect of a magnetic field on a d-wave superconductor is34


solely to generate a d + id state for <strong>the</strong> order parameter, as <strong>in</strong> that case σxy s = ±2 <strong>in</strong>units of /8π. In <strong>the</strong> presence of a vortex lattice, <strong>the</strong> situation appears to be morecomplex.By vary<strong>in</strong>g some external parameter, for <strong>in</strong>stance <strong>the</strong> strength of <strong>the</strong> electronelectronattraction which is proportional to ∆ 0 or <strong>the</strong> chemical potential µ, <strong>the</strong> gapclos<strong>in</strong>g is achieved i.e. ∆ m = 0. The transition between two different values of σxysoccurs precisely when <strong>the</strong> gap closes <strong>and</strong> topological quanta are exchanged. Theremarkable new feature is <strong>the</strong> plateau dependence of σxy s on <strong>the</strong> ∆ 0 or µ. It is qualitativelydifferent from <strong>the</strong> plateaus <strong>in</strong> <strong>the</strong> ord<strong>in</strong>ary <strong>in</strong>teger quantum Hall effect whichare essentially due to disorder. In superconductors, <strong>the</strong> plateaus happen <strong>in</strong> a cleansystem because <strong>the</strong> gap <strong>in</strong> <strong>the</strong> quasiparticle spectrum is generated by <strong>the</strong> superconduct<strong>in</strong>gpair<strong>in</strong>g <strong>in</strong>teractions.35


Chapter 3QED 3 <strong>the</strong>ory of <strong>the</strong> phasedisordered d-wave superconductors3.1 IntroductionWe will now turn our attention to <strong>the</strong> fluctuations around <strong>the</strong> broken symmetrystate. As is well known, <strong>the</strong> fluctuations of <strong>the</strong> superconduct<strong>in</strong>g order parameter,a U(1) field, are crucial <strong>in</strong> describ<strong>in</strong>g <strong>the</strong> critical behavior below <strong>the</strong> upper criticaldimension d u = 4, <strong>and</strong> destroy <strong>the</strong> long range order altoge<strong>the</strong>r at <strong>and</strong> below <strong>the</strong>lower critical dimension d l = 2. This can be seen by assum<strong>in</strong>g <strong>the</strong> ordered state<strong>and</strong> comput<strong>in</strong>g <strong>the</strong> correlations between two fields separated by large distance. In2 dimensions <strong>the</strong> correlations vanish algebraically at low <strong>temperature</strong>s due to <strong>the</strong>presence of a soft phase mode, <strong>the</strong>reby destroy<strong>in</strong>g <strong>the</strong> (true) long range order. In 3dimensions <strong>the</strong> long range order persist for a f<strong>in</strong>ite range of <strong>temperature</strong>s.Generically, we would expect that when <strong>the</strong> measured superconduct<strong>in</strong>g coherencelength is long, <strong>the</strong>n <strong>the</strong> mean-field description should be accurate. However, when<strong>the</strong> coherence length is short, we expect <strong>the</strong> fluctuations to play a significant role. In<strong>cuprate</strong> superconductors, <strong>the</strong> coherence length is very short ≈ 10Å, <strong>and</strong> moreover,<strong>the</strong>y are <strong>high</strong>ly anisotropic layered materials, which suggests that <strong>the</strong>re are strongfluctuations of <strong>the</strong> order parameter.The question we shall try to address <strong>in</strong> this chapter is what is <strong>the</strong> nature of <strong>the</strong>36


fermionic excitations <strong>in</strong> a fluctuat<strong>in</strong>g d-wave superconductor. Inspired by experimentson <strong>the</strong> underdoped <strong>cuprate</strong>s [8, 57], we shall assume that <strong>the</strong> long range order isdestroyed by phase fluctuations while <strong>the</strong> amplitude of <strong>the</strong> order parameter rema<strong>in</strong>sf<strong>in</strong>ite. Such a state, without be<strong>in</strong>g a superconductor, would appear to have a d-wavelikegap: a pseudogap. We shall not try to give a very detailed account of <strong>the</strong> orig<strong>in</strong> of<strong>the</strong> phase fluctuations, ra<strong>the</strong>r we shall simply assume, phenomenologically, presenceor absence of <strong>the</strong> long range order. The d-wave superconductor, with well def<strong>in</strong>edBCS quasiparticles, <strong>the</strong>n serves as a po<strong>in</strong>t of departure.We thus assume that <strong>the</strong> most important effect of strong correlations at <strong>the</strong> basicmicroscopic level is to form a large pseudogap of d-wave symmetry, which is predom<strong>in</strong>antlypair<strong>in</strong>g <strong>in</strong> orig<strong>in</strong>, i.e. arises form <strong>the</strong> particle-particle (p-p) channel. We can<strong>the</strong>n study <strong>the</strong> renormalization group fate of various residual <strong>in</strong>teractions among <strong>the</strong>BCS quasiparticles, only to discover that short range <strong>in</strong>teractions are irrelevant bypower count<strong>in</strong>g <strong>and</strong> thus do not affect <strong>the</strong> d-wave pseudogap fixed po<strong>in</strong>t. Thus, if onlyshort range <strong>in</strong>teractions are taken <strong>in</strong>to account, <strong>the</strong> low energy BCS quasiparticlesrema<strong>in</strong> well def<strong>in</strong>ed.However, <strong>the</strong>re are important additional <strong>in</strong>teractions: BCS quasiparticles coupleto <strong>the</strong> collective modes of <strong>the</strong> pair<strong>in</strong>g pseudogap, <strong>in</strong> particular <strong>the</strong>y couple to <strong>the</strong>(soft) phase mode. We analyze this coupl<strong>in</strong>g to show that while <strong>the</strong> fluctuations <strong>in</strong> <strong>the</strong>longitud<strong>in</strong>al mode at T=0 are not sufficient to destroy <strong>the</strong> long lived low energy BCSquasiparticles, <strong>the</strong> transverse fluctuations (<strong>vortices</strong>) do <strong>in</strong>troduce a novel topologicalfrustration to quasiparticle propagation. We shall argue that this frustration can beencoded by a low energy effective field <strong>the</strong>ory which takes <strong>the</strong> form of (an anisotropic)QED 3 or quantum electrodynamics <strong>in</strong> 2+1 dimensions [58]. In its symmetric phase,QED 3 is governed by <strong>the</strong> <strong>in</strong>teract<strong>in</strong>g critical fixed po<strong>in</strong>t, with quasiparticles whoselifetime decays algebraically with energy, lead<strong>in</strong>g to a non-Fermi liquid behavior for itsfermionic excitations. This “algebraic” Fermi liquid (AFL) [58] displaces conventionalFermi liquid as <strong>the</strong> underly<strong>in</strong>g <strong>the</strong>ory of <strong>the</strong> pseudogap state.The AFL (symmetric QED 3 ) suffers an <strong>in</strong>tr<strong>in</strong>sic <strong>in</strong>stability when vortex-antivortexfluctuations <strong>and</strong> residual <strong>in</strong>teractions become too strong. The topological frustrationis relieved by <strong>the</strong> spontaneous generation of mass for fermions, while <strong>the</strong> Berry37


gauge field rema<strong>in</strong>s massless. In <strong>the</strong> field <strong>the</strong>ory literature on QED 3 this <strong>in</strong>stabilityis known as <strong>the</strong> dynamical chiral symmetry break<strong>in</strong>g (CSB) <strong>and</strong> is a well-studied<strong>and</strong> established phenomenon [59], although some uncerta<strong>in</strong>ty rema<strong>in</strong>s about its morequantitative aspects [60]. In <strong>cuprate</strong>s, <strong>the</strong> region of such strong vortex fluctuationscorresponds to heavily underdoped samples. When re<strong>in</strong>terpreted <strong>in</strong> electron coord<strong>in</strong>ates,<strong>the</strong> CSB leads to spontaneous creation of a whole plethora of nearly degenerateordered <strong>and</strong> gapped states from with<strong>in</strong> <strong>the</strong> AFL. We shall discuss this <strong>in</strong> Section 3.6.Notably, <strong>the</strong> manifold of CSB states conta<strong>in</strong>s an <strong>in</strong>commensurate antiferromagnetic<strong>in</strong>sulator (sp<strong>in</strong>-density wave (SDW)). It is a manifestation of a remarkable richnessof <strong>the</strong> QED 3 <strong>the</strong>ory that both <strong>the</strong> “algebraic” Fermi liquid <strong>and</strong> <strong>the</strong> SDW <strong>and</strong> o<strong>the</strong>rCSB <strong>in</strong>sulat<strong>in</strong>g states arise from <strong>the</strong> one <strong>and</strong> <strong>the</strong> same start<strong>in</strong>g po<strong>in</strong>t.3.2 Vortex quasiparticle <strong>in</strong>teraction3.2.1 Protectorate of <strong>the</strong> pair<strong>in</strong>g pseudogapThe start<strong>in</strong>g po<strong>in</strong>t is <strong>the</strong> assumption that <strong>the</strong> pseudogap is predom<strong>in</strong>antly particleparticleor pair<strong>in</strong>g (p-p) <strong>in</strong> orig<strong>in</strong> <strong>and</strong> that it has a d x 2 −y2 symmetry. This assumptionis given ma<strong>the</strong>matical expression <strong>in</strong> <strong>the</strong> partition function:∫ ∫ ∫Z = DΨ † (r, τ) DΨ(r, τ) Dϕ(r, τ) exp [−S],∫ ∫S = dτ d 2 r{Ψ † ∂ τ Ψ + Ψ † HΨ + (1/g)∆ ∗ ∆}, (3.1)where τ is <strong>the</strong> imag<strong>in</strong>ary time, r = (x, y), g is an effective coupl<strong>in</strong>g constant <strong>in</strong> <strong>the</strong>d x 2 −y 2 channel, <strong>and</strong> Ψ† = ( ¯ψ ↑ , ψ ↓ ) are <strong>the</strong> st<strong>and</strong>ard Grassmann variables represent<strong>in</strong>gcoherent states of <strong>the</strong> Bogoliubov-de Gennes (BdG) fermions. The effective HamiltonianH is given by:H =(Ĥe ˆ∆ˆ∆ ∗−Ĥ∗ e)+ H res (3.2)38


with Ĥe = 12m (ˆp − e c A)2 − ɛ F , ˆp = −i∇ (we take = 1), <strong>and</strong> ˆ∆ <strong>the</strong> d-wave pair<strong>in</strong>goperator (see Eq. 2.6),ˆ∆ = 1 {ˆpkF2 x , {ˆp y , ∆}} −i4k 2 F∆ ( ∂ x ∂ y ϕ ) , (3.3)where ∆(r, τ) = |∆| exp(iϕ(r, τ)) is <strong>the</strong> center-of-mass gap function <strong>and</strong> {a, b} ≡(ab + ba)/2. As discussed <strong>in</strong> Chapter 2, <strong>the</strong> second term <strong>in</strong> Eq. (3.3) is necessaryto preserve <strong>the</strong> overall gauge <strong>in</strong>variance. Notice that we have rotated ˆ∆ from d x 2 −y 2to d xy to simplify <strong>the</strong> cont<strong>in</strong>uum limit. ∫ Dϕ(r, τ) denotes <strong>the</strong> <strong>in</strong>tegral over smooth(“sp<strong>in</strong> wave”) <strong>and</strong> s<strong>in</strong>gular (vortex) phase fluctuations. Amplitude fluctuations of ˆ∆are suppressed at or just below T ∗ <strong>and</strong> <strong>the</strong> amplitude itself is frozen at 2∆ ∼ 3.56T ∗for T ≪ T ∗ .The fermion fields ψ ↑ <strong>and</strong> ψ ↓ appear<strong>in</strong>g <strong>in</strong> Eqs. (3.1,3.2) do not necessarily referto <strong>the</strong> bare electrons.Ra<strong>the</strong>r, <strong>the</strong>y represent some effective low-energy fermionsof <strong>the</strong> <strong>the</strong>ory, already fully renormalized by <strong>high</strong>-energy <strong>in</strong>teractions, expected tobe strong <strong>in</strong> <strong>cuprate</strong>s due to Mott-Hubbard correlations near half-fill<strong>in</strong>g [61]. Theprecise structure of such fermionic effective fields follows from a more microscopic<strong>the</strong>ory <strong>and</strong> is not of our immediate concern here – we are only rely<strong>in</strong>g on <strong>the</strong> absenceof true sp<strong>in</strong>-charge separation which allows us to write <strong>the</strong> effective pair<strong>in</strong>g term (3.2)<strong>in</strong> <strong>the</strong> BCS-like form. The experimental evidence that supports this reason<strong>in</strong>g, at leastwith<strong>in</strong> <strong>the</strong> superconduct<strong>in</strong>g state <strong>and</strong> its immediate vic<strong>in</strong>ity, is ra<strong>the</strong>r overwhelm<strong>in</strong>g[8, 57, 62, 63]. Fur<strong>the</strong>rmore, H res represents <strong>the</strong> “residual” <strong>in</strong>teractions, i.e. <strong>the</strong> partdom<strong>in</strong>ated by <strong>the</strong> effective <strong>in</strong>teractions <strong>in</strong> <strong>the</strong> p-h channel. Our ma<strong>in</strong> assumption isequivalent to stat<strong>in</strong>g that such <strong>in</strong>teractions are <strong>in</strong> a certa<strong>in</strong> sense “weak” <strong>and</strong> lessimportant part of <strong>the</strong> effective Hamiltonian H than <strong>the</strong> large pair<strong>in</strong>g <strong>in</strong>teractionsalready <strong>in</strong>corporated through ˆ∆. This notion of “weakness” of H res will be def<strong>in</strong>edmore precisely <strong>and</strong> with it <strong>the</strong> region of validity of our <strong>the</strong>ory.3.2.2 Topological frustrationThe global U(1) gauge <strong>in</strong>variance m<strong>and</strong>ates that <strong>the</strong> partition function (3.1) mustbe <strong>in</strong>dependent of <strong>the</strong> overall choice of phase for ˆ∆. We should <strong>the</strong>refore aim to elimi-39


nate <strong>the</strong> phase ϕ(r, τ) from <strong>the</strong> pair<strong>in</strong>g term (3.2) <strong>in</strong> favor of ∂ µ ϕ terms [µ = (x, y, τ)]<strong>in</strong> <strong>the</strong> fermionic action. For <strong>the</strong> regular (“sp<strong>in</strong>-wave”) piece of ϕ this is easily accomplishedby absorb<strong>in</strong>g a phase factor exp(i 1 ϕ) <strong>in</strong>to both sp<strong>in</strong>-up <strong>and</strong> sp<strong>in</strong>-down2fermionic fields. This amounts to “screen<strong>in</strong>g” <strong>the</strong> phase of ∆(r, τ) (“XY phase”) by a“half-phase” field (“half-XY phase”) attached to ψ ↑ <strong>and</strong> ψ ↓ . However, as discussed <strong>in</strong><strong>the</strong> Chapter 2, when deal<strong>in</strong>g with <strong>the</strong> s<strong>in</strong>gular part of ϕ, such transformation “screens”physical s<strong>in</strong>gly quantized hc/2e superconduct<strong>in</strong>g <strong>vortices</strong> with “half-<strong>vortices</strong>” <strong>in</strong> <strong>the</strong>fermionic fields. Consequently, this “half-angle” gauge transformation must be accompaniedby branch cuts <strong>in</strong> <strong>the</strong> fermionic fields which orig<strong>in</strong>ate <strong>and</strong> term<strong>in</strong>ate atvortex positions <strong>and</strong> across which <strong>the</strong> quasiparticle wavefunction must switch its sign.These branch cuts are ma<strong>the</strong>matical manifestation of a fundamental physical effect:<strong>in</strong> presence of hc/2e <strong>vortices</strong> <strong>the</strong> motion of quasiparticles is topologically frustrateds<strong>in</strong>ce <strong>the</strong> natural elementary flux associated with <strong>the</strong> quasiparticles is hc/e i.e. twiceas large . The physics of this topological frustration is at <strong>the</strong> orig<strong>in</strong> of all non-trivialdynamics discussed <strong>in</strong> this work.Deal<strong>in</strong>g with branch cuts <strong>in</strong> a fluctuat<strong>in</strong>g vortex problem is very difficult due to<strong>the</strong>ir non-local character <strong>and</strong> defeats <strong>the</strong> orig<strong>in</strong>al purpose of reduc<strong>in</strong>g <strong>the</strong> problemto that of fermions <strong>in</strong>teract<strong>in</strong>g with local fluctuat<strong>in</strong>g superflow field, i.e. with ∂ µ ϕ.Instead, <strong>in</strong> order to avoid <strong>the</strong> branch cuts, non-locality <strong>and</strong> non-s<strong>in</strong>gle valued wavefunctions,we employ <strong>the</strong> s<strong>in</strong>gular gauge transformation <strong>in</strong>troduced <strong>in</strong> <strong>the</strong> Chapter 2,hereafter referred to as ‘FT’ transformation:¯ψ ↑ → exp (−iϕ A ) ¯ψ ↑ , ¯ψ↓ → exp (−iϕ B ) ¯ψ ↓ , (3.4)where ϕ A + ϕ B = ϕ. Here ϕ A(B) is <strong>the</strong> s<strong>in</strong>gular part of <strong>the</strong> phase due to A(B) vortexdefects:∇ × ∇ϕ A(B) = 2πẑ ∑ i(q i δr − r A(B)i)(τ) , (3.5)with q i = ±1 denot<strong>in</strong>g <strong>the</strong> topological charge of i-th vortex <strong>and</strong> r A(B)i (τ) its position.The labels A <strong>and</strong> B represent some convenient but o<strong>the</strong>rwise arbitrary division of vortexdefects (loops or l<strong>in</strong>es <strong>in</strong> ϕ(r, τ)) <strong>in</strong>to two sets. The transformation (3.4) “screens”<strong>the</strong> orig<strong>in</strong>al superconduct<strong>in</strong>g phase ϕ (or “XY phase”) with two ord<strong>in</strong>ary “XY phases”40


ϕ A <strong>and</strong> ϕ B attached to fermions. Both ϕ A <strong>and</strong> ϕ B are simply phase configurations of∆(r, τ) but with fewer vortex defects. The key feature of <strong>the</strong> transformation (3.4) isthat it accomplishes “screen<strong>in</strong>g” of <strong>the</strong> physical hc/2e <strong>vortices</strong> without <strong>in</strong>troduc<strong>in</strong>gany branch cuts <strong>in</strong>to <strong>the</strong> wavefunctions. The topological frustration still rema<strong>in</strong>s, butnow it is expressed through local fields. The result<strong>in</strong>g fermionic part of <strong>the</strong> action is<strong>the</strong>n:L ′ = ¯ψ ↑ [∂ τ + i(∂ τ ϕ A )]ψ ↑ + ¯ψ ↓ [∂ τ + i(∂ τ ϕ B )]ψ ↓ + Ψ † H ′ Ψ, (3.6)where <strong>the</strong> transformed Hamiltonian H ′ is:(1(ˆπ + )2m v)2 − ɛ FˆDˆD − 1 (ˆπ − 2m v)2 + ɛ Fwith ˆD = (∆ 0 /2k 2 F )(ˆπ xˆπ y + ˆπ yˆπ x ) <strong>and</strong> ˆπ = ˆp + a.The s<strong>in</strong>gular gauge transformation (3.4) generates a “Berry” gauge potentiala µ = 1 2 (∂ µϕ A − ∂ µ ϕ B ) , (3.7)which describes half-flux Aharonov-Bohm scatter<strong>in</strong>g of quasiparticles on <strong>vortices</strong>.a µcouples to BdG fermions m<strong>in</strong>imally <strong>and</strong> mimics <strong>the</strong> effect of branch cuts <strong>in</strong>quasiparticle-vortex dynamics. Closed fermion loops <strong>in</strong> <strong>the</strong> Feynman path-<strong>in</strong>tegralrepresentation of (3.1) acquire <strong>the</strong> (−1) phase factors due to this half-flux Aharonov-Bohm effect just as <strong>the</strong>y would from a branch cut attached to a vortex defect.The above (±1) prefactors of <strong>the</strong> BdG fermion loops come on top of general <strong>and</strong>ever-present U(1) phase factors exp(iδ), where <strong>the</strong> phase δ depends on spacetimeconfiguration of <strong>vortices</strong>. These U(1) phase factors are supplied by <strong>the</strong> “Doppler”gauge fieldv µ = 1 2 (∂ µϕ A + ∂ µ ϕ B ) ≡ 1 2 ∂ µϕ , (3.8)which denotes <strong>the</strong> classical part of <strong>the</strong> quasiparticle-vortex <strong>in</strong>teraction. The coupl<strong>in</strong>gof v µ to fermions is <strong>the</strong> same as that of <strong>the</strong> usual electromagnetic gauge field A µ<strong>and</strong> is <strong>the</strong>refore non-m<strong>in</strong>imal, due to <strong>the</strong> pair<strong>in</strong>g term <strong>in</strong> <strong>the</strong> orig<strong>in</strong>al Hamiltonian H(3.2). It is this non-m<strong>in</strong>imal <strong>in</strong>teraction with v µ , which we call <strong>the</strong> Meissner coupl<strong>in</strong>g,that is responsible for <strong>the</strong> U(1) phase factors exp(iδ). These U(1) phase factors are,41


“r<strong>and</strong>om”, <strong>in</strong> <strong>the</strong> sense that <strong>the</strong>y are not topological <strong>in</strong> nature – <strong>the</strong>ir values dependon detailed distribution of superfluid fields of all <strong>vortices</strong> <strong>and</strong> “sp<strong>in</strong>-waves” as well ason <strong>the</strong> <strong>in</strong>ternal structure of BdG fermion loops, i.e. what is <strong>the</strong> sequence of sp<strong>in</strong>-up<strong>and</strong> sp<strong>in</strong>-down portions along such loops. In this respect, while its m<strong>in</strong>imal coupl<strong>in</strong>gto BdG fermions means that, with<strong>in</strong> <strong>the</strong> lattice d-wave superconductor model, oneis naturally tempted to represent <strong>the</strong> Berry gauge field a µ as a compact U(1) gaugefield, <strong>the</strong> Doppler gauge field v µ is decidedly non-compact, lattice or no lattice [64]. a µ<strong>and</strong> v µ as def<strong>in</strong>ed by Eqs. (3.7,3.8) are not <strong>in</strong>dependent s<strong>in</strong>ce <strong>the</strong> discrete spacetimeconfigurations of vortex defects {r i (τ)} serve as sources for both.All choices of <strong>the</strong> sets A <strong>and</strong> B <strong>in</strong> transformation (3.4) are completely equivalent– different choices represent different s<strong>in</strong>gular gauges <strong>and</strong> v µ , <strong>and</strong> <strong>the</strong>refore exp(iδ),are <strong>in</strong>variant under such transformations. a µ , on <strong>the</strong> o<strong>the</strong>r h<strong>and</strong>, changes but onlythrough <strong>the</strong> <strong>in</strong>troduction of (±) unit Aharonov-Bohm fluxes at locations of thosevortex defects <strong>in</strong>volved <strong>in</strong> <strong>the</strong> transformation. Consequently, <strong>the</strong> Z 2 style (±1) phasefactors associated with a µ that multiply <strong>the</strong> fermion loops rema<strong>in</strong> unchanged. In orderto symmetrize <strong>the</strong> partition function with respect to this s<strong>in</strong>gular gauge, we def<strong>in</strong>e ageneralized transformation (3.4) as <strong>the</strong> sum over all possible choices of A <strong>and</strong> B, i.e.,over <strong>the</strong> entire family of s<strong>in</strong>gular gauge transformations. This is an Is<strong>in</strong>g sum with 2 N lmembers, where N l is <strong>the</strong> total number of vortex defects <strong>in</strong> ϕ(r, τ), <strong>and</strong> is itself yetano<strong>the</strong>r choice of <strong>the</strong> s<strong>in</strong>gular gauge. The many benefits of such symmetrized gaugewill be discussed shortly but we stress here that its ultimate function is calculationalconvenience. What actually matters for <strong>the</strong> physics is that <strong>the</strong> orig<strong>in</strong>al ϕ be split<strong>in</strong>to two XY phases so that <strong>the</strong> vortex defects of every dist<strong>in</strong>ct topological class areapportioned equally between ϕ A <strong>and</strong> ϕ B (3.4) [58].The above symmetrization leads to <strong>the</strong> new partition function: Z → ˜Z:∫˜Z =D ˜Ψ † ∫∫D ˜ΨDv µ∫∫ β ∫Da µ exp [− dτ0d 2 r ˜L] , (3.9)<strong>in</strong> which <strong>the</strong> half-flux-to-m<strong>in</strong>us-half-flux (Z 2 ) symmetry of <strong>the</strong> s<strong>in</strong>gular gauge transformation(3.4) is now manifest:˜L = ˜Ψ † [(∂ τ + ia τ )σ 0 + iv τ σ 3 ] ˜Ψ + ˜Ψ † H ′ ˜Ψ + L0 [v µ , a µ ], (3.10)42


where L 0 is <strong>the</strong> “Jacobian” of <strong>the</strong> transformation given by∑∫e − β 0 dτ d2 rL 0= 2 −N lDϕ(r, τ) (3.11)×δ[v µ − 1(∂ 2 µϕ A + ∂ µ ϕ B )]δ[a µ − 1(∂ 2 µϕ A − ∂ µ ϕ B )].Here σ µ are <strong>the</strong> Pauli matrices, β = 1/T , H ′ is given <strong>in</strong> Eq. (3.6) <strong>and</strong>, for later convenience,L 0 will also <strong>in</strong>clude <strong>the</strong> energetics of vortex core overlap driven by amplitudefluctuations <strong>and</strong> thus <strong>in</strong>dependent of long range superflow (<strong>and</strong> of A). We call <strong>the</strong>transformed quasiparticles ˜Ψ † = ( ¯˜ψ↑ , ˜ψ ↓ ) appear<strong>in</strong>g <strong>in</strong> (3.10) “topological fermions”(TF). TF are <strong>the</strong> natural fermionic excitations of <strong>the</strong> pseudogapped normal state.They are electrically neutral <strong>and</strong> are related to <strong>the</strong> orig<strong>in</strong>al quasiparticles by <strong>the</strong><strong>in</strong>version of transformation (3.4).By recast<strong>in</strong>g <strong>the</strong> orig<strong>in</strong>al problem <strong>in</strong> terms of topological fermions we have accomplishedour orig<strong>in</strong>al goal: <strong>the</strong> <strong>in</strong>teractions between quasiparticles <strong>and</strong> <strong>vortices</strong> arenow described solely <strong>in</strong> terms of two local superflow fields [58]:v Aµ = ∂ µ ϕ A ; v Bµ = ∂ µ ϕ B , (3.12)which we can th<strong>in</strong>k of as superfluid velocities associated with <strong>the</strong> phase configurationsϕ A(B) (r, τ) of a (2+1)-dimensional XY model with periodic boundary conditions along<strong>the</strong> τ-axis. Our Doppler <strong>and</strong> Berry gauge fields v µ <strong>and</strong> a µ are l<strong>in</strong>ear comb<strong>in</strong>ationsof v Aµ <strong>and</strong> v Bµ . Note that a µ is produced exclusively by vortex defects s<strong>in</strong>ce <strong>the</strong>“sp<strong>in</strong>-wave” configurations of ϕ can be fully absorbed <strong>in</strong>to v µ . All that rema<strong>in</strong>s is toperform <strong>the</strong> sum <strong>in</strong> (3.9) over all <strong>the</strong> “sp<strong>in</strong>-wave” fluctuations <strong>and</strong> all <strong>the</strong> spacetimeconfigurations of vortex defects {r i (τ)} of this (2+1)-dimensional XY model.A,B3.2.3 “Coarse-gra<strong>in</strong>ed” Doppler <strong>and</strong> Berry U(1) gauge fieldsThe exact <strong>in</strong>tegration over <strong>the</strong> phase ϕ(r, τ) is prohibitively difficult. To proceedby analytic means we devise an approximate procedure to <strong>in</strong>tegrate over vortexantivortexpositions {r i (τ)} <strong>in</strong> (3.9) which will capture qualitative features of <strong>the</strong>long-distance, low-energy physics of <strong>the</strong> orig<strong>in</strong>al problem. A h<strong>in</strong>t of how to devisesuch an approximation comes from exam<strong>in</strong><strong>in</strong>g <strong>the</strong> role of <strong>the</strong> Doppler gauge field v µ43


<strong>in</strong> <strong>the</strong> physics of this problem. For simplicity, we consider <strong>the</strong> f<strong>in</strong>ite T case wherewe can ignore <strong>the</strong> τ-dependence of ϕ(r, τ). The results are easily generalized, withappropriate modifications, to <strong>in</strong>clude quantum fluctuations.We start by not<strong>in</strong>g that V s = 2v − (2e/c)A is just <strong>the</strong> physical superfluid velocity[65], <strong>in</strong>variant under both A ↔ B s<strong>in</strong>gular gauge transformations (3.4) <strong>and</strong>ord<strong>in</strong>ary electromagnetic U(1) gauge symmetry. The superfluid velocity (Doppler)field, swirl<strong>in</strong>g around each (anti)vortex defect, is responsible for <strong>the</strong> vast majority ofphenomena that are associated with <strong>vortices</strong>: long range <strong>in</strong>teractions between vortexdefects, coupl<strong>in</strong>g to external magnetic field <strong>and</strong> <strong>the</strong> Abrikosov lattice of <strong>the</strong> mixedstate, Kosterlitz-Thouless transition, etc. Remarkably, its role is essential even for<strong>the</strong> physics discussed here, although it now occupies a support<strong>in</strong>g role relative to<strong>the</strong> Berry gauge field a µ .Note that if a (a µ ) were absent – <strong>the</strong>n, upon <strong>in</strong>tegrationover topological fermions <strong>in</strong> (3.10), we obta<strong>in</strong> <strong>the</strong> follow<strong>in</strong>g term <strong>in</strong> <strong>the</strong> effectiveLagrangian:M 2 (∇ϕ − 2ec A ) 2+ (· · · ) , (3.13)where (· · · ) denotes <strong>high</strong>er order powers <strong>and</strong> derivatives of 2∇ϕ − (2e/c)A. In <strong>the</strong>above we have replaced v → (1/2)∇ϕ to emphasize that <strong>the</strong> lead<strong>in</strong>g term, with<strong>the</strong> coefficient M 2 proportional to <strong>the</strong> bare superfluid density, is just <strong>the</strong> st<strong>and</strong>ardsuperfluid-velocity-squared term of <strong>the</strong> cont<strong>in</strong>uum XY model – <strong>the</strong> notation M 2 for<strong>the</strong> coefficient will become clear <strong>in</strong> a moment. We can now write ∇ϕ = ∇ϕ vortex +∇ϕ sp<strong>in</strong>−wave <strong>and</strong> re-express <strong>the</strong> transverse portion of (3.13) <strong>in</strong> terms of (anti)vortexpositions {r i } to obta<strong>in</strong> a familiar form:→ M 2 ∑ln |r i − r j | (3.14)2π〈i,j〉or, by us<strong>in</strong>g ∇ · ∇ϕ vortex = 0 <strong>and</strong> ∇ × ∇ϕ vortex = 2πρ(r), equivalently as:→ M 2 ∫ ∫d 2 r d 2 r ′ ρ(r)ρ(r ′ ) ln |r − r ′ | , (3.15)2πwhere ρ(r) = 2π ∑ i q iδ(r − r i ) is <strong>the</strong> vortex density.The Meissner coupl<strong>in</strong>g of v to fermions is very strong – it leads to familiar longrange <strong>in</strong>teractions between <strong>vortices</strong> which constra<strong>in</strong> vortex fluctuations to a remarkabledegree. To make this statement ma<strong>the</strong>matically explicit we <strong>in</strong>troduce <strong>the</strong> Fourier44


transform of <strong>the</strong> vortex density ρ(q) = ∑ i exp(iq · r i) <strong>and</strong> observe that its variancesatisfies:〈ρ(q)ρ(−q)〉 ∝ q 2 /M 2 . (3.16)Vortex defects form an <strong>in</strong>compressible liquid – <strong>the</strong> long distance vorticity fluctuationsare strongly suppressed. This “<strong>in</strong>compressibility constra<strong>in</strong>t” is naturally enforced <strong>in</strong>(3.9) by replac<strong>in</strong>g <strong>the</strong> <strong>in</strong>tegral over discrete vortex positions {r i } with <strong>the</strong> <strong>in</strong>tegralover cont<strong>in</strong>uously distributed field ¯ρ(r) with 〈¯ρ(r)〉 = 0.The Kosterlitz-Thoulesstransition <strong>and</strong> o<strong>the</strong>r vortex phenomenology are still ma<strong>in</strong>ta<strong>in</strong>ed <strong>in</strong> <strong>the</strong> non-trivialstructure of L 0 [¯ρ(r)]. But <strong>the</strong> long wavelength form of (3.13) now reads:M 2 (2¯v − 2ec A ) 2+ (· · · ) , (3.17)<strong>and</strong> can be <strong>in</strong>terpreted as a massive action for a U(1) gauge field ¯v. The latter is <strong>the</strong>coarse gra<strong>in</strong>ed Doppler gauge field def<strong>in</strong>ed by∇ × ¯v(r) = π¯ρ(r) . (3.18)The coarse-gra<strong>in</strong><strong>in</strong>g procedure has made v <strong>in</strong>to a massive U(1) gauge field ¯v whose<strong>in</strong>fluence on TF disappears <strong>in</strong> <strong>the</strong> long wavelength limit. We can <strong>the</strong>refore drop itfrom low energy fermiology.The full problem also conta<strong>in</strong>s <strong>the</strong> Berry gauge field a (a µ ) which now must berestored. However, hav<strong>in</strong>g replaced <strong>the</strong> Doppler field v (def<strong>in</strong>ed by discrete vortexsources) with <strong>the</strong> distributed quantity (3.18), we cannot simply cont<strong>in</strong>ue to keep a (a µ )specified by half-flux Dirac (Aharonov-Bohm) str<strong>in</strong>gs located at discrete vortex positions{r i }. Instead, a (a µ ) must be replaced by a new gauge field which reflects <strong>the</strong>“coarse-gra<strong>in</strong><strong>in</strong>g” that has been applied to v – simply put, <strong>the</strong> Z 2 -valued Berry gaugefield (3.7) of <strong>the</strong> orig<strong>in</strong>al problem (3.10) must be “dressed” <strong>in</strong> such a way as to bestcompensate for <strong>the</strong> error <strong>in</strong>troduced by “coarse-gra<strong>in</strong><strong>in</strong>g” v.Note that if we <strong>in</strong>sist on replac<strong>in</strong>g v by its “coarse-gra<strong>in</strong>ed” form (3.18), <strong>the</strong> onlyway to achieve this is to “coarse-gra<strong>in</strong>” both v A <strong>and</strong> v B <strong>in</strong> <strong>the</strong> same manner:∇ × v A → 2πρ A ; ∇ × v B → 2πρ B , (3.19)45


where ρ A,B (r) are now cont<strong>in</strong>uously distributed densities of A(B) vortex defects (<strong>the</strong>reader should contrast this with (3.7,3.8)). This is because <strong>the</strong> elementary vortexvariables of our problem are not <strong>the</strong> sources of v <strong>and</strong> a; ra<strong>the</strong>r, <strong>the</strong>y are <strong>the</strong> sourcesof v A <strong>and</strong> v B . We cannot separately fluctuate or “coarse-gra<strong>in</strong>” <strong>the</strong> Doppler <strong>and</strong><strong>the</strong> Berry “halves” of a given vortex defect – <strong>the</strong>y are permanently conf<strong>in</strong>ed <strong>in</strong>to aphysical (hc/2e) vortex. On <strong>the</strong> o<strong>the</strong>r h<strong>and</strong>, we can <strong>in</strong>dependently fluctuate A <strong>and</strong> B<strong>vortices</strong> – this is why it was important to use <strong>the</strong> s<strong>in</strong>gular gauge (3.4) to rewrite <strong>the</strong>orig<strong>in</strong>al problem solely <strong>in</strong> terms of A <strong>and</strong> B <strong>vortices</strong> <strong>and</strong> associated superflow fields(3.12).We can now reassemble <strong>the</strong> coarse-gra<strong>in</strong>ed Doppler <strong>and</strong> Berry gauge fields as:v = 1 2 (v A + v B ) ; a = 1 2 (v A − v B ) , (3.20)with <strong>the</strong> straightforward generalization to (2+1)D:v = 1 2 (v A + v B ) ; a = 1 2 (v A − v B ) . (3.21)The coupl<strong>in</strong>g of v A (v A ) <strong>and</strong> v B (v B ) to fermions is a hybrid of Meissner <strong>and</strong> m<strong>in</strong>imalcoupl<strong>in</strong>g [64]. They contribute a product of U(1) phase factors exp(iδ A ) × exp(iδ B )to <strong>the</strong> BdG fermion loops with both exp(iδ A ) <strong>and</strong> exp(iδ B ) be<strong>in</strong>g “r<strong>and</strong>om” <strong>in</strong> <strong>the</strong>sense of previous subsection. Upon coarse-gra<strong>in</strong><strong>in</strong>g v A (v A ) <strong>and</strong> v B (v B ) turn <strong>in</strong>tonon-compact U(1) gauge fields <strong>and</strong> <strong>the</strong>refore v(v) <strong>and</strong> a(a) must as well.3.2.4 Fur<strong>the</strong>r remarks on FT gaugeThe above “coarse-gra<strong>in</strong>ed” <strong>the</strong>ory must have <strong>the</strong> follow<strong>in</strong>g symmetry: it has tobe <strong>in</strong>variant under <strong>the</strong> exchange of sp<strong>in</strong>-up <strong>and</strong> sp<strong>in</strong>-down labels, ψ ↑ ↔ ψ ↓ , withoutany changes <strong>in</strong> v (v). This symmetry <strong>in</strong>sures that (an arbitrarily preselected) S zcomponent of <strong>the</strong> sp<strong>in</strong>, which is <strong>the</strong> same for TF <strong>and</strong> real electrons, decouples from<strong>the</strong> physical superfluid velocity which naturally must couple only to charge. Whendeal<strong>in</strong>g with discrete vortex defects this symmetry is guaranteed by <strong>the</strong> s<strong>in</strong>gular gaugesymmetry def<strong>in</strong>ed by <strong>the</strong> family of transformations (3.4). However, if we replace v A<strong>and</strong> v B by <strong>the</strong>ir distributed “coarse-gra<strong>in</strong>ed” versions, <strong>the</strong> said symmetry is preserved46


only <strong>in</strong> <strong>the</strong> FT gauge. This is seen by consider<strong>in</strong>g <strong>the</strong> effective Lagrangian expressed<strong>in</strong> terms of coarse-gra<strong>in</strong>ed quantities:L → ˜Ψ † ∂ τ ˜Ψ + ˜Ψ† H ′ ˜Ψ + L0 [ρ A , ρ B ] , (3.22)where H ′ is given by (3.6), v A , v B are connected to ρ A , ρ B via (3.19), <strong>and</strong> L 0 is<strong>in</strong>dependent of τ.The problem lurks <strong>in</strong> L 0 [ρ A , ρ B ] – this is just <strong>the</strong> entropy functional of fluctuat<strong>in</strong>gfree A(B) vortex-antivortex defects <strong>and</strong> has <strong>the</strong> follow<strong>in</strong>g symmetry: ρ A(B) → −ρ A(B)with ρ B(A) kept unchanged. This symmetry reflects <strong>the</strong> fact that <strong>the</strong> entropic “<strong>in</strong>teractions”do not depend on vorticity. Above <strong>the</strong> Kosterlitz-Thouless transition we canexp<strong>and</strong>:L 0 → K A4 (∇ × v A) 2 + K B4 (∇ × v B) 2 + (· · · ), (3.23)where <strong>the</strong> ellipsis denote <strong>high</strong>er order terms <strong>and</strong> <strong>the</strong> coefficients K −1A(B) → nA(B) lAppendix B.1 for details).The above discussed symmetry of Hamiltonian H ′ (3.6) dem<strong>and</strong>s that v <strong>and</strong> a(3.20,3.21) be <strong>the</strong> natural choice for <strong>in</strong>dependent distributed vortex fluctuation gaugefields which should appear <strong>in</strong> our ultimate effective <strong>the</strong>ory. L 0 , however, collides withthis symmetry of H ′ – if we replace v A(B) → v ± a <strong>in</strong> (3.23), we realize that v <strong>and</strong> aare coupled through L 0 <strong>in</strong> <strong>the</strong> general case K A ≠ K B :(seeL 0 → K A + K B4((∇ × v) 2 + (∇ × a) 2)+ K A − K B(∇ × a) · (∇ × v) . (3.24)2Therefore, via its coupl<strong>in</strong>g to a, <strong>the</strong> superfluid velocity v couples to <strong>the</strong> “sp<strong>in</strong>” oftopological fermions <strong>and</strong> ultimately to <strong>the</strong> true sp<strong>in</strong> of <strong>the</strong> real electrons.This isan unacceptable feature for <strong>the</strong> effective <strong>the</strong>ory <strong>and</strong> seriously h<strong>and</strong>icaps <strong>the</strong> general“A − B” gauge, <strong>in</strong> which <strong>the</strong> orig<strong>in</strong>al phase is split <strong>in</strong>to ϕ → ϕ A + ϕ B , with ϕ A(B)each conta<strong>in</strong><strong>in</strong>g some arbitrary fraction of <strong>the</strong> orig<strong>in</strong>al vortex defects. In contrast, <strong>the</strong>symmetrized transformation (3.4) which apportions vortex defects equally between ϕ A<strong>and</strong> ϕ B [58] leads to K A = K B <strong>and</strong> to decoupl<strong>in</strong>g of v <strong>and</strong> a at quadratic order, thuselim<strong>in</strong>at<strong>in</strong>g <strong>the</strong> problem at its root. Fur<strong>the</strong>rmore, even if we start with <strong>the</strong> general47


“A − B” gauge, <strong>the</strong> renormalization of L 0 aris<strong>in</strong>g from <strong>in</strong>tegration over fermionswill ultimately drive K A − K B → 0 <strong>and</strong> make <strong>the</strong> coupl<strong>in</strong>g of v <strong>and</strong> a irrelevant <strong>in</strong><strong>the</strong> RG sense [67]. This argument is actually quite rigorous <strong>in</strong> <strong>the</strong> case of quantumfluctuations where <strong>the</strong> symmetrized gauge (3.4) represents a fixed po<strong>in</strong>t <strong>in</strong> <strong>the</strong> RGanalysis [58]. Consequently, it appears that <strong>the</strong> symmetrized s<strong>in</strong>gular transformation(3.4) employed <strong>in</strong> (3.10) is <strong>the</strong> preferred gauge for <strong>the</strong> construction of <strong>the</strong> effectivelow-energy <strong>the</strong>ory. In this respect, while all <strong>the</strong> s<strong>in</strong>gular A − B gauges are createdequal some are ultimately more equal than o<strong>the</strong>rs.The above discussion provides <strong>the</strong> rationale beh<strong>in</strong>d us<strong>in</strong>g <strong>the</strong> FT transformation <strong>in</strong>our quest for <strong>the</strong> effective <strong>the</strong>ory. At low energies, <strong>the</strong> <strong>in</strong>teractions between quasiparticles<strong>and</strong> <strong>vortices</strong> are represented by two U(1) gauge fields v <strong>and</strong> a (3.20,3.21). Theconversion of a from a Z 2 -valued to a non-compact U(1) field with Maxwellian actionis effected by <strong>the</strong> conf<strong>in</strong>ement of <strong>the</strong> Doppler to <strong>the</strong> Berry half of a s<strong>in</strong>gly quantizedvortex – <strong>in</strong> <strong>the</strong> coarse-gra<strong>in</strong><strong>in</strong>g process <strong>the</strong> phase factors exp(iδ) of <strong>the</strong> non-compactDoppler part “contam<strong>in</strong>ate” <strong>the</strong> orig<strong>in</strong>al (±1) factors supplied by a (3.7). This contam<strong>in</strong>ationdim<strong>in</strong>ishes as dop<strong>in</strong>g x → 0 s<strong>in</strong>ce <strong>the</strong>n v F /v ∆ → 0 <strong>and</strong> “<strong>vortices</strong>” areeffectively liberated of <strong>the</strong>ir Doppler content. In this limit, <strong>the</strong> pure Z 2 nature of ais recovered <strong>and</strong> one enters <strong>the</strong> realm of <strong>the</strong> Z 2 gauge <strong>the</strong>ory of Senthil <strong>and</strong> Fisher[68]. In contrast, <strong>in</strong> <strong>the</strong> pair<strong>in</strong>g pseudogap regime of this paper where v F /v ∆ > 1<strong>and</strong> s<strong>in</strong>gly quantized (hc/2e) <strong>vortices</strong> appear to be <strong>the</strong> relevant excitations [69], weexpect <strong>the</strong> effective <strong>the</strong>ory to take <strong>the</strong> U(1) form described by v <strong>and</strong> a (3.20,3.21).3.2.5 Maxwellian form of <strong>the</strong> Jacobian L 0 [v µ , a µ ]We shall now derive an expression for <strong>the</strong> long distance, low energy form of <strong>the</strong>“Jacobian” L 0 [v µ , a µ ] (see Eqn. 3.11) which serves as <strong>the</strong> “bare action” for <strong>the</strong> gaugefields v µ <strong>and</strong> a µ of our effective <strong>the</strong>ory. As shown below, this form is a non-compactMaxwellian whose stiffness K (or <strong>in</strong>verse “charge” 1/e 2 = K) st<strong>and</strong>s <strong>in</strong> <strong>in</strong>timaterelation to <strong>the</strong> helicity modulus tensor of a dSC <strong>and</strong>, <strong>in</strong> <strong>the</strong> pseudogap regime ofstrong superconduct<strong>in</strong>g fluctuations, can be expressed <strong>in</strong> terms of a f<strong>in</strong>ite physicalsuperconduct<strong>in</strong>g correlation length ξ sc , K ∝ ξsc 2 (2D); K ∝ ξ sc ((2+1)D). Upon48


enter<strong>in</strong>g <strong>the</strong> superconduct<strong>in</strong>g phase <strong>and</strong> ξ sc → ∞, K → ∞ as well (or e 2 → 0),imply<strong>in</strong>g that v µ <strong>and</strong> a µ have become massive. The straightforward relationshipbetween <strong>the</strong> massless (or massive) character of L 0 [v µ , a µ ] <strong>and</strong> <strong>the</strong> superconduct<strong>in</strong>gphase disorder (or order) is a consequence of ra<strong>the</strong>r general physical <strong>and</strong> symmetrypr<strong>in</strong>ciples.For <strong>the</strong> sake of simplicity, but without loss of generality, we consider first anexample of an s-wave superconductor with a large gap ∆ extend<strong>in</strong>g over all of <strong>the</strong>Fermi surface. The action takes <strong>the</strong> form similar to (3.10):˜L = ˜Ψ † [(∂ τ + ia τ )σ 0 + iv τ σ 3 ] ˜Ψ + ˜Ψ † H s ′ ˜Ψ + L 0 [v µ , a µ ], (3.25)but with H ′ sdef<strong>in</strong>ed as:(1(ˆπ + )2m v)2 − ɛ F ∆∆ − 1 (ˆπ − 2m v)2 + ɛ F, (3.26)with ˆπ = ˆp + a. When <strong>the</strong> <strong>the</strong> electromagnetic field is <strong>in</strong>cluded, v µ <strong>in</strong> <strong>the</strong> fermionicpart action is substituted by v µ − (e/c)A µ , while <strong>the</strong>re is no substitution <strong>in</strong> L 0 .Thermal vortex-antivortex fluctuationsIn <strong>the</strong> language of BdG fermions <strong>the</strong> system (3.25) is a large gap “semiconductor”<strong>and</strong> <strong>the</strong> Berry gauge field couples to it m<strong>in</strong>imally through “BdG” vector <strong>and</strong> scalarpotentials a <strong>and</strong> a τ . Such BdG semiconductor is a poor dielectric diamagnet withrespect to a µ . We proceed to ignore its “diamagnetic susceptibility” <strong>and</strong> also set a τ =0 to concentrate on <strong>the</strong>rmal fluctuations. The Berry gauge field part of <strong>the</strong> coupl<strong>in</strong>gbetween quasiparticles <strong>and</strong> <strong>vortices</strong> <strong>in</strong> a large gap s-wave superconductor <strong>in</strong>fluences<strong>the</strong> <strong>vortices</strong> only through weak short-range <strong>in</strong>teractions which are unimportant <strong>in</strong><strong>the</strong> region of strong vortex fluctuations near Kosterlitz-Thouless transition. We can<strong>the</strong>refore drop a from <strong>the</strong> fermionic part of <strong>the</strong> action <strong>and</strong> <strong>in</strong>tegrate over it to obta<strong>in</strong>L 0 <strong>in</strong> terms of physical vorticity ρ(r) = (∇ × v)/π. Additional <strong>in</strong>tegration over <strong>the</strong>fermions produces <strong>the</strong> effective free energy functional for <strong>vortices</strong>:F[ρ] = M 2 (2v − 2ec Aext ) 2 + (· · · ) + L 0 [ρ] , (3.27)49


where we have used our earlier notation <strong>and</strong> have <strong>in</strong>troduced a small external transversevector potential A ext . The ellipsis denotes <strong>high</strong>er order contributions to vortex<strong>in</strong>teractions. As discussed earlier <strong>in</strong> this Section, <strong>the</strong> familiar long range <strong>in</strong>teractionsbetween <strong>vortices</strong> lead directly to <strong>the</strong> st<strong>and</strong>ard Coulomb gas representation of <strong>the</strong>vortex-antivortex fluctuation problem <strong>and</strong> Kosterlitz-Thouless transition.The presence of <strong>the</strong>se long range <strong>in</strong>teractions implies that <strong>the</strong> vortex system is<strong>in</strong>compressible (3.16) <strong>and</strong> long distance vortex density fluctuations are suppressed.When study<strong>in</strong>g <strong>the</strong> coupl<strong>in</strong>g of BdG quasiparticles to <strong>the</strong>se fluctuations it <strong>the</strong>reforesuffices to exp<strong>and</strong> <strong>the</strong> “entropic” part:L 0 [ρ] ∼ = 1 2 π2 Kδρ 2 + · · · = 1 2 K(∇ × v)2 + . . . . (3.28)The above expansion is justified above T c s<strong>in</strong>ce we know that at T ≫ T c we mustmatch <strong>the</strong> purely entropic form of a non-<strong>in</strong>teract<strong>in</strong>g particle system, L 0 ∝ δρ 2 (seeAppendix B.1).To uncover <strong>the</strong> physical mean<strong>in</strong>g of <strong>the</strong> coefficient K we exp<strong>and</strong> <strong>the</strong> free energyF of <strong>the</strong> vortex system to second order <strong>in</strong> A ext . In <strong>the</strong> pseudogap state <strong>the</strong> gauge<strong>in</strong>variance dem<strong>and</strong>s that F depends only on ∇ × A ext :∫F [∇ × A ext ] = F [0] + (2e)22c χ d 2 r(∇ × A ext ) 2 + . . . (3.29)2Note that ((2e) 2 /c 2 )χ is just <strong>the</strong> diamagnetic susceptibility <strong>in</strong> <strong>the</strong> pseudogap state.χ determ<strong>in</strong>es <strong>the</strong> long wavelength form of <strong>the</strong> helicity modulus tensor Υ µν (q) def<strong>in</strong>edas:δ 2 F ∣Υ µν (q) = Ω∣AδA ext µ (q)δAext ν (−q) ext. (3.30)µ →0The above is <strong>the</strong> more general form of Υ µν (q) applicable to uniaxially symmetric 3D<strong>and</strong> (2+1)D XY or G<strong>in</strong>zburg-L<strong>and</strong>au models; <strong>in</strong> 2D only Υ xy (q) appears. In <strong>the</strong> longwavelength limit Υ µν (q) vanishes as q 2 χ:c 2(2e) 2 Υ µν(q) = χɛ ραµ ɛ ρβν q α q β + . . . , (3.31)for <strong>the</strong> isotropic case, while for <strong>the</strong> anisotropic situation χ ⊥ ≠ χ ‖ :c 2(2e) 2 Υ µν(q) = (χ ‖ − χ ⊥ )ɛ zαµ ɛ zβν q α q β + χ ⊥ ɛ ραµ ɛ ρβν q α q β . (3.32)50


ɛ αβγ is <strong>the</strong> Levi-Civita symbol, summation over repeated <strong>in</strong>dices is understood <strong>and</strong><strong>in</strong>dex z of <strong>the</strong> anisotropic 3D GL or XY model is replaced by τ for <strong>the</strong> (2+1)D case.(2e) 2 /c 2 is factored out for later convenience.Let us compute <strong>the</strong> helicity modulus of <strong>the</strong> problem explicitly. This is done byabsorb<strong>in</strong>g <strong>the</strong> small transverse vector potential A ext <strong>in</strong>to v <strong>in</strong> (3.25,3.6) <strong>and</strong> <strong>in</strong>tegrat<strong>in</strong>gover <strong>the</strong> new variable v − (e/c)A ext . The hecility modulus tensor measures<strong>the</strong> screen<strong>in</strong>g properties of <strong>the</strong> vortex system. In a superconductor, with topologicaldefects bound <strong>in</strong> vortex-antivortex dipoles, <strong>the</strong>re is no screen<strong>in</strong>g at long distances.This translates <strong>in</strong>to Meissner effect for A ext . When <strong>the</strong> dipoles unb<strong>in</strong>d <strong>and</strong> some freevortex-antivortex excitations appear <strong>the</strong> screen<strong>in</strong>g is now possible over all lengthscales<strong>and</strong> <strong>the</strong>re is no Meissner effect for A ext . The <strong>in</strong>formation on presence or absence ofsuch screen<strong>in</strong>g is actually stored entirely <strong>in</strong> L 0 , where A ext re-emerges after <strong>the</strong> abovechange of variables. We f<strong>in</strong>ally obta<strong>in</strong>:4χ = K − K2 π 2T∫lim|q|→0 +d 2 re iq·r 〈δρ(r)δρ(0)〉 , (3.33)where <strong>the</strong> <strong>the</strong>rmal average 〈· · · 〉 is over <strong>the</strong> free energy (3.27) with A ext= 0 or,equivalently, (3.25). In <strong>the</strong> normal phase only <strong>the</strong> first term contributes <strong>in</strong> <strong>the</strong> longwavelength limit, <strong>the</strong> second be<strong>in</strong>g down by an extra power of q 2 courtesy of longrange vortex <strong>in</strong>teractions. Consequently, K = 4χ (<strong>the</strong> factor of 4 is due to <strong>the</strong> factthat <strong>the</strong> true superfluid velocity is 2v [65]).We see that <strong>in</strong> <strong>the</strong> pseudogap phase, with free vortex defects available to screen,L 0 [v] takes on a massless Maxwellian form, <strong>the</strong> stiffness of which is given by <strong>the</strong>diamagnetic susceptibility of a strongly fluctuat<strong>in</strong>g superconductor. In <strong>the</strong> fluctuationregion χ is given by <strong>the</strong> superconduct<strong>in</strong>g correlation length ξ sc [70]:K = 4χ = 4C 2 T ξ 2 sc , (3.34)where C 2 is a numerical constant, <strong>in</strong>tr<strong>in</strong>sic to a 2D GL, XY or some o<strong>the</strong>r model ofsuperconduct<strong>in</strong>g fluctuations.As we approach T c , ξ sc → ∞ <strong>and</strong> <strong>the</strong> stiffness of Maxwellian term (3.28) diverges.This can be <strong>in</strong>terpreted as <strong>the</strong> Doppler gauge field becom<strong>in</strong>g massive. Indeed, immediatelybellow <strong>the</strong> Kosterlitz-Thouless transition at T c , L 0∼ = m2v v 2 + . . . , where51


m v ≪ M <strong>and</strong> m v → 0 as T → T − c . This is just a reflection of <strong>the</strong> helicity modulustensor now becom<strong>in</strong>g f<strong>in</strong>ite <strong>in</strong> <strong>the</strong> long wavelength limit,Υ xy → 4e2 m 2 v M 2.c 2 4M 2 + m 2 vTopological defects are now bound <strong>in</strong> vortex-antivortex pairs <strong>and</strong> cannot screen result<strong>in</strong>g<strong>in</strong> <strong>the</strong> Meissner effect for A ext . The system is a superconductor <strong>and</strong> v hadbecome massive.Return<strong>in</strong>g to a d-wave superconductor, we can retrace <strong>the</strong> steps <strong>in</strong> <strong>the</strong> aboveanalysis but we must replace H ′ s <strong>in</strong> (3.25) with H′ (3.6). Now, <strong>in</strong>stead of a large gapBdG “semiconductor”, we are deal<strong>in</strong>g with a narrow gap “semiconductor” or BdG“semimetal” because of <strong>the</strong> low energy nodal quasiparticles.This means that wemust restore <strong>the</strong> Berry gauge field a to <strong>the</strong> fermionic action s<strong>in</strong>ce <strong>the</strong> contributionfrom nodal quasiparticles makes its BdG “diamagnetic susceptibility” very large,χ BdG ∼ 1/T ≫ 1/T ∗ (see <strong>the</strong> next Section). The long distance fluctuations of v<strong>and</strong> a are now both strongly suppressed, <strong>the</strong> former through <strong>in</strong>compressibility of <strong>the</strong>vortex system <strong>and</strong> <strong>the</strong> latter through χ BdG . This allows us to exp<strong>and</strong> (3.23):L 0∼ =K A4 (∇ × v A) 2 + K B4 (∇ × v B) 2 + (· · · ) , (3.35)where K A = K B = K is m<strong>and</strong>ated by <strong>the</strong> FT s<strong>in</strong>gular gauge. S<strong>in</strong>ce <strong>in</strong> our gauge <strong>the</strong>fermion sp<strong>in</strong> <strong>and</strong> charge channels decouple A ext still couples only to v <strong>and</strong> <strong>the</strong> abovearguments connect<strong>in</strong>g K to <strong>the</strong> helicity modulus <strong>and</strong> diamagnetic susceptibility χfollow through. This f<strong>in</strong>ally gives <strong>the</strong> Maxwellian form of Ref. [58]:L 0 → K 2 (∇ × v)2 + K 2 (∇ × a)2 , (3.36)where K is still given by Eq. (3.34). Note however that ξ sc of a d-wave <strong>and</strong> of ans-wave superconductor are two ra<strong>the</strong>r different functions of T , x <strong>and</strong> o<strong>the</strong>r parametersof <strong>the</strong> problem, due to strong Berry gauge field renormalizations of vortex <strong>in</strong>teractions<strong>in</strong> <strong>the</strong> d-wave case. None<strong>the</strong>less, as T → T c , <strong>the</strong> Kosterlitz-Thouless critical behaviorrema<strong>in</strong>s unaffected s<strong>in</strong>ce χ BdG , while large, is still f<strong>in</strong>ite at all f<strong>in</strong>ite T .To summarize, we have shown that L 0 [ρ A , ρ B ] = L 0 [v, a] <strong>in</strong> <strong>the</strong> pseudogap statetakes on <strong>the</strong> massless Maxwellian form (3.36), with <strong>the</strong> stiffness K set by <strong>the</strong> true52


superconduct<strong>in</strong>g correlation length ξ sc (3.34). This result holds as a general feature ofour <strong>the</strong>ory irrespective of whe<strong>the</strong>r one employs a G<strong>in</strong>zburg-L<strong>and</strong>au <strong>the</strong>ory, XY model,vortex-antivortex Coulomb plasma, or any o<strong>the</strong>r description of strongly fluctuat<strong>in</strong>gdSC, as long as such description properly takes <strong>in</strong>to account vortex-antivortex fluctuations<strong>and</strong> reproduces Kosterlitz-Thouless phenomenology. In <strong>the</strong> Appendix B.1 weshow that with<strong>in</strong> <strong>the</strong> cont<strong>in</strong>uum vortex-antivortex Coulomb plasma model:L 0 →T2π 2 n l[(∇ × v) 2 + (∇ × a) 2] , (3.37)where n l is <strong>the</strong> average density of free vortex <strong>and</strong> antivortex defects. Comparisonwith (3.36) allows us to identify ξ −2sc ↔ 4π 2 C 2 n l [58].Quantum fluctuations of (2+1)D vortex loopsThe above results can be generalized to quantum fluctuations of spacetime vortexloops. The superflow fields v A(B)µ satisfy (∂ ×v A(B) ) µ = 2πj A(B)µ , where j A(B)µ (x) are<strong>the</strong> coarse-gra<strong>in</strong>ed vorticities associated with A(B) vortex defects <strong>and</strong> 〈j A(B)µ 〉 = 0.The topology of vortex loops dictates that j A(B)µ (x) be a purely transverse field, i.e.∂ · j A(B) = 0, reflect<strong>in</strong>g <strong>the</strong> fact that loops have no start<strong>in</strong>g nor end<strong>in</strong>g po<strong>in</strong>t. Aga<strong>in</strong>,we beg<strong>in</strong> with a large gap s-wave superconductor <strong>and</strong> use its poor BdG diamagnetic/dielectricnature to justify dropp<strong>in</strong>g <strong>the</strong> Berry gauge field a µ from <strong>the</strong> fermionicpart of (3.25) <strong>and</strong> <strong>in</strong>tegrat<strong>in</strong>g over a µ <strong>in</strong> <strong>the</strong> “entropic” part conta<strong>in</strong><strong>in</strong>g L 0 [v µ , a µ ].The <strong>in</strong>tegration over <strong>the</strong> fermions conta<strong>in</strong>s an important novelty specific to <strong>the</strong>(2+1)D case: <strong>the</strong> appearance of <strong>the</strong> Berry phase terms for quantum <strong>vortices</strong> as <strong>the</strong>yw<strong>in</strong>d around fermions. Such Berry phase is <strong>the</strong> consequence of <strong>the</strong> first order timederivative <strong>in</strong> <strong>the</strong> orig<strong>in</strong>al fermionic action (3.1). If we th<strong>in</strong>k of spacetime vortex loopsas worldl<strong>in</strong>es of some relativistic quantum bosons dual to <strong>the</strong> Cooper pair field ∆(r, τ),as we do <strong>in</strong> <strong>the</strong> Appendix B.1, <strong>the</strong>n <strong>the</strong>se bosons see Cooper pairs <strong>and</strong> quasiparticlesas sources of “magnetic” flux [71]. At <strong>the</strong> mean field level, this translates <strong>in</strong>to a dual“Abrikosov lattice” or a Wigner crystal of holes <strong>in</strong> a dual superfluid. Accord<strong>in</strong>gly,<strong>the</strong> non-superconduct<strong>in</strong>g ground state <strong>in</strong> <strong>the</strong> pseudogap regime will likely conta<strong>in</strong> aweak charge modulation. We will ignore it for <strong>the</strong> rest of this paper. This is justifiedby <strong>the</strong> fact that a µ does not couple to charge directly.53


Hereafter, we assume that <strong>the</strong> transition from a dSC <strong>in</strong>to a pseudogap phaseproceeds via unb<strong>in</strong>d<strong>in</strong>g of vortex loops of a (2+1)D XY model or its GL counterpartor, equivalently, an anisotropic 3D XY or GL model where <strong>the</strong> role of imag<strong>in</strong>ary timeis taken on by a third spatial axis z [72]. We can now <strong>in</strong>tegrate out <strong>the</strong> fermions toobta<strong>in</strong> <strong>the</strong> effective Lagrangian for coarse-gra<strong>in</strong>ed spacetime loops (πj µ = (∂ × v) µ ):L[j µ ] = M 2 µ (2v µ − 2ec Aext µ )2 + (· · · ) + L 0 [j µ ] , (3.38)where M x = M y = M <strong>and</strong> M τ = M/c s , with c s ∼ v Fbe<strong>in</strong>g <strong>the</strong> effective “speed oflight” <strong>in</strong> <strong>the</strong> vortex loop spacetime. The <strong>in</strong>compressibility condition reads 〈j µ (q)j ν (−q)〉 ∼q 2 [δ µν − (q µ q ν /q 2 )] <strong>and</strong> <strong>in</strong> <strong>the</strong> pseudogap state permits <strong>the</strong> expansion:L 0 [j µ ] ∼ = 1 2 π2 K τ jτ 2 + 1 ∑2 π2 K i ji 2 , (3.39)where K x = K y = K ≠ K τ . Us<strong>in</strong>g <strong>the</strong> analogy with <strong>the</strong> uniaxially symmetricanisotropic 3D XY (or GL) model we can exp<strong>and</strong> <strong>the</strong> ground state energy <strong>in</strong> <strong>the</strong>manner of (3.29):E[∂ × A ext ] = E[0] + (2e)22c 2with χ ⊥ = χ x = χ y = χ <strong>and</strong> χ ‖ = χ τi=x,y∑∫χ ⊥,‖⊥,‖d 3 x(∂ × A ext ) 2 ⊥,‖ , (3.40)≠ χ. The form of L 0 (3.39) follows directlyfrom <strong>the</strong> requirement that <strong>the</strong>re are <strong>in</strong>f<strong>in</strong>itely large vortex loops, result<strong>in</strong>g <strong>in</strong> vorticityfluctuations over all distances. χ <strong>and</strong> χ τsusceptibilities of this <strong>in</strong>sulat<strong>in</strong>g pseudogap state.determ<strong>in</strong>e <strong>the</strong> diamagnetic <strong>and</strong> dielectricThe explicit computation of Υ µν (q) (3.30,3.32) leads to:∫4χ i,τ = K i,τ − Ki,τ 2 π2 lim d 3 xe iq·x 〈j(x) i,τ j(0) i,τ 〉 , (3.41)q→0 +where <strong>the</strong> second term is aga<strong>in</strong> elim<strong>in</strong>ated by <strong>the</strong> <strong>in</strong>compressibility of <strong>the</strong> vortexsystem. This results <strong>in</strong>:K = 4χ = 4C 3 ξ τ ; K τ = 4χ τ = 4C 3ξ 2 scξ τ, (3.42)where we used <strong>the</strong> result for <strong>the</strong> anisotropic 3D XY or GL models: χ ⊥ = C 3 T ξ ‖ ,χ ‖ = C 3 T ξ 2 ⊥ /ξ ‖, C 3 be<strong>in</strong>g <strong>the</strong> <strong>in</strong>tr<strong>in</strong>sic numerical constant for those models (C 3 ≠ C 2 ).54


In <strong>the</strong> case of (2+1)D vortex loops ξ τ ∝ ξ sc s<strong>in</strong>ce our adopted model has <strong>the</strong> dynamicalcritical exponent z = 1.The application to a d-wave superconductor is straightforward: <strong>the</strong> nodal structureof BdG quasiparticles <strong>in</strong> dSC helps along by <strong>the</strong> way of provid<strong>in</strong>g <strong>the</strong> anomalousstiffness for <strong>the</strong> Berry gauge field a µ – upon <strong>in</strong>tegration over <strong>the</strong> nodal fermions <strong>the</strong>follow<strong>in</strong>g term emerges <strong>in</strong> <strong>the</strong> effective action:12 χ BdG(q)(q 2 δ µν − q µ q ν )a µ (q)a ν (−q) ∼ |q|[δ µν − (q µ q ν /q 2 )]a µ (q)a ν (−q). (3.43)In <strong>the</strong> term<strong>in</strong>ology of <strong>the</strong> BdG “semimetal”, <strong>the</strong> “susceptibility” χ BdG is not merelyvery large, it diverges: χ BdG ∼ 1/q, as q → 0. This allows us to exp<strong>and</strong> L 0 [j Aµ , j Bµ ]<strong>and</strong> reta<strong>in</strong> only quadratic terms:L 0∼ K Aµ=4 (∂ × v A) 2 µ + K Bµ4 (∂ × v B) 2 µ + (· · · ) , (3.44)where K Aµ = K Bµ = K µ is aga<strong>in</strong> assured by our choice of <strong>the</strong> FT s<strong>in</strong>gular gauge(3.4,3.11).F<strong>in</strong>ally, we rewrite (3.44) <strong>in</strong> terms of v µ , a µ = (1/2)(v Aµ ± v Bµ ):L 0 → K µ2 (∂ × v)2 µ + K µ2 (∂ × a)2 µ , (3.45)<strong>and</strong> observe that <strong>the</strong> fact that A extµ couples only to v µ means that <strong>the</strong> expression(3.42) for K µ is still valid. Of course, ξ sc (x, T ) is now truly different from its s-wavecounterpart, <strong>in</strong>clud<strong>in</strong>g a possible difference <strong>in</strong> <strong>the</strong> critical exponent, s<strong>in</strong>ce <strong>the</strong> coupl<strong>in</strong>gof d-wave quasiparticles to <strong>the</strong> Berry gauge field is marg<strong>in</strong>al at <strong>the</strong> RG eng<strong>in</strong>eer<strong>in</strong>glevel <strong>and</strong> may change <strong>the</strong> quantum critical behavior of <strong>the</strong> superconductor-pseudogap(<strong>in</strong>sulator) transition.3.3 Low energy effective <strong>the</strong>oryAs <strong>in</strong>dicated <strong>in</strong> Fig. 3.1, <strong>the</strong> low energy quasiparticles are located at <strong>the</strong> fournodal po<strong>in</strong>ts of <strong>the</strong> d xy gap function: k 1,¯1 = (±k F , 0) <strong>and</strong> k 2,¯2 = (0, ±k F ), hereafterdenoted as (1, ¯1) <strong>and</strong> (2, ¯2) respectively. To focus on <strong>the</strong> lead<strong>in</strong>g low energy behavior55


211 2Figure 3.1: Schematic representation of <strong>the</strong> Fermi surface of <strong>the</strong> <strong>cuprate</strong> superconductorswith <strong>the</strong> <strong>in</strong>dicated nodal po<strong>in</strong>ts of <strong>the</strong> d x 2 −y 2 gap.of <strong>the</strong> fermionic excitations near <strong>the</strong> nodes we follow <strong>the</strong> st<strong>and</strong>ard procedure [73] <strong>and</strong>l<strong>in</strong>earize <strong>the</strong> Lagrangian (3.10). To this end we write our TF sp<strong>in</strong>or ˜Ψ as a sum of 4nodal fermi fields,˜Ψ = e ik 1·r ˜Ψ1 + e ik¯1·r σ 2 ˜Ψ¯1 + e ik 2·r ˜Ψ2 + e ik¯2·r σ 2 ˜Ψ¯2. (3.46)The σ 2 matrices have been <strong>in</strong>serted here for convenience: <strong>the</strong>y <strong>in</strong>sure that we eventuallyrecover <strong>the</strong> conventional form of <strong>the</strong> QED 3 Lagrangian. (Without <strong>the</strong> σ 2 matrices<strong>the</strong> Dirac velocities at ¯1, ¯2 nodes would have been negative.) Insert<strong>in</strong>g ˜Ψ <strong>in</strong>to (3.10)<strong>and</strong> systematically neglect<strong>in</strong>g <strong>the</strong> <strong>high</strong>er order derivatives [73], we obta<strong>in</strong> <strong>the</strong> nodalLagrangian of <strong>the</strong> formL D = ∑ ˜Ψ † l [D τ + iv F D x σ 3 + iv ∆ D y σ 1 ] ˜Ψ l (3.47)l=1,¯1+ ∑l=2,¯2˜Ψ † l [D τ + iv F D y σ 3 + iv ∆ D x σ 1 ] ˜Ψ l + L 0 [a µ ],where D µ = ∂ µ + ia µ denotes <strong>the</strong> covariant derivative <strong>and</strong> L 0 [a µ ] is given by (3.45):L 0 [a µ ] = 1 2 K µ(∂ × a) 2 µ ≡ 1 (∂ × a) 22e 2 µ . (3.48)µ56


v F = ∂ɛ k /∂k denotes <strong>the</strong> Fermi velocity at <strong>the</strong> node <strong>and</strong> v ∆ = ∂∆ k /∂k denotes <strong>the</strong>gap velocity. Note that v F <strong>and</strong> v ∆ already conta<strong>in</strong> renormalizations com<strong>in</strong>g from <strong>high</strong>energy <strong>in</strong>teractions <strong>and</strong> are effective material parameters of our <strong>the</strong>ory. Similarly,K µ= 1/e 2 µ, derived <strong>in</strong> <strong>the</strong> previous Section <strong>in</strong> terms of ξ sc (x, T ), are treated asadjustable parameters which are matched to experimentally available <strong>in</strong>formation on<strong>the</strong> range of superconduct<strong>in</strong>g correlations <strong>in</strong> <strong>the</strong> pseudogap state.The massive Doppler gauge field v µ does not appear <strong>in</strong> <strong>the</strong> above expression, s<strong>in</strong>ceit merely generates short range <strong>in</strong>teractions among <strong>the</strong> fermions.In contrast, Berry gauge field a µ rema<strong>in</strong>s massless <strong>in</strong> <strong>the</strong> pseudogap state, as itcannot acquire mass by coupl<strong>in</strong>g to <strong>the</strong> fermions. As seen from Eq. (3.47) a µ couplesm<strong>in</strong>imally to <strong>the</strong> Dirac fermions <strong>and</strong> <strong>the</strong>refore its massless character is protected bygauge <strong>in</strong>variance. Physically, one can also argue that a µ couples to <strong>the</strong> TF sp<strong>in</strong> threecurrent– <strong>in</strong> a sp<strong>in</strong>-s<strong>in</strong>glet d-wave superconductor SU(2) sp<strong>in</strong> symmetry must rema<strong>in</strong>unbroken, <strong>the</strong>reby <strong>in</strong>sur<strong>in</strong>g that a µ rema<strong>in</strong>s massless. Its massless Maxwellian dynamics(3.48) <strong>in</strong> <strong>the</strong> pseudogap state can <strong>the</strong>refore be traced back to <strong>the</strong> topologicalstate of spacetime vortex loops <strong>and</strong> directly reflect <strong>the</strong> absence of true superconduct<strong>in</strong>gorder or, equivalently, <strong>the</strong> presence of “vortex loop condensate” <strong>and</strong> dual order(Appendix B.1).We have also dispensed with <strong>the</strong> residual <strong>in</strong>teractions represented by H res <strong>in</strong> (3.2).These <strong>in</strong>teractions are generically short-ranged contributions from <strong>the</strong> p-h <strong>and</strong> amplitudefluctuations part of <strong>the</strong> p-p channel <strong>and</strong> <strong>in</strong> our new notation are exemplifiedby:The effective vertex I ll ′H res → 1 2∑l,l ′I ll ′˜Ψ†l ˜Ψ l ˜Ψ†l ′ ˜Ψ l ′ . (3.49)has a scal<strong>in</strong>g dimension −1 at <strong>the</strong> eng<strong>in</strong>eer<strong>in</strong>g level. Thisfollows from <strong>the</strong> RG analysis near <strong>the</strong> massless Dirac po<strong>in</strong>ts which sets <strong>the</strong> dimensionof ˜Ψ l to [length] −1 . The implication is that I ll ′is irrelevant for low energy physics <strong>in</strong><strong>the</strong> perturbative RG sense <strong>and</strong> we are <strong>the</strong>refore justified <strong>in</strong> sett<strong>in</strong>g I ll ′ → 0. However,<strong>the</strong> residual <strong>in</strong>teractions are known to become important if stronger than some criticalvalue I c [74, 75]. In <strong>the</strong> present <strong>the</strong>ory, this is bound to happen <strong>in</strong> <strong>the</strong> severelyunderdoped regime <strong>and</strong> at half-fill<strong>in</strong>g, as x → 0 (see Section 3.6).In this case,57


<strong>the</strong> residual <strong>in</strong>teractions are becom<strong>in</strong>g large <strong>and</strong> comparable <strong>in</strong> scale to <strong>the</strong> pair<strong>in</strong>gpseudogap ∆, <strong>and</strong> are likely to cause chiral symmetry break<strong>in</strong>g (CSB) which leads tospontaneous mass generation for massless Dirac fermions. The CSB <strong>and</strong> its variety ofpatterns <strong>in</strong> <strong>the</strong> context of <strong>the</strong> <strong>the</strong>ory (3.47,3.48) <strong>in</strong> underdoped <strong>cuprate</strong>s are discussed<strong>in</strong> Section 3.6. Here, we shall focus on <strong>the</strong> chirally symmetric phase <strong>and</strong> assumeI ll ′< I c , which we expect to be <strong>the</strong> case for moderate underdop<strong>in</strong>g. Therefore, wecan set I ll ′ → 0.F<strong>in</strong>ally, Eq. (3.47,3.48) represents <strong>the</strong> effective low energy <strong>the</strong>ory for nodal TF.This <strong>the</strong>ory describes <strong>the</strong> problem of massless topological fermions <strong>in</strong>teract<strong>in</strong>g withmassless vortex “Beryons”, i.e. <strong>the</strong> quanta of <strong>the</strong> Berry gauge field a µ , <strong>and</strong> is formallyequivalent to <strong>the</strong> Euclidean quantum electrodynamics of massless Dirac fermions <strong>in</strong>(2+1) dimensions (QED 3 ). It, however, suffers from an <strong>in</strong>tr<strong>in</strong>sic Dirac anisotropy byvirtue of v F ≠ v ∆ .3.3.1 Effective Lagrangian for <strong>the</strong> pseudogap stateLagrangian (3.47) is not <strong>in</strong> <strong>the</strong> st<strong>and</strong>ard from as used <strong>in</strong> quantum electrodynamicswhere <strong>the</strong> matrices associated with <strong>the</strong> components of covariant derivatives forma Dirac algebra <strong>and</strong> mutually anticommute. In (3.47) <strong>the</strong> temporal derivative isassociated with unit matrix <strong>and</strong> it <strong>the</strong>refore commutes (ra<strong>the</strong>r than anticommutes)with σ 1 <strong>and</strong> σ 3 matrices associated with <strong>the</strong> spatial derivatives. These nonst<strong>and</strong>ardcommutation relations, however, lead to some ra<strong>the</strong>r unwieldy algebra. For thisreason we manipulate <strong>the</strong> Lagrangian (3.47) <strong>in</strong>to a slightly different form that isconsistent with usual field-<strong>the</strong>oretic notation. First, we comb<strong>in</strong>e each pair of antipodal(time reversed) two-component sp<strong>in</strong>ors <strong>in</strong>to one 4-component sp<strong>in</strong>or,( ) ( )˜Ψ1˜Ψ2Υ 1 = , Υ 2 = . (3.50)Second, we def<strong>in</strong>e a new adjo<strong>in</strong>t four-component sp<strong>in</strong>or˜Ψ¯1˜Ψ¯2Ῡ l = −iΥ † l γ 0. (3.51)58


In terms of this new sp<strong>in</strong>or <strong>the</strong> Lagrangian becomeswith covariant derivativesL D = ∑l=1,2Ῡ l γ µ D (l)µ Υ l + 1 2 K µ(∂ × a) 2 µ , (3.52)D (1)µ = i[(∂ τ + ia τ ), v F (∂ x + ia x ), v ∆ (∂ y + ia y )],D (2)µ = i[(∂ τ + ia τ ), v F (∂ y + ia y ), v ∆ (∂ x + ia x )].The 4 × 4 gamma matrices, def<strong>in</strong>ed as( )σ2 0γ 0 =, γ 1 =0 −σ 2γ 2 =( )−σ3 00 σ 3(σ1 00 −σ 1),(3.53)now form <strong>the</strong> usual Dirac algebra,{γ µ , γ ν } = 2δ µν (3.54)<strong>and</strong> fur<strong>the</strong>rmore satisfyTr(γ µ ) = 0 , Tr(γ µ γ ν ) = 4δ µν . (3.55)The use of <strong>the</strong> adjo<strong>in</strong>t sp<strong>in</strong>or Ῡ <strong>in</strong>stead of conventional Υ† is a purely formal devicewhich will simplify calculations but does not alter <strong>the</strong> physical content of <strong>the</strong> <strong>the</strong>ory.At <strong>the</strong> end of <strong>the</strong> calculation we have to remember to undo <strong>the</strong> transformation (3.51)by multiply<strong>in</strong>g <strong>the</strong> 〈Υ(x)Ῡ(x′ )〉 correlator by iγ 0 to obta<strong>in</strong> <strong>the</strong> physical correlator〈Υ(x)Υ † (x ′ )〉.Next, to make <strong>the</strong> formalism simpler still we can elim<strong>in</strong>ate <strong>the</strong> asymmetry between<strong>the</strong> two pairs of nodes by perform<strong>in</strong>g an <strong>in</strong>ternal SU(2) rotation at nodes 2, ¯2:lead<strong>in</strong>g to <strong>the</strong> anisotropic QED 3 LagrangianL D = ∑l=1,2Υ 2 → e −i π 4 γ 0γ 1 Υ 2 , (3.56)Ῡ l v (l)µ γ µ(i∂ µ − a µ )Υ l + 1 2 K µ(∂ × a) 2 µ , (3.57)59


with v (1)µ = (1, v F , v ∆ ) <strong>and</strong> v (2)µ = (1, v ∆ , v F ).We shall start by consider<strong>in</strong>g <strong>the</strong> isotropic case, v F= v ∆ = 1, which althoughunphysical <strong>in</strong> <strong>the</strong> strictest sense, is computationally much simpler <strong>and</strong> provides penetrat<strong>in</strong>g<strong>in</strong>sights <strong>in</strong>to <strong>the</strong> physics embodied by <strong>the</strong> QED 3 Lagrangian (3.57). Afterwe have understood <strong>the</strong> isotropic case we will <strong>the</strong>n be ready to tackle <strong>the</strong> calculationfor <strong>the</strong> general case <strong>and</strong> will show that Dirac cone anisotropy does not modify<strong>the</strong> essential physics discussed here. To make contact with st<strong>and</strong>ard literature onQED 3 , we fur<strong>the</strong>r consider a more general problem with N pairs of nodes describedby LagrangianL D =N∑Ῡ l γ µ (i∂ µ − a µ )Υ l + 1 2 K µ(∂ × a) 2 µ . (3.58)l=1For <strong>the</strong> basic problem of a s<strong>in</strong>gle CuO 2 layer N = 2. As we will show <strong>in</strong> <strong>the</strong> nextSection, N itself is variable <strong>and</strong> can be equal to four or six <strong>in</strong> bi- <strong>and</strong> multi-layer<strong>cuprate</strong>s. Our analytic results can be viewed as aris<strong>in</strong>g from <strong>the</strong> formal 1/N expansion,although we expect <strong>the</strong>m to be qualitatively (<strong>and</strong> even quantitatively!) accurateeven for N = 2 as long as we are with<strong>in</strong> <strong>the</strong> symmetric phase of QED 3 – <strong>the</strong> quantitativeaccuracy stems from a fortuitous conspiracy of small numerical prefactors[74].3.3.2 Berryon propagatorUltimately, we are <strong>in</strong>terested <strong>in</strong> <strong>the</strong> properties of physical electrons. To describethose we need to underst<strong>and</strong> <strong>the</strong> properties of <strong>the</strong> electron–electron <strong>in</strong>teraction mediatedby <strong>the</strong> gauge field a µ . To this end we proceed to calculate <strong>the</strong> Berry gauge fieldpropagator by <strong>in</strong>tegrat<strong>in</strong>g out <strong>the</strong> fermion degrees of freedom from <strong>the</strong> Lagrangian(3.58). To one loop order this corresponds to evaluat<strong>in</strong>g <strong>the</strong> vacuum polarizationbubble Fig. 3.2(a). Employ<strong>in</strong>g <strong>the</strong> st<strong>and</strong>ard rules for Feynman diagrams <strong>in</strong> <strong>the</strong>momentum space [76] <strong>the</strong> vacuum polarization reads:∫d 3 kΠ µν (q) = N(2π) Tr[G 0(k)γ 3 µ G 0 (k + q)γ ν ]. (3.59)Here G 0 (k) = k α γ α /k 2is <strong>the</strong> free Dirac Green function, k = (k 0 , k) denotes <strong>the</strong>Euclidean three-momentum, <strong>and</strong> <strong>the</strong> trace is performed over <strong>the</strong> γ matrices.60


§ ¡¦£¢¡ £¥¤ ¦£ £¦©¨ £¦ ¦Figure 3.2: One loop Berryon polarization (a) <strong>and</strong> TF self energy (b).The <strong>in</strong>tegral <strong>in</strong> Eq. (3.59) is a st<strong>and</strong>ard one (see Appendix B.2 for <strong>the</strong> details ofcomputation) <strong>and</strong> <strong>the</strong> result isΠ µν (q) = N (8 |q| δ µν − q )µq ν, (3.60)q 2where |q| = √ q 2 . The one loop effective action for <strong>the</strong> Berry gauge field <strong>the</strong>reforebecomes (2π) ∫ −3 d 3 qL B with( NL B [a] =8 |q| + 1 ) (2e 2 q2 δ µν − q )µq νaq 2 µ (q)a ν (−q) . (3.61)At low energies <strong>and</strong> long wavelengths, |q|e 2 ≪ N/4, <strong>the</strong> fermion polarization completelyoverwhelms <strong>the</strong> orig<strong>in</strong>al Maxwell bare action term <strong>and</strong> <strong>the</strong> Berryon propertiesbecome universal. In particular, <strong>the</strong> coupl<strong>in</strong>g constant 1/e 2 drops out at low energies<strong>and</strong> only reappears as <strong>the</strong> ultraviolet cutoff. Physically, <strong>the</strong> medium of massless Diracfermions screens <strong>the</strong> long range <strong>in</strong>teractions mediated by a µ . In QED 3 this screen<strong>in</strong>g61


is <strong>in</strong>complete: <strong>the</strong> gauge field becomes stiffer by one power of q but still rema<strong>in</strong>smassless, <strong>in</strong> accordance with our general expectations. This anomalous stiffness ofa µ justifies <strong>the</strong> quadratic level expansion of L 0 (3.45) <strong>and</strong> renders <strong>high</strong>er order termsirrelevant <strong>in</strong> <strong>the</strong> RG sense. The <strong>the</strong>ory <strong>the</strong>refore clears an important self-consistencycheck.At low energies <strong>the</strong> fully dressed Berryon propagator is given as an <strong>in</strong>verse of <strong>the</strong>polarization,D µν (q) = Π −1µν (q) . (3.62)In order to perform this <strong>in</strong>version we have to fix <strong>the</strong> gauge. To this end we implement<strong>the</strong> usual gauge fix<strong>in</strong>g procedure by replac<strong>in</strong>g q µ q ν /q 2→ (1 − ξ −1 )q µ q ν /q 2 <strong>in</strong> Eq.(3.60). ξ ≥ 0 parameterizes <strong>the</strong> orbit of all covariant gauges. For example, ξ = 0corresponds to Lorentz gauge k µ a µ (k) = 0 while ξ = 1 corresponds to Feynman gauge.Upon <strong>in</strong>version we obta<strong>in</strong> <strong>the</strong> low energy Berryon propagatorD µν (q) = 8|q|N<strong>in</strong> agreement with previous authors [81].(δ µν − q µq νq 2 (1 − ξ) ), (3.63)3.3.3 TF self energy <strong>and</strong> propagatorTopological fermion (TF) propagator is a gauge dependent entity <strong>and</strong> one could<strong>the</strong>refore immediately object that as such it has no direct physical content <strong>and</strong> is of no<strong>in</strong>terest. While <strong>in</strong> <strong>the</strong> strictest sense, all observable quantities are gauge <strong>in</strong>dependent<strong>and</strong> <strong>the</strong> 2−po<strong>in</strong>t fermion function is manifestly not gauge <strong>in</strong>dependent, <strong>the</strong> dependenceon <strong>the</strong> choice of gauge can be conf<strong>in</strong>ed to <strong>the</strong> field strength renormalization[82]. In this Section we will show that <strong>in</strong> <strong>the</strong> lead<strong>in</strong>g order <strong>in</strong> large N expansion,<strong>the</strong> TF propagator is a powerlaw. The powerlaw exponent depends on <strong>the</strong> choice ofgauge. S<strong>in</strong>ce we know that <strong>the</strong> <strong>the</strong>ory flows to <strong>the</strong> strong coupl<strong>in</strong>g limit, we expectthat <strong>the</strong> powerlaw exponent describ<strong>in</strong>g <strong>the</strong> physical spectrum is not trivial i.e. <strong>the</strong>poles <strong>in</strong> <strong>the</strong> spectrum are replaced by a branchcut. This means that <strong>the</strong> plane wavestates acquire f<strong>in</strong>ite lifetime at arbitrarily low energy.62


The lowest order (O(1/N)) self-energy diagram is depicted <strong>in</strong> Fig. 3.2(b) <strong>and</strong> reads∫d 3 qΣ(k) =(2π) D µν(q)γ 3 µ G 0 (k + q)γ ν . (3.64)Aga<strong>in</strong>, <strong>the</strong> computation is ra<strong>the</strong>r straightforward (see Appendix B.2 for details) <strong>and</strong><strong>the</strong> most divergent part isΣ(k) =4(2 − 3ξ)3π 2 N( ) Λ ̸k ln , (3.65)|k|where we have <strong>in</strong>troduced <strong>the</strong> Feynman “slash” notation, ̸k = k µ γ µ .To <strong>the</strong> lead<strong>in</strong>g 1/N order, <strong>the</strong> <strong>in</strong>verse TF propagator is given by[ ( )] ΛG −1 (k) ≠k 1 + η ln|k|(3.66)with4(2 − 3ξ)η = − . (3.67)3π 2 NHigher order contributions <strong>in</strong> 1/N will necessarily affect this result. Renormalizationgroup arguments [78] <strong>and</strong> non-perturbative approaches [79] strongly suggest that Eq.(3.66) represents <strong>the</strong> start of a perturbative series that eventually resums <strong>in</strong>to a powerlaw:( ) η ΛG −1 (k) ≠k|k|. (3.68)This implies real-space propagator of <strong>the</strong> formG(r) = Λ −η ̸r. (3.69)r3+η Thus, <strong>the</strong> TF propagator exhibits a Lutt<strong>in</strong>ger-like algebraic s<strong>in</strong>gularity at small momenta,characterized by an anomalous exponent η. In <strong>the</strong> Lorentz gauge (ξ = 0)we f<strong>in</strong>d η = −8/3π 2 N ≃ −0.13, for N = 2. This ra<strong>the</strong>r small numerical value for<strong>the</strong> anomalous dimension exponent (which is even considerably smaller for N = 4or N = 6) <strong>in</strong>dicates that <strong>the</strong> unravel<strong>in</strong>g of <strong>the</strong> Fermi liquid pole <strong>in</strong> <strong>the</strong> orig<strong>in</strong>al TFpropagator brought about by its <strong>in</strong>teraction with <strong>the</strong> massless Berry gauge field is <strong>in</strong>a certa<strong>in</strong> sense “weak”. Note also that η is negative <strong>in</strong> <strong>the</strong> Lorentz gauge while itbecomes positive, η = 4/3π 2 N ≃ 0.06 for N = 2, <strong>in</strong> <strong>the</strong> Feynman gauge (ξ = 1). Theabove results provide a strong <strong>in</strong>dication that <strong>the</strong> physical, gauge-<strong>in</strong>variant fermionpropagator also has a Lutt<strong>in</strong>ger-like form, characterized by a small <strong>and</strong> positive anomalousdimension [58].63


3.4 Effects of Dirac anisotropy <strong>in</strong> symmetric QED 3It is natural to exam<strong>in</strong>e to what extend is <strong>the</strong> <strong>the</strong>ory modified by <strong>the</strong> <strong>in</strong>clusion of<strong>the</strong> Dirac anisotropy, i.e. <strong>the</strong> f<strong>in</strong>ite difference <strong>in</strong> <strong>the</strong> Fermi velocity v F<strong>and</strong> <strong>the</strong> gapvelocity v ∆ . In <strong>the</strong> actual materials <strong>the</strong> Dirac anisotropy α D = v Fv∆decreases withdecreas<strong>in</strong>g dop<strong>in</strong>g from ∼ 15 <strong>in</strong> <strong>the</strong> optimally doped to ∼ 3 <strong>in</strong> <strong>the</strong> heavily underdopedsamples.There are two key issues: first, for a large enough number of Dirac fermion speciesN, how is <strong>the</strong> chirally symmetric <strong>in</strong>frared (IR) fixed po<strong>in</strong>t modified by <strong>the</strong> fact thatα D ≠ 1, <strong>and</strong> second, as we decrease N, does <strong>the</strong> chiral symmetry break<strong>in</strong>g occur at<strong>the</strong> same value of N as <strong>in</strong> <strong>the</strong> isotropic <strong>the</strong>ory. In this Section we address <strong>in</strong> detail<strong>the</strong> first issue <strong>and</strong> defer <strong>the</strong> analysis of <strong>the</strong> second one to <strong>the</strong> future.We determ<strong>in</strong>e <strong>the</strong> effect of <strong>the</strong> Dirac anisotropy, marg<strong>in</strong>al by power count<strong>in</strong>g, by<strong>the</strong> perturbative renormalization group (RG) to first order <strong>in</strong> <strong>the</strong> large N expansion.To <strong>the</strong> lead<strong>in</strong>g order δ <strong>in</strong> <strong>the</strong> small anisotropy α D = 1 + δ, we obta<strong>in</strong> <strong>the</strong> analyticvalue of <strong>the</strong> RG β αD -function <strong>and</strong> f<strong>in</strong>d that it is proportional to δ, i.e. <strong>in</strong> <strong>the</strong> <strong>in</strong>fra red<strong>the</strong> α D decreases when δ > 0 <strong>and</strong> <strong>the</strong> anisotropic <strong>the</strong>ory flows to <strong>the</strong> isotropic fixedpo<strong>in</strong>t. On <strong>the</strong> o<strong>the</strong>r h<strong>and</strong>, when δ < 0, α D <strong>in</strong>creases <strong>in</strong> <strong>the</strong> IR <strong>and</strong> aga<strong>in</strong> <strong>the</strong> <strong>the</strong>oryflows <strong>in</strong>to <strong>the</strong> isotropic fixed po<strong>in</strong>t. These results hold even when anisotropy is notsmall as shown by numerical evaluation of <strong>the</strong> β-function. Upon <strong>in</strong>tegration of <strong>the</strong> RGequations we f<strong>in</strong>d small δ acquires an anomalous dimension η δ = 32/5π 2 N. Therefore,we conclude that <strong>the</strong> isotropic fixed po<strong>in</strong>t is stable aga<strong>in</strong>st small anisotropy.Fur<strong>the</strong>rmore, we show that <strong>in</strong> any covariant gauge renormalization of Σ due to <strong>the</strong>unphysical longitud<strong>in</strong>al degrees of freedom is exactly <strong>the</strong> same along any space-timedirection. Therefore <strong>the</strong> only contribution to <strong>the</strong> RG flow of anisotropy comes from<strong>the</strong> physical degrees of freedom <strong>and</strong> our results for β αDstated above are <strong>in</strong> fact gauge<strong>in</strong>variant.64


3.4.1 Anisotropic QED 3In <strong>the</strong> realm of condensed matter physics <strong>the</strong>re is no Lorentz symmetry to safeguard<strong>the</strong> space-time isotropy of <strong>the</strong> <strong>the</strong>ory. Ra<strong>the</strong>r, <strong>the</strong> <strong>in</strong>tr<strong>in</strong>sic Dirac anisotropyis always present s<strong>in</strong>ce it ultimately arises from complicated microscopic <strong>in</strong>teractions<strong>in</strong> <strong>the</strong> solid which eventually renormalize to b<strong>and</strong> <strong>and</strong> pair<strong>in</strong>g amplitude dispersion.Thus <strong>the</strong>re is noth<strong>in</strong>g to protect <strong>the</strong> difference <strong>in</strong> <strong>the</strong> Fermi velocity v F = ∂ɛ k<strong>and</strong> <strong>the</strong>∂kgap velocity v ∆ = ∂∆ kfrom vanish<strong>in</strong>g <strong>and</strong>, <strong>in</strong> fact, all HTS materials are anisotropic.∂kThe value of α D can be directly measured by <strong>the</strong> angle resolved photo-emissionspectroscopy (ARPES), which is ultimately a ”<strong>high</strong>” energy local probe of v Fv ∆ . S<strong>in</strong>ce QED 3 is free on short distances, we can take <strong>the</strong> experimental values as<strong>the</strong> start<strong>in</strong>g bare parameters of <strong>the</strong> field <strong>the</strong>ory.The pair<strong>in</strong>g amplitude of <strong>the</strong> HTS <strong>cuprate</strong>s has d x 2 −y2 symmetry, <strong>and</strong> consequently<strong>the</strong>re are four nodal po<strong>in</strong>ts on <strong>the</strong> Fermi surface with Dirac dispersion around whichwe can l<strong>in</strong>earize <strong>the</strong> <strong>the</strong>ory. Note that <strong>the</strong> roles of x <strong>and</strong> y directions are <strong>in</strong>terchangedbetween adjacent nodes. As before, we comb<strong>in</strong>e <strong>the</strong> four two-component Dirac sp<strong>in</strong>orsfor <strong>the</strong> opposite (time reversed) nodes <strong>in</strong>to two four-components sp<strong>in</strong>ors <strong>and</strong> label<strong>the</strong>m as (1, ¯1) <strong>and</strong> (2, ¯2) (see Fig. 3.1).Thus, <strong>the</strong> two-po<strong>in</strong>t vertex function of <strong>the</strong> non-<strong>in</strong>teract<strong>in</strong>g <strong>the</strong>ory for, say, 1¯1fermions isΓ (2)free = γ1¯1 0 k 0 + v F γ 1 k 1 + v ∆ γ 2 k 2 . (3.70)Therefore <strong>the</strong> correspond<strong>in</strong>g non-<strong>in</strong>teract<strong>in</strong>g “nodal” Green functions are<strong>and</strong>G n 0(k) =√ gnµνγ µ k νk µ g µν k ν≡ γn µ k µk µ g µν k ν. (3.71)Here we <strong>in</strong>troduced <strong>the</strong> (diagonal) “nodal” metric g (n)µν : g (1)00 =g (2)00 =1, g (1)11 =g (2)22 =v 2 F ,g (1)22 =g (2)11 =v 2 ∆ , as well as <strong>the</strong> “nodal” γ matrices γn . In what follows we assume thatboth v F <strong>and</strong> v ∆ are dimensionless <strong>and</strong> that eventually one of <strong>the</strong>m can be chosen tobe unity by an appropriate choice of <strong>the</strong> ”speed of light”.S<strong>in</strong>ce α D ≠ 1 breaks Lorentz <strong>in</strong>variance of <strong>the</strong> <strong>the</strong>ory <strong>and</strong> s<strong>in</strong>ce it is <strong>the</strong> Lorentz<strong>in</strong>variance that protects <strong>the</strong> spacetime isotropy, we expect <strong>the</strong> β functions for α D toacquire f<strong>in</strong>ite values. However, <strong>the</strong> <strong>the</strong>ory still respects time-reversal <strong>and</strong> parity <strong>and</strong>65


for N large enough <strong>the</strong> system is <strong>in</strong> <strong>the</strong> chirally symmetric phase. These symmetriesforce <strong>the</strong> fermion self-energy of <strong>the</strong> <strong>in</strong>teract<strong>in</strong>g <strong>the</strong>ory to have <strong>the</strong> formΣ 1¯1 = A(k 1¯1, k 2¯2) (γ 0 k 0 + v F ζ 1 γ 1 k 1 + v ∆ ζ 2 γ 2 k 2 ) . (3.72)where k 1¯1 ≡ k µ g µν (1) k ν <strong>and</strong> k 2¯2 ≡ k µ g µν (2) k ν . The coefficients ζ i are <strong>in</strong> general differentfrom unity. Fur<strong>the</strong>rmore, <strong>the</strong>re is a discrete symmetry which relates flavors 1, ¯1 <strong>and</strong>2, ¯2 <strong>and</strong> <strong>the</strong> x <strong>and</strong> y directions <strong>in</strong> such a way thatΣ 2¯2 = A(k 2¯2, k 1¯1) (γ 0 k 0 + v ∆ ζ 2 γ 1 k 1 + v F ζ 1 γ 2 k 2 ) . (3.73)In <strong>the</strong> computation of <strong>the</strong> fermion self-energy, this discrete symmetry allows us toconcentrate on a particular pair of nodes without any loss of generality.3.4.2 Gauge field propagatorAs discussed above <strong>in</strong> <strong>the</strong> isotropic case, <strong>the</strong> effect of vortex-antivortex fluctuationsat T=0 on <strong>the</strong> fermions can, at large distances, be <strong>in</strong>cluded by coupl<strong>in</strong>g <strong>the</strong> nodalfermions m<strong>in</strong>imally to a fluctuat<strong>in</strong>g U(1) gauge field with a st<strong>and</strong>ard Maxwell action.Upon <strong>in</strong>tegrat<strong>in</strong>g out <strong>the</strong> fermions, <strong>the</strong> gauge field acquires a stiffness proportional tok, which is ano<strong>the</strong>r way of say<strong>in</strong>g that at <strong>the</strong> charged, chirally symmetric fixed po<strong>in</strong>t<strong>the</strong> gauge field has an anomalous dimension η A = 1 (for discussion of this po<strong>in</strong>t <strong>in</strong><strong>the</strong> bosonic QED see [80]).We first proceed <strong>in</strong> <strong>the</strong> transverse gauge (k µ a µ = 0) which is <strong>in</strong> some sense <strong>the</strong>most physical one consider<strong>in</strong>g that <strong>the</strong> ∇ × a is physically related to <strong>the</strong> vorticity, i.e.an <strong>in</strong>tr<strong>in</strong>sically transverse quantity. We later extend our results to a general covariantgauge. To one-loop order <strong>the</strong> screen<strong>in</strong>g effects of <strong>the</strong> fermions on <strong>the</strong> gauge field aregiven by <strong>the</strong> polarization functionΠ µν (k) = N ∑∫d 3 q2 (2π) T 3 r[Gn 0 (q)γn µ Gn 0 (q + k)γn ν ] (3.74)n=1,2where <strong>the</strong> <strong>in</strong>dex n denotes <strong>the</strong> fermion “nodal” flavor. The above expression can beevaluated straightforwardly by not<strong>in</strong>g that it reduces to <strong>the</strong> isotropic Π µν (k) once66


<strong>the</strong> <strong>in</strong>tegrals are properly rescaled [58]. The result can be conveniently presented bytak<strong>in</strong>g advantage of <strong>the</strong> “nodal” metric g n µν asΠ µν (k) = ∑ nN√k α gαβ n 16v F v k β∆(g n µν − gn µρ k ρg n νλ k λk α g n αβ k β). (3.75)Note that this expression is explicitly transverse, k µ Π µν (k) = Π µν (k)k ν = 0, <strong>and</strong> symmetric<strong>in</strong> its space-time <strong>in</strong>dices. It also properly reduces to <strong>the</strong> isotropic expressionwhen v F = v ∆ = 1.However, as opposed to <strong>the</strong> isotropic case, it is not quite as straightforward todeterm<strong>in</strong>e <strong>the</strong> gauge field propagator D µν . For example, as it st<strong>and</strong>s <strong>the</strong> polarizationmatrix (3.75) is not <strong>in</strong>vertible, which makes it necessary to <strong>in</strong>troduce some gaugefix<strong>in</strong>gconditions. In our case <strong>the</strong> direct <strong>in</strong>version of <strong>the</strong> 3 × 3 matrix would obscure<strong>the</strong> analysis <strong>and</strong> <strong>the</strong>refore, we choose to follow a more physical <strong>and</strong> notationallytransparent l<strong>in</strong>e of reason<strong>in</strong>g which eventually leads to <strong>the</strong> correct expression for <strong>the</strong>gauge field propagator. Upon <strong>in</strong>tegrat<strong>in</strong>g out <strong>the</strong> fermions <strong>and</strong> exp<strong>and</strong><strong>in</strong>g <strong>the</strong> effectiveaction to <strong>the</strong> one-loop order, we f<strong>in</strong>d thatwhere <strong>the</strong> bare gauge field stiffness isL eff [a µ ] = (Π (0)µν + Π µν )a µ a ν (3.76)Π (0)µν = 1 (2e 2 k2 δ µν − k )µk ν. (3.77)k 2At this po<strong>in</strong>t we <strong>in</strong>troduce <strong>the</strong> dual field b µ which is related to a µ asb µ = ɛ µνλ q ν a λ . (3.78)Physically, <strong>the</strong> b µ field represents vorticity <strong>and</strong> we <strong>in</strong>tegrate over all possible vorticityconfigurations with <strong>the</strong> restriction that b µ is transverse. We note thatL[b µ ] = χ 0 b 2 0 + χ 1 b 2 1 + χ 2 b 2 2 (3.79)where χ µ ’s are functions of k µ <strong>and</strong> upon a straightforward calculation <strong>the</strong>y can befound to readχ µ = 12e 2 +N16v F v ∆67∑n=1,2g n ννg n λλ√kα g n αβ k β, (3.80)


where µ ≠ ν ≠ λ ∈ {0, 1, 2}. At low energies we can neglect <strong>the</strong> non-divergent barestiffness <strong>and</strong> thus set 1/e 2 = 0 <strong>in</strong> <strong>the</strong> above expression.The expression (3.79) is manifestly gauge <strong>in</strong>variant <strong>and</strong> has <strong>the</strong> merit of not onlybe<strong>in</strong>g quadratic but also diagonal <strong>in</strong> <strong>the</strong> <strong>in</strong>dividual components of b µ . Thus, <strong>in</strong>tegrationover <strong>the</strong> vorticity (even with <strong>the</strong> restriction of transverse b µ ) is simple <strong>and</strong> wecan easily determ<strong>in</strong>e <strong>the</strong> b µ field correlation function〈b µ b ν 〉 = δ µνχ µ− k µk νχ µ χ ν( ∑ik 2 iχ i) −1. (3.81)The repeated <strong>in</strong>dices are not summed <strong>in</strong> <strong>the</strong> above expression. Note that, <strong>in</strong> additionto be<strong>in</strong>g transverse, 〈b µ b ν 〉 is also symmetric <strong>in</strong> its space time <strong>in</strong>dices.It is now quite simple to determ<strong>in</strong>e <strong>the</strong> correlation function for <strong>the</strong> a µ field <strong>and</strong> <strong>in</strong><strong>the</strong> transverse gauge we obta<strong>in</strong>D µν (q) = 〈a µ a ν 〉 = ɛ µij ɛ νklq i q kq 4 〈b jb l 〉. (3.82)Us<strong>in</strong>g <strong>the</strong> transverse character of 〈b µ b ν 〉 (which is <strong>in</strong>dependent of <strong>the</strong> gauge) <strong>the</strong> aboveexpression can be fur<strong>the</strong>r reduced toD µν (q) = 1 ((δq 2 µν − q ))µq ν〈b 2 〉 − 〈bq 2 µ b ν 〉 . (3.83)It can be easily checked that <strong>in</strong> <strong>the</strong> isotropic limit <strong>the</strong> expression (3.83) properlyreduces to <strong>the</strong> results obta<strong>in</strong>ed <strong>in</strong> a different way.We can fur<strong>the</strong>r extend this result to <strong>in</strong>clude a general gauge by writ<strong>in</strong>gD µν (q) = 1 ((δq 2 µν − (1 − ξ ))2 )q µq ν〈b 2 〉 − 〈bq 2 µ b ν 〉 . (3.84)where ξ is our cont<strong>in</strong>uous parameterization of <strong>the</strong> gauge fix<strong>in</strong>g. This expression canbe justified by <strong>the</strong> Fadeev-Popov type of procedure start<strong>in</strong>g from <strong>the</strong> Lagrangian(L = Π µν + 1 )2k 2 k µ k νaξ 〈b 2 〉 k 2 µ a ν , (3.85)where <strong>the</strong> stiffness for <strong>the</strong> unphysical modes was judiciously chosen to scale as k <strong>in</strong>a particular comb<strong>in</strong>ation of <strong>the</strong> physical scalars of <strong>the</strong> <strong>the</strong>ory. Note that 〈b 2 〉 can be68


determ<strong>in</strong>ed without ever consider<strong>in</strong>g gauge fix<strong>in</strong>g terms. In this way, <strong>the</strong> extensionof a transverse gauge ξ = 0 to a general covariant gauge is accomplished by a simplesubstitution k µ k ν → (1 − ξ )k 2 µk ν . The expression (3.84) is our f<strong>in</strong>al result for <strong>the</strong>gauge field propagator <strong>in</strong> a covariant gauge.3.4.3 TF self energyAs discussed above, Σ is not gauge <strong>in</strong>variant <strong>in</strong> that it has an explicit dependenceon <strong>the</strong> gauge fix<strong>in</strong>g parameter. As we will show <strong>in</strong> this Section (<strong>and</strong> more generally <strong>in</strong><strong>the</strong> Appendix B.3), <strong>the</strong> renormalization of Σ by <strong>the</strong> unphysical longitud<strong>in</strong>al degreesof freedom does not depend on <strong>the</strong> space-time direction: <strong>the</strong> term <strong>in</strong> Σ which isproportional to γ 0 is renormalized <strong>the</strong> same way by <strong>the</strong> gauge dependent part of <strong>the</strong>action as <strong>the</strong> terms proportional to γ 1 <strong>and</strong> γ 2 . Therefore, <strong>the</strong> only contribution to<strong>the</strong> RG flow of α D comes from <strong>the</strong> physical degrees of freedom.We denote <strong>the</strong> topological fermion self-energy at <strong>the</strong> node n by Σ n (q). Hence, to<strong>the</strong> lead<strong>in</strong>g order <strong>in</strong> large N expansion we have∫d 3 kΣ n (q) =(2π) 3 γn µ Gn 0 (q − k)γn ν D µν(k). (3.86)or explicitly∫Σ n (q) =d 3 k(2π) 3 γn µ(q − k) λ γλn γν n D µν (k), (3.87)(q − k) µ g µν (q − k) νwhere <strong>the</strong> gauge field propagator D µν is already screened by <strong>the</strong> nodal fermions (3.84).Us<strong>in</strong>g <strong>the</strong> fact thatγ µ γ λ γ ν = iɛ µλν γ 5 γ 3 + δ µλ γ ν − δ µν γ λ + δ λν γ µ , (3.88)where µ, ν, λ ∈ {0, 1, 2} <strong>and</strong> γ 5 ≡ −iγ 0 γ 1 γ 2 γ 3 , we can easily see thatγ n µ γn λ γn ν D µν = (2g n λµ γn ν − γn λ gn µν )D µν, (3.89)where we used <strong>the</strong> symmetry of <strong>the</strong> gauge field propagator tensor D µν . Thus,∫Σ n (q) =d 3 k (q − k) λ (2gλµ n γn ν − γn λ gn µν )D µν(k)(2π) 3 (q − k) µ gµν n (q − k) ν(3.90)69


<strong>and</strong> as shown <strong>in</strong> <strong>the</strong> Appendix B.3 at low energies this can be written asΣ n (q) = − ∑ ( )ηµ n (γn µ q Λµ) ln √qα g n µαβ q . (3.91)βHere Λ is an upper cutoff <strong>and</strong> <strong>the</strong> coefficients η are functions of <strong>the</strong> bare anisotropy,which have been reduced to a quadrature (see Appendix B.3). It is straightforward,even if somewhat tedious, to show that <strong>in</strong> case of weak anisotropy (v F = 1+δ, v ∆ = 1),to order δ 2 ,η0 1¯1 = − 83π 2 Nη 1¯11 = − 83π 2 Nη 1¯12 = − 83π 2 N(1 − 3 2 ξ − 1 35 (40 − 7ξ) δ2 )(1 − 3 2 ξ + 6 5 δ − 1 35 (43 − 7ξ) δ2 )(3.92)(3.93)(1 − 3 2 ξ − 6 5 δ − 1 35 (1 − 7ξ) δ2 ). (3.94)In <strong>the</strong> isotropic limit (v F = v ∆ = 1) we rega<strong>in</strong> η n µ = −8(1 − 3 2 ξ)/3π2 N as previouslyfound by o<strong>the</strong>rs.3.4.4 Dirac anisotropy <strong>and</strong> its β functionBefore plung<strong>in</strong>g <strong>in</strong>to any formal analysis, we wish to discuss some immediateobservations regard<strong>in</strong>g <strong>the</strong> RG flow of <strong>the</strong> anisotropy. Exam<strong>in</strong><strong>in</strong>g <strong>the</strong> Eq. (3.91) it isclear that if η n 1 = ηn 2<strong>the</strong>n <strong>the</strong> anisotropy does not flow <strong>and</strong> rema<strong>in</strong>s equal to its barevalue. That would mean that anisotropy is marg<strong>in</strong>al <strong>and</strong> <strong>the</strong> <strong>the</strong>ory flows <strong>in</strong>to <strong>the</strong>anisotropic fixed po<strong>in</strong>t. In fact, such a <strong>the</strong>ory would have a critical l<strong>in</strong>e of α D . Forthis to happen, however, <strong>the</strong>re would have to be a symmetry which would protect <strong>the</strong>equality η n 1 = ηn 2 . For example, <strong>in</strong> <strong>the</strong> isotropic QED 3 <strong>the</strong> symmetry which protects<strong>the</strong> equality of η’s is <strong>the</strong> Lorentz <strong>in</strong>variance. In <strong>the</strong> case at h<strong>and</strong>, this symmetry isbroken <strong>and</strong> <strong>the</strong>refore we expect that η1 n will be different from ηn 2 , suggest<strong>in</strong>g that <strong>the</strong>anisotropy flows away from its bare value. If we start with α D > 1 <strong>and</strong> f<strong>in</strong>d thatη2 1¯1 > η1 1¯1 at some scale p < Λ, we would conclude that <strong>the</strong> anisotropy is marg<strong>in</strong>allyirrelevant <strong>and</strong> decreases towards 1. On <strong>the</strong> o<strong>the</strong>r h<strong>and</strong> if η2 1¯1 < η1 1¯1 , <strong>the</strong>n anisotropycont<strong>in</strong>ues <strong>in</strong>creas<strong>in</strong>g beyond its bare value <strong>and</strong> <strong>the</strong> <strong>the</strong>ory flows <strong>in</strong>to a critical po<strong>in</strong>twith (<strong>in</strong>)f<strong>in</strong>ite anisotropy.70


The issue is fur<strong>the</strong>r complicated by <strong>the</strong> fact that η n µis not a gauge <strong>in</strong>variantquantity, i.e. it depends on <strong>the</strong> gauge fix<strong>in</strong>g parameter ξ. The statement that, sayη n 1 > η n 2 , makes sense only if <strong>the</strong> ξ dependence of η n 1 <strong>and</strong> η n 2 is exactly <strong>the</strong> same,o<strong>the</strong>rwise we could choose a gauge <strong>in</strong> which <strong>the</strong> difference η n 2 − η n 1can have ei<strong>the</strong>rsign. However, we see from <strong>the</strong> equations (3.92-3.94) that <strong>in</strong> fact <strong>the</strong> ξ dependenceof all η’s is <strong>in</strong>deed <strong>the</strong> same. Although it was explicitly demonstrated only to <strong>the</strong>O(δ 2 ), <strong>in</strong> <strong>the</strong> Appendix B.3 we show that it is <strong>in</strong> fact true to all orders of anisotropyfor any choice of covariant gauge fix<strong>in</strong>g. This fact provides <strong>the</strong> justification for ourprocedure. Now we supply <strong>the</strong> formal analysis reflect<strong>in</strong>g <strong>the</strong> above discussion.The renormalized 2-po<strong>in</strong>t vertex function is related to <strong>the</strong> “bare” 2-po<strong>in</strong>t vertexfunction via a fermion field rescal<strong>in</strong>g Z ψ asΓ (2)R = Z ψΓ (2) . (3.95)It is natural to dem<strong>and</strong> that for example at nodes 1 <strong>and</strong> ¯1 at some renormalizationscale p, Γ (2)R(p) will have <strong>the</strong> formΓ (2)R (p) = γ 0p 0 + v R F γ 1 p 1 + v R ∆γ 2 p 2 . (3.96)Thus, <strong>the</strong> equation (3.96) corresponds to our renormalization condition through whichwe can elim<strong>in</strong>ate <strong>the</strong> cutoff dependence <strong>and</strong> calculate <strong>the</strong> RG flows.To <strong>the</strong> order of 1/N we can writeΓ (2)R (p) = Z ψγ n µ p µ(1 + ηµ n ln Λ )p(3.97)where we used <strong>the</strong> fermionic self-energy (3.91). Multiply<strong>in</strong>g both sides by γ 0 <strong>and</strong>trac<strong>in</strong>g <strong>the</strong> result<strong>in</strong>g expression determ<strong>in</strong>es <strong>the</strong> field strength renormalizationZ ψ =11 + η n 0 ln Λ p≈ 1 − η n 0 ln Λ p . (3.98)We can now determ<strong>in</strong>e <strong>the</strong> renormalized Fermi <strong>and</strong> gap velocitiesv R Fv F≈ (1 − η0 1¯1 ln Λ )(1 + η1¯11p ln Λ p ) ≈ 1 − (η1¯10 − η1¯11 ) ln Λ p(3.99)<strong>and</strong>v∆R ≈ (1 − η0 1¯1v ln Λ )(1 + η1¯12∆ p ln Λ p ) ≈ 1 − (η1¯10 − η1¯12 ) ln Λ p . (3.100)71


The correspond<strong>in</strong>g renormalized Dirac anisotropy is <strong>the</strong>reforeα R D ≡ vR Fv R ∆The RG beta function can now be determ<strong>in</strong>ed≈ α D (1 − (η2 1¯1 − η1¯11 ) ln Λ ). (3.101)pβ αD= dαR Dd ln p = α D(η 1¯12 − η1¯11). (3.102)In <strong>the</strong> case of weak anisotropy (v F = 1 + δ, v ∆ = 1) <strong>the</strong> above expression can bedeterm<strong>in</strong>ed analytically as an expansion <strong>in</strong> δ. Us<strong>in</strong>g Eqs.(3.93-3.94) we obta<strong>in</strong>β αD = 8 ( 6))3π 2 N 5 δ(1 + δ)(2 − δ) + O(δ3 . (3.103)Note that this expression is <strong>in</strong>dependent of <strong>the</strong> gauge fix<strong>in</strong>g parameter ξ. For 0 2, β < 0 which maynaively <strong>in</strong>dicate that <strong>the</strong>re is a fixed po<strong>in</strong>t at δ = 2; this however cannot be trustedas it is outside of <strong>the</strong> range of validity of <strong>the</strong> power expansion of η µ . The numericalevaluation of <strong>the</strong> β-function shows that, apart from <strong>the</strong> isotropic fixed po<strong>in</strong>t <strong>and</strong> <strong>the</strong>unstable fixed po<strong>in</strong>t at α D = 0, β αDdoes not vanish (see Fig. 3.3). This <strong>in</strong>dicatesthat to <strong>the</strong> lead<strong>in</strong>g order <strong>in</strong> <strong>the</strong> 1/N expansion, <strong>the</strong> <strong>the</strong>ory flows <strong>in</strong>to <strong>the</strong> isotropicfixed po<strong>in</strong>t where α D − 1 has a scal<strong>in</strong>g dimension η δ = 32/(5π 2 N) > 1.3.5 F<strong>in</strong>ite <strong>temperature</strong> extensions of QED 3In this Section we focus on <strong>the</strong>rmodynamics <strong>and</strong> sp<strong>in</strong> response of <strong>the</strong> pseudogapstate. First, <strong>in</strong> order to derive <strong>the</strong>rmodynamics <strong>and</strong> sp<strong>in</strong> susceptibility from <strong>the</strong>QED 3 <strong>the</strong>ory [58] we generalize its form to f<strong>in</strong>ite T . This is a matter of some subtletys<strong>in</strong>ce, <strong>the</strong> moment T ≠ 0, <strong>the</strong> <strong>the</strong>ory loses its fictitious “relativistic <strong>in</strong>variance”.Second, we show that <strong>the</strong> <strong>the</strong>ory predicts a f<strong>in</strong>ite T scal<strong>in</strong>g form for <strong>the</strong>rmodynamicquantities <strong>in</strong> <strong>the</strong> pseudogap state. Third, we explicitly compute <strong>the</strong> lead<strong>in</strong>g T ≠ 072


β αD[8/3π 2 Ν]121086420−20 1 2 3 4 5α DFigure 3.3: The RG β-function for <strong>the</strong> Dirac anisotropy <strong>in</strong> units of 8/3π 2 N. Thesolid l<strong>in</strong>e is <strong>the</strong> numerical <strong>in</strong>tegration of <strong>the</strong> quadrature <strong>in</strong> <strong>the</strong> Eq. (B.52) while <strong>the</strong>dash-dotted l<strong>in</strong>e is <strong>the</strong> analytical expansion around <strong>the</strong> small anisotropy (see Eq.(3.92-3.94)). At α D = 1, β αD crosses zero with positive slope, <strong>and</strong> <strong>the</strong>refore at largelength-scales <strong>the</strong> anisotropic QED 3 scales to an isotropic <strong>the</strong>ory.scal<strong>in</strong>g <strong>and</strong> demonstrate that <strong>the</strong> deviations from “relativistic <strong>in</strong>variance” are actuallyirrelevant for T much less than <strong>the</strong> pseudogap <strong>temperature</strong> T ∗ , <strong>in</strong> <strong>the</strong> sense that <strong>the</strong>lead<strong>in</strong>g order T ≠ 0 scal<strong>in</strong>g of <strong>the</strong>rmodynamic functions rema<strong>in</strong>s that of <strong>the</strong> f<strong>in</strong>ite-Tsymmetric QED 3 . These deviations from “relativistic <strong>in</strong>variance” do, however, affect<strong>high</strong>er order terms. We illustrate <strong>the</strong>se general results by comput<strong>in</strong>g <strong>the</strong> lead<strong>in</strong>g(∼ T 2 ) <strong>and</strong> next-to-<strong>the</strong> lead<strong>in</strong>g (∼ T 3 ) terms <strong>in</strong> specific heat c v . F<strong>in</strong>ally, we evaluatemagnetic sp<strong>in</strong> susceptibility χ u <strong>and</strong> show that it is bounded by T 2 at low T butcrosses over to ∼ T at <strong>high</strong>er T , closer to T ∗ . Consequently, <strong>the</strong> Wilson ratio χ u T/c vvanishes as T → 0 imply<strong>in</strong>g <strong>the</strong> non-Fermi liquid nature of <strong>the</strong> pseudogap state <strong>in</strong><strong>cuprate</strong>s.We start by not<strong>in</strong>g that <strong>the</strong> sp<strong>in</strong> susceptibility of a BCS-like d-wave superconductorvanishes l<strong>in</strong>early with <strong>temperature</strong>. The way to underst<strong>and</strong> this result is to noticethat <strong>the</strong> sp<strong>in</strong> part of <strong>the</strong> ground state wavefunction, be<strong>in</strong>g a sp<strong>in</strong> s<strong>in</strong>glet, rema<strong>in</strong>s unperturbedby <strong>the</strong> application of a weak uniform magnetic field. However, <strong>the</strong> excitedquasiparticle states are not <strong>in</strong> general sp<strong>in</strong> s<strong>in</strong>glets <strong>and</strong> <strong>the</strong>refore contribute to <strong>the</strong><strong>the</strong>rmal average of <strong>the</strong> sp<strong>in</strong> susceptibility. Because <strong>the</strong>ir density of states is l<strong>in</strong>ear atlow energies, at f<strong>in</strong>ite <strong>temperature</strong> <strong>the</strong> number of quasiparticles that are excited is∼ k B T , each contribut<strong>in</strong>g a constant to <strong>the</strong> Pauli-like uniform sp<strong>in</strong> susceptibility χ u .Thus χ u ∼ T .73


When <strong>the</strong> superconduct<strong>in</strong>g order is destroyed by proliferation of unbound quantumhc/2e <strong>vortices</strong>, <strong>the</strong> low-energy quasiparticle excitations are strongly <strong>in</strong>teract<strong>in</strong>g. The<strong>in</strong>teraction orig<strong>in</strong>ates from <strong>the</strong> fact that it is <strong>the</strong> sp<strong>in</strong> s<strong>in</strong>glet pairs that acquire aone unit of angular momentum <strong>in</strong> <strong>the</strong>ir center of <strong>the</strong> mass coord<strong>in</strong>ate, carried bya hc/2e vortex.This translates <strong>in</strong>to a topological frustration <strong>in</strong> <strong>the</strong> propagationof <strong>the</strong> “sp<strong>in</strong>on” excitations. As a result, non-trivial sp<strong>in</strong> correlations persist <strong>in</strong> <strong>the</strong>excited states of <strong>the</strong> phase-disordered d-wave superconductor. At low <strong>temperature</strong>,this leads to a suppression of χ u relative to that of <strong>the</strong> non-<strong>in</strong>teract<strong>in</strong>g quasiparticles.We shall argue below that <strong>in</strong> <strong>the</strong> phase-disordered superconductor, χ u ∼ T 2 at low<strong>temperature</strong>s.Similarly, <strong>in</strong> a d-wave superconductor, l<strong>in</strong>ear density of <strong>the</strong> quasiparticle statestranslates <strong>in</strong>to T 2 dependence of <strong>the</strong> low T specific heat. When <strong>the</strong> <strong>in</strong>teractionsbetween quasiparticles are <strong>in</strong>cluded <strong>the</strong> spectral weight is transferred to multi-particlestates. With<strong>in</strong> QED 3 <strong>the</strong>ory, however, <strong>the</strong> strongly <strong>in</strong>teract<strong>in</strong>g IR (<strong>in</strong>fra-red) fixedpo<strong>in</strong>t possesses emergent “relavistivistic <strong>in</strong>variance” at long distances <strong>and</strong> low energies<strong>and</strong> <strong>the</strong> dynamical critical exponent z = 1. Fur<strong>the</strong>rmore, <strong>the</strong> effective quantum actionfor <strong>vortices</strong>, deep <strong>in</strong> <strong>the</strong> phase disordered pseudogap state, <strong>in</strong>troduces an additionallengthscale, <strong>the</strong> superconduct<strong>in</strong>g correlation length ξ τ,⊥ (labels τ <strong>and</strong> ⊥ st<strong>and</strong> fortime- <strong>and</strong> space-like, respectively). At T = 0 this scale serves as a short distancecutoff of <strong>the</strong> <strong>the</strong>ory <strong>and</strong> possesses some degree of dop<strong>in</strong>g (x) dependence with<strong>in</strong> <strong>the</strong>pseudogap state. We <strong>the</strong>n argue that under ra<strong>the</strong>r general circumstances <strong>the</strong> low Telectronic specific heat scales as T 2 while <strong>the</strong> free energy goes as T 3 .Deep <strong>in</strong> <strong>the</strong> phase disordered pseudogap state <strong>the</strong> fluctuations <strong>in</strong> <strong>the</strong> vorticity3-vector b µ = ɛ µνλ ∂ ν a λ are described by <strong>the</strong> “bare” Lagrangian of <strong>the</strong> QED 3 <strong>the</strong>ory[58]:L 0 (a µ ) = K (⊥ T2 f ⊥k , T ⊥,τ)ω , T Kb 2 0 + K (τ T2 f τk , T ⊥,τ)ω , T K ⃗ b 2 , (3.104)where f τ (0, 0, 0) = f ⊥ (0, 0, 0) = 1. f τ,⊥ are general scal<strong>in</strong>g functions describ<strong>in</strong>g howL 0 (a µ ) is modified from its “relativistically <strong>in</strong>variant” T = 0 form as <strong>the</strong> <strong>temperature</strong>is turned on, <strong>and</strong> K ⊥,τ is related to <strong>the</strong> superconduct<strong>in</strong>g correlation length as K τ ∝ξ 2 sc /ξ τ <strong>and</strong> K ⊥ ∝ ξ τ [58]. Physically, such modifications are due to changes <strong>in</strong> <strong>the</strong>74


pattern of vortex-antivortex fluctuations <strong>in</strong>duced by f<strong>in</strong>ite T .To h<strong>and</strong>le <strong>the</strong> <strong>in</strong>tr<strong>in</strong>sic space-time anisotropy, it is convenient to <strong>in</strong>troduce twotensorsA µν =(δ µ0 − k )µk 0 k2k 2 ⃗ k2B µν = δ µi(δ ij − k ik j⃗ k2<strong>and</strong> rewrite <strong>the</strong> gauge field action as(δ 0ν − k )0k νk 2,)δ jν , (3.105)L 0 (a µ ) = 1 2 Π0 A a µA µν a ν + 1 2 Π0 B a µB µν a ν . (3.106)For details see Appendix B.4. It is straightforward to show that( TΠ 0 A = K τ f τk , T )ω , T K ⊥,τ ( ⃗ k 2 + ω 2 ),( T = K τf τk , T ) ( Tω , T K ⊥,τ ω 2 + K ⊥ f ⊥k , T )ω , T K ⃗⊥,τ k 2 .Π 0 B(3.107)The gauge field a µ couples m<strong>in</strong>imally to <strong>the</strong> Dirac fermions represent<strong>in</strong>g nodalBCS quasiparticles [58]. Consequently, <strong>the</strong> result<strong>in</strong>g Lagrangian readsL = ¯ψ (iγ µ ∂ µ + γ µ a µ ) ψ + L 0 (a µ ) . (3.108)The <strong>in</strong>tegration over Berry gauge field a µ reproduces <strong>the</strong> <strong>in</strong>teraction among quasiparticlesaris<strong>in</strong>g from <strong>the</strong> topological frustration referred to earlier.3.5.1 Specific heat <strong>and</strong> scal<strong>in</strong>g of <strong>the</strong>rmodynamicsThe only lengthscales that appear <strong>in</strong> <strong>the</strong> <strong>the</strong>rmodynamics are <strong>the</strong> <strong>the</strong>rmal length ∼1/T , <strong>and</strong> <strong>the</strong> superconduct<strong>in</strong>g correlation lengths K ⊥,τ . At T = 0, <strong>the</strong> two correlationlengths enter only as short distance cutoffs for <strong>the</strong> <strong>the</strong>ory s<strong>in</strong>ce <strong>the</strong> electronic actionis controlled by <strong>the</strong> IR fixed po<strong>in</strong>t of QED 3 . These observations allow us to writedown <strong>the</strong> general scal<strong>in</strong>g form for <strong>the</strong> free energyF(T ; x) = T 3 Φ ( K τ (x)T, K ⊥ (x)T ) . (3.109)75


In <strong>the</strong> above scal<strong>in</strong>g form K ⊥ is related to <strong>the</strong> T → 0 f<strong>in</strong>ite superconduct<strong>in</strong>g correlationlength of <strong>the</strong> pseudogap state ξ sc (x). The ratio K τ /K sc describes <strong>the</strong> anisotropybetween time-like <strong>and</strong> space-like vortex fluctuations <strong>and</strong> is also a function of dop<strong>in</strong>gx. The scal<strong>in</strong>g expressions for o<strong>the</strong>r <strong>the</strong>rmodynamic functions can be derived from(3.109) by tak<strong>in</strong>g appropriate <strong>temperature</strong> derivatives. For details see AppendicesB.5 <strong>and</strong> B.6.We are <strong>in</strong>terested <strong>in</strong> <strong>the</strong> limit of <strong>the</strong> <strong>the</strong>rmal length 1/T be<strong>in</strong>g much longer thanK τ <strong>and</strong> K ⊥ i.e. <strong>in</strong> <strong>the</strong> limit of Φ(x → 0, y → 0). This is precisely <strong>the</strong> limit <strong>in</strong> which<strong>the</strong> free energy approaches <strong>the</strong> free energy of <strong>the</strong> f<strong>in</strong>ite <strong>temperature</strong> QED 3 . Therefore,Φ(x, y) is regular at x = y = 0 (see Ref.[81]) <strong>and</strong> so <strong>in</strong> <strong>the</strong> limit of T → 0, F ∼ T 3 orc v ∼ T 2 .3.5.2 Uniform sp<strong>in</strong> susceptibilityThe fermion fields ψ were def<strong>in</strong>ed <strong>in</strong> Ref. [58] where it is shown that <strong>the</strong> physicalsp<strong>in</strong> density ψ † ↑ ψ ↑ − ψ † ↓ ψ ↓ is equal to <strong>the</strong> Dirac fermion density ¯ψγ 0 ψ.To compute <strong>the</strong> sp<strong>in</strong>-sp<strong>in</strong> correlation function 〈S z (−k)S z (k)〉 we <strong>in</strong>troduce anauxiliary source J µ (k) <strong>and</strong> couple it to fermion three current. ThusL[ ¯ψ, ψ, a µ , J µ ] = ¯ψ (iγ µ ∂ µ + γ µ (a µ + J µ )) ψ + L 0 (a µ ) (3.110)<strong>and</strong> s<strong>in</strong>ce it is <strong>the</strong> z-component of <strong>the</strong> sp<strong>in</strong> that couples to <strong>the</strong> gauge field we have〈S z (−k)S z (k)〉 = 1 δ δZ[J µ ] δJ 0 (−k) δJ 0 (k) Z[J µ] ∣ (3.111)Jµ=0,Z be<strong>in</strong>g <strong>the</strong> quantum partition function. Now we let a ′ µ = a µ + J µ <strong>and</strong> <strong>in</strong>tegrateout both <strong>the</strong> fermions <strong>and</strong> <strong>the</strong> gauge field a ′ µ . The correlations between a′ µ fields aredescribed by <strong>the</strong> polarization matrix which to <strong>the</strong> order of 1/N can be written <strong>in</strong> <strong>the</strong>form Π µν = (Π 0 A + ΠF A )A µν + (Π 0 B + ΠF B )B µν. The result<strong>in</strong>g sp<strong>in</strong> correlation functionis <strong>the</strong>n readily found to be〈S z (−k)S z (k)〉 = ΠF A Π0 ⃗A k2Π F A + Π0 ⃗A k2 + ω , (3.112)276


where Π F A denotes <strong>the</strong> fermion current polarization function. Due to <strong>the</strong> scale <strong>in</strong>varianceof <strong>the</strong> (massless) fermion action, <strong>the</strong> time component of <strong>the</strong> retarded polarizationfunction has <strong>the</strong> scal<strong>in</strong>g form( qΠ F Aret (q, ω, T ) = NT PAF T , ω ), (3.113)Twhere PA F (x, y) is a universal function of its arguments <strong>and</strong> N is <strong>the</strong> number of <strong>the</strong>4−component fermion species (see Appendix B.5). In <strong>the</strong> static limit, ω → 0,<strong>and</strong>whilelim Rey→0 PF A (x, y) = 2 ln 2 + x2π 24π + O(x3 ); x ≪ 1 (3.114)lim Rey→0 PF A (x, y) = x 8 + 6ζ(3) + O(x −3 ); x ≫ 1 (3.115)πx 2lim Im 2 ln 2y→0 PF A (x, y) =π( )y y2x + O ; x ≪ 1 (3.116)x 2In addition, <strong>in</strong> <strong>the</strong> limit of ω = 0 <strong>and</strong> k → 0 we have( ) Tf τk , ∞, K τT → 1 + c T 2(3.117)k 2where c is a pure number. Comb<strong>in</strong><strong>in</strong>g all of <strong>the</strong>se results toge<strong>the</strong>r we haveχ(ω = 0, q → 0) =2N ln 2πK τ T 22N ln 2πc+ K τ T . (3.118)There are several sources of correction to <strong>the</strong> scal<strong>in</strong>g, <strong>and</strong> it is impossible to addressall of <strong>the</strong>m without an explicit model for <strong>the</strong> <strong>vortices</strong>. Instead, we will concentrate on<strong>the</strong> particular case of <strong>the</strong> corrections to scal<strong>in</strong>g due to <strong>the</strong> Dirac cone anisotropy. Itwas shown <strong>in</strong> <strong>the</strong> previous Section that <strong>the</strong> Dirac cone anisotropy α D = v F /v ∆ scalesto unity at <strong>the</strong> QED 3 IR fixed po<strong>in</strong>t. Alternatively, when def<strong>in</strong>ed as α D ≡ 1 + δ, δhas a scal<strong>in</strong>g dimension η δ > 1. To <strong>the</strong> lead<strong>in</strong>g order <strong>in</strong> 1/N, η δ = 32/(5π 2 N) (see<strong>the</strong> previous Section). For simplicity, we assume that <strong>the</strong> bare action for <strong>the</strong> gaugefield is e −2 Fµν 2 . Then <strong>the</strong> T dependence of <strong>the</strong> free energy scales asF = T ( 3 TΦvF2 e , v )F2 v ∆= T ( )3 TΦvF2 e , 1 + δ(T ) 277(3.119)


Thus, <strong>in</strong> <strong>the</strong> limit of T → 0 we haveF = T 3v 2 FΦ (0, 1) + T 3+η δδvF2 0 Φ ′ (0, 1) . (3.120)Therefore, while <strong>the</strong> lead<strong>in</strong>g order scal<strong>in</strong>g of <strong>the</strong> free energy is analytic T 3 , <strong>the</strong> correctionto scal<strong>in</strong>g is non-analytic T 3+η δ.3.6 Chiral symmetry break<strong>in</strong>gIn this Section we shall try to underst<strong>and</strong> <strong>the</strong> physical nature of <strong>the</strong> <strong>in</strong>stabilitiesof <strong>the</strong> symmetric phase of QED 3 or Algebraic Fermi Liquid.We show that a phase disordered d-wave superconductor, as <strong>in</strong>troduced <strong>in</strong> previoussections, becomes an antiferromagnet [83]. The antiferromagnetism emergesvia a phenomenon of spontaneous chiral symmetry break<strong>in</strong>g (CSB)[59, 60]. Awayfrom half fill<strong>in</strong>g, <strong>the</strong> broken symmetry phase typically takes <strong>the</strong> form of an <strong>in</strong>commensuratesp<strong>in</strong>-density-wave (SDW), whose periodicity is tied to <strong>the</strong> Fermi surface.Fur<strong>the</strong>rmore, we show that numerous o<strong>the</strong>r states, most notably a d+ip <strong>and</strong> a d+isphase-<strong>in</strong>coherent superconductors (dipSC, disSC) <strong>and</strong> “stripes”, i.e. superpositionsof 1D charge-density-waves (CDW) <strong>and</strong> phase-<strong>in</strong>coherent superconduct<strong>in</strong>g-densitywaves(SCDW), as well as cont<strong>in</strong>uous chiral rotations among <strong>the</strong>m, are all energeticallyclose <strong>and</strong> competitive with antiferromagnetism due to <strong>the</strong>ir equal membership<strong>in</strong> <strong>the</strong> chiral manifold of two-flavor (N = 2) QED 3 . This large chiral manifold ofnearly degenerate states plays <strong>the</strong> key role <strong>in</strong> <strong>the</strong> QED 3 <strong>the</strong>ory as <strong>the</strong> culprit beh<strong>in</strong>d<strong>the</strong> complexity of <strong>the</strong> HTS phase diagram.The above results place tight restrictions on this phase diagram <strong>and</strong> provide meansto unify <strong>the</strong> phenomenology of <strong>cuprate</strong>s with<strong>in</strong> a s<strong>in</strong>gle, systematically calculable“QED 3 Unified Theory” (QUT). Any microscopic description of <strong>cuprate</strong>s, as longas it leads to <strong>the</strong> large d-wave pair<strong>in</strong>g pseudogap with T ∗ ≫ T c → 0, will conformto <strong>the</strong> general results of QUT. In particular, all <strong>the</strong> physical states <strong>in</strong> natural energeticproximity to a d-wave superconductor are <strong>the</strong> ones <strong>in</strong>habit<strong>in</strong>g <strong>the</strong> above chiralmanifold.78


For <strong>the</strong> sake of concreteness we restate <strong>the</strong> start<strong>in</strong>g Lagrangian 3.47L QED = ¯ψ n c µ,n γ µ D µ ψ n + L 0 [a µ ] + (· · · ). (3.121)Here ψ † α = ¯ψ α γ 0 = (η † α , η† ᾱ) are <strong>the</strong> four-component Dirac sp<strong>in</strong>ors with η † α = 1 √2Ψ † α (1+iσ 1 ), η † ᾱ = 1 √2Ψ † ᾱσ 2 (1 + iσ 1 ), <strong>and</strong> Ψ † α = (ψ † ↑α , ψ ↓α). Fermion fields ψ σα (r, τ) describe‘topological fermions’ of <strong>the</strong> <strong>the</strong>ory <strong>and</strong> are related to <strong>the</strong> orig<strong>in</strong>al nodal fermionsc σα (r, τ) via <strong>the</strong> s<strong>in</strong>gular gauge transformation (3.4). Index n labels (1, ¯1) <strong>and</strong> (2, ¯2)pairs of nodes while α labels <strong>in</strong>dividual nodes, µ = τ, x, y(≡ 0, 1, 2). D µ = ∂ µ + ia µis a covariant derivative, c τ,n = 1, c x,1 = c y,2 = v F , c x,2 = c y,1 = v ∆ . The gammamatrices are def<strong>in</strong>ed as γ 0 = σ 3 ⊗ σ 3 , γ 1 = −σ 3 ⊗ σ 1 , γ 2 = −σ 3 ⊗ σ 2 , <strong>and</strong> satisfy{γ µ , γ ν } = 2δ µν . The Berry gauge field a µ encodes <strong>the</strong> topological frustration ofnodal fermions generated by fluctuat<strong>in</strong>g quantum vortex-antivortex pairs <strong>and</strong> L 0 isits bare action. The loss of superconduct<strong>in</strong>g phase coherence caused by unb<strong>in</strong>d<strong>in</strong>g ofvortex pairs is heralded <strong>in</strong> (3.121) by a µ becom<strong>in</strong>g massless:L 0 → 1 (∂ × a) 22e 2 τ + ∑τi12e 2 i(∂ × a) 2 i ; (3.122)here e 2 τ, e 2 i (i = x, y), as well as <strong>the</strong> velocities v F (∆) , are functions of dop<strong>in</strong>g x <strong>and</strong> T .Along with residual <strong>in</strong>teractions between nodal fermions, denoted by <strong>the</strong> ellipsis <strong>in</strong>(3.121), <strong>the</strong>se parameters of QUT arise from some more microscopic description <strong>and</strong>will be discussed shortly.L QED (3.121) possesses <strong>the</strong> follow<strong>in</strong>g peculiar cont<strong>in</strong>uous symmetry: borrow<strong>in</strong>gfrom ord<strong>in</strong>ary quantum electrodynamics <strong>in</strong> (3+1) dimensions (QED 4 ), we know that<strong>the</strong>re exist two additional gamma matrices, γ 3 = σ 1 ⊗ 1 <strong>and</strong> γ 5 = iσ 2 ⊗ 1 that anticommutewith all γ µ . We can def<strong>in</strong>e a global U(2) symmetry for each pair of nodes,with generators 1 ⊗ 1, γ 3 , −iγ 5 <strong>and</strong> 1 2 [γ 3, γ 5 ], which leaves L QED <strong>in</strong>variant. In QED 3this symmetry can be broken by two “mass” terms, m ch ¯ψn ψ n <strong>and</strong> m PT ¯ψn12 [γ 3, γ 5 ]ψ n .Spontaneous symmetry break<strong>in</strong>g <strong>in</strong> QED 3 as a mechanism for dynamical mass generationhas been extensively studied <strong>in</strong> <strong>the</strong> field <strong>the</strong>ory literature [59]. It has beenestablished that while m PT is never spontaneously generated [84], <strong>the</strong> chiral mass m chis generated if number of fermion species N is less than a critical value N c . While79


TaCSBdSC¡¡¢¡¢¡¢¡¢¡¡¢¡¢¡¢¡¢¢¡¢¡¢¡¢ ¡ ¡ T*bCSBdSC¡¡¢¡¢¡¢¡¢QED3SDW/AF(CSB)£¡£¡£ ¤¡¤¡¤£¡£¡£ ¤¡¤¡¤¤¡¤¡¤ £¡£¡£T cdSCxFigure 3.4: Schematic phase diagram of a <strong>cuprate</strong> superconductor <strong>in</strong> QUT. Depend<strong>in</strong>gon <strong>the</strong> value of N c (see text), ei<strong>the</strong>r <strong>the</strong> superconductor is followed by a symmetricphase of QED 3 which <strong>the</strong>n undergoes a quantum CSB transition at some lower dop<strong>in</strong>g(panel a), or <strong>the</strong>re is a direct transition from <strong>the</strong> superconduct<strong>in</strong>g phase to <strong>the</strong> m ch ≠0 phase of QED 3 (panel b). The label SDW/AF <strong>in</strong>dicates <strong>the</strong> dom<strong>in</strong>ance of <strong>the</strong>antiferromagnetic ground state as x → 0.still a matter of some controversy, st<strong>and</strong>ard non-perturbative methods give N c ∼ 3for isotropic QED 3 [59, 60], but as we shall discuss shortly, anisotropy <strong>and</strong> irrelevantcoupl<strong>in</strong>gs present <strong>in</strong> Lagrangian (3.121) can change <strong>the</strong> value of N c .Let us now assume that CSB occurs <strong>and</strong> <strong>the</strong> mass term m ch ¯ψn ψ n is generated. Wewish to determ<strong>in</strong>e what is <strong>the</strong> nature of this chiral <strong>in</strong>stability <strong>in</strong> terms of <strong>the</strong> orig<strong>in</strong>alelectron operators. To make this apparent, let us consider a general chiral rotationψ n → U (n)ch ψ n with U (n)ch= exp(iθ 3n γ 3 + θ 5n γ 5 ). With<strong>in</strong> our representation of Diracsp<strong>in</strong>ors (3.121), <strong>the</strong> m ch ¯ψn ψ n mass term takes <strong>the</strong> follow<strong>in</strong>g form:m ch cos(2Ω n ) [ η † α σ 3η α − η † ᾱσ 3 ηᾱ]++m ch s<strong>in</strong>(2Ω n ) θ 5n + iθ 3nΩ nη † ασ 3 ηᾱ + h.c. , (3.123)where Ω n = √ θ 2 3n + θ 2 5n. m ch acts as an order parameter for <strong>the</strong> bil<strong>in</strong>ear comb<strong>in</strong>ationsof topological fermions appear<strong>in</strong>g <strong>in</strong> (3.123). In <strong>the</strong> symmetric phase of QED 3 (m ch =80


21Q Q2211Q121 2Figure 3.5: The “Fermi surface” of <strong>cuprate</strong>s, with <strong>the</strong> positions of nodes <strong>in</strong> <strong>the</strong> d-wavepseudogap. The wavectors Q 1¯1, Q 2¯2, Q¯1¯2, etc. are discussed <strong>in</strong> <strong>the</strong> text.0) <strong>the</strong> expectation values of such bil<strong>in</strong>ears vanish, while <strong>the</strong>y become f<strong>in</strong>ite, 〈 ¯ψ n ψ n 〉 ≠0, <strong>in</strong> <strong>the</strong> broken symmetry phase.The chiral manifold (3.123) is spanned by <strong>the</strong> “basis” of three symmetry break<strong>in</strong>gstates. When re-expressed <strong>in</strong> terms of <strong>the</strong> orig<strong>in</strong>al nodal fermions c σα (r, τ), two of<strong>the</strong>se <strong>in</strong>volve pair<strong>in</strong>g <strong>in</strong> <strong>the</strong> particle-hole (p-h) channel – a cos<strong>in</strong>e <strong>and</strong> a s<strong>in</strong>e sp<strong>in</strong>density-wave(SDW):〈c † ↑α c ↑ᾱ − c † ↓α c ↓ᾱ〉 + h.c. (cos SDW)i〈c † ↑α c ↑ᾱ − c † ↑ᾱ c ↑α〉 + (↑→↓) (s<strong>in</strong> SDW) (3.124)<strong>and</strong> are obta<strong>in</strong>ed from Eq. (3.123) by sett<strong>in</strong>g Ω n equal to π/4 or 3π/4. Rotationswith<strong>in</strong> <strong>the</strong> chiral manifold (3.123) at fixed Ω n correspond to <strong>the</strong> slid<strong>in</strong>g modes ofSDW.A simple physical picture emerges here: we started from a d-wave superconduct<strong>in</strong>gphase, our parent state. As one moves closer to half-fill<strong>in</strong>g <strong>and</strong> true phase coherenceis lost, strong vortex-antivortex pair fluctuations, act<strong>in</strong>g under <strong>the</strong> protective umbrellaof a d-wave particle-particle (p-p) pseudogap, spontaneously <strong>in</strong>duce formationof particle-hole “pairs” at f<strong>in</strong>ite wavevectors ±Q 1¯1 <strong>and</strong> ±Q 2¯2, spann<strong>in</strong>g <strong>the</strong> Fermi81


surface from node α to ᾱ (Fig. 3.5). The glue that b<strong>in</strong>ds <strong>the</strong>se p-h “pairs” <strong>and</strong> plays<strong>the</strong> role of “phonons” <strong>in</strong> this pair<strong>in</strong>g analogy is provided by <strong>the</strong> Berry gauge field a µ .Such “fermion duality” is a natural consequence of <strong>the</strong> QED 3 <strong>the</strong>ory (3.121). Remarkably,we f<strong>in</strong>d <strong>the</strong> antiferromagnetic <strong>in</strong>sulator be<strong>in</strong>g spontaneously generated <strong>in</strong> formof <strong>the</strong> <strong>in</strong>commensurate SDW. As we get very near half-fill<strong>in</strong>g <strong>and</strong> Q 1¯1, Q 2¯2 approach(±π, ±π), SDW acquires <strong>the</strong> most favored state status with<strong>in</strong> <strong>the</strong> chiral manifold –this is <strong>the</strong> consequence of umklapp processes which <strong>in</strong>crease its condensation energywithout it be<strong>in</strong>g offset by ei<strong>the</strong>r <strong>the</strong> anisotropy or a poorly screened Coulomb <strong>in</strong>teractionwhich plagues its CDW competitors to be <strong>in</strong>troduced shortly. It seems <strong>the</strong>reforereasonable to argue that this SDW must be considered <strong>the</strong> progenitor of <strong>the</strong> Neel-Mott-Hubbard <strong>in</strong>sulat<strong>in</strong>g antiferromagnet at half-fill<strong>in</strong>g. Thus, QED 3 <strong>the</strong>ory (3.121)expla<strong>in</strong>s <strong>the</strong> orig<strong>in</strong> of antiferromagnetic order <strong>in</strong> terms of strong vortex-antivortexfluctuations <strong>in</strong> <strong>the</strong> parent d-wave superconductor. It does so naturally, through its<strong>in</strong>herent <strong>and</strong> well-established chiral symmetry break<strong>in</strong>g <strong>in</strong>stability [59].The chiral manifold (3.123) conta<strong>in</strong>s also a third state, a p-p pair<strong>in</strong>g state correspond<strong>in</strong>gto Ω n = 0 or π/2 <strong>and</strong> best characterized as a d+ip phase-<strong>in</strong>coherentsuperconductor:i〈ψ ↑α ψ ↓α − ψ ↑ᾱ ψ ↓ᾱ 〉 + h.c. (dipSC) . (3.125)We have written dipSC <strong>in</strong> terms of topological fermions ψ σα (r, τ) s<strong>in</strong>ce use of <strong>the</strong>orig<strong>in</strong>al fermions leads to more complicated expression which <strong>in</strong>volves <strong>the</strong> backflow ofvortex-antivortex excitations described by gauge fields a µ <strong>and</strong> v µ (such backflow termsdo not arise <strong>in</strong> <strong>the</strong> p-h channel). This state breaks parity but preserves time reversal,translational <strong>in</strong>variance <strong>and</strong> superconduct<strong>in</strong>g U(1) symmetries. To our knowledge,such state has not been proposed as a part of any of <strong>the</strong> major <strong>the</strong>ories of HTS. It isan <strong>in</strong>trigu<strong>in</strong>g question whe<strong>the</strong>r this d+ip phase-<strong>in</strong>coherent superconductor can be <strong>the</strong>actual ground state at some dop<strong>in</strong>gs <strong>in</strong> some of <strong>the</strong> <strong>cuprate</strong>s. Its energetics does notsuffer from long range Coulomb problems but it is clearly <strong>in</strong>ferior to <strong>the</strong> SDW veryclose to half-fill<strong>in</strong>g s<strong>in</strong>ce, be<strong>in</strong>g spatially uniform, it receives no help from umklapp.Until now, we have discussed <strong>the</strong> CSB pattern only with<strong>in</strong> <strong>in</strong>dividual pairs ofnodes, (1,¯1) <strong>and</strong> (2,¯2). What happens if we allow for chiral rotations that mix nodes82


1 <strong>and</strong> ¯2 or 1 <strong>and</strong> 2? A whole new plethora of states becomes possible, with chiralmanifold enlarged to <strong>in</strong>clude a superposition of one-dimensional p-h <strong>and</strong> p-p states,an <strong>in</strong>commensurate CDW accompanied by a non-uniform phase-<strong>in</strong>coherent superconductor(SCDW) at wavevectors ±Q 12 <strong>and</strong> ±Q¯2¯1 (Fig. 3.5):1√2〈c † ↑1 c ↑2 + c † ↑¯2 c ↑¯1 + h.c.〉 + (↑→↓)(CDW)1√2〈ψ ↑1 ψ ↓2 + ψ ↑¯2ψ ↓¯1 + h.c.〉 + (↑↔↓) (SCDW) (3.126)These same states, rotated by π/2, are replicated at wavevectors ±Q 1¯2 <strong>and</strong> ±Q 2¯1(Fig. 2). In a fluctuat<strong>in</strong>g d x 2 −y 2 superconductor <strong>the</strong>se CDWs <strong>and</strong> SCDWs run along<strong>the</strong> x <strong>and</strong> y axes <strong>and</strong> are naturally identified as <strong>the</strong> “stripes” of QUT. Note, however,<strong>the</strong>se are not <strong>the</strong> only one-dimensional states <strong>in</strong> QUT – among <strong>the</strong> states <strong>in</strong> <strong>the</strong> chiralmanifold (3.123) are also “diagonal stripes”, <strong>the</strong> comb<strong>in</strong>ation of a SDW (3.124) along±Q 1¯1 <strong>and</strong> a dipSC (3.125) which opens <strong>the</strong> mass gap only at nodes (2, ¯2), or viceversa. Fur<strong>the</strong>rmore, a phase-<strong>in</strong>coherent d+is superconductor (disSC) is also presentwith<strong>in</strong> <strong>the</strong> chiral enlarged manifold, s<strong>in</strong>ce it results <strong>in</strong> alternat<strong>in</strong>g signs for differentnodes with equal number of positive <strong>and</strong> negative “masses” for <strong>the</strong> two-componentnodal fermions:i〈ψ ↑1 ψ ↓1 + ψ ↑¯1ψ ↓¯1 + h.c.〉 + (1 → 2) (disSC) . (3.127)In contrast, <strong>in</strong> a d+id phase <strong>in</strong>coherent superconductor <strong>the</strong>se “masses” have <strong>the</strong>same sign for all <strong>the</strong> nodes produc<strong>in</strong>g a maximal break<strong>in</strong>g of <strong>the</strong> PT symmetry [84].Consequently, a d+id phase-<strong>in</strong>coherent superconductor is not spontaneously <strong>in</strong>ducedwith<strong>in</strong> <strong>the</strong> QED 3 <strong>the</strong>ory.In <strong>the</strong> isotropic (v F = v ∆ ) N = 2 QED 3 all <strong>the</strong>se additional states plus arbitrarychiral rotations among <strong>the</strong>m are completely equivalent to those discussed previously.It is here where we confront <strong>the</strong> problem of <strong>in</strong>tr<strong>in</strong>sic anisotropy <strong>in</strong> Eq. (3.121). Suchanisotropy cannot be rescaled out <strong>and</strong> manifestly breaks <strong>the</strong> U(2)×U(2) degeneracyof <strong>the</strong> full N = 2 chiral manifold down to two separate U(1)×U(1) (3.123) chiralgroups discussed previously. This is reflected <strong>in</strong> <strong>the</strong> general <strong>in</strong>crease <strong>in</strong> energy of<strong>the</strong> states from <strong>the</strong> enlarged chiral manifold. For example, <strong>the</strong> anisotropy raises <strong>the</strong>83


energy of our “stripe” states (3.126) relative to those of SDW, dipSC or “diagonalstripes”. However, when <strong>the</strong> long range Coulomb <strong>in</strong>teractions <strong>and</strong> coupl<strong>in</strong>g to <strong>the</strong>lattice are <strong>in</strong>cluded <strong>in</strong> <strong>the</strong> problem, as <strong>the</strong>y are <strong>in</strong> real materials, it is conceivablethat <strong>the</strong> “stripes” would return <strong>in</strong> some form, ei<strong>the</strong>r as a ground state or a long-livedmetastable state at some <strong>in</strong>termediate dop<strong>in</strong>g. disSC is also adversely affected byanisotropy but to a lesser extent <strong>and</strong> might rema<strong>in</strong> competitive with SDW, dipSC<strong>and</strong> “diagonal stripes”. This state breaks time reversal symmetry but preserves parity<strong>and</strong> <strong>the</strong> discussion concern<strong>in</strong>g dipSC below Eq. (3.125) applies to disSC equally well.How do we use <strong>the</strong>se general results on CSB <strong>in</strong> QUT to address <strong>the</strong> specifics of<strong>cuprate</strong> phase diagram? To this end, we need some effective comb<strong>in</strong>ation of phenomenology<strong>and</strong> more microscopic descriptions to determ<strong>in</strong>e <strong>the</strong> parameters v F , v ∆ , e τ ,e i <strong>and</strong> residual <strong>in</strong>teractions (· · · ) appear<strong>in</strong>g <strong>in</strong> L QED (3.121). The ma<strong>in</strong> task is todeterm<strong>in</strong>e what is <strong>the</strong> sequence of states with<strong>in</strong> QUT that form stable phases as <strong>the</strong>dop<strong>in</strong>g decreases toward half-fill<strong>in</strong>g under T ∗ <strong>in</strong> Fig. 3.4. While this is an extensiveproject for <strong>the</strong> future, we outl<strong>in</strong>e here some of <strong>the</strong> general features. First, with<strong>in</strong><strong>the</strong> superconduct<strong>in</strong>g state e τ , e i → 0 <strong>and</strong> a µ becomes massive thus deny<strong>in</strong>g <strong>the</strong> CSBmechanism its ma<strong>in</strong> dynamical agent. We <strong>the</strong>refore expect that <strong>the</strong> superconductoris <strong>in</strong> <strong>the</strong> symmetric phase <strong>and</strong> its nodal fermions form well-def<strong>in</strong>ed excitations[58].As we move to <strong>the</strong> left <strong>in</strong> Fig. 3.4, <strong>the</strong> phase order is suppressed <strong>and</strong> e τ , e i becomef<strong>in</strong>ite, reflect<strong>in</strong>g <strong>the</strong> unb<strong>in</strong>d<strong>in</strong>g of vortex-antivortex excitations[58]. For all practicalpurposes, this is precisely what <strong>the</strong> experiments imply. Now, <strong>the</strong> key question iswhe<strong>the</strong>r <strong>the</strong> QED 3 (3.121) rema<strong>in</strong>s <strong>in</strong> its symmetric phase or whe<strong>the</strong>r it immediatelyundergoes <strong>the</strong> CSB transition <strong>and</strong> generates f<strong>in</strong>ite gap (m ch ≠ 0).This question is difficult to answer <strong>in</strong> detail, because N c can depend non-universallyon <strong>high</strong>er order coupl<strong>in</strong>g constants. For <strong>in</strong>stance, short range <strong>in</strong>teractions, while perturbativelyirrelevant, effectively <strong>in</strong>crease N c if stronger than some critical value[74].Such <strong>in</strong>teractions, typically <strong>in</strong> <strong>the</strong> form of short range three-current terms[21], arise <strong>in</strong>more microscopic models used to derive L QED <strong>and</strong> are prom<strong>in</strong>ent among <strong>the</strong> residualterms denoted by ellipsis <strong>in</strong> (3.121). Their strength generically <strong>in</strong>creases as x → 0.These residual <strong>in</strong>teractions play a dual role <strong>in</strong> QUT. First, <strong>the</strong>y can conspire with <strong>the</strong>anisotropy to produce <strong>the</strong> situation depicted <strong>in</strong> panel (b) of Fig. 3.4, where <strong>the</strong> CSB84


takes place as soon as <strong>the</strong> phase coherence is lost. Second, once <strong>the</strong> chiral symmetryhas been broken, <strong>the</strong> residual <strong>in</strong>teractions fur<strong>the</strong>r break <strong>the</strong> symmetry with<strong>in</strong> <strong>the</strong>chiral manifold (3.123) <strong>and</strong> play a role <strong>in</strong> select<strong>in</strong>g <strong>the</strong> true ground state.3.7 Summary <strong>and</strong> conclusionsWe considered <strong>the</strong> effect of fluctuations <strong>in</strong> <strong>the</strong> d-wave superconductor, concentrat<strong>in</strong>gon <strong>the</strong> role of <strong>the</strong> phase fluctuations <strong>and</strong> <strong>the</strong>ir effect on <strong>the</strong> nodal fermions.The pair<strong>in</strong>g pseudogap provided a reference po<strong>in</strong>t of our analysis which allowed us toclassify various quasiparticle <strong>in</strong>teractions accord<strong>in</strong>g to <strong>the</strong>ir fate under <strong>the</strong> renormalizationgroup. By carefully treat<strong>in</strong>g <strong>the</strong> <strong>in</strong>teractions of <strong>the</strong> quasiparticles with <strong>the</strong>vortex phase defects, we f<strong>in</strong>d that <strong>the</strong> low energy effective <strong>the</strong>ory for <strong>the</strong> quasiparticles<strong>in</strong>side <strong>the</strong> pair<strong>in</strong>g protectorate is <strong>the</strong> (2+1) dimensional quantum electrodynamics(QED 3 ) with <strong>in</strong>herent spatial anisotropy, described by Lagrangian L D specified byEqs. (3.47,3.57).With<strong>in</strong> <strong>the</strong> superconduct<strong>in</strong>g state <strong>the</strong> gauge fields of <strong>the</strong> <strong>the</strong>ory are massive byvirtue of vortex defects be<strong>in</strong>g bound <strong>in</strong>to f<strong>in</strong>ite loops or vortex-antivortex pairs. Suchmassive gauge fields produce only short ranged <strong>in</strong>teractions between our BdG quasiparticles<strong>and</strong> are <strong>the</strong>refore irrelevant: <strong>in</strong> <strong>the</strong> superconductor quasiparticles rema<strong>in</strong>sharp <strong>in</strong> agreement with prevail<strong>in</strong>g experimental data [85]. Loss of <strong>the</strong> long rangesuperconduct<strong>in</strong>g order is brought about by unb<strong>in</strong>d<strong>in</strong>g <strong>the</strong> topological defects – vortexloops or vortex-antivortex pairs – via Kosterlitz-Thouless type transition <strong>and</strong> itsquantum analogue. Remarkably, this is accompanied by <strong>the</strong> Berry gauge field becom<strong>in</strong>gmassless. Such massless gauge field mediates long range <strong>in</strong>teractions between <strong>the</strong>fermions <strong>and</strong> becomes a relevant perturbation. Exactly what is <strong>the</strong> consequence ofthis relevant perturbation depends on <strong>the</strong> number of fermion species N <strong>in</strong> <strong>the</strong> problem.For <strong>cuprate</strong>s we argued that N = 2n CuO where n CuO is <strong>the</strong> number of CuO 2layers per unit cell. If N < N c ≃ 3 [59], <strong>the</strong> <strong>in</strong>teractions cause spontaneous open<strong>in</strong>gof a gap for <strong>the</strong> fermionic excitations at T = 0, via <strong>the</strong> mechanism of chiral symmetrybreak<strong>in</strong>g <strong>in</strong> QED 3 [59]. Formation of <strong>the</strong> gap corresponds to <strong>the</strong> onset of AF SDW<strong>in</strong>stability [58, 83] which must be considered as a progenitor of <strong>the</strong> Mott-Hubbard-85


Neel antiferromagnet at half-fill<strong>in</strong>g. If, on <strong>the</strong> o<strong>the</strong>r h<strong>and</strong>, N > N c as will be <strong>the</strong>case <strong>in</strong> bilayer or trilayer materials, <strong>the</strong> <strong>the</strong>ory rema<strong>in</strong>s <strong>in</strong> its chirally symmetric nonsuperconduct<strong>in</strong>gphase even as T → 0 <strong>and</strong> AF order arises from with<strong>in</strong> such stateonly upon fur<strong>the</strong>r underdop<strong>in</strong>g (Fig. 1). We call this symmetric state of QED 3 analgebraic Fermi liquid (AFL). In both cases AFL controls <strong>the</strong> low <strong>temperature</strong>, lowenergy behavior of <strong>the</strong> pseudogap state <strong>and</strong> <strong>in</strong> this sense assumes <strong>the</strong> role played byFermi liquid <strong>the</strong>ory <strong>in</strong> conventional metals <strong>and</strong> superconductors. In AFL <strong>the</strong> quasiparticlepole is replaced by a branch cut – <strong>the</strong> quasiparticle is no longer sharp – <strong>and</strong><strong>the</strong> fermion propagator acquires a Lutt<strong>in</strong>ger-like form Eq. (3.68). To our knowledgethis is one of <strong>the</strong> very few cases where a non-Fermi liquid nature of <strong>the</strong> excitationshas been demonstrated <strong>in</strong> dimension greater than one <strong>in</strong> <strong>the</strong> absence of disorder ormagnetic field. This Lutt<strong>in</strong>ger-like behavior of AFL will manifest itself <strong>in</strong> anomalouspower law functional form of many physical properties of <strong>the</strong> system.Dirac anisotropy, i.e. <strong>the</strong> fact that v F ≠ v ∆ , plays important role <strong>in</strong> <strong>the</strong> <strong>cuprate</strong>swhere <strong>the</strong> ratio α D = v F /v ∆ <strong>in</strong> most materials ranges between 3 <strong>and</strong> 15−20. Suchanisotropy is nontrivial as it cannot be rescaled <strong>and</strong> it significantly complicates anycalculation with<strong>in</strong> <strong>the</strong> <strong>the</strong>ory. Us<strong>in</strong>g <strong>the</strong> perturbative renormalization group <strong>the</strong>orywe have shown that anisotropic QED 3 flows back <strong>in</strong>to isotropic stable fixed po<strong>in</strong>t.This means that for weak anisotropy at long lengthscales <strong>the</strong> universal properties of<strong>the</strong> <strong>the</strong>ory are identical to those of <strong>the</strong> simple isotropic case. It rema<strong>in</strong>s to be seenwhat are <strong>the</strong> properties of <strong>the</strong> <strong>the</strong>ory at <strong>in</strong>termediate lengthscales when anisotropy isstrong.The QED 3 <strong>the</strong>ory of <strong>the</strong> pair<strong>in</strong>g pseudogap, as presented <strong>in</strong> here, starts from aremarkably simple set of assumptions, <strong>and</strong> via manipulations that are controlled <strong>in</strong><strong>the</strong> sense of 1/N expansion, arrives at nontrivial consequences, <strong>in</strong>clud<strong>in</strong>g <strong>the</strong> algebraicFermi liquid <strong>and</strong> <strong>the</strong> antiferromagnet.86


Appendix AQuasiparticle correlation functions<strong>in</strong> <strong>the</strong> mixed stateA.1 Green’s functions: def<strong>in</strong>itions <strong>and</strong> identitiesThe one-particle Green’s function matrix [52] is def<strong>in</strong>ed asĜ αβ (r 1 τ 1 ; r 2 τ 2 ) ≡ −〈T τ Ψ α (1)Ψ † β (2)〉(A.1)where T τ denotes imag<strong>in</strong>ary time order<strong>in</strong>g operator <strong>and</strong> α = 1, 2 denotes componentsof a Nambu sp<strong>in</strong>or Ψ † (1) which is a shorth<strong>and</strong> for Ψ † (r 1 , τ 1 ) = ( ψ † ↑ (r 1, τ 1 ), ψ ↓ (r 1 , τ 1 ) ) .Due to <strong>the</strong> time <strong>in</strong>dependence of <strong>the</strong> Hamiltonian (2.2), <strong>the</strong> Green’s function (A.1)depends only on <strong>the</strong> imag<strong>in</strong>ary time difference τ = τ 1 − τ 2 . Therefore, its Fouriertransform is given byĜ(r 1 , r 2 ; iω) = ∫ β0 eiωτ Ĝ(r 1 , r 2 , τ)dτ∑Ĝ(r 1 , r 2 ; τ) = 1 e −iωτ Ĝ(rβ1 , r 2 ; iω).iω(A.2)Here β = 1/(k B T ), T is <strong>temperature</strong>, <strong>and</strong> <strong>the</strong> fermionic frequency ω = (2l + 1)π/β, l ∈ Z.Us<strong>in</strong>g <strong>the</strong> above relations, it is straightforward to derive <strong>the</strong> spectral representationof <strong>the</strong> follow<strong>in</strong>g correlation functions between Ψ <strong>and</strong> its imag<strong>in</strong>ary time derivatives87


∂ τ Ψ ≡ ˙Ψ: ⎧⎪ ⎨⎪ ⎩〈T τ Ψ α (1)Ψ † β (2)〉〈T τ ˙Ψα (1)Ψ † β (2)〉〈T τ Ψ α (1) ˙Ψ † β (2)〉= − 1 β〈T τ ˙Ψα (1) ˙Ψ † β (2)〉∑∫e −iwτiωdɛÂ(r 1, r 2 ; ɛ)iω − ɛ⎧+1⎪⎨−ɛ+ɛ⎪⎩−ɛ 2(A.3)The spectral function Â(r 1, r 2 ; ɛ) can be written <strong>in</strong> terms of eigenfunctions Φ n (r) =(u n (r), v n (r)) T of <strong>the</strong> Bogoliubov-deGennes Hamiltonian Ĥ0 <strong>in</strong> <strong>the</strong> form:Â αβ (r 1 , r 2 ; ɛ) = ∑ nδ(ɛ − ɛ n )Φ nα (r 1 )Φ † nβ (r 2),(A.4)where ɛ n is <strong>the</strong> eigen-energy associated with an eigenstate labeled by <strong>the</strong> quantumnumber n. Substitut<strong>in</strong>g (A.4) <strong>in</strong>to (A.3) we can write <strong>the</strong> above correlation functionssolely <strong>in</strong> terms of <strong>the</strong> eigenfunctions Φ n (r):⎧〈T τ Ψ α (1)Ψ † β⎪⎨(2)〉+1⎧⎪〈T τ ˙Ψα (1)Ψ † β (2)〉〈T τ Ψ α (1) ˙Ψ † β⎪⎩(2)〉=− 1 ∑e Φ nα(r −iwτ 1 )Φ † nβ (r ⎨2) −ɛ nβiω − ɛiω,nn +ɛ n〈T τ ˙Ψα (1) ˙Ψ † β (2)〉 ⎪ ⎩−ɛ 2 n(A.5)In <strong>the</strong> calculations that follow we will also encounter Matsubara summations over<strong>the</strong> fermionic frequencies ω = (2l + 1)π/β, l ∈ Z, of <strong>the</strong> form:S nm (iΩ) = 1 ∑1β (iω − ɛ n )(iΩ + iω − ɛ m )where Ω = 2πk/β, k ∈ Z, is an outside bosonic frequency.evaluated us<strong>in</strong>g st<strong>and</strong>ard techniques (see e.g. [52]) <strong>and</strong> yields:iωS nm (iΩ) =f n − f mɛ n − ɛ m + iΩ .(A.6)The sum (A.6) can be(A.7)Here f n is a short h<strong>and</strong> for <strong>the</strong> Fermi-Dirac distribution function f(ɛ n ) = ( 1 +exp(βɛ n ) ) −1.In order to derive sp<strong>in</strong> <strong>and</strong> <strong>the</strong>rmal currents we will need <strong>the</strong> explicit form of <strong>the</strong>generalized velocity operator V <strong>in</strong>troduced <strong>in</strong> (2.33):( )πiˆvm ∆V =iˆv ∆∗88π ∗m(A.8)


where <strong>the</strong> gap velocity operator is given byiˆv ∆ = i∆ 0 η δ δe iφ(r)/2( e iδ·p − e −iδ·p) e iφ(r)/2(A.9)<strong>and</strong> <strong>the</strong> canonical momentum equalsπ =− i 2 δe i r+δr (p− e c A)·dl + h.c. (A.10)The follow<strong>in</strong>g identities for operators ˆv ∆ <strong>and</strong> π will be used <strong>in</strong> <strong>the</strong> next section:{π ∗ Ψ † · πΨ = i∇ · (Ψ † πΨ) + Ψ † π 2 Ψ(A.11)π ∗ Ψ † · πΨ = −i∇ · (π ∗ Ψ † Ψ) + (π ∗ ) 2 Ψ † ΨΨ † ∆Ψ − ∆Ψ † Ψ = 1 2 ∇ · (Ψ † ˆv ∆ Ψ − ˆv ∆ Ψ † Ψ ) (A.12)The above equations are straightforward to derive <strong>in</strong> cont<strong>in</strong>uum, while on <strong>the</strong> tightb<strong>in</strong>d<strong>in</strong>glattice Eqs. (A.11) <strong>and</strong> (A.12) imply a symmetric def<strong>in</strong>ition of <strong>the</strong> latticedivergence operator.The identities (A.11,A.12) explicitly ensure that <strong>the</strong> generalized velocity operatorV µ is Hermitian i.e it satisfies <strong>the</strong> follow<strong>in</strong>g identity:∫∫drV ∗ Ψ † (r) Ψ(r) ≡ drVαβ ∗ Ψ† β (r) Ψ α(r)∫= drΨ † (r) VΨ(r).(A.13)A.2 Sp<strong>in</strong> current <strong>and</strong> sp<strong>in</strong> conductivity tensorThe time derivative of sp<strong>in</strong> density ρ s = 2 (ψ† ↑ ψ ↑ − ψ † ↓ ψ ↓) can be written <strong>in</strong> Nambuformalism as˙ρ s = i [H, ρs ] = 2 ( ˙Ψ † Ψ + Ψ † ˙Ψ)(A.14)Us<strong>in</strong>g equations of motion (2.10) toge<strong>the</strong>r with <strong>the</strong> explicit form of Ĥ0 operator (2.8)we obta<strong>in</strong>˙ρ s = i ( (π ∗ ) 22 2m Ψ† 1 Ψ 1 − Ψ † π 212m Ψ 1 + ˆ∆Ψ † 1 Ψ 2 − Ψ † ˆ∆Ψ 1 2)+ ˆ∆ ∗ Ψ † 2 Ψ 1 − Ψ † 2ˆ∆ ∗ Ψ 1 − π22m Ψ† 2 Ψ 2 + Ψ † (π ∗ ) 222m Ψ 2 . (A.15)89


Us<strong>in</strong>g <strong>the</strong> identities (A.11,A.12) it is easy to show that˙ρ s = − 4 ∇ µ(Ψ † V µ Ψ + V ∗µ Ψ† Ψ) = −∇ · j s (A.16)where <strong>the</strong> generalized velocity operator V µ is def<strong>in</strong>ed <strong>in</strong> Eq. (A.8), <strong>and</strong> <strong>the</strong> lastequality follows from <strong>the</strong> cont<strong>in</strong>uity equation (2.31) relat<strong>in</strong>g <strong>the</strong> sp<strong>in</strong> density ρ s <strong>and</strong><strong>the</strong> sp<strong>in</strong> current j s . Upon spatial averag<strong>in</strong>g <strong>and</strong> utiliz<strong>in</strong>g Eq. (A.13) we f<strong>in</strong>d <strong>the</strong> q → 0limit of <strong>the</strong> sp<strong>in</strong> currentj s µ = 2 Ψ† V µ Ψ.(A.17)The evaluation of <strong>the</strong> sp<strong>in</strong> current-current correlation function (2.29) is straightforward<strong>and</strong> yields:D µν (iΩ) = − 24∫ β0e iτΩ[ V µ (2)V ν (4)×〈T τ Ψ † (1)Ψ(2)Ψ † (3)Ψ(4)〉 1, 2 → (x, τ)3, 4 → (y, 0)]dτ (A.18)Here Ψ(1) ≡ Ψ(r 1 , τ 1 ) <strong>and</strong> similarly <strong>the</strong> operator V µ (2) acts only on functions of r 2 .Us<strong>in</strong>g Wick’s <strong>the</strong>orem, identity (A.5), <strong>and</strong> upon spatial averag<strong>in</strong>g over x <strong>and</strong> y weobta<strong>in</strong>D µν (iΩ) = 24∑〈n|V µ |m〉〈m|V ν |n〉S nm (iΩ).mn(A.19)The double summation extends over <strong>the</strong> eigenstates |m〉 <strong>and</strong> |n〉 of <strong>the</strong> Hamiltonian(2.8), <strong>and</strong> S mn (iΩ) is given <strong>in</strong> Eq. (A.7). Analytically cont<strong>in</strong>u<strong>in</strong>g iΩ → Ω + i0 wef<strong>in</strong>ally obta<strong>in</strong> <strong>the</strong> expression for <strong>the</strong> retarded correlation function:D R µν(Ω) = 24∑mnVµ nm Vνmnɛ n − ɛ m + Ω + i0 (f n − f m ).(A.20)where V µ mn is def<strong>in</strong>ed <strong>in</strong> (2.35) <strong>and</strong> f n is a short h<strong>and</strong> for <strong>the</strong> Fermi-Dirac distributionfunction f(ɛ n ) = ( 1+exp(βɛ n ) ) −1 . F<strong>in</strong>ally, we substitute <strong>the</strong> last equation <strong>in</strong>to (2.28)to obta<strong>in</strong>σµν s = 2 ∑ Vµ nm Vνmn4i (ɛmn n − ɛ m + i0) (f 2 n − f m ) (A.21)90


A.3 Thermal current <strong>and</strong> <strong>the</strong>rmal conductivity tensorIn order to calculate <strong>the</strong>rmal currents <strong>and</strong> <strong>the</strong>rmal conductivity <strong>in</strong> <strong>the</strong> magneticfield we <strong>in</strong>troduce a pseudo-gravitational potential χ = r · g/c 2 [48, 49, 50, 51]. Thisformal procedure is useful because it illustrates that <strong>the</strong> transverse <strong>the</strong>rmal responseis not given just by Kubo formula, but <strong>in</strong> addition it <strong>in</strong>cludes corrections related tomagnetization. Throughout this section = 1. The pseudo-gravitational potentialenters <strong>the</strong> Hamiltonian, up to l<strong>in</strong>ear order <strong>in</strong> χ, as∫H T = dx (1 + χ 2 )Ψ† (x) Ĥ0 (1 + χ 2 )Ψ(x),(A.22)where H 0 is <strong>the</strong> Bogoliubov-deGennes Hamiltonian (2.8). The equations of motionfor <strong>the</strong> fields Ψ thus becomei ˙Ψ = [Ψ, H T ] = (1 + χ 2 )Ĥ0(1 + χ 2 )Ψ = (1 + χ)Ĥ0Ψ − i∇ µ χV µ Ψ. (A.23)The last equality follows from <strong>the</strong> commutation relation (2.33). (Note that for χ ≠ 0<strong>the</strong> Eq. (A.23) differs from Eq. (2.10). Throughout this section ˙Ψ will refer to Eq.(A.23) unless explicitly stated o<strong>the</strong>rwise).To f<strong>in</strong>d <strong>the</strong>rmal current j Q we start with <strong>the</strong> cont<strong>in</strong>uity equationḣ T + ∇ · j Q = 0.The Hamiltonian density h T follows from Eq. (A.22) <strong>and</strong> readsh T = 12m ∗ (π ∗ µ ˜Ψ † 1π µ ˜Ψ1 − π µ ˜Ψ† 2 πµ ∗ ˜Ψ)2 − µ ˜Ψ † ασαβ 3 ˜Ψ β+ 1 ( )˜Ψ†2 α ∆ αβ ˜Ψβ + ∆ αβ ˜Ψ† α ˜Ψβ(A.24)(A.25)where ˜Ψ = (1 + χ 2 )Ψ. Tak<strong>in</strong>g <strong>the</strong> time derivative of <strong>the</strong> Hamiltonian density h T <strong>and</strong>91


us<strong>in</strong>g Eqs.(A.11) <strong>and</strong> equations of motion (A.23) we obta<strong>in</strong>ḣ T = i[H T , h T ] =i (2m ∇ ˙˜Ψ† µ Π µ ˜Ψ − Π∗ ˙˜Ψ)µ ˜Ψ†+ 1 ( )˜Ψα ∆ αβ˙˜Ψβ − ˙˜Ψ† 2α ∆ αβ ˜Ψβ+ 1 )(∆ αβ˙˜Ψ†2α ˜Ψβ − ∆ αβ ˜Ψ† α˙˜Ψβ(A.26)where we <strong>in</strong>troduced matrix operators( )(0 ˆ∆∆ αβ =, Π µˆ∆ ∗ αβ0= πµ 00 πµ∗). (A.27)Here ˙˜Ψ = (1 +χ2 ) ˙Ψ <strong>and</strong> π µ is def<strong>in</strong>ed <strong>in</strong> Eq. (A.10). F<strong>in</strong>ally we use (A.12) to extractj Q from (A.26). Upon spatial averag<strong>in</strong>g <strong>and</strong> us<strong>in</strong>g <strong>the</strong> Hermiticity of V µ (A.13) <strong>the</strong><strong>the</strong>rmal current j Q readsNote that <strong>the</strong> expression for j Q conta<strong>in</strong>s two termsjµ Q = i ( )˜Ψ† V µ˙˜Ψ − ˙˜Ψ† V µ ˜Ψ . (A.28)2j Q = j Q 0 + jQ 1(A.29)where j Q 0 is <strong>in</strong>dependent of χ <strong>and</strong> jQ 1is l<strong>in</strong>ear <strong>in</strong> χ. Explicitly:j Q 0 (r) = 1 2 Ψ† {V, Ĥ0}Ψ(A.30)<strong>and</strong>jµ,1(r) Q = − i 4 ∂ νχΨ † (V µ V ν − V ν V µ ) Ψ+ ∂ ()νχ4 Ψ† (x ν V µ + 3V µ x ν )Ĥ0 + Ĥ0(3x ν V µ + V µ x ν )Ψ(A.31)where {a, b} = ab+ba. Analogously to <strong>the</strong> situation <strong>in</strong> <strong>the</strong> normal metal, <strong>the</strong> <strong>the</strong>rmalaverage of j Q 1bydoes not <strong>in</strong> general vanish <strong>in</strong> <strong>the</strong> presence of <strong>the</strong> magnetic field [54].The l<strong>in</strong>ear response of <strong>the</strong> system to <strong>the</strong> external perturbation can be described〈j Q µ 〉 = 〈jQ 0µ〉 + 〈j Q 1µ〉 = −(K µν + M µν )∂ ν χ ≡ −L Q µν ∂ νχ (A.32)92


whereK µν = − δ〈jQ 0µ〉δ ∂ ν χ = − lim Pµν(Ω) R − Pµν(0)RΩ→0 iΩ(A.33)is <strong>the</strong> st<strong>and</strong>ard Kubo formula for a dc response [52], P R µν(Ω) be<strong>in</strong>g <strong>the</strong> retardedcurrent-current correlation function, <strong>and</strong>M µν = − δ〈jQ 1µ〉δ ∂ ν χ= − ∑ nɛ n f n 〈n| {V µ , x ν } |n〉 + ∑ ni4 f n〈n|[V µ , V ν ]|n〉 (A.34)is a contribution from “dia<strong>the</strong>rmal” currents [54]. Note that <strong>the</strong> latter vanishes for <strong>the</strong>longitud<strong>in</strong>al response while it rema<strong>in</strong>s f<strong>in</strong>ite for <strong>the</strong> transverse response. As we willshow later <strong>in</strong> this section, at T = 0 <strong>the</strong>re is an important cancellation between (A.33)<strong>and</strong> (A.34) which renders <strong>the</strong> <strong>the</strong>rmal conductivity κ µν<strong>the</strong> s<strong>in</strong>gularity from <strong>the</strong> <strong>temperature</strong> denom<strong>in</strong>ator <strong>in</strong> Eq. (2.48).well-behaved <strong>and</strong> preventsThe retarded <strong>the</strong>rmal current-current correlation function Pµν R (Ω) can be expressed<strong>in</strong> terms of <strong>the</strong> Matsubara f<strong>in</strong>ite <strong>temperature</strong> correlation function∫ β〉P µν (iΩ) = − dτe〈T iΩτ τ j µ (r, τ)j ν (r ′ , 0)as0P R µν(Ω) = P µν (iΩ → Ω + i0).The current j µ (r, τ) <strong>in</strong> Eq. (A.35) is given by(A.35)(A.36)j µ (τ) = 1 2 (Ψ† (τ)V µ ∂ τ Ψ(τ) − ∂ τ Ψ † (τ) V µ Ψ(τ))(A.37)As po<strong>in</strong>ted out by Ambegaokar <strong>and</strong> Griff<strong>in</strong> [56] time order<strong>in</strong>g operator T τ <strong>and</strong> timederivative operators ∂ τ do not commute <strong>and</strong> neglect<strong>in</strong>g this subtlety can lead to formallydivergent frequency summations[38]. Tak<strong>in</strong>g heed of this subtlety, substitutionof (A.37) <strong>in</strong>to (A.35) amounts to∫ βP µν (iΩ) = − 1 dτe iΩτ V µ αβ4(2)V γδ〈T ν (4) τ ˙Ψ† α (1)Ψ β (2) ˙Ψ † γ (3)Ψ δ(4)0〉− ˙Ψ † α(1)Ψ β (2)Ψ † γ(3) ˙Ψ δ (4) − Ψ † α(1) ˙Ψ β (2) ˙Ψ † γ(3)Ψ δ (4) + Ψ † α(1) ˙Ψ β (2)Ψ † γ(3) ˙Ψ δ (4) ,(A.38)93


where <strong>the</strong> notation follows Eq. (A.18) <strong>and</strong> Eq. (2.10). Upon utiliz<strong>in</strong>g <strong>the</strong> identities(A.5) <strong>and</strong> (A.13) <strong>and</strong> perform<strong>in</strong>g <strong>the</strong> st<strong>and</strong>ard Matsubara summation we haveP µν (iΩ) = 1 ∑〈n|V µ |m〉〈m|V ν |n〉(ɛ n + ɛ m ) 2 S nm (iΩ) (A.39)4nmwhere S mn is given by Eq. (A.7). Analytically cont<strong>in</strong>u<strong>in</strong>g iΩ → Ω + i0 we obta<strong>in</strong>P R µν (Ω) = 1 4∑nm(ɛ n + ɛ m ) 2 Vµ nm Vνmnɛ n − ɛ m + Ω + i0 (f n − f m ).(A.40)Note that <strong>the</strong> only difference between <strong>the</strong> Kubo contribution to <strong>the</strong> <strong>the</strong>rmal response(A.40) <strong>and</strong> <strong>the</strong> sp<strong>in</strong> response (A.20) is <strong>the</strong> value of <strong>the</strong> coupl<strong>in</strong>g constant. In <strong>the</strong>case of <strong>the</strong>rmal response (A.40), <strong>the</strong> coupl<strong>in</strong>g constant is (ɛ n + ɛ m )/2 which is eigenstatedependent, while <strong>in</strong> <strong>the</strong> case of sp<strong>in</strong> response (A.20) it is /2 <strong>and</strong> eigenstate<strong>in</strong>dependent.Us<strong>in</strong>g Eq. (A.33) we f<strong>in</strong>d that <strong>the</strong> Kubo contribution to <strong>the</strong> <strong>the</strong>rmal transportcoefficient is given byThis can be written aswhere<strong>and</strong>K µν = − i 4∑nm(ɛ n + ɛ m ) 2(ɛ n − ɛ m + i0) 2 V nmµ V mnν (f n − f m ). (A.41)K µν = K (1)µν + K(2) µν (A.42)K µν (1) = − i ∑ 4ɛ n ɛ m4 (ɛnm n − ɛ m + i0) V nm2 µ Vν mn (f n − f m ) (A.43)K (2)µν = − i 4∑nmV nmµ V mnν (f n − f m ) (A.44)Similarly, we can separate <strong>the</strong> “dia<strong>the</strong>rmal” contribution (A.34) asM µν = M (1)µν + M (2)µν (A.45)where M (1)µν <strong>and</strong> M (2)µν refer to <strong>the</strong> first <strong>and</strong> second term <strong>in</strong> (A.34) respectively. Us<strong>in</strong>g<strong>the</strong> completeness relation ∑ m|m〉〈m| = 1 it is easy to show thatM µν (2) = i ∑(f n − f m )Vµ nm Vν mn . (A.46)4mn94


Comparison of (A.44) <strong>and</strong> (A.46) yields M (2)µν + K (2)µν = 0. Therefore <strong>the</strong> <strong>the</strong>rmalresponse coefficient is given byL Q µν = K(1) µν + M (1)µν . (A.47)Utiliz<strong>in</strong>g commutation relationships (2.33), M µν (1) can be expressed <strong>in</strong> <strong>the</strong> form:∫ ()M µν (1) = ηf(η)Tr δ(η − Ĥ0)(x µ V ν − x ν V µ ) dη (A.48)where <strong>the</strong> <strong>in</strong>tegral extends over <strong>the</strong> entire real l<strong>in</strong>e. The rest of <strong>the</strong> section followsclosely Smrčka <strong>and</strong> Středa [50]. We def<strong>in</strong>e <strong>the</strong> resolvents G ± :G ± −1≡ (η ± i0 − Ĥ0) (A.49)<strong>and</strong> operators()dGA(η) = iTr V +µ V dη νδ(η − Ĥ0) − V µ δ(η − Ĥ0)V dG −ν dη) B(η) = iTr(V µ G + V ν δ(η − Ĥ0) − V µ δ(η − Ĥ0)V(A.50)ν G −To facilitate Sommerfeld expansion we note that response coefficients K (1)µν (T ),M µν (1) (T ), σµν s (T ) have generic form∫L(T ) =f(η)l(η)dη,(A.51)<strong>and</strong> after <strong>in</strong>tegration by parts∫L(T ) = −dfdη ˜L(η)dη.(A.52)Here ˜L(ξ) is def<strong>in</strong>ed as˜L(ξ) ≡∫ ξ−∞l(η)dη.(A.53)Note that L(T = 0) = ˜L(ξ = 0) <strong>and</strong> <strong>in</strong> particular <strong>the</strong> sp<strong>in</strong> conductivity at T = 0satisfies σ s µν(T =0) = ˜σ s µν(ξ =0). Identities (A.52) <strong>and</strong> (A.53) will enable us to express<strong>the</strong> coefficients at f<strong>in</strong>ite <strong>temperature</strong> through <strong>the</strong> coefficients at zero <strong>temperature</strong>. Forexample, it follows from Eq. (A.48) that˜M (1) (ξ) =∫ ξ−∞()ηTr δ(η − Ĥ0)(x µ V ν − x ν V µ )95(A.54)


<strong>and</strong> from Eqs.(A.21, A.50)˜σ s µν (ξ)= 1 4∫ ξ−∞A(η)dηSimilarly, coefficient K µν (1) from (A.43) can be written as∫K µν (1) = −i dηf(η)η ∑ ( Vnmµ Vνmnδ(η − ɛ n )ɛ m(η − ɛ m + i0) − V µ mn V nm )ν2 (η − ɛ m − i0) 2so that˜K (1)µν (ξ) ≡ −i ∫ ξ−∞dη η ∑ δ(η − ɛ n )ɛ m(Vnmµ Vνmn(η − ɛ m + i0) − V mn2µ Vνnm )(η − ɛ m − i0) 2(A.55)(A.56)(A.57)Us<strong>in</strong>g def<strong>in</strong>itions (A.50), ˜K(1) (ξ) can be expressed as˜K (1)µν (ξ) = ∫ ξ−∞After <strong>in</strong>tegration by parts one obta<strong>in</strong>s∫ξµν (ξ) = ξ2 A(η)dη +˜K (1)−∞η 2 A(η)dη +∫ ξ−∞∫ ξ−∞ηB(η)dη.((η 2 − ξ 2 ) A(η) − 1 )dBdη.2 dη(A.58)(A.59)As shown <strong>in</strong> Ref. ([50]) <strong>the</strong> last term <strong>in</strong> this expression is exactly compensated by˜M (1) (ξ): This becomes evident after not<strong>in</strong>g that def<strong>in</strong>itions <strong>in</strong> Eq. (A.50) imply[A − 1 dB(η)= 1 2 dη 2 Tr]dδ(η − Ĥ0) (x µ V ν − x ν V µ ) . (A.60)dηSubstitut<strong>in</strong>g <strong>the</strong> last identity <strong>in</strong>to <strong>the</strong> Eq.(A.59) <strong>and</strong> <strong>in</strong>tegrat<strong>in</strong>g <strong>the</strong> second term byparts we obta<strong>in</strong>∫ξµν (ξ) = ξ2˜K (1)−∞∫ ξA(η)dη −−∞()ηTr δ(η − Ĥ0)(x µ V ν − x ν V µ ) dη(A.61)The second term here is equal to −M (1)µν from (A.54). After <strong>the</strong> cancellation <strong>the</strong> resultsimply reads:˜L Q µν(ξ) =˜K(1)µν (ξ) +˜M(1)µν (ξ) = ξ 2 ∫ ξ96−∞A(η)dη.(A.62)


Or, us<strong>in</strong>g (A.55)F<strong>in</strong>ally, from Eq.(A.52) we f<strong>in</strong>d( ) 2ξ˜L Q µν2˜σ (ξ) = µν s (ξ). (A.63)L Q µν(T ) = − 4 2 ∫ df(η)dη η2˜σ s µν(η)dη.(A.64)97


Appendix BField <strong>the</strong>ory of quasiparticles <strong>and</strong><strong>vortices</strong>B.1 Jacobian L 0Here we derive <strong>the</strong> explicit form of <strong>the</strong> “Jacobian” L 0 for two cases of <strong>in</strong>terest: i)<strong>the</strong> <strong>the</strong>rmal vortex-antivortex fluctuations <strong>in</strong> 2D layers <strong>and</strong> ii) <strong>the</strong> spacetime vortexloop excitations relevant for low <strong>temperature</strong>s (T ≪ T ∗ ) deep <strong>in</strong> <strong>the</strong> underdopedregime.B.1.12D <strong>the</strong>rmal vortex-antivortex fluctuationsIn order to perform specific computations we have to adopt a model for vortexantivortexexcitations. We will use a 2D Coulomb gas picture of vortex-antivortexplasma. In this model (anti)<strong>vortices</strong> are ei<strong>the</strong>r po<strong>in</strong>t-like objects or are assumedto have a small hard-disk radius of size of <strong>the</strong> coherence length ξ 0 which emulates<strong>the</strong> core region. As long as ξ 0 ≪ n − 1 2 , where n = n v + n a is <strong>the</strong> average densityof vortex defects, <strong>the</strong> two models lead to very similar results <strong>and</strong> both undergo avortex-antivortex pair unb<strong>in</strong>d<strong>in</strong>g transition of <strong>the</strong> Kosterlitz-Thouless variety.98


Above <strong>the</strong> transition we have∫∑∫exp [−β d 2 rL 0 ] = 2 −N lDϕ(r)A,B×δ[∇ × v − 1 2 ∇ × (∇ϕ A + ∇ϕ B )](B.1)×δ[∇ × a − 1 2 ∇ × (∇ϕ A − ∇ϕ B )] .The phase ϕ(r) is due solely to <strong>vortices</strong> <strong>and</strong> we can rewrite (B.1) as:∑ 2 −N l ∑ ∏N v ∫∏N a ∫d 2 r i d 2 r j e −βEc(Nv+Na)N v !N a !N v,N aA,Bi×δ [ ∑N vρ v (r) − δ(r − r i ) ] δ [ ∑N aρ a (r) − δ(r − r j ) ]i×δ [ N A N v∑v∑Bb(r) − π δ(r − r A i ) + π δ(r − r B i )ijNaA N∑a∑B+π δ(r − r A j ) − π δ(r − r B j ) ] .jiji(B.2)Here N v (N a ) is <strong>the</strong> number of free <strong>vortices</strong> (anti<strong>vortices</strong>), N l = N v + N a , r i (r j )are vortex (antivortex) coord<strong>in</strong>ates <strong>and</strong> ρ v (r) (ρ a (r)) are <strong>the</strong> correspond<strong>in</strong>g densities.b(r) = (∇ × a(r)) z = π(ρ A v − ρB v − ρA a + ρB a ) <strong>and</strong> E c is <strong>the</strong> core energy which we haveabsorbed <strong>in</strong>to L 0 for convenience. We now express <strong>the</strong> above δ-functions as functional<strong>in</strong>tegrals over three new fields: d v (r), d a (r) <strong>and</strong> κ(r):∑ 2 −N l ∑ ∏N v∫∏N a∫d 2 r i d 2 r j e −βEc(Nv+Na)N v !N a !∫×N v,N aA,BDd v Dd a Dκ exp { ∫i∫+ii∫+ij∑N vd 2 rd v (ρ v (r) − δ(r − r i ))∑N ad 2 rd a (ρ a (r) − δ(r − r j ))d 2 rκ [ N A N v∑v∑Bb(r) − π δ(r − r A i ) + π δ(r − r B i )iNaA N∑a∑B+π δ(r − r A j ) − π δ(r − r B j ) ]} .j99iiji(B.3)


The <strong>in</strong>tegration over δ-functions <strong>in</strong> <strong>the</strong> exponential is easily performed <strong>and</strong> <strong>the</strong> summationover A(B) labels can be carried out explicitly to obta<strong>in</strong>:∫[ ∫Dd v Dd a Dκ exp i d 2 r ( d v ρ v + d a ρ a + κb )]e −βEcNv N vN v !N v,N a i× ∑× e−βEcNaN a !∏∫∏N aj∫d 2 r i exp(−id v (r i )) cos(πκ(r i ))d 2 r j exp(−id a (r j )) cos(πκ(r j )).(B.4)In <strong>the</strong> <strong>the</strong>rmodynamic limit <strong>the</strong> sum (B.4) is dom<strong>in</strong>ated by N v(a) = 〈N v(a) 〉, where〈N v(a) 〉 is <strong>the</strong> average number of free (anti)<strong>vortices</strong> determ<strong>in</strong>ed by solv<strong>in</strong>g <strong>the</strong> fullproblem. Fur<strong>the</strong>rmore, as 〈N v(a) 〉 → ∞ <strong>in</strong> <strong>the</strong> <strong>the</strong>rmodynamic limit <strong>the</strong> <strong>in</strong>tegrationover d v (r), d a (r) <strong>and</strong> κ(r) can be performed <strong>in</strong> <strong>the</strong> saddle-po<strong>in</strong>t approximation lead<strong>in</strong>gto <strong>the</strong> follow<strong>in</strong>g saddle-po<strong>in</strong>t equations:−ρ v (r) + 〈N v 〉Ω v (r) = 0−ρ a (r) + 〈N a 〉Ω a (r) = 0−b(r) + [〈N v 〉Ω v (r) + 〈N a 〉Ω a (r)](B.5)(B.6)(B.7)×π tanh(πκ(r)) = 0withΩ m (r) =e dm(r) cosh(πκ(r))∫d2 r ′ e dm(r′ ), m = a, v.cosh(πκ(r ′ ))Eqs. (B.5-B.7) follow from functional derivatives of (B.4) with respect to d v (r), d a (r)<strong>and</strong> κ(r), respectively. We have also built <strong>in</strong> <strong>the</strong> fact that <strong>the</strong> saddle-po<strong>in</strong>t solutionsoccur at d v → id v , d a → id a , κ → iκ.The saddle-po<strong>in</strong>t equations (B.5-B.7) can be solved exactly lead<strong>in</strong>g to:d v (r) = ln ρ v (r) − ln cosh(πκ(r))d a (r) = ln ρ a (r) − ln cosh(πκ(r))(B.8)(B.9)whereκ(r) = 1 []b(r)π tanh−1 . (B.10)π(ρ v (r) + ρ a (r))100


Insert<strong>in</strong>g (B.8-B.10) back <strong>in</strong>to (B.4) f<strong>in</strong>ally gives <strong>the</strong> entropic part of L 0 /T :ρ v ln ρ v + ρ a ln ρ a − 1 [ ] (∇ ×π (∇ × a) z tanh −1 a)zπ(ρ v + ρ a )+ (ρ v + ρ a ) ln cosh tanh −1 [ (∇ × a)zπ(ρ v + ρ a )], (B.11)where ρ v(a) (r) are densities of free (anti)<strong>vortices</strong>. We display L 0 <strong>in</strong> this form tomake contact with familiar physics: <strong>the</strong> first two terms <strong>in</strong> (B.11) are <strong>the</strong> entropiccontribution of free (anti)<strong>vortices</strong> <strong>and</strong> <strong>the</strong> Doppler gauge field ∇ × v → π(ρ v − ρ a )(〈∇ × v〉 = 0). The last two terms encode <strong>the</strong> “Berry phase” physics of topologicalfrustration. Note that <strong>the</strong> “Berry” magnetic field b = (∇ × a) z couples directly onlyto <strong>the</strong> total density of vortex defects ρ v + ρ a <strong>and</strong> is <strong>in</strong>sensitive to <strong>the</strong> vortex charge.This is a reflection of <strong>the</strong> Z 2 symmetry of <strong>the</strong> orig<strong>in</strong>al problem def<strong>in</strong>ed on discrete(i.e., not coarse-gra<strong>in</strong>ed) <strong>vortices</strong>. We write ρ v(a) (r) = 〈ρ v(a) 〉 + δρ v(a) (r) <strong>and</strong> exp<strong>and</strong>(B.11) to lead<strong>in</strong>g order <strong>in</strong> δρ v(a) <strong>and</strong> ∇ × a:L 0 /T → (∇ × v) 2 /(2π 2 n l ) + (∇ × a) 2 /(2π 2 n l ),(B.12)where n l = 〈ρ v 〉+〈ρ a 〉 is <strong>the</strong> average density of free vortex defects. Both v <strong>and</strong> a havea Maxwellian bare stiffness <strong>and</strong> are massless <strong>in</strong> <strong>the</strong> normal state. As one approachesT c , n l ∼ ξ −2sc→ 0, where ξ sc (x, T ) is <strong>the</strong> superconduct<strong>in</strong>g correlation length, <strong>and</strong> v<strong>and</strong> a become massive (see <strong>the</strong> ma<strong>in</strong> text).B.1.2Quantum fluctuations of (2+1)D vortex loopsThe expression for L 0 [j µ ] given by Eq. (3.39) follows directly once <strong>the</strong> systemconta<strong>in</strong>s unbound vortex loops <strong>in</strong> its ground state <strong>and</strong> thus can respond to <strong>the</strong> externalperturbation A extµ over arbitrary large distances <strong>in</strong> (2+1)-dimensional spacetime.This is already clear at <strong>in</strong>tuitive level if we just th<strong>in</strong>k of <strong>the</strong> geometry of <strong>in</strong>f<strong>in</strong>iteversus f<strong>in</strong>ite loops <strong>and</strong> <strong>the</strong> fact that only unbound loops allow vorticity fluctuations,described by 〈j µ (q)j ν (−q)〉, to proceed unh<strong>in</strong>dered. Still, it is useful to derive (3.39)<strong>and</strong> its consequences belabored <strong>in</strong> Section II with<strong>in</strong> an explicit model for vortex loopfluctuations.101


Here we consider fluctuat<strong>in</strong>g vortex loops <strong>in</strong> cont<strong>in</strong>uous (2+1)D spacetime <strong>and</strong>compute L 0 [j µ ] us<strong>in</strong>g duality map to <strong>the</strong> relativistic Bose superfluid [86]. We aga<strong>in</strong>start by us<strong>in</strong>g our model of a large gap s-wave superconductor which enables us toneglect a µ <strong>in</strong> <strong>the</strong> fermion action <strong>and</strong> <strong>in</strong>tegrate over it <strong>in</strong> <strong>the</strong> expression for L 0 [v µ , a µ ](3.11). This gives:where<strong>and</strong>e − d3 xL 0=˜S =N∑∮S 0l=1(∂ × ∂ϕ(x))∞∑N=01N!ds l + 1 2N∏∮l=1N∑∮l,l ′ =1µ = 2πn µ(x) = 2πDx l [s l ]δ ( j µ (x) − n µ (x) ) e − ˜Sds l∮N∑∮lds l ′g(|x l [s l ] − x l ′[s l ′]|)Ldx lµ δ(x − x l [s l ]) .(B.13)(B.14)(B.15)In <strong>the</strong> above equations N is <strong>the</strong> number of loops, s l is <strong>the</strong> Schw<strong>in</strong>ger proper time (or“proper length”) of loop l, S 0 is <strong>the</strong> action per unit length associated with motion ofvortex cores <strong>in</strong> (2+1)-dimensional spacetime (<strong>in</strong> an analogous 3D model this wouldbe ε c /T , where ε c is <strong>the</strong> core l<strong>in</strong>e energy), g(|x l [s l ]−x l ′[s l ′]|) is <strong>the</strong> short range penaltyfor core overlap <strong>and</strong> L denotes a l<strong>in</strong>e <strong>in</strong>tegral. We kept our practice of <strong>in</strong>clud<strong>in</strong>g coreterms <strong>in</strong>dependent of vorticity <strong>in</strong>to L 0 . Note that vortex loops must be periodic alongτ reflect<strong>in</strong>g <strong>the</strong> orig<strong>in</strong>al periodicity of ϕ(r, τ).We can th<strong>in</strong>k of vortex loops as worldl<strong>in</strong>e trajectories of some relativistic charged(complex) bosons (charged s<strong>in</strong>ce <strong>the</strong> loops have two orientations) <strong>in</strong> two spatial dimensions.L 0 without <strong>the</strong> δ-function describes <strong>the</strong> vacuum Lagrangian of such a<strong>the</strong>ory, with vortex loops represent<strong>in</strong>g particle-antiparticle virtual creation <strong>and</strong> annihilationprocess. The duality map is based on <strong>the</strong> follow<strong>in</strong>g relation between <strong>the</strong>Green function of free charged bosons <strong>and</strong> a gas of free oriented loops:∫G(x) = 〈φ(0)φ ∗ d 3 k e ik·x ∫ ∞(x)〉 == dse −sm2(2π) 3 k 2 + m 2 dd 0∫×d 3 k(2π) 3 eik·x−sk2 =∫ ∞dse −sm2 d0( ) 312e− x24s ,4πs(B.16)102


where m d is <strong>the</strong> mass of <strong>the</strong> complex dual field φ(x).<strong>in</strong>tegral representation we can write:( ) 3/2 ∫ 1x(s)=x[e − 1 4 x2 /s = Dx(s ′ ) exp − 1 ∫ s]ds ′ ẋ 2 (s ′ )4πsx(0)=04 0With<strong>in</strong> <strong>the</strong> Feynman path, (B.17)where ẋ ≡ dx/ds. Fur<strong>the</strong>rmore, by simple <strong>in</strong>tegration (B.16) can be manipulated<strong>in</strong>toTr [ ∫ ∞ln(−∂ 2 + m 2 d )] ds= −0= −s e−sm2 d∫ ∞0∫dss e−sm2 dd 3 k(2π) 3 e−sk2∮Dx(s ′ ) exp[− 1 ∫ s]ds ′ ẋ 2 (s ′ )4 0(B.18)where <strong>the</strong> path <strong>in</strong>tegral now runs over closed loops (x(s) = x(0)). In <strong>the</strong> dual <strong>the</strong>orythis can be reexpressed asTr [ ∫ln(−∂ 2 + m 2 d )] =Comb<strong>in</strong><strong>in</strong>g (B.18) <strong>and</strong> (B.19) <strong>and</strong> us<strong>in</strong>gd 3 k(2π) 3 ln(k2 + m 2 d ) .(B.19)Tr [ ln(−∂ 2 + m 2 d) ] = ln Det(−∂ 2 + m 2 d) ≡ W(B.20)f<strong>in</strong>ally leads to:e −W =∞∑N=01N!N∏[∫ ∞l=10∮ds le −s lm 2 ds lDx(s ′ l ) ]×exp[− 1 4N∑∫ sll=10ds ′ lẋ2 (s ′ l ) ]. (B.21)This is noth<strong>in</strong>g else but <strong>the</strong> partition function of <strong>the</strong> free loop gas. The size of loopsis regulated by m d . As m d → 0 <strong>the</strong> average loop size diverges. On <strong>the</strong> o<strong>the</strong>r h<strong>and</strong>,through W (B.20), we can also th<strong>in</strong>k of (B.21) as <strong>the</strong> partition function of <strong>the</strong> freebosonic <strong>the</strong>ory.To exploit this equivalence fur<strong>the</strong>r we write∫Z d = Dφ ∗ Dφe − d3 xL d, (B.22)whereL d = |∂φ| 2 + m 2 d |φ|2 + g 2 |φ|4 , (B.23)103


<strong>and</strong> argue that Z d describes vortex loops with short range <strong>in</strong>teractions <strong>in</strong> (B.13).This can be easily demonstrated by decoupl<strong>in</strong>g |φ| 4 through Hubbard-Stratonovichtransformation <strong>and</strong> retrac<strong>in</strong>g <strong>the</strong> above steps. The reader is referred to <strong>the</strong> book byKle<strong>in</strong>ert for fur<strong>the</strong>r details of <strong>the</strong> above duality mapp<strong>in</strong>g [86].We can now rewrite <strong>the</strong> δ-function <strong>in</strong> (B.13) asδ ( j µ (x) − n µ (x) ) ∫→ Dκ µ exp ( ∫i d 3 xκ µ (j µ − n µ ) )(B.24)<strong>and</strong> observe that <strong>in</strong> <strong>the</strong> above language of Feynman path <strong>in</strong>tegrals <strong>in</strong> proper timei ∫ d 3 xκ µ n µ (B.15) assumes <strong>the</strong> mean<strong>in</strong>g of a particle current three-vector n µ coupledto a three-vector potential κ µ . Employ<strong>in</strong>g <strong>the</strong> same arguments that led to (B.23) wenow have:L d [κ µ ] = |(∂ − iκ)φ| 2 + m 2 d |φ|2 + g 2 |φ|4 , (B.25)which leads toe −d3 xL 0 [j µ] →∫Dφ ∗ DφDκ µ e − d3 x(−iκ µj µ+L d [κ µ]). (B.26)In <strong>the</strong> pseudogap state vortex loop unb<strong>in</strong>d<strong>in</strong>g causes loss of superconduct<strong>in</strong>g phasecoherence. In <strong>the</strong> dual language, <strong>the</strong> appearance of such <strong>in</strong>f<strong>in</strong>ite loops as m d → 0implies superfluidity <strong>in</strong> <strong>the</strong> system of charged bosons described by L d (B.23). Thedual off-diagonal long range order (ODLRO) <strong>in</strong> 〈φ(x)φ ∗ (x ′ )〉 means that <strong>the</strong>re areworldl<strong>in</strong>e trajectories that connect po<strong>in</strong>ts x <strong>and</strong> x ′ over <strong>in</strong>f<strong>in</strong>ite spacetime distances– <strong>the</strong>se <strong>in</strong>f<strong>in</strong>ite worldl<strong>in</strong>es are noth<strong>in</strong>g else but unbound vortex paths <strong>in</strong> this “vortexloop condensate”. Thus, <strong>the</strong> dual <strong>and</strong> <strong>the</strong> true superconduct<strong>in</strong>g ODLRO are twoopposite sides of <strong>the</strong> same co<strong>in</strong>.L d [κ µ ] is <strong>the</strong> Lagrangian of this dual superfluid <strong>in</strong> presence of <strong>the</strong> external vectorpotential κ µ . In <strong>the</strong> ordered phase, <strong>the</strong> response of <strong>the</strong> system is just <strong>the</strong> dual versionof <strong>the</strong> Meissner effect. Consequently, upon functional <strong>in</strong>tegration over φ we areallowed to write:∫e − d3 xL 0 [j µ] = Dκ µ e − d3 x(−iκ µj µ+Md 2κµκµ) , (B.27)104


where Md2 = |〈φ〉|2 , with 〈φ〉 be<strong>in</strong>g <strong>the</strong> dual order parameter. The rema<strong>in</strong><strong>in</strong>g functional<strong>in</strong>tegration over κ µ f<strong>in</strong>ally results <strong>in</strong>:L 0 [j µ ] → j µj µ4|〈φ〉| 2 . (B.28)We have tacitly assumed that <strong>the</strong> system of loops is isotropic. The <strong>in</strong>tr<strong>in</strong>sic anisotropyof <strong>the</strong> (2+1)D <strong>the</strong>ory is easily re<strong>in</strong>stated <strong>and</strong> (B.28) becomes Eq. (3.39) of <strong>the</strong> ma<strong>in</strong>text.It is now time to recall that we are <strong>in</strong>terested <strong>in</strong> a d-wave superconductor. Thismeans we must restore a µ to <strong>the</strong> problem. To accomplish this we engage <strong>in</strong> a bit ofthievery: imag<strong>in</strong>e now that it was v µ whose coupl<strong>in</strong>g to fermions was negligible <strong>and</strong>we could <strong>in</strong>tegrate over it <strong>in</strong> (3.11). We would <strong>the</strong>n be left with only <strong>the</strong> δ-functionconta<strong>in</strong><strong>in</strong>g a µ . Actually, we can compute such L 0 [b µ /π], where ∂ × ∂a = b, withoutany additional work. Note that L 0 conta<strong>in</strong>s only vorticity <strong>in</strong>dependent terms. We canequally well proclaim that it is <strong>the</strong> A(B) labels that determ<strong>in</strong>e <strong>the</strong> true orientationof our loops while <strong>the</strong> actual vorticity is simply a gauge label – <strong>in</strong> essence, v µ <strong>and</strong> a µtrade places. After <strong>the</strong> same algebra as before we obta<strong>in</strong>:which is just <strong>the</strong> Maxwell action for a µ .L 0 [b µ /π] → b µb µ4π 2 |〈φ〉| 2 , (B.29)Of course, this simple argument that led to (B.29) is illegal. We cannot just forgetv µ . If we did we would have no right to coarse-gra<strong>in</strong> a µ to beg<strong>in</strong> with <strong>and</strong> would haveto face up to its purely Z 2 character (see Section II). Still, <strong>the</strong> above reason<strong>in</strong>g doesillustrate that <strong>the</strong> Maxwellian stiffness of a µ follows <strong>the</strong> same pattern as that of v µ :both are determ<strong>in</strong>ed by <strong>the</strong> order parameter 〈φ〉 of condensed dual superfluid. Thus,we can write <strong>the</strong> correct form of L 0 , with both v µ <strong>and</strong> a µ fully <strong>in</strong>cluded <strong>in</strong>to ouraccount<strong>in</strong>g, asL 0 [v µ , a µ ] → (∂ × v) µ(∂ × v) µ4π 2 |〈φ〉| 2 + (∂ × a) µ(∂ × a) µ4π 2 |〈φ〉| 2 , (B.30)where our ignorance is now stored <strong>in</strong> comput<strong>in</strong>g <strong>the</strong> actual value of 〈φ〉 from <strong>the</strong>orig<strong>in</strong>al parameters of <strong>the</strong> d-wave superconductor problem. With anisotropy restoredthis is precisely Eq. (3.45) of Section II.105


B.2 Feynman <strong>in</strong>tegrals <strong>in</strong> QED 3Many of <strong>the</strong> <strong>in</strong>tegrals encountered here are considered st<strong>and</strong>ard <strong>in</strong> particle physics.S<strong>in</strong>ce <strong>the</strong> techniques <strong>in</strong>volved are not as common <strong>in</strong> <strong>the</strong> condensed matter physics weprovide some of <strong>the</strong> technical details <strong>in</strong> this Appendix. A more <strong>in</strong>-depth discussioncan be found <strong>in</strong> many field <strong>the</strong>ory textbooks [76].B.2.1Vacuum polarization bubbleThe vacuum polarization Eq. (3.59) can be written more explicitly asΠ µν (q) = 2NTr[γ α γ µ γ β γ ν ]I αβ (q)(B.31)with∫I αβ (q) =d 3 k(2π) 3 k α (k β + q β )k 2 (k + q) 2 .(B.32)The <strong>in</strong>tegrals of this type are most easily evaluated by employ<strong>in</strong>g <strong>the</strong> Feynman parametrization[76]. This consists <strong>in</strong> comb<strong>in</strong><strong>in</strong>g <strong>the</strong> denom<strong>in</strong>ators us<strong>in</strong>g <strong>the</strong> formula1 Γ(a + b)=A a Bb Γ(a)Γ(b)∫ 10dxxa−1 (1 − x) b−1[xA + (1 − x)B] , a+b(B.33)valid for any positive real numbers a, b, A, B. Sett<strong>in</strong>g A = k 2 <strong>and</strong> B = (k + q) 2allows us to rewrite (B.32) as∫ 1 ∫I αβ (q) = dx0d 3 k k α (k β + q β )(2π) 3 [(k + (1 − x)q) 2 + x(1 − x)q 2 ] . 2(B.34)We now shift <strong>the</strong> <strong>in</strong>tegration variable k → k − (1 − x)q to obta<strong>in</strong>∫ 1∫d 3 k k α k β − x(1 − x)q α q βI αβ (q) = dx(2π) 3 [k 2 + x(1 − x)q 2 ] , (B.35)20where we have dropped terms odd <strong>in</strong> k which vanish by symmetry upon <strong>in</strong>tegration.We now notice that k α k β term will only contribute if α = β <strong>and</strong> we can <strong>the</strong>reforereplace it <strong>in</strong> Eq. (B.35) by 1 3 δ αβk 2 . With this replacement <strong>the</strong> angular <strong>in</strong>tegrals aretrivial <strong>and</strong> we haveI αβ (q) = 12π 2 ∫ 10dx∫ ∞0dkk 2 13 δ αβk 2 − x(1 − x)q α q β[k 2 + x(1 − x)q 2 ] 2 . (B.36)106


The only rema<strong>in</strong><strong>in</strong>g difficulty stems from <strong>the</strong> fact that <strong>the</strong> <strong>in</strong>tegral formally divergesat <strong>the</strong> upper bound. This divergence is an artifact of our l<strong>in</strong>earization of <strong>the</strong> fermionicspectrum which breaks down for energies approach<strong>in</strong>g <strong>the</strong> superconduct<strong>in</strong>g gap value.It is <strong>the</strong>refore completely legitimate to <strong>in</strong>troduce an ultraviolet cutoff. Such UVcutoffs however tend to <strong>in</strong>terfere with gauge <strong>in</strong>variance preservation of which is crucial<strong>in</strong> this computation. A more physical way of regulariz<strong>in</strong>g <strong>the</strong> <strong>in</strong>tegral Eq. (B.36) isto recall that <strong>the</strong> gauge field must rema<strong>in</strong> massless, i.e. Π µν (q → 0) = 0. To enforcethis property we write Eq. (B.31) asΠ µν (q) = 2NTr[γ α γ µ γ β γ ν ][I αβ (q) − I αβ (0)],(B.37)<strong>and</strong> we see that proper regularization of Eq. (B.36) <strong>in</strong>volves subtract<strong>in</strong>g <strong>the</strong> value of<strong>the</strong> <strong>in</strong>tegral at q = 0. The rema<strong>in</strong><strong>in</strong>g <strong>in</strong>tegral is convergent <strong>and</strong> elementary; explicitevaluation givesI αβ (q) − I αβ (0) = − |q| (δ αβ + q )αq β. (B.38)64 q 2Insert<strong>in</strong>g this <strong>in</strong> (B.37) <strong>and</strong> work<strong>in</strong>g out <strong>the</strong> trace us<strong>in</strong>g Eqs. (3.54) <strong>and</strong> (3.55) we f<strong>in</strong>d<strong>the</strong> result (3.60). Identical result can be obta<strong>in</strong>ed us<strong>in</strong>g dimensional regularization.B.2.2TF self energy: Lorentz gaugeFor simplicity we evaluate <strong>the</strong> self energy (3.64) <strong>in</strong> <strong>the</strong> Lorentz gauge (ξ = 0).Extension to arbitrary covariant gauge is trivial. Eq. (3.64) can be written aswithwhere we used an identityΣ L (k) = − 2π 3 N γ µI µ (k)∫I µ (k) =d 3 qq µq · (k + q)|q| 3 (k + q) 2 ,(γ µ γ α γ ν δ µν − q )µq ν= −2 ̸q q αq 2 q . 2(B.39)(B.40)S<strong>in</strong>ce <strong>the</strong> only 3-vector available is k, clearly <strong>the</strong> vector <strong>in</strong>tegral I µ (k) can only havecomponents <strong>in</strong> <strong>the</strong> k µ direction, I µ (k) = C(k)k µ /k 2 . By form<strong>in</strong>g a scalar product107


k µ I µ (k) we obta<strong>in</strong>∫C(k) = k µ I µ (k) =d 3 q (q · k)(q · k + q2 )|q| 3 (k + q) 2 . (B.41)Comb<strong>in</strong><strong>in</strong>g <strong>the</strong> denom<strong>in</strong>ators us<strong>in</strong>g Eq. (B.33) <strong>and</strong> follow<strong>in</strong>g <strong>the</strong> same steps as <strong>in</strong> <strong>the</strong>computation of polarization bubble above we obta<strong>in</strong>C(k) = 3 2∫ 10dx √ ∫xd 3 q× (2x − 1)(k · q)2 − (1 − x)k 2 q 2 + x(1 − x) 2 k 4[q 2 + x(1 − x)k 2 ] 5/2 .(B.42)The angular <strong>in</strong>tegrals are trivial <strong>and</strong> after <strong>in</strong>troduc<strong>in</strong>g an ultraviolet cutoff Λ <strong>and</strong>rescal<strong>in</strong>g <strong>the</strong> <strong>in</strong>tegration variable by |k| <strong>the</strong> <strong>in</strong>tegral becomesC(k) = 2πk 2 ∫ 10dx √ ∫ Λ|k|x dq (5x − 4)q4 + 3x(1 − x) 2 q 2. (B.43)0 [q 2 + x(1 − x)] 5/2The rema<strong>in</strong><strong>in</strong>g <strong>in</strong>tegrals are elementary. Isolat<strong>in</strong>g <strong>the</strong> lead<strong>in</strong>g <strong>in</strong>frared divergent termwe obta<strong>in</strong>C(k) → − 4π 3 k2 ln Λ|k| .Substitut<strong>in</strong>g this to Eq. (B.39) we get <strong>the</strong> self energy (3.65).(B.44)B.3 Feynman <strong>in</strong>tegrals for anisotropic caseB.3.1Self energyAs shown <strong>in</strong> <strong>the</strong> Section V, to first order <strong>in</strong> 1/N expansion, <strong>the</strong> topological fermionself energy can be reduced to∫d 3 k (q − k) λ (2gλµ n Σ n (q) =γn ν − γn λ gn µν )D µν(k)(2π) 3 (q − k) µ gµν n (q − k) . (B.45)νwhere D µν (q) is <strong>the</strong> screened gauge field propagator evaluated <strong>in</strong> <strong>the</strong> Section 3. Inorder to perform <strong>the</strong> radial <strong>in</strong>tegral, we rescale <strong>the</strong> momenta asK µ = √ g n µν k ν; Q µ = √ g n µν q ν (B.46)108


<strong>and</strong> obta<strong>in</strong>∫ d 3 KΣ n (q)=)√gK νn µν(Q−K) λ (2 √ (g n λµ γn ν −γ λ gµν)D n µν. (B.47)(2π) 3 v F v ∆ (Q−K) 2At low energies we can neglect <strong>the</strong> contribution from <strong>the</strong> bare field stiffness ρ <strong>in</strong> <strong>the</strong>gauge propagator (see Section 3) <strong>and</strong> <strong>the</strong> result<strong>in</strong>g D µν (q) exhibits 1 q scal<strong>in</strong>gD µν()K ν√ gnµν= F µν(θ, φ)|K|(B.48)Now we can explicitly <strong>in</strong>tegrate over <strong>the</strong> magnitude of <strong>the</strong> rescaled momentum K by<strong>in</strong>troduc<strong>in</strong>g an upper cut-off Λ <strong>and</strong> <strong>in</strong> <strong>the</strong> lead<strong>in</strong>g order we f<strong>in</strong>d that∫ Λ( )dK K2 (Q−K) λK(Q−K) =−Λ ˆK Λ ( 2 λ + ln Q λ −2QˆK)λ ˆK · Q0(B.49)where ˆK = (cos θ, s<strong>in</strong> θ cos φ, s<strong>in</strong> θ s<strong>in</strong> φ). S<strong>in</strong>ce ˆK µ is odd under <strong>in</strong>version while F µνis even, it is not difficult to see that <strong>the</strong> term proportional to Λ vanishes upon <strong>the</strong>angular <strong>in</strong>tegration. Thus∫Σ n (q) =dΩ(Q(2π) 3 λ − 2v F v ˆK)λ ˆK · Q (×)∆(×)(2 √ g n λµ γn ν − γ λg n µν )F µν(θ, φ) ln( ΛQ). (B.50)Us<strong>in</strong>g <strong>the</strong> fact that <strong>the</strong> diagonal elements of F µν (θ, φ) are even under parity, while<strong>the</strong> off-diagonal elements are odd under parity, <strong>the</strong> above expression can be fur<strong>the</strong>rsimplified towhere <strong>the</strong> coefficients η n µΣ n (q) = − ∑ µ<strong>the</strong>reby reduced to a quadrature∫ηµ n =( )(γµq n µ ηµ) n Λln √qα gαβ n q β(B.51)are pure numbers depend<strong>in</strong>g on <strong>the</strong> bare anisotropy <strong>and</strong> are(dΩ(2v F v ∆ (2π) ˆK 3 µ ˆKµ −1)(2gµµF n µµ − ∑ νg n ννF νν )+ ∑ ν≠µ4 ˆK µ ˆKν√ gnµµ√ gnνν F µν). (B.52)109


Repeated <strong>in</strong>dices are not summed <strong>in</strong> <strong>the</strong> above expression, unless explicitly <strong>in</strong>dicated.In <strong>the</strong> case of weak anisotropy (v F = 1 + ɛ, v ∆ = 1) we can show that <strong>the</strong> Eq.(B.52)reduces to Eqs.(3.92-3.94).Consider now <strong>the</strong> effect of <strong>the</strong> (covariant) gauge fix<strong>in</strong>g term on η µ . Let us def<strong>in</strong>e<strong>the</strong> part of F µν which depends on <strong>the</strong> gauge fix<strong>in</strong>g parameter ξ as F (ξ)µν . The generalform of this term is F (ξ)µν = ξ k µ k ν f(k) where f(k) is a scalar function of all threecomponents of k µ ; f(k) does <strong>in</strong> general depend on <strong>the</strong> anisotropy. Upon rescal<strong>in</strong>g with<strong>the</strong> nodal metric, see Eq.(B.46), we have F (ξ)µν = ξ 1 √ gµµK µ1√ gννK ν ˜f(K), where ˜f(K)is <strong>the</strong> correspond<strong>in</strong>g scalar function of K µ . Substitut<strong>in</strong>g F (ξ)µν <strong>in</strong>to <strong>the</strong> Eq. (B.52) wef<strong>in</strong>d∫ ( dΩηµ ξ =ξ ˜f(K)(2v F v ∆ (2π) ˆK 3 µ ˆKµ −1)(2 ˆK µ ˆKµ − ∑ νˆK ν ˆKν )+ ∑ ν≠µ4 ˆK µ ˆKν ˆKµ ˆKν), (B.53)where ηµ ξ is <strong>the</strong> part of η µ which comes entirely from <strong>the</strong> gauge fix<strong>in</strong>g term. Us<strong>in</strong>g<strong>the</strong> fact that ∑ ˆK ν ν ˆKν = 1, it is a matter of simple algebra to show thatη ξ µ =ξ ∫ dΩ ˜f(K)v F v ∆ (2π) 3(B.54)i.e., <strong>the</strong> dependence on <strong>the</strong> <strong>in</strong>dex µ drops out! That means that <strong>the</strong> renormalizationof η µ due to <strong>the</strong> unphysical longitud<strong>in</strong>al modes is exactly <strong>the</strong> same for all of itscomponents. Therefore, <strong>the</strong> difference <strong>in</strong> η 1 <strong>and</strong> η 2 , which is related to <strong>the</strong> RGflow of <strong>the</strong> Dirac anisotropy comes entirely from <strong>the</strong> physical modes <strong>and</strong> is a gauge<strong>in</strong>dependent quantity. Note that this statement does not depend on <strong>the</strong> choice of <strong>the</strong>covariant gauge, i.e. on <strong>the</strong> exact form of <strong>the</strong> function f, only on <strong>the</strong> fact that <strong>the</strong>gauge is covariant.B.4 Physical modes of a f<strong>in</strong>ite T QED 3Free massless Abelian gauge <strong>the</strong>ory <strong>in</strong> d + 1− space-time dimensions has d − 1physical degrees of freedom. The familiar example is <strong>the</strong> world we live <strong>in</strong>: light hasonly two (transverse) physical degrees of freedom. Us<strong>in</strong>g <strong>the</strong> modern term<strong>in</strong>ology,photon is a sp<strong>in</strong> 1 massless gauge particle, which restricts its sp<strong>in</strong> projections to110


S = ±1. These two degrees of freedom contribute to <strong>the</strong> specific heat of a photongas.When <strong>the</strong> gauge field <strong>in</strong>teracts with matter, <strong>the</strong> situation is a little more <strong>in</strong>volved.In 3 + 1D QED, matter effectively decouples from light <strong>and</strong> so <strong>the</strong> lead<strong>in</strong>g ordercontribution to <strong>the</strong> <strong>the</strong>rmodynamics is just a sum of <strong>the</strong> contributions from <strong>the</strong> freefermions <strong>and</strong> free light. However, exchange of a massless particle <strong>in</strong>troduces long range<strong>in</strong>teractions between <strong>the</strong> fermions, <strong>the</strong>reby affect<strong>in</strong>g <strong>the</strong> spectrum of <strong>the</strong> quantum<strong>the</strong>ory. While <strong>the</strong>re are no collective modes <strong>in</strong> a free <strong>the</strong>ory, <strong>the</strong> coupled <strong>the</strong>ory hasmulti-particle collective states <strong>in</strong> <strong>the</strong> spectrum, <strong>and</strong> <strong>the</strong>se states will contribute to<strong>the</strong> <strong>the</strong>rmodynamics of <strong>the</strong> coupled system.One way of comput<strong>in</strong>g such contributions, is to <strong>in</strong>tegrate out <strong>the</strong> fermions. Thepartition function can be written as Z = Z 0 fermi Zeff gauge , where Z0 fermifermion contribution to <strong>the</strong> free energy, while Z effgaugegives <strong>the</strong> freegives <strong>the</strong> contribution from <strong>the</strong>dressed gauge field. If this gauge field action is exp<strong>and</strong>ed to quadratic order, <strong>the</strong>n <strong>the</strong>contribution from <strong>the</strong> gauge field can be computed exactly. It can be understood asfermion dress<strong>in</strong>g or renormalization of <strong>the</strong> free gauge field. In general, <strong>the</strong>re are twodist<strong>in</strong>ct processes: (1) <strong>the</strong> renormalization of <strong>the</strong> transverse components that contributedto <strong>the</strong>rmodynamics even without any fermions, <strong>and</strong> (2) <strong>the</strong> renormalizationof <strong>the</strong> longitud<strong>in</strong>al components, which did not contribute to <strong>the</strong>rmodynamics <strong>in</strong> <strong>the</strong>absence of matter. The latter can be understood as aris<strong>in</strong>g solely from <strong>the</strong> collectivemodes of <strong>the</strong> fermions.To see how all of this comes about <strong>in</strong> detail, consider <strong>the</strong> free gauge <strong>the</strong>ory <strong>in</strong>Euclidean space-time:L 0 (a µ ) = 12e 2 a µΠ µν a ν ; Π µν = (k 2 δ µν − k µ k ν ). (B.55)For future benefit, we shall rewrite <strong>the</strong> polarization tensor us<strong>in</strong>g(A µν = δ µ0 − k ) (µk 0 k2δk 2 k 2 0ν − k )0k ν,k(2B µν = δ µi δ ij − k )ik jδk 2 jν ,(B.56)where k µ = (ω n , k) <strong>and</strong> ω n = 2πnT is <strong>the</strong> bosonic Matsubara frequency. It is straightforwardto see that δ µν − k µ k ν /k 2 = A µν + B µν , <strong>and</strong> that <strong>the</strong> gauge field action is111


nowL 0 (a µ ) = 1 2 Π0 Aa µ A µν a ν + 1 2 Π0 Ba µ B µν a ν , (B.57)where Π 0 A = Π0 B = (ω2 n + k 2 )/e 2 . We shall see later that to order 1/N <strong>the</strong> matterfields modify Π A <strong>and</strong> Π B , but not <strong>the</strong> generic form of Eq. (B.57).F<strong>in</strong>ite <strong>temperature</strong> breaks Lorentz <strong>in</strong>variance <strong>in</strong> that it <strong>in</strong>troduces a fixed length <strong>in</strong><strong>the</strong> temporal direction. Therefore, it is not convenient to use covariant gauge fix<strong>in</strong>g(as at T = 0); <strong>in</strong>stead we shall work <strong>in</strong> Coulomb’s gauge ∇ · A = 0. This gaugeelim<strong>in</strong>ates one of <strong>the</strong> d + 1 degrees of freedom. In <strong>the</strong> free gauge <strong>the</strong>ory, <strong>the</strong>re is onemore non-physical degree of freedom. To see that this is <strong>in</strong>deed so, <strong>in</strong>tegrate out <strong>the</strong>time component of <strong>the</strong> gauge field a 0 . Schematically, this proceeds as follows:L = Π 00 a 2 0 + 2a i Π i0 a 0 + a i Π ij a j ; i ≠ 0; (B.58)(= Π 00 a 0 + 1 ) 2Π 0i a i − 1 (Π i0 a i ) 2 + a i Π ij a j (B.59)Π 00 Π 00=k 2ω 2 n + k2 Π Aã 2 0 + Π B a i B ij a j ,(B.60)where we shifted <strong>the</strong> time component of <strong>the</strong> gauge field <strong>in</strong> <strong>the</strong> functional <strong>in</strong>tegral,ã = a 0 + 1Π 00Π 0i a i , <strong>and</strong> used <strong>the</strong> Eq. (B.56).In <strong>the</strong> free field <strong>the</strong>ory Π A = Π 0 A = (ω2 n + k2 ) <strong>and</strong> Π B = Π 0 B = (ω2 n + k2 ). Thus,(L 0 = k 2 ã 2 0 + (ωn 2 + k 2 ) δ ij − k )ik jak 2 i a j .(B.61)S<strong>in</strong>ce <strong>the</strong> coefficient <strong>in</strong> front of ã 2 0 is <strong>in</strong>dependent of ω n <strong>and</strong> <strong>the</strong>refore <strong>in</strong>dependentof <strong>temperature</strong>, this mode does not contribute to <strong>the</strong>rmodynamics.In addition,δ ij − k i k j /k 2 projects out <strong>the</strong> spatial longitud<strong>in</strong>al mode, <strong>and</strong> only d − 1 transversemassless modes contribute to <strong>the</strong>rmodynamics.When <strong>the</strong> gauge field <strong>in</strong>teracts with <strong>the</strong> fermions, <strong>the</strong> effective quadratic actionfor <strong>the</strong> gauge field is modified by <strong>the</strong> fermion renormalization of <strong>the</strong> polarizationfunctions: Π A,B = Π 0 A,B + ΠF A,B . While it is still true that <strong>the</strong> longitud<strong>in</strong>al spatialcomponent of a µ is projected out, it is no longer true that <strong>the</strong> coefficient <strong>in</strong> frontof ã 2 0 is <strong>in</strong>dependent of ω n .We must <strong>the</strong>refore <strong>in</strong>clude this ”mode” <strong>in</strong> comput<strong>in</strong>g<strong>the</strong> <strong>the</strong>rmodynamical free energy. For <strong>in</strong>stance, <strong>in</strong> <strong>the</strong> problem of electrodynamics of112


metal with a Fermi surface, this mode is sharp at <strong>the</strong> plasma frequency. In QED 3 ,<strong>in</strong>clusion of this mode is essential to preserve <strong>the</strong> ”hyperscal<strong>in</strong>g” of <strong>the</strong> (z = 1) <strong>the</strong>ory,<strong>in</strong> that c v ∼ T 2 .B.5 F<strong>in</strong>ite Temperature Vacuum PolarizationIn this section we shall compute <strong>the</strong> one loop polarization matrix of <strong>the</strong> f<strong>in</strong>ite<strong>temperature</strong> QED 3 .Π µν (q) = N β∑∫ω nΠ µν (q) = N βd 2 k(2π) 2 T r[G 0(ω n , k)γ µ G 0 (Ω + ω n , k + q)γ ν ],∑∫ω n(B.62)d 2 k(2π) 2 T r[γ µ γ α γ ν γ β ]k α (k β + q β )k 2 (k + q) 2 , (B.63)where k = (ω n , k) = ((2n + 1)πT, k). In <strong>the</strong> Euclidean space we have<strong>and</strong> sowhereT r[γ µ γ α γ ν γ β ] = 4(δ µα δ νβ − δ µν δ αβ + δ µβ δ να )Π µν (q) = 4N β∑∫ω nd 2 k L µν (k; q)(2π) 2 k 2 (k + q) , 2L µν (k; q) = k µ (k ν + q ν ) + k ν (k µ + q µ ) − δ µν k α (k α + q α )(B.64)(B.65)(B.66)where repeated <strong>in</strong>dices (α) are summed.At T = 0, <strong>the</strong> natural way to proceed is to use Feynman parameters. However,<strong>the</strong>re is no advantage <strong>in</strong> do<strong>in</strong>g so at f<strong>in</strong>ite T . Therefore, we shall first sum over <strong>the</strong>fermionic Matsubara frequencies ω n ; <strong>the</strong>n, we perform <strong>the</strong> <strong>in</strong>tegral over k which wesplit <strong>in</strong>to an <strong>in</strong>tegral over <strong>the</strong> angle <strong>and</strong> <strong>the</strong> <strong>in</strong>tegral over <strong>the</strong> magnitude of k. The<strong>in</strong>tegral over <strong>the</strong> angle can be performed analytically. However, <strong>the</strong> last <strong>in</strong>tegral over<strong>the</strong> magnitude of k cannot be performed <strong>in</strong> <strong>the</strong> closed form. This happens quite frequently<strong>in</strong> <strong>the</strong>ories deal<strong>in</strong>g with degenerate fermions. However, our results will differfrom such <strong>the</strong>ories <strong>in</strong> an important qualitative way: <strong>the</strong>re is no lengthscale associatedwith <strong>the</strong> Fermi energy <strong>and</strong> this prohibits <strong>the</strong> use of Sommerfeld expansion. Instead,113


<strong>the</strong> <strong>the</strong>ory is quantum critical <strong>and</strong> <strong>the</strong> only scales are given by <strong>the</strong> external frequency<strong>and</strong> momentum, <strong>and</strong> by <strong>the</strong> <strong>temperature</strong>. We shall <strong>the</strong>refore use <strong>the</strong> expression for<strong>the</strong> polarization matrix Π µν without perform<strong>in</strong>g <strong>the</strong> f<strong>in</strong>al <strong>in</strong>tegral for general (Ω, q, T )<strong>and</strong> evaluate Π µν only for some of its limit<strong>in</strong>g forms.To proceed, def<strong>in</strong>eS µν (k, T ; iΩ, q) = 1 ∑ L µν (iω n , k; iΩ, q)(B.67)β (k 2 − (iωω n ) 2 )((k + q) 2 − (iω n + iΩ) 2 )n∮dz L µν (z, k; iΩ, q) 1= −2πi (k 2 − z 2 )((k + q) 2 − (z + iΩ) 2 ) e βz + 1 , (B.68)Γwhere <strong>the</strong> contour Γ <strong>in</strong>cludes <strong>the</strong> poles of <strong>the</strong> function n F (z) = 1/(e βz + 1) <strong>in</strong> <strong>the</strong>positive (counterclockwise) sense <strong>and</strong> <strong>the</strong> negative sign comes from <strong>the</strong> residue ofn F (z) be<strong>in</strong>g −1. By deform<strong>in</strong>g <strong>the</strong> contour around <strong>the</strong> rema<strong>in</strong><strong>in</strong>g four poles it is easyto see thatS µν (k, T ; iΩ, q) = n F (|k|) L µν (|k|, k; iΩ, q)2|k| ((iΩ + |k|) 2 − (k + q) 2 ) −n F (−|k|) L µν (−|k|, k; iΩ, q)2|k| ((iΩ − |k|) 2 − (k + q) 2 ) +n F (|k + q|) L µν (|k + q| − iΩ, k; iΩ, q)− n F (−|k + q|) L µν (−|k + q| − iΩ, k; iΩ, q).2|k + q| ((iΩ − |k + q|) 2 − k 2 ) 2|k + q| ((iΩ + |k + q|) 2 − k 2 )So∫Π µν (Ω, q) = 4Nd 2 k(2π) 2 S µν(k, T ; iΩ, q).(B.69)(B.70)We shall now concentrate on Π ij where i, j denote <strong>the</strong> spatial <strong>in</strong>dices. From herewe shall be able to extract both Π F A <strong>and</strong> ΠF B . S<strong>in</strong>ce we eventually <strong>in</strong>tegrate over allk, we can shift k + q → k <strong>in</strong> <strong>the</strong> last two terms <strong>in</strong> <strong>the</strong> Eq. (B.69) as well as reverse<strong>the</strong> direction of k to obta<strong>in</strong>∫( )d 2 k 2n F (|k|) − 1 2ki k j + k i q j + k j q i − δ ij (k · q − iΩ|k|)Π ij (iΩ, q) = 4N+ (iΩ → −iΩ) .(2π) 2 2|k|(iΩ) 2 + 2iΩ|k| − 2k · q − q 2(B.71)Note that all <strong>the</strong> T dependence resides <strong>in</strong> <strong>the</strong> Fermi occupation factor n F . S<strong>in</strong>ce itsargument <strong>in</strong> <strong>the</strong> Eq.(B.71) is positive def<strong>in</strong>ite, at T = 0, n F (|k|) = 0 <strong>and</strong> <strong>the</strong> resultis Π µν (q; T = 0) = Nq/8(δ µν − q µ q ν /q 2 ) as obta<strong>in</strong>ed by dimensional regularization.114


Therefore, at f<strong>in</strong>ite T we can writewhere∫δΠ ij (iΩ, q) = 4NΠ µν (q; T ) = N q 8(δ µν − q )µq ν+ δΠq 2 µν (iΩ, q) (B.72)( )d 2 k n F (|k|) 2ki k j + k i q j + k j q i − δ ij (k · q − iΩ|k|)+ (iΩ → −iΩ) .(2π) 2 |k| (iΩ) 2 + 2iΩ|k| − 2k · q − q 2(B.73)We next rotate <strong>the</strong> coord<strong>in</strong>ate axis so that <strong>the</strong> vector q is aligned with <strong>the</strong> x-axis.S<strong>in</strong>ce <strong>the</strong> denom<strong>in</strong>ator is even under reflection by <strong>the</strong> (new) x-axis we can simplify<strong>the</strong> above equality to readδΠ ij (iΩ, q) = N π 2 (δ ij − q iq jwhereq 2 ) ∫ ∞∫N q i q ∞jdknπ 2 q 2F (k)00∫ 2π0∫ 2πdkn F (k)0dθ J B(iΩ, |q|, k; cos θ)K(iΩ, |q|, k) − cos θ +dθ J A(iΩ, |q|, k; cos θ)+ (iΩ → −iΩ),K(iΩ, |q|, k) − cos θ (B.74)J A (iΩ, |q|, k; cos θ) = iΩ2|q| + 1 2 cos θ + k|q| cos2 θ,J B (iΩ, |q|, k; cos θ) =iΩ + 2k2|q|− 1 2 cos θ − k|q| cos2 θ,K(iΩ, |q|, k) = (iΩ)2 + 2iΩk − q 2. (B.75)2k|q|Now, Π F µν = Π F A A µν + Π F B B µν (see Eq. B.56). Once written <strong>in</strong> this form, we can readoff <strong>the</strong> f<strong>in</strong>ite T corrections to Π F A <strong>and</strong> ΠF B :δΠ F A = q2 + Ω 2 ∫N ∞dknΩ 2 π 2 F (k)δΠ F B = N ∫ ∞dknπ 2 F (k)00∫ 2π0∫ 2π0dθ J A(iΩ, |q|, k; cos θ)K(iΩ, |q|, k) − cos θdθ J B(iΩ, |q|, k; cos θ)+ (iΩ → −iΩ)K(iΩ, |q|, k) − cos θ (B.77)+ (iΩ → −iΩ)(B.76)The above <strong>in</strong>tegrals can be computed analytically us<strong>in</strong>g contour <strong>in</strong>tegration s<strong>in</strong>ce∫ 2π∮ ( )dz z + z−1dθ f(cos θ) =iz f , (B.78)20where <strong>the</strong> contour of <strong>in</strong>tegration is a unit circle around <strong>the</strong> orig<strong>in</strong> encircled counterclockwise.CS<strong>in</strong>ce eventually we will need retarded polarization function <strong>in</strong> orderto compute physical quantities, we analytically cont<strong>in</strong>ue <strong>the</strong> outside frequency115


iΩ → Ω + i0 + . Putt<strong>in</strong>g everyth<strong>in</strong>g toge<strong>the</strong>r we f<strong>in</strong>ally arrive atΠ F A,B (iΩ → Ω + i0+ , |q|, T ) = Π F A,B ret (Ω, |q|, T )(B.79)where(Ω, |q|, T ) =√ [√Θ(q 2 −Ω 2 ) |q| 1 − Ω2 16 ln 2 T1 + 1 − Ω28 q 2 π |q| q − 4 2 π∫4 1dx √ ( ( |q|1 − xπ2 n F x − Ω ))− 4 ∫ 1Ω2T |q| π 0|q|ReΠ F retAΘ(Ω 2 −q 2 ) |q|84π<strong>and</strong>∫ ∞Ω|q|√Ω 2q 2 − 1 [−dx √ x 2 − 1 n F( |q|2T√16 ln 2 T Ω 2π |q| q − 1 + 4 2 π(x − Ω ))− 4 ∫ ∞|q| πImΠ F Aret (Ω, |q|, T ) = Θ(q 2 − Ω 2 ) |q|8[ ∫ 4 ∞dx √ { ( |q|xπ2 − 1 n F2T1sgnΩ Θ(Ω 2 − q 2 ) |q|8√Ω 2q 2 − 1 [ 4π√11 − Ω2q × 2 ))(x − Ω|q|∫ 1−1∫ Ω|q|0dx √ ( ( |q| Ω1 − x 2 n F2T(x + Ω )) ] +|q|dx √ 1 − x 2 n F( |q|2T∫ Ω|q|1dx √ ( |q|x 2 − 1 n F2Tdx √ x 2 − 1 n F( |q|2T− n F( |q|2Tdx √ 1 − x 2 {n F( |q|2T(x + Ω|q|(x + Ω|q|(x + Ω|q|))}]+|q| − x ))−( )) Ω|q| − x +)) ](B.80)))− 1 }]2(B.81)116


where Θ(x) is a Heaviside step function. Similarly,ReΠ F retB (Ω, |q|, T ) =√ ⎡1 − Ω2 ⎣1 +q 2Θ(q 2 −Ω 2 ) |q|8∫4 1π Ω|q|x 2dx√ n F1 − x2Θ(Ω 2 −q 2 ) |q|84π<strong>and</strong>∫ ∞Ω|q|√Ω 2x 2( |q|2T⎡q − 1 ⎣ 2dx√ x2 − 1 n F( |q|2T16 ln 2πT√|q|Ω 2q 21 − Ω2q 2(x − Ω ))− 4 |q| π16 ln 2πT|q|(x − Ω|q|Ω 2q 2√Ω 2ImΠ F Bret (Ω, |q|, T ) = Θ(q2 − Ω 2 ) |q|8[ ∫ 4 ∞{ (x 2 |q|dx n Fπ2T1√x2 − 1sgnΩ Θ(Ω 2 − q 2 ) |q|8√Ω 2q 2 − 1 [ 4π∫ 10− 4− 1πq 2))+ 4 π√∫ ∞1− 4 π∫ Ω|q|0x 2dx√ n F1 − x2∫ Ω|q|1x 2dx√ n F1 − x2x 2( |q|2Tdx√ x2 − 1 n Fx 2dx√ x2 − 1 n F1 − Ω2q × 2 )) ( |q|− n F|q| 2T(x + Ω∫ 1−1dx√ 1 − x2The expressions for <strong>the</strong> imag<strong>in</strong>ary parts of Π F retAx 2{n F( |q|2T<strong>and</strong> Π F retB( |q|2T(x − Ω|q|( |q|2T( Ω|q| − x ))−(x + Ω )) ] +|q|( |q|2T(x + Ω|q|( Ω|q| − x ))−(x + Ω )) ]|q|))}]+(B.82)))− 1 }]2(B.83)(B.81) <strong>and</strong> (B.83) can befur<strong>the</strong>r simplified us<strong>in</strong>g an <strong>in</strong>f<strong>in</strong>ite series of Bessel functions, but <strong>the</strong>re is no fur<strong>the</strong>rsimplification of <strong>the</strong> real parts of Π F retA<strong>and</strong> Π F Bret . Never<strong>the</strong>less, <strong>the</strong>re is an importantfact that ought to be stressed: <strong>the</strong> expressions (B.80-B.83) reflect <strong>the</strong> quantum criticalscal<strong>in</strong>g of <strong>the</strong> <strong>the</strong>ory near its T = 0 fixed po<strong>in</strong>t. As can be seen from above, we canwrite <strong>the</strong> follow<strong>in</strong>g scal<strong>in</strong>g relations:Π F retA,B (Ω, |q|, T ) = NT P F A,B( |q|T , Ω )T(B.84)In <strong>the</strong> limit<strong>in</strong>g cases of small or large argument, both real <strong>and</strong> imag<strong>in</strong>ary part of <strong>the</strong>(function PA,BF q , ) ΩT T can be evaluated analytically.117


B.6 Free energy scal<strong>in</strong>g of QED 3We shall now use <strong>the</strong> results of <strong>the</strong> previous section to compute <strong>the</strong> T dependenceof <strong>the</strong> <strong>the</strong>rmodynamic free energy from which we can f<strong>in</strong>d <strong>the</strong> electronic contributionto <strong>the</strong> specific heat. S<strong>in</strong>ce to order 1/N <strong>the</strong> effective action for <strong>the</strong> gauge field isquadratic, we can perform <strong>the</strong> functional <strong>in</strong>tegral over its two ”modes” exactly. Thus,where Π A =F = 1 β ln(Det(Π A)) + 1 β ln(Det(Π B)),q2(Π 0 q 2 +Ω 2 A + ΠF A ) <strong>and</strong> Π B = Π 0 B + ΠF B . In addition we have,F = 1 ∑∫d 2 q (ln [ΠA (iΩβ (2π) 2 n , q)] + ln [Π B (iΩ n , q)] ) .Ω n(B.85)(B.86)Now, ln(z) is analytic <strong>in</strong> <strong>the</strong> upper complex plane with a branch-cut along <strong>the</strong> xaxis. Recogniz<strong>in</strong>g this fact, we can trade <strong>the</strong> summation over <strong>the</strong> bosonic Matsubarafrequencies Ω n = 2πnT for an <strong>in</strong>tegral along <strong>the</strong> branch cut:1 ∑∮dz ln [Π A,B (z, q)]ln [Π A,B (iΩ n , q)] =βΩΓ 2πi e βz − 1n== 2= 2∫ ∞−∞∫ ∞−∞∫ ∞dΩ ln [Π A,B (Ω + i0 + , q)] − ln [Π A,B (Ω − i0 + , q)]2πie βΩ − 1dΩ Im ln [Π A,B (Ω + i0 + , q)]2π e βΩ − 1−∞dΩ2π( )1ImΠrete βΩ − 1 tan−1 A,B (Ω, q)ReΠ retA,B (Ω, q)(B.87)Now, <strong>the</strong> crucial observation about <strong>the</strong> polarization functions is that <strong>the</strong>y can berescaled as( |q|Π F A,B ret (Ω, |q|, T ) = NT P A,BFΠ 0ret2TA,B (Ω, |q|, T ) =e 2 P0 A,BT , Ω T( |q|T , Ω T)). (B.88)This can be used to argue that <strong>the</strong> <strong>temperature</strong> dependence of free energy readsF = −NT 3 3ζ(3) ( ) T4π+ T 3 Φ , (B.89)Ne 2118


where <strong>the</strong> fist term is <strong>the</strong> contribution from N free 4−component Dirac fermions<strong>and</strong> <strong>the</strong> second term comes from <strong>the</strong> <strong>in</strong>teraction with <strong>the</strong> gauge field. By numerical<strong>in</strong>tegrations we have found out that <strong>the</strong> function Φ(x) is regular at x=0 (<strong>the</strong>re aretwo log s<strong>in</strong>gularities com<strong>in</strong>g from Π A <strong>and</strong> Π B which cancel). This result shows that<strong>the</strong>re is no anomalous dimension <strong>in</strong> <strong>the</strong> free energy i.e. that <strong>the</strong> z = 1 hyperscal<strong>in</strong>g at<strong>the</strong> QED 3 quantum critical po<strong>in</strong>t holds. Therefore, <strong>the</strong> lead<strong>in</strong>g scal<strong>in</strong>g of <strong>the</strong> specificheat <strong>in</strong> f<strong>in</strong>ite T QED 3 is c v ∼ T 2 .119


Bibliography[1] Bednorz <strong>and</strong> Muller, Z. Phys. B 64, 189 (1986).[2] P. W. Anderson, Science 235, 1196 (1987).[3] J. Orenste<strong>in</strong> <strong>and</strong> A. J. Physics, Science 288, 468 (2000).[4] A. Damascelli, Z. Hussa<strong>in</strong>, <strong>and</strong> Zhi-Xun Shen, Rev. Mod. Phys.75, 473 (2003).[5] C. C. Tsuei <strong>and</strong> J. R. Kirtley, Rev. Mod. Phys.72, 969 (2000).[6] W. N. Hardy et. al., Phys. Rev. Lett. 70, 3999 (1993).[7] M. Chiao et. al., Phys. Rev. B62, 3554 (2000).[8] Z. A. Xu et al., Nature 406, 486 (2000); Y. Wang et al., cond-mat/0108242.[9] J. Bardeen, L. N. Cooper, <strong>and</strong> J. R. Schrieffer, Phys. Rev. 108, 1175 (1957); J.R.Schrieffer, Theory of superconductivity (New York, W.A. Benjam<strong>in</strong>, 1964.)[10] D. J. Van Harl<strong>in</strong>gen, Rev. Mod. Phys. 67, 515 (1995).[11] P. A. Lee, Science 277, 50 (1997).[12] See e.g. W.A. Atk<strong>in</strong>son, P.J. Hirschfeld, A.H. MacDonald, K. Ziegler, condmat/0005487<strong>and</strong> references <strong>the</strong>re<strong>in</strong>.[13] G. E. Volovik, Sov. Phys. JETP Lett. 58, 469 (1993).[14] S. K. Yip <strong>and</strong> J. A. Sauls, Phys. Rev. Lett. 69, 2264 (1992).120


[15] S. H. Simon <strong>and</strong> P. A. Lee, Phys. Rev. Lett. 78, 1548 (1997).[16] T. M. Rice, Nature 396, 627 (1998); K. Ishida, H. Mukuda, Y. Kitaoka, et. al.Nature 396, 658 (1998).[17] G. E. Volovik, cond-mat/9709159; Sov. Phys. JETP Lett. 70, 609 (1999).[18] M. Matsumoto <strong>and</strong> M. Sigrist, J. Phys. Soc. Jpn., 68 (3), 724 (1999); Physica B281, 973 (2000).[19] M. Franz <strong>and</strong> A. J. Millis, Phys. Rev. B 58, 14572 (1998).[20] H.-J. Kwon <strong>and</strong> A. T. Dorsey, Phys. Rev. B60, 6438 (1999).[21] L. Balents, M. P. A. Fisher <strong>and</strong> C. Nayak, Phys. Rev. B60, 1654 (1999).[22] M. Franz <strong>and</strong> Z. Tešanović, Phys. Rev. Lett. 84, 554 (2000); O. Vafek et al.,Phys. Rev. B63, 134509 (2001).[23] C. Caroli, P.G. de Gennes, J. Matricon, Phys. Lett. 9, 307 (1964).[24] P. G. de Gennes, Superconductivity of Metals <strong>and</strong> Alloys (Addison-Wesley, Read<strong>in</strong>g,MA, 1989).[25] M. Franz <strong>and</strong> Z. Tešanović, Phys. Rev. Lett. 80, 4763 (1998).[26] X. R. Resende <strong>and</strong> A. H. MacDonald, Bull. Am. Phys. Soc. 43, 573, 1998.[27] Y. Wang <strong>and</strong> A. H. MacDonald, Phys. Rev. B52, R3876 (1995).[28] K. Yasui <strong>and</strong> T. Kita, Phys. Rev. Lett. 83, 4168 (1999).[29] L. P. Gor’kov <strong>and</strong> J. R. Schrieffer, Phys. Rev. Lett. 80, 3360 (1998).[30] P. W. Anderson, cond-mat/9812063.[31] A. S. Melnikov, J. Phys. Cond. Matt. 82, 4703 (1999).[32] L. Mar<strong>in</strong>elli, B. I. Halper<strong>in</strong> <strong>and</strong> S. H. Simon, Phys. Rev. B62 3488 (2000).121


[33] A. Moroz, Phys. Rev. A 53, 669 (1996).[34] J. Ye, Phys. Rev. Lett. 86, 316 (2001).[35] M. Nielsen <strong>and</strong> P. Hedegård, Phys. Rev. B 51, 7679 (1995).[36] T. Senthil, M. P. A. Fisher, L. Balents, <strong>and</strong> C. Nayak, cond-mat/9808001.[37] Quantized sp<strong>in</strong> currents <strong>in</strong> superfluids <strong>and</strong> superconductors <strong>in</strong> different physicalsituations have also been considered <strong>in</strong> G. E. Volovik, JETP Lett. 66, 522 (1997)<strong>and</strong> G. E. Volovik <strong>and</strong> V. M. Yakovenko, J. Phys. Cond. Matt. 1 5263, (1989).See also V. M. Yakovenko, Phys. Rev. Lett. 65, 251 (1990).[38] A. C. Durst <strong>and</strong> P. A. Lee, Phys. Rev. B62, 1270 (2000).[39] A. Vishwanath, Phys. Rev. Lett. 87, 217004 (2001), A. Vishwanath Phys. Rev.B66, 064504 (2002).[40] This quantization is an example of a general class of problems exhibit<strong>in</strong>g <strong>the</strong>“parity anomaly” as orig<strong>in</strong>ally discussed <strong>in</strong> F. D. M. Haldane, Phys. Rev. Lett.61, 2015 (1988). For application to sp<strong>in</strong> currents <strong>in</strong> chiral magnets see F. D. M.Haldane <strong>and</strong> D. P. Arovas, Phys. Rev. B52, 4223 (1995). For various manifestationsof such quantized transport <strong>in</strong> superfluids <strong>and</strong> superconductors see Refs.[36, 37].[41] For translationally <strong>in</strong>variant superconductors with broken time-reversal <strong>and</strong> paritysuch topological <strong>in</strong>variant has been derived by N. Read <strong>and</strong> Dmitry Green,Phys. Rev. B61 10267, (2000).[42] In a typical situation, <strong>the</strong> comb<strong>in</strong>ed symmetry of BdG equations <strong>and</strong> <strong>the</strong> <strong>in</strong>versionsymmetry of a vortex lattice conspire to restrict σ s xy/8π.to even multiples of[43] For discussion of some general properties of <strong>the</strong> BCS-Hofstadter problem <strong>in</strong> d-wave superconductors see Y. Morita <strong>and</strong> Y. Hatsugai, cond-mat/0007067.122


[44] In real superconductors, this sequence of transitions will also be <strong>in</strong>fluenced bystrong disorder. For sp<strong>in</strong> QHE <strong>in</strong> dirty superconductors with broken orbital timereversalsymmetry see I. A. Gruzberg, A. W. Ludwig, <strong>and</strong> N. Read, Phys. Rev.Lett. 82 4524 (1999); V. Kagalovsky, B. Horovitz, Y. Avishai, <strong>and</strong> J. T. Chalker,Phys. Rev. Lett. 82 3516, (1999). In our case, perhaps <strong>the</strong> most <strong>in</strong>terest<strong>in</strong>g <strong>and</strong>relevant form of disorder is <strong>the</strong> one associated with disorder <strong>in</strong> vortex positions.[45] O. Vafek, A. Melikyan, M. Franz, Z. Tešanović, Phys. Rev. B63, 134509 (2001).[46] J. von Neumann <strong>and</strong> E. Wigner, Physik. Z., 30 467 (1927).[47] T. Senthil, J. B. Marston, <strong>and</strong> M. P. A. Fisher, cond-mat/9902062.[48] J. M. Lutt<strong>in</strong>ger, Phys. Rev. 135, A1505 (1964).[49] Yu. N. Obraztsov, Fiz. Tverd. tela 6, 414 (1964) [Sov. Phys.-Solid State 6, 331(1964)]; 7, 455 (1965).[50] L. Smrčka <strong>and</strong> P. Středa, J. Phys. C 10 2153 (1977).[51] H. Oji <strong>and</strong> P. Streda, Phys. Rev. B31, 7291 (1985).[52] G. D. Mahan, Many-Particle Physics (Plenum, New York, 1990).[53] M. Kohmoto, Annals of Physics 160, 343 (1985).[54] M. Jonson <strong>and</strong> S. M. Girv<strong>in</strong>, Phys. Rev. B29, 1939 (1984).[55] C. Poople et. al., Superconductivity (Academic Press, San Diego, 1995).[56] V. Ambegaokar <strong>and</strong> A. Griff<strong>in</strong>, Phys. Rev. B137, A1151 (1965).[57] J. Corson et al., Nature 398, 221 (1999).[58] M. Franz <strong>and</strong> Z. Tešanović, Phys. Rev. Lett. 87, 257003 (2001); M. Franz, Z.Tesanovic <strong>and</strong> O. Vafek, Phys. Rev. B66, 054535 (2002).123


[59] R. D. Pisarski, Phys. Rev. D29, 2423 (1984); T. W. Appelquist et al., Phys.Rev. D33, 3704 (1986); M. R. Penn<strong>in</strong>gton <strong>and</strong> D. Walsh, Phys. Lett. B 253, 246(1991); I. J. R. Aitchison <strong>and</strong> N. E. Mavromatos, Phys. Rev. B53, 9321 (1996);P. Maris, Phys. Rev. D54, 4049 (1996).[60] T. W. Appelquist, A. G. Cohen, Schmaltz Phys. Rev. D60 045003 (1999); H<strong>and</strong>set. al. hep-lat/0209133.[61] P. W. Anderson, The <strong>the</strong>ory of superconductivity <strong>in</strong> <strong>the</strong> <strong>high</strong>-T c <strong>cuprate</strong>s, Pr<strong>in</strong>cetonUniversity Press (1997).[62] B. W. Hoogenboom et al., Phys. Rev. B62, 9179 (2000).[63] T. Nakano et al., Journal J. Phys. Soc. 67, 2622 (1998).[64] The labels “compact” <strong>and</strong> “non-compact” gauge fields pasted on a µ <strong>and</strong> v µhave <strong>the</strong> follow<strong>in</strong>g precise mean<strong>in</strong>g: let us for a moment forget about def<strong>in</strong>itions(3.7,3.8) <strong>and</strong> simply treat a µ <strong>and</strong> v µ appear<strong>in</strong>g <strong>in</strong> (3.6) as two completely<strong>in</strong>dependent gauge fields. We fur<strong>the</strong>r <strong>in</strong>troduce <strong>the</strong> compactified gauge transformations(for example, see I. I. Kogan <strong>and</strong> A. Kovner, Phys. Rev. D53, 4510(1996); ibid 51, 1948 (1995)) def<strong>in</strong>ed as:a µ → a µ + ∂ µ θ reg + ∂ µ θ s<strong>in</strong>gwhere θ reg (x) describes <strong>the</strong> ord<strong>in</strong>ary smooth or regular gauge transformations.These familiar gauge transformations are extended to <strong>in</strong>clude s<strong>in</strong>gular gaugetransformations described by θ s<strong>in</strong>g (x), itself determ<strong>in</strong>ed from:(∂ × ∂θs<strong>in</strong>g (x) ) = 2π ∑ N ∫dxµ kµ δ(x − x k ) ,k=1Lwhere <strong>the</strong> sum runs over an arbitrary number N of unit-flux Dirac str<strong>in</strong>gs <strong>and</strong>∫denotes a l<strong>in</strong>e <strong>in</strong>tegral. We now <strong>in</strong>quire whe<strong>the</strong>r <strong>the</strong> <strong>the</strong>ory (3.6) is <strong>in</strong>variantLunder such compactified gauge transformations when applied to a µ . The answeris “yes”. However, when <strong>the</strong> same type of transformation is separately appliedto v µ , <strong>the</strong> answer is “no”, due to its Meissner coupl<strong>in</strong>g to BdG fermions. Hence<strong>the</strong> labels. Note that both v Aµ <strong>and</strong> v Bµ are non-compact <strong>in</strong> <strong>the</strong> same sense.124


[65] For computational convenience we def<strong>in</strong>e V s as twice <strong>the</strong> conventional superfluiddensity; see Ref. [66].[66] M. T<strong>in</strong>kham, Introduction to Superconductivity, Krieger Publish<strong>in</strong>g Company(1975).[67] An exception to this general situation is <strong>the</strong> Anderson gauge, ϕ A = ϕ, ϕ B = 0 orϕ A = 0, ϕ B = ϕ (P. W. Anderson, cond-mat/9812063), which has least desirableproperties <strong>in</strong> this regard, result<strong>in</strong>g <strong>in</strong> v = a (v µ = a µ ), or an <strong>in</strong>f<strong>in</strong>itely strongcoupl<strong>in</strong>g between v <strong>and</strong> a. It is <strong>the</strong>n impossible to decouple v (v µ ) <strong>and</strong> a (a µ ),even <strong>in</strong> <strong>the</strong> RG sense. Consequently, any attempt to construct <strong>the</strong> effective <strong>the</strong>oryby us<strong>in</strong>g <strong>the</strong> Anderson gauge is unlikely to be successful. To illustrate this, notethat <strong>in</strong> <strong>the</strong> Anderson gauge (also <strong>in</strong> a general “A−B” gauge) <strong>the</strong> system has f<strong>in</strong>iteoverall magnetization: M = n ↑ −n ↓ = 〈 ¯ψ ↑ ψ ↑ 〉−〈 ¯ψ ↓ ψ ↓ 〉 = 〈 ˜ψ † ˜ψ ↑ ↑ 〉−〈 ˜ψ † ˜ψ ↓ ↓ 〉 ≠ 0 ! Incontrast, <strong>in</strong> <strong>the</strong> FT gauge (3.4,3.11) M = 0 as it must be. Aga<strong>in</strong>, this preferencefor <strong>the</strong> FT gauge is a consequence of <strong>the</strong> <strong>in</strong>tricate nature of <strong>the</strong> “coarse-gra<strong>in</strong><strong>in</strong>g”process – if <strong>the</strong> gauge fields are def<strong>in</strong>ed on discrete vortex configurations {r i (τ)}(3.7,3.8) <strong>the</strong> magnetization vanishes with any choice of gauge.[68] T. Senthil <strong>and</strong> M. P. A. Fisher, Phys. Rev. B62, 7850 (2000).[69] D. A. Bonn et al., Nature 414, 887 (2001).[70] Z. Tešanović, Phys. Rev. B59, 6449 (1999); see Appendices A <strong>and</strong> B.[71] L. Balents, M. P. A. Fisher <strong>and</strong> C. Nayak, Phys. Rev. B60, 1654 (1999).[72] A. Nguyen <strong>and</strong> A. Sudbø, Phys. Rev. B60, 15307 (1999).[73] S. H. Simon <strong>and</strong> P. A. Lee, Phys. Rev. Lett. 78, 1548 (1997).[74] V. Gusyn<strong>in</strong>, A. Hams <strong>and</strong> M. Reenders, Phys. Rev. D63, 045025 (2001).[75] M. Reenders, cond-mat/0110168.[76] See e.g. M. E. Pesk<strong>in</strong> <strong>and</strong> D. V. Schroeder, An Introduction to Quantum FieldTheory, Addison-Wesley 1995.125


[77] X. -G. Wen <strong>and</strong> P. A. Lee, Phys. Rev. Lett. 76, 503 (1996); P. A. Lee, N.Nagaosa, T. K. Ng, <strong>and</strong> X. -G. Wen, Phys. Rev. B57, 6003 (1998).[78] T. W. Appelquist <strong>and</strong> U. He<strong>in</strong>z, Phys. Rev. D24, 2169 (1981); D. Atk<strong>in</strong>son, P.W. Johnson <strong>and</strong> P. Maris, Phys. Rev. D42, 602 (1990).[79] M. R. Penn<strong>in</strong>gton <strong>and</strong> D. Walsh, Phys. Lett B 253, 246 (1991).[80] I. F. Herbut <strong>and</strong> Z. Tešanović, Phys. Rev. Lett. 76, 4588 (1996).[81] D. H. Kim, P. A. Lee <strong>and</strong> X.-G. Wen, Phys. Rev. Lett. 79, 2109 (1997); D. H.Kim <strong>and</strong> P. A. Lee, Ann. Phys. 272, 130 (1999).[82] Jean Z<strong>in</strong>n-Just<strong>in</strong>, Quantum Field Theory <strong>and</strong> Critical Phenomena, Oxford UniversityPress, 1996.[83] Z. Tesanovic, O. Vafek <strong>and</strong> M. Franz Phys. Rev. B65, 180511(R) (2002); seealso I.F. Herbut, Phys. Rev. Lett. 88, 047006 (2002).[84] T. Appelquist et al., Phys. Rev. D33, 3774 (1986).[85] See e.g. M. R. Norman, A. Kam<strong>in</strong>ski, J. Mesot <strong>and</strong> J. C. Campuzano, Phys. Rev.B63, 140508 (2001).[86] H. Kle<strong>in</strong>ert, Gauge Fields <strong>in</strong> Condensed Matter, vol. I, World Scientific, S<strong>in</strong>gapore(1989).126


VitaOskar Vafek was born on April 18, 1976. He received a Bachelor of Arts degree<strong>in</strong> Chemistry from Goucher College <strong>in</strong> 1998. He will be a Postdoctoral Scholar <strong>in</strong> <strong>the</strong>Stanford Institute for Theoretical Physics (SITP) <strong>and</strong> <strong>the</strong> Department of Physics atStanford University beg<strong>in</strong>n<strong>in</strong>g September 1, 2003.127

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!