12.07.2015 Views

Variational Wavefunction for the Helium Atom

Variational Wavefunction for the Helium Atom

Variational Wavefunction for the Helium Atom

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Technische Universität GrazInstitut für FestkörperphysikStudent project<strong>Variational</strong> <strong>Wavefunction</strong><strong>for</strong> <strong>the</strong> <strong>Helium</strong> <strong>Atom</strong>Molecular and Solid State Physics 513.001submitted on: 30. November 2009by:Markus Krammer


Contents1 Problem 32 Optimization of a given wavefunction 33 Calculating <strong>the</strong> energy E (α) 33.1 〈x|Ĥ|ψ〉 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33.2 〈ψ|Ĥ|ψ〉 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43.3 〈ψ|Ĥ1|ψ〉 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43.4 〈ψ|ψ〉 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53.5 〈ψ|Ĥ2|ψ〉 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53.5.1 Trans<strong>for</strong>ming to spherical coordinates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53.5.2 Determinant of <strong>the</strong> Jacobi matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73.5.3 One more trans<strong>for</strong>mation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93.5.4 Solving <strong>the</strong> integral . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94 Optimizing <strong>the</strong> Energy 102


1 ProblemThe Hamitonian <strong>for</strong> <strong>the</strong> helium atom isĤ = − 2 (∇22m 1 + ∇ 2 2e2) 2− −4πɛ 0 r 12e24πɛ 0 r 2+e24πɛ 0 r 12(1)where r 12 is <strong>the</strong> distance between <strong>the</strong> two electrons.There is no analytical solution <strong>for</strong> <strong>the</strong> Schrödinger equation <strong>for</strong> this problem. So in a first step we neglect <strong>the</strong>electron electron interaction (term 5 in equation 1) to get an idea of how <strong>the</strong> real wavefunction could look like.Solving <strong>the</strong> Schrödinger equation <strong>for</strong> this simplified problem leads to <strong>the</strong> following wavefunction <strong>for</strong> <strong>the</strong> groundstate:ψ (r 1 , r 2 ) = 1 (a 3 exp −2 r )1 + r 2(2)0a 0This approximation is, of course, not very good. But it gives us an idea of how a better approximation couldlook like. So we try a variational wavefunction:ψ (r 1 , r 2 , α) = 1 (a 3 exp −α r )1 + r 2(3)0a 0Now, as we have made a decision of how our approximate wavefunction <strong>for</strong> <strong>the</strong> ground state should look like,we can optimize it.2 Optimization of a given wavefunctionTo optimize a wavefunction, we have to calculate <strong>the</strong> energyE (α) = 〈ψ|Ĥ|ψ〉〈ψ|ψ〉(4)and find <strong>the</strong> lowest energy depending on our parameter. If we would have more than one Parameter (e.g.coefficients of a polynomial that we multiply with our wavefunction) we would have to find <strong>the</strong> global minimumof our energy. But since we have just one parameter, finding <strong>the</strong> minimum energy is pretty easy.dE (α)dα = 0 (5)Equation 5 gives us <strong>the</strong> optimized parameter α (Energy must be <strong>the</strong> global minimum <strong>for</strong> <strong>the</strong> best α, so we haveto check whe<strong>the</strong>r this energy is <strong>the</strong> global minimum or not).3 Calculating <strong>the</strong> energy E (α)3.1 〈x|Ĥ|ψ〉The Laplace operator in spherical coordinates looks like this:∇ 2 i = 1 ( )∂ri2 ri2 ∂ 1 ∂ ∂ 1 ∂ 2+∂r i ∂r i ri 2 sin θ sin θ i +i ∂θ i ∂θ i ri 2 sin2 θ i ∂ϕ 2 i(6)Now we let <strong>the</strong> Laplace operator sink on <strong>the</strong> wavefunction:∇ 2 i ψ = 1 (∂ri2 r 2 ∂ 1i∂r i ∂r i a 3 exp −α r )1 + r 20a 0∇ 2 i ψ = − α a 4 01r 2 i(∂ri 2 exp −α r )1 + r 2∂r i a 0∇ 2 i ψ = − α a 4 01r 2 i( (2r i exp −α r )1 + r 2− α (ri 2 exp −α r ))1 + r 2a 0 a 0 a 03


∇ 2 i ψ = α a 4 0( α− 2 ) (exp −α r )1 + r 2a 0 r i a 0(7)Putting this into 〈x|Ĥ|ψ〉 returns:with〈x|Ĥ|ψ〉 = ( 2∑i=1(− 2(α α− 2 ) ) )−2e2 + e22m a 0 a 0 r i 4πɛ 0 r i 4πɛ 0 r 121a 3 0(exp −α r )1 + r 2a 0 2=e2(8)ma 0 4πɛ 0this leads to〈x|Ĥ|ψ〉 =2ma 4 0( 2∑ (− α2− 2 − α ) )+ 1 (exp −α r )1 + r 22ai=1 0 r i r 12 a 0(9)3.2 〈ψ|Ĥ|ψ〉With equation 9 it is not difficult to write down 〈ψ|Ĥ|ψ〉:〈ψ|Ĥ|ψ〉 =∫( 2∑· · · dx 1 dy 1 dz 1 dx 2 dy 2 dz 2∫R 2 (− α2− 2 − α ) )+ 1ma 6 0 2ai=1 0 r i r 121a 6 0(exp −2α r )1 + r 2a 0The first four terms in this integral are no problem to solve. Only <strong>the</strong> last term with <strong>the</strong> r 12 is a bit harder toevaluate. So we split it up into two parts:∫( 2∑〈ψ|Ĥ1|ψ〉 = · · · dx 1 dy 1 dz 1 dx 2 dy 2 dz 2∫R 2 (ma 7 − α2− 2 − α ) ) (exp −2α r )1 + r 2(11)6 0 2ai=1 0 r ia 0(10)and∫〈ψ|Ĥ2|ψ〉 =· · · dx 1 dy 1 dz 1 dx 2 dy 2 dz 2∫R 2 (1ma 7 exp −2α r )1 + r 26 0 r 12 a 0(12)3.3 〈ψ|Ĥ1|ψ〉The integrals∫· · · dx 1 dy 1 dz 1 dx 2 dy 2 dz 2∫R 2ma 7 6 0(− α2− 2 − α ) (exp −2α r )1 + r 22a 0 r 1 a 0and∫· · · dx 1 dy 1 dz 1 dx 2 dy 2 dz 2∫R 2 (− α2ma 7 − 2 − α ) (exp −2α r )1 + r 26 0 2a 0 r 2 a 0are exactly <strong>the</strong> same, so we can write∫〈ψ|Ĥ1|ψ〉 =· · · dx 1 dy 1 dz 1 dx 2 dy 2 dz 2∫R 2ma 7 6 0(− α2− 2 2 − α ) (exp −2α r )1 + r 2a 0 r 1 a 0(13)Now we tans<strong>for</strong>m it into spherical coordinates and with <strong>the</strong> Jacobi determinant of <strong>the</strong> trans<strong>for</strong>mation we get:dx 1 dy 1 dz 1 dx 2 dy 2 dz 2 = r1 2 sin θ 1 r2 2 sin θ 2 dr 1 dϕ 1 dθ 1 dr 2 dϕ 2 dθ 2 (14)Our integral does not depend on ϕ i and θ i , so we can integrate <strong>the</strong>se 4 variables seperately:∫ 2π∫ π ∫ 2π ∫ πdϕ 1 dθ 1 dϕ 2 dθ 2 sin θ 1 sin θ 2 = (4π) 2 (15)0 0 0 04


Figure 1: Trans<strong>for</strong>mation, <strong>the</strong> ˜z axis has <strong>the</strong> same direction as ⃗r 1and ˜z 2 as we are used to.˜x 2 = r 2 cos ϕ 12 sin θ 12 (24)ỹ 2 = r 2 sin ϕ 12 sin θ 12 (25)˜z 2 = r 2 cos θ 12 (26)So now we need to know <strong>the</strong> relation between x 2 , y 2 , z 2 and ˜x 2 , ỹ 2 , ˜z 2 . For this we write down <strong>the</strong> basis vectors:ê˜z = ⃗r 1r 1ê˜z =⎛⎝ cos ϕ 1 sin θ 1sin ϕ 1 sin θ 1cos θ 1⎞⎠ (27)êỹ = ê˜z × ê z|ê˜z × ê z |êỹ =⎛1⎝|ê˜z × ê z |cos ϕ 1 sin θ 1sin ϕ 1 sin θ 1cos θ 1⎞⎛⎠ × ⎝001⎞⎠êỹ =⎛1⎝|ê˜z × ê z |sin ϕ 1 sin θ 1− cos ϕ 1 sin θ 10⎞⎠6


where ˜M 1 , ˜M2 , ˜M3 and M are <strong>the</strong> more complicate parts of <strong>the</strong> Jacobi matrix with <strong>the</strong> trans<strong>for</strong>mation to r 2 ,ϕ 12 and θ 12 .∣ ∣∣∣∣∣∣∣∣∣ r 1 cos ϕ 1 sin θ 1 r 1 sin ϕ 1 cos θ 1˜M20 −r 1 sin θ 1˜M3|J| = cos ϕ 1 sin θ 1 0 00 0 M0 0∣∣ ∣∣∣∣∣∣∣∣∣ −r 1 sin ϕ 1 sin θ 1 r 1 cos ϕ 1 cos θ 1˜M10 −r 1 sin θ 1˜M3− sin ϕ 1 sin θ 1 0 00 0 M0 0∣∣ ∣∣∣∣∣∣∣∣∣ −r 1 sin ϕ 1 sin θ 1 r 1 cos ϕ 1 cos θ 1˜M1r 1 cos ϕ 1 sin θ 1 r 1 sin ϕ 1 cos θ 1˜M2+ cos θ 1 0 00 0 M0 0∣∣ ∣∣∣∣∣∣∣ −r 1 sin θ 1˜M3|J| = r 1 cos 2 ϕ 1 sin 2 0θ 10 M0∣ ∣∣∣∣∣∣∣ −r 1 sin θ 1˜M3r 1 sin 2 ϕ 1 sin 2 0θ 10 M0∣ ∣∣∣∣∣∣∣ r 1 sin ϕ 1 cos θ 1˜M20−r 1 sin ϕ 1 sin θ 1 cos θ 10 M0∣ ∣∣∣∣∣∣∣ r 1 cos ϕ 1 cos θ 1˜M10−r 1 cos ϕ 1 sin θ 1 cos θ 10 M0∣∣∣∣|J| = −r 2 1 sin 3 θ 1 |M| − r 2 1 sin 2 ϕ 1 sin θ 1 cos 2 θ 1 |M| − r 2 1 cos 2 ϕ 1 sin θ 1 cos 2 θ 1 |M|For <strong>the</strong> integral trans<strong>for</strong>mation we need <strong>the</strong> absolute value of <strong>the</strong> determinant of <strong>the</strong> Jacobi matrix.||J|| = r 2 1 sin θ 1 ||M|| (32)So now we just need to calculate <strong>the</strong> absolute value of <strong>the</strong> determinant of M:⎛ ⎞x 2 ( )M = ⎝ y 2⎠ · ∂ ∂ ∂∂r 2 ∂ϕ 12 ∂θ 12z 2M =⎛⎝ − cos ϕ ⎞ ⎛1 cos θ 1 sin ϕ 1 cos ϕ 1 sin θ 1− sin ϕ 1 cos θ 1 − cos ϕ 1 sin ϕ 1 sin θ 1⎠ ⎝ ˜x 2ỹ 2sin θ 1 0 cos θ 1 ˜z 2⎞⎠ ·(∂∂r 2∂∂ϕ 12)∂∂θ 12As <strong>the</strong> trans<strong>for</strong>mation matrix has no dependence on r 2 , ϕ 12 and θ 12 we can easily get <strong>the</strong> determinante:⎛⎞ ⎛ ⎞− cos ϕ 1 cos θ 1 sin ϕ 1 cos ϕ 1 sin θ 1 ˜x 2 ( ) ∣ |M| =⎝− sin ϕ 1 cos θ 1 − cos ϕ 1 sin ϕ 1 sin θ 1⎠ ⎝ ỹ 2⎠ · ∂ ∂ ∂ ∣∣∣∣∂r 2 ∂ϕ 12 ∂θ 12∣ sin θ 1 0 cos θ 1 ˜z 28


|M| =∣∣ ∣⎛− cos ϕ 1 cos θ 1 sin ϕ 1 cos ϕ 1 sin θ 1 ∣∣∣∣∣ ∣∣∣∣∣− sin ϕ 1 cos θ 1 − cos ϕ 1 sin ϕ 1 sin θ 1⎝sin θ 1 0 cos θ 1˜x 2ỹ 2˜z 2⎞⎠ ·(∂∂r 2∂∂ϕ 12∂∂θ 12) ∣ ∣ ∣∣∣∣The determinante of <strong>the</strong> second part is <strong>the</strong> same as we were calculating many times bevor:⎛⎝ ˜x ⎞2 ( ) ∣ ỹ 2⎠ · ∂ ∂ ∂ ∣∣∣∣∂r 2 ∂ϕ 12 ∂θ 12= −r2 2 sin θ 12∣ ˜z 2And <strong>the</strong> first part is also not really difficult:∣ − cos ϕ 1 cos θ 1 sin ϕ 1 cos ϕ 1 sin θ 1 ∣∣∣∣∣ − sin ϕ 1 cos θ 1 − cos ϕ 1 sin ϕ 1 sin θ 1 = cos 2 ϕ 1 cos 2 θ 1 +sin 2 ϕ 1 sin 2 θ 1 +cos 2 ϕ 1 sin 2 θ 1 +sin 2 ϕ 1 cos 2 θ 1 = 1∣ sin θ 1 0 cos θ 1So <strong>the</strong> absolute value of <strong>the</strong> determinante of <strong>the</strong> Jacobi matrix is:||J|| = r 2 1r 2 2 sin θ 1 sin θ 12 (33)3.5.3 One more trans<strong>for</strong>mationWith <strong>the</strong> trans<strong>for</strong>mation done be<strong>for</strong>e <strong>the</strong> integral is still not easy to solve. So we need one more trans<strong>for</strong>mation.We trans<strong>for</strong>m θ 12 to r 12 :r 2 12 = r 2 1 + r 2 2 − 2r 1 r 2 cos θ 12The Jacobi matrix <strong>for</strong> this trans<strong>for</strong>mation is:1 0 0 0 0 00 1 0 0 0 0|J| =0 0 1 0 0 00 0 0 1 0 00 0 0 0 1 0∣ r 12rr 1−r 2 cos θ 120 012r 2−r 1 cos θ 120r 12r 1r 2 sin θ 12∣ ∣∣∣∣∣∣∣∣∣∣∣||J|| =r 12r 1 r 2 sin θ 12(34)We need to take a look at <strong>the</strong> integration limits. In spherical coordinates <strong>the</strong>y were <strong>the</strong> same as we are usedto. But now we have to get <strong>the</strong> correct limits <strong>for</strong> r 12 . The limits <strong>for</strong> θ 12 were 0 and π, so r 12 now needs to gofrom |r 1 − r 2 | to r 1 + r 2 .3.5.4 Solving <strong>the</strong> integralWith all <strong>the</strong>se trans<strong>for</strong>mations (equations 33 and 34) <strong>the</strong> integral finally has a <strong>for</strong>m that is easy to solve:〈ψ|Ĥ2|ψ〉 =∫ ∞0∫ ∞ ∫ r1+r 2∫ 2π ∫ 2π ∫ πdr 1 dr 2 dr 12 dϕ 1 dϕ 120|r 1−r 2| 2(1 1ma 0 r 12 a 6 exp −2α r )1 + r 20a 0∫ ∞ ∫ ∞ ∫ r1+r= 2ma 7 2 (2π) 2 2dr 1 dr 200 0∫ ∞= 2ma 7 2 (2π) 200∫ ∞= 2ma 7 2 (2π) 2000|r 1−r 2|(∫ r1∫ r1+r 2dr 1 dr 20(∫ r1dr 1 dr 2 2r 2 +000(dr 12 r 1 r 2 exp −2α r 1 + r 2r 1−r 2dr 12 +∫ ∞∫ ∞dθ 1 r 2 1r 2 2 sin θ 1 sin θ 12r 12r 1 r 2 sin θ 12a 0)r 1dr 2∫ r1+r 2r 2−r 1dr 12))dr 2 2r 1 r 1 r 2 expr 1(−2α r )1 + r 2a 0(r 1 r 2 exp −2α r )1 + r 2a 09


∫ r10dr 2 r 2 2 exp (−λr 2 ) = ∂2∂λ 2 ∫ r10(dr 2 exp (−λr 2 ) = ∂2∂λ 2 − exp (−λr 1)+ 1 )= ∂(λ λ ∂λ exp (−λr r11)λ + 1 )+ 2 λ 2 λ 3( (r1= exp (−λr 1 ) −r 1λ + 1 )λ 2 − r 1λ 2 − 2 )λ 3 + 2 λ 3 = − exp (−λr 1) r2 1λ 2 + 2r 1 λ + 2λ 3 + 2 λ 3∫ ∞r 1dr 2 r 2 exp (−λr 2 ) = − ∂∂λ∫ ∞r 1dr 2 exp (−λr 2 ) = − ∂∂λ( )exp (−λr1 )λ(r1= exp (−λr 1 )λ + 1 )λ 2〈ψ|Ĥ2|ψ〉 = 2ma 7 0+ 2ma 7 0= 2ma 7 0(4π) 2 ∫ ∞0(4π) 2 ∫ ∞0(4π) 2 ∫ ∞0⎛((⎜dr 1 ⎝− exp − 2α ) r2 2α1r 1a 0⎛(⎜dr 1 ⎝r 1 exp − 2α⎛⎜dr 1 ⎝− r 1 2α(= 2 a0) 3∫ ∞2 (4π)ma 7 0 2α0a 0+ 2() 32αa 0dr 1(−With equations 16 and 17 this leads to:⎛ ⎛(〈ψ|Ĥ2|ψ〉 = 2 a0) 32 ⎜ ⎜(4π)ma 7 ⎝− ⎝ 2 2α( )0 2α3+ 24α a 0a 0(= 2 a0) 52 (4π)(− 2 ma 7 0 2α8 − 2 )4 + 2So finally we solved <strong>the</strong> integral:) 2⎞a 0+2α 2r1a 0+ 2( ) 3+ (2) 32α2αa 0 a 0) ⎛ ⎞⎞⎜ r 1r 1 ⎝a2α+ 1 ⎟⎟( ) 2 ⎠⎠ r 1 exp0 a 02αa 0(exp − 4α )r 1a 0+ (2() 3exp2αa 0(⎟⎠ r 1 exp −2α r 1(−2α r 1a 0)−2α r 1a 0) ⎞ ⎟ ⎠ r1( ) (r12 2α+ 2r 1 exp − 4α )r 1 + 2r 1 expa 0 a 0⎞1 ⎟) 2 ⎠ + 2a 0(4α⎞1 ⎟) 2 ⎠a 0(2α(− 2αa 0r 1))a 0)〈ψ|Ĥ2|ψ〉 =2ma 2 0π 2 5α 5 8(35)4 Optimizing <strong>the</strong> EnergyNow we calculated all terms to get <strong>the</strong> energy (see equation 4):E (α) = 〈ψ|Ĥ|ψ〉〈ψ|ψ〉= 〈ψ|Ĥ1|ψ〉 + 〈ψ|Ĥ2|ψ〉〈ψ|ψ〉With equation 18, 20 and 35 we get <strong>the</strong> result:E (α) = − 2 π 2 (4−α)ma 2 0 α 5π 2α 6+ 2 π 2 5ma 2 0 α 5 8( )E (α) = − 2 27ma 2 0 8 α − α2(36)10


As already explained in equation 5 <strong>the</strong> first derivative of <strong>the</strong> energy must be zerodE (α)dα = 0 = d ( ))(− 2 27dα8 α − α20 = − 2ma 2 00 = 27 8 − 2αSo <strong>the</strong> optimized value <strong>for</strong> α is:ma 2 0( 278 − 2α )α = 2716(37)As we can easily see from <strong>the</strong> energy E (α) this is <strong>the</strong> global minimum. The corresponding energy is (wi<strong>the</strong>quation 36):( ) 27E opt = E16( ( ) ) 2= − 2 27 27 27ma 2 0 8 16 − 16(= − 2 729ma 2 0 128 − 729 )256E opt = − 2 729ma 2 0 256(38)(39)The hartree E h is <strong>the</strong> atomic unit of energy (see also equation 8):E h =2ma 2 0= e24πɛ 0 a 0(40)So in hartree <strong>the</strong> energy would beE opt = − 729 hartree256(41)= −2.8477hartree (42)Putting <strong>the</strong> values = 1.054571628 · 10 −34 Js (43)m = 9.10938215 · 10 −31 kg (44)a 0 = 5.291772186 · 10 −11 m (45)e = −1.602176487 · 10 −19 C (46)into equation 39 results in:E opt = −1.24151 · 10 −17 J (47)= −77.4887eV (48)11

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!