12.07.2015 Views

Impacts of Climate Change on the European Marine and Coastal ...

Impacts of Climate Change on the European Marine and Coastal ...

Impacts of Climate Change on the European Marine and Coastal ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

2 <str<strong>on</strong>g>Impacts</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Climate</str<strong>on</strong>g> <str<strong>on</strong>g>Change</str<strong>on</strong>g> <strong>on</strong> <strong>the</strong> <strong>European</strong> <strong>Marine</strong> <strong>and</strong> <strong>Coastal</strong> Envir<strong>on</strong>ment


C<strong>on</strong>tentsForeword 6Executive summary 71. <str<strong>on</strong>g>Climate</str<strong>on</strong>g> change 101.1 Global change <strong>and</strong> climate change 101.2 <str<strong>on</strong>g>Climate</str<strong>on</strong>g> change <strong>and</strong> climate variability 121.3 Role <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> Oceans in climate regulati<strong>on</strong> 132. Projecti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> future climate 162.1 Forecasts <strong>and</strong> scenarios 162.2 Model scenarios for Europe 173. Possible resp<strong>on</strong>ses <strong>and</strong> impacts 193.1 Physical resp<strong>on</strong>ses <strong>and</strong> impacts 193.2 Biological resp<strong>on</strong>ses <strong>and</strong> impacts 204. Regi<strong>on</strong>al resp<strong>on</strong>ses <strong>and</strong> impacts 224.1 Introducti<strong>on</strong> 224.2 Arctic Ocean 244.3 Barents Sea 274.4 Nordic seas 304.5 Nor<strong>the</strong>ast Atlantic 334.6 North Sea 364.7 Baltic Sea 394.8 Celtic-Biscay shelf 424.9 Iberian upwelling margin 454.10 Mediterranean Sea 484.11 Black Sea 524.12 General trends <strong>and</strong> regi<strong>on</strong>al-specific expectati<strong>on</strong>s 545. Future needs for m<strong>on</strong>itoring <strong>and</strong> indicators 565.1 Introducti<strong>on</strong> 565.2 Indicators 575.3 Abiotic indicators 585.4 Biotic indicators 595.5 Recommendati<strong>on</strong>s 616. Future research needs 62Bibliography 65Appendices 72Appendix 1. Glossary <str<strong>on</strong>g>of</str<strong>on</strong>g> terms 72Appendix 2. List <str<strong>on</strong>g>of</str<strong>on</strong>g> acr<strong>on</strong>yms 73Appendix 3. Glossary <str<strong>on</strong>g>of</str<strong>on</strong>g> large-scale m<strong>on</strong>itoring 74programmes <strong>and</strong> research activities related toclimate change impacts <strong>on</strong> <strong>the</strong> <strong>European</strong> marine<strong>and</strong> coastal envir<strong>on</strong>mentAppendix 4. Extract from Navigating <strong>the</strong> Future III 78<strong>on</strong> climate changeAppendix 5. Members <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> working group 82<str<strong>on</strong>g>Impacts</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Climate</str<strong>on</strong>g> <str<strong>on</strong>g>Change</str<strong>on</strong>g> <strong>on</strong> <strong>the</strong> <strong>European</strong> <strong>Marine</strong> <strong>and</strong> <strong>Coastal</strong> Envir<strong>on</strong>ment 5


ForewordThe scientific evidence isnow overwhelming thatclimate change is a seriousglobal threat which requiresan urgent global resp<strong>on</strong>se,<strong>and</strong> that climate change isdriven by human activity. TheIPPC Report (2007) statesthat sea levels will rise by 3.1cm every decade; <strong>the</strong> oceanshave warmed to a depth <str<strong>on</strong>g>of</str<strong>on</strong>g> 3km; Arctic summer sea-ice is likely to disappear in<strong>the</strong> sec<strong>on</strong>d half <str<strong>on</strong>g>of</str<strong>on</strong>g> this century; up to 40% <str<strong>on</strong>g>of</str<strong>on</strong>g> speciescould face extincti<strong>on</strong>; wea<strong>the</strong>r patterns will becomemore extreme; for example hurricanes <strong>and</strong> stormswill become more intense. The Stern Review (2006)estimates <strong>the</strong> social <strong>and</strong> ec<strong>on</strong>omic cost <str<strong>on</strong>g>of</str<strong>on</strong>g> climatechange to <strong>the</strong> global ec<strong>on</strong>omy at € 5,500 billi<strong>on</strong> by2050. The Stern Review c<strong>on</strong>cludes that, providedwe take str<strong>on</strong>g acti<strong>on</strong> now, <strong>the</strong>re is still time to avoid<strong>the</strong> worst impacts <str<strong>on</strong>g>of</str<strong>on</strong>g> climate change.Enough is now known to make climate change <strong>the</strong>challenge <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> 21st century, <strong>and</strong> <strong>the</strong> researchcommunity is poised to address this challenge. Theneed for enhanced detecti<strong>on</strong> <strong>and</strong> assessment <str<strong>on</strong>g>of</str<strong>on</strong>g><strong>the</strong> impacts <str<strong>on</strong>g>of</str<strong>on</strong>g> climate change <strong>on</strong> <strong>the</strong> oceans <strong>and</strong><strong>the</strong>ir ecosystems has been emphasised in severalrecent publicati<strong>on</strong>s (Stern 2006; Hoepffner, N et al. -JRC-IES 2006; IPCC 2007). Europe is warming at afaster rate than <strong>the</strong> global average, <strong>and</strong> <strong>the</strong> physicalattributes <str<strong>on</strong>g>of</str<strong>on</strong>g> our seas are changing accordingly,with implicati<strong>on</strong>s for <strong>the</strong> functi<strong>on</strong>ing <str<strong>on</strong>g>of</str<strong>on</strong>g> our regi<strong>on</strong>alclimate <strong>and</strong> our marine envir<strong>on</strong>ment. Therefore, inaddressing <strong>the</strong> impacts <str<strong>on</strong>g>of</str<strong>on</strong>g> climate change <strong>on</strong> <strong>the</strong>oceans, Europe must pay particular attenti<strong>on</strong> to itsregi<strong>on</strong>al seas. The diverse nature <str<strong>on</strong>g>of</str<strong>on</strong>g> Europe’s regi<strong>on</strong>alseas, with <strong>the</strong> attendant diversity <str<strong>on</strong>g>of</str<strong>on</strong>g> expressi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g>climate change impacts, represents a particularchallenge for m<strong>on</strong>itoring <strong>and</strong> management <str<strong>on</strong>g>of</str<strong>on</strong>g>climate change at <strong>the</strong> pan-<strong>European</strong>, regi<strong>on</strong>al <strong>and</strong>local levels. The changes in <strong>the</strong> marine envir<strong>on</strong>mentwill have a pr<str<strong>on</strong>g>of</str<strong>on</strong>g>ound impact <strong>on</strong> <strong>the</strong> daily life <str<strong>on</strong>g>of</str<strong>on</strong>g>Europe’s inhabitants, requiring forward planning inpreparati<strong>on</strong> for <strong>the</strong> changes. It is hoped that <strong>the</strong>report will c<strong>on</strong>tribute to this planning.The report <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> Working Group pr<str<strong>on</strong>g>of</str<strong>on</strong>g>iles anoverview <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> research needs <strong>and</strong> futurescientific challenges <str<strong>on</strong>g>of</str<strong>on</strong>g> climate change at <strong>the</strong> both<strong>European</strong>- <strong>and</strong> regi<strong>on</strong>al-seas level, including <strong>the</strong>Arctic, Barents Sea, Nordic Seas, Baltic, NorthSea, Nor<strong>the</strong>ast Atlantic, Celtic-Biscay Shelf,Iberia upwelling margin, Mediterranean <strong>and</strong>Black Sea. The report identifies future researchchallenges in terms <str<strong>on</strong>g>of</str<strong>on</strong>g> climate change m<strong>on</strong>itoring,modelling, <strong>and</strong> development <str<strong>on</strong>g>of</str<strong>on</strong>g> indicators. Itsc<strong>on</strong>clusi<strong>on</strong>s will support <strong>the</strong> development <str<strong>on</strong>g>of</str<strong>on</strong>g> futureresearch strategies <strong>and</strong> inform <strong>the</strong> development <str<strong>on</strong>g>of</str<strong>on</strong>g>policy.Throughout this positi<strong>on</strong> paper, ‘climate change’ isused to denote <strong>the</strong> recent predominantly humaninducedchange (principally <strong>the</strong> result <str<strong>on</strong>g>of</str<strong>on</strong>g> greenhousegas emissi<strong>on</strong>s but also from urbanisati<strong>on</strong> <strong>and</strong>deforestati<strong>on</strong>) <strong>and</strong> climate variability due to r<strong>and</strong>omprocesses <strong>and</strong> natural causes such as volcanoes,solar radiati<strong>on</strong>, <strong>and</strong> n<strong>on</strong>-linear interacti<strong>on</strong>s betweenocean <strong>and</strong> atmosphere (Hasselmann 1976).On behalf <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> <strong>Marine</strong> Board, I would like to thank<strong>the</strong> Working Group Chair, Dr Katja Philippart, <strong>and</strong>its expert participants, whose efforts resulted in acomprehensive overview <str<strong>on</strong>g>of</str<strong>on</strong>g> climate change-relatedimpacts <strong>on</strong> Europe’s regi<strong>on</strong>al seas. I would also liketo thank SAHFOS-UK (David Johns <strong>and</strong> PriscillaLic<strong>and</strong>ro) for providing, with support from <strong>the</strong><strong>Marine</strong> Institute–Irel<strong>and</strong>, <strong>the</strong> maps <str<strong>on</strong>g>of</str<strong>on</strong>g> regi<strong>on</strong>al seasas well as graphs <strong>on</strong> l<strong>on</strong>g-term variati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> seasurfacetemperatures, <strong>and</strong> Nicolas Walter from <strong>the</strong><strong>Marine</strong> Board Secretariat, who provided support to<strong>the</strong> Working Group.Lars HornChairman, <strong>Marine</strong> Board-ESFIn 2005 <strong>the</strong> <strong>Marine</strong> Board established a working group<str<strong>on</strong>g>of</str<strong>on</strong>g> experts from different countries <strong>and</strong> disciplines,under <strong>the</strong> chairmanship <str<strong>on</strong>g>of</str<strong>on</strong>g> Dr Katja Philippart (NIOZ, <strong>the</strong>Ne<strong>the</strong>rl<strong>and</strong>s), to address climate change impacts <strong>on</strong> <strong>the</strong>marine envir<strong>on</strong>ment, with <strong>the</strong> objective <str<strong>on</strong>g>of</str<strong>on</strong>g> documenting<strong>the</strong> existing knowledge <strong>on</strong>, <strong>and</strong> implicati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g>, climatechange, with particular reference to regi<strong>on</strong>al priorities<strong>and</strong> dimensi<strong>on</strong>s.6 <str<strong>on</strong>g>Impacts</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Climate</str<strong>on</strong>g> <str<strong>on</strong>g>Change</str<strong>on</strong>g> <strong>on</strong> <strong>the</strong> <strong>European</strong> <strong>Marine</strong> <strong>and</strong> <strong>Coastal</strong> Envir<strong>on</strong>ment


Executive summaryTerms <str<strong>on</strong>g>of</str<strong>on</strong>g> referenceIn September 2005, <strong>the</strong> <strong>Marine</strong> Board-ESFestablished a Working Group <str<strong>on</strong>g>of</str<strong>on</strong>g> experts to address<str<strong>on</strong>g>Climate</str<strong>on</strong>g> <str<strong>on</strong>g>Change</str<strong>on</strong>g> <str<strong>on</strong>g>Impacts</str<strong>on</strong>g> <strong>on</strong> <strong>the</strong> <strong>European</strong> <strong>Marine</strong><strong>and</strong> <strong>Coastal</strong> Envir<strong>on</strong>ment. The objectives <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong>Working Group were as follows:1. Summarise <strong>the</strong> evidence for globalclimate change in <strong>the</strong> marine <strong>and</strong> coastalenvir<strong>on</strong>ment;2. Review main anticipated impacts <str<strong>on</strong>g>of</str<strong>on</strong>g> climatechange with regard to physical <strong>and</strong> biologicalfeatures <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> <strong>European</strong> marine <strong>and</strong> coastalenvir<strong>on</strong>ment;3. Recommend to <strong>the</strong> <strong>Marine</strong> Board - ESFany future needs in terms <str<strong>on</strong>g>of</str<strong>on</strong>g> climate changem<strong>on</strong>itoring, development <str<strong>on</strong>g>of</str<strong>on</strong>g> indicators,research <strong>and</strong> development to assess <strong>the</strong>impacts <str<strong>on</strong>g>of</str<strong>on</strong>g> climate change.Socio-ec<strong>on</strong>omic <strong>and</strong> mitigati<strong>on</strong> issues were notwithin <strong>the</strong> terms <str<strong>on</strong>g>of</str<strong>on</strong>g> reference <str<strong>on</strong>g>of</str<strong>on</strong>g> this study.Structure <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> reportThis is <strong>the</strong> final report <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> Working Group. Itsummarises <strong>the</strong> current state <str<strong>on</strong>g>of</str<strong>on</strong>g> knowledge withregard to general <strong>and</strong> regi<strong>on</strong>al-specific impacts <str<strong>on</strong>g>of</str<strong>on</strong>g>climate change <strong>on</strong> <strong>European</strong> marine <strong>and</strong> coastalenvir<strong>on</strong>ments, including <strong>the</strong> Arctic, Nor<strong>the</strong>astAtlantic, Barents Sea, Nordic Seas, North Sea,Baltic Sea, Celtic-Biscay Shelf, Iberian upwellingmargin, Mediterranean Sea, <strong>and</strong> Black Sea. Resultsfrom earlier l<strong>on</strong>g-term studies <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>European</strong> seasare used to examine past changes, to put recentrapid changes into c<strong>on</strong>text, <strong>and</strong> to forecast likelyfuture ecosystem resp<strong>on</strong>ses to climate change.General <strong>and</strong> regi<strong>on</strong>al indicators <str<strong>on</strong>g>of</str<strong>on</strong>g> climate changeare identified, <strong>and</strong> associated challenges for futureresearch <strong>and</strong> m<strong>on</strong>itoring are highlighted.Evidence for climate changeRecent research, including <strong>the</strong> examinati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> icecores <strong>and</strong> growth rings <str<strong>on</strong>g>of</str<strong>on</strong>g> ancient trees, shows that<strong>the</strong> Nor<strong>the</strong>rn Hemisphere has been warmer since1980 than at any o<strong>the</strong>r time during <strong>the</strong> last 2000years. The observed increase in temperature underclimate change was generally higher in nor<strong>the</strong>rnthan in sou<strong>the</strong>rn <strong>European</strong> seas.Although marine ecosystems are influenced by manyfactors such as eutrophicati<strong>on</strong> <strong>and</strong> overfishing, everyregi<strong>on</strong> has shown at least some changes that werelikely to be attributable to recent climate change. For<strong>the</strong> most nor<strong>the</strong>rn seas, such as <strong>the</strong> Arctic <strong>and</strong> <strong>the</strong>Barents Sea, <strong>the</strong> most obvious temperature-relatedchange is <strong>the</strong> decline in sea-ice cover. For most openseas <strong>the</strong>re is evidence <str<strong>on</strong>g>of</str<strong>on</strong>g> geographic displacement<str<strong>on</strong>g>of</str<strong>on</strong>g> species populati<strong>on</strong>s northwards, with nor<strong>the</strong>rnspecies being replaced by more sou<strong>the</strong>rn species.Such changes not <strong>on</strong>ly impact <strong>on</strong> local ecosystemsbut also impact <strong>on</strong> <strong>the</strong> activities <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> internati<strong>on</strong>alfishing fleet when commercial species are affected.The enclosed seas have noticeably underg<strong>on</strong>e farmore dramatic changes than <strong>the</strong> more open seasduring <strong>the</strong> past decades. Relatively small changesin <strong>the</strong> frequency <str<strong>on</strong>g>of</str<strong>on</strong>g> inflow (as in <strong>the</strong> Baltic Sea) or intemperature (as in <strong>the</strong> Eastern Mediterranean <strong>and</strong>Black Sea) had a str<strong>on</strong>g effect <strong>on</strong> large parts <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong>ecosystem, indicating <strong>the</strong> high sensitivity <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong>seenclosed systems to climate change.Anticipated impacts <str<strong>on</strong>g>of</str<strong>on</strong>g> climate changeAlthough <strong>the</strong>re can be no certainty regarding <strong>the</strong>precise nature <strong>and</strong> rate <str<strong>on</strong>g>of</str<strong>on</strong>g> future climate change,even <strong>the</strong> more moderate <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> predicted scenarios isexpected to fur<strong>the</strong>r alter <strong>the</strong> marine envir<strong>on</strong>ment, withassociated major envir<strong>on</strong>mental <strong>and</strong> social impacts.It is expected that within open systems <strong>the</strong>re willgenerally be (fur<strong>the</strong>r) northward movement <str<strong>on</strong>g>of</str<strong>on</strong>g>species, e.g. Atlantic species moving to morenor<strong>the</strong>rn seas such as <strong>the</strong> Arctic, Barents Sea <strong>and</strong><strong>the</strong> Nordic Seas, <strong>and</strong> subtropical species movingnorthward to temperate regi<strong>on</strong> such as <strong>the</strong> Iberianupwelling margin.For seas that are highly influenced by river run<str<strong>on</strong>g>of</str<strong>on</strong>g>f, suchas <strong>the</strong> Baltic Sea, an increase in freshwater due toenhanced rainfall will lead to a shift from marine to morebrackish <strong>and</strong> even freshwater species. If enclosedsystems such as <strong>the</strong> Mediterranean <strong>and</strong> <strong>the</strong> Black Sealose <strong>the</strong>ir endemic species, <strong>the</strong> associated niches willprobably be filled by species originating from adjacentwaters <strong>and</strong>, possibly, with species transported from<strong>on</strong>e regi<strong>on</strong> to ano<strong>the</strong>r via ballast water.C<strong>on</strong>clusi<strong>on</strong>s <strong>and</strong> recommendati<strong>on</strong>sWhile <strong>on</strong>-going nati<strong>on</strong>al <strong>and</strong> internati<strong>on</strong>al acti<strong>on</strong>s tocurtail <strong>and</strong> reduce greenhouse gas emissi<strong>on</strong>s areessential, <strong>the</strong> levels <str<strong>on</strong>g>of</str<strong>on</strong>g> greenhouse gases currentlyin <strong>the</strong> atmosphere, <strong>and</strong> <strong>the</strong>ir impact, are likely topersist for several decades. On-going <strong>and</strong> increasedefforts to mitigate climate change through reducti<strong>on</strong>in greenhouse gases are <strong>the</strong>refore crucial.In parallel, a better underst<strong>and</strong>ing <str<strong>on</strong>g>of</str<strong>on</strong>g> potential climatechange impacts (scenarios) at both regi<strong>on</strong>al <strong>and</strong>local levels, <strong>the</strong> development <str<strong>on</strong>g>of</str<strong>on</strong>g> improved methodsto quantify <strong>the</strong> uncertainty <str<strong>on</strong>g>of</str<strong>on</strong>g> climate changeprojecti<strong>on</strong>s, <strong>the</strong> c<strong>on</strong>structi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> usable climatechange indicators, <strong>and</strong> an improvement <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong>interface between science <strong>and</strong> policy formulati<strong>on</strong> interms <str<strong>on</strong>g>of</str<strong>on</strong>g> risk assessment will be essential to formulate<strong>and</strong> inform better adaptive strategies to address<strong>the</strong> inevitable c<strong>on</strong>sequences <str<strong>on</strong>g>of</str<strong>on</strong>g> climate change.<str<strong>on</strong>g>Impacts</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Climate</str<strong>on</strong>g> <str<strong>on</strong>g>Change</str<strong>on</strong>g> <strong>on</strong> <strong>the</strong> <strong>European</strong> <strong>Marine</strong> <strong>and</strong> <strong>Coastal</strong> Envir<strong>on</strong>ment 7


Executive summaryThe Working Group identified specificrecommendati<strong>on</strong>s <strong>on</strong> future m<strong>on</strong>itoring <strong>and</strong>indicators <strong>and</strong> with regard to future research needs,which are described in Secti<strong>on</strong> 5 <strong>and</strong> Secti<strong>on</strong> 6 <str<strong>on</strong>g>of</str<strong>on</strong>g>this report, respectively. General recommendati<strong>on</strong>swere to:1. Enhance evaluati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> impact <str<strong>on</strong>g>of</str<strong>on</strong>g> climatechange <strong>on</strong> <strong>the</strong> <strong>European</strong> marine <strong>and</strong> coastalenvir<strong>on</strong>ment: this will require a c<strong>on</strong>certedeffort to ga<strong>the</strong>r, store <strong>and</strong> analyse previously<strong>and</strong> currently collected marine envir<strong>on</strong>mentaldata (e.g. comm<strong>on</strong> open access database<strong>and</strong> annual pan-<strong>European</strong> reporting based<strong>on</strong> nati<strong>on</strong>al c<strong>on</strong>tributi<strong>on</strong>s);2. Identify <strong>the</strong> nature <strong>and</strong> rate <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>sequences<str<strong>on</strong>g>of</str<strong>on</strong>g> climate change in <strong>European</strong> marine<strong>and</strong> coastal waters: this will require <strong>the</strong>maintenance <str<strong>on</strong>g>of</str<strong>on</strong>g> sustained m<strong>on</strong>itoring efforts<strong>and</strong> use <str<strong>on</strong>g>of</str<strong>on</strong>g> new technologies to increase <strong>the</strong>irspatial <strong>and</strong> temporal resoluti<strong>on</strong>;3. Predict <strong>the</strong> c<strong>on</strong>sequences <str<strong>on</strong>g>of</str<strong>on</strong>g> climatechange for our marine envir<strong>on</strong>ment: this willrequire <strong>the</strong> development <strong>and</strong> measurement<str<strong>on</strong>g>of</str<strong>on</strong>g> parameters (e.g. indicators) which areindicative <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> underlying mechanisms <str<strong>on</strong>g>of</str<strong>on</strong>g>climate-induced changes;4. Predict <strong>the</strong> resp<strong>on</strong>se <strong>and</strong> feedback <str<strong>on</strong>g>of</str<strong>on</strong>g> marineenvir<strong>on</strong>ments <strong>and</strong> ecosystems to climatechange: this will require <strong>the</strong> improvement <str<strong>on</strong>g>of</str<strong>on</strong>g>regi<strong>on</strong>al climate models <strong>and</strong> <strong>the</strong> development<str<strong>on</strong>g>of</str<strong>on</strong>g> biophysical models;5. Predict <strong>the</strong> impact <strong>on</strong> climate change <strong>on</strong><strong>the</strong> distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> marine organisms <strong>and</strong><strong>on</strong> marine food webs: this will require<strong>the</strong> inclusi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> knowledge <strong>on</strong> species’physiology, bioenergetics <strong>and</strong> behaviour inbiophysical <strong>and</strong> ecosystem models.Baltic SeaBarents Sea1039281930 1940 1950 1960 1970 1980 1990 20001930 1940 1950 1960 1970 1980 1990 2000Black SeaCeltic-Biscay shelf141613151930 1940 1950 1960 1970 1980 1990 2000Central Mediterranean121930 1940 1950 1960 1970 1980 1990 2000Eastern Mediterranean21201920181930 1940 1950 1960 1970 1980 1990 2000191930 1940 1950 1960 1970 1980 1990 20008 <str<strong>on</strong>g>Impacts</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Climate</str<strong>on</strong>g> <str<strong>on</strong>g>Change</str<strong>on</strong>g> <strong>on</strong> <strong>the</strong> <strong>European</strong> <strong>Marine</strong> <strong>and</strong> <strong>Coastal</strong> Envir<strong>on</strong>ment


19Iberian upwelling marginNordic Seas7.6186.8171930 1940 1950 1960 1970 1980 1990 2000 1930 1940 1950 1960 1970 1980 1990 20006.016North East Atlantic11North Sea1510141930 1940 1950 1960 1970 1980 1990 200091930 1940 1950 1960 1970 1980 1990 2000Western Mediterranean2019181930 1940 1950 1960 1970 1980 1990 2000Signals: L<strong>on</strong>g-term variati<strong>on</strong> in area-averaged sea-surface temperatures (°C) in <strong>European</strong> marine <strong>and</strong> coastal envir<strong>on</strong>ments based <strong>on</strong> HadSST2data from <strong>the</strong> Hadley Centre, UK (data compiled by Priscilla Lic<strong>and</strong>ro/SAHFOS <strong>and</strong> Katja Philippart/NIOZ).Potential Impact: Summary <str<strong>on</strong>g>of</str<strong>on</strong>g> scenarios <str<strong>on</strong>g>of</str<strong>on</strong>g> effects <str<strong>on</strong>g>of</str<strong>on</strong>g> climate change <strong>on</strong> <strong>European</strong> SeasGENERAL TRENDSIncrease in temperature<str<strong>on</strong>g>Impacts</str<strong>on</strong>g> <strong>on</strong> ecosystemsNorthward movementsShifts in species compositi<strong>on</strong>SEA-SPECIFIC EXPECTATIONSHigher in nor<strong>the</strong>rn than in sou<strong>the</strong>rn seasStr<strong>on</strong>ger for enclosed than for open seasStr<strong>on</strong>ger in sou<strong>the</strong>rn than in nor<strong>the</strong>rn seasStr<strong>on</strong>ger in open than in enclosed seasFrom nor<strong>the</strong>rn to sou<strong>the</strong>rn species (open seas)From ice-bound to aquatic species (nor<strong>the</strong>rn seas)From marine to freshwater species (Baltic Sea)From endemic to c<strong>on</strong>generic species (enclosed seas)<str<strong>on</strong>g>Impacts</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Climate</str<strong>on</strong>g> <str<strong>on</strong>g>Change</str<strong>on</strong>g> <strong>on</strong> <strong>the</strong> <strong>European</strong> <strong>Marine</strong> <strong>and</strong> <strong>Coastal</strong> Envir<strong>on</strong>ment 9


1. <str<strong>on</strong>g>Climate</str<strong>on</strong>g> change1.1 Global change<strong>and</strong> climate change‘Global climate change will affect <strong>the</strong> physical,biological <strong>and</strong> biogeochemical characteristics <str<strong>on</strong>g>of</str<strong>on</strong>g><strong>the</strong> oceans <strong>and</strong> coasts, modifying <strong>the</strong>ir ecologicalstructure, <strong>the</strong>ir functi<strong>on</strong>s, <strong>and</strong> <strong>the</strong> goods <strong>and</strong> services<strong>the</strong>y provide’.IPCC (2001b)Our world is changing rapidly. During <strong>the</strong> last10-15 years, temperatures throughout much <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong>globe have been warmer than ever recorded; Arcticsea-ice is rapidly disappearing, melting <str<strong>on</strong>g>of</str<strong>on</strong>g> bothglaciers <strong>and</strong> <strong>the</strong> Greenl<strong>and</strong> ice cap is accelerating;enormous ice sheets from Antarctica are collapsinginto <strong>the</strong> sea; sea levels are rising <strong>and</strong> seas arebecoming stormier, increasing <strong>the</strong> risk <str<strong>on</strong>g>of</str<strong>on</strong>g> coastalflooding in low lying areas including major cities;precipitati<strong>on</strong> is more variable with more frequentintense rainfall events leading to extensive flooding;<strong>the</strong> durati<strong>on</strong> <strong>and</strong> severity <str<strong>on</strong>g>of</str<strong>on</strong>g> droughts has increased;hurricane intensity appears to be greater; springtimeis occurring earlier; <strong>the</strong>re is a poleward shift in <strong>the</strong>distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> many species; <strong>and</strong> <strong>the</strong> number <str<strong>on</strong>g>of</str<strong>on</strong>g>harmful algal blooms in coastal regi<strong>on</strong>s appears tohave increased. Many <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong>se events are thoughtto be a c<strong>on</strong>sequence <str<strong>on</strong>g>of</str<strong>on</strong>g> a predominantly humaninducedclimate change.These changes have <strong>the</strong> potential to cause serioussocio-ec<strong>on</strong>omic impacts at both regi<strong>on</strong>al <strong>and</strong> locallevels. Increased storminess, coastal inundati<strong>on</strong><strong>and</strong> flooding impact <strong>on</strong> maritime transport <strong>and</strong> <strong>on</strong>coastal infrastructure (urban development, road<strong>and</strong> rail networks). These impacts in turn haveimplicati<strong>on</strong>s for future investments <strong>and</strong> strategiesrelated to coastal developments <strong>and</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g>fshorec<strong>on</strong>structi<strong>on</strong> (associated with oil <strong>and</strong> gas industry,trans-shipment <strong>and</strong> renewable ocean energy), notto menti<strong>on</strong> increased insurance costs. <str<strong>on</strong>g>Change</str<strong>on</strong>g>s inspecies biogeography (i.e. <strong>the</strong> poleward movement<str<strong>on</strong>g>of</str<strong>on</strong>g> indigenous species <strong>and</strong> increased risk <str<strong>on</strong>g>of</str<strong>on</strong>g> invasi<strong>on</strong>s<str<strong>on</strong>g>of</str<strong>on</strong>g> n<strong>on</strong>-indigenous species) have implicati<strong>on</strong>s forcommercial fisheries <strong>and</strong> aquaculture <strong>and</strong> <strong>on</strong> <strong>the</strong>design <strong>and</strong> implementati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> effective c<strong>on</strong>servati<strong>on</strong><strong>and</strong> envir<strong>on</strong>mental m<strong>on</strong>itoring strategies.Before <strong>the</strong> industrial age, natural processessuch as solar variability, Milankovitch cycles <strong>and</strong>volcanic outgassing were <strong>the</strong> dominant forcingfactors producing l<strong>on</strong>g-term climate changesover periods <str<strong>on</strong>g>of</str<strong>on</strong>g> decades, centuries <strong>and</strong> millennia.There is now c<strong>on</strong>vincing evidence that since <strong>the</strong>industrial revoluti<strong>on</strong>, human activities, resulting inincreasing c<strong>on</strong>centrati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> greenhouse gaseshave become a major agent <str<strong>on</strong>g>of</str<strong>on</strong>g> climate change.These greenhouse gases affect <strong>the</strong> global climateby retaining heat in <strong>the</strong> troposphere, thus raising <strong>the</strong>average temperature <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> planet <strong>and</strong> altering globalatmospheric circulati<strong>on</strong> <strong>and</strong> precipitati<strong>on</strong> patterns.<str<strong>on</strong>g>Climate</str<strong>on</strong>g> change influences <strong>the</strong> oceans <strong>and</strong> coasts invarious ways: through changes in temperature <strong>and</strong>sea level, ocean circulati<strong>on</strong>, storminess <strong>and</strong> hencevertical mixing <strong>and</strong> wave regimes, all <str<strong>on</strong>g>of</str<strong>on</strong>g> which in turncan influence marine ecosystems <strong>and</strong> modify marinehabitats. In this c<strong>on</strong>text <strong>on</strong>e can expect changes innutrient availability, biological productivity, phenology(<strong>the</strong> timing <str<strong>on</strong>g>of</str<strong>on</strong>g> biological events such as spawning),populati<strong>on</strong> biogeography <strong>and</strong> migratory patterns,community structure, <strong>and</strong> predator-prey relati<strong>on</strong>shipsfrom <strong>the</strong> bottom to <strong>the</strong> top <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> food web.‘The 2nd <str<strong>on</strong>g>of</str<strong>on</strong>g> February 2007 here in Paris will perhaps<strong>on</strong>e day be remembered as <strong>the</strong> day when <strong>the</strong> questi<strong>on</strong>mark was removed behind <strong>the</strong> debate whe<strong>the</strong>rclimate change had anything to do with human activities<strong>on</strong> this planet.’Steiner (IPCC Meeting Feb. 2007)Although species have resp<strong>on</strong>ded to variati<strong>on</strong>sin climate throughout <strong>the</strong>ir evoluti<strong>on</strong>ary history, aprimary c<strong>on</strong>cern for species <strong>and</strong> <strong>the</strong>ir ecosystemsis <strong>the</strong> rapid rate <str<strong>on</strong>g>of</str<strong>on</strong>g> change currently observed (Rootet al. 2003). Regi<strong>on</strong>al changes are <str<strong>on</strong>g>of</str<strong>on</strong>g>ten morerelevant in <strong>the</strong> c<strong>on</strong>text <str<strong>on</strong>g>of</str<strong>on</strong>g> ecological resp<strong>on</strong>ses toclimate change than are global averages (Wal<strong>the</strong>r etal. 2002). <str<strong>on</strong>g>Impacts</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> climate change should <strong>the</strong>reforenot <strong>on</strong>ly be studied <strong>on</strong> ocean basin scales, but also atregi<strong>on</strong>al <strong>and</strong> local scales. Such regi<strong>on</strong>s encompasscoastal areas from river basins <strong>and</strong> estuaries to <strong>the</strong>seaward boundaries <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>tinental shelves <strong>and</strong> <strong>the</strong>outer margins <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> major current systems.In additi<strong>on</strong> to <strong>the</strong> specific characteristics <str<strong>on</strong>g>of</str<strong>on</strong>g> aparticular regi<strong>on</strong> (e.g. coastal versus shelf seas), <strong>the</strong>resp<strong>on</strong>se <str<strong>on</strong>g>of</str<strong>on</strong>g> marine systems to climate change willalso depend <strong>on</strong> o<strong>the</strong>r human-induced changes in<strong>the</strong> marine envir<strong>on</strong>ment. For example, fishing hasreduced <strong>the</strong> number <str<strong>on</strong>g>of</str<strong>on</strong>g> large fish at higher trophiclevels worldwide (Pauly et al. 1998; Jacks<strong>on</strong> et al.2001; Myers <strong>and</strong> Worm 2003), whilst increasingagricultural, industrial <strong>and</strong> household activitieshave resulted in nutrient enrichment <str<strong>on</strong>g>of</str<strong>on</strong>g> manycoastal waters (Schindler 2006). These <strong>and</strong> o<strong>the</strong>rglobal change-induced effects, such as oceanacidificati<strong>on</strong>, c<strong>on</strong>taminati<strong>on</strong> <strong>and</strong> <strong>the</strong> introducti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g>n<strong>on</strong>-indigenous species, are likely to result in morefragile marine ecosystems, which will challenge<strong>the</strong> effectiveness <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> management strategies toreduce <strong>the</strong> impacts <str<strong>on</strong>g>of</str<strong>on</strong>g> climate change.10 <str<strong>on</strong>g>Impacts</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Climate</str<strong>on</strong>g> <str<strong>on</strong>g>Change</str<strong>on</strong>g> <strong>on</strong> <strong>the</strong> <strong>European</strong> <strong>Marine</strong> <strong>and</strong> <strong>Coastal</strong> Envir<strong>on</strong>ment


Observed changes in (a) global mean temperature, (b) global average sea level rise from tide gauge (blue) <strong>and</strong>satellite (red) data, <strong>and</strong> (c) Nor<strong>the</strong>rn Hemisphere snow cover for March-April. All changes are relative to <strong>the</strong> 1961-1990 average values. Dots represent yearly values, solid lines are 10-years running means, <strong>and</strong> shaded areasindicate <strong>the</strong> uncertainty intervals around <strong>the</strong> running means (Internati<strong>on</strong>al Panel <strong>on</strong> <str<strong>on</strong>g>Climate</str<strong>on</strong>g> <str<strong>on</strong>g>Change</str<strong>on</strong>g> 2007).While nati<strong>on</strong>al <strong>and</strong> internati<strong>on</strong>al acti<strong>on</strong>s to curtail<strong>and</strong> reduce greenhouse gas emissi<strong>on</strong>s are beingimplemented, <strong>the</strong> levels <str<strong>on</strong>g>of</str<strong>on</strong>g> greenhouse gasescurrently in <strong>the</strong> atmosphere <strong>and</strong> <strong>the</strong>ir impacts arelikely to persist for several decades. Accordingly,while <strong>on</strong>-going efforts to mitigate climate changethrough reducti<strong>on</strong>s in greenhouse gas emissi<strong>on</strong>sare crucial, a more proactive adaptive strategy isrequired. This could include a better underst<strong>and</strong>ing<str<strong>on</strong>g>of</str<strong>on</strong>g> potential climate change impacts at both regi<strong>on</strong>al<strong>and</strong> local levels (scenarios), <strong>the</strong> development <str<strong>on</strong>g>of</str<strong>on</strong>g>improved methods to quantify <strong>the</strong> uncertainty <str<strong>on</strong>g>of</str<strong>on</strong>g>climate change projecti<strong>on</strong>s, <strong>the</strong> c<strong>on</strong>structi<strong>on</strong><str<strong>on</strong>g>of</str<strong>on</strong>g> usable climate change indicators, <strong>and</strong> animprovement <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> interface between science<strong>and</strong> policy formulati<strong>on</strong> in terms <str<strong>on</strong>g>of</str<strong>on</strong>g> risk management(American Meteorological Society 2003).‘Although <strong>the</strong>re can be no certainty regarding <strong>the</strong>precise nature <strong>and</strong> rate <str<strong>on</strong>g>of</str<strong>on</strong>g> changes to <strong>the</strong> marineenvir<strong>on</strong>ment due to alterati<strong>on</strong>s in climate, in <strong>the</strong>absence <str<strong>on</strong>g>of</str<strong>on</strong>g> policies <strong>and</strong> measures to prepare for <strong>and</strong>accommodate <strong>the</strong> changes, even <strong>the</strong> more moderate<str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> predicted scenarios would have major social<strong>and</strong> ec<strong>on</strong>omic impacts.’Boelens et al. (2005)<str<strong>on</strong>g>Impacts</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Climate</str<strong>on</strong>g> <str<strong>on</strong>g>Change</str<strong>on</strong>g> <strong>on</strong> <strong>the</strong> <strong>European</strong> <strong>Marine</strong> <strong>and</strong> <strong>Coastal</strong> Envir<strong>on</strong>ment 11


1. <str<strong>on</strong>g>Climate</str<strong>on</strong>g> changeThe Millennial Temperature Record (© 2000, Climatic Research Unit).1.2 <str<strong>on</strong>g>Climate</str<strong>on</strong>g> change <strong>and</strong> climatevariability‘Recent research, including <strong>the</strong> examinati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> icecores <strong>and</strong> growth rings <str<strong>on</strong>g>of</str<strong>on</strong>g> ancient trees, shows that<strong>the</strong> Nor<strong>the</strong>rn Hemisphere has been warmer since1980 than at any time during <strong>the</strong> last 2000 years.’Mann <strong>and</strong> J<strong>on</strong>es (2003)Moberg et al. (2005)Whilst wea<strong>the</strong>r c<strong>on</strong>diti<strong>on</strong>s fluctuate daily, m<strong>on</strong>thly<strong>and</strong> seas<strong>on</strong>ally, climatic regimes vary <strong>on</strong> decadalto millennial time scales. The geological recordshows that climate has changed significantly overtime. For example, during <strong>the</strong> last Ice Age (whichbegan 130 000 years ago, <strong>and</strong> ended 10 000 yearsago) most <str<strong>on</strong>g>of</str<strong>on</strong>g> nor<strong>the</strong>rn Europe was under snow<strong>and</strong> ice. In c<strong>on</strong>trast, Europe experienced periods<str<strong>on</strong>g>of</str<strong>on</strong>g> significant warmth during medieval times (890-1170) <strong>and</strong> colder periods during <strong>the</strong> so-called LittleIce Age (1580-1850) (Osborn <strong>and</strong> Briffa 2006). In<strong>the</strong> last century <strong>the</strong>re was a warm period (1930-1960s) followed by a cooler period (1970s) withtemperatures rising again after 1980 (Johannessenet al. 2004). In o<strong>the</strong>r words, climate is alwayschanging. However, today’s c<strong>on</strong>cern is: are <strong>the</strong>observed changes in climate bey<strong>on</strong>d previouslyobserved ranges? If so, what will be <strong>the</strong> future rates<str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong>se changes <strong>and</strong> what are <strong>the</strong> implicati<strong>on</strong> forour world? The fourth Assessment Report <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong>Intergovernmental Panel for <str<strong>on</strong>g>Climate</str<strong>on</strong>g> <str<strong>on</strong>g>Change</str<strong>on</strong>g> (IPCC2007) c<strong>on</strong>cludes that 11 <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> last 12 years rankam<strong>on</strong>g <strong>the</strong> 11 warmest years in <strong>the</strong> instrumentalrecord <str<strong>on</strong>g>of</str<strong>on</strong>g> global surface temperature (since 1850).The total temperature increase from 1850-1899 to2001-2005 is 0.76°C, <strong>and</strong> this increase in mainlydue to <strong>the</strong> linear warming trend over <strong>the</strong> last 50years <str<strong>on</strong>g>of</str<strong>on</strong>g> 0.13°C per decade. For <strong>the</strong> next twodecades, a warming <str<strong>on</strong>g>of</str<strong>on</strong>g> about 0.2°C per decade isprojected for a range <str<strong>on</strong>g>of</str<strong>on</strong>g> emissi<strong>on</strong> scenarios. Evenif <strong>the</strong> c<strong>on</strong>centrati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> all greenhouse gases <strong>and</strong>aerosols had been kept c<strong>on</strong>stant at year 2000 levels,a fur<strong>the</strong>r warming <str<strong>on</strong>g>of</str<strong>on</strong>g> about 0.1°C per decade wouldbe expected mainly because <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> slow resp<strong>on</strong>se<str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> oceans in adapting to absorb <strong>the</strong>se levels <str<strong>on</strong>g>of</str<strong>on</strong>g>greenhouse gases (IPCC 2007). Depending <strong>on</strong> <strong>the</strong>scenario applied, temperatures are predicted to riseby 1.8°C to 4.0°C in 2090-2099 as compared with1980-1999 (IPCC 2007).Because <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> uncertainties outlined above, <strong>the</strong>reis much speculati<strong>on</strong> regarding associated changesin regi<strong>on</strong>al climatic c<strong>on</strong>diti<strong>on</strong>s <strong>and</strong> <strong>the</strong> implicati<strong>on</strong>sfor aquatic <strong>and</strong> terrestrial ecosystems.12 <str<strong>on</strong>g>Impacts</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Climate</str<strong>on</strong>g> <str<strong>on</strong>g>Change</str<strong>on</strong>g> <strong>on</strong> <strong>the</strong> <strong>European</strong> <strong>Marine</strong> <strong>and</strong> <strong>Coastal</strong> Envir<strong>on</strong>ment


Box 1. Signals <str<strong>on</strong>g>of</str<strong>on</strong>g> large-scale interacti<strong>on</strong>sbetween Ocean <strong>and</strong> atmosphereTwo <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> largest signals <str<strong>on</strong>g>of</str<strong>on</strong>g> ocean/atmosphereinteracti<strong>on</strong> are <strong>the</strong> El Niño-Sou<strong>the</strong>rn Oscillati<strong>on</strong>(ENSO) in <strong>the</strong> equatorial Pacific Ocean <strong>and</strong> <strong>the</strong>North Atlantic Oscillati<strong>on</strong> (NAO). The latter is <strong>the</strong>Atlantic part <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> Arctic Oscillati<strong>on</strong> (AO), alsocalled <strong>the</strong> Nor<strong>the</strong>rn Hemisphere Annual Mode(NAM) (Delworth <strong>and</strong> Dix<strong>on</strong> 2000; Thomps<strong>on</strong> <strong>and</strong>Wallace 1998, 2001). The atmospheric variabilityover <strong>the</strong> North Atlantic is predominantly determinedby <strong>the</strong> NAO.The NAO index is <strong>the</strong> difference in sea-levelpressure anomalies between two stati<strong>on</strong>srepresenting <strong>the</strong> Azores High <strong>and</strong> <strong>the</strong> Icel<strong>and</strong>icLow pressure systems <strong>and</strong> is a measure <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong>strength <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> westerly winds across <strong>the</strong> NorthAtlantic. During a positive NAO <strong>the</strong> westerly windsare str<strong>on</strong>ger <strong>and</strong> c<strong>on</strong>diti<strong>on</strong>s are colder <strong>and</strong> drierthan average over <strong>the</strong> Northwest Atlantic (easternCanada to Greenl<strong>and</strong>) <strong>and</strong> <strong>the</strong> Mediterraneanregi<strong>on</strong>, whereas c<strong>on</strong>diti<strong>on</strong>s in nor<strong>the</strong>rn <strong>European</strong>d <strong>the</strong> eastern United States are warmer<strong>and</strong> wetter than average. Winter temperature,precipitati<strong>on</strong>, sea-ice distributi<strong>on</strong> <strong>and</strong> movementin <strong>the</strong> Arctic, winter storminess, ocean waveheights, marine ecosystems, fisheries, sea-icecoverage in marginal seas, hurricane occurrence<strong>and</strong> tracks in <strong>the</strong> Caribbean <strong>and</strong> <strong>the</strong> severity<str<strong>on</strong>g>of</str<strong>on</strong>g> winters over an extensive area stretchingfrom Siberia to central USA <strong>and</strong> Norway toMorocco have been shown to be modulated by<strong>the</strong> NAO (Marshall et al. 2001).1.3 Role <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> Oceans in climateregulati<strong>on</strong>The oceans play a key role in <strong>the</strong> regulati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> climate.They store, distribute <strong>and</strong> dissipate energy fromsolar radiati<strong>on</strong> <strong>and</strong> exchange with <strong>the</strong> atmosphere.In turn, <strong>the</strong> oceans are affected by <strong>the</strong> climaticc<strong>on</strong>diti<strong>on</strong>s <strong>the</strong>y help to create. C<strong>on</strong>stituting morethan 70% <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> surface <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> Earth, <strong>the</strong> oceans<strong>and</strong> shelf seas implement <strong>the</strong>ir role as a regulator<str<strong>on</strong>g>of</str<strong>on</strong>g> climate: as <strong>the</strong> main reservoir <strong>and</strong> distributor <str<strong>on</strong>g>of</str<strong>on</strong>g>heat <strong>and</strong> salt; by influencing wea<strong>the</strong>r patterns <strong>and</strong>storm tracks; as <strong>the</strong> primary water source <strong>on</strong> <strong>the</strong>globe <strong>and</strong> modulator <str<strong>on</strong>g>of</str<strong>on</strong>g> evaporati<strong>on</strong>, precipitati<strong>on</strong><strong>and</strong> water vapour in <strong>the</strong> atmosphere; by c<strong>on</strong>tributingto <strong>the</strong> formati<strong>on</strong>, distributi<strong>on</strong> <strong>and</strong> melting <str<strong>on</strong>g>of</str<strong>on</strong>g> sea-ice;as <strong>the</strong> primary storage medium for greenhousegases such as carb<strong>on</strong> dioxide (CO2), via an activebiological system that plays a crucial role in <strong>the</strong>carb<strong>on</strong> cycle; <strong>and</strong> through rising sea levels <strong>and</strong> anincreasing frequency <str<strong>on</strong>g>of</str<strong>on</strong>g> storm surges.in salinity due to <strong>the</strong> changing balance betweenevaporati<strong>on</strong> <strong>and</strong> precipitati<strong>on</strong>. Spatial differencesin temperature <strong>and</strong> salinity generate densitydrivencirculati<strong>on</strong> patterns that redistribute watermasses between <strong>the</strong> equator <strong>and</strong> <strong>the</strong> poles. In<strong>the</strong> Atlantic, this Thermohaline Circulati<strong>on</strong> (THC)helps to ensure that Europe is much warmer thanequivalent latitudes in North America; Europeis 6°C warmer at 44°N <strong>and</strong> 15°C at 63°N thanis North America. Slowing down <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> AtlanticTHC could have a severe, <strong>and</strong> possibly sudden,impact <strong>on</strong> <strong>the</strong> climate <str<strong>on</strong>g>of</str<strong>on</strong>g> Europe.The oceans have an immense capacity to storeheat (when compared with <strong>the</strong> atmosphere). Theyalso show great variability in <strong>the</strong> c<strong>on</strong>centrati<strong>on</strong><str<strong>on</strong>g>Impacts</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Climate</str<strong>on</strong>g> <str<strong>on</strong>g>Change</str<strong>on</strong>g> <strong>on</strong> <strong>the</strong> <strong>European</strong> <strong>Marine</strong> <strong>and</strong> <strong>Coastal</strong> Envir<strong>on</strong>ment 13


1. <str<strong>on</strong>g>Climate</str<strong>on</strong>g> change© Intergovernmental Panel <strong>on</strong> <str<strong>on</strong>g>Climate</str<strong>on</strong>g> <str<strong>on</strong>g>Change</str<strong>on</strong>g>The <strong>the</strong>rmohaline circulati<strong>on</strong> (THC) is a global ocean circulati<strong>on</strong> pattern that distributes water <strong>and</strong> heat bothvertically, through <strong>the</strong> water column, <strong>and</strong> horiz<strong>on</strong>tally across <strong>the</strong> globe. As cold water sinks at high latitudes, it pullswarmer water from lower latitudes to replace it.The amount <str<strong>on</strong>g>of</str<strong>on</strong>g> heat in <strong>the</strong> upper ocean <strong>and</strong> howit is geographically distributed governs atmosphericpressure, storm tracks <strong>and</strong> <strong>the</strong> development <str<strong>on</strong>g>of</str<strong>on</strong>g> severewea<strong>the</strong>r such as hurricanes <strong>and</strong> cycl<strong>on</strong>es; amajor reorganisati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> heat patterns would have severeimpacts <strong>on</strong> wea<strong>the</strong>r c<strong>on</strong>diti<strong>on</strong>s. With a volume<str<strong>on</strong>g>of</str<strong>on</strong>g> close to 1,400 milli<strong>on</strong> km³, <strong>the</strong> oceans play a vitalrole in <strong>the</strong> water cycle <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> Earth. Evaporati<strong>on</strong> <strong>and</strong>precipitati<strong>on</strong> patterns will change as temperaturesrise, <strong>and</strong> with <strong>the</strong> distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> atmospheric pressure.These modificati<strong>on</strong>s can alter <strong>the</strong> timing <strong>and</strong>intensity <str<strong>on</strong>g>of</str<strong>on</strong>g> m<strong>on</strong>so<strong>on</strong>s, droughts <strong>and</strong> floods, <strong>and</strong><strong>the</strong> occurrence <str<strong>on</strong>g>of</str<strong>on</strong>g> excepti<strong>on</strong>al wea<strong>the</strong>r events. Variati<strong>on</strong>sin <strong>the</strong> extent <str<strong>on</strong>g>of</str<strong>on</strong>g> sea-ice cover in polar regi<strong>on</strong>shave a major impact <strong>on</strong> climate, as ice reflects 30%<str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> incoming solar radiati<strong>on</strong>. A warming ocean inseas<strong>on</strong>ally ice-covered seas will c<strong>on</strong>tribute to morerapid melting <str<strong>on</strong>g>of</str<strong>on</strong>g> sea-ice.The oceans are able to absorb large quantities <str<strong>on</strong>g>of</str<strong>on</strong>g><strong>the</strong> greenhouse gas CO 2 (37 000 gigat<strong>on</strong>nes <str<strong>on</strong>g>of</str<strong>on</strong>g>carb<strong>on</strong> are stored in <strong>the</strong> deep ocean). CO 2 at <strong>the</strong>surface <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> ocean is in equilibrium with <strong>the</strong> air<strong>and</strong> moves freely between <strong>the</strong> two media. Whenchemically transformed into dissolved <strong>and</strong> particulateforms <str<strong>on</strong>g>of</str<strong>on</strong>g> carb<strong>on</strong>, CO 2 is transferred to <strong>the</strong> deepocean by mixing <strong>and</strong> sinking <strong>and</strong> by a steady rain<str<strong>on</strong>g>of</str<strong>on</strong>g> particulate carb<strong>on</strong> sourced from <strong>the</strong> plankt<strong>on</strong><strong>and</strong> from shelf export. Without this oceanic uptake,c<strong>on</strong>centrati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> CO 2 in <strong>the</strong> atmosphere wouldbe much higher. Since <strong>the</strong> beginning <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> 19thcentury <strong>the</strong> oceans are estimated to have takenup approximately 50% <str<strong>on</strong>g>of</str<strong>on</strong>g> fossil fuel emissi<strong>on</strong>s <strong>and</strong>approximately 30% <str<strong>on</strong>g>of</str<strong>on</strong>g> all anthropogenic emissi<strong>on</strong>s(including those originating from l<strong>and</strong>-use change).The North Atlantic plays a particularly key role as ithas stored 23% <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> total CO 2 sink in an area thatcovers <strong>on</strong>ly 15% <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> global ocean. Warming <str<strong>on</strong>g>of</str<strong>on</strong>g><strong>the</strong> surface <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> ocean is expected to reduce itscapacity to take up CO 2.Phytoplankt<strong>on</strong> accounts for approximately 50%<str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> total photosyn<strong>the</strong>sis <strong>on</strong> Earth, <strong>and</strong> providesfood for higher trophic levels. These microalgae <strong>and</strong>photosyn<strong>the</strong>tic bacteria c<strong>on</strong>tribute to <strong>the</strong> removal<str<strong>on</strong>g>of</str<strong>on</strong>g> CO 2, because a proporti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong>ir producti<strong>on</strong>is transferred as detritus to <strong>the</strong> deep ocean, ei<strong>the</strong>rby sinking or via food webs. Changing compositi<strong>on</strong><strong>and</strong> seas<strong>on</strong>al timing <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> plankt<strong>on</strong>, due to risingtemperatures, may affect <strong>the</strong> efficiency <str<strong>on</strong>g>of</str<strong>on</strong>g> thisdownward transfer known as <strong>the</strong> biological pump.Many plankt<strong>on</strong>ic groups, including <strong>the</strong> larval stages<str<strong>on</strong>g>of</str<strong>on</strong>g> shellfish, have calcareous body parts. Their existenceis threatened by <strong>the</strong> increasing acidity <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong>ocean caused by higher levels <str<strong>on</strong>g>of</str<strong>on</strong>g> CO 2 <strong>and</strong> may providea feedback that could fur<strong>the</strong>r reduce <strong>the</strong> ability<str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> oceans to take up CO 2 from <strong>the</strong> atmosphere.14 <str<strong>on</strong>g>Impacts</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Climate</str<strong>on</strong>g> <str<strong>on</strong>g>Change</str<strong>on</strong>g> <strong>on</strong> <strong>the</strong> <strong>European</strong> <strong>Marine</strong> <strong>and</strong> <strong>Coastal</strong> Envir<strong>on</strong>ment


Box. 2 Ocean acidificati<strong>on</strong>Although not strictly climatic, acidificati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong>ocean is an example <str<strong>on</strong>g>of</str<strong>on</strong>g> a global envir<strong>on</strong>mentalchange linked to carb<strong>on</strong> dioxide emissi<strong>on</strong>s.According to a report, published by <strong>the</strong> UK’sRoyal Society (2005), atmospheric c<strong>on</strong>centrati<strong>on</strong>s<str<strong>on</strong>g>of</str<strong>on</strong>g> carb<strong>on</strong> dioxide (CO 2), <strong>the</strong> main greenhousegas, increased from 280 parts per milli<strong>on</strong> (ppm)in 1750 to over 375 ppm today. Absorpti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g>CO 2 by <strong>the</strong> oceans has lowered <strong>the</strong> average pH <str<strong>on</strong>g>of</str<strong>on</strong>g><strong>the</strong> oceans by about 0.1 units from pre-industriallevels. If CO 2 emissi<strong>on</strong>s c<strong>on</strong>tinue according tocurrent trends, this could lower <strong>the</strong> average pH<str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> surface oceans by between 0.14 <strong>and</strong> 0.35units by 2100 (IPCC 2007). Ocean acidificati<strong>on</strong>decreases <strong>the</strong> ability <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> ocean to absorbadditi<strong>on</strong>al atmospheric CO 2, which implies thatfuture emissi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> CO 2 are likely to lead to morerapid global warming.Increasing acidity <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> oceans reduces <strong>the</strong>formati<strong>on</strong> <strong>and</strong> speeds up <strong>the</strong> breakdown <str<strong>on</strong>g>of</str<strong>on</strong>g>essential shell-forming carb<strong>on</strong>ates such asmagnesian calcites (from coralline algae), arag<strong>on</strong>ite(from corals <strong>and</strong> molluscs such as pteropods),<strong>and</strong> calcite (from certain species <str<strong>on</strong>g>of</str<strong>on</strong>g> phytoplankt<strong>on</strong>such as coccolithophorids <strong>and</strong> foraminiferas). Ifpresent trends in anthropogenic CO 2 c<strong>on</strong>tinueto rise for <strong>the</strong> next several hundred years, <strong>the</strong>Royal Society (2005) suggests that this may havesevere implicati<strong>on</strong>s for many species <str<strong>on</strong>g>of</str<strong>on</strong>g> calciumcarb<strong>on</strong>ate CaCO3 shell-forming organisms suchas coral reefs, deep-water reef ecosystems, <strong>and</strong>calcifying phytoplankt<strong>on</strong> <strong>and</strong> foraminiferas.© From Roberts et al., SCIENCE 312:543 (4/28/2006)- Reprinted with permissi<strong>on</strong> from AAASCurrent global distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> reef framework-forming cold-water corals (Roberts et al. 2006). Ocean acidificati<strong>on</strong> mayaffect <strong>the</strong>se reefs before <strong>the</strong>y have been fully explored (Royal Society 2005; Guinotte et al. 2006).<str<strong>on</strong>g>Impacts</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Climate</str<strong>on</strong>g> <str<strong>on</strong>g>Change</str<strong>on</strong>g> <strong>on</strong> <strong>the</strong> <strong>European</strong> <strong>Marine</strong> <strong>and</strong> <strong>Coastal</strong> Envir<strong>on</strong>ment 15


2. Projecti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> future climate2.1 Forecasts <strong>and</strong> scenariosEstimates <str<strong>on</strong>g>of</str<strong>on</strong>g> what <strong>the</strong> future climate will be like(projecti<strong>on</strong>s) are typically made using coupled ocean/atmosphere/sea-ice/l<strong>and</strong> models. Global Circulati<strong>on</strong>Models (GCMs) describe <strong>the</strong> time evoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g>atmospheric variables such as temperature, winds,precipitati<strong>on</strong>, water vapour <strong>and</strong> atmosphericpressure throughout <strong>the</strong> globe in resp<strong>on</strong>se toincreasing atmospheric CO 2 c<strong>on</strong>centrati<strong>on</strong>s. Whena projecti<strong>on</strong> is categorised as most likely it becomesa forecast or predicti<strong>on</strong>. A scenario, <strong>on</strong> <strong>the</strong> o<strong>the</strong>rh<strong>and</strong>, is a plausible descripti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a possible futurestate <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> world. It is not a forecast; ra<strong>the</strong>r, eachscenario is <strong>on</strong>e alternative image <str<strong>on</strong>g>of</str<strong>on</strong>g> how <strong>the</strong> futuremay unfold. The baseline is <strong>the</strong> st<strong>and</strong>ard againstwhich changes are measured, usually present-dayc<strong>on</strong>diti<strong>on</strong>s or <strong>the</strong> 30-year st<strong>and</strong>ard period from1961 to 1990 used by meteorologists.Because <strong>the</strong>re is uncertainty as to how rapidlyatmospheric c<strong>on</strong>centrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> CO 2 will increase,<strong>the</strong> primary body leading investigati<strong>on</strong>s into futureclimate change, namely <strong>the</strong> IPCC, has devisedseveral possibilities (scenarios) based <strong>on</strong> <strong>the</strong> rate<str<strong>on</strong>g>of</str<strong>on</strong>g> populati<strong>on</strong> increase, ec<strong>on</strong>omic development <strong>and</strong>technology change. Many studies (for example, <strong>the</strong>Arctic <str<strong>on</strong>g>Climate</str<strong>on</strong>g> Impact Assessment: ACIA 2005) use<strong>the</strong> B 2intermediate scenario which describes aworld with moderate populati<strong>on</strong> growth, ec<strong>on</strong>omicdevelopment <strong>and</strong> technology change. This scenariopredicts in a doubling <str<strong>on</strong>g>of</str<strong>on</strong>g> atmospheric CO 2 afterapproximately 80 years.A set <str<strong>on</strong>g>of</str<strong>on</strong>g> CO 2 scenarios can be used to reflect <strong>the</strong>range <str<strong>on</strong>g>of</str<strong>on</strong>g> uncertainty in projecti<strong>on</strong>s from a particularmodel. In additi<strong>on</strong>, <strong>the</strong>ir results will not be identicalbecause different GCMs can differ in <strong>the</strong>ir spatialresoluti<strong>on</strong>, representati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> physical processes<strong>and</strong> boundary c<strong>on</strong>diti<strong>on</strong>s. Since no <strong>on</strong>e model canbe indicated as <strong>the</strong> correct <strong>on</strong>e, model results tendto be averaged to produce a multimodel average,as if each model is <strong>on</strong>e experimental representati<strong>on</strong>.The spread in <strong>the</strong> model estimates is c<strong>on</strong>sidered torepresent our uncertainty.The horiz<strong>on</strong>tal spatial resoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> GCMs hasgenerally been too coarse (with typical grid sizes <str<strong>on</strong>g>of</str<strong>on</strong>g>200-400 km) to resolve local or regi<strong>on</strong>al topography.For regi<strong>on</strong>al <strong>and</strong> local impact studies, <strong>the</strong>refore, <strong>the</strong>approach has been to develop higher resoluti<strong>on</strong>(with typical grid sizes <str<strong>on</strong>g>of</str<strong>on</strong>g> 1-20 km) regi<strong>on</strong>al climatemodels, using <strong>the</strong> results from <strong>the</strong> GCMs asboundary c<strong>on</strong>diti<strong>on</strong>s.Variati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> Earth’s surface temperature between 1900 <strong>and</strong> 2100 as predicted under six scenarios (B1, A1T, B2, A1B, A2, A1FI) where solidlines represent average measured (black) <strong>and</strong> predicted values <strong>and</strong> shading denotes <strong>the</strong> plus/minus <strong>on</strong>e st<strong>and</strong>ard deviati<strong>on</strong> range <str<strong>on</strong>g>of</str<strong>on</strong>g> individualmodel annual means. The grey bars at <strong>the</strong> right indicate <strong>the</strong> best estimate (solid line within each bar) <strong>and</strong> <strong>the</strong> likely range assessed for <strong>the</strong> sixscenarios (© Internati<strong>on</strong>al Panel <strong>on</strong> <str<strong>on</strong>g>Climate</str<strong>on</strong>g> <str<strong>on</strong>g>Change</str<strong>on</strong>g>).16 <str<strong>on</strong>g>Impacts</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Climate</str<strong>on</strong>g> <str<strong>on</strong>g>Change</str<strong>on</strong>g> <strong>on</strong> <strong>the</strong> <strong>European</strong> <strong>Marine</strong> <strong>and</strong> <strong>Coastal</strong> Envir<strong>on</strong>ment


Some <strong>European</strong> countries, such as Spain, Sweden<strong>and</strong> <strong>the</strong> UK, have developed regi<strong>on</strong>al forecastswith a variety <str<strong>on</strong>g>of</str<strong>on</strong>g> different emissi<strong>on</strong> scenarios based<strong>on</strong> low, medium-low, medium-high, high emissi<strong>on</strong>s,for three 30-year time periods (centred <strong>on</strong> <strong>the</strong> 2020s,2050s <strong>and</strong> 2080s). The basline c<strong>on</strong>venti<strong>on</strong> for <strong>the</strong>sescenarios is 1961-1990 (Hulme et al. 2002).2.2 Model scenarios for EuropeIt is estimated that annual air temperatures will risethroughout Europe relative to recent c<strong>on</strong>diti<strong>on</strong>s, with<strong>the</strong> lowest increase (1-2°C) in <strong>the</strong> Mediterranean,Iberian, North Sea, Nor<strong>the</strong>ast Atlantic <strong>and</strong> southNordic Sea regi<strong>on</strong>s (IPCC 2001c). Temperatureincreases will be higher (4-6°C) in <strong>the</strong> more nor<strong>the</strong>rnregi<strong>on</strong>s such as <strong>the</strong> nor<strong>the</strong>rn Nordic Seas <strong>and</strong> <strong>the</strong>Barents Sea, <strong>and</strong> highest (up to 7°C) in <strong>the</strong> Arctic(ACIA 2005). Because <str<strong>on</strong>g>of</str<strong>on</strong>g> its high capacity to storeheat, <strong>the</strong> ocean will not warm quite as much as<strong>the</strong> l<strong>and</strong> will. The frequency <str<strong>on</strong>g>of</str<strong>on</strong>g> extremely high air<strong>and</strong> ocean temperatures will increase <strong>and</strong> <strong>the</strong>frequency <str<strong>on</strong>g>of</str<strong>on</strong>g> extremely low temperatures willdecrease throughout Europe (IPCC 2001c). Therewill be a decrease in <strong>the</strong> daily temperature range, withnight-time lows increasing more than day-time highs.Precipitati<strong>on</strong> <strong>and</strong> run<str<strong>on</strong>g>of</str<strong>on</strong>g>f will increase in nor<strong>the</strong>rnEurope <strong>and</strong> <strong>the</strong> Arctic, but will decrease in warmerregi<strong>on</strong>s such as <strong>the</strong> Mediterranean (IPCC 2001c). In<strong>the</strong> Arctic annual precipitati<strong>on</strong> is projected to increaseby 20%, with a 30% increase during <strong>the</strong> winter(ACIA 2005). With <strong>the</strong> increase in temperature, moreprecipitati<strong>on</strong> will fall as rain in nor<strong>the</strong>rn <strong>and</strong> upl<strong>and</strong>regi<strong>on</strong>s resulting in an increase in winter run<str<strong>on</strong>g>of</str<strong>on</strong>g>f <strong>and</strong>a decrease in spring run<str<strong>on</strong>g>of</str<strong>on</strong>g>f. At higher altitudes much<str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> precipitati<strong>on</strong> will c<strong>on</strong>tinue to fall as snow inwinter, but <strong>the</strong> spring peak in run<str<strong>on</strong>g>of</str<strong>on</strong>g>f will occur slightlyearlier. The intensity <str<strong>on</strong>g>of</str<strong>on</strong>g> winter rainfall events north<str<strong>on</strong>g>of</str<strong>on</strong>g> 45°N is expected to increase while to <strong>the</strong> south<strong>the</strong>re will be an insignificant change or a decreasein intensity (Frei et al. 2006). In central Europe riverrun<str<strong>on</strong>g>of</str<strong>on</strong>g>f will change by approximately 10% by <strong>the</strong>2050s, but this is smaller than <strong>the</strong> observed naturalmultidecadal variability (Hulme et al. 1999). In Mediterraneanregi<strong>on</strong>s, <strong>the</strong> range in river flows betweenwinter <strong>and</strong> summer is likely to increase c<strong>on</strong>siderablywhile in maritime Western Europe <strong>the</strong>re will be asmaller increase.northward; <strong>the</strong> Barents Sea is predicted to be ice-freeby 2070 (Furevik et al. 2002). A significant loss <str<strong>on</strong>g>of</str<strong>on</strong>g>ice cover in <strong>the</strong> western Nordic Seas is expected,which by 2070 will be restricted to <strong>the</strong> northwesternGreenl<strong>and</strong> Sea <strong>and</strong> <strong>the</strong> Baltic.The projected melting ice <strong>and</strong> increased precipi<strong>and</strong>ati<strong>on</strong> <strong>and</strong> river run<str<strong>on</strong>g>of</str<strong>on</strong>g>f in nor<strong>the</strong>rn latitudes will leadto decreases in surface salinity in <strong>the</strong> order <str<strong>on</strong>g>of</str<strong>on</strong>g>0.5-1 ppm in <strong>the</strong> Arctic Ocean, <strong>the</strong> western regi<strong>on</strong>s<str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> Nordic Seas <strong>and</strong> in <strong>the</strong> Baltic by <strong>the</strong> 2070s(Furevik et al. 2002).Based <strong>on</strong> current model simulati<strong>on</strong>s, it is very likelythat <strong>the</strong> Meridi<strong>on</strong>al Overturning Circulati<strong>on</strong>(MOC, see Secti<strong>on</strong> 3 for a descripti<strong>on</strong>) will slow downduring <strong>the</strong> 21st century (IPCC 2007). This gradualweakening <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> MOC may be in <strong>the</strong> order <str<strong>on</strong>g>of</str<strong>on</strong>g> 20%to 25% (Hadley Centre; www.met-<str<strong>on</strong>g>of</str<strong>on</strong>g>fice.gov.uk/corporate/scitech0304/MetOfficeScience0304.pdf), depending <strong>on</strong> future emissi<strong>on</strong>s (IPCC 2007).However, temperatures in <strong>the</strong> Atlantic regi<strong>on</strong>,including Europe, will c<strong>on</strong>tinue to warm, due to<strong>the</strong> atmospheric warming effect <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> greenhousegases (IPCC 2007).‘Under scenarios <str<strong>on</strong>g>of</str<strong>on</strong>g> faster industrial developmentleading to higher CO 2 levels than those assumedfor <strong>the</strong> B2 scenario, temperatures in <strong>the</strong> Arctic areprojected to increase up to 14°C by 2100’Teng et al. (2006)With melting ice caps <strong>and</strong> higher ocean temperatures,sea level is expected to rise by 18-59 cm at 2090-2099 relative to 1980-1999 (IPCC 2007). However,<strong>the</strong>se projecti<strong>on</strong>s do not include possible future rapiddynamical changes in ice flow. For example, if thisc<strong>on</strong>tributi<strong>on</strong> were to grow linearly with temperaturechange, this may add an additi<strong>on</strong>al 10-20 cm to <strong>the</strong>upper ranges <str<strong>on</strong>g>of</str<strong>on</strong>g> sea level rise (IPCC 2007).Low-lying areas adjacent to regi<strong>on</strong>s with low tidal rangesuch as al<strong>on</strong>g <strong>the</strong> coasts <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> Mediterranean, Baltic<strong>and</strong> Black Sea are more vulnerable than most <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong>Atlantic Ocean <strong>and</strong> North Sea coasts (Nicholls <strong>and</strong>Mimura 1998).As temperatures rise, sea-ice coverage will decrease;most climate models suggest an ice-free summerin <strong>the</strong> Arctic by 2100 (IPCC 2001c; Teng 2006). In<strong>the</strong> Barents Sea, <strong>the</strong> winter ice-edge is projectedto retreat at an approximate rate <str<strong>on</strong>g>of</str<strong>on</strong>g> 10 km per year<str<strong>on</strong>g>Impacts</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Climate</str<strong>on</strong>g> <str<strong>on</strong>g>Change</str<strong>on</strong>g> <strong>on</strong> <strong>the</strong> <strong>European</strong> <strong>Marine</strong> <strong>and</strong> <strong>Coastal</strong> Envir<strong>on</strong>ment 17


2. Projecti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> future climate© Intergovernmental Panel <strong>on</strong> <str<strong>on</strong>g>Climate</str<strong>on</strong>g> <str<strong>on</strong>g>Change</str<strong>on</strong>g>Projected surface temperature changes for <strong>the</strong> early <strong>and</strong> late 21st century relative to <strong>the</strong>period 1980-1999 for various emissi<strong>on</strong> scenarios. It is predicted that after CO2 emissi<strong>on</strong>sare reduced <strong>and</strong> atmospheric c<strong>on</strong>centrati<strong>on</strong>s stabilise, surface air temperature will c<strong>on</strong>tinueto rise slowly for a century or more. Thermal expansi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> ocean will c<strong>on</strong>tinuel<strong>on</strong>g after CO2 emissi<strong>on</strong>s have been reduced, <strong>and</strong> melting <str<strong>on</strong>g>of</str<strong>on</strong>g> ice sheets will c<strong>on</strong>tribute tosea-level rise for many centuries into <strong>the</strong> future.18 <str<strong>on</strong>g>Impacts</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Climate</str<strong>on</strong>g> <str<strong>on</strong>g>Change</str<strong>on</strong>g> <strong>on</strong> <strong>the</strong> <strong>European</strong> <strong>Marine</strong> <strong>and</strong> <strong>Coastal</strong> Envir<strong>on</strong>ment


3. Possible resp<strong>on</strong>ses <strong>and</strong> impacts3.1 Physical resp<strong>on</strong>ses <strong>and</strong> impacts<str<strong>on</strong>g>Change</str<strong>on</strong>g>s in <strong>the</strong> ocean to <strong>the</strong> west <str<strong>on</strong>g>of</str<strong>on</strong>g> Europe willhave important effects <strong>on</strong> <strong>the</strong> wea<strong>the</strong>r patterns<str<strong>on</strong>g>of</str<strong>on</strong>g> Europe. The Atlantic Meridi<strong>on</strong>al OverturningCirculati<strong>on</strong> (MOC) refers to <strong>the</strong> northward flow <str<strong>on</strong>g>of</str<strong>on</strong>g>ocean water, its subsequent cooling <strong>and</strong> sinking in<strong>the</strong> North Atlantic <strong>and</strong> <strong>the</strong> return southward flow atintermediate <strong>and</strong> near bottom depths. This processc<strong>on</strong>tributes about 90% to <strong>the</strong> oceanic south–northheat fluxes in <strong>the</strong> North Atlantic <strong>and</strong> is thus mostsignificant for <strong>European</strong> climate <strong>and</strong> its variability(Quadfasel 2005). A slowdown <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> Atlantic MOChas been suggested as possibly causing a dropin temperatures over Europe <str<strong>on</strong>g>of</str<strong>on</strong>g> as much as 4°C(Quadfasel 2005). However, while recent observati<strong>on</strong>sindicate that <strong>the</strong> returned subsurface flow associatedwith <strong>the</strong> MOC has slowed down due to reducedc<strong>on</strong>vective sinking, <strong>the</strong>re is no evidence that <strong>the</strong> nearsurface flows have decreased (Bryden et al. 2005).<str<strong>on</strong>g>Climate</str<strong>on</strong>g>-induced changes in Arctic sea-icecover <strong>and</strong> thickness represent <strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> largestuncertainties in <strong>the</strong> predicti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> future temperaturerise (Lax<strong>on</strong> et al. 2003; MacD<strong>on</strong>ald et al. 2005). Theextent <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> perennial Arctic sea-ice has decreasedin extent by about 15% since 1980 (Francis et al.2005). Fur<strong>the</strong>rmore, <strong>the</strong> ice became less thick <strong>and</strong>its compositi<strong>on</strong> shifted towards more first-year ice,which melts faster than multi-year ice (MacD<strong>on</strong>aldet al. 2005). A c<strong>on</strong>tinuati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> observed increasein <strong>the</strong> length <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> melt seas<strong>on</strong> is expected to leadto fur<strong>the</strong>r overall thinning <str<strong>on</strong>g>of</str<strong>on</strong>g> sea-ice (Lax<strong>on</strong> et al.2003), resulting in an ice-free Arctic during summerwithin 100 years (Johannessen et al. 2004).Elevated summer temperatures will streng<strong>the</strong>nnear-surface stratificati<strong>on</strong> <strong>and</strong> decrease <strong>the</strong> ability<str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> winter winds to mix <strong>the</strong> water column (e.g.McClain et al. 2004; Llope et al. 2006). Severalcoupled ocean-atmosphere models have shownglobal warming to be accompanied by an increasein vertical stratificati<strong>on</strong> (IPCC 2001c).Increased storminess will exacerbate <strong>the</strong> effect <str<strong>on</strong>g>of</str<strong>on</strong>g>sea-level rise in coastal systems because <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong>higher frequency <str<strong>on</strong>g>of</str<strong>on</strong>g> storm surges <strong>and</strong> extremewave acti<strong>on</strong>. Wetl<strong>and</strong> losses due to sea-level riseare expected to be in <strong>the</strong> order <str<strong>on</strong>g>of</str<strong>on</strong>g> 17% al<strong>on</strong>g <strong>the</strong>Atlantic coasts, 31-100% al<strong>on</strong>g <strong>the</strong> Mediterraneancoast <strong>and</strong> 84-98% al<strong>on</strong>g <strong>the</strong> Baltic coast (IPCC2001c). Greater defence <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong>se coastlines toprevent coastal flooding will lead to additi<strong>on</strong>al loss <str<strong>on</strong>g>of</str<strong>on</strong>g>coastal habitats (IPCC 1990). Offshore structures<strong>and</strong> installati<strong>on</strong>s for hydrocarb<strong>on</strong> extracti<strong>on</strong> <strong>and</strong>renewable energy will also be at greater risk.© T<strong>on</strong>y A. Weyiouanna Sr‘New evidence <strong>on</strong> <strong>the</strong> melting <str<strong>on</strong>g>of</str<strong>on</strong>g> ice sheets indicatesthat a sea level rise <str<strong>on</strong>g>of</str<strong>on</strong>g> seven meters could occur within 500 ra<strong>the</strong>r than 1000 years.’Alley et al. (2005)Dowdeswell (2006)<strong>Coastal</strong> communities in <strong>the</strong> Arctic have used sea walls <strong>and</strong> o<strong>the</strong>rhuman-made barriers to hold back erosi<strong>on</strong>. These measureshave worked to an extent, but as areas <str<strong>on</strong>g>of</str<strong>on</strong>g> open water becomelarger, wave <strong>and</strong> wind effects also increase <strong>and</strong> eat away at <strong>the</strong>setemporary soluti<strong>on</strong>s.<str<strong>on</strong>g>Impacts</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Climate</str<strong>on</strong>g> <str<strong>on</strong>g>Change</str<strong>on</strong>g> <strong>on</strong> <strong>the</strong> <strong>European</strong> <strong>Marine</strong> <strong>and</strong> <strong>Coastal</strong> Envir<strong>on</strong>ment 19


3. Possible resp<strong>on</strong>ses <strong>and</strong> impacts3.2 Biological resp<strong>on</strong>ses <strong>and</strong> impacts<str<strong>on</strong>g>Climate</str<strong>on</strong>g> change is expected to have a range <str<strong>on</strong>g>of</str<strong>on</strong>g> effects<strong>on</strong> marine systems. Some effects may be related tochanging water temperatures, circulati<strong>on</strong> or habitat,while o<strong>the</strong>rs occur through altered pathways withinbiogeochemical cycles <strong>and</strong> food webs. <str<strong>on</strong>g>Climate</str<strong>on</strong>g>change may influence nutrient <strong>and</strong> c<strong>on</strong>taminantc<strong>on</strong>centrati<strong>on</strong>s via ocean currents <strong>and</strong> fluctuati<strong>on</strong>s in<strong>the</strong> depth <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> surface mixed layer <strong>and</strong> period <str<strong>on</strong>g>of</str<strong>on</strong>g>vertical stratificati<strong>on</strong>.<str<strong>on</strong>g>Climate</str<strong>on</strong>g>-induced changes in microorganisms, suchas bacteria <strong>and</strong> archea, will affect biogeochemicalcycles, e.g. those <str<strong>on</strong>g>of</str<strong>on</strong>g> nitrogen, ir<strong>on</strong> <strong>and</strong> sulphites. Inestuaries <strong>and</strong> upwelling areas, changes in strength<strong>and</strong> seas<strong>on</strong>ality <str<strong>on</strong>g>of</str<strong>on</strong>g> circulati<strong>on</strong> patterns can affect<strong>the</strong> retenti<strong>on</strong>-dispersi<strong>on</strong> mechanism <str<strong>on</strong>g>of</str<strong>on</strong>g> plankt<strong>on</strong>iclarvae (Gaines <strong>and</strong> Bertness 1992). An increase inprecipitati<strong>on</strong>-driven flooding will particularly affectestuaries through enhanced river run<str<strong>on</strong>g>of</str<strong>on</strong>g>f <strong>and</strong> changesin nutrients <strong>and</strong> salinity in coastal regi<strong>on</strong>s, includingaquaculture areas. Summer droughts will lead toincreased salinisati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> upper reaches in nor<strong>the</strong>rnEurope <strong>and</strong> hypersalinisati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> estuaries <strong>and</strong> lago<strong>on</strong>sin <strong>the</strong> south.Increasing temperatures <strong>and</strong> enhanced stratificati<strong>on</strong>could affect <strong>the</strong> amount <strong>and</strong> producti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g>phytoplankt<strong>on</strong>. Because <strong>the</strong>se pelagic microalgae areresp<strong>on</strong>sible for removing CO 2 from <strong>the</strong> atmosphere<strong>and</strong> transferring <strong>the</strong> carb<strong>on</strong> to higher trophic levels,any change in <strong>the</strong> timing, abundance or speciescompositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong>se primary producers will havec<strong>on</strong>sequences <strong>on</strong> <strong>the</strong> rest <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> marine food web.A meta-analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> a number <str<strong>on</strong>g>of</str<strong>on</strong>g> models suggests anincrease in global primary producti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> between1% <strong>and</strong> 8% by 2050, when compared to preindustrialtimes (Sarmiento et al. 2004).In open marine ecosystems <strong>the</strong> populati<strong>on</strong> dynamics<str<strong>on</strong>g>of</str<strong>on</strong>g> many species <str<strong>on</strong>g>of</str<strong>on</strong>g> marine invertebrates <strong>and</strong> fish aredriven by recruitment processes. Recruitment refersto <strong>the</strong> number <str<strong>on</strong>g>of</str<strong>on</strong>g> young that are added to <strong>the</strong> populati<strong>on</strong>each year. Recruitment in cold temperate species is<str<strong>on</strong>g>of</str<strong>on</strong>g>ten synchr<strong>on</strong>ised with seas<strong>on</strong>al producti<strong>on</strong> cycles<str<strong>on</strong>g>of</str<strong>on</strong>g> phytoplankt<strong>on</strong>. If warming results in advancement<str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> timing <str<strong>on</strong>g>of</str<strong>on</strong>g> reproducti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong>se species, thismay result in a mismatch with <strong>the</strong> presence <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong>irmain food source (phytoplankt<strong>on</strong>). Any subsequentdecrease in recruitment success will inevitably leadto shifts in species compositi<strong>on</strong>.In general, a rapidly warming envir<strong>on</strong>ment wouldbe expected to result in a poleward movement <str<strong>on</strong>g>of</str<strong>on</strong>g>species. Such a change in geographical distributi<strong>on</strong>occurred at <strong>the</strong> end <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> last glacial maximumwith <strong>the</strong> col<strong>on</strong>isati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> nor<strong>the</strong>rn seas <strong>and</strong> coasts.More recently, during <strong>the</strong> cold period <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> 1970ssome species shifted southwards. Since warmingaccelerated in <strong>the</strong> late 1980s, poleward advances<str<strong>on</strong>g>of</str<strong>on</strong>g> sou<strong>the</strong>rn species <strong>and</strong> retreats <str<strong>on</strong>g>of</str<strong>on</strong>g> nor<strong>the</strong>rn specieshave been recorded in zooplankt<strong>on</strong>, fish <strong>and</strong> benthicspecies, including those found <strong>on</strong> rocky shores(Br<strong>and</strong>er et al. 2003; Southward et al. 2005). Whenencountering unfavourable envir<strong>on</strong>mental c<strong>on</strong>diti<strong>on</strong>s,species distributi<strong>on</strong> may not always exhibitdisplacement northwards. For example, when <strong>the</strong>stock <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> main prey <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> harp seals in <strong>the</strong> BarentsSea collapsed, <strong>the</strong>se seals migrated southward al<strong>on</strong>g<strong>the</strong> coast <str<strong>on</strong>g>of</str<strong>on</strong>g> Norway <strong>and</strong> into <strong>the</strong> North Sea in search<str<strong>on</strong>g>of</str<strong>on</strong>g> food (Harkönen et al. 2006).<str<strong>on</strong>g>Climate</str<strong>on</strong>g>-induced decoupling <str<strong>on</strong>g>of</str<strong>on</strong>g> phenologicalrelati<strong>on</strong>ships (relative timing <str<strong>on</strong>g>of</str<strong>on</strong>g> life cycle events)may locally affect community structure <strong>and</strong> foodwebs by altering <strong>the</strong> interacti<strong>on</strong> between a species<strong>and</strong> its competitors, mutualists, predators, prey orpathogens. For example, in <strong>the</strong> case <str<strong>on</strong>g>of</str<strong>on</strong>g> sea birds, chickdiet compositi<strong>on</strong> during development is likely to be animportant mechanistic link between climate variability<strong>and</strong> <strong>the</strong> observed decline in seabird populati<strong>on</strong>s(Kitaysky et al. 2005). Also, with reference to codpopulati<strong>on</strong>, a shift from large to smaller copepodspecies resulted in an enhanced prey availability <strong>and</strong>subsequent survival <str<strong>on</strong>g>of</str<strong>on</strong>g> cod larvae during <strong>the</strong> 1970s,<strong>the</strong> so-called ‘gadoid-outburst’ (Beaugr<strong>and</strong> et al.2003). Fur<strong>the</strong>r temperature rises are likely to influenceentire ecosystem assemblages (Genner et al. 2004),as well as having pr<str<strong>on</strong>g>of</str<strong>on</strong>g>ound impacts <strong>on</strong> exploitati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g>living marine resources (Perry et al. 2005).‘In <strong>the</strong> North Sea, nearly two-thirds <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> fish specieshave shifted <strong>the</strong>ir mean latitude <strong>and</strong>/or depth over <strong>the</strong>last 25 years’Perry et al. (2005)Rapid warming can accelerate establishment<str<strong>on</strong>g>of</str<strong>on</strong>g> n<strong>on</strong>-indigenous species, many <str<strong>on</strong>g>of</str<strong>on</strong>g> whichhave been shown to do better under <strong>the</strong> warmerc<strong>on</strong>diti<strong>on</strong>s experienced in recent years (Stachowiczet al. 2002). When <strong>the</strong> Pacific oyster (Crassostreagigas) was introduced in northwestern Europe as apotential aquaculture species, it was not expectedto reproduce, because <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> relatively cold watertemperatures. However, <strong>the</strong> recent warming (inassociati<strong>on</strong> with its possible adaptati<strong>on</strong> to itsnew envir<strong>on</strong>ment) has now removed this species’reproductive barrier, resulting in massive proliferati<strong>on</strong><str<strong>on</strong>g>of</str<strong>on</strong>g> C. gigas, especially in <strong>the</strong> Ne<strong>the</strong>rl<strong>and</strong>s, but also in<strong>the</strong> UK (Reise et al. 2004). N<strong>on</strong>-indigenous speciesfrom coastlines with a str<strong>on</strong>g c<strong>on</strong>tinental influence<strong>and</strong> seas<strong>on</strong>al extremes (e.g. Asia, east coast <str<strong>on</strong>g>of</str<strong>on</strong>g>America) whose larvae are transported to <strong>European</strong>waters by means <str<strong>on</strong>g>of</str<strong>on</strong>g> ballast water, may already bevery well adapted to <strong>the</strong> warmed waters <str<strong>on</strong>g>of</str<strong>on</strong>g> Europe.20 <str<strong>on</strong>g>Impacts</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Climate</str<strong>on</strong>g> <str<strong>on</strong>g>Change</str<strong>on</strong>g> <strong>on</strong> <strong>the</strong> <strong>European</strong> <strong>Marine</strong> <strong>and</strong> <strong>Coastal</strong> Envir<strong>on</strong>ment


<strong>European</strong> policies <strong>on</strong> management <str<strong>on</strong>g>of</str<strong>on</strong>g> marineresources (e.g. <strong>European</strong> Comm<strong>on</strong> Fisheries Policy,<strong>Marine</strong> Thematic Strategy) <strong>and</strong> marine c<strong>on</strong>servati<strong>on</strong>(e.g. <strong>the</strong> Bird <strong>and</strong> Habitat Directives <strong>and</strong> <strong>the</strong> Natura2000 network) can never assume that <strong>the</strong> marineenvir<strong>on</strong>ment is relatively stable.Even without human-induced climate change,natural variability <strong>and</strong> evoluti<strong>on</strong>ary processesc<strong>on</strong>tinuously alter biodiversity <strong>and</strong> biogeography<str<strong>on</strong>g>of</str<strong>on</strong>g> species (Leslie et al. 2005). <str<strong>on</strong>g>Climate</str<strong>on</strong>g> change maycause serious problems for this type <str<strong>on</strong>g>of</str<strong>on</strong>g> managementwhen marine systems become even more dynamic<strong>and</strong> variable than before.© Dean Kildaw /US Fish <strong>and</strong> Wildlife ServiceA climatic regime shift during <strong>the</strong> mid-1970s in <strong>the</strong> North Pacificresulted in decreased availability <str<strong>on</strong>g>of</str<strong>on</strong>g> lipid-rich fish to seabirds <strong>and</strong>was followed by a dramatic decline in number <str<strong>on</strong>g>of</str<strong>on</strong>g> kittiwakes.Experiments revealed that diets low in lipids induce nutriti<strong>on</strong>al stress<strong>and</strong> impair cognitive abilities in young red-legged kittiwakes, whichis likely to result in <strong>the</strong>ir increased mortality <strong>and</strong> low recruitmentrates (Kitaysky et al. 2005).<str<strong>on</strong>g>Impacts</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Climate</str<strong>on</strong>g> <str<strong>on</strong>g>Change</str<strong>on</strong>g> <strong>on</strong> <strong>the</strong> <strong>European</strong> <strong>Marine</strong> <strong>and</strong> <strong>Coastal</strong> Envir<strong>on</strong>ment 21


4. Regi<strong>on</strong>al resp<strong>on</strong>ses <strong>and</strong> impacts4.1 Introducti<strong>on</strong><str<strong>on</strong>g>Climate</str<strong>on</strong>g> change is expected to affect differentregi<strong>on</strong>s in different ways, including:• Observed trends <strong>and</strong> expected changesstr<strong>on</strong>gly differ throughout <strong>the</strong> globe. Warmingwill be more pr<strong>on</strong>ounced at <strong>the</strong> poles than at<strong>the</strong> equator (MacD<strong>on</strong>ald et al. 2005).‘Between 1993 <strong>and</strong> 2003, in Australia, sea levelincreased at a rate <str<strong>on</strong>g>of</str<strong>on</strong>g> more than 30 mm y -1 whilsta decrease in sea level <str<strong>on</strong>g>of</str<strong>on</strong>g> more than 20 mm y -1 wasobserved in parts <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> nor<strong>the</strong>astern Pacific.’Holgate <strong>and</strong> Woodworth (2005)• The resp<strong>on</strong>ses to climate change areexpected to differ for different marinesystems. For example, while open oceansare more affected by <strong>the</strong> influence <str<strong>on</strong>g>of</str<strong>on</strong>g> wind<strong>on</strong> <strong>the</strong> timing <strong>and</strong> strength <str<strong>on</strong>g>of</str<strong>on</strong>g> stratificati<strong>on</strong>,coastal areas are more vulnerable to <strong>the</strong>effects <str<strong>on</strong>g>of</str<strong>on</strong>g> wind via storm surges. In additi<strong>on</strong>to expected warming <str<strong>on</strong>g>of</str<strong>on</strong>g> seawater, polarregi<strong>on</strong>s will experience changes in ice cover.Map compiled by Priscilla Lic<strong>and</strong>ro/SAHFOS <strong>and</strong> Katja Philippart/NIOZ<strong>European</strong> marine <strong>and</strong> coastal envir<strong>on</strong>ments for which temperature time series were compiled.During <strong>the</strong> past 10 years, sea-surface temperatures(SST) appear to be rising <strong>and</strong> excepti<strong>on</strong>ally hightemperatures have occurred in all <strong>European</strong> marinewaters, except for <strong>the</strong> Black Sea. During <strong>the</strong> past75 years, area-averaged sea-surface temperatureswere lowest in <strong>the</strong> Barents Sea (less than 5°C),followed by <strong>the</strong> Nordic Seas <strong>and</strong> <strong>the</strong> Baltic Sea (5°Cto 10°C temperature range), <strong>and</strong> <strong>the</strong> North Sea<strong>and</strong> <strong>the</strong> Celtic-Biscay Shelf (10-15°C), <strong>and</strong> higherin <strong>the</strong> Nor<strong>the</strong>ast Atlantic <strong>and</strong> <strong>the</strong> Black Sea (15-17°C), whilst <strong>the</strong> warmest waters were found in <strong>the</strong>Iberian upwelling margin <strong>and</strong> Mediterranean basins(18-20°C). Because <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> ice coverage, l<strong>on</strong>g-termobservati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> sea-surface temperature are notavailable for <strong>the</strong> Arctic. Variati<strong>on</strong>s in sea-ice extent,however, may be c<strong>on</strong>sidered as an index <str<strong>on</strong>g>of</str<strong>on</strong>g> changesin sea-surface temperature (see Secti<strong>on</strong> 4.2).22 <str<strong>on</strong>g>Impacts</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Climate</str<strong>on</strong>g> <str<strong>on</strong>g>Change</str<strong>on</strong>g> <strong>on</strong> <strong>the</strong> <strong>European</strong> <strong>Marine</strong> <strong>and</strong> <strong>Coastal</strong> Envir<strong>on</strong>ment


Baltic SeaBarents Sea1039281930 1940 1950 1960 1970 1980 1990 20001930 1940 1950 1960 1970 1980 1990 2000Black SeaCeltic-Biscay shelf141613151930 1940 1950 1960 1970 1980 1990 2000 1930 1940 1950 1960 1970 1980 1990 200012Central MediterraneanEastern Mediterranean21201920181930 1940 1950 1960 1970 1980 1990 2000 1930 1940 1950 1960 1970 1980 1990 200019Iberian upwelling margin19Nordic Seas7.6186.8171930 1940 1950 1960 1970 1980 1990 2000 1930 1940 1950 1960 1970 1980 1990 20006.0North East Atlantic16North Sea1115101491930 1940 1950 1960 1970 1980 1990 2000 1930 1940 1950 1960 1970 1980 1990 2000Western Mediterranean2019181930 1940 1950 1960 1970 1980 1990 2000L<strong>on</strong>g-term variati<strong>on</strong> in area-averaged sea-surface temperatures (°C) in <strong>European</strong> marine <strong>and</strong> coastal envir<strong>on</strong>ments based <strong>on</strong> HadSST2 datafrom <strong>the</strong> Hadley Centre, UK (Data compiled by Priscilla Lic<strong>and</strong>ro/SAHFOS).<str<strong>on</strong>g>Impacts</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Climate</str<strong>on</strong>g> <str<strong>on</strong>g>Change</str<strong>on</strong>g> <strong>on</strong> <strong>the</strong> <strong>European</strong> <strong>Marine</strong> <strong>and</strong> <strong>Coastal</strong> Envir<strong>on</strong>ment 23


4. Regi<strong>on</strong>al resp<strong>on</strong>ses <strong>and</strong> impacts4.2 Arctic OceanDescripti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> areaThe Arctic Ocean c<strong>on</strong>sists <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> deep (>4,000 m)Eurasian, Markov <strong>and</strong> Canada Basins, <strong>the</strong> surroundingc<strong>on</strong>tinental shelf seas (Barents, White,Kara, Laptev, East Siberian, Chucki <strong>and</strong> BeaufortSeas) <strong>and</strong> <strong>the</strong> Canadian Archipelago.Pacific waters enter <strong>the</strong> Arctic Ocean through <strong>the</strong>Bering Strait (Woodgate <strong>and</strong> Aagaard, 2005) <strong>and</strong>,augmented by freshwater run<str<strong>on</strong>g>of</str<strong>on</strong>g>f <strong>and</strong> forced by <strong>the</strong>mean winds, most flow towards <strong>the</strong> Atlantic Oceanin <strong>the</strong> Trans-Arctic Drift. The clockwise BeaufortGyre is located l<strong>and</strong>ward <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> Trans-Arctic Drift <strong>on</strong><strong>the</strong> Canadian side.The majority <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> water from <strong>the</strong> Arctic exits <strong>the</strong>regi<strong>on</strong> through <strong>the</strong> Fram Strait <str<strong>on</strong>g>of</str<strong>on</strong>g>f nor<strong>the</strong>asternGreenl<strong>and</strong>, although some water also makes its waythrough <strong>the</strong> Canadian Archipelago. Water from <strong>the</strong>Atlantic Ocean enters <strong>the</strong> Arctic through <strong>the</strong> BarentsSea <strong>and</strong> <strong>the</strong> eastern Fram Strait.© SAHFOS <strong>and</strong> <strong>Marine</strong> InstituteThe Arctic Ocean.24 <str<strong>on</strong>g>Impacts</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Climate</str<strong>on</strong>g> <str<strong>on</strong>g>Change</str<strong>on</strong>g> <strong>on</strong> <strong>the</strong> <strong>European</strong> <strong>Marine</strong> <strong>and</strong> <strong>Coastal</strong> Envir<strong>on</strong>ment


Signals <str<strong>on</strong>g>of</str<strong>on</strong>g> climate changeThe Arctic climate has varied <strong>on</strong> geological tointerannual time scales. In <strong>the</strong> last century <strong>the</strong>climate shifted from generally cold c<strong>on</strong>diti<strong>on</strong>s in<strong>the</strong> early 1900s to a warm period from <strong>the</strong> 1920sto <strong>the</strong> 1950s, cooled again through <strong>the</strong> 1960s <strong>and</strong>1970s before <strong>the</strong> recent warming (Johannessen etal. 2004). Decreases <strong>and</strong> increases in <strong>the</strong> seas<strong>on</strong>alice coverage <strong>and</strong> thickness have been recordedc<strong>on</strong>current with <strong>the</strong>se warm <strong>and</strong> cool periods(Johannessen et al. 2004; ACIA 2005).The recent warming in <strong>the</strong> Arctic has beenunprecedented, with annual mean air temperaturesrising at a rate 50% greater than from Icel<strong>and</strong> to <strong>the</strong>equator (ACIA 2005) <strong>and</strong> in <strong>the</strong> advecti<strong>on</strong> pattern<str<strong>on</strong>g>of</str<strong>on</strong>g> warm air from <strong>the</strong> south (Overl<strong>and</strong> et al. 2004).The recent warming has resulted in vast reducti<strong>on</strong>sin <strong>the</strong> amount <str<strong>on</strong>g>of</str<strong>on</strong>g> multi-year ice, a 20% decrease in<strong>the</strong> summer extent <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> Arctic sea-ice during <strong>the</strong>last 30 years <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> last century (Johannessen etal. 1999) <strong>and</strong> a thinning <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> ice by up to 2 m in<strong>the</strong> central Arctic between <strong>the</strong> 1960s <strong>and</strong> <strong>the</strong> 1990s(Rothrock <strong>and</strong> Zhang 2005).With less sea-ice, <strong>the</strong> decrease in <strong>the</strong> albedoeffect led to increased absorpti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> solarheating, <strong>the</strong>reby adding to <strong>the</strong> increased rate <str<strong>on</strong>g>of</str<strong>on</strong>g>warming (ACIA 2005). Additi<strong>on</strong>al warming (over1°C) occurred at intermediate depths in <strong>the</strong> ArcticOcean, especially in <strong>the</strong> Eurasian Basin, due toincreased inflow <str<strong>on</strong>g>of</str<strong>on</strong>g> warm Atlantic water (Polyakovet al. 2005). The boundary between Atlantic <strong>and</strong>Pacific waters shifted towards <strong>the</strong> Pacific from <strong>the</strong>Lom<strong>on</strong>osov Ridge to <strong>the</strong> Mendeleyev-Alpha Ridge<strong>and</strong> <strong>the</strong> percent Atlantic waters in <strong>the</strong> Canada Basinincreased (McLaughlin et al. 2002). Sea-ice melt,coupled with increased river run<str<strong>on</strong>g>of</str<strong>on</strong>g>f into <strong>the</strong> Arctic,led to freshening <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> surface layers <strong>and</strong> a rise insea level (ACIA 2005).Because <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> extensive ice cover, difficult logistics,few inhabitants, <strong>and</strong> no commercial fisheries in <strong>the</strong>high Arctic, <strong>the</strong>re are few published studies <strong>on</strong> <strong>the</strong>biological c<strong>on</strong>sequences <str<strong>on</strong>g>of</str<strong>on</strong>g> past climate changes inthis regi<strong>on</strong> (ACIA 2005). However, benthic studies in<strong>the</strong> Chukchi Sea north <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> Bering Sea have shownpopulati<strong>on</strong> changes in <strong>the</strong> dominant species, whichare thought to be related to changing hydrographicc<strong>on</strong>diti<strong>on</strong>s (Grebmeier et al. 1995).‘Sea-ice coverage will fur<strong>the</strong>r decrease with suggesti<strong>on</strong>s<str<strong>on</strong>g>of</str<strong>on</strong>g> an ice-free Arctic during summer before 2100<strong>and</strong> thus no multi-year ice in winter.’ACIA (2005)Projecti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> climate changeRecent projecti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> future climate scenariosindicate c<strong>on</strong>tinued warming with temperatureincreases in <strong>the</strong> order <str<strong>on</strong>g>of</str<strong>on</strong>g> 2-10°C over this century(ACIA 2005). Increased precipitati<strong>on</strong> will result inhigher river run<str<strong>on</strong>g>of</str<strong>on</strong>g>f adding to <strong>the</strong> freshwater additi<strong>on</strong>sthrough ice melt. In <strong>the</strong> absence <str<strong>on</strong>g>of</str<strong>on</strong>g> ice, surfacewaters will be exposed to wind-driven circulati<strong>on</strong>(ACIA 2005). The Transpolar Drift would shifteastwards to favour flow directly toward <strong>the</strong> FramStrait. The Beaufort Gyre may weaken <strong>and</strong> retreatinto <strong>the</strong> Canada Basin with <strong>the</strong> positi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Atlantic/Pacific Fr<strong>on</strong>t tending to align permanently with <strong>the</strong>Mendeleyev-Alpha Ridge. Also, when summer iceretreats seaward <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> c<strong>on</strong>tinental slope, enhanceddeep basin–shelf exchange <str<strong>on</strong>g>of</str<strong>on</strong>g> seawater will occurthrough increased wind-induced upwelling <strong>and</strong>downwelling (Carmack <strong>and</strong> Chapman 2003).The retracti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> sea-ice <strong>and</strong> <strong>the</strong> enhancedexchange <str<strong>on</strong>g>of</str<strong>on</strong>g> deep-basin seawater will result inhigher light levels <strong>and</strong> nutrient c<strong>on</strong>centrati<strong>on</strong>s <strong>on</strong> <strong>the</strong>shelves, leading to increased primary producti<strong>on</strong>.Wind-driven vertical mixing is likely to increase<strong>the</strong> depth <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> surface mixed layer. If <strong>the</strong> Arcticbecomes ice-free in winter, <strong>the</strong> Nansen Basin maybecome a regi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> str<strong>on</strong>g c<strong>on</strong>vecti<strong>on</strong> (sinking <str<strong>on</strong>g>of</str<strong>on</strong>g>cold dense water) <strong>and</strong> water mass formati<strong>on</strong>.Predicted streng<strong>the</strong>ning <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> westerly winds in <strong>the</strong>Nordic Seas is expected to increase <strong>the</strong> transport <str<strong>on</strong>g>of</str<strong>on</strong>g>Atlantic water entering <strong>the</strong> Arctic via <strong>the</strong> Fram Strait<strong>and</strong> <strong>the</strong> Barents Sea (ACIA 2005).Based up<strong>on</strong> our underst<strong>and</strong>ing <str<strong>on</strong>g>of</str<strong>on</strong>g> biologicalprocesses in <strong>the</strong> Arctic, some predicti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong>impacts <str<strong>on</strong>g>of</str<strong>on</strong>g> climate change can be made. Wheresea-ice coverage is reduced, ice algal producti<strong>on</strong>will significantly decrease (ACIA 2005). This loss<str<strong>on</strong>g>of</str<strong>on</strong>g> producti<strong>on</strong> will be more than made up for byincreased open ocean plankt<strong>on</strong> producti<strong>on</strong> in <strong>the</strong>seice-free regi<strong>on</strong>s because <str<strong>on</strong>g>of</str<strong>on</strong>g> higher light levels <strong>and</strong>increased nutrient c<strong>on</strong>centrati<strong>on</strong>s through enhancedvertical mixing. This producti<strong>on</strong> may be limited insome areas by <strong>the</strong> negative effects <str<strong>on</strong>g>of</str<strong>on</strong>g> increasedstratificati<strong>on</strong> from increased sea-ice melt <strong>and</strong> highersurface layer temperatures. Benthic producti<strong>on</strong>is likely to decrease, but this will depend up<strong>on</strong> <strong>the</strong>match/mismatch between phytoplankt<strong>on</strong> <strong>and</strong>zooplankt<strong>on</strong>, i.e. <strong>the</strong> amount <str<strong>on</strong>g>of</str<strong>on</strong>g> phytoplankt<strong>on</strong> thatsinks to <strong>the</strong> bottom before being eaten (ACIA 2005).Higher producti<strong>on</strong> at <strong>the</strong> lower trophic levels isexpected to lead to increased zooplankt<strong>on</strong> <strong>and</strong> fishproducti<strong>on</strong> in <strong>the</strong> Arctic, although <strong>the</strong> extent <str<strong>on</strong>g>of</str<strong>on</strong>g> suchan increase is uncertain (ACIA 2005). In c<strong>on</strong>trast,<strong>the</strong> abundance <str<strong>on</strong>g>of</str<strong>on</strong>g> ice-dependent species such aspolar bears, as well as some seals <strong>and</strong> seabirds islikely to decrease.<str<strong>on</strong>g>Impacts</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Climate</str<strong>on</strong>g> <str<strong>on</strong>g>Change</str<strong>on</strong>g> <strong>on</strong> <strong>the</strong> <strong>European</strong> <strong>Marine</strong> <strong>and</strong> <strong>Coastal</strong> Envir<strong>on</strong>ment 25


4. Regi<strong>on</strong>al resp<strong>on</strong>ses <strong>and</strong> impacts© Ansgar Walk/Creative Comm<strong>on</strong>s Attributi<strong>on</strong> ShareAlike - 2.5 licence appliesIn 2006, polar bears were placed <strong>on</strong> <strong>the</strong> Red List <str<strong>on</strong>g>of</str<strong>on</strong>g> Threatened Species <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> WorldC<strong>on</strong>servati<strong>on</strong> Uni<strong>on</strong> (IUCN). Because <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong>ir slow reproducti<strong>on</strong> cycle <strong>and</strong> <strong>the</strong> speed <str<strong>on</strong>g>of</str<strong>on</strong>g>global warming, it seems unlikely that polar bears will be able to adapt to <strong>the</strong> currentwarming trend in <strong>the</strong> Arctic. If climatic trends c<strong>on</strong>tinue polar bears may diminish frommost <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong>ir range within 100 years.Already polar bears are showing some signs <str<strong>on</strong>g>of</str<strong>on</strong>g> beingin poor c<strong>on</strong>diti<strong>on</strong>, associated with <strong>the</strong> decrease <str<strong>on</strong>g>of</str<strong>on</strong>g>seal prey availability, which is linked to <strong>the</strong> decline inice coverage.Distributi<strong>on</strong>al shifts in organisms, from phytoplankt<strong>on</strong>to marine mammals <strong>and</strong> seabirds, may result in<strong>the</strong> establishment <str<strong>on</strong>g>of</str<strong>on</strong>g> n<strong>on</strong>-indigenous species in<strong>the</strong> Arctic, forcing a fur<strong>the</strong>r geographical retracti<strong>on</strong><str<strong>on</strong>g>of</str<strong>on</strong>g> indigenous Arctic species <strong>and</strong> <strong>the</strong> possibility <str<strong>on</strong>g>of</str<strong>on</strong>g>some species disappearing altoge<strong>the</strong>r.The absence <str<strong>on</strong>g>of</str<strong>on</strong>g> ice in summer will enhance <strong>the</strong>probability <str<strong>on</strong>g>of</str<strong>on</strong>g> import/transport <str<strong>on</strong>g>of</str<strong>on</strong>g> n<strong>on</strong>-indigenousmarine organisms from <strong>the</strong> Pacific. Recent studieshave dem<strong>on</strong>strated that <strong>the</strong> barrier to a trans-Arcticexchange <str<strong>on</strong>g>of</str<strong>on</strong>g> plankt<strong>on</strong> between <strong>the</strong> two oceans hasalready been breached (Reid et al. unpublished)Current m<strong>on</strong>itoring <strong>and</strong> research programmes<strong>and</strong> projects in <strong>the</strong> Arctic• M<strong>on</strong>itoring <strong>and</strong> research programmes <strong>and</strong>projects for <strong>the</strong> Arctic have been exp<strong>and</strong>ingduring recent years although most regi<strong>on</strong>sgenerally remain undersampled;• The Arctic M<strong>on</strong>itoring <strong>and</strong> AssessmentProgramme (AMAP) has <strong>on</strong>-going activities,especially related to c<strong>on</strong>taminants;• Transports <str<strong>on</strong>g>of</str<strong>on</strong>g> water, heat <strong>and</strong> freshwaterto <strong>and</strong> from <strong>the</strong> Arctic are m<strong>on</strong>itored <strong>and</strong>examined by <strong>the</strong> Arctic/Subarctic OceanFluxes (ASOF) programme;• The Circumpolar Biodiversity M<strong>on</strong>itoringProgramme (CBMP) has been initiated in<strong>the</strong> Arctic <str<strong>on</strong>g>of</str<strong>on</strong>g> which <strong>the</strong> first report is due outshortly;• Activities during <strong>the</strong> Internati<strong>on</strong>al Polar Year(IPY 2007/2008) are expected to greatlyincrease research <strong>and</strong> underst<strong>and</strong>ing <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong>role <str<strong>on</strong>g>of</str<strong>on</strong>g> climate <strong>on</strong> <strong>the</strong> marine ecosystems, aswell as to exp<strong>and</strong> m<strong>on</strong>itoring activities in <strong>the</strong>Arctic.• The internati<strong>on</strong>al Arctic <str<strong>on</strong>g>Climate</str<strong>on</strong>g> ImpactAssessment was recently completed (ACIA2005);26 <str<strong>on</strong>g>Impacts</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Climate</str<strong>on</strong>g> <str<strong>on</strong>g>Change</str<strong>on</strong>g> <strong>on</strong> <strong>the</strong> <strong>European</strong> <strong>Marine</strong> <strong>and</strong> <strong>Coastal</strong> Envir<strong>on</strong>ment


4.3 Barents SeaDescripti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> areaThe Barents Sea is <strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> shallow shelf seasthat collectively form <strong>the</strong> Arctic c<strong>on</strong>tinental shelf.Its western boundary is defined by <strong>the</strong> shelf breaktowards <strong>the</strong> Norwegian Sea, <strong>the</strong> eastern boundaryby <strong>the</strong> Novaya Zemlya archipelago, <strong>the</strong> sou<strong>the</strong>rnboundary by Norway <strong>and</strong> Russia, <strong>and</strong> <strong>the</strong> nor<strong>the</strong>rnboundary by <strong>the</strong> c<strong>on</strong>tinental shelf break towards<strong>the</strong> deep Arctic Ocean. The Barents Sea covers 1.4milli<strong>on</strong> km 2 with an average depth <str<strong>on</strong>g>of</str<strong>on</strong>g> 230 m <strong>and</strong> amaximum depth <str<strong>on</strong>g>of</str<strong>on</strong>g> approximately 500 m near <strong>the</strong>western entrance.Atlantic waters enter <strong>the</strong> Barents Sea betweenBear Isl<strong>and</strong> <strong>and</strong> nor<strong>the</strong>rn Norway; <strong>the</strong>y cool <strong>and</strong>freshen before exiting principally to <strong>the</strong> north <str<strong>on</strong>g>of</str<strong>on</strong>g>Novaya Zemlya. Most Arctic waters enter betweenSpitzbergen <strong>and</strong> Franz Josef L<strong>and</strong> <strong>and</strong> exit south <str<strong>on</strong>g>of</str<strong>on</strong>g>Spitzbergen (Loeng et al. 1995). A narrow transiti<strong>on</strong>z<strong>on</strong>e, called <strong>the</strong> Polar Fr<strong>on</strong>t, separates <strong>the</strong> Atlantic<strong>and</strong> Arctic water masses. Winter c<strong>on</strong>vecti<strong>on</strong> in <strong>the</strong>Barents Sea also provides cold intermediate waterto <strong>the</strong> Arctic Ocean to a depth <str<strong>on</strong>g>of</str<strong>on</strong>g> 1,200 m throughsinking <strong>and</strong> subsequent northward advecti<strong>on</strong>(Schauer et al. 1997). Sea-ice typically covers <strong>the</strong>nor<strong>the</strong>rn <strong>and</strong> eastern regi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> Barents Sea inwinter.© SAHFOS <strong>and</strong> <strong>Marine</strong> InstituteThe Barents Sea.Signals <str<strong>on</strong>g>of</str<strong>on</strong>g> climate change<str<strong>on</strong>g>Climate</str<strong>on</strong>g> variability in <strong>the</strong> Barents Sea, as elsewhere,occurs <strong>on</strong> a variety <str<strong>on</strong>g>of</str<strong>on</strong>g> time scales. At multidecadalperiods, <strong>the</strong> waters in <strong>the</strong> Barents Sea haveunderg<strong>on</strong>e similar changes to those in <strong>the</strong> Arctic,being relatively cold in <strong>the</strong> late 19th century <strong>and</strong><strong>the</strong> early part <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> 20th century, warm from <strong>the</strong>1920s to <strong>the</strong> 1950s, cool through <strong>the</strong> 1960s to <strong>the</strong>1980s <strong>and</strong> warm during <strong>the</strong> last decade or more(Drinkwater 2006). These changes are due to acombinati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> atmospheric heating <strong>and</strong> cooling<strong>and</strong> variability in both <strong>the</strong> volume <strong>and</strong> temperature<str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> incoming Atlantic waters (Ingvaldsen et al.2003). In associati<strong>on</strong> with warm <strong>and</strong> cool periods,sea-ice coverage has c<strong>on</strong>tracted <strong>and</strong> exp<strong>and</strong>ed,respectively. Recently, sea-ice coverage has beennear its lowest recorded level, although <strong>the</strong> 1930swas ano<strong>the</strong>r period <str<strong>on</strong>g>of</str<strong>on</strong>g> low ice coverage.During <strong>the</strong> warm period <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> 1920s to 1950s, <strong>the</strong>distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> fish species such as cod, haddock<strong>and</strong> herring exp<strong>and</strong>ed northward <strong>and</strong> eastward(Drinkwater 2006). A similar geographic expansi<strong>on</strong><str<strong>on</strong>g>of</str<strong>on</strong>g> Atlantic associated benthic species occurred,while Arctic species declined (Berge et al. 2005).‘During recent warming, large numbers <str<strong>on</strong>g>of</str<strong>on</strong>g> blue whitinghave extended northward as far as <strong>the</strong> westernentrance <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> Barents Sea, <strong>and</strong> blue mussels haveappeared in Svalbard after a 1000 year absence.’Berge et al. (2005)At interannual to decadal time scales, oceantemperature variability is correlated with <strong>the</strong> NAOwith higher temperatures generally associated with<strong>the</strong> positive phase <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> NAO (Ingvaldsen et al.2003). The higher correlati<strong>on</strong> after <strong>the</strong> early 1970s isattributed to <strong>the</strong> eastward shift in <strong>the</strong> Icel<strong>and</strong>icLow (Ottersen et al. 2003). Interannual variati<strong>on</strong> in<strong>the</strong> positi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> ice-edge in a particular m<strong>on</strong>th isabout 3-4°C <str<strong>on</strong>g>of</str<strong>on</strong>g> latitude.<str<strong>on</strong>g>Impacts</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Climate</str<strong>on</strong>g> <str<strong>on</strong>g>Change</str<strong>on</strong>g> <strong>on</strong> <strong>the</strong> <strong>European</strong> <strong>Marine</strong> <strong>and</strong> <strong>Coastal</strong> Envir<strong>on</strong>ment 27


4. Regi<strong>on</strong>al resp<strong>on</strong>ses <strong>and</strong> impactsProjecti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> climate changeFurevik et al. (2002) modelled future climatescenarios for <strong>the</strong> Barents Sea. They suggest thatby 2080, surface ocean temperatures will warm by1-2°C, winter sea-ice will almost disappear, Atlanticwaters will spread fur<strong>the</strong>r eastward <strong>and</strong> northward,<strong>the</strong>re will be more c<strong>on</strong>tinental run<str<strong>on</strong>g>of</str<strong>on</strong>g>f but this will bepartially compensated by an influx <str<strong>on</strong>g>of</str<strong>on</strong>g> higher salinityin Atlantic waters, <strong>and</strong> <strong>the</strong> surface mixed layer depthwill increase due to str<strong>on</strong>ger winds.Under <strong>the</strong> projected warming in <strong>the</strong> BarentsSea, Atlantic water species <str<strong>on</strong>g>of</str<strong>on</strong>g> fish <strong>and</strong> benthosare expected to extend fur<strong>the</strong>r east <strong>and</strong> north.Modelling studies (Slagstad <strong>and</strong> Wassmann 1996)suggest primary producti<strong>on</strong> levels are 400% higherin ice-free regi<strong>on</strong>s in a warm year compared towhen <strong>the</strong>se same areas are ice-covered. Relativeto <strong>the</strong> entire Barents Sea regi<strong>on</strong>, reduced ice coverwill result in between 8% (Ellingsen et al. 2006) <strong>and</strong>30% (Slagstad <strong>and</strong> Wassmann 1996) increase inprimary producti<strong>on</strong> in years free <str<strong>on</strong>g>of</str<strong>on</strong>g> summer ice.This is due to a combinati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> higher light levelsin areas <str<strong>on</strong>g>of</str<strong>on</strong>g> decreased ice cover, higher nutrientlevels in <strong>the</strong> Atlantic waters where <strong>the</strong>y extendednorthward <strong>and</strong> eastward, <strong>and</strong> faster turnovertimes <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> phytoplankt<strong>on</strong>, associated with highertemperatures.This higher producti<strong>on</strong> is expected to result inincreased abundance <str<strong>on</strong>g>of</str<strong>on</strong>g> cod, haddock <strong>and</strong> o<strong>the</strong>rspecies (ACIA 2005). Improved growth ratestoge<strong>the</strong>r with expected increased recruitment willlead to increased yields in species such as cod,although this will depend to a large degree up<strong>on</strong>fishing intensity. More fish will spawn far<strong>the</strong>r north,as observed for cod (Drinkwater 2005), <strong>and</strong> newspawning sites are likely to be established. Herring<strong>and</strong> blue whiting will spread fur<strong>the</strong>r eastward <strong>and</strong>salm<strong>on</strong> abundance is likely to increase in Russianwaters as previously observed (Lajus et al. 2005)<strong>and</strong> to extend to nor<strong>the</strong>rn Spitzbergen. Capelin willfollow <strong>the</strong> Polar Fr<strong>on</strong>t fur<strong>the</strong>r to <strong>the</strong> nor<strong>the</strong>ast to feed,but are expected to c<strong>on</strong>tinue to spawn <str<strong>on</strong>g>of</str<strong>on</strong>g>f nor<strong>the</strong>rnNorway. The distributi<strong>on</strong> shifts <str<strong>on</strong>g>of</str<strong>on</strong>g> fish populati<strong>on</strong>swill bring more <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> major commercial species(such as cod <strong>and</strong> haddock) into Russian waters,this distributi<strong>on</strong> shift <str<strong>on</strong>g>of</str<strong>on</strong>g> commercial populati<strong>on</strong>s mayrequire renegotiati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> present fisheries treatiesbetween Norway <strong>and</strong> Russia.Historical <strong>and</strong> forecast sea-surface temperatures <strong>and</strong> sea-ice during March based <strong>on</strong> <strong>the</strong> Bergen <str<strong>on</strong>g>Climate</str<strong>on</strong>g> Model (data compiled by T. Furevik/UIB).28 <str<strong>on</strong>g>Impacts</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Climate</str<strong>on</strong>g> <str<strong>on</strong>g>Change</str<strong>on</strong>g> <strong>on</strong> <strong>the</strong> <strong>European</strong> <strong>Marine</strong> <strong>and</strong> <strong>Coastal</strong> Envir<strong>on</strong>ment


Current m<strong>on</strong>itoring <strong>and</strong> research programmes<strong>and</strong> projects in <strong>the</strong> Barents sea• Russia has maintained <strong>the</strong> Kola Secti<strong>on</strong> (ahydrographic transect north <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> Murmancoast) for over 100 years <strong>and</strong> has also carriedout numerous benthic <strong>and</strong> fish surveys;• Norway has undertaken annual fish surveysto assess fish stocks for over 35 years <strong>and</strong>in recent years <strong>the</strong>se have been exp<strong>and</strong>edto include o<strong>the</strong>r comp<strong>on</strong>ents <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong>ecosystem;• Norway has led projects investigating <strong>the</strong>impact <str<strong>on</strong>g>of</str<strong>on</strong>g> climate evoluti<strong>on</strong> <strong>on</strong> <strong>the</strong> BarentsSea ecosystem, e.g. <strong>the</strong> earlier completedBarents Sea Impact Study (BASIS); projectscompleted at <strong>the</strong> end <str<strong>on</strong>g>of</str<strong>on</strong>g> 2006 include <strong>the</strong>Carb<strong>on</strong> Flux <strong>and</strong> Ecosystem Feed Back in<strong>the</strong> Nor<strong>the</strong>rn Barents Sea in an era <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Climate</str<strong>on</strong>g><str<strong>on</strong>g>Change</str<strong>on</strong>g> (CABANERA), Effects <str<strong>on</strong>g>of</str<strong>on</strong>g> NorthAtlantic <str<strong>on</strong>g>Climate</str<strong>on</strong>g> Variability <strong>on</strong> <strong>the</strong> BarentsSea Ecosystem (ECOBE), Co-evoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g>life histories <str<strong>on</strong>g>of</str<strong>on</strong>g> Calanus <strong>and</strong> herring in <strong>the</strong>Norwegian Sea (ADAPT), <strong>the</strong> <str<strong>on</strong>g>Climate</str<strong>on</strong>g> <strong>and</strong>Producti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>Marine</strong> Resources (CliMar), <strong>and</strong><strong>the</strong> Norwegian comp<strong>on</strong>ent <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> EcosystemStudy <str<strong>on</strong>g>of</str<strong>on</strong>g> Sub-Arctic Ecosystems (NESSAS)will c<strong>on</strong>tinue until 2008;• In 2007/2008, several Internati<strong>on</strong>al Polar Year(IPY) activities are planned that focus <strong>on</strong> <strong>the</strong>effects <str<strong>on</strong>g>of</str<strong>on</strong>g> climate variability <strong>and</strong> change <strong>on</strong><strong>the</strong> Barents Sea ecosystem; <strong>the</strong>se includeESSAR <strong>and</strong> ARCTOS-FLUXES.<str<strong>on</strong>g>Impacts</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Climate</str<strong>on</strong>g> <str<strong>on</strong>g>Change</str<strong>on</strong>g> <strong>on</strong> <strong>the</strong> <strong>European</strong> <strong>Marine</strong> <strong>and</strong> <strong>Coastal</strong> Envir<strong>on</strong>ment 29


4. Regi<strong>on</strong>al resp<strong>on</strong>ses <strong>and</strong> impacts4.4 Nordic seasDescripti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> areaThe Nordic Seas, which include <strong>the</strong> Greenl<strong>and</strong>,Norwegian <strong>and</strong> Icel<strong>and</strong> Seas, are a transiti<strong>on</strong>z<strong>on</strong>e for warm <strong>and</strong> saline Atlantic water <strong>on</strong> its wayto <strong>the</strong> Arctic, <strong>and</strong> for cold <strong>and</strong> less saline watersflowing from <strong>the</strong> Arctic to <strong>the</strong> Atlantic Ocean. TheGreenl<strong>and</strong>-Scotl<strong>and</strong> Ridge forms a barrier between<strong>the</strong> deep waters <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> Nordic Seas <strong>and</strong> <strong>the</strong> NorthAtlantic.The eastern Norwegian Sea c<strong>on</strong>sists <str<strong>on</strong>g>of</str<strong>on</strong>g> relativelywarm Atlantic water in <strong>the</strong> upper layers (


Large ecosystem changes have been observed in<strong>the</strong> past. For example, <strong>the</strong> abundance <str<strong>on</strong>g>of</str<strong>on</strong>g> Norwegianspring spawning herring increased during <strong>the</strong>warming <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> 1920s, decreased during <strong>the</strong> coolingperiod in <strong>the</strong> 1960s but has risen again since <strong>the</strong>temperature increases in <strong>the</strong> 1990s (Toresen <strong>and</strong>Østvedt 2000). During warm periods, i.e. 1920s-1950s, herring migrated from <strong>the</strong>ir spawninglocati<strong>on</strong>s <strong>on</strong> <strong>the</strong> west coast <str<strong>on</strong>g>of</str<strong>on</strong>g> Norway <strong>and</strong> around<strong>the</strong> Faroes, <strong>and</strong> <strong>the</strong>ir nursery areas in <strong>the</strong> westernBarents Sea to <strong>the</strong> feeding grounds <str<strong>on</strong>g>of</str<strong>on</strong>g>f nor<strong>the</strong>asternIcel<strong>and</strong> (Vilhjálmss<strong>on</strong> 1997). The overwinteringgrounds were primarily to <strong>the</strong> east <str<strong>on</strong>g>of</str<strong>on</strong>g> Icel<strong>and</strong>; <strong>the</strong>n inspring <strong>the</strong> herring migrated back to <strong>the</strong>ir spawninggrounds.As <strong>the</strong> Arctic Fr<strong>on</strong>t shifted sou<strong>the</strong>astward during <strong>the</strong>colder 1960s, <strong>the</strong> herring feeding grounds movedfar<strong>the</strong>r eastward <strong>and</strong> <strong>the</strong>n to <strong>the</strong> southwest <str<strong>on</strong>g>of</str<strong>on</strong>g>Spitzbergen. When <strong>the</strong> herring populati<strong>on</strong> declinedto drastically low levels, those individuals remainingno l<strong>on</strong>ger migrated out into <strong>the</strong> Norwegian <strong>and</strong>Greenl<strong>and</strong> seas but stayed near <strong>the</strong> Norwegiancoast to both feed <strong>and</strong> spawn (Vilhjálmss<strong>on</strong> 1997).In <strong>the</strong> 1990s, as temperatures warmed <strong>and</strong> <strong>the</strong>herring populati<strong>on</strong> increased, <strong>the</strong> populati<strong>on</strong> againbegan migrating back towards Icel<strong>and</strong> to feed (ACIA2005).Capelin, <strong>the</strong> major prey <str<strong>on</strong>g>of</str<strong>on</strong>g> adult cod <str<strong>on</strong>g>of</str<strong>on</strong>g>f Icel<strong>and</strong>,have moved fur<strong>the</strong>r northwest during <strong>the</strong> recentwarming requiring <strong>the</strong> capelin fleet to travel fur<strong>the</strong>rin order to obtain <strong>the</strong>ir catches. This distributi<strong>on</strong>alshift is somewhat similar to <strong>the</strong> resp<strong>on</strong>se observedduring <strong>the</strong> early 20th century warming period when<strong>the</strong> capelin populati<strong>on</strong> shifted northward. Codspawn al<strong>on</strong>g <strong>the</strong> south <strong>and</strong> southwest coasts <str<strong>on</strong>g>of</str<strong>on</strong>g>Icel<strong>and</strong> <strong>and</strong> <strong>the</strong>ir larvae drift northwards with manydeveloping <str<strong>on</strong>g>of</str<strong>on</strong>g>f <strong>the</strong> north coast <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> isl<strong>and</strong>.In recent years, warm c<strong>on</strong>diti<strong>on</strong>s due to <strong>the</strong> increasedinflux <str<strong>on</strong>g>of</str<strong>on</strong>g> Atlantic waters <str<strong>on</strong>g>of</str<strong>on</strong>g>f nor<strong>the</strong>rn Icel<strong>and</strong> haveled to a higher level <str<strong>on</strong>g>of</str<strong>on</strong>g> cod recruitment (Jónss<strong>on</strong><strong>and</strong> Vladimarss<strong>on</strong> 2005). This may be because <str<strong>on</strong>g>of</str<strong>on</strong>g><strong>the</strong> shorter vulnerable larval stages, <strong>and</strong> increasedfood because <str<strong>on</strong>g>of</str<strong>on</strong>g> higher primary <strong>and</strong> sec<strong>on</strong>daryproducti<strong>on</strong> (Astthorss<strong>on</strong> <strong>and</strong> Vilhjálmss<strong>on</strong> 2002) or acombinati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> both. The presence <str<strong>on</strong>g>of</str<strong>on</strong>g> Atlantic watersprovides for an enhanced phytoplankt<strong>on</strong> bloom thatlasts l<strong>on</strong>ger because <str<strong>on</strong>g>of</str<strong>on</strong>g> reduced stratificati<strong>on</strong> <strong>and</strong>higher nutrient c<strong>on</strong>centrati<strong>on</strong>s than are found inArctic waters.Time-series <str<strong>on</strong>g>of</str<strong>on</strong>g> temperature with depth (left panel) in <strong>the</strong> central Greenl<strong>and</strong> Sea (area shown in right panel). The black dotsin <strong>the</strong> left panel represent stati<strong>on</strong> data (© ICES Oceanographic Database <strong>and</strong> Service).Projecti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> climate changeFurevik et al. (2002) reported <strong>on</strong> future climatescenarios for <strong>the</strong> Nordic Seas up to 2080.These included a 1-2°C increase in sea-surfacetemperatures, increased Atlantic flow to <strong>the</strong>Norwegian Sea <strong>and</strong> north <str<strong>on</strong>g>of</str<strong>on</strong>g> Icel<strong>and</strong> but a reducti<strong>on</strong>in <strong>the</strong> overturning circulati<strong>on</strong>, a weakening <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong>Nordic Sea Gyre, little if any ice <strong>on</strong> <strong>the</strong> East Greenl<strong>and</strong>shelf, reducti<strong>on</strong> in winter c<strong>on</strong>vecti<strong>on</strong> in <strong>the</strong> Greenl<strong>and</strong>Sea, reduced outflow through <strong>the</strong> Fram Strait, <strong>and</strong>fresher waters al<strong>on</strong>g <strong>the</strong> Greenl<strong>and</strong> <strong>and</strong> Norwegianshelves because <str<strong>on</strong>g>of</str<strong>on</strong>g> increased run<str<strong>on</strong>g>of</str<strong>on</strong>g>f <strong>and</strong> in <strong>the</strong> case<str<strong>on</strong>g>of</str<strong>on</strong>g> Greenl<strong>and</strong>, ice melt from <strong>the</strong> Greenl<strong>and</strong> ice cap<strong>and</strong> sea-ice melt from <strong>the</strong> Arctic.<str<strong>on</strong>g>Impacts</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Climate</str<strong>on</strong>g> <str<strong>on</strong>g>Change</str<strong>on</strong>g> <strong>on</strong> <strong>the</strong> <strong>European</strong> <strong>Marine</strong> <strong>and</strong> <strong>Coastal</strong> Envir<strong>on</strong>ment 31


4. Regi<strong>on</strong>al resp<strong>on</strong>ses <strong>and</strong> impactsThe biological resp<strong>on</strong>se to <strong>the</strong>se changesare expected to include a slight increase inprimary producti<strong>on</strong> occurring north <str<strong>on</strong>g>of</str<strong>on</strong>g> Icel<strong>and</strong>,because <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> greater presence <str<strong>on</strong>g>of</str<strong>on</strong>g> Atlanticwaters, <strong>and</strong> also <str<strong>on</strong>g>of</str<strong>on</strong>g>f East Greenl<strong>and</strong>, associatedwith increased light levels due to <strong>the</strong> absence<str<strong>on</strong>g>of</str<strong>on</strong>g> ice. However, producti<strong>on</strong> in <strong>the</strong> ice-freeareas will also be affected by a limited nutrientsupply due to <strong>the</strong> increased freshwater inputfrom nutrient-poor Arctic rivers, which willincrease vertical stratificati<strong>on</strong>. It is expectedthat <strong>the</strong> abundance <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> Arctic zooplankt<strong>on</strong>species Calanus hyperboreus <strong>and</strong> C. glacialiswill decrease, while <strong>the</strong> smaller C. finmarchicusthat inhabit <strong>the</strong> Atlantic waters should increase.The growth <strong>and</strong> c<strong>on</strong>diti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> cod, haddock <strong>and</strong>capelin should improve <strong>and</strong> <strong>the</strong>se species willc<strong>on</strong>tinue <strong>the</strong>ir movement northward, eventuallyoccupying <strong>the</strong> waters around Jan Mayen isl<strong>and</strong><strong>on</strong> a regular basis. Atlantic herring should againbegin to overwinter to <strong>the</strong> east <str<strong>on</strong>g>of</str<strong>on</strong>g> Icel<strong>and</strong> <strong>and</strong>move northwestwards with <strong>the</strong> Arctic Fr<strong>on</strong>t. Moresou<strong>the</strong>rn species will invade <strong>the</strong> Nordic Seas withsome becoming frequent visitors. These invasi<strong>on</strong>smay lead to an increase <str<strong>on</strong>g>of</str<strong>on</strong>g> biodiversity within <strong>the</strong>fish communities <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> Nordic Seas.Current research <strong>and</strong> m<strong>on</strong>itoring programmes<strong>and</strong> projects• The l<strong>on</strong>gest c<strong>on</strong>tinuous m<strong>on</strong>itoring <str<strong>on</strong>g>of</str<strong>on</strong>g> oceantemperature <strong>and</strong> salinity in <strong>the</strong> open NordicSeas is from <strong>the</strong> Ocean Wea<strong>the</strong>r Stati<strong>on</strong>Mike (1948 to present);• Direct measurements <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> water massexchanges between <strong>the</strong> Nordic Seas <strong>and</strong>both <strong>the</strong> Atlantic <strong>and</strong> <strong>the</strong> Arctic Oceans by <strong>the</strong>internati<strong>on</strong>al community have been <strong>on</strong>-goingfor over a decade as part <str<strong>on</strong>g>of</str<strong>on</strong>g> several differentprogrammes <strong>and</strong> projects, most recently <strong>the</strong>ASOF project <strong>on</strong> Arctic <strong>and</strong> Subarctic OceanFluxes (Hansen et al. 2001);• Annual ecosystem m<strong>on</strong>itoring <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> Icel<strong>and</strong>Sea <strong>and</strong> <strong>the</strong> Norwegian Sea is carried out byIcel<strong>and</strong> <strong>and</strong> Norway, respectively, as part <str<strong>on</strong>g>of</str<strong>on</strong>g><strong>the</strong>ir fisheries assessment work;• Much less attenti<strong>on</strong> has been paid to <strong>the</strong>Greenl<strong>and</strong> Sea with most work c<strong>on</strong>ductedas part <str<strong>on</strong>g>of</str<strong>on</strong>g> special programmes such as <strong>the</strong>1957 Internati<strong>on</strong>al Geophysical Year (IGY);• The activities planned for <strong>the</strong> Internati<strong>on</strong>alPolar Year (IPY 2007/2008) include a majorstudy <str<strong>on</strong>g>of</str<strong>on</strong>g> capelin undertaken by Icel<strong>and</strong>(Ecosystem <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> Icel<strong>and</strong> Sea Project) <strong>and</strong>ecosystem studies in <strong>the</strong> vicinity <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> ArcticFr<strong>on</strong>t undertaken by Norway.32 <str<strong>on</strong>g>Impacts</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Climate</str<strong>on</strong>g> <str<strong>on</strong>g>Change</str<strong>on</strong>g> <strong>on</strong> <strong>the</strong> <strong>European</strong> <strong>Marine</strong> <strong>and</strong> <strong>Coastal</strong> Envir<strong>on</strong>ment


4.5 Nor<strong>the</strong>ast AtlanticDescripti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> areaThe Nor<strong>the</strong>ast Atlantic is referred to here as<strong>the</strong> ocean to <strong>the</strong> east <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> <strong>European</strong> shelf, to<strong>the</strong> north <str<strong>on</strong>g>of</str<strong>on</strong>g> a line from Gibraltar eastward to aline from <strong>the</strong> sou<strong>the</strong>rn tip <str<strong>on</strong>g>of</str<strong>on</strong>g> Greenl<strong>and</strong>, with<strong>the</strong> Nordic Seas north <str<strong>on</strong>g>of</str<strong>on</strong>g> 62°N as its nor<strong>the</strong>rnboundary. These are <strong>the</strong> oceanic waters withdepths mostly over 1,000 m, which are closest toEurope. Topographically, <strong>the</strong> regi<strong>on</strong> includes <strong>the</strong>north-south trending Mid-Atlantic Ridge with deepabyssal plains to ei<strong>the</strong>r side that extend downto 5,800 m in <strong>the</strong> sou<strong>the</strong>ast, <strong>and</strong> <strong>the</strong> RockallBank that lies west <str<strong>on</strong>g>of</str<strong>on</strong>g> Scotl<strong>and</strong>. Occasi<strong>on</strong>al seamounts dot this l<strong>and</strong>scape with <strong>the</strong> volcanicarchipelagos <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> Azores, Madeira <strong>and</strong> CanaryIsl<strong>and</strong>s to <strong>the</strong> south.This regi<strong>on</strong> plays a key role in <strong>the</strong> climate <str<strong>on</strong>g>of</str<strong>on</strong>g>Europe as heat is transferred to <strong>the</strong> atmospherefrom <strong>the</strong> warm extensi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> Gulf Stream, <strong>the</strong>nor<strong>the</strong>astward-directed North Atlantic Current(NAC). To <strong>the</strong> north <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> NAC, <strong>the</strong> circulati<strong>on</strong> isanticlockwise in <strong>the</strong> colder waters <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> subpolargyre <strong>and</strong> to <strong>the</strong> south <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> NAC clockwisein <strong>the</strong> warm subtropical gyre. Water with asubtropical comp<strong>on</strong>ent is also transferred from<strong>the</strong> south in a current that roughly follows <strong>the</strong>margin <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> <strong>European</strong> shelf. Saline water from<strong>the</strong> Mediterranean overflows into <strong>the</strong> Atlantic atmid-water depths (1,000 m), up to <strong>the</strong> southwestcoast <str<strong>on</strong>g>of</str<strong>on</strong>g> France.The heat transferred from <strong>the</strong> ocean to <strong>the</strong>atmosphere as <strong>the</strong> oceanic waters are mixedby <strong>the</strong> wind <strong>and</strong> cool down in <strong>the</strong>ir generallynor<strong>the</strong>astward movement helps ensure, toge<strong>the</strong>rwith nor<strong>the</strong>astward storm tracks, that NorthwestEurope is much warmer <strong>on</strong> an annual basisthan equivalent latitudes <strong>on</strong> <strong>the</strong> western side <str<strong>on</strong>g>of</str<strong>on</strong>g><strong>the</strong> Atlantic (see Secti<strong>on</strong> 1.3). During <strong>the</strong> lastPleistocene glaciati<strong>on</strong>, sea-ice extended as farsouth as 45°N with ice caps over <strong>the</strong> British Isles<strong>and</strong> much <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>tinental Europe. These colderc<strong>on</strong>diti<strong>on</strong>s are hypo<strong>the</strong>sised to have been generatedby a slowing down by <strong>the</strong> North Atlantic Meridi<strong>on</strong>alOverturning Circulati<strong>on</strong>, MOC (see Secti<strong>on</strong> 3.1).© SAHFOS <strong>and</strong> <strong>Marine</strong> InstituteThe Nor<strong>the</strong>ast Atlantic.<str<strong>on</strong>g>Impacts</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Climate</str<strong>on</strong>g> <str<strong>on</strong>g>Change</str<strong>on</strong>g> <strong>on</strong> <strong>the</strong> <strong>European</strong> <strong>Marine</strong> <strong>and</strong> <strong>Coastal</strong> Envir<strong>on</strong>ment 33


4. Regi<strong>on</strong>al resp<strong>on</strong>ses <strong>and</strong> impactsThe Nor<strong>the</strong>ast Atlantic plays a key role in thiscirculati<strong>on</strong> as <strong>the</strong> warmer water is pulled into <strong>the</strong>Arctic Ocean by deep c<strong>on</strong>vecti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> cold densewater. This flows out into <strong>the</strong> Atlantic through <strong>the</strong>Faeroe-Shetl<strong>and</strong> Channel flowing as a deep currentto join a similar outflow through <strong>the</strong> Denmark Straitbetween Icel<strong>and</strong> <strong>and</strong> Greenl<strong>and</strong> around <strong>the</strong> westernmargin <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> Labrador Sea <strong>and</strong> <strong>the</strong>nce south al<strong>on</strong>g<strong>the</strong> eastern margin <str<strong>on</strong>g>of</str<strong>on</strong>g> North America. The balancebetween <strong>the</strong>se surface <strong>and</strong> deep-water flowsis believed to be <strong>the</strong> key to large-scale climaticvariability in Northwest Europe.Signals <str<strong>on</strong>g>of</str<strong>on</strong>g> climate changeIt has been dem<strong>on</strong>strated that <strong>the</strong> sou<strong>the</strong>rly outflowthrough <strong>the</strong> Faeroe-Shetl<strong>and</strong> Channel decreased by20% in <strong>the</strong> last 50 years (Hansen et al. 2001) <strong>and</strong><strong>the</strong>re is evidence from satellite observati<strong>on</strong>s that <strong>the</strong>northward flow <str<strong>on</strong>g>of</str<strong>on</strong>g> surface waters has reduced since<strong>the</strong> 1970s (Häkkinen <strong>and</strong> Rhines 2004). While recentobservati<strong>on</strong>s indicate that <strong>the</strong> returned subsurfaceflow associated with <strong>the</strong> MOC has slowed down dueto reduced c<strong>on</strong>vective sinking, <strong>the</strong>re is no evidencethat <strong>the</strong> near surface flows have decreased (Brydenet al. 2005).In <strong>the</strong> Nor<strong>the</strong>ast Atlantic to <strong>the</strong> south <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> subpolargyre, sea-surface temperatures (SSTs) are highlypositively correlated with surface l<strong>and</strong> <strong>and</strong> seatemperatures averaged for <strong>the</strong> whole <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> Nor<strong>the</strong>rnHemisphere. In <strong>the</strong> subboreal gyre, SST is inverselycorrelated with <strong>the</strong> North Atlantic Oscillati<strong>on</strong> (NAO).Reduced circulati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> North Atlantic Current(NAC) <strong>and</strong> increased northward flow in <strong>the</strong> shelfedge current are correlated with negative winterNAO. This means that <strong>the</strong> strength <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> NAC <strong>and</strong><strong>the</strong> poleward flow al<strong>on</strong>g <strong>the</strong> c<strong>on</strong>tinental edge areout <str<strong>on</strong>g>of</str<strong>on</strong>g> phase (Pingree 2002, 2005).‘Over <strong>the</strong> last 40 years, warmer water groups <str<strong>on</strong>g>of</str<strong>on</strong>g> plankt<strong>on</strong>to <strong>the</strong> west <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> British Isles have moved north by1,000 km.’Beaugr<strong>and</strong> et al. (2002)1958-1981 1982-1999 2000-2002Data compiled by G. Beaugr<strong>and</strong>Mean number <str<strong>on</strong>g>of</str<strong>on</strong>g> species per CPR sampleL<strong>on</strong>g-term changes from 1960 to 1999 in <strong>the</strong> mean number <str<strong>on</strong>g>of</str<strong>on</strong>g> warm-temperate species such as Calanus helgol<strong>and</strong>icus.In <strong>the</strong> eastern North Atlantic Ocean <strong>and</strong> <strong>European</strong> shelf seas, str<strong>on</strong>g biogeographical shifts in all copepod assemblages haveoccurred with a northward extensi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> more than 10 latitude.The increase in sea temperatures especially in winterm<strong>on</strong>ths since <strong>the</strong> mid-1980s has had a markedeffect <strong>on</strong> plankt<strong>on</strong> populati<strong>on</strong> <strong>and</strong> higher trophiclevels. Both plankt<strong>on</strong> (Beaugr<strong>and</strong> et al. 2002) <strong>and</strong>mid-water to surface-water fish (Quero et al. 1998;Br<strong>and</strong>er et al. 2003) have shown similar northwardrange extensi<strong>on</strong>s. There is clear evidence that <strong>the</strong>levels <str<strong>on</strong>g>of</str<strong>on</strong>g> phytoplankt<strong>on</strong> c<strong>on</strong>centrati<strong>on</strong>s as measuredby chlorophyll have increased <strong>and</strong> that <strong>the</strong>ir seas<strong>on</strong>has leng<strong>the</strong>ned since <strong>the</strong> mid-1980s (Edwards etal. 2006).The number <str<strong>on</strong>g>of</str<strong>on</strong>g> Atlantic salm<strong>on</strong> returning to spawnin Nor<strong>the</strong>astern Europe has greatly declined; thisappears to be linked to climatic variability (Beaugr<strong>and</strong><strong>and</strong> Reid 2003). Most o<strong>the</strong>r exploited fish species in<strong>the</strong> regi<strong>on</strong>, including deepwater species, have alsounderg<strong>on</strong>e large reducti<strong>on</strong>s in stock size, an impactthat is believed to be due, in large measure, tooverfishing, but which may include an envir<strong>on</strong>mentalcomp<strong>on</strong>ent.Deeper water organisms are less likely to be impactedby climate change o<strong>the</strong>r than through changesto <strong>the</strong>ir food by <strong>the</strong> settling <str<strong>on</strong>g>of</str<strong>on</strong>g> particulate materialthrough <strong>the</strong> water column. Reefs <str<strong>on</strong>g>of</str<strong>on</strong>g> cold watercorals are currently threatened by human activitiessuch as fishing, <strong>and</strong> by ocean acidificati<strong>on</strong>.34 <str<strong>on</strong>g>Impacts</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Climate</str<strong>on</strong>g> <str<strong>on</strong>g>Change</str<strong>on</strong>g> <strong>on</strong> <strong>the</strong> <strong>European</strong> <strong>Marine</strong> <strong>and</strong> <strong>Coastal</strong> Envir<strong>on</strong>ment


Projecti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> climate changeThere is str<strong>on</strong>g evidence that changes seen in <strong>the</strong>North Atlantic are <strong>on</strong> a scale not previously recorded.The ocean is freshening both at <strong>the</strong> surface <strong>and</strong> atdepth (Curry et al. 2003; G<strong>on</strong>zález-Pola et al. 2005)<strong>and</strong> has underg<strong>on</strong>e a period <str<strong>on</strong>g>of</str<strong>on</strong>g> rapid warming(Levitus 2000). Associated changes have takenplace in <strong>the</strong> circulati<strong>on</strong> <strong>and</strong> in <strong>the</strong> formati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> deepwater, both in <strong>the</strong> Nordic Seas <strong>and</strong> in <strong>the</strong> LabradorSea.Taken toge<strong>the</strong>r, <strong>the</strong>se c<strong>on</strong>diti<strong>on</strong>s are likely to impact<strong>on</strong> <strong>the</strong> Thermohaline Circulati<strong>on</strong> (see Secti<strong>on</strong> 1.3)which could lead to a cooling <str<strong>on</strong>g>of</str<strong>on</strong>g> Europe’s climate.Modelling studies to date, however, suggest thatthis is unlikely to happen in <strong>the</strong> next 100 years <strong>and</strong>that <strong>the</strong> current trend <str<strong>on</strong>g>of</str<strong>on</strong>g> warming is likely to c<strong>on</strong>tinuewith increases <str<strong>on</strong>g>of</str<strong>on</strong>g> 2°C <strong>and</strong> more over this time frame.<str<strong>on</strong>g>Change</str<strong>on</strong>g>s <str<strong>on</strong>g>of</str<strong>on</strong>g> this scale (+ 2°C) over such a periodare n<strong>on</strong>e<strong>the</strong>less likely to have significant effects <strong>on</strong><strong>the</strong> circulati<strong>on</strong> <strong>and</strong> ecosystems <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> Nor<strong>the</strong>astAtlantic.Perhaps <strong>the</strong> greatest impact <str<strong>on</strong>g>of</str<strong>on</strong>g> climate changewithin <strong>the</strong> Atlantic will be <strong>on</strong> <strong>the</strong> biological pump(see Secti<strong>on</strong> 1.3).Current research <strong>and</strong> m<strong>on</strong>itoring programmes<strong>and</strong> projects in <strong>the</strong> Nor<strong>the</strong>ast Atlantic• The Internati<strong>on</strong>al Council for <strong>the</strong> Explorati<strong>on</strong><str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> Sea (ICES) is <strong>the</strong> intergovernmentalorganisati<strong>on</strong> that coordinates <strong>and</strong> promotesmarine research, with particular reference t<str<strong>on</strong>g>of</str<strong>on</strong>g>isheries management, in <strong>the</strong> North Atlantic<strong>and</strong> <strong>the</strong> adjacent seas such as <strong>the</strong> Baltic Sea<strong>and</strong> North Sea. ICES comprises 19 membercountries. The scientific advice preparedby <strong>the</strong> Advisory Committee <strong>on</strong> FisheriesManagement (ACFM) <str<strong>on</strong>g>of</str<strong>on</strong>g> ICES is examinedby <strong>the</strong> Scientific, Technical <strong>and</strong> Ec<strong>on</strong>omicCommittee for Fisheries, who c<strong>on</strong>sults withindustry <strong>and</strong> o<strong>the</strong>r parties before formulatingproposals for quotas, for discussi<strong>on</strong> at <strong>the</strong>annual December meetings <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> Council<str<strong>on</strong>g>of</str<strong>on</strong>g> Fisheries Ministers <strong>and</strong> for advice to <strong>the</strong>Comm<strong>on</strong> Fisheries Policy (CFP);• ICCAT (Internati<strong>on</strong>al Commissi<strong>on</strong> for <strong>the</strong>C<strong>on</strong>servati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Atlantic Tuna), NASCO (NorthAtlantic Salm<strong>on</strong> C<strong>on</strong>servati<strong>on</strong> Organisati<strong>on</strong>)<strong>and</strong> NEAFC (North East Atlantic FisheriesCommissi<strong>on</strong>) also provides inputs to <strong>the</strong> CFP;• As an open ocean regi<strong>on</strong>, m<strong>on</strong>itoring islargely restricted to periodic cruises byresearch vessels. An excepti<strong>on</strong> is <strong>the</strong> m<strong>on</strong>thlysampling by <strong>the</strong> 75 year-old C<strong>on</strong>tinuousPlankt<strong>on</strong> Recorder (CPR, coordinated bySAHFOS) surveying al<strong>on</strong>g st<strong>and</strong>ard tracks <str<strong>on</strong>g>of</str<strong>on</strong>g>ships <str<strong>on</strong>g>of</str<strong>on</strong>g> opportunity;• A number <str<strong>on</strong>g>of</str<strong>on</strong>g> strategic hydrographical secti<strong>on</strong>sare operated, e.g. across <strong>the</strong> Faeroe-Shetl<strong>and</strong> Channel <strong>and</strong> <strong>the</strong> Rockall Trough(Ellett Line) <strong>and</strong> an ocean-wide secti<strong>on</strong> isbeing m<strong>on</strong>itored just to <strong>the</strong> south al<strong>on</strong>g 26°N(Bryden et al. 2005);• A wide range <str<strong>on</strong>g>of</str<strong>on</strong>g> studies have been carriedout at <strong>the</strong> Stati<strong>on</strong> Papa site in <strong>the</strong> PorcupineSea Bight, formerly at Ocean Wea<strong>the</strong>r Shipstati<strong>on</strong>s India <strong>and</strong> Juliet;• L<strong>on</strong>g-term current meter studies are beingundertaken in <strong>the</strong> Denmark Strait <strong>and</strong> in<strong>the</strong> Faeroe-Shetl<strong>and</strong> Channel to measureoverflow waters;• Surveys <str<strong>on</strong>g>of</str<strong>on</strong>g> seabirds <strong>and</strong> cetaceans at seafrom ships <strong>and</strong> aircraft have been obtainedsince 1979 as part <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> <strong>European</strong> Seabirdat Sea (ESAS) programme, <strong>and</strong> are managedby <strong>the</strong> UK Joint Nature C<strong>on</strong>servati<strong>on</strong> Council(JNCC).<str<strong>on</strong>g>Impacts</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Climate</str<strong>on</strong>g> <str<strong>on</strong>g>Change</str<strong>on</strong>g> <strong>on</strong> <strong>the</strong> <strong>European</strong> <strong>Marine</strong> <strong>and</strong> <strong>Coastal</strong> Envir<strong>on</strong>ment 35


4. Regi<strong>on</strong>al resp<strong>on</strong>ses <strong>and</strong> impacts4.6 North SeaDescripti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> areaThe topography <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> North Sea can broadly bedescribed as a gradual slope from shallow (


The resp<strong>on</strong>se to <strong>the</strong>se events was at times regi<strong>on</strong>allydifferent. For example, a delay in <strong>the</strong> timing <str<strong>on</strong>g>of</str<strong>on</strong>g><strong>the</strong> spring phytoplankt<strong>on</strong> bloom occurred in <strong>the</strong>Wadden Sea after <strong>the</strong> mid-1980s, while over much<str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> open North Sea <strong>the</strong> bloom occurred earlier.At <strong>the</strong> same time <strong>the</strong> first appearance <str<strong>on</strong>g>of</str<strong>on</strong>g> juvenileshrimp in <strong>the</strong> Wadden Sea advanced, as did <strong>the</strong> firstappearance <str<strong>on</strong>g>of</str<strong>on</strong>g> fish larvae in <strong>the</strong> German Bight.Patterns <str<strong>on</strong>g>of</str<strong>on</strong>g> change in sea-surface temperature thatdistinguish <strong>the</strong>se two periods are str<strong>on</strong>gly correlatedwith two indices <str<strong>on</strong>g>of</str<strong>on</strong>g> climatic variability: The Nor<strong>the</strong>rnHemisphere Temperature (NHT) <strong>and</strong> <strong>the</strong> NorthAtlantic Oscillati<strong>on</strong> (NAO). Ecological resp<strong>on</strong>ses to<strong>the</strong>se signals in <strong>the</strong> North Sea are wide ranging <strong>and</strong>encompass changes in <strong>the</strong> timing <str<strong>on</strong>g>of</str<strong>on</strong>g> reproducti<strong>on</strong>,<strong>the</strong> length <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> growing seas<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> phytoplankt<strong>on</strong>,<strong>the</strong> timing <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> spring migrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> birds, aswell as <strong>the</strong> populati<strong>on</strong> dynamics, abundance,competiti<strong>on</strong> <strong>and</strong> predator-prey relati<strong>on</strong>ships, <strong>and</strong><strong>the</strong> geographical distributi<strong>on</strong> <strong>and</strong> abundance <str<strong>on</strong>g>of</str<strong>on</strong>g>populati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> many fish species (e.g. Beaugr<strong>and</strong><strong>and</strong> Reid 2003; Br<strong>and</strong>er et al. 2003; Drinkwateret al. 2003; Perry et al. 2005). While <strong>the</strong>se indices<strong>on</strong>ly partly explain observed climatic variability, <strong>the</strong>ystr<strong>on</strong>gly impact <strong>on</strong> <strong>the</strong> North Sea <strong>and</strong>, at least in<strong>the</strong> case <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> NHT, are linked to global warming<strong>and</strong> <strong>the</strong> increase in atmospheric level <str<strong>on</strong>g>of</str<strong>on</strong>g> greenhousegases (IPCC 2001c).In terms <str<strong>on</strong>g>of</str<strong>on</strong>g> phenology, seas<strong>on</strong>al changes in resp<strong>on</strong>seto warming in <strong>the</strong> timing <str<strong>on</strong>g>of</str<strong>on</strong>g> biological events fordifferent plankt<strong>on</strong>ic functi<strong>on</strong>al groups are leadingto a mismatch in <strong>the</strong> timing between phytoplankt<strong>on</strong><strong>and</strong> zooplankt<strong>on</strong>, between zooplankt<strong>on</strong> <strong>and</strong> fish,between bivalve larvae <strong>and</strong> shrimp, <strong>and</strong> betweenfish <strong>and</strong> seabirds (e.g. Beaugr<strong>and</strong> <strong>and</strong> Reid 2003;Philippart et al. 2003; Edwards <strong>and</strong> Richards<strong>on</strong>2004; Wiltshire <strong>and</strong> Manley 2004). In <strong>the</strong> past 40years, <strong>the</strong> warming <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> North Sea has affectedcod recruitment via changes at <strong>the</strong> base <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> foodweb (Beaugr<strong>and</strong> et al. 2003).‘Many warm-water rocky shore snails <strong>and</strong> barnaclesformerly absent or just extending into <strong>the</strong> North Seahave spread south al<strong>on</strong>g <strong>the</strong> North Sea coast <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong>UK from <strong>the</strong> tip <str<strong>on</strong>g>of</str<strong>on</strong>g> Scotl<strong>and</strong>.’Mieszkowska et al. (2005)Hawkins <strong>and</strong> Burrows (pers<strong>on</strong>al communicati<strong>on</strong>)Nor<strong>the</strong>rly range extensi<strong>on</strong>s or changes in <strong>the</strong>geographical distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> plankt<strong>on</strong> <strong>and</strong> fishpopulati<strong>on</strong>s are associated with <strong>the</strong> above changes<strong>and</strong> have been related to regi<strong>on</strong>al climate warming(Beaugr<strong>and</strong> et al. 2003; Br<strong>and</strong>er et al. 2003; Perryet al. 2005). Warmer water species <str<strong>on</strong>g>of</str<strong>on</strong>g> plankt<strong>on</strong>,for example, have extended <strong>the</strong>ir range northwardby 1,000 km in <strong>on</strong>ly 40 years <strong>and</strong> colder specieshave retreated out <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> North Sea (Beaugr<strong>and</strong>et al. 2003). Sardines <strong>and</strong> anchovies have movednorthward in <strong>the</strong> North Sea <strong>and</strong> red mullet <strong>and</strong>bass have extended <strong>the</strong>ir ranges north to westernNorway (e.g. Br<strong>and</strong>er et al. 2003).Beaugr<strong>and</strong>, unpublishedRelati<strong>on</strong>ship between food supply (indexed as plankt<strong>on</strong> change, Beaugr<strong>and</strong> et al. 2003) <strong>and</strong> total biomass <str<strong>on</strong>g>of</str<strong>on</strong>g> cod for <strong>the</strong> North Sea for <strong>the</strong>period 1958-1999. Note that changes in food supply had an effect <strong>on</strong> cod biomass with <strong>on</strong>e- to two-year lags.<str<strong>on</strong>g>Impacts</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Climate</str<strong>on</strong>g> <str<strong>on</strong>g>Change</str<strong>on</strong>g> <strong>on</strong> <strong>the</strong> <strong>European</strong> <strong>Marine</strong> <strong>and</strong> <strong>Coastal</strong> Envir<strong>on</strong>ment 37


4. Regi<strong>on</strong>al resp<strong>on</strong>ses <strong>and</strong> impactsProjecti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> climate changeRegi<strong>on</strong>al climate change scenarios predict anincrease in air temperature <str<strong>on</strong>g>of</str<strong>on</strong>g> 2-3.5°C by <strong>the</strong> 2080s,with high summer temperatures becoming morefrequent <strong>and</strong> very cold winters becoming increasinglyrare (e.g. Hulme et al. 2002; van den Hurk et al.2006). Water temperatures will also increase, butnot as rapidly as temperature over l<strong>and</strong>. Sea-level isexpected to rise by 35-84 cm at 2100 compared to1990 (van den Hurk et al. 2006).Observed correlati<strong>on</strong>s str<strong>on</strong>gly suggest that <strong>the</strong>North Sea ecosystem is vulnerable to variati<strong>on</strong> inclimatic c<strong>on</strong>diti<strong>on</strong>s in general, <strong>and</strong> to anomaliesin temperature <strong>and</strong> hydrodynamics in particular.Several processes within <strong>the</strong> North Sea foodweb appear to rely <strong>on</strong> temperature as a trigger,<strong>and</strong> fur<strong>the</strong>r increases in temperature may disrupt<strong>the</strong> c<strong>on</strong>nectedness between species potentiallyleading to changes in community structures <strong>and</strong>possibly local extincti<strong>on</strong>s. For many marine species,including commercially caught fish, <strong>the</strong> number <str<strong>on</strong>g>of</str<strong>on</strong>g>recruits mainly determines <strong>the</strong> year-to-year variati<strong>on</strong>in <strong>the</strong> size <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> adult stocks. If <strong>the</strong> annual seasurfacetemperature increases fur<strong>the</strong>r, efforts tomaintain previous fishery yields from reducedstocks (due to northward movement <strong>and</strong> loweredrecruitment levels) have <strong>the</strong> potential to significantlyimpact fisheries <strong>and</strong> have str<strong>on</strong>g effects <strong>on</strong> <strong>the</strong> localecosystem.Because <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> str<strong>on</strong>g tidal regime <strong>and</strong> <strong>the</strong> effects<str<strong>on</strong>g>of</str<strong>on</strong>g> storm surges many <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> coastal regi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong>North Sea, especially in <strong>the</strong> south, are particularlysusceptible to rising sea levels <strong>and</strong> to an increasein <strong>the</strong> frequency <strong>and</strong> severity <str<strong>on</strong>g>of</str<strong>on</strong>g> storms. If existingnatural <strong>and</strong> human-made sea defences arebreached, flooding could be extensive since parts<str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> sou<strong>the</strong>rn UK <strong>and</strong> <strong>the</strong> Ne<strong>the</strong>rl<strong>and</strong>s are slowlysinking due to gradual settling. Greater defence byartificial coastal defences in order to minimise <strong>the</strong> risk<str<strong>on</strong>g>of</str<strong>on</strong>g> future flooding <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong>se coastlines will lead to loss<str<strong>on</strong>g>of</str<strong>on</strong>g> coastal habitats (IPCC 1990), <strong>and</strong> may becomefar more difficult in <strong>the</strong> future, threatening majorcoastal cities such as L<strong>on</strong>d<strong>on</strong> <strong>and</strong> Amsterdam.Current research <strong>and</strong> m<strong>on</strong>itoring programmes<strong>and</strong> projects in <strong>the</strong> North sea• Most countries around <strong>the</strong> North Seaundertake meteorological <strong>and</strong> hydrodynamicm<strong>on</strong>itoring for nati<strong>on</strong>al purposes, which in anumber <str<strong>on</strong>g>of</str<strong>on</strong>g> cases is linked to <strong>the</strong> Global OceanObserving System (GOOS) <strong>and</strong> EuroGOOS;• The German Federal Maritime <strong>and</strong>Hydrographic Agency produces weeklymaps <str<strong>on</strong>g>of</str<strong>on</strong>g> sea-surface temperature;• The Internati<strong>on</strong>al Council for <strong>the</strong> Explorati<strong>on</strong><str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> Sea (ICES) maintains a bank <str<strong>on</strong>g>of</str<strong>on</strong>g>oceanographic data, dating back to <strong>the</strong> early1900s <strong>and</strong> coordinates a suite <str<strong>on</strong>g>of</str<strong>on</strong>g> annual <strong>and</strong>triennial fish surveys;• North Sea plankt<strong>on</strong> has been m<strong>on</strong>itored by<strong>the</strong> C<strong>on</strong>tinuous Plankt<strong>on</strong> Recorder (CPR)coordinated by SAHFOS since 1931;• Several marine institutes (e.g. Alfred WegenerInstitute (AWI), Centre for Envir<strong>on</strong>ment,Fisheries <strong>and</strong> Aquaculture Science (CEFAS),Fisheries Research Services (FRS), RoyalNe<strong>the</strong>rl<strong>and</strong>s Institute for Sea Research(NIOZ), Universities <str<strong>on</strong>g>of</str<strong>on</strong>g> Lille <strong>and</strong> Newcastle)undertake local l<strong>on</strong>g-term (>30 yrs) fieldobservati<strong>on</strong>s <strong>on</strong> envir<strong>on</strong>mental parameters<strong>and</strong> marine organisms. The UK observati<strong>on</strong>sare coordinated via <strong>the</strong> <strong>Marine</strong> Envir<strong>on</strong>mental<str<strong>on</strong>g>Change</str<strong>on</strong>g> Network (MECN);• Some <strong>European</strong> initiative network m<strong>on</strong>itoring<strong>and</strong> research efforts <strong>on</strong> effects <str<strong>on</strong>g>of</str<strong>on</strong>g> climatechange <strong>on</strong> <strong>the</strong> North Sea. These networksinclude implementati<strong>on</strong> <strong>and</strong> networking <str<strong>on</strong>g>of</str<strong>on</strong>g>large-scale l<strong>on</strong>g-term <strong>Marine</strong> Biodiversityresearch in Europe (BIOMARE), <strong>Marine</strong>Genomics Europe (MGE), <strong>and</strong> <strong>Marine</strong>Biodiversity <strong>and</strong> Ecosystem Functi<strong>on</strong>ing(MarBEF). MarBEF has developed a <strong>European</strong>database <str<strong>on</strong>g>of</str<strong>on</strong>g> biogeographic informati<strong>on</strong> <strong>on</strong>ocean envir<strong>on</strong>mental parameters <strong>and</strong> marineorganisms (EurOBIS) <strong>and</strong> hosts <strong>the</strong> <strong>European</strong>Register <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>Marine</strong> Species (ERMS).38 <str<strong>on</strong>g>Impacts</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Climate</str<strong>on</strong>g> <str<strong>on</strong>g>Change</str<strong>on</strong>g> <strong>on</strong> <strong>the</strong> <strong>European</strong> <strong>Marine</strong> <strong>and</strong> <strong>Coastal</strong> Envir<strong>on</strong>ment


4.7 Baltic SeaDescripti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> areaThe Baltic Sea is a semi-enclosed basin with atotal area <str<strong>on</strong>g>of</str<strong>on</strong>g> 415,000 km 2 that includes its narrowentrance, <strong>the</strong> Kattegat. The catchment area is fourtimes larger than <strong>the</strong> sea itself <strong>and</strong> is populatedby approximately 85 milli<strong>on</strong> inhabitants. Because<str<strong>on</strong>g>of</str<strong>on</strong>g> its locati<strong>on</strong> with respect to <strong>the</strong> expansi<strong>on</strong>s <strong>and</strong>c<strong>on</strong>tracti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> Sc<strong>and</strong>inavian ice sheet, <strong>the</strong>Baltic Sea has never been in a steady state since itsformati<strong>on</strong>. Postglacial processes have shaped <strong>the</strong>Baltic’s coastline, topography, basic chemistry <strong>and</strong>sedimentary envir<strong>on</strong>ment <strong>on</strong> millennium scales.<str<strong>on</strong>g>Climate</str<strong>on</strong>g> variability acts <strong>on</strong> centennial <strong>and</strong> decadalscales <strong>and</strong>, particularly in <strong>the</strong> last 150 years,overlaps with human activity in <strong>the</strong> drainage basin<strong>and</strong> <strong>the</strong> coastal z<strong>on</strong>e have led to c<strong>on</strong>siderablechange in <strong>the</strong> biogeochemistry <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> Baltic Seabasin. The Baltic Sea is characterised by a closedcirculati<strong>on</strong> in <strong>the</strong> central basin, low salinities, <strong>and</strong>by str<strong>on</strong>g horiz<strong>on</strong>tal gradients both in salinity <strong>and</strong> inecosystem variables resulting in low biodiversity.© SAHFOS <strong>and</strong> <strong>Marine</strong> InstituteThe Baltic Sea.<str<strong>on</strong>g>Impacts</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Climate</str<strong>on</strong>g> <str<strong>on</strong>g>Change</str<strong>on</strong>g> <strong>on</strong> <strong>the</strong> <strong>European</strong> <strong>Marine</strong> <strong>and</strong> <strong>Coastal</strong> Envir<strong>on</strong>ment 39


4. Regi<strong>on</strong>al resp<strong>on</strong>ses <strong>and</strong> impactsThe interannual variability <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> Baltic Sea ismodulated by <strong>the</strong> North Atlantic Oscillati<strong>on</strong> (NAO)<strong>and</strong> by <strong>the</strong> inflow <str<strong>on</strong>g>of</str<strong>on</strong>g> Atlantic water from <strong>the</strong> NorthSea into this area, referred to as major Baltic inflows.These inflows represent <strong>the</strong> <strong>on</strong>ly mechanism bywhich <strong>the</strong> Baltic deep water is displaced <strong>and</strong>renewed to a significant degree with relatively highsalinity (17-25 ppm) <strong>and</strong> oxygenated water. In <strong>the</strong>l<strong>on</strong>ger lasting stagnati<strong>on</strong> periods between inflowevents, all <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> oxygen in <strong>the</strong> deep waters is usedup, resulting in anoxic c<strong>on</strong>diti<strong>on</strong>s.Major Baltic inflows (blue bars) between 1880 <strong>and</strong> 2005 <strong>and</strong> <strong>the</strong>ir seas<strong>on</strong>al distributi<strong>on</strong> (upperright), shown in terms <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong>ir relative intensity after Matthäus <strong>and</strong> Frank (1992) <strong>and</strong> <strong>the</strong> totalamount <str<strong>on</strong>g>of</str<strong>on</strong>g> river run<str<strong>on</strong>g>of</str<strong>on</strong>g>f (red) after Bergström <strong>and</strong> Carlss<strong>on</strong> (1994). The time series have beensupplemented <strong>and</strong> updated by Matthäus (2006).Signals <str<strong>on</strong>g>of</str<strong>on</strong>g> climate changesAnalysis <str<strong>on</strong>g>of</str<strong>on</strong>g> a cumulative Baltic winter index indicatesthat during <strong>the</strong> last 350 years, six regime shifts haveoccurred (Hagen <strong>and</strong> Feistel 2005). The Baltic Seaecosystem appeared to be str<strong>on</strong>gly influenced by<strong>the</strong> interplay <str<strong>on</strong>g>of</str<strong>on</strong>g> n<strong>on</strong>-periodic shifts from lake to sea<strong>and</strong> back during <strong>the</strong> late quaternary period (Dippneret al. 2006). This in turn resulted in changesbetween marine <strong>and</strong> limnic (freshwater) speciescompositi<strong>on</strong>, shifts from cold water to warm waterspecies <strong>and</strong> back, changes between oxygen-rich<strong>and</strong> oxygen-poor c<strong>on</strong>diti<strong>on</strong>s in <strong>the</strong> deep basins, <strong>and</strong><strong>the</strong> occasi<strong>on</strong>al intrusi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> n<strong>on</strong>-indigenous species.‘In <strong>the</strong> Baltic Sea, <strong>the</strong> anthropogenic influence <str<strong>on</strong>g>of</str<strong>on</strong>g>eutrophicati<strong>on</strong> in near coastal areas is overwhelming<strong>the</strong> signal <str<strong>on</strong>g>of</str<strong>on</strong>g> climate variability.’Dippner <strong>and</strong> Ikauniece (2001)Projecti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> climate change<str<strong>on</strong>g>Climate</str<strong>on</strong>g> change simulati<strong>on</strong>s with different regi<strong>on</strong>alclimate models, hydrological models <strong>and</strong> circulati<strong>on</strong>models for a number <str<strong>on</strong>g>of</str<strong>on</strong>g> greenhouse gas emissi<strong>on</strong>scenarios give variable results for changes in Balticclimate variables. N<strong>on</strong>e<strong>the</strong>less, some general trendsare projected (Graham et al. 2006). All scenarios <strong>and</strong>all climate models predict temperature increasesduring all seas<strong>on</strong>s with a mean warming <str<strong>on</strong>g>of</str<strong>on</strong>g> 3-5ºCin <strong>the</strong> atmosphere <strong>and</strong> 2-4°C in <strong>the</strong> sea-surfacetemperature in <strong>the</strong> Baltic by <strong>the</strong> end <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> 21stcentury. One c<strong>on</strong>sequence is a decrease in sea-iceextent by 50-80% over <strong>the</strong> same period. Projectedchanges in precipitati<strong>on</strong> are variable. Winters willprobably be wetter <strong>and</strong> in sou<strong>the</strong>rn parts <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong>regi<strong>on</strong>, summers are predicted to be drier undermany climate scenarios. As a c<strong>on</strong>sequence, riverrun<str<strong>on</strong>g>of</str<strong>on</strong>g>f during winter is expected to increase by asmuch as 50%, with <strong>the</strong> opposite pattern occurringin summer.Each <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> predicted changes has a differentc<strong>on</strong>sequence for <strong>the</strong> ecosystem. Uncertaintyis created by <strong>the</strong> fact that while much is knowabout <strong>the</strong> c<strong>on</strong>sequences <str<strong>on</strong>g>of</str<strong>on</strong>g> change in salinity ortemperature, little is known about <strong>the</strong> c<strong>on</strong>sequences<str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong>ir interacti<strong>on</strong>s or <str<strong>on</strong>g>of</str<strong>on</strong>g> combined changes.An increase in temperature prevents late winterc<strong>on</strong>vecti<strong>on</strong>, which is essential for nutrient supplyin <strong>the</strong> upper layer. Higher temperatures duringwinter may result in increased metabolic rates40 <str<strong>on</strong>g>Impacts</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Climate</str<strong>on</strong>g> <str<strong>on</strong>g>Change</str<strong>on</strong>g> <strong>on</strong> <strong>the</strong> <strong>European</strong> <strong>Marine</strong> <strong>and</strong> <strong>Coastal</strong> Envir<strong>on</strong>ment


for bacteria <strong>and</strong> a shift in species compositi<strong>on</strong>from cold to warm water species, whereas highertemperatures in summer may enhance blooms<str<strong>on</strong>g>of</str<strong>on</strong>g> cyanobacteria blooms (that is bacteria thatobtain <strong>the</strong>ir energy via photosyn<strong>the</strong>sis). Anincrease in precipitati<strong>on</strong> will result in higher riverrun<str<strong>on</strong>g>of</str<strong>on</strong>g>f, reduced salinity, higher nutrient inputby rivers <strong>and</strong> enhanced eutrophicati<strong>on</strong> in nearcoastal areas with higher phytoplankt<strong>on</strong> <strong>and</strong>benthic biomass (Dippner <strong>and</strong> Ikauniece 2001).Projecti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> climate change do not indicatea robust signal with respect to windiness.Never<strong>the</strong>less, possible increasing windiness duringlate winter would lead to str<strong>on</strong>ger vertical mixing with<strong>the</strong> c<strong>on</strong>sequence that nutrients would be mixed into<strong>the</strong> euphotic z<strong>on</strong>e <strong>and</strong> would be directly availablefor primary producti<strong>on</strong>. This process would providehigher than normal phosphate c<strong>on</strong>centrati<strong>on</strong>s inearly spring which would be used by cyanobacterialater in summer (Janssen et al. 2004). An increasein windiness might also cause remobilisati<strong>on</strong><str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>taminants from bottom sediment. Lowersalinities would cause osmotic stress for phyto- <strong>and</strong>zooplankt<strong>on</strong> <strong>and</strong> may result in a shift in speciescompositi<strong>on</strong> from marine to limnic species. Such ashift would influence <strong>the</strong> food quality <strong>and</strong> <strong>the</strong>refore<strong>the</strong> growth rate <strong>and</strong> fat c<strong>on</strong>tent <str<strong>on</strong>g>of</str<strong>on</strong>g> fish.Current research <strong>and</strong> m<strong>on</strong>itoring programmes<strong>and</strong> projects• Nati<strong>on</strong>al Baltic Sea m<strong>on</strong>itoring programmes<strong>and</strong> projects <str<strong>on</strong>g>of</str<strong>on</strong>g> physical, chemical orbiological properties are co-ordinated byHELCOM;• Data collecti<strong>on</strong> <strong>on</strong> fish <strong>and</strong> fisheries is coordinatedby ICES;• hIn <strong>the</strong> framework <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> BONUS ERA-NETproject (networking <str<strong>on</strong>g>of</str<strong>on</strong>g> funding agencies– funded by <strong>the</strong> <strong>European</strong> Uni<strong>on</strong> SixthFramework Programme), <strong>the</strong> BONUS-169 Baltic Sea Science Plan has beendeveloped to create prudent, l<strong>on</strong>g-term,holistic multidisciplinary soluti<strong>on</strong>s involvingsustainable use <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> sea by: i) underst<strong>and</strong>ing<strong>and</strong> quantifying <strong>the</strong> role <str<strong>on</strong>g>of</str<strong>on</strong>g> climate change<strong>and</strong> variability <strong>and</strong> its implicati<strong>on</strong>s for <strong>the</strong>dynamics <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> regi<strong>on</strong>’s ecosystem; ii)underst<strong>and</strong>ing <strong>the</strong> physical, chemical <strong>and</strong>biological functi<strong>on</strong>ing <str<strong>on</strong>g>of</str<strong>on</strong>g> marine ecosystem<strong>and</strong> underst<strong>and</strong>ing <strong>and</strong> quantifying humanimpacts; <strong>and</strong> iii) developing <strong>the</strong> scientificbasis for sustainable use <strong>and</strong> protecti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><strong>the</strong> marine envir<strong>on</strong>ment <strong>and</strong> its associatedbiodiversity.Decreasing salinity in combinati<strong>on</strong> with oxygenpoor<strong>and</strong> oxygen-depleted c<strong>on</strong>diti<strong>on</strong>s due tocyanobacteria blooms would result in benthic desertsin <strong>the</strong> deep basins <strong>and</strong> poor survival c<strong>on</strong>diti<strong>on</strong>s forcod eggs. In c<strong>on</strong>trast, higher temperatures wouldlead to an increase in <strong>the</strong> carrying capacity for spratstocks <strong>and</strong> likely alter food web structure (Möllmannet al. 2005). Reducing salinities would result indistributi<strong>on</strong>al changes <strong>and</strong> favour <strong>the</strong> invasi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g>n<strong>on</strong>-indigenous species.<str<strong>on</strong>g>Impacts</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Climate</str<strong>on</strong>g> <str<strong>on</strong>g>Change</str<strong>on</strong>g> <strong>on</strong> <strong>the</strong> <strong>European</strong> <strong>Marine</strong> <strong>and</strong> <strong>Coastal</strong> Envir<strong>on</strong>ment 41


4. Regi<strong>on</strong>al resp<strong>on</strong>ses <strong>and</strong> impacts4.8 Celtic-Biscay shelfDescripti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> areaThe regi<strong>on</strong> c<strong>on</strong>sidered as <strong>the</strong> Celtic-Biscay Shelfincludes <strong>the</strong> coastal <strong>and</strong> shelf seas <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> nor<strong>the</strong>rnBay <str<strong>on</strong>g>of</str<strong>on</strong>g> Biscay, <strong>the</strong> Celtic Sea, English Channel <strong>and</strong><strong>the</strong> Irish Sea, plus <strong>the</strong> coastal seas to <strong>the</strong> west <str<strong>on</strong>g>of</str<strong>on</strong>g>Scotl<strong>and</strong> <strong>and</strong> Irel<strong>and</strong>. This regi<strong>on</strong> has a complextopography, with patterns <str<strong>on</strong>g>of</str<strong>on</strong>g> water movementprimarily from <strong>the</strong> south <strong>and</strong> west penetrating into<strong>the</strong> English Channel <strong>and</strong> <strong>the</strong> Irish Sea. Water alsoleaves <strong>the</strong> regi<strong>on</strong> to enter <strong>the</strong> North Sea from <strong>the</strong>south <strong>and</strong> west via <strong>the</strong> English Channel <strong>and</strong> from<strong>the</strong> north <strong>and</strong> west around Scotl<strong>and</strong>. The deeperwater <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> Bay <str<strong>on</strong>g>of</str<strong>on</strong>g> Biscay is best c<strong>on</strong>sidered aspart <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> wider Nor<strong>the</strong>ast Atlantic.The water masses in <strong>the</strong>se coast <strong>and</strong> shelf regi<strong>on</strong>sare primarily <str<strong>on</strong>g>of</str<strong>on</strong>g> North Atlantic origin but with someinfluence from Mediterranean water in <strong>the</strong> Bay <str<strong>on</strong>g>of</str<strong>on</strong>g>Biscay. In NAO negative years (Navidad years), warmwater enters <strong>the</strong> Bay <str<strong>on</strong>g>of</str<strong>on</strong>g> Biscay <strong>and</strong> can propagatenorthwards west <str<strong>on</strong>g>of</str<strong>on</strong>g> Irel<strong>and</strong> (Pingree <strong>and</strong> Le Cann1989; Pingree 2002).The Celtic Sea <strong>and</strong> western English Channel stratifiesstr<strong>on</strong>gly, leading to pr<strong>on</strong>ounced surface fr<strong>on</strong>ts. Much<str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> Irish Sea is tidally mixed except for a stratifiedpatch west <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> Isle <str<strong>on</strong>g>of</str<strong>on</strong>g> Man bound to <strong>the</strong> north<strong>and</strong> south by fr<strong>on</strong>ts. The English Channel becomesless stratified from west to east; <strong>the</strong> eastern basin istidally mixed (Pingree <strong>and</strong> Griffiths 1978).The Celtic-Biscay Sea regi<strong>on</strong> including <strong>the</strong> EnglishChannel <strong>and</strong> Irish Sea is known to sit astride abiogeographic boundary z<strong>on</strong>e (Forbes 1958). Manyboreal <strong>and</strong> cold temperature species reach <strong>the</strong>irsou<strong>the</strong>rn limits in this area (e.g. kelp, herring, cod),while warm-temperate lusitanean species existat <strong>the</strong>ir nor<strong>the</strong>rn limit (e.g. sardines, breams, redmullet, Cystoceira). Thus, this regi<strong>on</strong> is particularlysensitive to climate change in both <str<strong>on</strong>g>of</str<strong>on</strong>g>fshore <strong>and</strong>inshore waters.© SAHFOS <strong>and</strong> <strong>Marine</strong> InstituteThe Celtic-Biscay shelf.42 <str<strong>on</strong>g>Impacts</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Climate</str<strong>on</strong>g> <str<strong>on</strong>g>Change</str<strong>on</strong>g> <strong>on</strong> <strong>the</strong> <strong>European</strong> <strong>Marine</strong> <strong>and</strong> <strong>Coastal</strong> Envir<strong>on</strong>ment


Signals <str<strong>on</strong>g>of</str<strong>on</strong>g> climate changeObservati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> sea-surface temperatures havebeen made in <strong>the</strong> Celtic-Biscay regi<strong>on</strong> since <strong>the</strong>middle <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> 19th century. Sea-surface temperaturesshow that, following a warm period in <strong>the</strong> 1880s,temperatures cooled until <strong>the</strong> early 20th centurybefore increasing from around 1920, <strong>and</strong> remainedwarm until <strong>the</strong> 1960s. A cooler period followed <strong>the</strong>extremely cold winter <str<strong>on</strong>g>of</str<strong>on</strong>g> 1962/1963 <strong>and</strong> c<strong>on</strong>tinuedwell into <strong>the</strong> 1980s. Since <strong>the</strong>n, accelerated warminghas been apparent (see Southward et al. 2005 forfur<strong>the</strong>r details). Similar changes have been seen in<strong>the</strong> Bay <str<strong>on</strong>g>of</str<strong>on</strong>g> Biscay (Planque et al. 2003; Blanchard<strong>and</strong> V<strong>and</strong>ermeirsch 2005), <strong>the</strong> Irish Sea (Evans et al.2003) <strong>and</strong> <strong>the</strong> eastern English Channel (Woehrlinget al. 2005).The CPR survey clearly shows that in <strong>the</strong> 1960swarm temperate zooplankt<strong>on</strong> species just reached<strong>the</strong> regi<strong>on</strong>. Since <strong>the</strong> late 1980s <strong>the</strong>se species havespread northwards encompassing much <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> westcoast <str<strong>on</strong>g>of</str<strong>on</strong>g> France, Britain <strong>and</strong> Irel<strong>and</strong> (Beaugr<strong>and</strong> etal. 2002). A l<strong>on</strong>ger term picture <str<strong>on</strong>g>of</str<strong>on</strong>g> changes in thisregi<strong>on</strong> can be derived from <strong>the</strong> time-series collectedby <strong>the</strong> CPR. Rapid warming occurring from <strong>the</strong> late1980s <strong>on</strong>wards can be put into <strong>the</strong> c<strong>on</strong>text <str<strong>on</strong>g>of</str<strong>on</strong>g> pastchanges including warming up to around 1960.L<strong>on</strong>g-term changes in nor<strong>the</strong>rn (Semibalanus balanoides) <strong>and</strong> sou<strong>the</strong>rn (Chthamalus spp) barnaclesaveraged for several shores at different submersi<strong>on</strong> levels (HWN: High Water Neap; MTL: Mean TidalLow; LWN: Low Water Neap) <strong>on</strong> <strong>the</strong> south coast <str<strong>on</strong>g>of</str<strong>on</strong>g> Dev<strong>on</strong> <strong>and</strong> Cornwall (© Southward 1991; Southwardet al. 1995; Southward <strong>and</strong> Hawkins, unpublished).During <strong>the</strong> warming in <strong>the</strong> 1930s <strong>the</strong> herring fisheryin <strong>the</strong> English Channel collapsed, associated withmuch change in <strong>the</strong> rest <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> ecosystem, indicatingthat overfishing was probably not <strong>the</strong> main underlyingcause <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> decline <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> herring populati<strong>on</strong>.Cold temperate herring were replaced by warmerwater pilchards (sardines). These ecosystem-widechanges were subsequently ascribed to climatechange (Southward 1980). Historical researchhas since shown that such switches in speciespopulati<strong>on</strong>s were comm<strong>on</strong>place <strong>and</strong> have occurredat least since <strong>the</strong> 13th century during alternatingcold or warm periods (Southward et al. 1988).In <strong>the</strong> 1960s <strong>the</strong>re was a switch back to colderc<strong>on</strong>diti<strong>on</strong>s <strong>and</strong> <strong>the</strong> plankt<strong>on</strong>ic communities returnedto <strong>the</strong>ir previous colder water characteristics.Populati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> pilchards declined again. Herringpopulati<strong>on</strong>s did not recover – perhaps because atthat time in <strong>the</strong> 1970s stocks were at historically lowlevels in <strong>the</strong> eastern English Channel <strong>and</strong> North Sea<strong>and</strong> recol<strong>on</strong>isati<strong>on</strong> was not possible (Hawkins et al.2003). Sardines are now abundant again <strong>and</strong> <strong>the</strong>warmer water chaetognath Sagitta setosa with o<strong>the</strong>rsou<strong>the</strong>rn species predominates in <strong>the</strong> plankt<strong>on</strong>.In additi<strong>on</strong> to changes in <strong>the</strong> plankt<strong>on</strong> <strong>and</strong> in pelagic<strong>and</strong> demersal fish assemblages, parallel changeswere described <strong>on</strong> rocky shores, using barnaclesas a sensitive indicator <str<strong>on</strong>g>of</str<strong>on</strong>g> wider changes in marinelife (Southward et al. 1995, 2005). These showedswitches between warm water barnacles in <strong>the</strong>1950s to greater dominance by <strong>the</strong> cold waterbarnacle Semibalanus balanoides in <strong>the</strong> 1960s <strong>and</strong>1970s. On rocky shores warm water barnacles nowexceed <strong>the</strong> levels found in <strong>the</strong> 1950s <strong>and</strong> sou<strong>the</strong>rnspecies <str<strong>on</strong>g>of</str<strong>on</strong>g> gastropods <strong>and</strong> limpets have increasedin abundance <strong>and</strong> recovered ground lost during <strong>the</strong>cold winter <str<strong>on</strong>g>of</str<strong>on</strong>g> 1962/1963. In some cases rangeextensi<strong>on</strong>s have occurred bey<strong>on</strong>d <strong>the</strong> limits <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong>1950s. This is particularly <strong>the</strong> case in <strong>the</strong> easternEnglish Channel <strong>and</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g>f <strong>the</strong> northwest <str<strong>on</strong>g>of</str<strong>on</strong>g> Scotl<strong>and</strong>where several species have penetrated far bey<strong>on</strong>d<strong>the</strong>ir previous limits (Mieszkowska et al. 2005).<str<strong>on</strong>g>Impacts</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Climate</str<strong>on</strong>g> <str<strong>on</strong>g>Change</str<strong>on</strong>g> <strong>on</strong> <strong>the</strong> <strong>European</strong> <strong>Marine</strong> <strong>and</strong> <strong>Coastal</strong> Envir<strong>on</strong>ment 43


4. Regi<strong>on</strong>al resp<strong>on</strong>ses <strong>and</strong> impactsProjecti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> climate changeRapid resp<strong>on</strong>ses are likely with accelerating climatechange in this biogeographic boundary regi<strong>on</strong>.Previous changes involving major fluctuati<strong>on</strong>sin dominant species <str<strong>on</strong>g>of</str<strong>on</strong>g> pelagic <strong>and</strong> demersalfish, zooplankt<strong>on</strong> <strong>and</strong> benthos were in resp<strong>on</strong>seto changes <str<strong>on</strong>g>of</str<strong>on</strong>g> less than 1°C in average annualtemperatures (Southward 1980). Predicted changesare in <strong>the</strong> order <str<strong>on</strong>g>of</str<strong>on</strong>g> 1.5-5°C over <strong>the</strong> next 100 years.‘By extrapolati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> trends from catches <str<strong>on</strong>g>of</str<strong>on</strong>g> sou<strong>the</strong>rnfish <str<strong>on</strong>g>of</str<strong>on</strong>g>f Plymouth over <strong>the</strong> last 80 years it is possibleto forecast that by 2025, even under low emissi<strong>on</strong>scenarios, <strong>the</strong> fish assemblage <str<strong>on</strong>g>of</str<strong>on</strong>g>f Plymouth willresemble that currently found far to <strong>the</strong> south in <strong>the</strong>Iberian Peninsula.’Genner et al. (2004)Sims et al. (unpublished)Forecast models <str<strong>on</strong>g>of</str<strong>on</strong>g> intertidal assemblages suggestthat nor<strong>the</strong>rn species (such as <strong>the</strong> barnacleSemibalanus balanoides) will become extinct inmuch <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> southwest <str<strong>on</strong>g>of</str<strong>on</strong>g> Engl<strong>and</strong> <strong>and</strong> probablyalso in northwest France in <strong>the</strong> next 20-30 years.Some species, such as <strong>the</strong> kelp Alaria esculenta,were badly impacted by <strong>the</strong> last warm period <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong>1950s <strong>and</strong> seem to have retracted fur<strong>the</strong>r in recentyears (Mieszkowska et al. 2005).Many commercial fishery species now found morecomm<strong>on</strong>ly fur<strong>the</strong>r north in <strong>the</strong> English Channelcomm<strong>and</strong> high market prices in France, Spain<strong>and</strong> Portugal. With good transport links from <strong>the</strong>UK <strong>the</strong>re are now high-value markets for speciessuch as cuttlefish (Sepia), spider crabs (Maja)<strong>and</strong> various bream <strong>and</strong> red mullet, encouragingexports from southwest Britain <strong>and</strong> Irel<strong>and</strong>. Thepossibility still remains <str<strong>on</strong>g>of</str<strong>on</strong>g> cooling at some stage,should <strong>the</strong>rmohaline circulati<strong>on</strong> be slowed down,leading to a weakened Gulf Stream. Should thisoccur, <strong>the</strong>n re-adjustment to nor<strong>the</strong>rn assemblagesis likely, as occurred after <strong>the</strong> last extremely coldwinter <str<strong>on</strong>g>of</str<strong>on</strong>g> 1962/1963 (Genner et al. 2004; Sims etal. unpublished).Current research <strong>and</strong> m<strong>on</strong>itoring programmes<strong>and</strong> projects in <strong>the</strong> Celtic-Biscay Shelf• C<strong>on</strong>siderable effort has been made via<strong>the</strong> MarCLIM project to resurvey existingbaseline studies <str<strong>on</strong>g>of</str<strong>on</strong>g> rocky shores in Britain<strong>and</strong> Irel<strong>and</strong>;• Many <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> l<strong>on</strong>g-term time-series recordscollected by <strong>the</strong> <strong>Marine</strong> Biological Associati<strong>on</strong>at Plymouth have been reactivated in recentyears, e.g. observati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> hydrography <strong>and</strong>plankt<strong>on</strong> at stati<strong>on</strong> E1, benthos <strong>and</strong> fish atstati<strong>on</strong> L4, <strong>and</strong> broadscale surveys <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong>English Channel benthos (see Southward etal. 2005 for details). The Plymouth <strong>Marine</strong>Laboratory has collected informati<strong>on</strong> <strong>on</strong>zooplankt<strong>on</strong> <strong>and</strong> much <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> pelagicecosystem at stati<strong>on</strong> L4 since 1988;• The SAHFOS-CPR surveys provide goodcoverage <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> pelagic species <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong>English Channel <strong>and</strong> <strong>the</strong> Bay <str<strong>on</strong>g>of</str<strong>on</strong>g> Biscay. Theresumpti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> Plymouth-Rosc<str<strong>on</strong>g>of</str<strong>on</strong>g>f <strong>and</strong> <strong>the</strong>Portsmouth-Bilbao CPR tows are particularlyvaluable <strong>and</strong> toge<strong>the</strong>r <strong>the</strong>se observati<strong>on</strong>swill form <strong>the</strong> core <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> proposed westernEnglish Channel observatory based inPlymouth. Similar approaches are underwayvia <strong>the</strong> observatory at Rosc<str<strong>on</strong>g>of</str<strong>on</strong>g>f;• There are also l<strong>on</strong>g-term time-series recordsfor <strong>the</strong> benthos <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> eastern Channelcollected by <strong>the</strong> Wimereaux Laboratory inFl<strong>and</strong>ers.44 <str<strong>on</strong>g>Impacts</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Climate</str<strong>on</strong>g> <str<strong>on</strong>g>Change</str<strong>on</strong>g> <strong>on</strong> <strong>the</strong> <strong>European</strong> <strong>Marine</strong> <strong>and</strong> <strong>Coastal</strong> Envir<strong>on</strong>ment


4.9 Iberian upwelling marginDescripti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> areaThe Iberian coastal area includes <strong>the</strong> c<strong>on</strong>tinentalshelf regi<strong>on</strong> <strong>and</strong> <strong>the</strong> oceanic part <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> EasternAtlantic Ocean, lying between 35ºN <strong>and</strong> 44ºN. Thedeep ocean floor is around 4,000 m deep. Thewest <strong>and</strong> north Iberian Peninsula present a narrowshelf when compared with <strong>the</strong> North Bay <str<strong>on</strong>g>of</str<strong>on</strong>g> Biscay<strong>and</strong> Celtic Sea. This shelf is crossed by severalsubmarine cany<strong>on</strong>s in <strong>the</strong> Bay <str<strong>on</strong>g>of</str<strong>on</strong>g> Biscay <strong>and</strong> <strong>on</strong><strong>the</strong> Portuguese coast; several rivers enter al<strong>on</strong>g<strong>the</strong> Galician coast. The east-west orientati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong>coast in <strong>the</strong> nor<strong>the</strong>rn part breaks <strong>the</strong> normal northsouthorientati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> <strong>European</strong> Atlantic coast.The Iberian coastal area has a weak circulati<strong>on</strong>pattern, with seas<strong>on</strong>al variability (Valdés <strong>and</strong> Lavín2002). The main oceanographic features are: <strong>the</strong>Iberian Poleward Current, coastal upwelling (moreintense <strong>and</strong> extended in <strong>the</strong> west Iberian coast)<strong>and</strong> <strong>the</strong> seas<strong>on</strong>al stratificati<strong>on</strong> in oceanic waters.The exchange <str<strong>on</strong>g>of</str<strong>on</strong>g> waters between <strong>the</strong> Atlantic <strong>and</strong><strong>the</strong> Mediterranean is also relevant. As a result <str<strong>on</strong>g>of</str<strong>on</strong>g><strong>the</strong> Iberian Poleward Current, several anticycl<strong>on</strong>iceddies are shed into oceanic waters, <str<strong>on</strong>g>of</str<strong>on</strong>g>f <strong>the</strong>nor<strong>the</strong>ast corner <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> Iberian Peninsula, <strong>and</strong> in <strong>the</strong>Central Bay <str<strong>on</strong>g>of</str<strong>on</strong>g> Biscay.As a result <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> summer upwelling, two parallelbiogeographical gradients can be distinguishedin Atlantic waters <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> Iberian Peninsula (that isNorth-South in <strong>the</strong> west <strong>and</strong> West-East in <strong>the</strong> north).Many nor<strong>the</strong>rn species are much more comm<strong>on</strong> in<strong>the</strong> northwest Iberian Peninsula <strong>and</strong> some sou<strong>the</strong>rnspecies are recorded as absent or less abundantbefore reappearing in <strong>the</strong> inner Bay <str<strong>on</strong>g>of</str<strong>on</strong>g> Biscay <strong>and</strong>south Portugal (Fischer-Piette 1963; Ardré 1970;Anadón <strong>and</strong> Niell 1980). A similar biogeographicalanomaly appears <str<strong>on</strong>g>of</str<strong>on</strong>g>f North Africa, associated withupwelling (Lüning 1990).© SAHFOS <strong>and</strong> <strong>Marine</strong> InstituteThe Iberian upwelling margin.<str<strong>on</strong>g>Impacts</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Climate</str<strong>on</strong>g> <str<strong>on</strong>g>Change</str<strong>on</strong>g> <strong>on</strong> <strong>the</strong> <strong>European</strong> <strong>Marine</strong> <strong>and</strong> <strong>Coastal</strong> Envir<strong>on</strong>ment 45


4. Regi<strong>on</strong>al resp<strong>on</strong>ses <strong>and</strong> impactsSignals <str<strong>on</strong>g>of</str<strong>on</strong>g> climate change<str<strong>on</strong>g>Change</str<strong>on</strong>g>s in <strong>the</strong> sea-surface temperatures (SST)derived from <strong>the</strong> 1860-2000 ComprehensiveOcean-Atmosphere Data Set (COADS) for <strong>the</strong>Bay <str<strong>on</strong>g>of</str<strong>on</strong>g> Biscay (Planque et al. 2003) show two coldtemperature periods, around 1910 <strong>and</strong> 1970, <strong>and</strong>warm temperate periods in 1870 <strong>and</strong> 1960. Rapidwarming in surface temperatures (0.055 ºC y -1 over30 years) has occurred in <strong>the</strong> last few decades(Koutsikopoulos et al. 1998; Llope et al. 2006) in all<strong>the</strong> oceanic areas <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> bay. Due to high variability,<strong>the</strong> increase was not significant in coastal areas.In very near coast locati<strong>on</strong>s al<strong>on</strong>g nor<strong>the</strong>rn Spain,<strong>the</strong> l<strong>on</strong>g-term trend in changes in SST could benegative (Borja et al. 2002). A decreasing salinitytrend in <strong>the</strong> surface <strong>and</strong> subsurface waters towards<strong>the</strong> sou<strong>the</strong>rn Bay <str<strong>on</strong>g>of</str<strong>on</strong>g> Biscay was observed in <strong>the</strong>past 15 years (G<strong>on</strong>zález-Pola et al. 2005).An averaged sea-level rise <str<strong>on</strong>g>of</str<strong>on</strong>g> 2.12-2.91 mm y -1in <strong>the</strong> last 50 years was detected in <strong>the</strong> northwestIberian Peninsula (Marcos et al. 2005), with a 6.5mm y -1 rise between 1991 <strong>and</strong> 2001. A decreasingtrend in <strong>the</strong> upwelling index <strong>and</strong> <strong>the</strong> seas<strong>on</strong>ality <str<strong>on</strong>g>of</str<strong>on</strong>g>upwelling <str<strong>on</strong>g>of</str<strong>on</strong>g>f nor<strong>the</strong>rn Spain has also been detected(Llope et al. 2006).Biological resp<strong>on</strong>ses to climate change have beendetected for various organisms <strong>and</strong> ecosystems.Both primary productivity <strong>and</strong> species compositi<strong>on</strong><str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> phytoplankt<strong>on</strong> are affected by l<strong>on</strong>g-termchanges in chemically different water masses. Arapid increase (1993/1994) in abundance <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong>rare warm temperate copepod Temora styliferaoccured in <strong>the</strong> Bay <str<strong>on</strong>g>of</str<strong>on</strong>g> Biscay, which correlated with<strong>the</strong> decreasing abundance <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> coastal Temoral<strong>on</strong>gicornis.Several o<strong>the</strong>r organisms <str<strong>on</strong>g>of</str<strong>on</strong>g> subtropical originhave been detected during recent years (Guerraet al. 2002). There have been changes in speciesabundance <strong>and</strong> diversity <str<strong>on</strong>g>of</str<strong>on</strong>g> intertidal communities(Sánchez et al. 2005), <strong>and</strong> northward displacement<str<strong>on</strong>g>of</str<strong>on</strong>g> sou<strong>the</strong>rn origin species (i.e. Patella rustica, Lima etal. 2006). Decreases <str<strong>on</strong>g>of</str<strong>on</strong>g> biomass <str<strong>on</strong>g>of</str<strong>on</strong>g> some seaweedswere observed over <strong>the</strong> past 15 years (Fernández,unpublished).There have been changes in exploited fishpopulati<strong>on</strong>s such as pilchard sardine, anchovy,mackerel <strong>and</strong> horse mackerel, but it is quite difficultto differentiate between <strong>the</strong> impact <str<strong>on</strong>g>of</str<strong>on</strong>g> climate <strong>and</strong>fishing effects. Many changes in migratory routes<strong>and</strong> spawning areas, however, are associated withfluctuati<strong>on</strong>s in <strong>the</strong> NAO index, indicating a climateeffect (Borja et al. 2002).Intensity (Mean <strong>and</strong> S.E.) <strong>and</strong> number <str<strong>on</strong>g>of</str<strong>on</strong>g> days with upwelling per year averaged from April-September values. The straight line is <strong>the</strong> linear fit forintensity (Llope et al. 2006) (© 2006 American Geophysical Uni<strong>on</strong> - Reproduced by permissi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> American Geophysical Uni<strong>on</strong>).46 <str<strong>on</strong>g>Impacts</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Climate</str<strong>on</strong>g> <str<strong>on</strong>g>Change</str<strong>on</strong>g> <strong>on</strong> <strong>the</strong> <strong>European</strong> <strong>Marine</strong> <strong>and</strong> <strong>Coastal</strong> Envir<strong>on</strong>ment


Projecti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> climate changeThe Iberian coast supports intense fisheries <strong>and</strong>aquaculture, involving traditi<strong>on</strong>al mussel rafts <strong>and</strong>modern intensive fish <strong>and</strong> mollusc farming. Severalimpacts related to climate change could havesocio-ec<strong>on</strong>omic impacts. The observed increase inharmful algal blooms could affect <strong>the</strong>se commercialactivities. The changes in primary productivity relatedwith upwelling intensity <strong>and</strong> seas<strong>on</strong>ality affectinggrowth will impact up<strong>on</strong> <strong>the</strong> quality <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> mussels(Blant<strong>on</strong> et al. 1987).‘The increase in parasites <str<strong>on</strong>g>of</str<strong>on</strong>g> subtropical origin (suchas Perkinsus) endangers <strong>the</strong> extensive mollusc farmingal<strong>on</strong>g <strong>the</strong> Spanish coasts’Labarta (pers<strong>on</strong>al observati<strong>on</strong>)The predicted changes in SST as well <strong>the</strong> observed<strong>and</strong> predicted changes in circulati<strong>on</strong> <strong>and</strong> stratificati<strong>on</strong>could influence <strong>the</strong> retenti<strong>on</strong>-dispersi<strong>on</strong> mechanism<str<strong>on</strong>g>of</str<strong>on</strong>g> larval stages <str<strong>on</strong>g>of</str<strong>on</strong>g> fish <strong>and</strong> shellfish with unknownc<strong>on</strong>sequences for species recruitment. <str<strong>on</strong>g>Change</str<strong>on</strong>g>s in<strong>the</strong> distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> seaweed <strong>and</strong> invertebrate faunaal<strong>on</strong>g northwest Iberian <strong>and</strong> Atlantic French coastswill be evident in <strong>the</strong> first half <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> 21st century,based up<strong>on</strong> <strong>the</strong> actual temperature limits <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong>irdistributi<strong>on</strong> <strong>and</strong> predicti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> global circulati<strong>on</strong>models <strong>on</strong> future SST (Alcock 2003). Beaches,infrastructures <strong>and</strong> urban facilities could be seriouslyimpacted by <strong>the</strong> sea-level rise (Cendrero et al.2005).Current research <strong>and</strong> m<strong>on</strong>itoring programmes<strong>and</strong> projects• The main programme devoted tooceanographic research in <strong>the</strong> global changec<strong>on</strong>text in Spain is a part <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> Nati<strong>on</strong>alProgramme <strong>on</strong> Envir<strong>on</strong>mental Science <strong>and</strong>Technology. The plan identifies, as a specialtask, <strong>the</strong> functi<strong>on</strong>al role <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> oceans inglobal change <strong>and</strong> <strong>the</strong> impacts <str<strong>on</strong>g>of</str<strong>on</strong>g> globalchange <strong>on</strong> <strong>the</strong> regi<strong>on</strong>al <strong>and</strong> local seas inwhich Spain has an interest. The programmealso financed cooperative research in <strong>the</strong>internati<strong>on</strong>al arena;• The Spanish Institute <str<strong>on</strong>g>of</str<strong>on</strong>g> Oceanography(IEO) RADIALES project m<strong>on</strong>itors physical,chemical <strong>and</strong> biological c<strong>on</strong>diti<strong>on</strong>s in coastalwaters <str<strong>on</strong>g>of</str<strong>on</strong>g> Spain. This project was initiatedin 1991 <strong>and</strong> covers five localities sampledm<strong>on</strong>thly;• The IEO has supported <strong>the</strong> deployment <str<strong>on</strong>g>of</str<strong>on</strong>g>three tide gauges for more than 50 years;• Moored buoys that take c<strong>on</strong>tinuous physicaldata including currents <strong>and</strong> wave height aremaintained by Puertos del Estado (StatePorts);• The HIPOCAS project (Funded by <strong>the</strong><strong>European</strong> Uni<strong>on</strong>’s Fifth FrameworkProgramme, FP5) carried out retrospectiveanalysis <str<strong>on</strong>g>of</str<strong>on</strong>g> climatic <strong>and</strong> oceanographicparameters <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> Iberian coast. SomeSpanish regi<strong>on</strong>al instituti<strong>on</strong>s have recentlyimplemented automatic near-coastobservati<strong>on</strong> platforms (e.g. AZTI, in <strong>the</strong>Basque Country);• Some Portuguese universities carry outresearch <strong>on</strong> <strong>the</strong> impacts <str<strong>on</strong>g>of</str<strong>on</strong>g> climate change<strong>on</strong> intertidal species (e.g. Porto University,see Lima et al. 2006), including competiti<strong>on</strong>between species at <strong>the</strong>ir sou<strong>the</strong>rn limits withwarmer water species (Boaventura et al.2002);• Oceanographic <strong>and</strong> fisheries m<strong>on</strong>itoring<strong>and</strong> research is also c<strong>on</strong>duct by IPIMAR innor<strong>the</strong>rn Portugal.<str<strong>on</strong>g>Impacts</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Climate</str<strong>on</strong>g> <str<strong>on</strong>g>Change</str<strong>on</strong>g> <strong>on</strong> <strong>the</strong> <strong>European</strong> <strong>Marine</strong> <strong>and</strong> <strong>Coastal</strong> Envir<strong>on</strong>ment 47


4. Regi<strong>on</strong>al resp<strong>on</strong>ses <strong>and</strong> impacts4.10 Mediterranean SeaDescripti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> areaThe Mediterranean basin is approximately 3,680 kml<strong>on</strong>g with an average width <str<strong>on</strong>g>of</str<strong>on</strong>g> 700 km <strong>and</strong> is dividedinto <strong>the</strong> Western <strong>and</strong> Eastern Mediterranean,separated by <strong>the</strong> straits <str<strong>on</strong>g>of</str<strong>on</strong>g> Sicily, <strong>and</strong> <strong>the</strong> CentralMediterranean. The Western Mediterranean (me<strong>and</strong>epth approximately 1,600 m) c<strong>on</strong>sists <str<strong>on</strong>g>of</str<strong>on</strong>g> twodeep basins: <strong>the</strong> Algero Provençal basin <strong>and</strong> <strong>the</strong>Tyrrhenian Sea. The Central Mediterranean includes<strong>the</strong> Adriatic <strong>and</strong> I<strong>on</strong>ian seas, while <strong>the</strong> EasternMediterranean includes <strong>the</strong> Aegean Sea <strong>and</strong> <strong>the</strong>Levantine Basin.The principal traits <str<strong>on</strong>g>of</str<strong>on</strong>g> this semi-enclosed miniatureocean are:• Limited freshwater input (<strong>the</strong> Mediterraneanbasin is characterised by a freshwaterdeficit <str<strong>on</strong>g>of</str<strong>on</strong>g> 0.9 m y -1 as evaporati<strong>on</strong> exceedsprecipitati<strong>on</strong> <strong>and</strong> run<str<strong>on</strong>g>of</str<strong>on</strong>g>f). The major waterexchanges are through <strong>the</strong> Straits <str<strong>on</strong>g>of</str<strong>on</strong>g> Gibraltarwith surface inflow <str<strong>on</strong>g>of</str<strong>on</strong>g> Atlantic (top 300 m),<strong>and</strong> deep outflow <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> deep, high-salinity,Mediterranean waters (Béthoux et al. 2002);• Small amplitude tides (microtidal regime);• High oxygen c<strong>on</strong>centrati<strong>on</strong>s;• High deep-sea temperatures (>12.8°C);• Oligotrophic c<strong>on</strong>diti<strong>on</strong>s, with low nutrientc<strong>on</strong>centrati<strong>on</strong>s that typically decreaseeastward.As a result <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong>se characteristics, <strong>the</strong> Western<strong>and</strong> Eastern Mediterranean are characterisedby different primary productivity. In <strong>the</strong> WesternMediterranean, primary producti<strong>on</strong> is about350-450 mgC m -2 d -1 , whereas in <strong>the</strong> EasternMediterranean primary producti<strong>on</strong> is much lower(about 150 mgC m -2 d -1 ; Turley et al. 2000). Thelow productivity in <strong>the</strong> Eastern Mediterraneanregi<strong>on</strong>, toge<strong>the</strong>r with <strong>the</strong> str<strong>on</strong>g summerstratificati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> water column <strong>and</strong> <strong>the</strong> tightmicrobial loop c<strong>on</strong>trol, result in excepti<strong>on</strong>ally lowexports <str<strong>on</strong>g>of</str<strong>on</strong>g> primary organic matter to <strong>the</strong> seabed(Turley et al. 2000).© SAHFOS <strong>and</strong> <strong>Marine</strong> InstituteThe Mediterranean Sea.Although it occupies <strong>on</strong>ly 0.82% <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> world’s oceansurface <strong>and</strong> 0.32% <str<strong>on</strong>g>of</str<strong>on</strong>g> its volume, <strong>the</strong> Mediterraneanis a hot spot for biodiversity. Species richness(approximately 8500 species <str<strong>on</strong>g>of</str<strong>on</strong>g> metazoa) accountsfor 7.5% <str<strong>on</strong>g>of</str<strong>on</strong>g> all described marine species (range 4-18% according to <strong>the</strong> group c<strong>on</strong>sidered): 67% <str<strong>on</strong>g>of</str<strong>on</strong>g>Mediterranean species are found in <strong>the</strong> WesternMediterranean, 38% in <strong>the</strong> Adriatic Sea, 35% in <strong>the</strong>Central Mediterranean, 44% in <strong>the</strong> Aegean Sea <strong>and</strong>28% in <strong>the</strong> Levantine Sea.This trend in species richness indicates a westeastimpoverishment <str<strong>on</strong>g>of</str<strong>on</strong>g> species, reflecting climatic<strong>and</strong> trophic gradients. Mediterranean marineassemblages are different from <strong>the</strong>ir Atlanticcounterparts, <strong>and</strong> Mediterranean organisms aretypically characterised by smaller individual sizes.The Mediterranean Sea is biologically diverse as it isa warm sea at temperate latitudes thus hosting bothtemperate <strong>and</strong> subtropical species, <strong>and</strong> has beenfur<strong>the</strong>r diversified by its complex geological history.In <strong>the</strong> last five milli<strong>on</strong> years, <strong>the</strong> Mediterranean hasformed 10 distinct biogeographic regi<strong>on</strong>s (Bianchi <strong>and</strong>Morri 2000). According to Bianchi (1997), <strong>the</strong> presentmarine biota <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> Mediterranean is composed <str<strong>on</strong>g>of</str<strong>on</strong>g>species characterised as originating from:• A temperate Atlantic - Mediterraneanbackground;48 <str<strong>on</strong>g>Impacts</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Climate</str<strong>on</strong>g> <str<strong>on</strong>g>Change</str<strong>on</strong>g> <strong>on</strong> <strong>the</strong> <strong>European</strong> <strong>Marine</strong> <strong>and</strong> <strong>Coastal</strong> Envir<strong>on</strong>ment


• Cosmopolitan/panoceanic species;• Endemic elements, comprising bothpaleoendemic <strong>and</strong> neoendemic species;• Subtropical Atlantic species (interglacialremnants);• Boreal Atlantic species (ice-age remnants);• Red Sea migrants (especially into <strong>the</strong> LevantSea);• Eastern Atlantic migrants (especially into <strong>the</strong>Alboran Sea).Signals <str<strong>on</strong>g>of</str<strong>on</strong>g> climate changeWestern mediterranean‘In <strong>the</strong> Western Mediterranean, climate changesduring <strong>the</strong> 1980s altered plankt<strong>on</strong> assemblages <strong>and</strong>food webs with high positive temperature anomaliesfavouring jellyfish outbreaks, which resulted in a str<strong>on</strong>gdecrease in <strong>the</strong> copepod abundance.’Molinero et al. (2005)In <strong>the</strong> Western Mediterranean, climate changeinfluences <strong>the</strong> boundaries <str<strong>on</strong>g>of</str<strong>on</strong>g> biogeographic regi<strong>on</strong>s,with some warm water species extending <strong>the</strong>irranges <strong>and</strong> col<strong>on</strong>ising new regi<strong>on</strong>s where <strong>the</strong>ywere previously absent. The northward migrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g>species with a warmer affinity has been dem<strong>on</strong>stratedin several regi<strong>on</strong>s (Bianchi <strong>and</strong> Morri 1994; Morri <strong>and</strong>Bianchi 2001). The Ligurian Sea, <strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> coldestareas in <strong>the</strong> Mediterranean Sea, has a lower number<str<strong>on</strong>g>of</str<strong>on</strong>g> subtropical species <strong>and</strong> a higher abundance <str<strong>on</strong>g>of</str<strong>on</strong>g>species characteristic <str<strong>on</strong>g>of</str<strong>on</strong>g> cold-temperate waters.The warming <str<strong>on</strong>g>of</str<strong>on</strong>g> Ligurian Sea waters (Béthouxet al. 1990; Astraldi et al. 1995) has favoured <strong>the</strong>penetrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> warm-water species including, forexample, <strong>the</strong> ornate wrasse Thalassoma pavo,which from 1985 <strong>on</strong>ward established large <strong>and</strong>stable populati<strong>on</strong>s (Bianchi <strong>and</strong> Morri 1994).However, <strong>the</strong> increase in numbers <str<strong>on</strong>g>of</str<strong>on</strong>g> tropical Atlanticspecies found in <strong>the</strong> nor<strong>the</strong>rn Mediterranean mayresult from a combinati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> anthropogenic <strong>and</strong>climate factors. Recent studies have identifieda correlati<strong>on</strong> between <strong>the</strong> NAO <strong>and</strong> <strong>the</strong> climatevariability <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> northwestern Mediterranean(Molinero et al. 2005).A large mass-mortality event was observed in 1999(Cerrano et al. 2000; Perez et al. 2000), when apositive <strong>the</strong>rmal anomaly during summer combinedwith an increase in <strong>the</strong> warm mixed layer down to adepth <str<strong>on</strong>g>of</str<strong>on</strong>g> 40 m (Romano et al. 2000) resulted in anextensive mortality <str<strong>on</strong>g>of</str<strong>on</strong>g> 28 invertebrate species (Perezet al. 2000). The area impacted by this climateanomaly extended from <strong>the</strong> French to <strong>the</strong> Italiancoast <strong>and</strong>, to a lesser extent, impacted <strong>the</strong> isl<strong>and</strong><str<strong>on</strong>g>of</str<strong>on</strong>g> Corsica. Am<strong>on</strong>g benthic organisms, <strong>the</strong> mostseverely affected were sp<strong>on</strong>ges <strong>and</strong> gorg<strong>on</strong>ians,such as Paramuricea clavata, Eunicella singularis,Lophogorgia ceratophyta, <strong>and</strong> Eunicella cavolini(Cerrano et al. 2000; Perez et al. 2000; Romanoet al. 2000; Garrabou et al. 2001). It is evident thattemperature anomalies, even <str<strong>on</strong>g>of</str<strong>on</strong>g> short durati<strong>on</strong>, c<strong>and</strong>ramatically change Mediterranean faunal diversity.Once a species disappears, o<strong>the</strong>r species, preadaptedto <strong>the</strong> new c<strong>on</strong>diti<strong>on</strong>s, can replace <strong>the</strong>m,thus hampering <strong>the</strong> ecosystem resilience to preimpactc<strong>on</strong>diti<strong>on</strong>s. High <strong>the</strong>rmal anomalies canalso impact <strong>the</strong> fauna inhabiting marine caves,replacing endemic species by warm water species(Chevald<strong>on</strong>ne <strong>and</strong> Lejeusne 2003).The colourful warm-water fish Thalassoma pavo was favoured byrising temperatures in <strong>the</strong> Western Mediterranean, establishinglarge <strong>and</strong> stable populati<strong>on</strong>s from 1985 <strong>on</strong>wards (Bianchi <strong>and</strong>Morri 1994) ).<str<strong>on</strong>g>Climate</str<strong>on</strong>g> change in <strong>the</strong> Mediterranean also favoursepidemiological outbreaks, as most pathogensare temperature sensitive. Studies performed<strong>on</strong> <strong>the</strong> coral Oculina patag<strong>on</strong>ica identified <strong>the</strong>coral-bleaching bacteria Vibrio shiloi, as an agentinvolved in <strong>the</strong> Mediterranean mass mortalities <str<strong>on</strong>g>of</str<strong>on</strong>g>coral (Kushmaro et al. 1998). Mass mortalities <str<strong>on</strong>g>of</str<strong>on</strong>g><strong>the</strong> gorg<strong>on</strong>ian Paramunicea clavata, scleractiniancorals, zoanthids, <strong>and</strong> sp<strong>on</strong>ges observed in1999 in <strong>the</strong> Ligurian Sea were indeed promotedby a temperature shift, in c<strong>on</strong>juncti<strong>on</strong> with <strong>the</strong>growth <str<strong>on</strong>g>of</str<strong>on</strong>g> opportunistic pathogens (includingsome fungi <strong>and</strong> protozoans; Cerrano et al. 2000).Fur<strong>the</strong>rmore, viral life strategies may be promotedby rising temperatures. Although data are limited,morbilliviruses that cause disease epidemics inseals have been identified in Mediterranean m<strong>on</strong>kseals (van de Bildt et al. 1999), potentially impacting<strong>the</strong> survival <str<strong>on</strong>g>of</str<strong>on</strong>g> this rare <strong>and</strong> endangered species.© F. Cardigos/ImagDOP<str<strong>on</strong>g>Impacts</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Climate</str<strong>on</strong>g> <str<strong>on</strong>g>Change</str<strong>on</strong>g> <strong>on</strong> <strong>the</strong> <strong>European</strong> <strong>Marine</strong> <strong>and</strong> <strong>Coastal</strong> Envir<strong>on</strong>ment 49


4. Regi<strong>on</strong>al resp<strong>on</strong>ses <strong>and</strong> impacts‘In <strong>the</strong> nor<strong>the</strong>rn Adriatic, <strong>the</strong> frequency <str<strong>on</strong>g>of</str<strong>on</strong>g> appearance<str<strong>on</strong>g>of</str<strong>on</strong>g> mucilaginous aggregates (associated with amalfuncti<strong>on</strong>ing <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> microbial loop) has doubledin <strong>the</strong> last 25 years, c<strong>on</strong>comitantly with a significantincrease in sea-surface temperature <str<strong>on</strong>g>of</str<strong>on</strong>g> circa 1.5°C’.Russo et al. (2002)Adriatic seaMost informati<strong>on</strong> dealing with climate changeimpacts <strong>on</strong> marine ecosystems in <strong>the</strong> central part <str<strong>on</strong>g>of</str<strong>on</strong>g><strong>the</strong> Mediterranean has been collected in <strong>the</strong> AdriaticSea. During <strong>the</strong> past 30 years in <strong>the</strong> Adriatic Sea, <strong>the</strong><strong>the</strong>rmophilic species <str<strong>on</strong>g>of</str<strong>on</strong>g> ichthy<str<strong>on</strong>g>of</str<strong>on</strong>g>auna have increased(Dulcic <strong>and</strong> Grbec 2000). Fish <strong>and</strong> zooplankt<strong>on</strong>species that were previously rare are becomingmore abundant, <strong>and</strong> o<strong>the</strong>r new species are beingrecorded (Dulcic <strong>and</strong> Grbec 2000; Kamburska <strong>and</strong>F<strong>on</strong>da-Umani 2006). These observati<strong>on</strong>s are relatedto warming temperatures <strong>and</strong> salinity variati<strong>on</strong>s in<strong>the</strong> Adriatic Sea, which intensified after 1988 (Russoet al. 2002).O<strong>the</strong>r climate changes (increases in storm frequency<strong>and</strong> rainfall, <strong>and</strong> changes in wind speed <strong>and</strong>directi<strong>on</strong>) also had an impact <strong>on</strong> water properties(e.g. salinity, mixing, altered turbidity), which in turnaffect <strong>the</strong> whole Adriatic Sea ecosystem (Russo etal. 2002). A number <str<strong>on</strong>g>of</str<strong>on</strong>g> phenomena such as blooms<str<strong>on</strong>g>of</str<strong>on</strong>g> jellyfish (Pelagia noctiluca) <strong>and</strong> thaliacea (Boero1996), harmful algal blooms (by several species<str<strong>on</strong>g>of</str<strong>on</strong>g> din<str<strong>on</strong>g>of</str<strong>on</strong>g>lagellates) <strong>and</strong> red tides, were triggered by<strong>the</strong>se meteorological <strong>and</strong> oceanographic changes(Boero 2001). Increased surface temperatures,altered circulati<strong>on</strong>, <strong>and</strong> precipitati<strong>on</strong> changescausing increased stratificati<strong>on</strong> have been invokedto explain <strong>the</strong> increased frequency <str<strong>on</strong>g>of</str<strong>on</strong>g> bottom waterhypoxia (low oxygen) or anoxia in coastal areas<str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> nor<strong>the</strong>rn Adriatic. These phenomena, <str<strong>on</strong>g>of</str<strong>on</strong>g>tenassociated with mass mortalities <str<strong>on</strong>g>of</str<strong>on</strong>g> fish <strong>and</strong> benthicfauna, alter food webs <strong>and</strong> may have importantcascade effects <strong>on</strong> biodiversity.The Adriatic Sea, fur<strong>the</strong>rmore, has underg<strong>on</strong>edramatic changes related to low temperatures. In<strong>the</strong> winter <str<strong>on</strong>g>of</str<strong>on</strong>g> 2001, <strong>the</strong> Adriatic Sea experienceda period <str<strong>on</strong>g>of</str<strong>on</strong>g> abnormally low surface temperatures(from 9°C to freezing) that led to mass mortalities <str<strong>on</strong>g>of</str<strong>on</strong>g>sardines (Sardinella aurita) (Guidetti et al. 2002), withc<strong>on</strong>sequent alterati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> food webs. The AdriaticBasin is also <strong>the</strong> site for deep-water formati<strong>on</strong>, as aresult <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> Bora winds (nor<strong>the</strong>rn to north-easternwinds passing through <strong>the</strong> valleys <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> Dinaric Alps)associated with decreased temperatures, althoughrecent studies have reported a lack <str<strong>on</strong>g>of</str<strong>on</strong>g> open-seac<strong>on</strong>vecti<strong>on</strong> related to higher temperatures (<strong>and</strong> mildwinter c<strong>on</strong>diti<strong>on</strong>s). This phenomen<strong>on</strong> alters deepwater<strong>and</strong> str<strong>on</strong>gly reduces spring phytoplankt<strong>on</strong>blooms <strong>and</strong> export producti<strong>on</strong> to <strong>the</strong> deep layers.Eastern mediterraneanMost <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> n<strong>on</strong>-indigenous species in <strong>the</strong>Mediterranean are <strong>the</strong>rmophilic originating in <strong>the</strong>tropical Indo-Pacific (Lessepsian migrati<strong>on</strong>s, Galil1993). The list <str<strong>on</strong>g>of</str<strong>on</strong>g> exotic animals <strong>and</strong> plants that haveinvaded <strong>the</strong> Mediterranean, <strong>and</strong> particularly <strong>the</strong>Eastern Mediterranean, is c<strong>on</strong>tinuously increasing.The rise <str<strong>on</strong>g>of</str<strong>on</strong>g> sea water temperatures may be partlyresp<strong>on</strong>sible for changes in <strong>the</strong> range <str<strong>on</strong>g>of</str<strong>on</strong>g> somespecies creating maritime corridors linking this regi<strong>on</strong>to o<strong>the</strong>r seas <strong>and</strong> regi<strong>on</strong>s. The invasi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> n<strong>on</strong>indigenousspecies has resulted in <strong>the</strong> dislocati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g>o<strong>the</strong>r species <strong>and</strong> possibly cascade effects <strong>on</strong> foodwebs (CIESM 2002).Despite an overall tendency towards sea-surfacewarming, <strong>the</strong> Eastern Mediterranean has alsoexperienced a temperature decrease. This majorclimatic event, defined as <strong>the</strong> Eastern Mediterraneantransient, with a decline in temperature <str<strong>on</strong>g>of</str<strong>on</strong>g> about0.4°C, caused a drastic decrease in faunalabundance <strong>and</strong> a significant change in faunaldiversity (Danovaro et al. 2001). Between 1992<strong>and</strong> 1994, a temperature shift <str<strong>on</strong>g>of</str<strong>on</strong>g> 0.3°C resultedin a reducti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> approximately 50% <str<strong>on</strong>g>of</str<strong>on</strong>g> nematodediversity (<strong>and</strong> possibly <strong>the</strong> diversity <str<strong>on</strong>g>of</str<strong>on</strong>g> o<strong>the</strong>r groups).Moreover, <strong>the</strong> extent <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> impact <strong>on</strong> nematodediversity was directly related to <strong>the</strong> extent <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong>temperature shift. Temperature declines also causeda decrease in functi<strong>on</strong>al diversity <strong>and</strong> speciesevenness, resulting in increased similarity between<strong>the</strong> nematode fauna <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> warm deep-EasternMediterranean <strong>and</strong> <strong>the</strong> colder deep-Atlantic. After1994, when <strong>the</strong> temperatures gradually recoveredto pre-transient values, <strong>the</strong> biodiversity beganto revert towards more evenness. However, <strong>the</strong>community compositi<strong>on</strong> in 1998 still differed fromthat observed in 1989 (Danovaro et al. 2004).Projecti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> climate change (Adriatic Sea,Eastern <strong>and</strong> Western Mediterranean)Due to its depth (<strong>on</strong> average about 1,450 m),rapid deep-water turnover time (40-50 years),<strong>and</strong> <strong>the</strong> presence <str<strong>on</strong>g>of</str<strong>on</strong>g> many endemic species(about 25% <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> species are restricted to <strong>the</strong>Mediterranean), it is expected that <strong>the</strong> impacts<str<strong>on</strong>g>of</str<strong>on</strong>g> climate change may be amplified with earlierchanges in biodiversity than witnessed in o<strong>the</strong>r seas.50 <str<strong>on</strong>g>Impacts</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Climate</str<strong>on</strong>g> <str<strong>on</strong>g>Change</str<strong>on</strong>g> <strong>on</strong> <strong>the</strong> <strong>European</strong> <strong>Marine</strong> <strong>and</strong> <strong>Coastal</strong> Envir<strong>on</strong>ment


3 02 52 01 51 0500 .0 0 0 .1 0 0 .2 0 0 .3 0T e m p e ra ture shift (°C )Relati<strong>on</strong>ship between temperature changes <strong>and</strong> species richness (nematodes) in <strong>the</strong> c<strong>on</strong>tinental margins<str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> Eastern Mediterran (data compiled by R. Danovaro).Recent evidence points to large-scale warming<str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> Mediterranean basin (Béthoux et al. 1990;Astraldi et al. 1995; Wal<strong>the</strong>r et al. 2002) <strong>and</strong>changing biodiversity in resp<strong>on</strong>se (Francour etal. 1994). However, <strong>the</strong> richness <str<strong>on</strong>g>of</str<strong>on</strong>g> microclimatesin <strong>the</strong> Mediterranean (ranging from climatec<strong>on</strong>diti<strong>on</strong>s similar to those <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> Nor<strong>the</strong>rn Seain <strong>the</strong> Adriatic to almost tropical c<strong>on</strong>diti<strong>on</strong>s in <strong>the</strong>Eastern Mediterranean) makes any predicti<strong>on</strong> <strong>on</strong>large spatial scales difficult. Indeed, most effects<str<strong>on</strong>g>of</str<strong>on</strong>g> climate change (or climate anomalies) <strong>on</strong> marinebiodiversity have so far been identified <strong>on</strong>ly <strong>on</strong>regi<strong>on</strong>al scales.These results indicate that: i) Mediterranean faunais highly vulnerable to climate change; ii) bothstructural <strong>and</strong> functi<strong>on</strong>al biodiversity <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>tinentalmargins are significantly affected by very smalltemperature changes, <strong>and</strong> iii) <strong>the</strong> impact <str<strong>on</strong>g>of</str<strong>on</strong>g> climatechange <strong>on</strong> marine biodiversity might be irreversible.Moreover, <strong>the</strong>se events indicate that not <strong>on</strong>ly coastalecosystems but also c<strong>on</strong>tinental-margin ecosystemsmay experience abrupt climate-driven temperatureshifts, which reflect changes in <strong>the</strong> prevailing climatec<strong>on</strong>diti<strong>on</strong>s occurring <strong>on</strong> a regi<strong>on</strong>al scale (Bethoux etal. 1990). Since <strong>the</strong>re are close interacti<strong>on</strong>s betweendeep-sea <strong>and</strong> coastal ecosystems, <strong>the</strong> vulnerability<str<strong>on</strong>g>of</str<strong>on</strong>g> deep-sea ecosystems to climatic changes mayhave important implicati<strong>on</strong> <strong>on</strong> <strong>the</strong> biodiversity <strong>and</strong>functi<strong>on</strong>ing <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>tinental shelf ecosystems.Current research <strong>and</strong> m<strong>on</strong>itoring programmes<strong>and</strong> projects• The <strong>European</strong> Uni<strong>on</strong>’s FrameworkProgrammes – funded projects investigatingaspects <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> impacts <str<strong>on</strong>g>of</str<strong>on</strong>g> climate change –(including seawater-atmosphere interacti<strong>on</strong>)in <strong>the</strong> Mediterranean Sea include ADIOS(Atmospheric depositi<strong>on</strong> <strong>and</strong> impact <str<strong>on</strong>g>of</str<strong>on</strong>g>pollutants, key elements <strong>and</strong> nutrients<strong>on</strong> <strong>the</strong> open Mediterranean), INTERPOL(Impact <str<strong>on</strong>g>of</str<strong>on</strong>g> natural <strong>and</strong> trawling events<strong>on</strong> resuspensi<strong>on</strong>, dispersi<strong>on</strong> <strong>and</strong> fate <str<strong>on</strong>g>of</str<strong>on</strong>g>pollutants), HERMES (Hotspot EcosystemResearch <strong>on</strong> Europe’s Deep-Ocean Margin),ORFOIS (Origin <strong>and</strong> fate <str<strong>on</strong>g>of</str<strong>on</strong>g> biogenic particlefluxes in <strong>the</strong> ocean <strong>and</strong> <strong>the</strong>ir interacti<strong>on</strong>with <strong>the</strong> atmospheric CO 2 c<strong>on</strong>centrati<strong>on</strong> aswell as <strong>the</strong> marine sediment) <strong>and</strong> SESAME(Sou<strong>the</strong>rn <strong>European</strong> Seas: Assessing<strong>and</strong> Modelling Ecosystem changes);• The CIESM financially supported <strong>the</strong>programme CIESM-SUB (sur-un-bateau)aimed at investigating <strong>the</strong> effect <str<strong>on</strong>g>of</str<strong>on</strong>g> recentclimate change in <strong>the</strong> deep-Mediterranean;• The projects CoMarge <strong>and</strong> Nagisa promotedby <strong>the</strong> Census <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>Marine</strong> Life <strong>and</strong> sustainedby EuroCOML allow <strong>the</strong> ga<strong>the</strong>ring <str<strong>on</strong>g>of</str<strong>on</strong>g>informati<strong>on</strong> <strong>on</strong> l<strong>on</strong>g-term changes <str<strong>on</strong>g>of</str<strong>on</strong>g> marinebiodiversity to improve underst<strong>and</strong>ing<str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> impacts <str<strong>on</strong>g>of</str<strong>on</strong>g> climate change <strong>on</strong>coastal <strong>and</strong> deep-sea ecosystems;• Programmes <strong>and</strong> projects implementedat nati<strong>on</strong>al level include SINAPSI <strong>and</strong>VECTOR, financially supported by <strong>the</strong> Italiangovernment.<str<strong>on</strong>g>Impacts</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Climate</str<strong>on</strong>g> <str<strong>on</strong>g>Change</str<strong>on</strong>g> <strong>on</strong> <strong>the</strong> <strong>European</strong> <strong>Marine</strong> <strong>and</strong> <strong>Coastal</strong> Envir<strong>on</strong>ment 51


4. Regi<strong>on</strong>al resp<strong>on</strong>ses <strong>and</strong> impacts4.11 Black SeaDescripti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> areaThe Black Sea is a deep (about 2,000 m) oval-shapedbasin with <strong>the</strong> z<strong>on</strong>al <strong>and</strong> meridi<strong>on</strong>al dimensi<strong>on</strong>s<str<strong>on</strong>g>of</str<strong>on</strong>g> ~1,000 km <strong>and</strong> ~400 km, respectively, locatedapproximately between 28° <strong>and</strong> 42°E, 41° <strong>and</strong>46°N. The Black Sea has <strong>on</strong>ly a narrow openingto <strong>the</strong> shallow (


level in 1987 <strong>and</strong> 1988 (Shiganova 1998; Gucu 2002;Daskalov 2002) <strong>and</strong> collapsed in 1989 <strong>and</strong> 1990.The niche vacated by <strong>the</strong>se fish was graduallyreplaced by gelatinous zooplankt<strong>on</strong> (in particular<strong>the</strong> jellyfish Aurelia aurita) <strong>and</strong> o<strong>the</strong>r opportunisticspecies (e.g. Noctiluca scintillans).Temporal variati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> atmospheric index (ATI) (squares), marine physical climate index (PCI) (dots), <strong>and</strong>ecological index (ECOI) (stars) from 1960 to 1999. All three indices possess remarkable synchr<strong>on</strong>ous oscillati<strong>on</strong>swith a period <str<strong>on</strong>g>of</str<strong>on</strong>g> 10-12 years (Oguz et al. 2006).The increase in Aurelia aurita biomass in <strong>the</strong> 1970smay have been associated with overfishing <strong>and</strong>removal <str<strong>on</strong>g>of</str<strong>on</strong>g> mackerel, which was a main predator<str<strong>on</strong>g>of</str<strong>on</strong>g> this jellyfish in <strong>the</strong> Black Sea. Because <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong>ircompetitive advantage for food, when comparedwith small pelagic fish species, <strong>and</strong> <strong>the</strong>ir predati<strong>on</strong><strong>on</strong> eggs <strong>and</strong> larvae <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong>se fish species, <strong>the</strong> totalgelatinous biomass, mostly <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> jellyfish Aureliaaurita, reached 1.5 kg m -2 during <strong>the</strong> mid-1980s,<strong>and</strong> finally attained <strong>the</strong> peak value <str<strong>on</strong>g>of</str<strong>on</strong>g> about 2.5 kgm-2 in 1989 when <strong>the</strong> populati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> ctenophoreMnemiopsis leidyi exploded. Relaxati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong>fishing pressure during <strong>the</strong> sec<strong>on</strong>d half <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> 1980smay be resp<strong>on</strong>sible for a gradual increase in <strong>the</strong>mesozooplankt<strong>on</strong> biomass up to its maximum value<str<strong>on</strong>g>of</str<strong>on</strong>g> 15 g m -2 in 1990, when <strong>the</strong> small pelagic fishstock collapsed <strong>and</strong> <strong>the</strong> Mnemiopsis populati<strong>on</strong>exploded. Predati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Mnemiopsis <strong>on</strong> fish larvaefur<strong>the</strong>r accelerated depleti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> small pelagicstock at <strong>the</strong> expense <str<strong>on</strong>g>of</str<strong>on</strong>g> an additi<strong>on</strong>al increase inMnemiopsis biomass.Str<strong>on</strong>g changes c<strong>on</strong>tinued to prevail in 1991-1993.As phytoplankt<strong>on</strong> biomass c<strong>on</strong>tinued to retain itsmaximum level <strong>and</strong> <strong>the</strong> entire pelagic stocks weredepleted, herbivorous zooplankt<strong>on</strong> <strong>and</strong> gelatinouscarnivore st<strong>and</strong>ing stocks collapsed abruptly withina year. Complete collapse <str<strong>on</strong>g>of</str<strong>on</strong>g> st<strong>and</strong>ing stocks at alltrophic levels above <strong>the</strong> first level, reflects a uniquecatastrophic event experienced by any large marineecosystem over <strong>the</strong> world to date.The Black Sea has been impacted by <strong>the</strong> adverseeffect <str<strong>on</strong>g>of</str<strong>on</strong>g> climatic warming after <strong>the</strong> mid-1990s,which led to poor nutrient enrichment <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> surfacelayer <strong>and</strong> subsequent decrease in phytoplankt<strong>on</strong>abundance. Poor productivity <str<strong>on</strong>g>of</str<strong>on</strong>g> all higher trophiclevels occurred because <str<strong>on</strong>g>of</str<strong>on</strong>g> limited food availability.However, <strong>the</strong> decline <str<strong>on</strong>g>of</str<strong>on</strong>g> Mnemiopsis helped smallpelagic fish to recover, to take over <strong>the</strong> c<strong>on</strong>trol <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong>food web, <strong>and</strong> to gradually establish <strong>the</strong> classical foodchain. The introducti<strong>on</strong> in 1998 <str<strong>on</strong>g>of</str<strong>on</strong>g> ano<strong>the</strong>r gelatinouscarnivore Beroe ovata into <strong>the</strong> Black Sea (via ballastwaters), which preyed mainly <strong>on</strong> Mnemiopsis, alsoc<strong>on</strong>tributed to <strong>the</strong> recovery <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> ecosystem at <strong>the</strong>end <str<strong>on</strong>g>of</str<strong>on</strong>g> 1990s. Beroe ovata adapted quickly <strong>and</strong>easily to <strong>the</strong> Black Sea c<strong>on</strong>diti<strong>on</strong>s, <strong>and</strong> spread ayear later over most parts <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> sea. Predati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g>Mnemiopsis by Beroe was immediately reflected bya two- to three-fold increase in mesozooplankt<strong>on</strong>biomass, ichtyoplankt<strong>on</strong> biomass, <strong>and</strong> fish stocks(Kideys 2002; Shiganova et al. 2003).The impact <str<strong>on</strong>g>of</str<strong>on</strong>g> climate change <strong>on</strong> <strong>the</strong> rise <strong>and</strong> fall <str<strong>on</strong>g>of</str<strong>on</strong>g>small pelagic st<strong>and</strong>ing stocks emerges very clearlyin <strong>the</strong> temporal distributi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> sprat <strong>and</strong> anchovyabundance (Oguz et al. 2006). Sprat <strong>and</strong> anchovyare <strong>the</strong> two most dominant small pelagic fish speciesin <strong>the</strong> Black Sea <strong>and</strong> acted as <strong>the</strong> top predatorsin <strong>the</strong> ecosystem following <strong>the</strong> depleti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> higherpredators due to overfishing during <strong>the</strong> 1960s <strong>and</strong><strong>the</strong> early 1970s. Sprat is a cold-water speciesspawning in autumn <strong>and</strong> winter m<strong>on</strong>ths. Spratstocks <strong>the</strong>refore increased up to 500-600 kt<strong>on</strong>s<str<strong>on</strong>g>Impacts</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Climate</str<strong>on</strong>g> <str<strong>on</strong>g>Change</str<strong>on</strong>g> <strong>on</strong> <strong>the</strong> <strong>European</strong> <strong>Marine</strong> <strong>and</strong> <strong>Coastal</strong> Envir<strong>on</strong>ment 53


4. Regi<strong>on</strong>al resp<strong>on</strong>ses <strong>and</strong> impactsduring <strong>the</strong> cold years (during <strong>the</strong> mid-1970s <strong>and</strong>mid-1980s) <strong>and</strong> dropped to a minimum level <str<strong>on</strong>g>of</str<strong>on</strong>g>about 100-200 kt<strong>on</strong>s during <strong>the</strong> warm years (early1970s <strong>and</strong> 1980s). On <strong>the</strong> o<strong>the</strong>r h<strong>and</strong>, anchovy isa warm water species, spawns preferentially duringsummer <strong>and</strong> autumn m<strong>on</strong>ths, <strong>and</strong> <strong>the</strong>refore followsan opposite trend in variati<strong>on</strong>s to those <str<strong>on</strong>g>of</str<strong>on</strong>g> spratstocks between <strong>the</strong> extreme values <str<strong>on</strong>g>of</str<strong>on</strong>g> 300 <strong>and</strong> 700kt<strong>on</strong>s. The cyclic variati<strong>on</strong>s in both sprat <strong>and</strong> anchovystocks were however disrupted byan abrupt drop in<strong>the</strong>ir stocks to about 100 kt<strong>on</strong>s at <strong>the</strong> end <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong>1980s as <strong>the</strong>y had exceeded a sustainable levelin 1987 because <str<strong>on</strong>g>of</str<strong>on</strong>g> str<strong>on</strong>g overfishing (Prodanovet al. 1997; Gucu 2002). In additi<strong>on</strong>, excessivefeeding pressure introduced by high Mnemiopsisleidyi populati<strong>on</strong>s may have c<strong>on</strong>tributed todepleti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> sprat stocks (e.g. Shulman etal. 1994; Shiganova 1998; Kideys et al. 2000).Projecti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> climate changeAt present, no projecti<strong>on</strong> <strong>on</strong> how climate changemay affect this regi<strong>on</strong> is available. The data showwell-defined oscillati<strong>on</strong>s during <strong>the</strong> past 100years <strong>and</strong> <strong>the</strong>re is no reas<strong>on</strong> to expect that <strong>the</strong>seoscillati<strong>on</strong>s will not c<strong>on</strong>tinue into <strong>the</strong> future. However,<strong>the</strong>se oscillati<strong>on</strong>s may be superimposed <strong>on</strong> a morewell-defined general trend <str<strong>on</strong>g>of</str<strong>on</strong>g> warming. The BlackSea regi<strong>on</strong> is influenced by several telec<strong>on</strong>necti<strong>on</strong>patterns, making future predicti<strong>on</strong>s more challengingthan for areas that are mainly modulated by, forexample, <strong>the</strong> NAO al<strong>on</strong>e. In additi<strong>on</strong>, this regi<strong>on</strong>was str<strong>on</strong>gly influenced by external factors o<strong>the</strong>rthan climate change al<strong>on</strong>e, such as eutrophicati<strong>on</strong><strong>and</strong> overfishing. Both eutrophicati<strong>on</strong> <strong>and</strong> overfishinghave had tremendous impacts <strong>on</strong> <strong>the</strong> ecosystem<strong>and</strong> still have a str<strong>on</strong>g influence.Current research <strong>and</strong> m<strong>on</strong>itoring programmes<strong>and</strong> projects in <strong>the</strong> Black SeaThe various research <strong>and</strong> m<strong>on</strong>itoring programmes<strong>and</strong> projects which are currently carried out fromnati<strong>on</strong>al funding in different countries bordering <strong>the</strong>Black Sea are mostly decoupled, except for a fewsmall-scale collaborative efforts funded by variousinternati<strong>on</strong>al bodies including <strong>the</strong> <strong>European</strong> Uni<strong>on</strong>;Truly interdisciplinary, internati<strong>on</strong>al collaborativeresearch efforts are needed to detect <strong>and</strong> m<strong>on</strong>itor<strong>the</strong> evoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> present post-eutrophicati<strong>on</strong>phase <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> ecosystem.4.12 General trends <strong>and</strong> regi<strong>on</strong>alspecific expectati<strong>on</strong>sRecent research, including <strong>the</strong> examinati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> icecores <strong>and</strong> growth rings <str<strong>on</strong>g>of</str<strong>on</strong>g> ancient trees, shows that<strong>the</strong> Nor<strong>the</strong>rn Hemisphere has been warmer since1980 than at any o<strong>the</strong>r time during <strong>the</strong> last 2000years (Mann <strong>and</strong> J<strong>on</strong>es 2003; Moberg et al. 2005).The observed <strong>and</strong> predicted increase in temperatureunder climate change is generally higher in nor<strong>the</strong>rnthan in sou<strong>the</strong>rn <strong>European</strong> seas. For <strong>the</strong> mostnor<strong>the</strong>rn seas, such as <strong>the</strong> Arctic <strong>and</strong> <strong>the</strong> BarentsSea, <strong>the</strong> most obvious temperature-related changeis <strong>the</strong> decline in sea-ice cover. Both <strong>the</strong> Arctic <strong>and</strong><strong>the</strong> Barents Sea are predicted to be ice-free duringsummer within <strong>the</strong> next 100 years. The reducti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><strong>the</strong> formerly ice-covered area is expected to resultin a decline, <strong>and</strong> possible extincti<strong>on</strong>, <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> speciesthat depend <strong>on</strong> this habitat, such as ringed seals<strong>and</strong> polar bears. The disappearance <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> ice mayincrease local productivity levels in <strong>the</strong> sea. On alarger scale, <strong>the</strong> reducti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> ice-covered areasmay lead to an increase in heat absorpti<strong>on</strong> <strong>and</strong>changes in c<strong>on</strong>vecti<strong>on</strong> <strong>and</strong> water mass formati<strong>on</strong>,possibly affecting temperature <strong>and</strong> ocean currentsglobally.Although all ecosystems have been influenced bymany o<strong>the</strong>r factors, such as eutrophicati<strong>on</strong> <strong>and</strong>overfishing, every regi<strong>on</strong> examined has shown atleast some changes which are most likely a director indirect result <str<strong>on</strong>g>of</str<strong>on</strong>g> recent climate change. Although<strong>the</strong>re can be no certainty regarding <strong>the</strong> precise nature<strong>and</strong> rate <str<strong>on</strong>g>of</str<strong>on</strong>g> future climate change, even <strong>the</strong> moremoderate <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> predicted scenarios is expectedto fur<strong>the</strong>r alter <strong>the</strong> marine envir<strong>on</strong>ment. For futureplanning <strong>and</strong> development <str<strong>on</strong>g>of</str<strong>on</strong>g> adaptati<strong>on</strong> strategiesto climate change, improved underst<strong>and</strong>ing<strong>and</strong> predicti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> ultimate c<strong>on</strong>sequences <str<strong>on</strong>g>of</str<strong>on</strong>g>climate change in relati<strong>on</strong> to c<strong>on</strong>current effects <str<strong>on</strong>g>of</str<strong>on</strong>g>o<strong>the</strong>r stressors such as changes in nutrient loads,invasi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> n<strong>on</strong>-indigenous species <strong>and</strong> exploitati<strong>on</strong><str<strong>on</strong>g>of</str<strong>on</strong>g> marine living resources is needed.The populati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> many marine species areexhibiting a displacement northward. The rate<strong>and</strong> directi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> this movement, however, differsam<strong>on</strong>gst <strong>the</strong> various seas <strong>and</strong> species. Enclosedseas, such as <strong>the</strong> Baltic Sea, <strong>the</strong> Mediterranean<strong>and</strong> <strong>the</strong> Black Sea, have <strong>on</strong>ly small <strong>and</strong> primarily54 <str<strong>on</strong>g>Impacts</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Climate</str<strong>on</strong>g> <str<strong>on</strong>g>Change</str<strong>on</strong>g> <strong>on</strong> <strong>the</strong> <strong>European</strong> <strong>Marine</strong> <strong>and</strong> <strong>Coastal</strong> Envir<strong>on</strong>ment


east-west orientated movement corridors, whichmay restrict northward displacement in <strong>the</strong>se areas.Fur<strong>the</strong>r warming will presumably drive <strong>the</strong> marinespecies with a preference for cooler waters up to<strong>the</strong> nor<strong>the</strong>rn coastlines <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong>se areas, followed byextincti<strong>on</strong> if <strong>the</strong>y are not able to adapt to <strong>the</strong> newcircumstances. Invasi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> warm-water species into<strong>the</strong> North Sea <strong>and</strong> English Channel could occur byspecies originating from <strong>the</strong> south or <strong>the</strong> east, <strong>and</strong>by species originating from <strong>the</strong> more oceanic waters<str<strong>on</strong>g>of</str<strong>on</strong>g>f <strong>the</strong> western coasts <str<strong>on</strong>g>of</str<strong>on</strong>g> Britain, Irel<strong>and</strong> <strong>and</strong> France,which have relatively high winter temperatures.Noticeably, <strong>the</strong> enclosed seas appear to haveunderg<strong>on</strong>e far more dramatic changes than <strong>the</strong>more open seas during <strong>the</strong> past decades. Relativelysmall changes in <strong>the</strong> frequency <str<strong>on</strong>g>of</str<strong>on</strong>g> inflow (as in <strong>the</strong>Baltic Sea) or in temperature (as in <strong>the</strong> EasternMediterranean <strong>and</strong> Black Sea) have had str<strong>on</strong>geffects <strong>on</strong> large parts <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> ecosystem. This impliesthat although <strong>the</strong> temperature increase is predictedto be relatively small in <strong>the</strong> more sou<strong>the</strong>rn waters,<strong>the</strong> effects <str<strong>on</strong>g>of</str<strong>on</strong>g> climate change are still likely to bequite large in <strong>the</strong>se waters.For most open seas, <strong>the</strong>re is evidence <str<strong>on</strong>g>of</str<strong>on</strong>g> speciesmoving northwards <strong>and</strong>/or nor<strong>the</strong>rn species beingreplaced by more sou<strong>the</strong>rn <strong>on</strong>es. Such changesnot <strong>on</strong>ly affect <strong>the</strong> local ecosystems, but also <strong>the</strong>internati<strong>on</strong>al fishing industry when commercialspecies are affected. It must be noted, however, thata climate-induced decline in species abundance <strong>and</strong>biodiversity may trigger overfishing if <strong>on</strong>e tries to gain<strong>the</strong> same yield from a (locally) reduced stock. Undersuch circumstances, it is impossible to distinguishbetween <strong>the</strong> effects <str<strong>on</strong>g>of</str<strong>on</strong>g> climate change <strong>and</strong>overfishing. Even in <strong>the</strong> more open seas, however,species do not always move northwards if <strong>the</strong>irprey is not available. Both in <strong>the</strong> Barents Sea <strong>and</strong> in<strong>the</strong> North Sea, marine mammals were observed tomove southwards when <strong>the</strong>ir prey stocks collapsed.Such changes indicate that detailed knowledge <str<strong>on</strong>g>of</str<strong>on</strong>g>species’ physiology, bioenergetics <strong>and</strong> behaviour isneeded to adequately predict <strong>the</strong> impact <str<strong>on</strong>g>of</str<strong>on</strong>g> climatechange <strong>on</strong> <strong>the</strong> distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> marine organisms <strong>and</strong>marine food webs.It is expected that within open systems <strong>the</strong>re willgenerally be northward movement <str<strong>on</strong>g>of</str<strong>on</strong>g> species,for example Arctic species will be replaced byAtlantic species in <strong>the</strong> more nor<strong>the</strong>rn seas suchas <strong>the</strong> Arctic, Barents Sea <strong>and</strong> <strong>the</strong> Nordic Seas,while temperate species will be replaced by moresubtropical species in <strong>the</strong> sou<strong>the</strong>rn seas such as<strong>the</strong> Iberian upwelling margin. For seas that are highlyinfluenced by river run<str<strong>on</strong>g>of</str<strong>on</strong>g>f, such as <strong>the</strong> Baltic Sea,an increase in freshwater due to enhanced rainfallwill lead to a shift from marine to more brackish<strong>and</strong> even freshwater species. If enclosed systemssuch as <strong>the</strong> Mediterranean <strong>and</strong> <strong>the</strong> Black Sea lose<strong>the</strong>ir endemic species, <strong>the</strong>ir associated nicheswill probably be filled by species originating fromadjacent waters <strong>and</strong>, possibly, from o<strong>the</strong>r sourcessuch as ballast water.<strong>European</strong> seas c<strong>on</strong>sist <str<strong>on</strong>g>of</str<strong>on</strong>g> more than 68,000 km<str<strong>on</strong>g>of</str<strong>on</strong>g> coastline, harbouring internati<strong>on</strong>ally importantwetl<strong>and</strong>s <strong>and</strong> major cities <strong>and</strong> ports. Thecombinati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> accelerating sea-level rise (<strong>and</strong>a possible increase in <strong>the</strong> frequency <strong>and</strong>intensity<str<strong>on</strong>g>of</str<strong>on</strong>g> storms), as predicted for most <strong>European</strong> seas,will severely increase <strong>the</strong> risk <str<strong>on</strong>g>of</str<strong>on</strong>g> flooding <strong>and</strong>subsequent loss <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong>se areas. Fur<strong>the</strong>r extensi<strong>on</strong>,raising <strong>and</strong> reinforcement <str<strong>on</strong>g>of</str<strong>on</strong>g> artificial coastaldefences may protect populated areas, but resultin loss <str<strong>on</strong>g>of</str<strong>on</strong>g> sedimentary nourishment <str<strong>on</strong>g>of</str<strong>on</strong>g> coastalmarine habitats, with c<strong>on</strong>sequences for livingmarine resources, including aquaculture. Manymarine organisms such as fish spend part <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong>irlife cycle in <strong>the</strong> relatively sheltered areas al<strong>on</strong>g <strong>the</strong>coast. Loss <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong>se areas may impact <strong>on</strong> <strong>the</strong>seanimals during that specific part <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong>ir life cycle. Inadditi<strong>on</strong>, changes in <strong>the</strong> strength <strong>and</strong> seas<strong>on</strong>ality <str<strong>on</strong>g>of</str<strong>on</strong>g>upwelling in areas al<strong>on</strong>g <strong>the</strong> coast could influence <strong>the</strong>retenti<strong>on</strong>-dispersal mechanisms <str<strong>on</strong>g>of</str<strong>on</strong>g> (juvenile) fish <strong>and</strong>shellfish between coastal waters <strong>and</strong> open sea, withunknown c<strong>on</strong>sequences for species’ recruitment.<str<strong>on</strong>g>Impacts</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Climate</str<strong>on</strong>g> <str<strong>on</strong>g>Change</str<strong>on</strong>g> <strong>on</strong> <strong>the</strong> <strong>European</strong> <strong>Marine</strong> <strong>and</strong> <strong>Coastal</strong> Envir<strong>on</strong>ment 55


5. Future needs for m<strong>on</strong>itoring <strong>and</strong> indicators5.1 Introducti<strong>on</strong>Although marine waters are relatively well m<strong>on</strong>itoredthroughout Europe, most <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong>se m<strong>on</strong>itoringprogrammes <strong>and</strong> projects are limited to regi<strong>on</strong>al seas(or parts <strong>the</strong>re<str<strong>on</strong>g>of</str<strong>on</strong>g>) <strong>and</strong>/or to a few parameters selectedas indicators <str<strong>on</strong>g>of</str<strong>on</strong>g> a particular state (e.g. temperature,c<strong>on</strong>centrati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> a particular c<strong>on</strong>taminant, size <str<strong>on</strong>g>of</str<strong>on</strong>g>a commercial fish stock). At present, pan-<strong>European</strong>m<strong>on</strong>itoring programmes <strong>and</strong> projects are beingdeveloped in <strong>the</strong> c<strong>on</strong>text <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> EU Water FrameworkDirective <strong>and</strong> <strong>the</strong> EU <strong>Marine</strong> Thematic Strategy(see Box 3). A c<strong>on</strong>certed effort is needed to ensurethat previously <strong>and</strong> currently collected marineenvir<strong>on</strong>mental data <strong>and</strong> those that are planned aspart <str<strong>on</strong>g>of</str<strong>on</strong>g> future pan-<strong>European</strong> initiatives c<strong>on</strong>tribute to abetter evaluati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> climate change <strong>and</strong> its impacts.To predict <strong>the</strong> c<strong>on</strong>sequences <str<strong>on</strong>g>of</str<strong>on</strong>g> climate changefor our marine envir<strong>on</strong>ment, it is necessary tomeasure parameters that are indicative <str<strong>on</strong>g>of</str<strong>on</strong>g> underlyingmechanisms <str<strong>on</strong>g>of</str<strong>on</strong>g> climate-induced changes. Since <strong>the</strong>indicative value <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> parameters may change intime, <strong>the</strong> applicati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> such mechanistic indicatorsshould go h<strong>and</strong> in h<strong>and</strong> with in-depth research <strong>on</strong><strong>the</strong>se mechanisms. New technologies should beBox 3: Towards pan-european m<strong>on</strong>itoringactivitiesOn 23 October 2000, <strong>the</strong> Directive 2000/60/EC<str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> <strong>European</strong> Parliament <strong>and</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> Councilestablishing a framework for <strong>the</strong> Communityacti<strong>on</strong> in <strong>the</strong> field <str<strong>on</strong>g>of</str<strong>on</strong>g> water policy; known as <strong>the</strong>EU Water Framework Directive (WFD) wasadopted (http://ec.europa.eu/envir<strong>on</strong>ment/water/water-framework). The key objectives at <strong>European</strong>level are general protecti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> aquatic ecology,specific protecti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> unique <strong>and</strong> valuable habitats,protecti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> drinking water resources, <strong>and</strong>protecti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> bathing water. All <strong>the</strong>se objectivesmust be integrated for each River Basin District,defined by natural geographical <strong>and</strong> hydrologicalboundaries <strong>and</strong> including coastal waters, upto <strong>on</strong>e nautical mile bey<strong>on</strong>d <strong>the</strong> shoreline. Thegeneral objective <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> WFD is to achieve ‘goodecological status’ (for ecological protecti<strong>on</strong>)<strong>and</strong> good chemical status (minimum chemicalst<strong>and</strong>ard) for all surface waters by 2015. The firstdeadline in <strong>the</strong> Directive relating to m<strong>on</strong>itoring isat <strong>the</strong> end <str<strong>on</strong>g>of</str<strong>on</strong>g> 2007, when Member States shouldhave <strong>the</strong>ir m<strong>on</strong>itoring programmes defined <strong>and</strong>ready for commencement.Meanwhile, a <strong>Marine</strong> Thematic StrategyDirective will establish <strong>European</strong> <strong>Marine</strong>Regi<strong>on</strong>s <strong>on</strong> <strong>the</strong> basis <str<strong>on</strong>g>of</str<strong>on</strong>g> geographical <strong>and</strong>envir<strong>on</strong>mental criteria. Each Member State, inclose cooperati<strong>on</strong> with <strong>the</strong> relevant o<strong>the</strong>r MemberStates <strong>and</strong> third countries within a <strong>Marine</strong> Regi<strong>on</strong>,will be required to develop <strong>Marine</strong> Strategiesfor its marine waters. The <strong>Marine</strong> Strategies willc<strong>on</strong>tain a detailed assessment <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> state <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong>envir<strong>on</strong>ment, a definiti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> good envir<strong>on</strong>mentalstatus at regi<strong>on</strong>al level <strong>and</strong> <strong>the</strong> establishment<str<strong>on</strong>g>of</str<strong>on</strong>g> clear envir<strong>on</strong>mental targets <strong>and</strong> m<strong>on</strong>itoringprogrammes. The key aim is to achieve goodstatus <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> EU’s marine envir<strong>on</strong>ment by 2021.On 7 June 2006, <strong>the</strong> <strong>European</strong> Commissi<strong>on</strong>adopted a Green Paper <strong>on</strong> a Future MaritimePolicy for <strong>the</strong> <strong>European</strong> Uni<strong>on</strong> (http://ec.europa.eu/maritimeaffairs). One <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> motivati<strong>on</strong>s for<strong>the</strong> EU to be involved in such a policy is thatit recognises that <strong>the</strong> protecti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> marineecosystems <strong>and</strong> fisheries resources in <strong>European</strong>waters cannot be tackled by Member Statesindividually. One proposal <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> Green Paper is toestablish a <strong>European</strong> <strong>Marine</strong> Observati<strong>on</strong> <strong>and</strong>Data Network which would provide a sustainablefocus for improving systematic observati<strong>on</strong> (in situ<strong>and</strong> from space), interoperability <strong>and</strong> increasingaccess to data, based <strong>on</strong> robust, open <strong>and</strong> genericinformati<strong>on</strong> <strong>and</strong> communicati<strong>on</strong> technologysoluti<strong>on</strong>s. In this c<strong>on</strong>text, <strong>the</strong> Global M<strong>on</strong>itoringfor Envir<strong>on</strong>ment <strong>and</strong> Security (GMES) initiativewill implement a number <str<strong>on</strong>g>of</str<strong>on</strong>g> public informati<strong>on</strong>services in support <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>European</strong> policies, derivedfrom in situ <strong>and</strong> space observati<strong>on</strong>s (http://www.gmes.info). It is proposed that GMES shouldc<strong>on</strong>stitute a major comp<strong>on</strong>ent for <strong>the</strong> DataNetwork <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> Maritime Policy.56 <str<strong>on</strong>g>Impacts</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Climate</str<strong>on</strong>g> <str<strong>on</strong>g>Change</str<strong>on</strong>g> <strong>on</strong> <strong>the</strong> <strong>European</strong> <strong>Marine</strong> <strong>and</strong> <strong>Coastal</strong> Envir<strong>on</strong>ment


employed to measure <strong>the</strong>se types <str<strong>on</strong>g>of</str<strong>on</strong>g> indicators (e.g.fluxes) <strong>and</strong> to reach <strong>the</strong> appropriate temporal <strong>and</strong>spatial resoluti<strong>on</strong> (e.g. using automatic samplingequipment <strong>and</strong> satellite images).5.2 IndicatorsAn indicator (e.g. temperature or length <str<strong>on</strong>g>of</str<strong>on</strong>g> growingseas<strong>on</strong>) is defined as a variable or measure thatreveals some key element <str<strong>on</strong>g>of</str<strong>on</strong>g> a system. Its value <strong>and</strong>l<strong>on</strong>g-term trend indicates <strong>the</strong> present state relativeto a reference point <strong>and</strong> thus measures dynamics<str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> system. Specific indicators can be used tom<strong>on</strong>itor trends <strong>and</strong> detect sudden changes inenvir<strong>on</strong>mental c<strong>on</strong>diti<strong>on</strong>s which are c<strong>on</strong>sidered tobe <strong>the</strong> result <str<strong>on</strong>g>of</str<strong>on</strong>g> climate variability.<str<strong>on</strong>g>of</str<strong>on</strong>g> data, historical data for estimati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> referencevalues (for example, an average temperature for<strong>the</strong> period 1961-1990) <strong>and</strong> build up c<strong>on</strong>fidencein interpretati<strong>on</strong>. If l<strong>on</strong>g-term m<strong>on</strong>itoring protocolshave to be adapted for new indicators, however,some c<strong>on</strong>flict may arise between c<strong>on</strong>sistency <strong>and</strong>improvement.Applicati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> indicators <strong>on</strong> a pan-<strong>European</strong> scalerequires that <strong>the</strong> indicators are c<strong>on</strong>sistently measuredover time <strong>and</strong> over a broad range <str<strong>on</strong>g>of</str<strong>on</strong>g> ecosystems.Intercalibrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> similar indicators (e.g. primaryproducti<strong>on</strong>) is desirable, but not essential if <strong>the</strong> rate<str<strong>on</strong>g>of</str<strong>on</strong>g> change, <strong>and</strong> not <strong>the</strong> actual value is desired. N<strong>on</strong>e<str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> individual indicators is likely to be influencedby climate change al<strong>on</strong>e. Groups <str<strong>on</strong>g>of</str<strong>on</strong>g> indicators will<strong>the</strong>refore be needed to c<strong>on</strong>clusively dem<strong>on</strong>strate if<strong>and</strong> how climate change affects marine systems.Indicators should be simple, reliable <strong>and</strong> affordable;simplicity implies being easy to underst<strong>and</strong> <strong>and</strong>to measure. To be reliable, indicators should bec<strong>on</strong>ceptually <strong>and</strong> methodologically well founded.Indicators based <strong>on</strong> <strong>on</strong>-going l<strong>on</strong>g-termm<strong>on</strong>itoring programmes <strong>and</strong> projects can takeadvantage <str<strong>on</strong>g>of</str<strong>on</strong>g> tested protocols for routine collecti<strong>on</strong><str<strong>on</strong>g>Impacts</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Climate</str<strong>on</strong>g> <str<strong>on</strong>g>Change</str<strong>on</strong>g> <strong>on</strong> <strong>the</strong> <strong>European</strong> <strong>Marine</strong> <strong>and</strong> <strong>Coastal</strong> Envir<strong>on</strong>ment 57


5. Future needs for m<strong>on</strong>itoring <strong>and</strong> indicators5.3 Abiotic indicatorsAbiotic indicators <str<strong>on</strong>g>of</str<strong>on</strong>g> potential climate change c<strong>on</strong>sist<str<strong>on</strong>g>of</str<strong>on</strong>g> ocean forcing functi<strong>on</strong>s (atmospheric <strong>and</strong>hydrological) as well as sea-ice <strong>and</strong> oceanographicproperties. These represent a minimum suite<str<strong>on</strong>g>of</str<strong>on</strong>g> indicators needed to address climate changeissues <strong>and</strong> determine possible causes <str<strong>on</strong>g>of</str<strong>on</strong>g> ecosystemchanges. Many <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong>se indicators are already beingmeasured or estimated, but such measurementsmust be maintained. O<strong>the</strong>rs need to be exp<strong>and</strong>ed.Year-to-year variati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> indicators shouldbe c<strong>on</strong>sidered, <strong>and</strong> also <strong>the</strong> seas<strong>on</strong>al variati<strong>on</strong>(e.g. <strong>on</strong>set <str<strong>on</strong>g>of</str<strong>on</strong>g> stratificati<strong>on</strong> <strong>and</strong> upwelling). Abioticindicators include:Atmospheric indicators• Large-scale atmospheric pressure indices(e.g. NAO, AO, etc.);• Atmospheric temperatures at st<strong>and</strong>ardmeteorological sites;• Winds, directly measured as well as modelledvalues that provide broad spatial coveragethroughout <strong>European</strong> waters;• Precipitati<strong>on</strong> directly measured at st<strong>and</strong>ardmeteorological sites plus modelled valuesover marine areas.Hydrological indicators• River run<str<strong>on</strong>g>of</str<strong>on</strong>g>f in all <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> major rivers inEurope <strong>and</strong> flowing into <strong>the</strong> Arctic;• Estimated total river run<str<strong>on</strong>g>of</str<strong>on</strong>g>f into each <str<strong>on</strong>g>of</str<strong>on</strong>g><strong>the</strong> major <strong>European</strong> marine regi<strong>on</strong>s (includinghuman activities in catchment areas such asagriculture irrigati<strong>on</strong> <strong>and</strong> canalisati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> rivers).Sea-ice indicators• Sea-ice area coverage in <strong>the</strong> Baltic, Barents<strong>and</strong> Nordic Seas <strong>and</strong> <strong>the</strong> Arctic;• Sea-ice c<strong>on</strong>centrati<strong>on</strong>s, thickness <strong>and</strong>ice type, including amount <str<strong>on</strong>g>of</str<strong>on</strong>g> multi-year ice.• Mixed Layer Depth: The depth <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong>surface mixed layer;• Stratificati<strong>on</strong>: The strength <str<strong>on</strong>g>of</str<strong>on</strong>g> verticalchange in density between <strong>the</strong> mixed layer<strong>and</strong> subsurface waters;• Heat c<strong>on</strong>tent: The amount <str<strong>on</strong>g>of</str<strong>on</strong>g> heat in <strong>the</strong>upper 200 m <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> ocean;• Ocean fr<strong>on</strong>ts: The positi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> largescaleocean fr<strong>on</strong>ts separating water masseswith different temperature <strong>and</strong> salinitycharacteristics, e.g. <strong>the</strong> Arctic Fr<strong>on</strong>t betweenArctic <strong>and</strong> Atlantic water masses in <strong>the</strong>Nordic <strong>and</strong> Barents Seas;• Sea-level elevati<strong>on</strong>s: direct measurementsat l<strong>on</strong>g-term coastal sea-level m<strong>on</strong>itoring sites<strong>and</strong> estimates from satellite informati<strong>on</strong>;• Frequency, intensity <strong>and</strong> locati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> stormsurges;• Volume transports: Current measurementsshould focus <strong>on</strong> water exchanges in channels<strong>and</strong> straits such as <strong>the</strong> Fram Strait, DenmarkStrait, <strong>the</strong> entrances to <strong>the</strong> Barents Sea <strong>and</strong>North Sea as well as <strong>the</strong> Baltic (Kattegat), <strong>the</strong>Mediterranean (Straits <str<strong>on</strong>g>of</str<strong>on</strong>g> Gibraltar) <strong>and</strong> <strong>the</strong>Black Sea (Bosphorus <strong>and</strong> Dardenelles);• North Atlantic currents: Detected fromsatellite altimetry <strong>and</strong> annual hydrologicaldata al<strong>on</strong>g 26°N <strong>and</strong> al<strong>on</strong>g 22°W;• Regi<strong>on</strong>al currents: e.g. <strong>the</strong> Iberian PolewardCurrent (IPC);• Upwelling indices (based <strong>on</strong> measure <str<strong>on</strong>g>of</str<strong>on</strong>g>upwelling frequency <strong>and</strong> intensity): obtainedfrom wind data, satellite <strong>the</strong>rmal imagery <strong>and</strong>in situ observati<strong>on</strong>s for regi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g>f <strong>the</strong> IberianPeninsula <strong>and</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g>f <strong>the</strong> Bay <str<strong>on</strong>g>of</str<strong>on</strong>g> Biscay.Oceanographic indicators• Temperature <strong>and</strong> salinity: This shouldinclude c<strong>on</strong>tinuati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> l<strong>on</strong>g-term m<strong>on</strong>itoringsuch as <strong>the</strong> Kola Secti<strong>on</strong> in <strong>the</strong> BarentsSea <strong>and</strong> <strong>the</strong> Wea<strong>the</strong>r Stati<strong>on</strong> Mike in <strong>the</strong>Norwegian Sea, as well as numerouscoastal sites, st<strong>and</strong>ard ocean transects, etc;m<strong>on</strong>itoring <str<strong>on</strong>g>of</str<strong>on</strong>g> sea-surface temperatures bysatellite; <strong>and</strong> use <str<strong>on</strong>g>of</str<strong>on</strong>g> new technology such asgliders for undersampled regi<strong>on</strong>s (e.g. <strong>the</strong>Arctic) <strong>and</strong> seas<strong>on</strong>s (winter);58 <str<strong>on</strong>g>Impacts</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Climate</str<strong>on</strong>g> <str<strong>on</strong>g>Change</str<strong>on</strong>g> <strong>on</strong> <strong>the</strong> <strong>European</strong> <strong>Marine</strong> <strong>and</strong> <strong>Coastal</strong> Envir<strong>on</strong>ment


Coastline indicators• Number <str<strong>on</strong>g>of</str<strong>on</strong>g> stormy days (above a fixed windspeed);• Rise in sea level relative to l<strong>and</strong>;• Frequency <strong>and</strong> intensity <str<strong>on</strong>g>of</str<strong>on</strong>g> flooding events;• <strong>Coastal</strong> erosi<strong>on</strong> <strong>and</strong> accreti<strong>on</strong>: length <str<strong>on</strong>g>of</str<strong>on</strong>g>protected <strong>and</strong> defended coastline; area <strong>and</strong>volume <str<strong>on</strong>g>of</str<strong>on</strong>g> s<strong>and</strong> nourishment;• Status <strong>and</strong> trend <str<strong>on</strong>g>of</str<strong>on</strong>g> specified coastalhabitats; salt marsh, tidal flats, s<strong>and</strong> dunes,s<strong>and</strong>y beaches.5.4 Biotic indicatorsBiotic indicators <str<strong>on</strong>g>of</str<strong>on</strong>g> potential climate change canbe categorised into four groups, as indicatorsrelated to: i) community compositi<strong>on</strong>; ii) speciesabundance; iii) phenology <str<strong>on</strong>g>of</str<strong>on</strong>g> biological events;<strong>and</strong> iv) distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> marine organisms.Some aspects <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong>se indicators are alreadybeing measured or estimated, but <strong>the</strong>y must berecalculated to be used as an indicator for climatechange; o<strong>the</strong>r aspects still need to be developed.Biotic indicators include:Community compositi<strong>on</strong> indicators• The ratio <str<strong>on</strong>g>of</str<strong>on</strong>g> species with colderaffinities to those with warmer affinitieswithin phytoplankt<strong>on</strong>, zooplankt<strong>on</strong>,macrozoobenthos, fish, bird <strong>and</strong> mammalcommunities;• The ratio between diatoms <strong>and</strong>din<str<strong>on</strong>g>of</str<strong>on</strong>g>lagellates within phytoplankt<strong>on</strong>communities;• The biomass ratio between populati<strong>on</strong>s<str<strong>on</strong>g>of</str<strong>on</strong>g> demersal <strong>and</strong> pelagic fish; biomass ratioin catch <strong>and</strong> l<strong>and</strong>ing statistics may also beused.• The (functi<strong>on</strong>al) biodiversity <str<strong>on</strong>g>of</str<strong>on</strong>g> microbes<strong>and</strong> changes <strong>the</strong>re<str<strong>on</strong>g>of</str<strong>on</strong>g> in space <strong>and</strong> time,as detected via new rapid sequencetechniques.• St<strong>and</strong>ing stocks <str<strong>on</strong>g>of</str<strong>on</strong>g> fish as a measure <str<strong>on</strong>g>of</str<strong>on</strong>g>producti<strong>on</strong> at this higher trophic level (<strong>the</strong>yare str<strong>on</strong>gly influenced by fishing effort,but will still to some extent reflect climatevariability).Phenology indicators• Onset <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> phytoplankt<strong>on</strong> spring bloom<strong>and</strong> timing <str<strong>on</strong>g>of</str<strong>on</strong>g> flowering <str<strong>on</strong>g>of</str<strong>on</strong>g> seagrass;• Timing <str<strong>on</strong>g>of</str<strong>on</strong>g> reproducti<strong>on</strong> <strong>and</strong> seas<strong>on</strong>almigrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> selected species <str<strong>on</strong>g>of</str<strong>on</strong>g>zooplankt<strong>on</strong>, macrozoobenthos, fish,birds <strong>and</strong> mammals.Reproducti<strong>on</strong> indicators• Recruitment indices (indices for year classstrength) for macrozoobenthos <strong>and</strong> fish;• Recruitment-spawning stock relati<strong>on</strong>shipsfor macrozoobenthos <strong>and</strong> fish;• Reproductive parameters: age <strong>and</strong> sizeat maturity, size <str<strong>on</strong>g>of</str<strong>on</strong>g> reproductive output,development time, <strong>and</strong> c<strong>on</strong>diti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g>juveniles;• Reproductive volume: <strong>the</strong> water masssuitable for reproducti<strong>on</strong> (e.g. for cod in<strong>the</strong> Baltic Sea <strong>the</strong> reproductive volume isestimated from informati<strong>on</strong> <strong>on</strong> salinity, ascod eggs float at salinity >11 ppm, <strong>and</strong>from informati<strong>on</strong> <strong>on</strong> oxygen c<strong>on</strong>tent, as <strong>the</strong>minimum oxygen c<strong>on</strong>centrati<strong>on</strong> for cod eggsto survive is 2 ml l -1 ). Cod recruitment is poorif <strong>the</strong> reproductive volume is small.Distributi<strong>on</strong> indicators• Range extensi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> existing species(presence/absence);• Annual <strong>and</strong> seas<strong>on</strong>al c<strong>on</strong>nectivitybetween subpopulati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> species withpelagic larvae;• Records <str<strong>on</strong>g>of</str<strong>on</strong>g> n<strong>on</strong>-indigenous species;• Abundance-weighted centres <str<strong>on</strong>g>of</str<strong>on</strong>g>distributi<strong>on</strong>.Abundance indicators• Phytoplankt<strong>on</strong>: CPR colour index(chlorophyll) <strong>and</strong> satellite-derived measures<str<strong>on</strong>g>of</str<strong>on</strong>g> chlorophyll c<strong>on</strong>centrati<strong>on</strong>s;<str<strong>on</strong>g>Impacts</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Climate</str<strong>on</strong>g> <str<strong>on</strong>g>Change</str<strong>on</strong>g> <strong>on</strong> <strong>the</strong> <strong>European</strong> <strong>Marine</strong> <strong>and</strong> <strong>Coastal</strong> Envir<strong>on</strong>ment 59


5. Future needs for m<strong>on</strong>itoring <strong>and</strong> indicatorsMarch 1999 April 1999Data collecti<strong>on</strong>: NASA’s SeaWiFS Project GeoEye/Data analysis: Plymouth <strong>Marine</strong> Laboratory for analysis/May 1999 June 1999SeaWiFS satellite images <str<strong>on</strong>g>of</str<strong>on</strong>g> chlorophyll c<strong>on</strong>centrati<strong>on</strong>s in <strong>the</strong> Nor<strong>the</strong>ast Atlantic.60 <str<strong>on</strong>g>Impacts</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Climate</str<strong>on</strong>g> <str<strong>on</strong>g>Change</str<strong>on</strong>g> <strong>on</strong> <strong>the</strong> <strong>European</strong> <strong>Marine</strong> <strong>and</strong> <strong>Coastal</strong> Envir<strong>on</strong>ment


5.5 Recommendati<strong>on</strong>sWith regard to future m<strong>on</strong>itoring <strong>and</strong> <strong>the</strong> use <str<strong>on</strong>g>of</str<strong>on</strong>g>indicators, <strong>the</strong> authors recommend <strong>the</strong> followingacti<strong>on</strong>s:• Maintenance <str<strong>on</strong>g>of</str<strong>on</strong>g> sustained m<strong>on</strong>itoring efforts(large-scale <strong>and</strong> l<strong>on</strong>g-term programmes <strong>and</strong>projects <strong>and</strong> local efforts);© www.argo.ucsd.edu• Use <str<strong>on</strong>g>of</str<strong>on</strong>g> new technologies to increase spatial<strong>and</strong> temporal resoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> measurements,for example ARGO floats, ferry boxes,gliders, satellite images, genomics;• New or increased m<strong>on</strong>itoring at key locati<strong>on</strong>s,e.g. encouragement <str<strong>on</strong>g>of</str<strong>on</strong>g> m<strong>on</strong>itoring efforts byRussia (in <strong>the</strong> Bering Strait) <strong>and</strong> Canada (in<strong>the</strong> Canadian Archipelago);• Development <str<strong>on</strong>g>of</str<strong>on</strong>g> new indicators to fill in gapsin knowledge <strong>on</strong> particular state variables <strong>and</strong>processes. There is a real need to develop abenthic habitat indicator at <strong>the</strong> scale <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong><strong>European</strong> shelf. This could be achieved byusing new technology based <strong>on</strong> multibeamside-scan s<strong>on</strong>ar (in combinati<strong>on</strong> with in situmeasurements);• Development <str<strong>on</strong>g>of</str<strong>on</strong>g> both general large-scale <strong>and</strong>specific regi<strong>on</strong>al indicators;• Establishment <str<strong>on</strong>g>of</str<strong>on</strong>g> a pan-<strong>European</strong> (orpreferably global) database with openaccess;• Pan-<strong>European</strong> annual reporting based <strong>on</strong>nati<strong>on</strong>al c<strong>on</strong>tributi<strong>on</strong>s .ARGO is a global array <str<strong>on</strong>g>of</str<strong>on</strong>g> 3,000 free-drifting pr<str<strong>on</strong>g>of</str<strong>on</strong>g>iling floats thatmeasures <strong>the</strong> temperature <strong>and</strong> salinity <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> upper 2,000 m <str<strong>on</strong>g>of</str<strong>on</strong>g><strong>the</strong> ocean. This allows c<strong>on</strong>tinuous m<strong>on</strong>itoring <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> temperature,salinity, <strong>and</strong> velocity <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> upper ocean, with all data being relayed<strong>and</strong> made publicly available within hours after collecti<strong>on</strong> (Provorfloat waiting to be recovered by <strong>the</strong> Japanese coastguard boat,<strong>the</strong> Takuro).<str<strong>on</strong>g>Impacts</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Climate</str<strong>on</strong>g> <str<strong>on</strong>g>Change</str<strong>on</strong>g> <strong>on</strong> <strong>the</strong> <strong>European</strong> <strong>Marine</strong> <strong>and</strong> <strong>Coastal</strong> Envir<strong>on</strong>ment 61


6. Future research needsArising from <strong>the</strong> preceding analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> climate changeimpacts <strong>on</strong> <strong>European</strong> marine <strong>and</strong> coastal waters, anumber <str<strong>on</strong>g>of</str<strong>on</strong>g> research needs can be identified. Futureresearch needs include: i) <strong>the</strong> identificati<strong>on</strong> <strong>and</strong>fur<strong>the</strong>r analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> historical data to describe pastocean climate <strong>and</strong> ecosystem development; <strong>and</strong> ii) abetter underst<strong>and</strong>ing <str<strong>on</strong>g>of</str<strong>on</strong>g> biogeochemical fluxes, foodweb dynamics <strong>and</strong> ecosystem functi<strong>on</strong>ing, includingfeedback mechanisms, under current predicti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g>climate change. Increased underst<strong>and</strong>ing will enable<strong>the</strong> development <str<strong>on</strong>g>of</str<strong>on</strong>g> improved regi<strong>on</strong>al climate models<strong>and</strong> predictive ecosystem models. As part <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong>global ecosystem, <strong>European</strong> research programmes<strong>and</strong> projects <strong>on</strong> <strong>the</strong> marine envir<strong>on</strong>ment must beintegral to internati<strong>on</strong>al research initiatives with aclimate comp<strong>on</strong>ent, for example, IMBER, SOLAS,GLOBEC <strong>and</strong> CLIVAR.Historical data <strong>and</strong> sustained observati<strong>on</strong>s1. Rec<strong>on</strong>structing past climates(Palaeoceanography): Fur<strong>the</strong>r research isneeded to identify <strong>and</strong> analyse proxy datasets (ice <strong>and</strong> sediment cores, growth rings,etc.) <str<strong>on</strong>g>of</str<strong>on</strong>g> climate change to recreate pastocean climate scenarios with <strong>the</strong> finestpossible spatial <strong>and</strong> temporal resoluti<strong>on</strong> tobetter underst<strong>and</strong> geographic variati<strong>on</strong>s <strong>and</strong><strong>the</strong>ir causes under natural c<strong>on</strong>diti<strong>on</strong>s.2. Harnessing existing envir<strong>on</strong>mental data:Increased effort is needed to identify,quality c<strong>on</strong>trol, assess, <strong>and</strong> make available<strong>the</strong> wealth <str<strong>on</strong>g>of</str<strong>on</strong>g> existing envir<strong>on</strong>mental datacollected as part <str<strong>on</strong>g>of</str<strong>on</strong>g> regi<strong>on</strong>al seas m<strong>on</strong>itoringprogrammes <strong>and</strong> projects <strong>and</strong> annual fishstock assessment surveys, to better detect<strong>and</strong> quantify climate-induced ecosystemchanges.3. Support for <strong>the</strong> c<strong>on</strong>tinuati<strong>on</strong> <strong>and</strong> linking<str<strong>on</strong>g>of</str<strong>on</strong>g> existing m<strong>on</strong>itoring <strong>and</strong> time-seriesprogrammes <strong>and</strong> projects <strong>and</strong> improvementin <strong>the</strong> spatial <strong>and</strong> temporal resoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong>variables. This would include, for example,<strong>the</strong> extensi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> CPR (C<strong>on</strong>tinuousPlankt<strong>on</strong> Recorder) surveys to all <strong>European</strong>seas <strong>and</strong> <strong>the</strong> establishment <str<strong>on</strong>g>of</str<strong>on</strong>g> new sustainedobservati<strong>on</strong>s in important regi<strong>on</strong>s (e.g. Iberianupwelling margin, Alboran Sea, Inner Bay <str<strong>on</strong>g>of</str<strong>on</strong>g>Biscay) by means <str<strong>on</strong>g>of</str<strong>on</strong>g> both traditi<strong>on</strong>al <strong>and</strong>new techniques (e.g. moorings <strong>and</strong> cablednetworks). Oceanographic observati<strong>on</strong>sneed to be integrated with observati<strong>on</strong>s <strong>on</strong>biodiversity <strong>and</strong> ecological processes in both<strong>the</strong> pelagic <strong>and</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g>fshore benthos, as well as<strong>the</strong> littoral z<strong>on</strong>es (intertidal <strong>and</strong> subtidal).4. Syn<strong>the</strong>sis <strong>and</strong> overview <str<strong>on</strong>g>of</str<strong>on</strong>g> climatechange in <strong>European</strong> marine waters: Thecompilati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Regi<strong>on</strong>al <strong>European</strong> Reportsusing a similar approach to ACIA (Arctic<str<strong>on</strong>g>Climate</str<strong>on</strong>g> Impact Assessment) <strong>and</strong> <strong>the</strong> BalticBACC (Baltex Assessment <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Climate</str<strong>on</strong>g><str<strong>on</strong>g>Change</str<strong>on</strong>g>).Drivers <strong>and</strong> ecosystem resp<strong>on</strong>ses5. Large-scale climate forcing: <strong>European</strong>seas are str<strong>on</strong>gly influenced by large-scaleatmospheric variability as reflected in differentair pressure patterns through indices such as<strong>the</strong> North Atlantic Oscillati<strong>on</strong> <strong>and</strong> <strong>the</strong> ArcticOscillati<strong>on</strong>. Research is needed to address<strong>the</strong> relati<strong>on</strong>ships between <strong>the</strong> differentpressure patterns <strong>and</strong> <strong>the</strong>ir interacti<strong>on</strong>s,<strong>the</strong> temporal variability in <strong>the</strong> strength <str<strong>on</strong>g>of</str<strong>on</strong>g><strong>the</strong> patterns, <strong>the</strong> mechanisms resp<strong>on</strong>siblefor <strong>the</strong>ir generati<strong>on</strong> <strong>and</strong> variability, includingfar-field effects <strong>and</strong> telec<strong>on</strong>necti<strong>on</strong> (e.g. <strong>the</strong>effects <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> Aleutian low pressure variability<strong>on</strong> <strong>the</strong> NAO) <strong>and</strong> <strong>the</strong> relative importance<str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong>se far-field effects compared to localprocesses.6. Ocean circulati<strong>on</strong> <strong>and</strong> hydrodynamics:Research is needed to enhanceunderst<strong>and</strong>ing <str<strong>on</strong>g>of</str<strong>on</strong>g> how ocean circulati<strong>on</strong><strong>and</strong> hydrodynamic c<strong>on</strong>diti<strong>on</strong>s (temperature,salinity <strong>and</strong> stratificati<strong>on</strong>) will resp<strong>on</strong>d topredicted climate change, with particularemphasis <strong>on</strong> regi<strong>on</strong>al resp<strong>on</strong>ses, time lapseto measurable resp<strong>on</strong>se, variability <strong>and</strong>possible feedback mechanisms.7. Sea-ice <strong>and</strong> albedo effect: Sea-ice playsan important role in climate change throughfeedback mechanisms, e.g. as <strong>the</strong> result <str<strong>on</strong>g>of</str<strong>on</strong>g><strong>the</strong> high reflectivity <str<strong>on</strong>g>of</str<strong>on</strong>g> ice-covered comparedto open ocean surfaces. Research is needed<strong>on</strong> <strong>the</strong> relati<strong>on</strong>ships between air-sea heatfluxes <strong>and</strong> sea-ice c<strong>on</strong>centrati<strong>on</strong>s, leads <strong>and</strong>melt p<strong>on</strong>ds.8. Biogeochemical fluxes: Research isneeded <strong>on</strong> <strong>the</strong> influence <str<strong>on</strong>g>of</str<strong>on</strong>g> climate change<strong>on</strong> microbially driven biogeochemicalfluxes between ocean <strong>and</strong> atmosphere incoastal <strong>and</strong> in open waters, <strong>the</strong> influences<str<strong>on</strong>g>of</str<strong>on</strong>g> changes in <strong>the</strong> carb<strong>on</strong> <strong>and</strong> o<strong>the</strong>r cycles<strong>on</strong> sedimentati<strong>on</strong>, <strong>and</strong> subsequent benthicpelagiccoupling. There is a need to define<strong>the</strong> importance <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> nitrogen cycle(including nitrogen fixati<strong>on</strong>) <strong>and</strong> atmospheric62 <str<strong>on</strong>g>Impacts</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Climate</str<strong>on</strong>g> <str<strong>on</strong>g>Change</str<strong>on</strong>g> <strong>on</strong> <strong>the</strong> <strong>European</strong> <strong>Marine</strong> <strong>and</strong> <strong>Coastal</strong> Envir<strong>on</strong>ment


ir<strong>on</strong> fertilisati<strong>on</strong> for element cycling in<strong>the</strong> ocean under <strong>the</strong> aspects <str<strong>on</strong>g>of</str<strong>on</strong>g> climatechange, <strong>and</strong> to know how <strong>the</strong>se changesaffect <strong>the</strong> ratios between elements suchas carb<strong>on</strong>, nitrogen <strong>and</strong> phosphorus in <strong>the</strong>water. Much is still unknown <strong>on</strong> <strong>the</strong> impact<str<strong>on</strong>g>of</str<strong>on</strong>g> climate change <strong>on</strong> oxygen levels <strong>and</strong> <strong>on</strong>anoxic areas (in particular in enclosed seassuch as <strong>the</strong> Baltic Sea <strong>and</strong> <strong>the</strong> Black Sea).9. Ecosystem structure <strong>and</strong> functi<strong>on</strong>ing:To underst<strong>and</strong> <strong>and</strong> predict <strong>the</strong> effects<str<strong>on</strong>g>of</str<strong>on</strong>g> climate change <strong>on</strong> marine ecosystemstructure <strong>and</strong> functi<strong>on</strong>ing, <strong>the</strong>re is arequirement to examine how climatechange will affect structural <strong>and</strong> functi<strong>on</strong>albiodiversity, how <strong>the</strong> structure (e.g.species compositi<strong>on</strong>, food web lengths,size distributi<strong>on</strong>) <strong>and</strong> functi<strong>on</strong>ing (e.g.biomass, producti<strong>on</strong> <strong>and</strong> decompositi<strong>on</strong>processes, predator-prey interacti<strong>on</strong>s)<str<strong>on</strong>g>of</str<strong>on</strong>g> marine ecosystems will change undercurrent predicti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> climate change, <strong>and</strong>how changes in <strong>the</strong> chemical compositi<strong>on</strong><str<strong>on</strong>g>of</str<strong>on</strong>g> elements in <strong>the</strong> ocean will influencefood web dynamics. Research is needed<strong>on</strong> <strong>the</strong> possible c<strong>on</strong>sequences <str<strong>on</strong>g>of</str<strong>on</strong>g> climatechange <strong>on</strong> <strong>the</strong> nature <strong>and</strong> strength <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong>interacti<strong>on</strong>s between <strong>the</strong> various trophiclevels <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> system. Fur<strong>the</strong>r research isneeded to predict when <strong>and</strong> under whatc<strong>on</strong>diti<strong>on</strong>s climate-induced regime shifts<str<strong>on</strong>g>of</str<strong>on</strong>g> marine ecosystems will occur, if suchchanges will be reversible, <strong>and</strong> if so, what<strong>the</strong> recovery dynamics would be.Col<strong>on</strong>ies <str<strong>on</strong>g>of</str<strong>on</strong>g> Phaeocystis globosa in <strong>the</strong> Wadden Sea. How wella model will predict <strong>the</strong> extent to which marine ecosystemsare affected by climate change will depend <strong>on</strong> <strong>the</strong> detailedunderst<strong>and</strong>ing <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> resp<strong>on</strong>se <str<strong>on</strong>g>of</str<strong>on</strong>g> species toward changes intemperature. For example, climate-driven changes in blooms <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong>highly abundant <strong>and</strong> harmful alga Phaeocystis globosa may havefeedback effects <strong>on</strong> <strong>the</strong> ocean’s temperature via its producti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><strong>the</strong> cloud-forming gas dimethylsulphide.© J.M. van Iperen/NIOZ10. Adaptati<strong>on</strong> <strong>and</strong> evoluti<strong>on</strong>: <str<strong>on</strong>g>Climate</str<strong>on</strong>g> changewill result in a change in <strong>the</strong> physical <strong>and</strong>biological envir<strong>on</strong>ment for many marineorganisms. It is as yet unknown, however,to what extent individuals are able tochange <strong>the</strong>ir physical or biochemical(phenotypic) characteristics in order toadapt to <strong>the</strong>se changes (e.g. faster growthat higher temperatures), how populati<strong>on</strong>swill resp<strong>on</strong>d genetically to <strong>the</strong> changesin selecti<strong>on</strong> pressure (e.g. shifts in timing<str<strong>on</strong>g>of</str<strong>on</strong>g> spawning), or how climate changewill modify <strong>the</strong> reproductive potential <str<strong>on</strong>g>of</str<strong>on</strong>g>marine organisms. Part <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> requiredinformati<strong>on</strong> may be derived from usinglatitudinal differences in life-history patterns.11. <strong>Coastal</strong> habitats: Current models <str<strong>on</strong>g>of</str<strong>on</strong>g> climatechange predict sea-level rise <strong>and</strong> increasedfrequency <strong>and</strong> intensity <str<strong>on</strong>g>of</str<strong>on</strong>g> storminess thatwill impact <strong>on</strong> <strong>the</strong> coastal z<strong>on</strong>e. There is aneed to examine if more accurate regi<strong>on</strong>alpredicti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> sea-level rise in Europe canbe derived, taking into account ice-cap <strong>and</strong>glacial melting, alterati<strong>on</strong> in <strong>the</strong> strength <str<strong>on</strong>g>of</str<strong>on</strong>g>ocean circulati<strong>on</strong>, heating <strong>and</strong> freshening <str<strong>on</strong>g>of</str<strong>on</strong>g><strong>the</strong> water column <strong>and</strong> <strong>the</strong> rising or sinking<str<strong>on</strong>g>of</str<strong>on</strong>g> coastlines. This will facilitate research<strong>on</strong> <strong>the</strong> socio-ec<strong>on</strong>omic <strong>and</strong> ecologicalimplicati<strong>on</strong>s for coastal protecti<strong>on</strong> <strong>and</strong><strong>the</strong> development <str<strong>on</strong>g>of</str<strong>on</strong>g> adaptive strategies.Predictive models12. Improvement <str<strong>on</strong>g>of</str<strong>on</strong>g> regi<strong>on</strong>al climatemodels: In particular with respect to<strong>the</strong> hydrological cycle, e.g. river run<str<strong>on</strong>g>of</str<strong>on</strong>g>f<strong>and</strong> <strong>the</strong> role <str<strong>on</strong>g>of</str<strong>on</strong>g> clouds in evaporati<strong>on</strong>.13. Development <strong>and</strong> validati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> (regi<strong>on</strong>al)biophysical models: Biophysical modelsare being developed to investigate <strong>the</strong> effects<str<strong>on</strong>g>of</str<strong>on</strong>g> physical forcing <strong>on</strong> primary producti<strong>on</strong>,zooplankt<strong>on</strong> distributi<strong>on</strong> <strong>and</strong> advecti<strong>on</strong>,fish <strong>and</strong> invertebrate larval drift, <strong>and</strong> fishmigrati<strong>on</strong>. Improvements in <strong>and</strong> validati<strong>on</strong><str<strong>on</strong>g>of</str<strong>on</strong>g> such models need to be encouraged.14. Species loss: Modelling <strong>the</strong> effects <str<strong>on</strong>g>of</str<strong>on</strong>g>climate change <strong>on</strong> species distributi<strong>on</strong>,abundance <strong>and</strong> competiti<strong>on</strong> <strong>and</strong> mappingpotential local <strong>and</strong> larger scale extincti<strong>on</strong>.<str<strong>on</strong>g>Impacts</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Climate</str<strong>on</strong>g> <str<strong>on</strong>g>Change</str<strong>on</strong>g> <strong>on</strong> <strong>the</strong> <strong>European</strong> <strong>Marine</strong> <strong>and</strong> <strong>Coastal</strong> Envir<strong>on</strong>ment 63


6. Future research needs15. Triggers <str<strong>on</strong>g>of</str<strong>on</strong>g> biological events: Little isknown about <strong>the</strong> mechanisms triggeringevents such as spawning, diapause,migrati<strong>on</strong>, <strong>and</strong> temperature tolerance formost species. Some biological events aretemperature dependent while o<strong>the</strong>rs are lightdependent. Since temperature will rise underclimate change, while light will more or lessstay <strong>the</strong> same (except for changes in cloudcover), <strong>the</strong>re is a large potential for a futuremismatch in timing <str<strong>on</strong>g>of</str<strong>on</strong>g> lifecycles betweensome species <strong>and</strong> <strong>the</strong>ir prey or predators. Inorder to make reliable ecosystem predicti<strong>on</strong>s,knowledge <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> triggering mechanisms <str<strong>on</strong>g>of</str<strong>on</strong>g>biological events is absolutely essential.16. Food webs <strong>and</strong> species c<strong>on</strong>nectancein ecosystems: Research is needed <strong>on</strong>predator-prey relati<strong>on</strong>ships <strong>and</strong> functi<strong>on</strong>algroups. This informati<strong>on</strong> is necessaryto determine <strong>the</strong> energy flows in <strong>the</strong>ecosystem (i.e. balancing producti<strong>on</strong>,c<strong>on</strong>sumpti<strong>on</strong> <strong>and</strong> mortality <str<strong>on</strong>g>of</str<strong>on</strong>g> speciesor species groups), <strong>and</strong> <strong>the</strong> influence <str<strong>on</strong>g>of</str<strong>on</strong>g>hydrology. To accurately assess impacts<str<strong>on</strong>g>of</str<strong>on</strong>g> climate change <strong>on</strong> ecosystem, willrequire enhanced underst<strong>and</strong>ing <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong>interacti<strong>on</strong>s am<strong>on</strong>g different species.17. The roles <str<strong>on</strong>g>of</str<strong>on</strong>g> fishing, eutrophicati<strong>on</strong><strong>and</strong> climate change: <str<strong>on</strong>g>Climate</str<strong>on</strong>g> change isoccurring in combinati<strong>on</strong> with fishing <strong>and</strong>eutrophicati<strong>on</strong>. Research is needed <strong>on</strong> whatcan be assigned to each cause, includingpotential synergistic effects (e.g. fishing cancause fish stocks to become more vulnerableto climate change).Enabling technologies <strong>and</strong> supportinginitiatives18. Development <str<strong>on</strong>g>of</str<strong>on</strong>g> new technologies:Research is needed to design newobservati<strong>on</strong>al <strong>and</strong> measurement systems(e.g. sensors for air-sea interacti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g>specific substances for identifying l<strong>on</strong>gtermchanges in hydrodynamic regimes <strong>and</strong>changes in deep-water temperatures) tosupport climate change research.19. Participati<strong>on</strong> in <strong>and</strong> c<strong>on</strong>tributi<strong>on</strong> tointernati<strong>on</strong>al climate change researchprogrammes <strong>and</strong> projects should besuppported.20. Good <strong>and</strong> fast data access, includingpictures <str<strong>on</strong>g>of</str<strong>on</strong>g> changes in plankt<strong>on</strong> assemblagecompositi<strong>on</strong> <strong>and</strong> ocean colour data (datacentres, real time data, basic processing<strong>and</strong> computer programs) is essential.64 <str<strong>on</strong>g>Impacts</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Climate</str<strong>on</strong>g> <str<strong>on</strong>g>Change</str<strong>on</strong>g> <strong>on</strong> <strong>the</strong> <strong>European</strong> <strong>Marine</strong> <strong>and</strong> <strong>Coastal</strong> Envir<strong>on</strong>ment


BibliographyAACIA (2005). Arctic <str<strong>on</strong>g>Climate</str<strong>on</strong>g> Impact Assessment.Cambridge University Press.Alcock R (2003). The effects <str<strong>on</strong>g>of</str<strong>on</strong>g> climate change <strong>on</strong>rocky shore communities in <strong>the</strong> Bay <str<strong>on</strong>g>of</str<strong>on</strong>g> Biscay, 1895-2050. PhD Thesis Biodiversity <strong>and</strong> Ecology Divisi<strong>on</strong>.University <str<strong>on</strong>g>of</str<strong>on</strong>g> Southampt<strong>on</strong>, 286 pAlley RB, Clark PU, Huybrechts P, Joughin I (2005).Ice-sheet <strong>and</strong> sea level changes. Science 310, 456-460American Meteorological Society (2003). <str<strong>on</strong>g>Climate</str<strong>on</strong>g>change research: issues for <strong>the</strong> atmospheric <strong>and</strong>related sciences. Bull Amer Met Soc 84, 508-515Anadón R, Niell FX (1980). Distribución l<strong>on</strong>gitudinalde macrófitos en la costa asturiana (N de España).Investigación Pesquera 45, 143-156Ardré F (1970). C<strong>on</strong>tributi<strong>on</strong> à l’étude des alguesmarines du Portugal: I. La Flore. Portugalia ActaBiologica 10, 1-423Astraldi M, Bianchi CN, Gasparini GP, Morri C(1995). Climatic fluctuati<strong>on</strong>s, current variability <strong>and</strong>marine species distributi<strong>on</strong>: a case study in <strong>the</strong>Ligurian Sea (north-west Mediterranean). OceanolActa, 18, 139-149Astthorss<strong>on</strong> OS., Vilhjálmss<strong>on</strong> H (2002). Icel<strong>and</strong>Shelf LME: Decadal assessment <strong>and</strong> resourcesustainability. In: Sherman K, Skjoldal HR (Eds) Large<strong>Marine</strong> Ecosystems <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> North Atlantic: ChangingStates <strong>and</strong> Sustainability. Elsevier Amsterdam,pp 219-243BBeaugr<strong>and</strong> G (2004). The North Sea regime shift:evidence, causes, mechanisms <strong>and</strong> c<strong>on</strong>sequences.Progr Oceanogr 60, 245–262Beaugr<strong>and</strong> G, Br<strong>and</strong>er KM, Lindley JA, Souissi S,Reid PC (2003). Plankt<strong>on</strong> effect <strong>on</strong> cod recruitmentin <strong>the</strong> North Sea. Nature 426, 661-664Beaugr<strong>and</strong> G, Reid PC (2003). L<strong>on</strong>g-term changesin phytoplankt<strong>on</strong>, zooplankt<strong>on</strong> <strong>and</strong> salm<strong>on</strong> relatedto climate. Global <str<strong>on</strong>g>Change</str<strong>on</strong>g> Biol 9, 801-817Beaugr<strong>and</strong> G, Reid PC, Ibañez F, Lindley JA,Edwards M (2002). Reorganizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> North Atlantic<strong>Marine</strong> Copepod Biodiversity <strong>and</strong> <str<strong>on</strong>g>Climate</str<strong>on</strong>g>. Science296, 1692-1694Berge J, Johnsen G, Nilsen F, Gulliksen B, SlagstadD (2005). Ocean temperature oscillati<strong>on</strong>s enablereappearance <str<strong>on</strong>g>of</str<strong>on</strong>g> blue mussels Mytilus edulis inSvalbard after a 1000 year absence. Mar Ecol ProgrSer 303, 167-175Bergström S, Carlss<strong>on</strong> B (1994). River run<str<strong>on</strong>g>of</str<strong>on</strong>g>f to <strong>the</strong>Baltic Sea: 1950–1990. Ambio 23, 280-287Béthoux JP, Durieu de Madr<strong>on</strong> X, Nyffeler F, TailliezD (2002). Deep water in <strong>the</strong> Western Mediterranea:peculiar 1999 <strong>and</strong> 2000 characteristics, formati<strong>on</strong>variability since 1970 <strong>and</strong> geochemical inferences. JMar Syst 33-34, 117-131Béthoux JP, Gentili B, Raunet J, Tailliez D (1990).Warming trend in <strong>the</strong> western Mediterranean deepwater. Nature 347, 660–662Bianchi CN (1997). <str<strong>on</strong>g>Climate</str<strong>on</strong>g> change <strong>and</strong> biologicalresp<strong>on</strong>se in <strong>the</strong> marine benthos. In: Piccazzo M (Ed.)Atti del 12° C<strong>on</strong>gresso dell’Associazi<strong>on</strong>e Italiana diOceanologia e Limnologia 1. AIOL, Genova, pp. 3-20Bianchi CN, Morri C (1994). Sou<strong>the</strong>rn species in <strong>the</strong>Ligurian Sea (nor<strong>the</strong>rn Mediterranean): new records<strong>and</strong> a review. Bollettino dei Musei e degli IstitutiBiologici dell’Università di Genova 58-59 (1992-1993), 181-197Bianchi CN, Morri C (2000). <strong>Marine</strong> biodiversity <str<strong>on</strong>g>of</str<strong>on</strong>g><strong>the</strong> Mediterranean Sea: situati<strong>on</strong>, problems <strong>and</strong>prospects for future research. Mar Poll Bull 40,367–376Bildt van de MWG, Vedder EJ, Martina BEE, SidiBA, Jiddou AB, Barham MEO, Androukaki A,Kommenou A, Niesters HGM, Osterhaus ADME(1999). Morbilliviruses in Mediterranean m<strong>on</strong>k seals.Veterinary Microbiology 69, 19–21Blanchard F, V<strong>and</strong>ermeirsch F (2005). Warming <strong>and</strong>exp<strong>on</strong>ential abundance increase <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> subtropicalfish Capros aper in <strong>the</strong> Bay <str<strong>on</strong>g>of</str<strong>on</strong>g> Biscay (1973-2002).C R Biol. 2005 May 328, 505-509Blant<strong>on</strong> JO, Tenore KR, Castillejo F, Atkins<strong>on</strong> LP,Schwing FB, Lavin A (1987). The relati<strong>on</strong>ship <str<strong>on</strong>g>of</str<strong>on</strong>g>upwelling to mussel producti<strong>on</strong> in <strong>the</strong> Rias <strong>on</strong> <strong>the</strong>western coast <str<strong>on</strong>g>of</str<strong>on</strong>g> Spain. J Mar Res 45, 497-571Boaventura D, da F<strong>on</strong>seca LC, Hawkins SJ (2002).Analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> competitive interacti<strong>on</strong>s between <strong>the</strong>limpets Patella depressa Pennant <strong>and</strong> Patellavulgata L. <strong>on</strong> <strong>the</strong> nor<strong>the</strong>rn coast <str<strong>on</strong>g>of</str<strong>on</strong>g> Portugal. J ExpMar Biol Ecol 271, 171-188Boelens R, Minchin D, O’Sullivan G (2005).<str<strong>on</strong>g>Climate</str<strong>on</strong>g> <str<strong>on</strong>g>Change</str<strong>on</strong>g>: Implicati<strong>on</strong>s for Irel<strong>and</strong>’s <strong>Marine</strong>Envir<strong>on</strong>ment <strong>and</strong> Resources. <strong>Marine</strong> Institute,Foresight Series, No. 2. 38pp.Boero F (1996). Episodic events: <strong>the</strong>ir relevance toecology <strong>and</strong> evoluti<strong>on</strong>. PSZNI: Mar Ecol 17, 237-250Boero F (2001). Adriatic ecological history: alink between jellyfish outbreaks, red tides, massmortalities, overfishing, mucilages, <strong>and</strong> thaliaceanplankt<strong>on</strong>? CIESM, 2001. Gelatinous Zooplankt<strong>on</strong>Outbreaks: Theory <strong>and</strong> Practice. CIESMWorkshop M<strong>on</strong>ographs, M<strong>on</strong>aco www.ciesm.org/publicati<strong>on</strong>s/Borja A, Uriarte A, Egaña J (2002). Envir<strong>on</strong>mentalfactors <strong>and</strong> recruitment <str<strong>on</strong>g>of</str<strong>on</strong>g> mackerel, Scomberscombrus L. 1758, al<strong>on</strong>g <strong>the</strong> north-east Atlanticcoast <str<strong>on</strong>g>of</str<strong>on</strong>g> Europe. Fish Oceanogr 11, 116-127Br<strong>and</strong>er K, Blom G, Borges MF, Erzini K, Henders<strong>on</strong>G, MacKenzie BR, Mendes H, Ribeiro J, SantosAMP, Toresen R (2003). <str<strong>on</strong>g>Change</str<strong>on</strong>g>s in fish distributi<strong>on</strong><str<strong>on</strong>g>Impacts</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Climate</str<strong>on</strong>g> <str<strong>on</strong>g>Change</str<strong>on</strong>g> <strong>on</strong> <strong>the</strong> <strong>European</strong> <strong>Marine</strong> <strong>and</strong> <strong>Coastal</strong> Envir<strong>on</strong>ment 65


Bibliographyin <strong>the</strong> eastern North Atlantic: Are we seeing acoherent resp<strong>on</strong>se to changing temperature? ICESMar Sci Symp 219, 261-270Bryden HL, L<strong>on</strong>gworth HR, Cunningham SA (2005).Slowing <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> Atlantic meridi<strong>on</strong>al overturningcirculati<strong>on</strong> at 25°N. Nature 438, 655-657CCarmack E, Chapman DC (2003). Wind-drivenshelf/basin exchange <strong>on</strong> an Arctic shelf: Thejoint roles <str<strong>on</strong>g>of</str<strong>on</strong>g> ice cover extent <strong>and</strong> shelf-breakbathymetry. Geophysical Research Letters, 30,1778, doi:10.1029/2003GL017526Cendrero A, Sánchez-Arcilla A, Zazo C (2005).Impactos sobre las z<strong>on</strong>as costeras. In: MorenoJM (ed) Evaluación preliminar de los Impactos enEspaña por efecto del Cambio Climático. OficinaEspañola de Cambio Climático, Madrid, pp 469-524Cerrano C, Bavestrello G, Bianchi CN, CattaneoviettiR, Bava S, Morganti C, Morri C, Picco P, SaraG, Schiaparelli S, Siccardi A, Sp<strong>on</strong>ga F (2000). Acatastrophic mass-mortality episode <str<strong>on</strong>g>of</str<strong>on</strong>g> gorg<strong>on</strong>ians<strong>and</strong> o<strong>the</strong>r organisms in <strong>the</strong> Ligurian Sea (NorthwesternMediterranean), summer 1999. Ecol Lett 3,284–293.Chevald<strong>on</strong>ne P, Lejeusne C (2003). Regi<strong>on</strong>alwarming-induced species shift in north-westMediterranean marine caves. Ecol Lett 6, 371–379CIESM (2002). Alien species introduced by ships in<strong>the</strong> Mediterranean <strong>and</strong> black sea. CIESM WorkshopM<strong>on</strong>ographs, 20, 136 pp M<strong>on</strong>aco www.ciesm.org/publicati<strong>on</strong>s/Curry R, Dicks<strong>on</strong> R, Yashayaev I (2003). A changein <strong>the</strong> freshwater balance <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> Atlantic Ocean over<strong>the</strong> past four decades. Nature 426, 826-829DDanovaro R, Dell’Anno A, Fabiano M, Pusceddu A,Tselepides A (2001). Deep-sea ecosystem resp<strong>on</strong>seto climate changes: <strong>the</strong> eastern Mediterranean casestudy. TREE 16, 505-510.Danovaro R, Dell’Anno A, Fabiano M, Pusceddu A(2004). Biodiversity resp<strong>on</strong>se to climate change in awarm deep sea. Ecol Lett 7, 821-828.Daskalov GM (2002). Overfishing drives a trophiccascade in <strong>the</strong> Black Sea. Mar Ecol Progr Ser 225,53-63Delworth TL, Dix<strong>on</strong> KW (2000). Implicati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong>recent trend in <strong>the</strong> Arctic/North Atlantic Oscillati<strong>on</strong>from <strong>the</strong> North Atlantic <strong>the</strong>rmohaline circulati<strong>on</strong>. J<str<strong>on</strong>g>Climate</str<strong>on</strong>g> 13, 3721-3727Dicks<strong>on</strong> R, Yashayaev I, Meincke J, Turrell W, Dye S,Holfort J (2002). Rapid freshening <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> deep NorthAtlantic Ocean over <strong>the</strong> past four decades. Nature416, 832-837Dicks<strong>on</strong> RR, Curry R, Yashayaev I (2003). Recentchanges in <strong>the</strong> North Atlantic. Phil Trans R Soc L<strong>on</strong>dA 361, 1917-1934Dippner JW, Ikauniece A (2001). L<strong>on</strong>g-termzoobenthos variability in <strong>the</strong> Gulf <str<strong>on</strong>g>of</str<strong>on</strong>g> Riga in relati<strong>on</strong>to climate variability. J Mar Syst 30, 155-164Dippner JW, Vuorinen I (2006). <str<strong>on</strong>g>Climate</str<strong>on</strong>g> relatedecosystem change. In: v<strong>on</strong> Storch H (Ed.) BALTEXAssessment <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Climate</str<strong>on</strong>g> <str<strong>on</strong>g>Change</str<strong>on</strong>g>, Springer VerlagBerlin, Chapter 5Dowdeswell JA (2006). The Greenl<strong>and</strong> Ice Sheet<strong>and</strong> global sea level rise. Science 311, 963-964Drinkwater KF (2005). The resp<strong>on</strong>se <str<strong>on</strong>g>of</str<strong>on</strong>g> Atlantic cod(Gadus morhua) to future climate change. ICES JMar Sci 62, 1327-1337Drinkwater KF (2006). The regime shift <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> 1920s<strong>and</strong> 1930s in <strong>the</strong> North Atlantic. Progr Oceanogr 68,134-151Drinkwater K, Belgrano A, Borja A, C<strong>on</strong>versi A,Edwards M, Greene C, Ottersen G, PershingA, Walker H. (2003). The Resp<strong>on</strong>se <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>Marine</strong>Ecosystems to <str<strong>on</strong>g>Climate</str<strong>on</strong>g> Variability Associated with<strong>the</strong> North Atlantic Oscillati<strong>on</strong>. In: Hurrell J, KushnirY, Ottersen G, Visbeck M (Eds) The North AtlanticOscillati<strong>on</strong>: Climatic Significance <strong>and</strong> Envir<strong>on</strong>mentalImpact: American Geophysical Uni<strong>on</strong>, pp. 211-234Dulcic J, Grbec B (2000). <str<strong>on</strong>g>Climate</str<strong>on</strong>g> change <strong>and</strong>Adriatic ichthy<str<strong>on</strong>g>of</str<strong>on</strong>g>auna. Fisheries Oceanography 9,187–191EEdwards M, Johns DG, Leterme SC, SvendsenE, Richards<strong>on</strong> AJ (2006). Regi<strong>on</strong>al climate change<strong>and</strong> harmful algal blooms in <strong>the</strong> nor<strong>the</strong>ast Atlantic.Limnol Oceanogr 51, 820–829Edwards M, Richards<strong>on</strong> AJ (2004). Impact <str<strong>on</strong>g>of</str<strong>on</strong>g>climate change <strong>on</strong> marine pelagic phenology <strong>and</strong>trophic mismatch. Nature 430, 881-884Ellingsen IH, Dalpadado P, Slagstad D, LoengH (2006). Impact <str<strong>on</strong>g>of</str<strong>on</strong>g> present <strong>and</strong> future climaticc<strong>on</strong>diti<strong>on</strong>s <strong>on</strong> <strong>the</strong> physical <strong>and</strong> biological envir<strong>on</strong>ment<str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> Barents Sea. Climatic <str<strong>on</strong>g>Change</str<strong>on</strong>g> (in press).Evans GL, Williams P J le B, Mitchels<strong>on</strong>-JacobEG (2003). Physical <strong>and</strong> anthropogenic effects <strong>on</strong>observed l<strong>on</strong>g-term nutrient changes in <strong>the</strong> IrishSea. Est Coast Shelf Sci 57, 1159-1168FFischer-Piette E (1963). La distributi<strong>on</strong> des principauxorganismes intercotidaux Nord-Iberiques. Annalesdel Institute Océanographique, Paris 40, 165-311.Forbes E (1958). The distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> marine life,illustrated chiefly by fishes <strong>and</strong> molluscs <strong>and</strong> radiate.In: A.K. Johnst<strong>on</strong>’s Physical Atlas. W, AK Johnst<strong>on</strong>:Edinburgh, pp. 99-101Francis JA, Hunter E, Key JR, Wang X (2005).66 <str<strong>on</strong>g>Impacts</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Climate</str<strong>on</strong>g> <str<strong>on</strong>g>Change</str<strong>on</strong>g> <strong>on</strong> <strong>the</strong> <strong>European</strong> <strong>Marine</strong> <strong>and</strong> <strong>Coastal</strong> Envir<strong>on</strong>ment


Clues to variability in Arctic minimum sea-ice extent.Geophys Res Lett 32, L21501Francour P., Boudouresque C.F., Harmelin J.G.,Harmelin-Vivien M.L., Quignard J.P., (1994). Are<strong>the</strong> Mediterranean waters becoming warmer?Informati<strong>on</strong> from biological indicators. Mar. Pollut.Bull., 28 (9) : 523-526Frei C, Scholl R, Fukutome S, Jurg Schmidli J, PLVidale PL (2006). Future change <str<strong>on</strong>g>of</str<strong>on</strong>g> precipitati<strong>on</strong>extremes in Europe: Intercomparis<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> scenariosfrom regi<strong>on</strong>al climate models. J Geophys Res 111,D06105, doi:10.1029/2005JD005965Furevik T, Drange H, Sorteberg A (2002). Anticipatedchanges in <strong>the</strong> Nordic Seas marine climate:Scenarios for 2020, 2050 <strong>and</strong> 2080. Fisken ogHavet 4GGaines SD, Bertness MD (1992). Dispersal <str<strong>on</strong>g>of</str<strong>on</strong>g>juveniles <strong>and</strong> variable recruitment in sessile marinespecies. Nature 360, 579-580.Galil BS (1993). Lessepsian migrati<strong>on</strong>: newfindings <strong>on</strong> <strong>the</strong> foremost anthropogenic change in<strong>the</strong> Levant basin fauna. In Della Croce NFR (Ed.)Symposium Mediterranean Seas 2000. University<str<strong>on</strong>g>of</str<strong>on</strong>g> Genova, Istituto di Scienze Ambientali <strong>Marine</strong>,Santa Margherita Ligure, pp. 307-323Garrabou J, Perez T, Sartoretto S, Harmelin JG(2001). Mass mortality event in red coral Coralliumrubrum populati<strong>on</strong>s in <strong>the</strong> Provence regi<strong>on</strong> (France,NW Mediterranean). Mar Ecol Prog Ser 217, 263–272Genner MJ, Sims DW, Wearmouth VJ, SouthallEJ, Southward AJ, Henders<strong>on</strong> PA, Hawkins SJ(2004). Regi<strong>on</strong>al climatic warming drives l<strong>on</strong>g-termcommunity changes <str<strong>on</strong>g>of</str<strong>on</strong>g> British marine fish. Proc RSoc L<strong>on</strong>d B 271, 655-661G<strong>on</strong>zález-Pola C, Lavín A, Vargas-Yáñez M (2005).Intense warming <strong>and</strong> salinity modificati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g>intermediate water masses in <strong>the</strong> sou<strong>the</strong>rn corner<str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> Bay <str<strong>on</strong>g>of</str<strong>on</strong>g> Biscay for <strong>the</strong> period 1992-2003. JGeophys Res 110, 1-14Graham LP, Chen D, Christensen OB, KjellströmE, Krysanova V, Meier HEM, Radziewski M, RockelB, Ruosteenoja K, Räisänen J (2006). Projecti<strong>on</strong><str<strong>on</strong>g>of</str<strong>on</strong>g> future climate change. In: v<strong>on</strong> Storch H (Ed.)BALTEX Assessment <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Climate</str<strong>on</strong>g> <str<strong>on</strong>g>Change</str<strong>on</strong>g>, SpringerVerlag Berlin, Chapter 3Grebmeier JM, Smith WO, C<strong>on</strong>over RJ (1995).Biological processes <strong>on</strong> Arctic c<strong>on</strong>tinental shelves:ice-ocean-biotic interacti<strong>on</strong>s. In: Smith WO <strong>and</strong>Grebmeier JM (Eds). Arctic Oceanography:Marginal Z<strong>on</strong>es <strong>and</strong> C<strong>on</strong>tinental Shelves. <strong>Coastal</strong><strong>and</strong> Estuarine Studies 49, 231-261Gucu AC (2002). Can overfishing be resp<strong>on</strong>sible for<strong>the</strong> successful establishment <str<strong>on</strong>g>of</str<strong>on</strong>g> Mnemiopsis leidyi in<strong>the</strong> Black Sea? Est Coast Shelf Sci 54, 439-451Guerra A, G<strong>on</strong>zález AF, Rocha F (2002). Appearance<str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> comm<strong>on</strong> paper nautilus, Arg<strong>on</strong>autaargo related to <strong>the</strong> increase <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> sea-surfacetemperature in <strong>the</strong> north-eastern Atlantic. J Mar BiolAssoc UK 82, 855-858Guidetti P, Boero F, Dulcic J (2002). Mass mortality<str<strong>on</strong>g>of</str<strong>on</strong>g> gilt sardine, Sardinella aurita (Clupeidae), in <strong>the</strong>Adriatic <strong>and</strong> I<strong>on</strong>ian seas. Cybium 26, 317-319Guinotte JM, Orr J, Cairns S, Freiwald A, MorganLE, George R (2006)- Will human-induced changesin seawater chemistry alter <strong>the</strong> distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> deepseascleractinian? Fr<strong>on</strong>tiers in Ecology <strong>and</strong> <strong>the</strong>Envir<strong>on</strong>ment 4, 141-146HHagen E, Feistel R (2005). Climatic turning points<strong>and</strong> regime shifts in <strong>the</strong> Baltic Sea regi<strong>on</strong>: <strong>the</strong> Balticwinter index (WIBIX) 1659-2002. Boreal Envir<strong>on</strong>mRes 10, 211-224Häkkinen S, Rhines PB (2004). Decline <str<strong>on</strong>g>of</str<strong>on</strong>g> SubpolarNorth Atlantic Circulati<strong>on</strong> During <strong>the</strong> 1990s. Science304, 555-559Hansen B, Turrell WR, Østerhus S (2001). Decreasingoverflow from <strong>the</strong> Nordic seas into <strong>the</strong> AtlanticOcean through <strong>the</strong> Faroe Bank channel since 1950.Nature 411, 927-930.Härkönen T, Dietz R, Reijnders P, Teilmann J, HardingKC, Hall A, Brasseur S, Siebert U, Goodman S,Jeps<strong>on</strong> P, Rasmussen TD, Thomps<strong>on</strong> P (2006). Areview <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> 1988 <strong>and</strong> 2002 phocine distempervirus epidemics in <strong>European</strong> harbour seals. DisAquat Org 68, 115–130Hasselmann K (1976). Stochastic climate models.Part I. Theory. Tellus 28,473-485Hawkins SJ, Southward AJ, Genner MJ (2003).Detecti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> envir<strong>on</strong>mental change in a marineecosystem – evidence from <strong>the</strong> western EnglishChannel. Sci Tot Envir<strong>on</strong>m 310, 245-246Hoepffner, N et al. (2006). <strong>Marine</strong> <strong>and</strong> <strong>Coastal</strong>Dimensi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Climate</str<strong>on</strong>g> <str<strong>on</strong>g>Change</str<strong>on</strong>g> in Europe – AReport to <strong>the</strong> <strong>European</strong> Water Directors. <strong>European</strong>Commissi<strong>on</strong> – Joint Research Centre - Institute forEnvir<strong>on</strong>ment <strong>and</strong> SustainabilityHolgate SJ, Woodworth PL (2004). Evidence forenhanced coastal sea level rise during <strong>the</strong> 1990s.Geophys Res Lett 31, L07305, doi:10.1029/2004GL019626, 2004Hulme M, Barrow E, Arnell NW, Harris<strong>on</strong> P, DowningT, Johns R (1999). Relative impacts <str<strong>on</strong>g>of</str<strong>on</strong>g> humaninducedclimate change <strong>and</strong> natural variability.Nature 397, 688-691Hulme M, Jenkins GJ, X. L, Turnpenny JR, MitchellTD, J<strong>on</strong>es RG, Lowe J, Murphy JM, Hassell D,Boorman P, McD<strong>on</strong>ald R, Hill S (2002). <str<strong>on</strong>g>Climate</str<strong>on</strong>g><str<strong>on</strong>g>Change</str<strong>on</strong>g> Scenarios for <strong>the</strong> United Kingdom: TheUKCIP02 Scientific Report, Tyndall Centre for<str<strong>on</strong>g>Climate</str<strong>on</strong>g> <str<strong>on</strong>g>Change</str<strong>on</strong>g> Research, School <str<strong>on</strong>g>of</str<strong>on</strong>g> Envir<strong>on</strong>mentalSciences, University <str<strong>on</strong>g>of</str<strong>on</strong>g> East Anglia, Norwich UK van<str<strong>on</strong>g>Impacts</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Climate</str<strong>on</strong>g> <str<strong>on</strong>g>Change</str<strong>on</strong>g> <strong>on</strong> <strong>the</strong> <strong>European</strong> <strong>Marine</strong> <strong>and</strong> <strong>Coastal</strong> Envir<strong>on</strong>ment 67


Bibliographyden Hurk B, Klein Tank A, Lenderink G, van UldenA, van Oldenborgh GJ, Katsman C, van den BrinkH, Keller F, Bessembinder J, Burgers G, KomenG, Hazeleger W, Drijfhout S (2006). KNMI <str<strong>on</strong>g>Climate</str<strong>on</strong>g><str<strong>on</strong>g>Change</str<strong>on</strong>g> Scenarios 2006 for <strong>the</strong> Ne<strong>the</strong>rl<strong>and</strong>s, KNMIScientific Report WR 2006-01, Utrecht, 82 pHurrell JW, Dicks<strong>on</strong> RR (2004). <str<strong>on</strong>g>Climate</str<strong>on</strong>g> variabilityover <strong>the</strong> North Atlantic. In: Stenseth NC, OttersenG, Hurrell JW, Belgrano A (Eds) <strong>Marine</strong> Ecosystems<strong>and</strong> <str<strong>on</strong>g>Climate</str<strong>on</strong>g> Variati<strong>on</strong> - <strong>the</strong> North Atlantic.OxfordUniversity Press, pp. 15-31IIngvaldsen R, Loeng H, Ottersen G, Ådl<strong>and</strong>svik B(2003). <str<strong>on</strong>g>Climate</str<strong>on</strong>g> variability in <strong>the</strong> Barents Sea during<strong>the</strong> 20th century with focus <strong>on</strong> <strong>the</strong> 1990s. ICES MarSci Symp 219, 160-168IPCC (1990). Resp<strong>on</strong>se Strategies Working Group,1990IPCC (2001a). <str<strong>on</strong>g>Climate</str<strong>on</strong>g> <str<strong>on</strong>g>Change</str<strong>on</strong>g> 2001: The ScientificBasis, C<strong>on</strong>tributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Working Group I to <strong>the</strong> ThirdAssessment Report <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> Intergovernmental Panel<strong>on</strong> <str<strong>on</strong>g>Climate</str<strong>on</strong>g> <str<strong>on</strong>g>Change</str<strong>on</strong>g>. J.T. Hought<strong>on</strong>, Y. Ding, D.J.Griggs, M. Noguer, P.J. van der Linden, X. Dai,K. Maskell <strong>and</strong> C.A. Johns<strong>on</strong> (Eds.). CambridgeUniversity Press, UK.IPCC (2001b). <str<strong>on</strong>g>Climate</str<strong>on</strong>g> <str<strong>on</strong>g>Change</str<strong>on</strong>g> 2001: <str<strong>on</strong>g>Impacts</str<strong>on</strong>g>,Adaptati<strong>on</strong> & Vulnerability, C<strong>on</strong>tributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> WorkingGroup II to <strong>the</strong> Third Assessment Report <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong>Intergovernmental Panel <strong>on</strong> <str<strong>on</strong>g>Climate</str<strong>on</strong>g> <str<strong>on</strong>g>Change</str<strong>on</strong>g> (IPCC).James J. McCarthy, Osvaldo F. Canziani, Neil A.Leary, David J. Dokken <strong>and</strong> Kasey S. White (Eds.).Cambridge University Press, UK.IPCC (2001c). <str<strong>on</strong>g>Climate</str<strong>on</strong>g> <str<strong>on</strong>g>Change</str<strong>on</strong>g> 2001: Syn<strong>the</strong>sisReport. Wats<strong>on</strong>, R.T. <strong>and</strong> <strong>the</strong> Core Writing Team(Eds.) Intergovernmental Panel <strong>on</strong> <str<strong>on</strong>g>Climate</str<strong>on</strong>g> <str<strong>on</strong>g>Change</str<strong>on</strong>g>,Geneva, Switzerl<strong>and</strong>.IPCC (2007). <str<strong>on</strong>g>Climate</str<strong>on</strong>g> <str<strong>on</strong>g>Change</str<strong>on</strong>g> 2007: The PhysicalScience Basis - Summary for PolicymakersC<strong>on</strong>tributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Working Group I to <strong>the</strong> FourthAssessment Report <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> Intergovernmental Panel<strong>on</strong> <str<strong>on</strong>g>Climate</str<strong>on</strong>g> <str<strong>on</strong>g>Change</str<strong>on</strong>g>. Intergovernmental Panel <strong>on</strong><str<strong>on</strong>g>Climate</str<strong>on</strong>g> <str<strong>on</strong>g>Change</str<strong>on</strong>g>, Geneva, Switzerl<strong>and</strong>.JJacks<strong>on</strong> JBC, Kirby MX, Berger WH, Bjorndal KA,Botsford LW, Bourque BJ, Bradbury RH, CookeR, Erl<strong>and</strong>s<strong>on</strong> J, Estes JA, Hughes TP, Kidwell S,Lange CB, Lenihan HS, P<strong>and</strong>olfi JM, Peters<strong>on</strong>CH, Steneck RS, Tegner MJ, Warner RR (2001).Historical overfishing <strong>and</strong> <strong>the</strong> recent collapse <str<strong>on</strong>g>of</str<strong>on</strong>g>coastal ecosystems. Science 293, 629 – 637. doi:10.1126/science.1059199Janssen F, Neumann T, Schmidt M (2004). Interannualvariability in cyanobacteria blooms in <strong>the</strong>Baltic Sea c<strong>on</strong>trolled by wintertime hydrographicc<strong>on</strong>diti<strong>on</strong>s. Mar Ecol Prog Ser 275, 59-68Johannessen OM, Bengtss<strong>on</strong> L, Miles MW,Kuzmina SI, Semenov VA, Alekseev GV, NagurnyiAP, Zakharov VF, Bobylev LP, Petterss<strong>on</strong> LH,Hasselmann K, Cattle HP (2004). Arctic climatechange: observed <strong>and</strong> modelled temperature <strong>and</strong>sea-ice variability. Tellus 56A, 328-341Johannessen OM, Shalina EV, Miles M (1999).Satellite evidence for an Arctic sea-ice coverage intransformati<strong>on</strong>. Science 286, 1937-1939Jónss<strong>on</strong> S, Vladimarss<strong>on</strong> H (2005). The flow <str<strong>on</strong>g>of</str<strong>on</strong>g>Atlantic water to <strong>the</strong> North Icel<strong>and</strong>ic Shelf <strong>and</strong> itsrelati<strong>on</strong> to <strong>the</strong> drift <str<strong>on</strong>g>of</str<strong>on</strong>g> cod larvae. ICES J Mar Sci 62,1350-1359KKamburska L, F<strong>on</strong>da-Umani S (2006). L<strong>on</strong>g-termcopepod dynamics in <strong>the</strong> Gulf <str<strong>on</strong>g>of</str<strong>on</strong>g> Trieste (Nor<strong>the</strong>rnAdriatic Sea): recent changes <strong>and</strong> trends. Clim Res31, 195-203Kideys AE (2002). Fall <strong>and</strong> Rise <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> Black Seaecosystem. Science 297, 1482-1484Kideys AE, Kovalev AV, Shulman G, Gordina A, BingelF (2000). A review <str<strong>on</strong>g>of</str<strong>on</strong>g> zooplankt<strong>on</strong> investigati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g><strong>the</strong> Black Sea over <strong>the</strong> last decade. J Mar Syst 24,355-371Kitaysky AS, Kitaiskaia EV, Piatt JF, Wingfield JC(2005). A mechanistic link between chick diet <strong>and</strong>decline in seabirds? Proc Biol Sci Proc R Soc B273, 445–450Koutsikopoulos C, Beillois P, Leroy C, Taillefer F(1998). Temporal trends <strong>and</strong> spatial structures <str<strong>on</strong>g>of</str<strong>on</strong>g><strong>the</strong> sea-surface temperature in <strong>the</strong> Bay <str<strong>on</strong>g>of</str<strong>on</strong>g> Biscay.Oceanol Acta 21, 335-344Kushmaro A, Rosenberg E, Fine M, Ben HaimY, Loya Y (1998). Effects <str<strong>on</strong>g>of</str<strong>on</strong>g> temperature <strong>on</strong> <strong>the</strong>bleaching <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> coral Oculina patag<strong>on</strong>ica by <strong>the</strong>Vibrio AK-1. Mar Ecol Prog Ser 171, 131-137LLajus DL, Lajus JA, Dmitrieva ZV, Kraikovski AV,Alex<strong>and</strong>rov DA (2005). The use <str<strong>on</strong>g>of</str<strong>on</strong>g> historical catchdata to trace <strong>the</strong> influence <str<strong>on</strong>g>of</str<strong>on</strong>g> climate <strong>on</strong> fishpopulati<strong>on</strong>s: examples from <strong>the</strong> White <strong>and</strong> BarentsSea fisheries in <strong>the</strong> 17th <strong>and</strong> 18th centuries. ICES Jmar Sci 62, 1426-1435Lax<strong>on</strong> S, Peacock N, Smith D (2003). Highinterannual variability <str<strong>on</strong>g>of</str<strong>on</strong>g> sea-ice thickness in <strong>the</strong>Arctic regi<strong>on</strong>. Nature 425, 947-950Leslie HM, Breck EN, Chan F, Lubchenco J, MengeBA (2005). Barnacle reproductive hotspots linked t<strong>on</strong>ear shore ocean c<strong>on</strong>diti<strong>on</strong>s. PNAS 102, 10534-10539Levitus S, Ant<strong>on</strong>ov JI, Boyer TP, Stephens C (2000).Warming <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> world oceans. Science 287, 2225-2229Lima FP, Queiroz N, Ribeiro PA, Hawkins SJ, SantosAM (2006). Geographic expansi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a marine68 <str<strong>on</strong>g>Impacts</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Climate</str<strong>on</strong>g> <str<strong>on</strong>g>Change</str<strong>on</strong>g> <strong>on</strong> <strong>the</strong> <strong>European</strong> <strong>Marine</strong> <strong>and</strong> <strong>Coastal</strong> Envir<strong>on</strong>ment


gastropod, Patella rustica Linnaeus, 1758, <strong>and</strong> itsrelati<strong>on</strong> with unusual climatic events. J Biogeogr 33,812–822Llope M, Anadón R, Viesca L, Quevedo M, G<strong>on</strong>zález-Quirós R, Stenseth NC (2006). Hydrographicdynamics in <strong>the</strong> Sou<strong>the</strong>rn Bay <str<strong>on</strong>g>of</str<strong>on</strong>g> Biscay: integratingmulti-scale physical variability over <strong>the</strong> last decade(1993-2003). J Geophys Res 111, C0921Loeng H, Bjorke H, Ottersen G (1995). Larval fishgrowth in <strong>the</strong> Barents Sea. Can Spec Publ FishAquat Sci 121, 691–698Lüning K (1990). Seaweeds: <strong>the</strong>ir envir<strong>on</strong>ment,biogeography, <strong>and</strong> ecophysiology, Wiley-Interscience Pub, New York, 527 pMMacD<strong>on</strong>ald RW, Harnerb T, Fyfe J (2005). Recentclimate change in <strong>the</strong> Arctic <strong>and</strong> its impact <strong>on</strong>c<strong>on</strong>taminant pathways <strong>and</strong> interpretati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g>temporal trend data. Sci Tot Envir<strong>on</strong>m 342, 5-86.doi:10.1016/j.scitotenv.2004.12.059Mann ME, J<strong>on</strong>es PD (2003). Global surfacetemperatures over <strong>the</strong> past two millennia. GeophysRes Lett 30, 1820, doi:10.1029/2003GL017814Marcos M, Gomis D, M<strong>on</strong>serrat S, Álvarez E, PérezB, García-Lafuente J (2005). C<strong>on</strong>sistency <str<strong>on</strong>g>of</str<strong>on</strong>g> l<strong>on</strong>gsea level time series in <strong>the</strong> Nor<strong>the</strong>rn coast <str<strong>on</strong>g>of</str<strong>on</strong>g> Spain.J Geophys Res 110, 1-13Marshall J, Kushnir Y, Battisti D, Chang P, Czaja A,Dicks<strong>on</strong> R, Hurrell J, McCartney M, Saravanan R,Visbeck M (2001). North Atlantic climate variability:Phenomena, impacts <strong>and</strong> mechanisms. Int JClimatol 21,1863-1898, doi:10.1002/joc.693.Matthäus W, Frank H (1992). Characteristics <str<strong>on</strong>g>of</str<strong>on</strong>g>major Baltic inflows – a statistical analysis. C<strong>on</strong>tShelf Res 12, 1375-1400Matthäus, W., (2006). The history <str<strong>on</strong>g>of</str<strong>on</strong>g> investigati<strong>on</strong><str<strong>on</strong>g>of</str<strong>on</strong>g> salt water inflow into <strong>the</strong> Baltic Sea – from <strong>the</strong>early beginning to <strong>the</strong> recent results. <strong>Marine</strong> ScienceReports, No. 65, Baltic Sea Research InstituteWarnemünde, 81pp.McClain CR, Signorini SR, Christian JR (2004).Subtropical gyre variability observed by ocean-colorsatellites. Deep-Sea Res II 51, 281-301McLaughlin F, Carmack E, MacD<strong>on</strong>ald R, WeaverAJ, Smith J (2002). The Canada Basin, 1989-1995:Upstream events <strong>and</strong> far-field effects <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> BarentsSea. J Geophys Res (Oceans) 107, 19.1-19.20Mieszkowska N, Leaper R, Moore P, Kendall MA,Burrows MT, Lear D, Poloczanska E, Hiscock K,Moschella PS, Thomps<strong>on</strong> RC, Herbert RJ, LaffoleyD, Baxter J, Southward AJ, Hawkins SJ (2005).<strong>Marine</strong> Biodiversity <strong>and</strong> <str<strong>on</strong>g>Climate</str<strong>on</strong>g> <str<strong>on</strong>g>Change</str<strong>on</strong>g>: Assessing<strong>and</strong> Predicting <strong>the</strong> Influence <str<strong>on</strong>g>of</str<strong>on</strong>g> Climatic <str<strong>on</strong>g>Change</str<strong>on</strong>g>Using Intertidal Rocky Shore Biota. Occasi<strong>on</strong>alPublicati<strong>on</strong>s. Mar Biol Assoc UK20, 53 p.Moberg A, S<strong>on</strong>echkin DM, Holmgren K, DatsenkoNM, Karlen W, Lauritzen (2005). Highly variableNor<strong>the</strong>rn Hemisphere temperatures rec<strong>on</strong>structedfrom low- <strong>and</strong> high-resoluti<strong>on</strong> proxy data. Nature433, 613-617Molinero JC, Ibanez F, Nival P, Buecher I, SouissiS (2005). North Atlantic climate <strong>and</strong> northwesternMediterranean plankt<strong>on</strong> variability. Limnol Oceanogr50, 1213-1220Möllmann C, Kornilovs G, Fetter M, Köster FW(2005). <str<strong>on</strong>g>Climate</str<strong>on</strong>g>, zooplankt<strong>on</strong>, <strong>and</strong> pelagic fishgrowth in <strong>the</strong> central Baltic Sea. ICES J Mar Sci 62,1270-1280Morri C, Bianchi CN (2001). Recent changes inbiodiversity in <strong>the</strong> Ligurian Sea (NW Mediterranean):is <strong>the</strong>re a climatic forcing? In: Far<strong>and</strong>a FM, GuglielmoL, Spezie G (Eds) Structure <strong>and</strong> Processes in <strong>the</strong>Mediterranean Ecosystems. Springer, Milano, pp375–384Myers RA, Worm B (2003). Rapid worldwidedepleti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> predatory fish communities. Nature423, 280-283NNicholls RJ, Mimura N (1998). Regi<strong>on</strong>al issuesraised by sea level rise <strong>and</strong> <strong>the</strong>ir policy implicati<strong>on</strong>s.Clim Res 11, 5-18OOguz T, Dippner JW, Kaymaz Z (2006). ClimaticRegulati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> Black Sea hydro-meteorological<strong>and</strong> ecological properties at interannual-to-decadaltime scales. J Mar Syst 60, 235-254Osborn TJ, Briffa KR (2006). The spatial extent <str<strong>on</strong>g>of</str<strong>on</strong>g>20th-century warmth in <strong>the</strong> c<strong>on</strong>text <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> past 1200years. Science 311, 841-844Østerhus S, Gammelsrød T (1999). The abyss <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong>Nordic Seas is warming. J <str<strong>on</strong>g>Climate</str<strong>on</strong>g> 12, 3297-3304Ottersen G, Loeng H, Ådl<strong>and</strong>svik B, IngvaldsenR (2003). Temperature variability in <strong>the</strong> Nor<strong>the</strong>astAtlantic. ICES Mar Sci Symp 219, 86-94Overl<strong>and</strong> JE, Spillane MC, Percival DB, Wang M,M<str<strong>on</strong>g>of</str<strong>on</strong>g>jeld HO (2004). Seas<strong>on</strong>al <strong>and</strong> regi<strong>on</strong>al variati<strong>on</strong><str<strong>on</strong>g>of</str<strong>on</strong>g> pan-Arctic surface air temperature over <strong>the</strong>instrumental record. J <str<strong>on</strong>g>Climate</str<strong>on</strong>g> 17, 3263–3282PPauly D, Christensen V, Dalsgaard J, Froese R,Torres Jr. FC (1998). Fishing down marine foodwebs. Science 279: 860-863Perez T, Garrabou J, Sartoretto S, Harmelin JG,Francour P, Vacelet J (2000). Mortalité massived’invertébrés marins: un événement sans précédenten Méditerranée nord-occidentale. C R Acad SciParis, Sci Vie 323, 853–865Perry AL, Low PJ, Ellis JR, Reynolds JD (2005).<str<strong>on</strong>g>Impacts</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Climate</str<strong>on</strong>g> <str<strong>on</strong>g>Change</str<strong>on</strong>g> <strong>on</strong> <strong>the</strong> <strong>European</strong> <strong>Marine</strong> <strong>and</strong> <strong>Coastal</strong> Envir<strong>on</strong>ment 69


Bibliography<str<strong>on</strong>g>Climate</str<strong>on</strong>g> change <strong>and</strong> distributi<strong>on</strong> shifts in marinefishes. Science 308, 1912-1915Philippart CJM, van Aken HM, Beukema JJ, BosOG, Cadee GC, Dekker R (2003). <str<strong>on</strong>g>Climate</str<strong>on</strong>g>-relatedchanges in recruitment <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> bivalve Macomabalthica. Limnol Oceanogr 48, 2171–2185Pingree R (2002). Ocean structure <strong>and</strong> climate(Eastern North Atlantic): in situ measurement <strong>and</strong>remote sensing. J Mar Biol Assoc UK 82, 681-707Pingree R (2005). North Atlantic <strong>and</strong> North Seaclimate change: curl up, shut down, NAO <strong>and</strong> oceancolour. J Mar Biol Assoc UK 85, 1301-1315Pingree RD, Griffiths DK (1978). Tidal fr<strong>on</strong>ts <strong>on</strong> <strong>the</strong>shelf seas around <strong>the</strong> British Isles. J Geophys Res(Oceans <strong>and</strong> Atmospheres) 83, 4615-4622Pingree RD, Le Cann B. (1989). Celtic <strong>and</strong> Armoricanslope <strong>and</strong> shelf residual currents. Progr Oceanogr23, 303-338Planque B, Beillois P, Jégou AM, Lazure P, Petitgas P,Puillat I (2003). Large-scale hydroclimatic variabilityin <strong>the</strong> Bay <str<strong>on</strong>g>of</str<strong>on</strong>g> Biscay: <strong>the</strong> 1990s in <strong>the</strong> c<strong>on</strong>text <str<strong>on</strong>g>of</str<strong>on</strong>g>interdecadal changes, ICES Mar Sci Symp 219,61–70Polyakov IG, Beszczynska A, Carmack EC,Dmitrenko IA, Fahrbach E, Frolov IE, Gerdes R,Hansen E, Holfort J, Ivanov VV, Johns<strong>on</strong> MA,Karcher M, Dauker F, Moris<strong>on</strong> J, Orvik KA, SchauerU, Simm<strong>on</strong>s HL, Skagseth Ø, Sokolov VT, Steele M,Timokhov LA, Walsh D, Walsh JE (2005). One morestep toward a warmer Arctic. Geophys Res Lett 32,LI7605, doi:10.1029/2005GL023740Prodanov K, Mikhaylov K, Daskalov G, Maxim K,Ozdamar E, Shlyakhov V, Chashcin A, Arkhipov A(1997). Envir<strong>on</strong>mental management <str<strong>on</strong>g>of</str<strong>on</strong>g> fish resourcesin <strong>the</strong> Black Sea <strong>and</strong> <strong>the</strong>ir rati<strong>on</strong>al exploitati<strong>on</strong>.General Fisheries Council <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> MediterraneanStudies <strong>and</strong> Reviews 68, 1-178QQuadfasel D (2005). The Atlantic heat c<strong>on</strong>veyorslows. Nature 438, 565-566Quero JC, Du Buit MH, Vayne JJ (1998). The records<str<strong>on</strong>g>of</str<strong>on</strong>g> tropical fishes <strong>and</strong> <strong>the</strong> warming <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> <strong>European</strong>Atlantic waters. Oceanol Acta 21, 345-351RReid PC, Edwards M, Beaugr<strong>and</strong> G, SkogenM, Stevens D (2003). Periodic changes in <strong>the</strong>zooplankt<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> North Sea during <strong>the</strong> twentiethcentury linked to oceanic inflow. Fish Oceanogr 12,260-269Reise K, Dankers N, Essink K (2004). Introducedspecies. In: Essink K, Dettmann C, Farke H, LaursenK, Lüerßen G, Marencic H, Wiersinga W (Eds)Wadden Sea Quality Status Report 2004. WaddenSea Ecosystem 19 – 2005, pp 155-161Roberts JM, Wheeler AJ, Freiwald A (2006). Reefs<str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> deep: <strong>the</strong> biology <strong>and</strong> geology <str<strong>on</strong>g>of</str<strong>on</strong>g> cold-watercoral ecosystems. Science 312, 543-547Root TL, Price JT, Hall KR, Schneider SH,Rosenzweig C, Pounds JA (2003). Fingerprints <str<strong>on</strong>g>of</str<strong>on</strong>g>global warming <strong>on</strong> wild animals <strong>and</strong> plants. Nature421, 57-60Romano JC, Bensoussan N, Younes WAN, Arlhac D(2000). Anomalie <strong>the</strong>rmique dans les eaux du golfede Marseille dur<strong>and</strong> l’été 1999. Une explicati<strong>on</strong>partielle de la mortalité d’invertébrés fixés? C RAcad Sci Paris, Sci Vie 323, 415–427Rothrock DA, Zhang J (2005). Arctic Ocean seaicevolume: What explains its recent depleti<strong>on</strong>?J Geophys Res 110, C01002, doi:10.1029/2004JC002282Royal Society (2005). Ocean acidificati<strong>on</strong> due toincreasing atmospheric carb<strong>on</strong> dioxide. PolicyDocument 12/0Russo A, Rabitti S, Bastianini M (2002). DecadalClimatic Anomalies in <strong>the</strong> Nor<strong>the</strong>rn Adriatic SeaInferred from a New Oceanographic Data Set.PSZNI Mar Ecol 23, 340-351SSánchez I, Fernández C, Arr<strong>on</strong>tes J (2005).L<strong>on</strong>g-term changes in <strong>the</strong> structure <str<strong>on</strong>g>of</str<strong>on</strong>g> intertidalassemblages following invasi<strong>on</strong> by Sargassummuticum (Phaeophyta). J Phycol 41, 942-949Sarmiento JL, Slater R, Barber R, Bopp L, D<strong>on</strong>eySC, Hirst AC, Kleypas J, Matear R, Mikolajewicz U,M<strong>on</strong>fray P, Soldatov V, Spall SA, Stouffer R (2004).Resp<strong>on</strong>se <str<strong>on</strong>g>of</str<strong>on</strong>g> ocean ecosystems to climate warming.Glob Biogeoch Cycles 18, 3Schauer U, Muench RD, Rudels B, Timokhov L(1997). The impact <str<strong>on</strong>g>of</str<strong>on</strong>g> eastern Arctic Shelf Waters <strong>on</strong><strong>the</strong> Nansen Basin intermediate layers. J GeophysRes 102, 3371-3382Schindler DW (2006). Recent advances in <strong>the</strong>underst<strong>and</strong>ing <strong>and</strong> management <str<strong>on</strong>g>of</str<strong>on</strong>g> eutrophicati<strong>on</strong>.Limnol Oceanogr 51, 356-363Shiganova TA (1998). Invasi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> Black Seaby <strong>the</strong> ctenophore Mnemiopsis leidyi <strong>and</strong> recentchanges in pelagic community structure. FishOceanogr 7, 305-310Shiganova TA, Musaeva EI, Bulgakova YV, MirzoyanZA, Martynyuk ML (2003). Invaders CtenophoresMnemiopsis leidyi (A. Agassiz) <strong>and</strong> Beroe ovataMayer 1912, <strong>and</strong> <strong>the</strong>ir influence <strong>on</strong> <strong>the</strong> pelagicecosystem <str<strong>on</strong>g>of</str<strong>on</strong>g> nor<strong>the</strong>astern Black Sea, Oceanology(Engl. Trans.) 30, 180-190Shulman GE, Chashchin AK, Minyuk GS, ShchepkinVY et al. (1994). L<strong>on</strong>gterm m<strong>on</strong>itoring <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong>c<strong>on</strong>diti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Black Sea sprat. Doklady RossiyskoyAkademii Nauk, v. 335, ¹ 1, pp 124 - 126Slagstad D, Wassmann P (1996). <str<strong>on</strong>g>Climate</str<strong>on</strong>g> change <strong>and</strong>70 <str<strong>on</strong>g>Impacts</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Climate</str<strong>on</strong>g> <str<strong>on</strong>g>Change</str<strong>on</strong>g> <strong>on</strong> <strong>the</strong> <strong>European</strong> <strong>Marine</strong> <strong>and</strong> <strong>Coastal</strong> Envir<strong>on</strong>ment


carb<strong>on</strong> flux in <strong>the</strong> Barents Sea: 3-D simulati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> icedistributi<strong>on</strong>, primary producti<strong>on</strong> <strong>and</strong> vertical export <str<strong>on</strong>g>of</str<strong>on</strong>g>particulate organic carb<strong>on</strong>. Memoirs <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> Nati<strong>on</strong>alInstitute for Polar Research, Special Issue 51, 119-141Southward AJ (1980). The western English Channel- an inc<strong>on</strong>stant ecosystem? Nature 285, 361-366Southward AJ (1991). Forty years <str<strong>on</strong>g>of</str<strong>on</strong>g> changes inspecies compositi<strong>on</strong> <strong>and</strong> populati<strong>on</strong>-density <str<strong>on</strong>g>of</str<strong>on</strong>g>barnacles <strong>on</strong> a rocky shore near Plymouth. J MarBiol Assoc UK 71, 495–523Southward AJ, Boalch GT, Maddock L (1988).Fluctuati<strong>on</strong>s in <strong>the</strong> herring <strong>and</strong> pilchard fisheries<str<strong>on</strong>g>of</str<strong>on</strong>g> Dev<strong>on</strong> <strong>and</strong> Cornwall linked to change in climatesince <strong>the</strong> 16th century. J Mar Biol Assoc UK 68,423-445Southward AJ, Hawkins SJ, Burrows MT (1995).Seventy years’ observati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> changes indistributi<strong>on</strong> <strong>and</strong> abundance <str<strong>on</strong>g>of</str<strong>on</strong>g> zooplankt<strong>on</strong> <strong>and</strong>intertidal organisms in <strong>the</strong> western English Channelin relati<strong>on</strong> to rising sea temperature. J Therm Biol20, 127-155Southward AJ, Langmead O, Hardman-MountfordNJ, Aiken J, Boalch GT, D<strong>and</strong>o PR, Genner MJ,Joint I, Kendall M, Halliday NC, Harris RP, Leaper R,Mieszkowska N, Pingree RD, Richards<strong>on</strong> AJ, SimsDW, Smith T, Walne AW, Hawkins S.J (2005). L<strong>on</strong>gtermoceanographic <strong>and</strong> ecological research in <strong>the</strong>western English Channel. Adv Mar Biol 47, 1-105.Stachowicz JJ, Terwin JR, Whitlatch RB, OsmanRW (2002). Linking climate change <strong>and</strong> biologicalinvasi<strong>on</strong>s: ocean warming facilitates n<strong>on</strong>-indigenousspecies invasi<strong>on</strong>. Proc Nat Acad Sc USA 99, 15497-15500Stern, N (2006). Stern Review <strong>on</strong> <strong>the</strong> ec<strong>on</strong>omics <str<strong>on</strong>g>of</str<strong>on</strong>g>climate change. HM Treasury, UKTTeng H, Washingt<strong>on</strong> WM, Meehl GA, Buja LE, Str<strong>and</strong>GW (2006). Twenty-first century Arctic climatechange in <strong>the</strong> CCSM3 IPCC scenario simulati<strong>on</strong>s.<str<strong>on</strong>g>Climate</str<strong>on</strong>g> Dynamics 26, 601-616Thomps<strong>on</strong> DJW, Wallace JM (1998). The ArcticOscillati<strong>on</strong> signature in <strong>the</strong> wintertime geopotentialheight <strong>and</strong> temperature fields. Geophys Res Lett25, 1297-1300Thomps<strong>on</strong> DJW, Wallace JM (2001). Regi<strong>on</strong>alclimate impacts <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> nor<strong>the</strong>rn hemisphere annularmode <strong>and</strong> associated climate trends. Science 293,85-89Toresen R, Østvedt LJ (2000). Variati<strong>on</strong> in abundance<str<strong>on</strong>g>of</str<strong>on</strong>g> Norwegian spring-spawning herring (Clupeaharengus, Clupeidae) throughout <strong>the</strong> 20th century<strong>and</strong> <strong>the</strong> influence <str<strong>on</strong>g>of</str<strong>on</strong>g> climatic fluctuati<strong>on</strong>s. Fish <strong>and</strong>Fisheries 1, 231-256Turley CM, Bianchi A, Christaki U, Harris JRW,Psarra S, Ruddy G, Stutt ED, Tselepides A, vanWambeke (2000). Relati<strong>on</strong>ship between primaryproducers <strong>and</strong> bacteria in an oligotrophic sea: <strong>the</strong>Mediterranean <strong>and</strong> biogeochemical implicati<strong>on</strong>s.Mar Ecol Progr Ser 193, 11-18VValdés L, Lavín A (2002). Dynamics <strong>and</strong> HumanImpact in <strong>the</strong> Bay <str<strong>on</strong>g>of</str<strong>on</strong>g> Biscay: An ecologicalperspective. In: Sherman K, Skjoldal HR (Eds) Largemarine Ecosystems <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> North Atlantic, ElsevierScience, pp 293-320Vilhjálmss<strong>on</strong> H (1997). Climatic variati<strong>on</strong>s <strong>and</strong> someexamples <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong>ir effects <strong>on</strong> <strong>the</strong> marine ecology <str<strong>on</strong>g>of</str<strong>on</strong>g>Icel<strong>and</strong>ic <strong>and</strong> Greenl<strong>and</strong> waters, in particular during<strong>the</strong> present century. Rit Fiskideildar 40, 7-29WWal<strong>the</strong>r GR, Post E, C<strong>on</strong>vey P, Menzel A, ParmesanC, Beebe TJC, Fromentin JM, Hoegh-Guldberg O,Bairlein F (2002). Ecological resp<strong>on</strong>ses to recentclimate change. Nature 416, 389-395Weijerman M, Lindeboom H, Zuur AF (2005). Regimeshifts in marine ecosystems in <strong>the</strong> North Sea <strong>and</strong>Wadden Sea. Mar Ecol Progr Ser 298, 21-39Wiltshire KH, Manly BFJ (2004). The warming trendat Helgol<strong>and</strong> Roads, North Sea: phytoplankt<strong>on</strong>resp<strong>on</strong>se, Helgol<strong>and</strong> mar Res 58, 269-273Woehrling D, Lefebvre A, Le Fevre-Lehorff G,Delesm<strong>on</strong>t R (2005). Seas<strong>on</strong>al <strong>and</strong> l<strong>on</strong>ger termtrends in sea temperature al<strong>on</strong>g <strong>the</strong> French NorthSea coast 1975 to 2002. J Mar Biol Assoc UK 85,39-48Woodgate RA, Aagaard K (2005). M<strong>on</strong>thlytemperature, salinity <strong>and</strong> transport variability <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong>Bering Strait through flow. Geophys Res Lett 32,L04601, doi:10.1029/2004GL021880World Meteorological Organizati<strong>on</strong> (2001). WorldMeteorological Organizati<strong>on</strong>/United Nati<strong>on</strong>sEnvir<strong>on</strong>ment Programme <str<strong>on</strong>g>Climate</str<strong>on</strong>g> <str<strong>on</strong>g>Change</str<strong>on</strong>g> 2001:The Scientific Basis<str<strong>on</strong>g>Impacts</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Climate</str<strong>on</strong>g> <str<strong>on</strong>g>Change</str<strong>on</strong>g> <strong>on</strong> <strong>the</strong> <strong>European</strong> <strong>Marine</strong> <strong>and</strong> <strong>Coastal</strong> Envir<strong>on</strong>ment 71


Appendix 1. Glossary <str<strong>on</strong>g>of</str<strong>on</strong>g> termsAlbedo effectIncreased reflectivity <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> ground surfacefollowing a change <str<strong>on</strong>g>of</str<strong>on</strong>g> its characteristics orcover <strong>the</strong>reby changing <strong>the</strong> heat balance<str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> surface-atmosphere system.Beaufort GyreThe Beaufort Gyre is a circulati<strong>on</strong> systemswirling <strong>the</strong> waters <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> Arctic Basin<strong>and</strong> turning <strong>the</strong> ice-cap with it.Greenhouse gasesGreenhouse gases are comp<strong>on</strong>ents <str<strong>on</strong>g>of</str<strong>on</strong>g><strong>the</strong> atmosphere that c<strong>on</strong>tribute to <strong>the</strong>greenhouse effect, <strong>the</strong>y include watervapour, carb<strong>on</strong> dioxide, methane, nitrousoxide <strong>and</strong> oz<strong>on</strong>eMilankovitch cyclesThe variati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> Earth’s exposure to<strong>the</strong> sun’s rays, or insolati<strong>on</strong>, that resultsfrom variati<strong>on</strong>s in <strong>the</strong> orbit <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> Earth<strong>and</strong> <strong>the</strong> tilt <str<strong>on</strong>g>of</str<strong>on</strong>g> its axis, <strong>and</strong> that might affectclimate, sea level <strong>and</strong> sedimentati<strong>on</strong> (witha time period in <strong>the</strong> order <str<strong>on</strong>g>of</str<strong>on</strong>g> thous<strong>and</strong>s<str<strong>on</strong>g>of</str<strong>on</strong>g> years).Transpolar Drift (or Trans-Arctic Drift)Transpolar Drift is a circulati<strong>on</strong> systemcarrying water <strong>and</strong> ice from Siberiaacross <strong>the</strong> North pole <strong>and</strong> down to <strong>the</strong>east coast <str<strong>on</strong>g>of</str<strong>on</strong>g> Greenl<strong>and</strong>.72 <str<strong>on</strong>g>Impacts</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Climate</str<strong>on</strong>g> <str<strong>on</strong>g>Change</str<strong>on</strong>g> <strong>on</strong> <strong>the</strong> <strong>European</strong> <strong>Marine</strong> <strong>and</strong> <strong>Coastal</strong> Envir<strong>on</strong>ment


Appendix 2. List <str<strong>on</strong>g>of</str<strong>on</strong>g> acr<strong>on</strong>ymsACIAAOASOFCPREAWRENSOEUGCMGMESArctic <str<strong>on</strong>g>Climate</str<strong>on</strong>g> Impact AssessmentArctic Oscillati<strong>on</strong>Arctic/Subarctic Ocean Fluxes)C<strong>on</strong>tinuous Plankt<strong>on</strong> RecorderEast Atlantic-West RussiaEl Niño-Sou<strong>the</strong>rn Oscillati<strong>on</strong><strong>European</strong> Uni<strong>on</strong>Global Circulati<strong>on</strong> ModelGlobal M<strong>on</strong>itoring for Envir<strong>on</strong>ment <strong>and</strong> SecurityIGY Internati<strong>on</strong>al Physical Year (1957/1958)IPCCIPCIntergovernmental Panel <strong>on</strong> <str<strong>on</strong>g>Climate</str<strong>on</strong>g> <str<strong>on</strong>g>Change</str<strong>on</strong>g>Iberian Polward CurrentIPY Internati<strong>on</strong>al Polar Year (2007/2008)IUCNJNCCMOCNACNAMNAONHTSAHFOSSSTTHCWFDInternati<strong>on</strong>al Uni<strong>on</strong> for <strong>the</strong> C<strong>on</strong>servati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Nature <strong>and</strong> NaturalResourcesJoint Nature C<strong>on</strong>servati<strong>on</strong> CouncilMeridi<strong>on</strong>al Overturning Circulati<strong>on</strong>North Atlantic CurrentNor<strong>the</strong>rn Hemisphere Annual ModeNorth Atlantic Oscillati<strong>on</strong>Nor<strong>the</strong>rn Hemisphere TemperatureSir Alister Hardy Foundati<strong>on</strong> for Ocean ScienceSea-Surface TemperatureThermohaline Circulati<strong>on</strong>Water Framework Directive<str<strong>on</strong>g>Impacts</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Climate</str<strong>on</strong>g> <str<strong>on</strong>g>Change</str<strong>on</strong>g> <strong>on</strong> <strong>the</strong> <strong>European</strong> <strong>Marine</strong> <strong>and</strong> <strong>Coastal</strong> Envir<strong>on</strong>ment 73


Appendix 3. GlossaryGlossary <str<strong>on</strong>g>of</str<strong>on</strong>g> large-scale m<strong>on</strong>itoring programmes <strong>and</strong> research activities relatedto climate change impacts <strong>on</strong> <strong>the</strong> <strong>European</strong> marine <strong>and</strong> coastal envir<strong>on</strong>mentCIESM: The Mediterranean ScienceCommissi<strong>on</strong> integrates a broadspectrum <str<strong>on</strong>g>of</str<strong>on</strong>g> marine disciplines,encompassing geo-physical, chemical<strong>and</strong> biological processes, al<strong>on</strong>g withhigh-resoluti<strong>on</strong> mapping <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> seabottom.Today, changes are occurringat a fast, unprecedented pace in <strong>the</strong>Mediterranean Sea. CIESM tracks <strong>and</strong>analyses <strong>the</strong>se changes at <strong>the</strong> scale <str<strong>on</strong>g>of</str<strong>on</strong>g><strong>the</strong> whole Basin, from <strong>the</strong> impact <str<strong>on</strong>g>of</str<strong>on</strong>g> globalwarming <strong>on</strong> sea level <strong>and</strong> water massesto changes in marine biodiversity; frommorphological changes in coastlinesto <strong>the</strong> accumulati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> trace metals inmarine food chains (www.ciesm.org).CIRCLE: <str<strong>on</strong>g>Climate</str<strong>on</strong>g> change is increasinglyseen as <strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> greatest issues facing<strong>the</strong> world in <strong>the</strong> 21st century, <strong>and</strong> Europeis taking a leading role in resp<strong>on</strong>ding toits challenges. Whatever <strong>the</strong> success <str<strong>on</strong>g>of</str<strong>on</strong>g>mitigating climate change may be, certainimpacts are unavoidable <strong>and</strong> <strong>European</strong>countries will need to adapt to thoseimpacts driven by certain vulnerabilities<strong>and</strong> exposures in <strong>the</strong> regi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> Europe.Their adaptati<strong>on</strong> resp<strong>on</strong>se must beinformed by a coherent body <str<strong>on</strong>g>of</str<strong>on</strong>g> research<strong>and</strong> it is <strong>the</strong> prime objective <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Climate</str<strong>on</strong>g>Impact Research Coordinati<strong>on</strong> for aLarger Europe to c<strong>on</strong>tribute to suchefforts by aligning nati<strong>on</strong>al researchprogrammes. This process will be astr<strong>on</strong>g support for <strong>the</strong> overall goal:Implementing a <strong>European</strong> ResearchArea (ERA) for <strong>the</strong> field <str<strong>on</strong>g>of</str<strong>on</strong>g> climate change(www.circle-era.net).CLIVAR: The specific objectives <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong><str<strong>on</strong>g>Climate</str<strong>on</strong>g> Variability <strong>and</strong> Predictabilityresearch programme are: i) to describe<strong>and</strong> underst<strong>and</strong> <strong>the</strong> physical processesresp<strong>on</strong>sible for climate variability <strong>and</strong>predictability at different time-scales,through <strong>the</strong> collecti<strong>on</strong> <strong>and</strong> analysis <str<strong>on</strong>g>of</str<strong>on</strong>g>observati<strong>on</strong>s <strong>and</strong> <strong>the</strong> development <strong>and</strong>applicati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> models <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> coupledclimate system; ii) to extend <strong>the</strong> record<str<strong>on</strong>g>of</str<strong>on</strong>g> climate variability over <strong>the</strong> time scales<str<strong>on</strong>g>of</str<strong>on</strong>g> interest through <strong>the</strong> assembly <str<strong>on</strong>g>of</str<strong>on</strong>g>quality-c<strong>on</strong>trolled paleoclimatic <strong>and</strong>instrumental data sets; iii) to extend<strong>the</strong> range <strong>and</strong> accuracy <str<strong>on</strong>g>of</str<strong>on</strong>g> seas<strong>on</strong>al tointerannual climate predicti<strong>on</strong> through<strong>the</strong> development <str<strong>on</strong>g>of</str<strong>on</strong>g> global coupledpredictive models; <strong>and</strong> iv) to underst<strong>and</strong><strong>and</strong> predict <strong>the</strong> resp<strong>on</strong>se <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> climatesystem to increases <str<strong>on</strong>g>of</str<strong>on</strong>g> radiatively activegases <strong>and</strong> aerosols (www.clivar.org).DEDUCE: Spatial analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> particularhabitats project using GIS (e.g. Corine<strong>Coastal</strong> Erosi<strong>on</strong>) that may lead to <strong>the</strong>development <str<strong>on</strong>g>of</str<strong>on</strong>g> o<strong>the</strong>r indicators. Thiswork c<strong>on</strong>tributed to an assessment <str<strong>on</strong>g>of</str<strong>on</strong>g><strong>the</strong> state <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>European</strong> Coasts publishedby <strong>the</strong> EEA in 2006 <strong>and</strong> will be takenforward <strong>on</strong> a <strong>European</strong> scale (www.eurosi<strong>on</strong>.org).DIVERSITAS: An internati<strong>on</strong>alprogramme <str<strong>on</strong>g>of</str<strong>on</strong>g> biodiversity scienceto promote an integrative biodiversityscience, linking biological, ecological <strong>and</strong>social disciplines in an effort to producesocially relevant new knowledge; <strong>and</strong>provide <strong>the</strong> scientific basis for <strong>the</strong>c<strong>on</strong>servati<strong>on</strong> <strong>and</strong> sustainable use <str<strong>on</strong>g>of</str<strong>on</strong>g>biodiversity. DIVERSITAS achieves <strong>the</strong>segoals by syn<strong>the</strong>sizing existing scientificknowledge, identifying gaps <strong>and</strong>emerging issues, <strong>and</strong> promoting newresearch initiatives, while also buildingbridges across countries <strong>and</strong> disciplines.The Programme also investigates policyimplicati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> biodiversity science, <strong>and</strong>communicates <strong>the</strong>se to policy fora,including internati<strong>on</strong>al c<strong>on</strong>venti<strong>on</strong>s(www.diversitas-internati<strong>on</strong>al.org).EEA: The <strong>European</strong> Envir<strong>on</strong>mentAgency aims to support sustainabledevelopment <strong>and</strong> to help achievesignificant <strong>and</strong> measurable improvementin Europe’s envir<strong>on</strong>ment through <strong>the</strong>provisi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> timely, targeted, relevant<strong>and</strong> reliable informati<strong>on</strong> to policy-makingagents <strong>and</strong> <strong>the</strong> public. The EEA hasdeveloped a set <str<strong>on</strong>g>of</str<strong>on</strong>g> indicators with regardto climate change (greenhouse gasses<strong>and</strong> temperature), <strong>and</strong> for <strong>the</strong> marineenvir<strong>on</strong>ment (nutrients <strong>and</strong> chlorophyll)(www.eea.europa.eu).74 <str<strong>on</strong>g>Impacts</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Climate</str<strong>on</strong>g> <str<strong>on</strong>g>Change</str<strong>on</strong>g> <strong>on</strong> <strong>the</strong> <strong>European</strong> <strong>Marine</strong> <strong>and</strong> <strong>Coastal</strong> Envir<strong>on</strong>ment


ERA-NET: The objective <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> ERA-NETscheme (funded by <strong>the</strong> <strong>European</strong> Uni<strong>on</strong>Sixth Framework Programme, FP6) is tostep up <strong>the</strong> cooperati<strong>on</strong> <strong>and</strong> coordinati<strong>on</strong><str<strong>on</strong>g>of</str<strong>on</strong>g> research activities carried out atnati<strong>on</strong>al or regi<strong>on</strong>al level in <strong>the</strong> MemberStates <strong>and</strong> Associated States through<strong>the</strong> networking <str<strong>on</strong>g>of</str<strong>on</strong>g> research activitiesc<strong>on</strong>ducted at nati<strong>on</strong>al or regi<strong>on</strong>al level,<strong>and</strong> <strong>the</strong> mutual opening <str<strong>on</strong>g>of</str<strong>on</strong>g> nati<strong>on</strong>al <strong>and</strong>regi<strong>on</strong>al research programmes(cordis.europa.eu/coordinati<strong>on</strong>/era-net.htm).EuroBIS: Within <strong>the</strong> MarBEF network,<strong>the</strong> <strong>European</strong> Ocean BiogeographicInformati<strong>on</strong> System is <strong>the</strong> <strong>European</strong>regi<strong>on</strong>al node <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> Ocean BiogeographicInformati<strong>on</strong> System. This distributedsystem <str<strong>on</strong>g>of</str<strong>on</strong>g> biogeographic informati<strong>on</strong> willintegrate individual data sets <strong>on</strong> marineorganisms into <strong>on</strong>e large c<strong>on</strong>solidateddatabase, that can provide a betterunderst<strong>and</strong>ing <str<strong>on</strong>g>of</str<strong>on</strong>g> l<strong>on</strong>g-term, large-scalepatterns in <strong>European</strong> marine waters(www.marbef.org/data/eurobis.php).EuroCoML: The <strong>European</strong> Census <str<strong>on</strong>g>of</str<strong>on</strong>g><strong>Marine</strong> Life is a regi<strong>on</strong>al implementati<strong>on</strong>committee <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> Census <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>Marine</strong> Life,a growing global network <str<strong>on</strong>g>of</str<strong>on</strong>g> researchersin more than 70 nati<strong>on</strong>s engaged in a 10-year initiative to assess <strong>and</strong> explain <strong>the</strong>diversity, distributi<strong>on</strong>, <strong>and</strong> abundance <str<strong>on</strong>g>of</str<strong>on</strong>g>marine life in <strong>the</strong> oceans – past, present,<strong>and</strong> future (www.eurocoml.org).GCOS: <strong>the</strong> Global <str<strong>on</strong>g>Climate</str<strong>on</strong>g> ObservingSystem aims to ensure that <strong>the</strong>observati<strong>on</strong>s <strong>and</strong> informati<strong>on</strong> neededto address climate-related issues areobtained <strong>and</strong> made available to allpotential users. GCOS stimulates,encourages, coordinates <strong>and</strong> o<strong>the</strong>rwisefacilitates <strong>the</strong> taking <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> neededobservati<strong>on</strong>s by nati<strong>on</strong>al or internati<strong>on</strong>alorganisati<strong>on</strong>s in support <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong>ir ownrequirements as well as <str<strong>on</strong>g>of</str<strong>on</strong>g> comm<strong>on</strong> goals.It provides an operati<strong>on</strong>al framework forintegrating, <strong>and</strong> enhancing as needed,observati<strong>on</strong>al systems <str<strong>on</strong>g>of</str<strong>on</strong>g> participatingcountries <strong>and</strong> organisati<strong>on</strong>s into acomprehensive system focused <strong>on</strong> <strong>the</strong>requirements for climate issues (www.wmo.ch/web/gcos).GLOBEC: Global Ocean EcosystemDynamics was initiated by SCOR <strong>and</strong> <strong>the</strong>IOC <str<strong>on</strong>g>of</str<strong>on</strong>g> UNESCO in 1991, to underst<strong>and</strong>how global change will affect <strong>the</strong>abundance, diversity <strong>and</strong> productivity <str<strong>on</strong>g>of</str<strong>on</strong>g>marine populati<strong>on</strong>s c<strong>on</strong>stituting a majorcomp<strong>on</strong>ent <str<strong>on</strong>g>of</str<strong>on</strong>g> oceanic ecosystems.The aim <str<strong>on</strong>g>of</str<strong>on</strong>g> GLOBEC is to advanceour underst<strong>and</strong>ing <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> structure<strong>and</strong> functi<strong>on</strong>ing <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> global oceanecosystem, its major subsystems, <strong>and</strong>its resp<strong>on</strong>se to physical forcing so that acapability can be developed to forecast<strong>the</strong> resp<strong>on</strong>ses <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> marine ecosystemto global change (www.globec.org).GMES: The Global M<strong>on</strong>itoring forEnvir<strong>on</strong>ment <strong>and</strong> Security representsa c<strong>on</strong>certed effort to bring data <strong>and</strong>informati<strong>on</strong> providers toge<strong>the</strong>r withusers, so <strong>the</strong>y can better underst<strong>and</strong>each o<strong>the</strong>r <strong>and</strong> agree <strong>on</strong> how to makeenvir<strong>on</strong>mental <strong>and</strong> security-relatedinformati<strong>on</strong> available to <strong>the</strong> people wh<strong>on</strong>eed it (www.gmes.info).GODAE: Global Ocean Data Assimilati<strong>on</strong>Experiment is an internati<strong>on</strong>alprogramme that aims to advance oce<strong>and</strong>ata assimilati<strong>on</strong> by syn<strong>the</strong>sising satellite<strong>and</strong> in situ observati<strong>on</strong>s (e.g. fromsatellite altimeters <strong>and</strong> ARGO floats) withstate-<str<strong>on</strong>g>of</str<strong>on</strong>g>-<strong>the</strong>-art models <str<strong>on</strong>g>of</str<strong>on</strong>g> global oceancirculati<strong>on</strong>. In <strong>the</strong> past few years, a suite<str<strong>on</strong>g>of</str<strong>on</strong>g> GODAE systems have been developedto produce global <strong>and</strong> basin-scaleocean analysis <strong>and</strong> short-term forecasts.GODAE products are also being used forecosystem applicati<strong>on</strong>s <strong>and</strong> to providelateral open boundary c<strong>on</strong>diti<strong>on</strong>s forregi<strong>on</strong>al <strong>and</strong> coastal systems (www.bom.gov.au/bmrc/ocean/GODAE).GOOS: The Global Ocean ObservingSystem is global system for sustainedobservati<strong>on</strong>s, modelling <strong>and</strong> analysis <str<strong>on</strong>g>of</str<strong>on</strong>g>marine <strong>and</strong> ocean variables to supportoperati<strong>on</strong>al ocean services worldwideobservati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> ocean, comprising <strong>the</strong>oceanographic comp<strong>on</strong>ent <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> GlobalEarth Observing System <str<strong>on</strong>g>of</str<strong>on</strong>g> Systems(GEOSS). GOOS provides descripti<strong>on</strong>s<str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> present state <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> oceans,including living resources; c<strong>on</strong>tinuousforecasts <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> future c<strong>on</strong>diti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong><str<strong>on</strong>g>Impacts</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Climate</str<strong>on</strong>g> <str<strong>on</strong>g>Change</str<strong>on</strong>g> <strong>on</strong> <strong>the</strong> <strong>European</strong> <strong>Marine</strong> <strong>and</strong> <strong>Coastal</strong> Envir<strong>on</strong>ment 75


Appendix 3. Glossarysea, <strong>and</strong> basic informati<strong>on</strong> for forecasts<str<strong>on</strong>g>of</str<strong>on</strong>g> climate change (www.ioc-goos.org).HELCOM: The Helsinki Commissi<strong>on</strong>works to protect <strong>the</strong> marine envir<strong>on</strong>ment<str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> Baltic Sea from all sources <str<strong>on</strong>g>of</str<strong>on</strong>g>polluti<strong>on</strong> through intergovernmentalcooperati<strong>on</strong> between Denmark, Est<strong>on</strong>ia,<strong>the</strong> <strong>European</strong> Community, Finl<strong>and</strong>,Germany, Latvia, Lithuania, Pol<strong>and</strong>,Russia <strong>and</strong> Sweden. They provideinformati<strong>on</strong> about: i) <strong>the</strong> state <str<strong>on</strong>g>of</str<strong>on</strong>g> trends in<strong>the</strong> marine envir<strong>on</strong>ment; ii) <strong>the</strong> efficiency<str<strong>on</strong>g>of</str<strong>on</strong>g> measures to protect it; <strong>and</strong> iii) comm<strong>on</strong>initiatives <strong>and</strong> positi<strong>on</strong>s which can form<strong>the</strong> basis for decisi<strong>on</strong>-making in o<strong>the</strong>rinternati<strong>on</strong>al fora (www.helcom.fi).HERMES: Funded by <strong>the</strong> <strong>European</strong>Uni<strong>on</strong> Sixth Framework Programme,FP6, Hotspot Ecosystem Research <strong>on</strong><strong>the</strong> Margins <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> <strong>European</strong> Seas bringstoge<strong>the</strong>r expertise in biodiversity, geology,sedimentology, physical oceanography,microbiology <strong>and</strong> biogeochemistry sothat <strong>the</strong> generic relati<strong>on</strong>ship betweenbiodiversity <strong>and</strong> ecosystem functi<strong>on</strong>ingcan be understood. Study sites extendfrom <strong>the</strong> Arctic to <strong>the</strong> Black Sea <strong>and</strong>include biodiversity hotspots such ascold seeps, cold-water coral mounds <strong>and</strong>reefs, cany<strong>on</strong>s <strong>and</strong> anoxic envir<strong>on</strong>ments,<strong>and</strong> communities found <strong>on</strong> open slopes.These important systems require urgentstudy because <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong>ir possible biologicalfragility, unique genetic resources,global relevance to carb<strong>on</strong> cycling <strong>and</strong>susceptibility to global change <strong>and</strong>human impact (www.eu-hermes.net).ICES: The Internati<strong>on</strong>al Councilfor Explorati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> Sea is anintergovernmental organisati<strong>on</strong> that dealswith fishing <strong>and</strong> fishing assessments in<strong>the</strong> North Atlantic. This includes adjacentseas such as <strong>the</strong> Baltic Sea <strong>and</strong> North Sea.Scientists working through ICES ga<strong>the</strong>rinformati<strong>on</strong> about <strong>the</strong> marine ecosystem.As well as filling gaps in existingknowledge, this informati<strong>on</strong> is alsodeveloped into unbiased, n<strong>on</strong>-politicaladvice, <strong>and</strong> <strong>the</strong>n used by <strong>the</strong> 19 membercountries, which fund <strong>and</strong> support ICES,to help <strong>the</strong>m manage <strong>the</strong> North AtlanticOcean <strong>and</strong> adjacent seas (www.ices.dk).IGBP: Internati<strong>on</strong>al Geosphere-Biosphere Programme provides scientificknowledge to improve <strong>the</strong> sustainability<str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> living Earth. IGBP studies <strong>the</strong>interacti<strong>on</strong>s between biological, chemical<strong>and</strong> physical processes <strong>and</strong> humansystems IGBP collaborates with o<strong>the</strong>rprogrammes to develop <strong>and</strong> impart <strong>the</strong>underst<strong>and</strong>ing necessary to resp<strong>on</strong>dto global change (www.igbp.kva.se).IHDP: The Internati<strong>on</strong>al HumanDimensi<strong>on</strong>s Programme <strong>on</strong> GlobalEnvir<strong>on</strong>mental <str<strong>on</strong>g>Change</str<strong>on</strong>g> is an internati<strong>on</strong>al,interdisciplinary, n<strong>on</strong>-governmentalscience programme dedicated topromoting, catalysing <strong>and</strong> coordinatingresearch <strong>on</strong> <strong>the</strong> human dimensi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g>global envir<strong>on</strong>mental change. IHDPtakes a social science perspective<strong>on</strong> global change <strong>and</strong> it works at <strong>the</strong>interface between science <strong>and</strong> practicalapplicati<strong>on</strong>s (www.ihdp.uni-b<strong>on</strong>n.de).IMBER: The Integrated <strong>Marine</strong>Biogeochemistry <strong>and</strong> EcosystemResearch project was initiated by <strong>the</strong>IGBP/SCOR Ocean Futures PlanningCommittee in 2001 to identify <strong>the</strong> mostimportant science issues related tobiological <strong>and</strong> chemical aspects <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong>ocean’s role in global change <strong>and</strong> <strong>the</strong>effects <str<strong>on</strong>g>of</str<strong>on</strong>g> global change <strong>on</strong> <strong>the</strong> ocean,with emphasis <strong>on</strong> important issues thatare not major comp<strong>on</strong>ents <str<strong>on</strong>g>of</str<strong>on</strong>g> existinginternati<strong>on</strong>al projects (www.imber.info).MedCLIVAR: A programme which aimsto coordinate <strong>and</strong> promote research <strong>on</strong><strong>the</strong> Mediterranean climate. The maingoals include rec<strong>on</strong>structi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> pastevoluti<strong>on</strong>, descripti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> patterns <strong>and</strong>mechanisms characterising space-timevariability, <strong>and</strong> identificati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> forcingresp<strong>on</strong>sible for <strong>the</strong> observed changes.Emphasis is <strong>on</strong> identificati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> trendsin observati<strong>on</strong>al records as well as <strong>on</strong>climate predicti<strong>on</strong>s under future emissi<strong>on</strong>scenarios. The study <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> occurrence<str<strong>on</strong>g>of</str<strong>on</strong>g> extreme events <strong>and</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> climate changeimpacts is also included in MedCLIVAR(clima.casaccia.enea.it/medclivar).MERSEA: The strategic objective <str<strong>on</strong>g>of</str<strong>on</strong>g><strong>Marine</strong> Envir<strong>on</strong>ment <strong>and</strong> Security for<strong>the</strong> <strong>European</strong> Area project (funded by76 <str<strong>on</strong>g>Impacts</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Climate</str<strong>on</strong>g> <str<strong>on</strong>g>Change</str<strong>on</strong>g> <strong>on</strong> <strong>the</strong> <strong>European</strong> <strong>Marine</strong> <strong>and</strong> <strong>Coastal</strong> Envir<strong>on</strong>ment


<strong>the</strong> <strong>European</strong> Uni<strong>on</strong> Suxth FrameworkProgramme, FP6) is to provide anintegrated service <str<strong>on</strong>g>of</str<strong>on</strong>g> global <strong>and</strong> regi<strong>on</strong>alocean m<strong>on</strong>itoring <strong>and</strong> forecasting tointermediate users <strong>and</strong> policy makersin support <str<strong>on</strong>g>of</str<strong>on</strong>g> safe <strong>and</strong> efficient <str<strong>on</strong>g>of</str<strong>on</strong>g>fshoreactivities, envir<strong>on</strong>mental management,security, <strong>and</strong> sustainable use <str<strong>on</strong>g>of</str<strong>on</strong>g> marineresources. The system to be developedwill be a key comp<strong>on</strong>ent <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> Ocean<strong>and</strong> <strong>Marine</strong> services element <str<strong>on</strong>g>of</str<strong>on</strong>g> GMES(www.mersea.eu.org).MGE: <strong>Marine</strong> Genomics Europe is aNetwork <str<strong>on</strong>g>of</str<strong>on</strong>g> Excellence project fundedby <strong>the</strong> <strong>European</strong> Uni<strong>on</strong> Sixth FrameworkProgramme, FP6, devoted to <strong>the</strong>development, utilisati<strong>on</strong> <strong>and</strong> spreading<str<strong>on</strong>g>of</str<strong>on</strong>g> high-throughput approaches for <strong>the</strong>investigati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> biology <str<strong>on</strong>g>of</str<strong>on</strong>g> marineorganisms. Moreover, MGE will establishdatabases <str<strong>on</strong>g>of</str<strong>on</strong>g> marine resources throughlarge-scale biodiversity studies (www.marine-genomics-europe.org).OSPAR: The C<strong>on</strong>venti<strong>on</strong> for <strong>the</strong>Protecti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> <strong>Marine</strong> Envir<strong>on</strong>ment<str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> Nor<strong>the</strong>ast Atlantic. In 2000, <strong>the</strong>OSPAR Commissi<strong>on</strong> published <strong>the</strong> firstcomprehensive Quality Status Report<strong>on</strong> <strong>the</strong> quality <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> marine envir<strong>on</strong>ment<str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> Nor<strong>the</strong>ast Atlantic. This wassupported by five reports <strong>on</strong> <strong>the</strong> differentparts <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> OSPAR maritime area. In2003, <strong>the</strong> Ministerial Meeting <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong>Commissi<strong>on</strong> adopted a new Strategyfor <strong>the</strong> Joint Assessment <strong>and</strong> M<strong>on</strong>itoringProgramme (JAMP). This provides for<strong>the</strong> work to support <strong>and</strong> produce aseries <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong>matic assessments, leadingto a fur<strong>the</strong>r comprehensive assessmentin 2010 (www.ospar.org).SCOR: Scientific Committee <strong>on</strong>Oceanic Research is <strong>the</strong> leadingn<strong>on</strong>-governmental organisati<strong>on</strong> for<strong>the</strong> promoti<strong>on</strong> <strong>and</strong> coordinati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g>internati<strong>on</strong>al oceanographic activities.SCOR science activities focus <strong>on</strong>promoting internati<strong>on</strong>al cooperati<strong>on</strong> inplanning <strong>and</strong> c<strong>on</strong>ducting oceanographicresearch, <strong>and</strong> solving methodological<strong>and</strong> c<strong>on</strong>ceptual problems that hinderresearch (www.jhu.edu/~scor).WCRP: The World <str<strong>on</strong>g>Climate</str<strong>on</strong>g> ResearchProgramme objectives are todevelop <strong>the</strong> fundamental scientificunderst<strong>and</strong>ing <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> physicalclimate system <strong>and</strong> climate processesneeded to determine to what extentclimate can be predicted <strong>and</strong> <strong>the</strong> extent<str<strong>on</strong>g>of</str<strong>on</strong>g> human influence <strong>on</strong> climate. Theprogramme encompasses studies <str<strong>on</strong>g>of</str<strong>on</strong>g><strong>the</strong> global atmosphere, oceans, sea<strong>and</strong>l<strong>and</strong>-ice, <strong>and</strong> <strong>the</strong> l<strong>and</strong> surface,which toge<strong>the</strong>r c<strong>on</strong>stitute <strong>the</strong> Earth’sphysical climate system. WCRP studiesare specifically directed to providescientifically founded quantitativeanswers to <strong>the</strong> questi<strong>on</strong>s being raised <strong>on</strong>climate <strong>and</strong> <strong>the</strong> range <str<strong>on</strong>g>of</str<strong>on</strong>g> natural climatevariability, as well as to establish <strong>the</strong> basisfor predicti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> global <strong>and</strong> regi<strong>on</strong>alclimatic variati<strong>on</strong>s <strong>and</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> changes in <strong>the</strong>frequency <strong>and</strong> severity <str<strong>on</strong>g>of</str<strong>on</strong>g> extreme events(www.wmo.ch/web/wcrp).SCOPE: Scientific Committee <strong>on</strong>Problems <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> Envir<strong>on</strong>ment is aninterdisciplinary body <str<strong>on</strong>g>of</str<strong>on</strong>g> natural <strong>and</strong> socialscience expertise focused <strong>on</strong> globalenvir<strong>on</strong>mental issues, operating at <strong>the</strong>interface between scientific <strong>and</strong> decisi<strong>on</strong>making instances, <strong>and</strong> a worldwidenetwork <str<strong>on</strong>g>of</str<strong>on</strong>g> scientists <strong>and</strong> scientificinstituti<strong>on</strong>s developing syn<strong>the</strong>ses <strong>and</strong>reviews <str<strong>on</strong>g>of</str<strong>on</strong>g> scientific knowledge <strong>on</strong>current or potential envir<strong>on</strong>mental issues(www.icsu-scope.org).<str<strong>on</strong>g>Impacts</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Climate</str<strong>on</strong>g> <str<strong>on</strong>g>Change</str<strong>on</strong>g> <strong>on</strong> <strong>the</strong> <strong>European</strong> <strong>Marine</strong> <strong>and</strong> <strong>Coastal</strong> Envir<strong>on</strong>ment 77


Appendix 4. Extract from Navigating <strong>the</strong> Future III<strong>on</strong> climate changeThe following text is extracted fromNavigating <strong>the</strong> Future III, Positi<strong>on</strong>Paper no. 8 (November 2006) from <strong>the</strong><strong>Marine</strong> Board <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> <strong>European</strong> ScienceFoundati<strong>on</strong> (MB-ESF). It outlines <strong>the</strong>most important marine <strong>the</strong>matic researchpriorities for Europe, taking into account<strong>the</strong> priorities not <strong>on</strong>ly for FP7, but also<strong>the</strong> objectives <str<strong>on</strong>g>of</str<strong>on</strong>g> nati<strong>on</strong>al researchprogrammes, <strong>the</strong> <strong>European</strong> <strong>Marine</strong>Envir<strong>on</strong>ment Strategy <strong>and</strong> <strong>the</strong> GalwayDeclarati<strong>on</strong> 2004.For general background informati<strong>on</strong>,<strong>the</strong> secti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Navigating <strong>the</strong> Future IIIdealing with ocean-climate interacti<strong>on</strong>s<strong>and</strong> feedback has been extracted <strong>and</strong>added to this report.Navigating <strong>the</strong> Future III can bedownloaded <strong>on</strong> <strong>the</strong> <strong>Marine</strong> Boardwebsite (www.esf.org/marineboard),paper copies are available up<strong>on</strong> requestto <strong>the</strong> <strong>Marine</strong> Board secretariat.78 <str<strong>on</strong>g>Impacts</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Climate</str<strong>on</strong>g> <str<strong>on</strong>g>Change</str<strong>on</strong>g> <strong>on</strong> <strong>the</strong> <strong>European</strong> <strong>Marine</strong> <strong>and</strong> <strong>Coastal</strong> Envir<strong>on</strong>ment


<str<strong>on</strong>g>Climate</str<strong>on</strong>g> change4.1 The ocean is a crucial comp<strong>on</strong>ent <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> Earth’sclimate system. It is <strong>the</strong> driver <str<strong>on</strong>g>of</str<strong>on</strong>g> many importantclimate processes <strong>on</strong> a range <str<strong>on</strong>g>of</str<strong>on</strong>g> time scales.Although <strong>the</strong>re can be no certainty regarding<strong>the</strong> precise nature <strong>and</strong> rates <str<strong>on</strong>g>of</str<strong>on</strong>g> change in <strong>the</strong>marine envir<strong>on</strong>ment due to alterati<strong>on</strong>s in climate,in <strong>the</strong> absence <str<strong>on</strong>g>of</str<strong>on</strong>g> policies <strong>and</strong> measures toprepare for <strong>the</strong>se changes, even <strong>the</strong> moremoderate <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> predicted scenarios indicatemajor social <strong>and</strong> ec<strong>on</strong>omic impacts. The2001 Report <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> Intergovernmental Panel<strong>on</strong> <str<strong>on</strong>g>Climate</str<strong>on</strong>g> <str<strong>on</strong>g>Change</str<strong>on</strong>g> states that ‘global climatechange will affect <strong>the</strong> physical, biological <strong>and</strong>biogeochemical characteristics <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> oceans<strong>and</strong> coasts, modifying <strong>the</strong>ir ecological structure,<strong>the</strong>ir functi<strong>on</strong>s <strong>and</strong> <strong>the</strong> goods <strong>and</strong> services that<strong>the</strong> oceans provide’. The Stern Review <strong>on</strong> <strong>the</strong>Ec<strong>on</strong>omics <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Climate</str<strong>on</strong>g> <str<strong>on</strong>g>Change</str<strong>on</strong>g> (2006 Reportto <strong>the</strong> UK Government) fur<strong>the</strong>r reiterates thispredicti<strong>on</strong>, stating that climate change willhave serious impacts <strong>on</strong> ec<strong>on</strong>omic growth <strong>and</strong>development, <strong>and</strong> that <strong>the</strong> failure to addressglobal warming will cost <strong>the</strong> global ec<strong>on</strong>omy3.68 trilli<strong>on</strong> pounds sterling (5 500 billi<strong>on</strong> euros)by 2050, triggering a catastrophic recessi<strong>on</strong>,unless it is tackled within a decade. Thus, it isestimated that <strong>the</strong> effects <str<strong>on</strong>g>of</str<strong>on</strong>g> climate changewould cost <strong>the</strong> world between 5% <strong>and</strong> 20% <str<strong>on</strong>g>of</str<strong>on</strong>g>GDP. Increasing dialogue between scientists <strong>and</strong>policy makers is necessary to allow assessment<str<strong>on</strong>g>of</str<strong>on</strong>g> whe<strong>the</strong>r <strong>the</strong>re is sufficient sound scientificevidence <strong>on</strong> which to base new policies.Specialist workshops are required to addressnot <strong>on</strong>ly <strong>the</strong> envir<strong>on</strong>mental challenges that <strong>the</strong>scientists <strong>and</strong> policy makers face, but also<strong>the</strong> inevitable socio-ec<strong>on</strong>omic repercussi<strong>on</strong>sassociated with rising temperatures. To support<strong>the</strong> development <str<strong>on</strong>g>of</str<strong>on</strong>g> knowledge-based policies,<strong>the</strong>re is a requirement for validated methodsto turn data into informati<strong>on</strong>, in <strong>the</strong> form <str<strong>on</strong>g>of</str<strong>on</strong>g>integrated assessments <strong>and</strong> indicators, <strong>and</strong>for improved methods to assimilate data intoclimate models. This would improve reanalysis<str<strong>on</strong>g>of</str<strong>on</strong>g> climate variability in climate evoluti<strong>on</strong> overpast decades. The global nature <strong>and</strong> scale<str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> envir<strong>on</strong>mental <strong>and</strong> ec<strong>on</strong>omic impacts<str<strong>on</strong>g>of</str<strong>on</strong>g> climate change emphasise <strong>the</strong> needfor <strong>European</strong> research programmes tocoordinate <strong>and</strong> integrate with <strong>the</strong> climatecomp<strong>on</strong>ent <str<strong>on</strong>g>of</str<strong>on</strong>g> internati<strong>on</strong>al researchprogrammes, including CLIVAR, GLOBEC<strong>and</strong> IMBER.4.2 Palaeoclimate records provide an importanttool for analysing <strong>the</strong> resp<strong>on</strong>se <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> climatesystem to internal <strong>and</strong> external forcing (e.g.greenhouse gases, volcanic activity <strong>and</strong> solarenergy), <strong>and</strong> for underst<strong>and</strong>ing <strong>the</strong> physical,chemical <strong>and</strong> biological processes resp<strong>on</strong>siblefor <strong>the</strong> changes. Ga<strong>the</strong>ring <strong>the</strong> vast amount<str<strong>on</strong>g>of</str<strong>on</strong>g> palaeoclimate records into databases<strong>and</strong> <strong>the</strong>ir spatial <strong>and</strong> temporal analysisis necessary. In order to place <strong>the</strong> presentstatus <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> Earth’s climate within an historicperspective <str<strong>on</strong>g>of</str<strong>on</strong>g> climate variability, <strong>the</strong> ability todevelop numerical models <str<strong>on</strong>g>of</str<strong>on</strong>g> past climatic eventsrequires fur<strong>the</strong>r improvement <strong>and</strong> refinement.The combined use <str<strong>on</strong>g>of</str<strong>on</strong>g> palaeoclimate data <strong>and</strong>palaeoclimate models with fine spatial <strong>and</strong>temporal resoluti<strong>on</strong> will facilitate <strong>the</strong> recreati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g>past ocean climate scenarios, which will advance<strong>the</strong> underst<strong>and</strong>ing <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> mechanisms <str<strong>on</strong>g>of</str<strong>on</strong>g> climatechange. Research is required to improve <strong>the</strong>temporal resoluti<strong>on</strong> in <strong>the</strong> rec<strong>on</strong>structi<strong>on</strong><str<strong>on</strong>g>of</str<strong>on</strong>g> climate history <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> ocean in scalesfrom tens to hundreds <str<strong>on</strong>g>of</str<strong>on</strong>g> years. C<strong>on</strong>tinuousdevelopment <str<strong>on</strong>g>of</str<strong>on</strong>g> geochemical proxies isrequired for rec<strong>on</strong>structi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> past surfaceCO 2 c<strong>on</strong>tent, temperature, salinity, pH values<strong>and</strong> nutrients.4.3 One <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> potential effects <str<strong>on</strong>g>of</str<strong>on</strong>g> climate change is<strong>the</strong> change in intensity, frequency <strong>and</strong> locati<strong>on</strong><str<strong>on</strong>g>of</str<strong>on</strong>g> extreme events, such as storms, tidalsurges <strong>and</strong> extreme wave heights. Improveddefiniti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> extreme events, <strong>the</strong>ir statisticalanalysis, definiti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> proxies for pastevents, identificati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> processes at playin <strong>the</strong>ir generati<strong>on</strong>, <strong>and</strong> <strong>the</strong> identificati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><strong>the</strong>ir variability <strong>and</strong> trends, all need to bedeveloped. Observati<strong>on</strong> networks providecrucial c<strong>on</strong>tributi<strong>on</strong>s to m<strong>on</strong>itoring <strong>and</strong>forecasting extreme events, <strong>and</strong> requirefur<strong>the</strong>r development.4.4 As well as <strong>the</strong> development <str<strong>on</strong>g>of</str<strong>on</strong>g> improvedsimulati<strong>on</strong> models <str<strong>on</strong>g>of</str<strong>on</strong>g> climate variability <strong>and</strong>its effects, <strong>the</strong>re is a requirement for <strong>the</strong>development <str<strong>on</strong>g>of</str<strong>on</strong>g> l<strong>on</strong>g-term capabilities forclimate observati<strong>on</strong>. Detecting <strong>the</strong> actualphenomena, underst<strong>and</strong>ing in more detail<strong>the</strong> processes at play, such as <strong>the</strong> Pacific ElNiño Sou<strong>the</strong>rn Oscillati<strong>on</strong> (ENSO) <strong>and</strong> NorthAtlantic Oscillati<strong>on</strong> (NAO) <strong>and</strong> <strong>the</strong>ir potentialchange in frequency <strong>and</strong> intensity, is critical.To support climate change research,new observati<strong>on</strong>al <strong>and</strong> measurementsensors <strong>and</strong> systems need to bedesigned, including sensors for airseainteracti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> specific substances.With observati<strong>on</strong> networks in place, <strong>the</strong>rewill be a requirement for new methods toassimilate data into Atlantic <strong>and</strong> Mediterraneancirculati<strong>on</strong> <strong>and</strong> climate impact models.<str<strong>on</strong>g>Impacts</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Climate</str<strong>on</strong>g> <str<strong>on</strong>g>Change</str<strong>on</strong>g> <strong>on</strong> <strong>the</strong> <strong>European</strong> <strong>Marine</strong> <strong>and</strong> <strong>Coastal</strong> Envir<strong>on</strong>ment 79


Appendix 4. Extract from Navigating <strong>the</strong> Future III<strong>on</strong> climate change4.5 There is a need to improve <strong>the</strong> use <str<strong>on</strong>g>of</str<strong>on</strong>g> existingdata <strong>on</strong> physical, chemical <strong>and</strong> biologicalstatus in <strong>the</strong> field <str<strong>on</strong>g>of</str<strong>on</strong>g> operati<strong>on</strong>al oceanographymodelling tools. To support development <str<strong>on</strong>g>of</str<strong>on</strong>g>climate change models, an open data policyis needed, facilitating timely <strong>and</strong> improvedaccess to data. Data access should include nearreal-time, high frequency sea level data from tidegauges, satellite missi<strong>on</strong>s, <strong>and</strong> in situ observati<strong>on</strong>systems, including pictures <str<strong>on</strong>g>of</str<strong>on</strong>g> changes inplankt<strong>on</strong> assemblage compositi<strong>on</strong>s <strong>and</strong> oceancolour data. Efforts in data archaeology, toretrieve <strong>and</strong> make accessible historical sealevel records, should also be supported.4.6 The impacts <str<strong>on</strong>g>of</str<strong>on</strong>g> climate change <strong>on</strong> functi<strong>on</strong>albiodiversity are unknown. Developing <strong>the</strong>capability to predict <strong>the</strong> resp<strong>on</strong>se <strong>and</strong>feedbacks <str<strong>on</strong>g>of</str<strong>on</strong>g> marine biota to climate changeis required. Research is needed to assess howmarine ecosystems’ structure (e.g. food webs,populati<strong>on</strong> size <strong>and</strong> distributi<strong>on</strong>) <strong>and</strong> functi<strong>on</strong>ing(e.g. biomass, producti<strong>on</strong>, decompositi<strong>on</strong>) willchange under current predicti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> climatechange. Experimental <strong>and</strong> numerical studiesusing climate-simulating mesocosms arerequired to unravel <strong>the</strong> basic biogeochemicallinks <strong>and</strong> resp<strong>on</strong>ses <str<strong>on</strong>g>of</str<strong>on</strong>g> climatecriticalplankt<strong>on</strong> species (e.g. diatoms,coccolithophorids, N2 fixers, DMS producers,bacteria, viruses, archaea) to physical <strong>and</strong>chemical drivers <str<strong>on</strong>g>of</str<strong>on</strong>g> climate change (e.g.temperature, pH, CO 2, solar radiati<strong>on</strong>) <strong>and</strong> <strong>the</strong>associated biogeographic c<strong>on</strong>sequences.Ocean-atmosphere coupling<strong>and</strong> <strong>the</strong> Ocean <strong>the</strong>rmohalinecirculati<strong>on</strong>4.7 The ocean circulati<strong>on</strong> in <strong>the</strong> North Atlanticplays a fundamental role in <strong>the</strong> coupled oceanatmospheresystem which results in <strong>the</strong> presenttemperate climate <str<strong>on</strong>g>of</str<strong>on</strong>g> Western Europe. TheAtlantic Thermohaline Circulati<strong>on</strong> (THC), or NorthAtlantic Current (<strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> str<strong>on</strong>gest oceancurrents in <strong>the</strong> world), refers to a key regi<strong>on</strong>alheat engine mechanism partly resp<strong>on</strong>sible forallowing some areas <str<strong>on</strong>g>of</str<strong>on</strong>g> Europe to experiencea climate 10°C higher than areas at similarlatitudes. There are indicati<strong>on</strong>s that this systemcan change dramatically <strong>on</strong> a time scale <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>on</strong>e totwo decades, with far-reaching c<strong>on</strong>sequences.Observati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> decadal changes in <strong>the</strong> THC,<strong>and</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> subsurface heat fluxes in <strong>the</strong> NorthAtlantic, have been described. Models <strong>and</strong>recent observati<strong>on</strong>s suggest that <strong>the</strong> THCmay be weakening in resp<strong>on</strong>se to greenhouseforcing. It has already been shown that <strong>the</strong>circulati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> North Atlantic Current hasslowed by 30% over <strong>the</strong> last 12 years, <strong>and</strong> thatpart <str<strong>on</strong>g>of</str<strong>on</strong>g> this current came to a 10-day halt duringNovember 2004, <strong>the</strong> most abrupt change <strong>on</strong>record. Prototype observati<strong>on</strong>al experimentsshould be transformed into multidisciplinaryl<strong>on</strong>g-term observati<strong>on</strong>al networks to m<strong>on</strong>itor<strong>the</strong> evolving dynamics <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> system.Research effort is required to focus <strong>on</strong> keyArctic <strong>and</strong> sub-Arctic deep water formati<strong>on</strong>s,gateways <strong>and</strong> pathways for <strong>the</strong> out-flows<str<strong>on</strong>g>of</str<strong>on</strong>g> cold dense water, <strong>and</strong> return flows <str<strong>on</strong>g>of</str<strong>on</strong>g>warm surface currents in <strong>the</strong> world ocean.4.8 Over <strong>the</strong> last two decades climate models havepredicted that <strong>the</strong> impact <str<strong>on</strong>g>of</str<strong>on</strong>g> global warmingcaused by elevated atmospheric CO 2 wouldbe str<strong>on</strong>ger <strong>and</strong> faster in <strong>the</strong> Arctic. <str<strong>on</strong>g>Climate</str<strong>on</strong>g>simulati<strong>on</strong> models currently show that witha doubling <str<strong>on</strong>g>of</str<strong>on</strong>g> atmospheric CO 2 (predicted tohappen by 2080) Arctic sea-ice could disappearin <strong>the</strong> summer m<strong>on</strong>ths. During <strong>the</strong> winter m<strong>on</strong>ths,<strong>the</strong> reducti<strong>on</strong> in sea-ice may be up to 20%,resulting in <strong>the</strong> opening <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> now seas<strong>on</strong>allyice-covered Barents Sea to shipping. <str<strong>on</strong>g>Climate</str<strong>on</strong>g>change will thus induce dramatic changes to<strong>the</strong> ec<strong>on</strong>omy <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> areas bordering <strong>on</strong> regi<strong>on</strong>alseas, impacting <strong>on</strong> local communities, fishingpractices, maritime transport <strong>and</strong> oil exploitati<strong>on</strong>.Efforts should be directed towards research<strong>on</strong> impacts <str<strong>on</strong>g>of</str<strong>on</strong>g> climate change <strong>on</strong> regi<strong>on</strong>alseas (e.g. <strong>the</strong> Artic, Nordic, Baltic <strong>and</strong> <strong>the</strong>Mediterranean Seas) as <strong>the</strong>se are areaswhere <strong>the</strong> effects <str<strong>on</strong>g>of</str<strong>on</strong>g> climate change wouldimpact most immediately <strong>on</strong> Europe. Globalmodels <str<strong>on</strong>g>of</str<strong>on</strong>g> ocean-climate coupling <strong>and</strong> <strong>the</strong>THC should be downscaled to incorporate:i) flux-critical processes <str<strong>on</strong>g>of</str<strong>on</strong>g> subducti<strong>on</strong>,c<strong>on</strong>vecti<strong>on</strong>, overflows <strong>and</strong> boundarycurrents; ii) telec<strong>on</strong>necti<strong>on</strong>s between <strong>the</strong>Pacific El Niño <strong>and</strong> <strong>the</strong> NAO, <strong>and</strong> between <strong>the</strong>NAO-IO (North Atlantic Oscillati<strong>on</strong> - IndianOcean) dipole <strong>and</strong> Mediterranean climate;<strong>and</strong> iii) greenhouse forcing: <strong>the</strong> resp<strong>on</strong>ses<str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>European</strong> seas, <strong>and</strong> its local <strong>and</strong> regi<strong>on</strong>alimpacts. As <strong>the</strong> Mediterranean Sea is a regi<strong>on</strong>in between <strong>the</strong> Atlantic <strong>and</strong> <strong>the</strong> Indian climateregi<strong>on</strong>s, capturing <strong>the</strong> specific modes <str<strong>on</strong>g>of</str<strong>on</strong>g>climate variability in this regi<strong>on</strong> is necessary. Theimpact <str<strong>on</strong>g>of</str<strong>on</strong>g> outflow <str<strong>on</strong>g>of</str<strong>on</strong>g> Mediterranean waters into<strong>the</strong> Atlanti <strong>and</strong> <strong>the</strong>ir behaviour in <strong>the</strong> AtlanticIberian regi<strong>on</strong> requires particular attenti<strong>on</strong>.80 <str<strong>on</strong>g>Impacts</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Climate</str<strong>on</strong>g> <str<strong>on</strong>g>Change</str<strong>on</strong>g> <strong>on</strong> <strong>the</strong> <strong>European</strong> <strong>Marine</strong> <strong>and</strong> <strong>Coastal</strong> Envir<strong>on</strong>ment


4.9 The ARGO experiment, with its in situ globalarray <str<strong>on</strong>g>of</str<strong>on</strong>g> pr<str<strong>on</strong>g>of</str<strong>on</strong>g>iling floats recording oceanographicdata, dem<strong>on</strong>strates <strong>the</strong> feasibility <str<strong>on</strong>g>of</str<strong>on</strong>g> providinga world-scale near real-time tri-dimensi<strong>on</strong>alobservati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> ocean hydrographicparameters. Through EURO-ARGO Europeshould actively c<strong>on</strong>tribute to <strong>the</strong> globalARGO experiment to providehydrographic observati<strong>on</strong>s in <strong>the</strong> l<strong>on</strong>gterm, both for operati<strong>on</strong>al oceanography<strong>and</strong> for m<strong>on</strong>itoring climate change. Thedevelopment <str<strong>on</strong>g>of</str<strong>on</strong>g> more cost-effective pr<str<strong>on</strong>g>of</str<strong>on</strong>g>ilerswould help to extend <strong>the</strong> ARGO array <str<strong>on</strong>g>of</str<strong>on</strong>g> pr<str<strong>on</strong>g>of</str<strong>on</strong>g>ilingfloats <strong>and</strong> to implement <strong>the</strong> ARGO system.Ocean biogeochemical impacts<strong>and</strong> feedbacks in a greenhouseOcean4.10 Estimates <str<strong>on</strong>g>of</str<strong>on</strong>g> current absorpti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> anthropogenicCO 2 into <strong>the</strong> ocean are still uncertain <strong>and</strong> haverecently been re-evaluated; <strong>the</strong> ocean is <strong>the</strong>dominant sink for anthropogenic CO 2, as ithas taken up 50% <str<strong>on</strong>g>of</str<strong>on</strong>g> anthropogenic CO 2.Greenhouse scenarios predict a globally warmer,more stratified <strong>and</strong> more acidic upper-ocean thatcould significantly reduce both c<strong>on</strong>vective <strong>and</strong>biogeochemical export sinks <str<strong>on</strong>g>of</str<strong>on</strong>g> atmosphericCO 2 into <strong>the</strong> deep ocean. This would accelerateaccumulati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> CO 2 in <strong>the</strong> atmosphere, withan associated risk <str<strong>on</strong>g>of</str<strong>on</strong>g> accelerated greenhousewarming. Increasing CO 2 levels are leading toa decline in seawater pH to levels that havenot existed in at least 20 milli<strong>on</strong> years, so <strong>the</strong>oceans are becoming increasingly acidic. Oceanacidificati<strong>on</strong> not <strong>on</strong>ly changes <strong>the</strong> distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g>dissolved carb<strong>on</strong> species but also impacts <strong>on</strong>plankt<strong>on</strong>, which could affect carb<strong>on</strong> uptakeby primary producti<strong>on</strong>. Plankt<strong>on</strong> absorb CO 2from <strong>the</strong> atmosphere, <strong>and</strong> in so doing help tocounter global warming. With a decrease inplankt<strong>on</strong> diversity <strong>and</strong> populati<strong>on</strong> density, <strong>the</strong>oceans will absorb less CO 2 from <strong>the</strong> Earth’satmosphere. Research to pr<str<strong>on</strong>g>of</str<strong>on</strong>g>ile status <str<strong>on</strong>g>of</str<strong>on</strong>g>phytoplankt<strong>on</strong> assemblages is required. Toreliably predict future CO 2 levels, researchis necessary to fur<strong>the</strong>r elucidate <strong>the</strong>semechanisms, <strong>and</strong> to estimate absorpti<strong>on</strong>limits <strong>and</strong> oceanic budgets for anthropogenicCO 2 under greenhouse scenarios.4.11 The United States Japan, UK <strong>and</strong> Norway aredeveloping experiments to assess whe<strong>the</strong>rdeep ocean disposal <str<strong>on</strong>g>of</str<strong>on</strong>g> liquefied CO 2 (carb<strong>on</strong>sequestrati<strong>on</strong>) <strong>and</strong> ir<strong>on</strong> fertilisati<strong>on</strong>, can beused for large scale removal <str<strong>on</strong>g>of</str<strong>on</strong>g> CO 2 into<strong>the</strong> deep ocean. Europe should c<strong>on</strong>ductindependent studies <strong>and</strong> evaluati<strong>on</strong>s, sothat <strong>the</strong>re can be an objective debate <strong>on</strong><strong>the</strong> envir<strong>on</strong>mental feasibility, usefulness,ethics <strong>and</strong> impacts <str<strong>on</strong>g>of</str<strong>on</strong>g> ocean carb<strong>on</strong>sequestrati<strong>on</strong>. Interacti<strong>on</strong>s between decisi<strong>on</strong>makers, scientists, envir<strong>on</strong>mental NGOs <strong>and</strong><strong>the</strong> public should be promoted to facilitate<strong>the</strong> development <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> most appropriateapproaches towards such sensitive issues.Ventilati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> marine biogases<strong>and</strong> fertilisati<strong>on</strong> feedbacks4.12 Research is needed <strong>on</strong> current air-sea fluxes<str<strong>on</strong>g>of</str<strong>on</strong>g> climatically critical biogases (CO 2, DMS,N 2O, CH 4), particularly <strong>on</strong> <strong>the</strong>ir regi<strong>on</strong>al<strong>and</strong> seas<strong>on</strong>al variability, to enable a globalassessment <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong>ir role in climate change.The biogenic sources, distributi<strong>on</strong>s <strong>and</strong>pathways resp<strong>on</strong>sible for producti<strong>on</strong>,transformati<strong>on</strong> <strong>and</strong> flux <str<strong>on</strong>g>of</str<strong>on</strong>g> climaticallyreactive marine biogas compounds shouldbe investigated <strong>and</strong> modelled underpresent <strong>and</strong> future climate c<strong>on</strong>diti<strong>on</strong>s. Thiseffort should be developed as a c<strong>on</strong>tributi<strong>on</strong>to <strong>the</strong> SOLAS internati<strong>on</strong>al programme.4.13 There is a requirement to fur<strong>the</strong>r developcoupled physical biogeochemical oceanclimate models that incorporate carb<strong>on</strong>speciati<strong>on</strong> <strong>and</strong> nutrient dynamics. This wouldallow predicti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> changes <strong>and</strong> feedbacks inglobal <strong>and</strong> regi<strong>on</strong>al ocean productivity undervarious greenhouse scenarios. In particular,in view <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> importance <str<strong>on</strong>g>of</str<strong>on</strong>g> medium<strong>and</strong>small-scale phenomena for primaryproductivity, it is necessary to assess how <strong>the</strong>irinclusi<strong>on</strong> in climate models could be made.4.14 Single-celled marine organisms (archaea,bacteria, phytoplankt<strong>on</strong>, etc.) are abundant,diverse <strong>and</strong> productive <strong>and</strong> are <strong>the</strong> principaldrivers <str<strong>on</strong>g>of</str<strong>on</strong>g> marine <strong>and</strong> global biogeochemistry.Support should be directed towards adaptingbiogeochemical gene probes, coupled withphylogenetic probes, to enable <strong>the</strong> applicati<strong>on</strong><str<strong>on</strong>g>of</str<strong>on</strong>g> high-throughput bioanalytic technologies(e.g. analytical flow cytometry, microarrays)for use <strong>on</strong>board shipduring large-scaleoceanographic expediti<strong>on</strong>s for explorati<strong>on</strong><str<strong>on</strong>g>of</str<strong>on</strong>g> microbial biodiversity, <strong>and</strong> assessment<str<strong>on</strong>g>of</str<strong>on</strong>g> food web dynamics <strong>and</strong> biogeochemicalfeedbacks in diverse oceanic envir<strong>on</strong>ments.<str<strong>on</strong>g>Impacts</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Climate</str<strong>on</strong>g> <str<strong>on</strong>g>Change</str<strong>on</strong>g> <strong>on</strong> <strong>the</strong> <strong>European</strong> <strong>Marine</strong> <strong>and</strong> <strong>Coastal</strong> Envir<strong>on</strong>ment 81


Appendix 5. Members <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> working groupChairCatharina J.M. PhilippartNe<strong>the</strong>rl<strong>and</strong>s Institute for Sea Research,P.O. Box 59, 1790 AB Den Burg, TheNe<strong>the</strong>rl<strong>and</strong>sT: +31 222 369 563,F: +31 222 319 674,E: katja@nioz.nlMembersRicardo AnadónDep. de Biología de Organismos y Sistemas,Universidad de Oviedo, 33071Oviedo, SpainT: + 34 985104790,F: +34 985104777,E: ranad<strong>on</strong>@uniovi.esRoberto DanovaroDipartimento di Scienze del Mare, viaBrecce Bianche – 60100, Anc<strong>on</strong>a, ItalyT: + 39 71 220 4654,E: danovaro@univpm.itJoachim W. DippnerBaltic Sea Research InstituteWarnemünde, Seestrasse 15, D-18119Rostock, GermanyT: +49 381 5197 229,F: +49 381 5197 114,E: joachim.dippner@io-warnemuende.deKenneth F. DrinkwaterInstitute <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>Marine</strong> Research, P.O. Box1870 Nordnes, N-5817 Bergen, NorwayT: +47 55 23 69 90,E: ken.drinkwater@imr.noStephen J. Hawkins<strong>Marine</strong> Biological Associati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> UK,Citadel Hill, Plymouth, PL1 2PB, UKT: +44 01752 633331,F: +44 1752 633 102,E: sjha@mba.ac.ukGe<str<strong>on</strong>g>of</str<strong>on</strong>g>frey O’Sullivan<strong>Marine</strong> Institute, 80 Harcourt Street,Dublin 2, Irel<strong>and</strong>T: +353 1 4766500, F: +353 1 4784988,E: ge<str<strong>on</strong>g>of</str<strong>on</strong>g>frey.osullivan@marine.ieTemel OguzInstitute <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>Marine</strong> Sciences, P.O. Box28, 33731 Erdemli, Icel, TurkeyT: +90 324 521 2406,F: +90 324 521 2327,E: oguz@ims.metu.edu.trPhilip C. ReidSAHFOS, The Laboratory, Citadel Hill,Plymouth, PL1 2PB, UKT: +44 1752 633288 / 281,F: +44 1752 600015,E: pcre@sahfos.ac.uk82<str<strong>on</strong>g>Impacts</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Climate</str<strong>on</strong>g> <str<strong>on</strong>g>Change</str<strong>on</strong>g> <strong>on</strong> <strong>the</strong> <strong>European</strong> <strong>Marine</strong> <strong>and</strong> <strong>Coastal</strong> Envir<strong>on</strong>ment


ISBN 2-912049-63-6<str<strong>on</strong>g>Impacts</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Climate</str<strong>on</strong>g> <str<strong>on</strong>g>Change</str<strong>on</strong>g> <strong>on</strong> <strong>the</strong> <strong>European</strong> <strong>Marine</strong> <strong>and</strong> <strong>Coastal</strong> Envir<strong>on</strong>ment 83


<strong>Marine</strong> Board-ESF Member Organisati<strong>on</strong>sSETTING SCIENCE AGENDAS FOR EUROPE1 quai Lezay-Marnésia | BP 9001567080 Strasbourg cedex | FranceTel: +33 (0)3 88 76 71 00 | Fax: +33 (0)3 88 37 05 32www.esf.org/marineboard1, quai Lezay-Marnésia I BP 9001567080 Strasbourg cedex I FranceTel: +33 (0)3 88 76 71 00 I Fax: +33 (0)3 88 37 05 32www.esf.org/marineboardPrint run: 2000 - March 2007 -

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!