12.07.2015 Views

saudi arabia-the largest telephone project in the world a new ...

saudi arabia-the largest telephone project in the world a new ...

saudi arabia-the largest telephone project in the world a new ...

SHOW MORE
SHOW LESS
  • No tags were found...

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

ERICSSON REVIEWNUMBER 2 1978 VOLUME 55Copyright Telefonaktiebolaget LM EricssonPr<strong>in</strong>ted <strong>in</strong> Sweden, Stockholm 1978RESPONSIBLE PUBLISHER DR. TECHN. CHRISTIANJACOB/EUSEDITOR GUSTAF O. DOUGLASEDITORIAL STAFF FOLKEEDITOR'S OFFICE S-12625BERGSTOCKHOLMSUBSCRIPTION ONE YEAR $6.00 ONE COPY $1.70PUBLISHED IN SWEDISH, ENGLISH, FRENCH ANDSPANISHContents42 • Saudi Arabia-<strong>the</strong> Largest Telephone Project <strong>in</strong> <strong>the</strong> World46 A New Generation of Power Supply Equipment, Type BZD 11258 • Operational Experience from <strong>the</strong> Mollison International Switch<strong>in</strong>gCentre <strong>in</strong> London66 • Laser Activities at LM Ericsson76 • Digital Multiplex Equipment for 8 and 34 Mbit/s L<strong>in</strong>e SystemsCOVERTransistors with cool<strong>in</strong>g flanges <strong>in</strong> <strong>the</strong> boosterconverter that forms an essential part of LM Ericsson's<strong>new</strong> power supply system. The oscilloscopecurves represent control pulses <strong>in</strong> <strong>the</strong> convertercontrol system.


Saudi Arabia—<strong>the</strong> LargestTelephone Project <strong>in</strong> <strong>the</strong> WorldThe K<strong>in</strong>gdom of Saudi Arabia has been experienc<strong>in</strong>g very radical changes —social, economicand technological-<strong>in</strong> <strong>the</strong> past two decades. The rapid development is seen <strong>in</strong> <strong>the</strong> technicallyqualified <strong>project</strong>s and <strong>in</strong> <strong>the</strong> enormous expansion of general construction work, roadnetworks and air l<strong>in</strong>es, harbours, and <strong>in</strong>dustry. Telecommunications are, of course, animportant element <strong>in</strong> <strong>the</strong>se <strong>project</strong>s.LM Ericsson has supplied and <strong>in</strong>stalled<strong>telephone</strong> exchanges, outside plant andcable, <strong>telephone</strong> sets and transmissionequipment <strong>in</strong> Saudi Arabia s<strong>in</strong>ce 1964.There are now <strong>in</strong> operation and under <strong>in</strong>stallation<strong>in</strong> <strong>the</strong> country local exchangesfor about 200000 subscriber l<strong>in</strong>es, of LMEricsson's ARF system (register- andmarker-controlled systems with crossbarswitches). The transit exchanges, <strong>in</strong>clud<strong>in</strong>g<strong>the</strong> three <strong>in</strong>ternational exchanges, areof type ARM (likewise register- andmarker-controlled systems with crossbarswitches). The national transit exchangesare now be<strong>in</strong>g converted to <strong>the</strong> AREsystem (SPC). LM Ericsson's cablenetwork material has been used for <strong>the</strong>local outside plant, while <strong>the</strong> long distancenetwork has been <strong>in</strong>stalled by, among o<strong>the</strong>rs,Philips, SIRTI (Italy), LM Ericssonand, for <strong>the</strong> present major microwave ex-Fig. I. Extension works <strong>in</strong> <strong>the</strong> harbour ofJeddahtension. Western Electric. The <strong>telephone</strong>sets are of LM Ericsson's DIALOG type.In May 1977 <strong>the</strong> M<strong>in</strong>istry of Post, Telegraphand Telephone published a FunctionalSpecification for <strong>the</strong> AutomaticTelephone Project for <strong>the</strong> K<strong>in</strong>gdom ofSaudi Arabia and a number of telecommunicationmanufacturers were <strong>in</strong>vited tosubmit tenders by September 27. 1977.On December 13. 1977, His Excellency<strong>the</strong> M<strong>in</strong>ister of Post, Telegraph and Telephoneannounced that <strong>the</strong> responsibilityfor <strong>the</strong> <strong>telephone</strong> <strong>project</strong> had beenawarded to <strong>the</strong> consortium LM Ericsson,Philips and Bell Canada. The f<strong>in</strong>al contractwas signed on January 25, 1978. The <strong>project</strong>is <strong>the</strong> <strong>largest</strong> of its k<strong>in</strong>d ever to be undertakenand has aroused much attention.Scope of <strong>the</strong> <strong>project</strong>Telephone exchange equipmentLocal exchanges for altoge<strong>the</strong>r 476000subscriber l<strong>in</strong>es are to be <strong>in</strong>stalled, as wellas <strong>the</strong> associated subscriber and junctionl<strong>in</strong>e cable networks; also tandem and transitexchanges, <strong>the</strong> latter both for nationaland <strong>in</strong>ternational traffic.All ARF exchanges supplied under earliercontracts, totall<strong>in</strong>g 198 800 l<strong>in</strong>es, are to bemodernized to ARE by <strong>in</strong>troduction ofANA 30 processors.The diagram, fig. 2, shows <strong>the</strong> plan for <strong>in</strong>stallationof <strong>the</strong> 476 000 <strong>new</strong> l<strong>in</strong>es dur<strong>in</strong>g<strong>the</strong> 3-year period up to December 13, 1980.The <strong>project</strong> is to be completed <strong>in</strong> threestages: 12, 18 and 36 months as from December13, 1977. Table 1 shows <strong>the</strong> threestages with <strong>the</strong> various exchange systemsassigned to each.


Tabell I shows <strong>the</strong> divid<strong>in</strong>g of <strong>the</strong> <strong>project</strong>between LM Ericsson and Philips, and <strong>the</strong>time scheduleNumberof subscriberl<strong>in</strong>esextensionsFig. 2. Growth of <strong>the</strong> number of subscriberl<strong>in</strong>es 1978-1980The national transit exchanges ARE Bareto be connected to operators' consoles ofav <strong>new</strong> type, ANE 30, supplemented bytoll ticket<strong>in</strong>g equipment. The modernizedcrossbar exchanges, ARE 11, will offer anumber of <strong>new</strong> facilities such as connectionof push-button <strong>telephone</strong>s andabbreviated diall<strong>in</strong>g. The present subscribermeters will be replaced byelectronic meter<strong>in</strong>g.Exchange build<strong>in</strong>gsTwenty-eight build<strong>in</strong>gs are to be constructedfor <strong>the</strong> <strong>new</strong> exchanges. A series ofstandard build<strong>in</strong>gs, adapted to differentsizes of exchanges and extendable, havebeen designed for <strong>the</strong> purpose. Ow<strong>in</strong>g to<strong>the</strong> often exact<strong>in</strong>g climate, great attentionhas been paid to <strong>the</strong> design of a reliable aircondition<strong>in</strong>g system.A number of <strong>the</strong> tabulated PRX exchangesare transportable units of 500 or 1000 l<strong>in</strong>esdelivered <strong>in</strong> special conta<strong>in</strong>ers, <strong>the</strong>y thusdo not require permanent exchange build<strong>in</strong>gs.The <strong>project</strong> also <strong>in</strong>cludes renovation of exist<strong>in</strong>gexchange build<strong>in</strong>gs and overhaul of<strong>the</strong>ir air condition<strong>in</strong>g and power plants.Telephone setsAbout 500 000 <strong>telephone</strong> sets of LM Ericsson's<strong>new</strong> model Dl A VOX are to be delivered.This delivery to Saudi Arabia marks<strong>the</strong> <strong>in</strong>troduction of this set on <strong>the</strong> <strong>world</strong>market.A number of co<strong>in</strong>-box <strong>telephone</strong>s are alsoto be supplied. These will come from LMEricsson's Danish associated company.Telefonfabrik Automatik A/S.Cable, PCM equipment, outside plantLarge quantities of cable and outside plantare to be delivered for <strong>new</strong> subscriberFig. 3. Map of Saudi ArabiaFigures <strong>in</strong> black: exist<strong>in</strong>g number of subscriberl<strong>in</strong>esFigures <strong>in</strong> red: total number of subscriberl<strong>in</strong>es after <strong>project</strong> implementation• Cities and places <strong>in</strong>cluded <strong>in</strong> <strong>the</strong> <strong>project</strong>


Fig. 4. Telephone set D1AVOXnetworks and for <strong>the</strong> junction l<strong>in</strong>enetworks <strong>in</strong> <strong>the</strong> larger towns. The totallenght of cable is estimated at some 2 millionpair-kilometres.The junction l<strong>in</strong>e network is to a large extentto be constructed with PCM. About2200 PCM system ends are to be deliveredfor this purpose, apart from <strong>the</strong> PCMterm<strong>in</strong>als <strong>in</strong>tegrated <strong>in</strong> <strong>the</strong> digital exchanges.The <strong>project</strong>-a turn-key undertak<strong>in</strong>gThe <strong>project</strong> has many <strong>in</strong>terest<strong>in</strong>g aspectsapart from its size. It is a turn-key undertak<strong>in</strong>g,which implies <strong>in</strong> this case that <strong>the</strong>equipment will be delivered, <strong>in</strong>stalled andput <strong>in</strong>to operation by <strong>the</strong> supplier, who is<strong>the</strong>reafter responsible for its technicalma<strong>in</strong>tenance dur<strong>in</strong>g a guarantee period ofone year.At <strong>the</strong> end of <strong>the</strong> guarantee year <strong>the</strong> responsibilityfor ma<strong>in</strong>tenance will be handedover to <strong>the</strong> <strong>telephone</strong> operat<strong>in</strong>g organization,which is be<strong>in</strong>g built up by BellCanada and which will operate <strong>the</strong> telecommunications<strong>in</strong> <strong>the</strong> entire country for 5years.The elaboration of <strong>the</strong> <strong>project</strong> required <strong>in</strong>timatetechnical cooperation between <strong>the</strong>three tender<strong>in</strong>g companies. The conditionsfor this cooperation were created at an earlystage, <strong>in</strong> that <strong>the</strong> three companies jo<strong>in</strong>tlydrew up a series of national basic technicalplans for signall<strong>in</strong>g, transmission, charg<strong>in</strong>g,number<strong>in</strong>g, and operation, and preciselyspecified all technical parameters. Itwas thus possible lo make <strong>the</strong> assignmentbetween AXE and PRX exchanges (PRX205 is <strong>the</strong> designation for Philips' SPC exchanges)on an economic basis without regardto <strong>the</strong>ir geographical location.Operation and ma<strong>in</strong>tenanceThe SPC technique offers a very largenumber of adm<strong>in</strong>istrative facilities for operationand ma<strong>in</strong>tenance. This had beentaken <strong>in</strong>to account <strong>in</strong> <strong>the</strong> specification offunctional requirements, and an operationand ma<strong>in</strong>tenance organization based onfar-reach<strong>in</strong>g centralization had been outl<strong>in</strong>ed.On this foundation LM Ericsson,Philips and Bell Canada designed an overalladm<strong>in</strong>istrative organization for <strong>the</strong> entirecountry. This organization is served bya special operation and ma<strong>in</strong>tenanceFig. 5. Network operation centresTypes of centreNNCC National Network Control Centre 1 )TMC Transmission Ma<strong>in</strong>tenance Centre 2 )TAC Traffic Adm<strong>in</strong>istration Centre 2 )SAC Service Assessment Centre 2 )DMC District Ma<strong>in</strong>tenance Centre')RSC Repair Service Centre 4 )ACC Assignment and Control Centre 5 )Man-Mach<strong>in</strong>e communication <strong>in</strong> <strong>the</strong>different centres') Network Status Panel. Test Positions,Pr<strong>in</strong>ters2 ) Video Displays, Pr<strong>in</strong>ters-') Video Displays. Colour monitor. MobileUnits4 )Test Positions, Pr<strong>in</strong>ters•) Video Displays. Pr<strong>in</strong>ters«— Data l<strong>in</strong>ks


ig. 6. Measur<strong>in</strong>g on cables Damman-Kuwaitnetwork based on LM Ericsson's SystemAOM 101.AOM 101 consists of computer centreswhich are connected both to exchange andtransmission equipment and to <strong>the</strong> variousadm<strong>in</strong>istrative centres specified.AOM 101 is designed for connection of all<strong>the</strong> SPC exchanges to be <strong>in</strong>stalled <strong>in</strong> SaudiArabia, i.e. ARE, PRX and AXE. Themap, fig. 5, shows <strong>the</strong> operation andma<strong>in</strong>tenance network with <strong>the</strong> locations of<strong>the</strong> various centres.Important centres which constitute separateunits <strong>in</strong> <strong>the</strong> operation and ma<strong>in</strong>tenancepart of <strong>the</strong> <strong>project</strong> are also- <strong>the</strong> repair centre (for PC boards, certa<strong>in</strong>power equipment and <strong>telephone</strong> sets)- spare parts depots, central and regional- <strong>the</strong> centre for software production- <strong>the</strong> tra<strong>in</strong><strong>in</strong>g centre (tra<strong>in</strong><strong>in</strong>g <strong>in</strong>stallationsfor ARE, AXE and PRX).A consistent <strong>the</strong>me <strong>in</strong> <strong>the</strong> <strong>project</strong> is"Saudization", i.e. that <strong>the</strong> contractor undertakesto tra<strong>in</strong> Saudi Arabian staff tosuch an extent that <strong>the</strong> greater part of <strong>the</strong>operation and ma<strong>in</strong>tenance organization isstaffed by nationals at <strong>the</strong> end of <strong>the</strong> 5-yearperiod. Tra<strong>in</strong><strong>in</strong>g is to be given not only totechnical staff but for all functions <strong>in</strong> a<strong>telephone</strong> adm<strong>in</strong>istration such as economy,adm<strong>in</strong>istration, plann<strong>in</strong>g, <strong>in</strong>ventorymanagement, documentation, etc.Some detailsAn <strong>in</strong>terest<strong>in</strong>g detail <strong>in</strong> this extensive <strong>project</strong>is that Saudi Arabia will have its first'<strong>telephone</strong> directory. It will be bil<strong>in</strong>gual, <strong>in</strong>Arabic and English.The trunk network will be constructed to alarge extent with PCM transmissionsystems, both on exist<strong>in</strong>g and <strong>new</strong> cableruns. S<strong>in</strong>ce <strong>the</strong> <strong>new</strong> trunk and tandem exchangesare entirely digital, as also are <strong>the</strong>group selectors <strong>in</strong> <strong>the</strong> larger local exchanges(AXE), it has been possible tomake use of <strong>the</strong> economic advantages offeredby <strong>in</strong>tegrated digital switch<strong>in</strong>g andtransmission-<strong>the</strong> first stage towards <strong>the</strong>digital network.To sum up, <strong>the</strong> K<strong>in</strong>gdom of Saudi Arabiawill acquire a <strong>telephone</strong> network characterizedby- SPC <strong>in</strong> all permanently <strong>in</strong>stalled exchanges- digital switch<strong>in</strong>g <strong>in</strong> major traffic centresand high penetration of PCM transmission- <strong>new</strong> electronic <strong>telephone</strong> sets with improvedtransmission characteristics- a very advanced system for centralizedoperation and ma<strong>in</strong>tenanceIn o<strong>the</strong>r words, one of <strong>the</strong> absolutely mostmodern and sophisticated <strong>telephone</strong>systems <strong>in</strong> <strong>the</strong> <strong>world</strong>.John M curl<strong>in</strong>g


A New Generation of Power SupplyEquipment, Type BZD 112Sve<strong>in</strong> Michelsen, Folke Ekelund and Kjell RundkvistA <strong>new</strong> generation of power supply equipment for telecommunications has beendeveloped by LM Ericsson. The design is based on <strong>the</strong> booster converter pr<strong>in</strong>ciplelong used by LM Ericsson. The article describes <strong>the</strong> <strong>new</strong> booster converter systemwith <strong>new</strong>ly developed thyristor rectifiers and high-frequency booster converters. A<strong>new</strong> type of distribution and battery charg<strong>in</strong>g equipment is also described. A <strong>new</strong>packag<strong>in</strong>g structure considerably simplifies <strong>in</strong>stallation and ma<strong>in</strong>tenance. Theequipment is well suited for <strong>the</strong> power<strong>in</strong>g of modern electronic switch<strong>in</strong>g systemssuch as AXE, AXB etc.UDC 621.311.4:621 3957Fig. 1All power supply equipment is type tested <strong>in</strong>LM Ericsson's <strong>new</strong> power supply laboratory <strong>in</strong>Stockholm. Here equipment of type BZD 112 isbe<strong>in</strong>g carefully tested before be<strong>in</strong>g delivered toSaudi Arabia. In <strong>the</strong> background can be seen<strong>the</strong> distribution panel that is used for test<strong>in</strong>gcomplete power supply systems for up to 6000 AFifteen years ago LM Ericsson <strong>in</strong>troduceda power supply system <strong>in</strong> which<strong>the</strong> previously common cell switch<strong>in</strong>gdevice was replaced by an electronicdc/dc converter, a so-called boosterconverter. S<strong>in</strong>ce <strong>the</strong>n, this system hasbeen used for different types of telecommunicationequipment and is atpresent <strong>in</strong> use <strong>in</strong> approximately 2000plants. The system is noted for its extremelygood operational characteristics,<strong>the</strong> most important of which is constantdistribution voltage, which isma<strong>in</strong>ta<strong>in</strong>ed not only dur<strong>in</strong>g normal operationbut also dur<strong>in</strong>g ma<strong>in</strong>s failures.The system is also characterized by fullyautomatic operation, good economyand high reliability.LM Ericsson are now <strong>in</strong>troduc<strong>in</strong>g a <strong>new</strong>generation of power supply equipment,BZD 112, which is <strong>in</strong> accordance with<strong>the</strong> booster converter pr<strong>in</strong>ciple. The designis based on <strong>the</strong> latest development<strong>in</strong> converter and regulation techniquesas well as long experience of <strong>in</strong>stallationand operation of <strong>the</strong> system. The mostprom<strong>in</strong>ent features of <strong>the</strong> equipment are• <strong>new</strong> conversion technique for boosterconverters• <strong>new</strong> component technology-powertransistors, Schottky diodes, ferritecores, <strong>in</strong>tegrated circuits for regulationand control• <strong>new</strong> charg<strong>in</strong>g pr<strong>in</strong>ciple• <strong>new</strong> packag<strong>in</strong>g structure• simple handl<strong>in</strong>g dur<strong>in</strong>g <strong>in</strong>stallation,operation and ma<strong>in</strong>tenanceDa high degree of personnel safetyPower supply equipment BZD 112 hasbeen designed <strong>in</strong> close collaborationwith <strong>the</strong> designer groups that developed<strong>the</strong> latest electronic switch<strong>in</strong>g systems<strong>in</strong> LM Ericsson. The equipment is thusparticularly well suited for <strong>the</strong> power<strong>in</strong>gof <strong>the</strong> modern AX systems for telephonyand telex.The <strong>new</strong> equipment can also be used <strong>in</strong>o<strong>the</strong>r system configurations than thosewith booster converters, for example <strong>in</strong>ord<strong>in</strong>ary full float systems and dividedbattery systems. In this article, however,only <strong>the</strong> booster converter system willbe described.Description of <strong>the</strong> systemBZD 112 is a converter system <strong>in</strong>tendedfor supply<strong>in</strong>g un<strong>in</strong>terrupted DC powerto various types of modern telecommunicationequipment. The ma<strong>in</strong> unitsare thyristor rectifiers, high-frequencybooster converters, distribution equipmentfor high or low-ohmic distributionand storage batteries with automaticcharg<strong>in</strong>g equipment.The system, which is wholly automatic,keeps <strong>the</strong> distribution voltage with<strong>in</strong>close limits under all operat<strong>in</strong>g conditions,and also ensures that <strong>the</strong> storagebatteries are utilized <strong>in</strong> <strong>the</strong> mosteconomical manner. The standard versionof BZD 112 is designed for a nom<strong>in</strong>alvoltage of 48 V. All voltages givenbelow raiate tnJbisvxdtaoe^^


SVEIN MICHELSENFOLKE EKELUNDKJELLRUNDKVISTPower Supply DepartmentTelefonaktiebolaget LM EricssonFunctionThe function of <strong>the</strong> booster convertersystem has been described <strong>in</strong> a previousissue of Ericsson Review 1 , and thus onlya brief description will be given here.Fig. 2 shows a simplified block diagram.The whole sequence dur<strong>in</strong>g a ma<strong>in</strong>sfailure and <strong>the</strong> subsequent recharg<strong>in</strong>gof <strong>the</strong> battery or batteries is illustrated <strong>in</strong>fig. 3.Dur<strong>in</strong>g normal operation <strong>the</strong> output voltageof <strong>the</strong> system is kept at <strong>the</strong> prescribedlevel by <strong>the</strong> rectifiers, which arefed from <strong>the</strong> public AC ma<strong>in</strong>s network.The value of <strong>the</strong> regulated voltage,which is <strong>the</strong> same as <strong>the</strong> battery voltage(51 V±0.5%), was chosen <strong>in</strong> order toprovide suitable float<strong>in</strong>g for <strong>the</strong> battery.In this operational mode <strong>the</strong> boosterconverters are <strong>in</strong> what is known as passiveoperation, which means that <strong>the</strong>ygive no output voltage but are alwaysready to be activated if additional voltageshould be required. In passive operation<strong>the</strong> booster converters cause avoltage drop of approximately 1 V, andhence <strong>the</strong> system output voltage U D isapproximately 50 V.If a ma<strong>in</strong>s failure occurs, <strong>the</strong> batterytakes over <strong>the</strong> power feed<strong>in</strong>g and as aresult its voltage falls. The booster converters,which are fed from <strong>the</strong> battery,are <strong>the</strong>n activated, and <strong>the</strong>ir ris<strong>in</strong>g outputvoltage is added to <strong>the</strong> successivelydecreas<strong>in</strong>g battery voltage, so that <strong>the</strong>output voltage of <strong>the</strong> system rema<strong>in</strong>sconstant.When <strong>the</strong> ma<strong>in</strong>s voltage is restored <strong>the</strong>rectifiers automatically resume <strong>the</strong>power feed<strong>in</strong>g and also recharge <strong>the</strong>battery. The output voltage from <strong>the</strong>booster converters decreases graduallyand when <strong>the</strong> normal voltage level hasaga<strong>in</strong> been reached <strong>the</strong> converters returnto passive operation. So-calledoperat<strong>in</strong>g charge is <strong>the</strong>n started <strong>in</strong> orderto charge <strong>the</strong> battery quickly and completely.This is done by send<strong>in</strong>g a signalfrom <strong>the</strong> charg<strong>in</strong>g control system to <strong>the</strong>rectifiers, which causes <strong>the</strong>m to <strong>in</strong>crease<strong>the</strong>ir output voltage to <strong>the</strong> charg<strong>in</strong>glevel (normally 2.35 V/cell) of 54 V.When <strong>the</strong> battery is fully charged <strong>the</strong>charg<strong>in</strong>g signal ceases and <strong>the</strong> rectifiersreturn to <strong>the</strong> normal level.Fig. 2Power supply system BZD 112 with highfrequencybooster convertersFig. 3Booster converter system 48 V with 23 batterycells. Work<strong>in</strong>g cycle dur<strong>in</strong>g a ma<strong>in</strong>s failure and<strong>the</strong> subsequent recharg<strong>in</strong>g


48Fig. 4Thyristor rectifier, BMT 313, seen from <strong>the</strong> frontwith <strong>the</strong> front plates removedThyristor rectifierThe rectifier is a three-phase unit withthyristor control, designed for use <strong>in</strong> alltypes of power supply systems, <strong>in</strong>clud<strong>in</strong>gsystems without battery, fig. 4. It isavailable <strong>in</strong> two sizes, BMT 303, 50 A/48V, and BMT 313,100 A/48 V. The rectifieris well suited for feed<strong>in</strong>g from standbypower plants and from ma<strong>in</strong>s networksof poor quality, such as networks withlarge voltage and frequency variations,frequent ma<strong>in</strong>s failures or large distortion.The connection is not sensitive tophase sequence. The rectifier is equippedwith protective and control equipmentthat permits fully automatic operationand operation <strong>in</strong> unattended exchanges.Ma<strong>in</strong> circuitThe secondary side of <strong>the</strong> rectifier ma<strong>in</strong>stransformer is connected as a six-phasestar with an <strong>in</strong>terphase transformer, fig.5. The six thyristors of <strong>the</strong> thyristorbridge regulate <strong>the</strong> rectifier output voltagethrough phase shift control. Therectifier connection gives a d.c. voltagewith a ripple frequency that is six times<strong>the</strong> ma<strong>in</strong>s frequency. An LCL filter attenuates<strong>the</strong> ripple so that <strong>the</strong> rectifieroutput voltage is well smoo<strong>the</strong>d andsuitable for <strong>telephone</strong> exchanges andsystems.ControlThe control system of <strong>the</strong> rectifier ma<strong>in</strong>ta<strong>in</strong>s<strong>the</strong> output voltage at a constantlevel. When <strong>the</strong> current exceeds <strong>the</strong>rated value <strong>the</strong> rectifier changes over toprovid<strong>in</strong>g constant current <strong>in</strong> order toavoid overload<strong>in</strong>g. The most notablecharacteristics of <strong>the</strong> control systemare:D correct function even with large distortionof <strong>the</strong> ma<strong>in</strong>s voltage supplyDequal share<strong>in</strong>g of <strong>the</strong> load between<strong>the</strong> thyristors <strong>in</strong> <strong>the</strong> rectifierD<strong>the</strong> regulation level is not sensitive totemperature variationsProtection circuitsThe rectifier conta<strong>in</strong>s a number ofcircuits for protection aga<strong>in</strong>st abnormaloperat<strong>in</strong>g conditions:— Current limit<strong>in</strong>g protects <strong>the</strong> rectifieraga<strong>in</strong>st overload<strong>in</strong>g and <strong>in</strong> mostcases also aga<strong>in</strong>st external shortcircuits— Additional short-circuit protection isprovided <strong>in</strong> <strong>the</strong> form of two fast act<strong>in</strong>gsemiconductor fuses— A fuse at <strong>the</strong> output provides protectionaga<strong>in</strong>st short circuits <strong>in</strong>side <strong>the</strong>rectifier— Phase failure protection blocks <strong>the</strong>trigger pulses to <strong>the</strong> thyristors if oneor more phases of <strong>the</strong> ma<strong>in</strong>s supplynetwork fail.— The overvoltage protection is activatedif <strong>the</strong> voltage on <strong>the</strong> rectifieroutput rises because of a fault <strong>in</strong> <strong>the</strong>rectifier. The protection deviceblocks <strong>the</strong> trigger pulses to <strong>the</strong>thyristors and realeases <strong>the</strong> ma<strong>in</strong>ssupply contactorThe rectifier restarts automatically whenan alarm condition ceases, for exampleFig. 5The three-phase voltage is connected to <strong>the</strong>transformer via a contactor. The thyristors rectifyand regulate <strong>the</strong> voltage which is smoo<strong>the</strong>d by<strong>the</strong> LCL filter. The control unit gives triggerpulses to <strong>the</strong> thyristors with <strong>the</strong> right tim<strong>in</strong>g, sothat <strong>the</strong> output voltage is kept constant


49when a blown fuse has been replaced. In<strong>the</strong> case of both automatic and manualstart <strong>the</strong> rectifier voltage successively<strong>in</strong>creases to <strong>the</strong> set regulation level.This smooth start prevents unnecessarycurrent surges and component stresses.Parallel operationAny number of rectifiers can work <strong>in</strong>parallel, and <strong>the</strong>y will <strong>the</strong>n share <strong>the</strong>load equally.Remote control facilitiesThe rectifier can operate as an entirelyautonomous unit. It can also be remotelycontrolled from a central equipmentvia a cable and plug. By means of remotecontrol it is <strong>the</strong>n possible to— raise <strong>the</strong> rectifier voltage to a presetvalue for charg<strong>in</strong>g of <strong>the</strong> batteries— control <strong>the</strong> rectifier output voltage sothat it follows <strong>the</strong> voltage of ano<strong>the</strong>rpower plant— block <strong>the</strong> trigger pulses to <strong>the</strong>thyristors— open and close <strong>the</strong> rectifier ma<strong>in</strong>scontactorIn addition <strong>the</strong> rectifier can send alarmsto central equipment.Mechanical constructionThe rectifier consists of two plug-<strong>in</strong> units.The upper one, fig. 6, consists of d.c.filter, thyristor bridge and control unitwhile <strong>the</strong> lower unit conta<strong>in</strong>s <strong>the</strong> transformerand operat<strong>in</strong>g device with anammeter, operat<strong>in</strong>g buttons and lightemitt<strong>in</strong>g diodes.Technical data for thyristorrectifiersBMT313 BMT303System voltage V 48 48Output dataCurrent A 100 50Static regulationaccuracy mV 50 50Dynamic regulation:Response time withwise load change25%ofl ma), ms 150 150Noise voltage:— psophometric mV


50Fig. 7Booster converter, BMR 263, seen from <strong>the</strong> frontwith <strong>the</strong> front plate removedBooster converterThe latest development <strong>in</strong> convertertechnique —conversion at high frequency(20 kHz) —has been applied <strong>in</strong><strong>the</strong> design of <strong>the</strong> booster converter, fig.7. It has <strong>the</strong> follow<strong>in</strong>g advantages:DSmall dimensions and low weight• Noiseless operationDFast regulationThe booster converter type BMR 263 isa d.c. converter with an <strong>in</strong>put voltage of48 V and an output of 0-8 V 100 A. Itadds its output voltage to <strong>the</strong> batteryvoltage and regulates <strong>the</strong> output voltageof <strong>the</strong> system to <strong>the</strong> desired level, forexample when <strong>the</strong> battery becomes dischargedbecause of a ma<strong>in</strong>s failure.Ma<strong>in</strong> circuitFig. 8 is a simplified block diagram of <strong>the</strong>booster converter. The converter conta<strong>in</strong>san <strong>in</strong>verter circuit with transistors(T1, T2). It is fed with battery voltage via<strong>the</strong> <strong>in</strong>put filter (L1, C1) and provides <strong>the</strong>transformer (TU) with a 20 kHz rectangulara.c. voltage hav<strong>in</strong>g variable pulsewidth. The a.c. voltage is transformeddown (<strong>in</strong> TU) and rectified (<strong>in</strong> RU). Thewidth of <strong>the</strong> rectified voltage pulse determ<strong>in</strong>es<strong>the</strong> magnitude of <strong>the</strong> outputvoltage. The output filter (L2, C2) attenuates<strong>the</strong> a.c. voltage component sothat <strong>the</strong> rectified mean value is obta<strong>in</strong>edat <strong>the</strong> output.High-frequency conversion requires <strong>the</strong>use of <strong>new</strong> components with advancedcharacteristics: fast power transistorsthat can withstand current surges,Schottky power-type diodes with lowvoltage drop, transformers with ferritecores and copper tape w<strong>in</strong>d<strong>in</strong>gs.Regulation and monitor<strong>in</strong>gThe output voltage of <strong>the</strong> converter isregulated by means of pulse width modulation.The control unit generatespulses with a frequency of 20 kHz andvariable pulse width (0 — 25 fis), fig. 9.Feedback circuits control <strong>the</strong> pulsewidth <strong>in</strong> such a way that <strong>the</strong> converterma<strong>in</strong>ta<strong>in</strong>s constant voltage (on <strong>the</strong> distributionbars) as long as <strong>the</strong> output currentof <strong>the</strong> unit does not exceed <strong>the</strong>rated value of 100 A. If <strong>the</strong> current tendsto exceed this value <strong>the</strong> regulationchanges over to constant current (currentlimit<strong>in</strong>g).The use <strong>in</strong> <strong>the</strong> control unit of operationalamplifiers and digital logic circuits hasgiven function blocks with well def<strong>in</strong>edcharacteristics.The converter works ei<strong>the</strong>r <strong>in</strong> <strong>the</strong> passiveor <strong>the</strong> active mode. Passive operationmeans that <strong>the</strong> regulation circuitshave set <strong>the</strong> pulse width to zero. No controlpulses are sent to <strong>the</strong> transistors <strong>in</strong><strong>the</strong> ma<strong>in</strong> circuit, and thus no power istransformed over to <strong>the</strong> output side. Thedistribution current, which flowsthrough <strong>the</strong> output circuit, causes a voltagedrop of 0.3-0.8 V.Active operation means that controlpulses are sent to <strong>the</strong> transistors <strong>in</strong> <strong>the</strong>ma<strong>in</strong> circuit and that voltage is transformedto <strong>the</strong> output side. Passive operationtakes place when <strong>the</strong> distributionvoltage is higher than <strong>the</strong> regulationlevel (preset value) of <strong>the</strong> converter. Activeoperation is <strong>in</strong>itiated <strong>the</strong> moment<strong>the</strong> level of <strong>the</strong> distribution voltage fallsbelow <strong>the</strong> regulation level. The changeoverfrom passive to active operationuFig. 8Functional block diagram for <strong>the</strong> boosterconverter 100 A, 1 kWIF Input filterIII Inverter unit 20 kHz with power transistorsTU TransformerRU Rectifier unit with fast power diodes of <strong>the</strong>Schottky typeOF Output filterBD Base drive circuits, patented circuit designCU Control unitSH Shunt for measur<strong>in</strong>g <strong>the</strong> output current


Fig. 9Control unit for booster converter BMR 263The picture shows <strong>the</strong> control unit connected to <strong>the</strong>converter via an extension board. In this position <strong>the</strong>measur<strong>in</strong>g po<strong>in</strong>ts on <strong>the</strong> pr<strong>in</strong>ted board assemblies areeasily accessibleTechnical data for <strong>the</strong> boosterconverterSystem voltage48 VOutput dataCurrent100 AVoltage— max. value with U, N=40 V,IOUT=100A8 V— variation dur<strong>in</strong>g any operat<strong>in</strong>gcondition0-10 VStatic regulation accuracy ±0.5 %Dynamic regulation:Response time with step loadchangeAI=25A5 msRipple voltage, psophometricalvalue


Fig. 11Distribution equipment BMG 650. seen from <strong>the</strong>side. The outgo<strong>in</strong>g distribution cables can be runupwards or downwards as desired. The cablerunn<strong>in</strong>g is very easily carried out with <strong>the</strong> aid ofspecially designed cable clamps.Parallel operationAny number of converters can work <strong>in</strong>parallel, and <strong>the</strong>y <strong>the</strong>n share <strong>the</strong> loadequally.Mechanical constructionThe converter consists of a plug-<strong>in</strong> unit,fig. 10. Its fuses are placed so that <strong>the</strong>yare easily accessible after <strong>the</strong> front plateof <strong>the</strong> unit has been removed from <strong>the</strong>rack. The control unit, which consists oftwo pr<strong>in</strong>ted board assemblies mounted<strong>in</strong> a cassette, conta<strong>in</strong>s all <strong>the</strong> controland supervisory circuits. Operat<strong>in</strong>g buttonsand <strong>in</strong>dicat<strong>in</strong>g LEDs are mountedon <strong>the</strong> front of <strong>the</strong> control unit. Anammeter is mounted <strong>in</strong> a front plate nextto <strong>the</strong> control unit.DistributionThere are two variants of <strong>the</strong> distributionequipment, one for low-ohmic distributionand <strong>the</strong> o<strong>the</strong>r for high-ohmic transientlimit<strong>in</strong>g distribution, see fig. 11.By low-ohmic distribution 2 , fig. 12, ismeant <strong>the</strong> conventional distributionmethod, where current feed<strong>in</strong>g from <strong>the</strong>distribution rack is carried out by meansof large cables that are branched <strong>in</strong> <strong>the</strong>switch<strong>in</strong>g room to smaller cable areas.Each distribution branch <strong>the</strong>n has a relativelylow resistance, comparable with<strong>the</strong> <strong>in</strong>ternal resistance of <strong>the</strong> powersupply equipment. This means that if ashort circuit occurs <strong>in</strong> <strong>the</strong> distributionnetwork <strong>the</strong> whole of <strong>the</strong> telecommunicationequipment will be subjected to alarge voltage transient. The low-ohmicdistribution is used <strong>in</strong> electromechanicalexchanges, where short-lived transientsdo not affect <strong>the</strong> operation.For <strong>the</strong> power<strong>in</strong>g of electronic telecommunicationequipment I_M Ericsson hasFig. 12 (left)Distribution equipment for low-ohmic distribution.The fuse holders used have a rated current of 125A. The fuses come <strong>in</strong> sizes from 6.3 A to 125 A.The fuse unit conta<strong>in</strong>s a built-<strong>in</strong> alarm device.Each fuse has visual alarm <strong>in</strong>dicationFig. 13Distribution equipment for transient limit<strong>in</strong>gdistribution. The equipment consists of specialfuse strips for fuses rated max. 35 A. Resistorstrips have been <strong>in</strong>serted <strong>in</strong> series with each fusefor adjustment of <strong>the</strong> conductor resistance when<strong>the</strong> distribution distance varies. The equipment isprovided with a protective plate <strong>in</strong> order toprevent <strong>the</strong> staff from accidentally touch<strong>in</strong>g liveparts when chang<strong>in</strong>g fuses.


53Fig. 14Battery fuses with equipment for automaticcharg<strong>in</strong>g of <strong>the</strong> batterydeveloped a transient limit<strong>in</strong>g distributionsystem. The current from <strong>the</strong> distributionrack is fed via <strong>in</strong>dividual cablesdirectly (i.e. without branch<strong>in</strong>g) to <strong>the</strong>functional units <strong>in</strong> <strong>the</strong> telecommunicationequipment, fig. 13. A characteristicfeature of <strong>the</strong> system is that <strong>the</strong> resistance<strong>in</strong> each of <strong>the</strong> distribution branchesis approximately 10 times <strong>the</strong> total<strong>in</strong>ternal resistance of <strong>the</strong> power supplyplant. A special two-conductor cable,with an area of twice 2.5, 6, 10 or 16mm 2 , is used <strong>in</strong> order to ensure low<strong>in</strong>ductance between <strong>the</strong> conductors.This distribution system effectively elim<strong>in</strong>atesdisturb<strong>in</strong>g transients that mayarise as a result of short circuits <strong>in</strong> <strong>the</strong>distribution network.Equipment for automaticbattery charg<strong>in</strong>gUn<strong>in</strong>terrupted d.c. power supplysystems usually conta<strong>in</strong> storage batteriesthat serve as a standby energysource and filter. The function and lifetimeof <strong>the</strong> batteries are dependent on<strong>the</strong>ir be<strong>in</strong>g kept fully charged at alltimes. Thus <strong>the</strong> system conta<strong>in</strong>s equipmentfor automatic charg<strong>in</strong>g <strong>in</strong> order toprovide rapid and complete recharg<strong>in</strong>gafter each discharge. The equipment <strong>in</strong>cluded<strong>in</strong> <strong>the</strong> standard version of BZD112 functions <strong>in</strong> accordance with a simplepr<strong>in</strong>ciple based on <strong>the</strong> measurementof voltage and time. The time measurementis carried out with <strong>the</strong> aid of digitalcircuits.The function, <strong>in</strong> a 48 V plant with 23 batterycells, is as follows (fig. 15):The battery voltage falls dur<strong>in</strong>g discharge(ma<strong>in</strong>s failure t, —1 3 ). When it hasfallen to 47 V (2.05 V/cell) (t 2 ) <strong>the</strong> measurementof <strong>the</strong> discharge time starts.The time measurement is <strong>in</strong>terrupted (t 3 )when <strong>the</strong> ma<strong>in</strong>s voltage is obta<strong>in</strong>edaga<strong>in</strong>. The rectifiers start to charge <strong>the</strong>battery (t 3 -t 4 ) and <strong>the</strong> battery voltagerises. The measur<strong>in</strong>g of <strong>the</strong> charg<strong>in</strong>gtime does not start until <strong>the</strong> voltage hasrisen to 52 V (2.25 V/cell) (t 4 ). The charg<strong>in</strong>ggoes on until <strong>the</strong> measured time(t 4 -t 5 ) is 8 times <strong>the</strong> measured dischargetime, but not more than 15 hours.The charg<strong>in</strong>g is carried out with <strong>the</strong> currentavailable from <strong>the</strong> rectifiers until <strong>the</strong>voltage has risen to 54 V (2.35 V/cell)and <strong>the</strong>reafter at constant voltage.It can be shown with <strong>the</strong> aid of charge/time characteristics that this type of automaticcharg<strong>in</strong>g gives a very highcharg<strong>in</strong>g efficiency regardless of <strong>the</strong>amount of charg<strong>in</strong>g current availableand <strong>the</strong> degree of discharge of <strong>the</strong> battery.At <strong>the</strong> same time overcharg<strong>in</strong>g,which reduces <strong>the</strong> life of <strong>the</strong> battery, isavoided.In addition to <strong>the</strong> charg<strong>in</strong>g process describedabove, periodic equalizationcharg<strong>in</strong>g is also carried out. The lengthof <strong>the</strong> periods can be 10, 20, 40 or 80days. The normal sett<strong>in</strong>g is 40 days and<strong>the</strong> charg<strong>in</strong>g time 15 hours. Fifteenhourcharg<strong>in</strong>g can also be <strong>in</strong>itiatedmanually. Functional tests of <strong>the</strong> charg<strong>in</strong>gequipment can easily be carried out,and it takes only about a m<strong>in</strong>ute to runthrough a complete function cycle.The equipment consists of a cassetteFig. 15Charg<strong>in</strong>g and discharg<strong>in</strong>g sequences controlledwith <strong>the</strong> aid of voltage and time measurement.The upper curve shows <strong>the</strong> battery voltage and<strong>the</strong> lower <strong>the</strong> d»»grw "' charge of <strong>the</strong> battery


55Fig. 18Parallel cool<strong>in</strong>g. This method provides uniformcool<strong>in</strong>g conditions for all units and <strong>the</strong>ir loadcapability will be <strong>in</strong>dependent of <strong>the</strong>ir position <strong>in</strong><strong>the</strong> rackFig. 19Booster converter system BZD 112. 48 V for amaximum current output of 400 A<strong>in</strong> <strong>the</strong> rack. This disadvantage is avoidedby <strong>the</strong> use of parallel cool<strong>in</strong>g. Parallelcool<strong>in</strong>g means that each active unit hasits own air <strong>in</strong>take at <strong>the</strong> bottom of <strong>the</strong>front panel. A guide plate ensures that<strong>the</strong> air flows through <strong>the</strong> unit. The air is<strong>the</strong>n let out at <strong>the</strong> rear top edge of <strong>the</strong>unit <strong>in</strong>to a common cool<strong>in</strong>g, channel,where a good chimney effect isobta<strong>in</strong>ed. The pr<strong>in</strong>ciple is illustrated <strong>in</strong>fig. 18.All units <strong>in</strong> system BZD 112 can operate<strong>in</strong> <strong>the</strong> temperature range 0 to +45°Cwithout loss of performance and <strong>in</strong> <strong>the</strong>range -10 to +55°C without be<strong>in</strong>gdamaged.A power supply plant with amodular structureThe mechanical design of racks and unitsgives a power supply plant which hasa high degree of flexibility and which iseasy to adapt for different types of telecommunicationsystems. The flexibilityis obta<strong>in</strong>ed through <strong>the</strong> double modularstructure. This means that standardizedfunctional units, such as rectifiers andconverters, have been comb<strong>in</strong>ed to formplant modules. The plant modules <strong>in</strong><strong>the</strong>ir turn constitute ei<strong>the</strong>r complete and<strong>in</strong>dependent power supply plants orconstruction modules that are comb<strong>in</strong>edto form larger plants of what is <strong>in</strong>pr<strong>in</strong>ciple unlimited size, fig. 19. Thesmallest standardized plant moduleconsists of a full-sized rack built toge<strong>the</strong>rwith a half-sized rack and with acommon top, fig. 20. The overall dimensionsof <strong>the</strong> module are: width 900 mm,height 2200 mm and depth 600 mm. Thefull-sized rack is <strong>in</strong>tended for<strong>the</strong> mount<strong>in</strong>gof active units, such as rectifiers andbooster converters, while <strong>the</strong> half-sizedrack is <strong>in</strong>tended for <strong>the</strong> distribution andbattery connection equipment.The plant modules are equipped withstandardized sets of units as follows:a) 1 -2 rectifiers 50 or 100 A+ 1-2 booster converters 100 Ab) 1 -3 rectifiers 50 or 100 Ac) 1 — 6 booster converters 100 AEach of <strong>the</strong>se alternatives can be equippedwith distribution fuses for lowohmicor high-ohmic distribution.The equipment alternatives have beenchosen so that all power that is converted<strong>in</strong> <strong>the</strong> plant module is distributedfrom <strong>the</strong> same module via its own distributionfuses. The advantages of thismethod are that— only equalization currents flow <strong>in</strong> <strong>the</strong>connection bus bars between <strong>the</strong> variousmodules— extension of <strong>the</strong> distribution and batteryconnection equipment is carriedout at <strong>the</strong> same rate as <strong>the</strong> rectifierequipmentThe unit and rack construction permitsgreat freedom as regards room layout.The plant modules can thus be <strong>in</strong>stalled<strong>in</strong> s<strong>in</strong>gle rows, double rows or alongwalls. There are no requirements as re-


56gards <strong>the</strong> order with<strong>in</strong> a row. Extensionscan be made both to <strong>the</strong> right and to <strong>the</strong>left. This simplifies considerably <strong>the</strong>plann<strong>in</strong>g of <strong>new</strong> plant and <strong>the</strong> space <strong>in</strong>exist<strong>in</strong>g premises can be utilized rationallyand without difficulty.Master slave control-a <strong>new</strong>method for extend<strong>in</strong>g andsectionaliz<strong>in</strong>g power supplyplantMaster slave control, MSC, is a <strong>new</strong> andvaluable feature of booster convertersystem BZD 112. Briefly this methodmeans that <strong>the</strong> output voltage (distributionvoltage) of a power supply plant canbe made to follow an external variablereference voltage with a high degree ofaccuracy, for example <strong>the</strong> output voltageof ano<strong>the</strong>r plant. MSC can be usedanywhere where voltage equality is requiredbetween different power supplyplants. Consequently system BZD 112 iswell suited for <strong>the</strong> extension of olderpower supply plants, irrespective of <strong>the</strong>system pr<strong>in</strong>ciple of <strong>the</strong> old plant. Forexample, <strong>the</strong> earlier cell switch plantscan be extended even if <strong>the</strong> cell switch isfully loaded, a problem which has hi<strong>the</strong>rtobeen difficult to solve. Ano<strong>the</strong>rapplication where this method is usefulis <strong>in</strong> sectionalized plants. The differentsections can be placed at a great distancefrom each o<strong>the</strong>r and yet ma<strong>in</strong>ta<strong>in</strong><strong>the</strong> same voltage without hav<strong>in</strong>g to beconnected by large cables or bars. Asignall<strong>in</strong>g connection via small-diameterwire is all that is necessary. In thisway great sav<strong>in</strong>gs <strong>in</strong> <strong>the</strong> distribution cablesare made.Fig. 20A complete plant module for booster convertersystem BZD 112. The module is equipped with twohigh-frequency booster converters 100 A, twothyristor rectifiers 100 A, 56 fuses for transientlimit<strong>in</strong>gdistribution and also battery fuses andequipment for automatic charg<strong>in</strong>g. The modulecan ei<strong>the</strong>r operate as an <strong>in</strong>dependent plant orform a part of a plant of what is <strong>in</strong> pr<strong>in</strong>cipleunlimited size.


57^complete plan, modu le with <strong>the</strong> tron, pla.es <strong>in</strong>placeInstallation, operation andma<strong>in</strong>tenanceSimple and fast <strong>in</strong>stallation was one of<strong>the</strong> most important aims when design<strong>in</strong>g<strong>the</strong> units and <strong>the</strong> packag<strong>in</strong>gstructure. The equipment is deliveredfrom <strong>the</strong> factory as easy-to-handle,tested units, which are very easily connectedto <strong>the</strong> rack busbars by means ofdisconnectors. The <strong>in</strong>stallation of <strong>the</strong>equipment is carried out us<strong>in</strong>g simplehand tools, and <strong>the</strong> <strong>in</strong>stallation test<strong>in</strong>g islimited to functional test<strong>in</strong>g and a visual<strong>in</strong>spection <strong>in</strong> order to detect any transportdamage.The booster converter system is whollyautomatic, that is to say all operationalchanges are carried out without anymanual <strong>in</strong>tevention. Rectifiers and convertersare loaded and unloaded accord<strong>in</strong>gto <strong>the</strong> actual demand of <strong>the</strong> switch<strong>in</strong>gequipment and <strong>the</strong> battery. The automaticcharg<strong>in</strong>g equipment ensuresthat <strong>the</strong> batteries are fully charged and<strong>in</strong> peak condition. All that is normallyrequired <strong>in</strong> <strong>the</strong> way of ma<strong>in</strong>tenance is totoo up <strong>the</strong> batteries with water and tocarry out certa<strong>in</strong> check<strong>in</strong>g once or twicea year.The repair freguency has been calculatedto be <strong>in</strong> <strong>the</strong> order of 0.05 per unitand year.Live parts are equipped with protectivecovers <strong>in</strong> order to reduce <strong>the</strong> risk ofpersonnel <strong>in</strong>juries dur<strong>in</strong>g work on <strong>the</strong>plant. Units can be removed and replaceddur<strong>in</strong>g operation without hestaff hav<strong>in</strong>g to work close to live parts.ReliabilityThe power supply equipment <strong>in</strong> a telecommunicationsplant must have h ghreliability. This has been achievedthrough <strong>the</strong> follow<strong>in</strong>g measures:Unit design- only high quality c°mP°^nts a *selected and <strong>the</strong>se are subjected toextensive test<strong>in</strong>g before be<strong>in</strong>g- dKSon<strong>in</strong>g rules with wide safetymarg<strong>in</strong>s are appliedSystem design-consistent use of redundancy, i.e. aspare for each unit and importantfunction- each of <strong>the</strong> rectifiers and convertersconstitutes <strong>in</strong>dependent units- no central devices are used that canaffect <strong>the</strong> operation of <strong>the</strong>plantwholeThe calculated value for <strong>the</strong> expectedmean time between system failures(MTBSF) is 3000 years or more, on conditionthat <strong>the</strong> normal number of spareunits (20 % but at least one unit) is used.A system fault is assumed to have occurredwhen <strong>the</strong> number of faulty units exceeds<strong>the</strong> number of spares. Normallythis only means a deterioration <strong>in</strong> <strong>the</strong>operation of <strong>the</strong> plant and not a completebreakdown. The life of <strong>the</strong> equipmentis calculated to be 40 years. Theprobability of a system fault dur<strong>in</strong>g thistime is less than 0.01.References:1 Wolpert, T. and Bjork, D.: PowerSuDpIv System with Booster Converters-Viewpo<strong>in</strong>tsafter 10 Years<strong>in</strong> Operation. Ericsson Rev. 52(1975):1, PP- 14-23.2 Orevik A.: D.C. Distribution forPower Supply of TelecommunicationEquipments. Ericsson Rev. 49(1972):1, pp. 14-28.3 Orevik A.: Power Supplies for' Electronic Telephone Exchanges.Ericsson Rev.57 (1974):4, pp. 120-127.


Operational Experience from <strong>the</strong>Mollison International Switch<strong>in</strong>gCentre <strong>in</strong> LondonRowland W. ButtonThe first stage of <strong>the</strong> Mollison International Switch<strong>in</strong>g Centre, (ISC) <strong>in</strong> London wasopened <strong>in</strong> October 1974. This ISC is of LM Ericsson's transit exchange system ARM20 with crossbar switches and currently it carries about 50% of all <strong>in</strong>ternationaltraffic load <strong>in</strong> <strong>the</strong> United K<strong>in</strong>gdom. It has been described <strong>in</strong> a previous issue ofEricsson Review\ In this article <strong>the</strong> good operational experience from more thanthree years service will be illustrated, cover<strong>in</strong>g <strong>the</strong> <strong>in</strong>com<strong>in</strong>g and <strong>the</strong> outgo<strong>in</strong>gexchange units ARM 20, <strong>the</strong> <strong>in</strong>ternational ma<strong>in</strong>tenance centre, <strong>the</strong> automatic transmissionmeasur<strong>in</strong>g equipment, <strong>the</strong> account<strong>in</strong>g equipment, <strong>the</strong> tra<strong>in</strong><strong>in</strong>g of ma<strong>in</strong>tenancestaff and <strong>the</strong> repair of pr<strong>in</strong>ted circuit boards.UDC621 395 722Fig. 1Mollison exchange with switches for outgo<strong>in</strong>gtrafficMollison International Switch<strong>in</strong>g Centre(ISC) is divided <strong>in</strong>to two tw<strong>in</strong> units accord<strong>in</strong>gto fig. 2. One tw<strong>in</strong> unit is <strong>in</strong>tendedfor <strong>in</strong>com<strong>in</strong>g and <strong>the</strong> o<strong>the</strong>r foroutgo<strong>in</strong>g <strong>in</strong>ternational traffic and <strong>the</strong>yare completely <strong>in</strong>dependent of eacho<strong>the</strong>r.The outgo<strong>in</strong>g unit caters solely for outgo<strong>in</strong>gInternational Subscriber Dialledtraffic (ISD) and <strong>the</strong> <strong>in</strong>com<strong>in</strong>g unit for<strong>in</strong>com<strong>in</strong>g <strong>in</strong>ternational traffic not requir<strong>in</strong>gassistance from any <strong>in</strong>ternationaloperator <strong>in</strong> <strong>the</strong> United K<strong>in</strong>gdom. Fur<strong>the</strong>rmore<strong>the</strong> ISC switches traffic over asmall number of large routes only, represent<strong>in</strong>gcountries with whom <strong>the</strong> UKhas substantial mutual traffic <strong>in</strong>terest.These limitations of <strong>the</strong> ISC were plannedwith <strong>the</strong> objectives of cost reduction,short <strong>in</strong>stallation period and, mostimportant, high operational efficiencyand <strong>the</strong>se objectives have been met.When all <strong>in</strong>ternational circuits are <strong>in</strong>service Mollison ISC has a total <strong>in</strong>ternationalswitch<strong>in</strong>g capacity of 8 000Erlangs for outgo<strong>in</strong>g and <strong>in</strong>com<strong>in</strong>g trafficat a load of about 0,75 Erlangs percircuit and a grade of service of 2% 0 . Aswill be seen, all term<strong>in</strong>ations are currentlynot <strong>in</strong> service.


59ROWLAND W BUTTONHead of Network Control DivisionPost Office External TelecommunicationsExecutive. LondonOutgo<strong>in</strong>g tw<strong>in</strong> unit ARM 202 equipped Incom<strong>in</strong>g tw<strong>in</strong> unit ARM 201 equippedas follows:as follows:5420 (2177)* <strong>in</strong>ternational term<strong>in</strong>ations 5420 (2710) <strong>in</strong>ternational term<strong>in</strong>ations6200 (3453) national term<strong>in</strong>ations 5820 (3385) national term<strong>in</strong>ations612 registers 424 registers'The figures with<strong>in</strong> brackets represent <strong>the</strong> numbernow <strong>in</strong> use while <strong>the</strong> o<strong>the</strong>r figures show <strong>the</strong> totalnumber deliveredFig. 2Separate tw<strong>in</strong> units for <strong>in</strong>com<strong>in</strong>g and outgo<strong>in</strong>g<strong>in</strong>ternational trafficFig. 3Intornat<strong>in</strong>nal ac-cnuTTtlmreuntDmenl


Table 1.Fault statistics from <strong>the</strong> 6-months period1.9.1976-28.2.1977Table 2.Fault analysesFig. 5 shows a ra<strong>the</strong>r normal developmentof <strong>the</strong> growth of traffic <strong>in</strong> <strong>the</strong>switch<strong>in</strong>g centre, while fig. 6 illustrates<strong>the</strong> correspond<strong>in</strong>g call attempt characteristics.F<strong>in</strong>ally <strong>the</strong> trend of outgo<strong>in</strong>gpaid m<strong>in</strong>utes per month is <strong>in</strong>dicated <strong>in</strong>fig. 7.Number of faults belowstandard valuesThe Mollison ISC is ma<strong>in</strong>ta<strong>in</strong>ed undercontrolled corrective ma<strong>in</strong>tenancephilosophy, which is described <strong>in</strong> anearlier issue of Ericsson Review 2 . As willbe seen from table 1 above <strong>the</strong> numberof faults per relay and crossbar rack andyear are much below <strong>the</strong> standard valuesgiven by LM Ericsson.Fig. 4Daily traffic distributiona. In <strong>the</strong> outgo<strong>in</strong>g unit as number of register seizuresper hour.b. In <strong>the</strong> <strong>in</strong>com<strong>in</strong>g unit as Erlangs per hour.Fig. 5Growth of traffic <strong>in</strong> Erlangs <strong>in</strong> <strong>the</strong> outgo<strong>in</strong>g and<strong>in</strong>com<strong>in</strong>g units____Outgo<strong>in</strong>g International trafficIncom<strong>in</strong>g <strong>in</strong>ternational trafficFig. 6. to <strong>the</strong> rightNumber of call attempts per month <strong>in</strong> <strong>the</strong> outgo<strong>in</strong>gand <strong>in</strong>com<strong>in</strong>g units^^ Outgo<strong>in</strong>g unit^^_ Incom<strong>in</strong>g unitThedaily profileof <strong>the</strong>outgo<strong>in</strong>g ISD trafficdemand is shown <strong>in</strong> fig. 4a. The afternoonpeak <strong>in</strong> this profile occurs whenEuropean and North American routebusy hours co<strong>in</strong>cide. The profile for <strong>in</strong>com<strong>in</strong>g<strong>in</strong>ternational traffic <strong>in</strong> Erlangs isshown <strong>in</strong> fig. 4b. As will be seen <strong>the</strong> exchangeis ra<strong>the</strong>r heavily loaded for morethan 12 hours a day which is a result of<strong>the</strong> composition of <strong>the</strong> <strong>in</strong>ternationall<strong>in</strong>es.Several of <strong>the</strong>se 553 faults were due towrongly jacked-<strong>in</strong> relay sets and <strong>in</strong>correctlypivoted relay armatures. The majorityof <strong>the</strong> rema<strong>in</strong><strong>in</strong>g faults were wir<strong>in</strong>gfaults as will be seen from <strong>the</strong> faultanalyses <strong>in</strong> table 2.The jack<strong>in</strong>g-<strong>in</strong> and <strong>the</strong> relay armaturefaults are ma<strong>in</strong>ly attributed to human errorsand recent results <strong>in</strong>dicate that<strong>the</strong>se type of faults have been elim<strong>in</strong>atedto a great extent. Any fault directlyattributable to manufacture or <strong>in</strong>stallationprocesses have been remedied byLM Ericsson with m<strong>in</strong>imal delay.The use of plug and socket connectionon rack <strong>in</strong>stallations is advantageous <strong>in</strong>


Table 3Service observations of <strong>in</strong>ternational traffic dur<strong>in</strong>ga period of three monthsFig. 7Number of paid m<strong>in</strong>utes per month for <strong>the</strong> totaloutgo<strong>in</strong>g <strong>in</strong>ternational trafficFig. 8, to <strong>the</strong> rightNumber of faults <strong>in</strong> <strong>the</strong> outgo<strong>in</strong>g unit per outgo<strong>in</strong>gcircuitMillions/monthrespect of cabl<strong>in</strong>g and flexibility and<strong>the</strong>re has been no evidence of jack<strong>in</strong>g-<strong>in</strong>problems <strong>in</strong> this connection.From <strong>the</strong> International TransmissionMa<strong>in</strong>tenance Centre, ITMC, reports aresent regard<strong>in</strong>g operational difficultieson identified circuits. For identificationof faults <strong>the</strong>se reports constitute an excellentsupplement to <strong>the</strong> alarm andmonitor<strong>in</strong>g devices controlled by <strong>the</strong> InternationalSwitch<strong>in</strong>g Ma<strong>in</strong>tenanceCentre ISMC. The number of faults reportedby ITMC may also be related to<strong>the</strong> number of <strong>in</strong>ternational and nationalcircuits <strong>in</strong> service. This is illustrated <strong>in</strong>fig. 8, show<strong>in</strong>g that <strong>the</strong> trend s<strong>in</strong>ce open<strong>in</strong>gto <strong>the</strong> current achievement is 0.03reported faults per month per circuit <strong>in</strong>service.Good service quality of ISCBy use of <strong>the</strong> statistical equipment, <strong>the</strong>switch<strong>in</strong>g loss with<strong>in</strong> <strong>the</strong> Mollison ISChas been calculated and <strong>the</strong> result isshown <strong>in</strong> fig. 9. As this loss has beenbelow 1 % for a considerable period andis now runn<strong>in</strong>g at about 0.3 %, <strong>the</strong> servicequality of <strong>the</strong> switch<strong>in</strong>g centre isvery good.The overall service performance for <strong>in</strong>ternationalcalls from subscriber to subscriberis observed by supervisors <strong>in</strong> <strong>the</strong>service observation equipment. Over arecent three month period <strong>the</strong> results <strong>in</strong>table 3 were applicable.In connection with <strong>the</strong> 21.8 % <strong>in</strong>effectiveoutgo<strong>in</strong>g calls <strong>the</strong> congestion with<strong>in</strong>ISC is very small and may be neglected,especially as <strong>the</strong> exchange is not fullyloaded.The CCITT recommendation standard is<strong>the</strong> objective <strong>in</strong> all <strong>in</strong>ternational routedimension<strong>in</strong>g and this is achieved <strong>in</strong> <strong>the</strong>majority of cases. However, <strong>the</strong>re aresignificant departures from thisstandard on certa<strong>in</strong> routes with high call<strong>in</strong>grate. This fact, coupled with cableand o<strong>the</strong>r transmission failures whichalso result <strong>in</strong> <strong>in</strong>ternational route busyconditions, leads to <strong>the</strong> conclusion that,on average, about 8% of call attemptsfail due to both primary and alternative<strong>in</strong>ternational route choices be<strong>in</strong>g fullyengaged or unavailable due to transmissionmedia breakdowns. As <strong>in</strong>dicated<strong>in</strong> fig. 10 this average is subject toconsiderable variations. Some 300system breakdowns are reported eachmonth on <strong>in</strong>ternational routes radiat<strong>in</strong>gfrom UK and <strong>the</strong> annotations <strong>in</strong> fig. 10<strong>in</strong>dicate some failures where <strong>the</strong> effecton performance is significant.Our effective call rate to some countriesis much lower than we would wish andadditional <strong>in</strong>ternational l<strong>in</strong>ks do not result<strong>in</strong> significant improvement. Thisleads to <strong>the</strong> conclusion that on averagesome 11 % of <strong>the</strong> calls fail duetod/sfanffailures <strong>in</strong> eng<strong>in</strong>eer<strong>in</strong>g performance. Ashas been <strong>in</strong>dicated previously <strong>the</strong> loss <strong>in</strong>Mollison ISC is less than 0.3 %.F<strong>in</strong>ally, miscellaneous losses and lossesdifficult to categorise, <strong>in</strong>clud<strong>in</strong>g a substantialnumber of eng<strong>in</strong>eer<strong>in</strong>g testcalls, are of <strong>the</strong> order of 2.5 %.


62Fig. 9Percentage switch<strong>in</strong>g attempt loss <strong>in</strong> outgo<strong>in</strong>gand <strong>in</strong>com<strong>in</strong>g units^—~ Outgo<strong>in</strong>g unit—• Incom<strong>in</strong>g unitFig. 10, to <strong>the</strong> rightNumber of call attempts which meet <strong>in</strong>ternationalcircuit congestion (weekday average)Cable faults©Cables to <strong>the</strong> Ne<strong>the</strong>rlands and USA(2) Cable to Denmark(3) Cable to Spa<strong>in</strong>The 7.1 % <strong>in</strong>effective <strong>in</strong>com<strong>in</strong>g calls dueto failures <strong>in</strong> <strong>the</strong> UK network canapproximately be broken down <strong>in</strong>to 2%no tones, 3% number unobta<strong>in</strong>able tones,less than 1 % switch<strong>in</strong>g loss <strong>in</strong> MollisonISC and just over 1 % miscellaneousloss. There is <strong>in</strong>significant congestionon national routes outgo<strong>in</strong>g fromMollison ISC, <strong>the</strong> majority of nationalgroup switch<strong>in</strong>g centres be<strong>in</strong>g servedby circuits dedicated to <strong>in</strong>ternational <strong>in</strong>com<strong>in</strong>gtraffic.International Ma<strong>in</strong>tenanceCentre (IMC)This centre consists of one transmissionma<strong>in</strong>tenance centre (ITMC) and oneswitch<strong>in</strong>g ma<strong>in</strong>tenance centre (ISMC),each serv<strong>in</strong>g both <strong>the</strong> outgo<strong>in</strong>g and <strong>the</strong><strong>in</strong>com<strong>in</strong>g units.ITMC is equipped with 24 test consolesfig. 11 with adequate facilities asspecified by <strong>the</strong> Post Office. They havebeen most satisfactory <strong>in</strong> practice with am<strong>in</strong>imum of design faults.The consoles are used for both ma<strong>in</strong>te-Call attemptsnance and circuit provision. The testpo<strong>in</strong>ts on all national and <strong>in</strong>ternationall<strong>in</strong>es are reached automatically as wellas via associated test jacks.Ow<strong>in</strong>g to <strong>the</strong> organization of <strong>the</strong> exchange— deal<strong>in</strong>g solely with selectedroutes carry<strong>in</strong>g ISD traffic only and hav<strong>in</strong>ga relatively low fault <strong>in</strong>cidence - <strong>the</strong>daily work<strong>in</strong>g load <strong>in</strong> ITMC is limited,which may even lead to a certa<strong>in</strong> degreeof boredom. The route supervisionfacilities with<strong>in</strong> ITMC are, however, veryvaluable as <strong>the</strong>y permit quick and accurateassessment of <strong>the</strong> route status <strong>in</strong>terms of utilisation, blockage and congestion.They also offer a measure offault identification. It seems highly likelythat <strong>the</strong> ITMC staff should be given moredirect responsibility for <strong>the</strong> totalperformance of <strong>the</strong> ISC with<strong>in</strong> <strong>the</strong>network, thus reliev<strong>in</strong>g <strong>the</strong>m from <strong>the</strong>boredom.ISMC is equipped with LM Ericsson'sstandard centralographs and o<strong>the</strong>rsupervision facilities. To date it hasfunctioned well without any significantproblems.


63For an ISC as large as Mollison <strong>the</strong>electromechanical centralographs may,however, be supplemented by computertype equipment <strong>in</strong> <strong>the</strong> future.The electronic traffic record<strong>in</strong>g equipmentis function<strong>in</strong>g well after <strong>the</strong> clearanceof some difficulties <strong>in</strong> <strong>the</strong> <strong>in</strong>itialstage.Automatic transmissionmeasur<strong>in</strong>g equipment,ATME2The electronic measur<strong>in</strong>g equipmentATME 2 <strong>in</strong> Mollison was one of <strong>the</strong> first<strong>in</strong>stalled plants of this type. It is work<strong>in</strong>gmost satisfactorily and to date only twopr<strong>in</strong>ted circuit boards have beenfaulted.It supervises some six routes on whicho<strong>the</strong>r adm<strong>in</strong>istrations at present canprovide comparable facilities. Initially<strong>the</strong>re were some teeth<strong>in</strong>g difficulties <strong>in</strong><strong>the</strong> day to day operation of <strong>the</strong> system.There is now however, little doubt thatsubstantial improvement <strong>in</strong> <strong>in</strong>ternationaltransmission performance standardswill be achieved and ma<strong>in</strong>ta<strong>in</strong>ed withm<strong>in</strong>imal delay and resources, whenmore adm<strong>in</strong>istrations are also equippedwith this device.Service observationequipment (SOE)One service observation position hasbeen provided for <strong>the</strong> outgo<strong>in</strong>g andano<strong>the</strong>r for <strong>the</strong> <strong>in</strong>com<strong>in</strong>g <strong>in</strong>ternationaltraffic, conta<strong>in</strong><strong>in</strong>g facilities specified by<strong>the</strong> Post Office and specially developedby LM Ericsson. The positions are function<strong>in</strong>gwell and provide valuable <strong>in</strong>formationto assess and improve performance.The facility of <strong>the</strong> outgo<strong>in</strong>g positionto select calls <strong>in</strong> particular routes isa notable asset of great value. The trafficsupervisors who operate <strong>the</strong> positionsare also most satisfied with <strong>the</strong> facilitiesand layout.International account<strong>in</strong>gequipmentThis equipment consists of two parts,<strong>the</strong> duplicated computers, UAC 1610,and <strong>the</strong> <strong>in</strong>terfaces conta<strong>in</strong><strong>in</strong>g bothFig. 11International transmission ma<strong>in</strong>tenance centre,ITMC


64electromechanical and electronic devices.The performance of <strong>the</strong> computers havebeen of a very high order, only n<strong>in</strong>efaults hav<strong>in</strong>g occured over a 3 1 M yearperiod. They are ma<strong>in</strong>ta<strong>in</strong>ed by a staff atMollison ISC with advisory help fromo<strong>the</strong>r Post Office or LM Ericsson resources.Now that <strong>the</strong> staff have become familiarwith <strong>the</strong> <strong>in</strong>terfaces and <strong>the</strong> procedureshave been more clearly <strong>in</strong>dicated <strong>the</strong>number of error reports regard<strong>in</strong>g thisequipment is kept with<strong>in</strong> acceptablelevels. Initially <strong>the</strong> number of such faultswas, however, too high ma<strong>in</strong>ly due to <strong>in</strong>stallationand circuit commission<strong>in</strong>gactivities. It should be mentioned that a<strong>new</strong> design of <strong>in</strong>terface with electronicequipment only has been <strong>in</strong>stalled <strong>in</strong> ourmost recent ARM 20, Thames ISC.Tra<strong>in</strong><strong>in</strong>g of ma<strong>in</strong>tenance staffThe tra<strong>in</strong><strong>in</strong>g of <strong>the</strong> ma<strong>in</strong>tenance staffwas based on courses run by <strong>the</strong> PostOffice and LM Ericsson cover<strong>in</strong>g allaspects. Additionally <strong>the</strong> staff was <strong>in</strong>volved<strong>in</strong> <strong>the</strong> <strong>in</strong>stallation and ma<strong>in</strong>tenanceof <strong>the</strong> ISC. A tra<strong>in</strong><strong>in</strong>g ARM 20 exchangehas also been <strong>in</strong>stalled <strong>in</strong> <strong>the</strong>tra<strong>in</strong><strong>in</strong>g school where courses cont<strong>in</strong>ueto be run on all aspects to ma<strong>in</strong>ta<strong>in</strong> <strong>the</strong>expertise of <strong>the</strong> staff. The ISC is nowma<strong>in</strong>ta<strong>in</strong>ed by <strong>the</strong> staff alone with littleneed for any recourse to o<strong>the</strong>r ma<strong>in</strong>tenancesupport functions, which is an <strong>in</strong>dicationof <strong>the</strong> good tra<strong>in</strong><strong>in</strong>g efficiency.Spares and repair of pr<strong>in</strong>tedcircuit boardsNow that <strong>the</strong> ISC has settled down <strong>in</strong>to anormal operational mode it is possibleto assess <strong>the</strong> spare parts and repair requirementsreadily.It is planned that <strong>the</strong> majority of <strong>the</strong>boards should be repaired on site or atleast with<strong>in</strong> a Post Office repair centre.The fault rate is, however, low (fiveboards per month on average) and <strong>the</strong>reare a number of boards, eg <strong>in</strong> <strong>the</strong> computers,for which provision of spares orrepair facilities is uneconomic. Hencesome dependence on <strong>the</strong> manufacturerwill be essential at least for a period andto date urgent needs <strong>in</strong> this respect havealways been met.Fig. 12International switch<strong>in</strong>g ma<strong>in</strong>tenance centre,ISMC


65Some o<strong>the</strong>r observationsIn an 8 000 Erlang ISC <strong>the</strong>re are areaswhere operational problems may arise,which are not evident from statistics ando<strong>the</strong>r data.It is difficult to make route and o<strong>the</strong>rnetwork changes quickly enough <strong>in</strong> anon-SPC-exchange such as MollisonISC, to meet <strong>the</strong> very dynamic <strong>in</strong>ternationalnetwork needs now experienced.This problem should, however, f<strong>in</strong>d itssolution <strong>in</strong> <strong>the</strong> future when SPC-exchangesare <strong>in</strong>troduced.Dur<strong>in</strong>g <strong>the</strong> period s<strong>in</strong>ce open<strong>in</strong>g <strong>in</strong> 1974<strong>the</strong>re have also been some faults <strong>in</strong>equipment specially designed for Mollison,but <strong>the</strong> effect on <strong>the</strong> switch<strong>in</strong>gperformance has been marg<strong>in</strong>al. LMEricsson have cooperated with <strong>the</strong> PostOffice <strong>in</strong> <strong>the</strong> analysis and clearance of<strong>the</strong>se faults.It has been found that <strong>the</strong> traffic loadbetween <strong>the</strong> tw<strong>in</strong>s especially <strong>in</strong> <strong>the</strong> outgo<strong>in</strong>gunit is ra<strong>the</strong>r high. This is ma<strong>in</strong>lydue to too high a level of route busycondition on certa<strong>in</strong> outgo<strong>in</strong>g routes.This should be considered when dimension<strong>in</strong>g<strong>the</strong> number of l<strong>in</strong>es between <strong>the</strong>tw<strong>in</strong>s.General conclusionsMollison ISC was <strong>in</strong>stalled ahead of <strong>the</strong>contracted date to meet an urgent <strong>in</strong>ternationalswitch<strong>in</strong>g capacity requirement.The performance, which is cont<strong>in</strong>uallymonitored, is fully meet<strong>in</strong>g ourrequirements. The ma<strong>in</strong>tenance staffhave pride <strong>in</strong> <strong>the</strong> ISC, it is kept extremelyclean and <strong>the</strong> environment is good.Shortly Mollison ISC will be complementedby Thames ISC now underconstruction. This ISC will <strong>in</strong>itially alsobe a limited facility switch<strong>in</strong>g centrecater<strong>in</strong>g for <strong>the</strong> same k<strong>in</strong>d of traffic asMollison and it will be a 10,000 Erlangunit with 5,000 Erlang <strong>in</strong> ARM 20 and5,000 Erlang <strong>in</strong> LM Ericsson's SPCsystemAKE 13. The Thames ISC will bedescribed <strong>in</strong> a future issue of <strong>the</strong> EricssonReview.Mollison and Thames ISC's will thusswitch much of UK's <strong>in</strong>ternational directlydialled traffic on a limited facilitybasis <strong>in</strong>to <strong>the</strong> mid 1980's.These two exchanges toge<strong>the</strong>r with a<strong>new</strong> full facility ISC <strong>in</strong> Mondial House<strong>in</strong>Plessey 5005 T practice —will form acomplement to <strong>the</strong> exist<strong>in</strong>g ISC's <strong>in</strong> UK.If <strong>the</strong> operational performance so farachieved with<strong>in</strong> Mollison ISC is ma<strong>in</strong>ta<strong>in</strong>ed<strong>the</strong>re, and atta<strong>in</strong>ed <strong>in</strong> ThamesISC, <strong>the</strong> situation will be most satisfactory.If also <strong>the</strong> switch<strong>in</strong>g performanceof <strong>the</strong> ISC's can be matched by an improvement<strong>in</strong> overall <strong>in</strong>ternational circuitavailability, customers should f<strong>in</strong>da marked improvement <strong>in</strong> <strong>in</strong>ternational<strong>telephone</strong> services to and from <strong>the</strong> UK.References1 Button, R. W. and Buchmayer, M.:The Mollison International Switch<strong>in</strong>gCentre. Ericsson Rev. 52 (1975):2, pp. 46-60.2. Eriksson, V.: CCM-A Well-triedand Economic Ma<strong>in</strong>tenance System.Ericsson Rev. 53 (1976): 3 pp.134-137.3. Soderberg, A.: Automatic TransmissionMeasur<strong>in</strong>g Equipment,ATME 2. Ericsson Rev. 57 (1974):1, pp. 21-28.


Laser Activities at LM EricssonGoran DahlFor some twenty years LM Ericsson's work on design and construction of electronicequipment for defence applications has been centred on <strong>the</strong> radar field.When laser technology was developed at <strong>the</strong> beg<strong>in</strong>n<strong>in</strong>g of <strong>the</strong> 1960s, this type ofequipment was also <strong>in</strong>cluded <strong>in</strong> <strong>the</strong> product range. The article is a survey of <strong>the</strong>laser equipment range. The article is a revised version of a paper presented at <strong>the</strong>Military Electronics Defense Expo held <strong>in</strong> Wiesbaden <strong>in</strong> 1977.UDC621 375.826After <strong>the</strong> first laser light source had beenmade to work <strong>in</strong> 1960, one of <strong>the</strong> earliersuggested applications was rangef<strong>in</strong>d<strong>in</strong>gutiliz<strong>in</strong>g laser light pulses, i.e. opticalradar. Two features of <strong>the</strong> laserformed <strong>the</strong> basis for this suggestion.One was that <strong>the</strong> laser light is concentratedwith<strong>in</strong> extremely narrow and<strong>in</strong>tense beams. The divergence of suchbeams can easily be reduced below 1milliradian. Because of this <strong>the</strong> laserbeam can be concentrated on small targetsalso at long ranges. The o<strong>the</strong>r th<strong>in</strong>gwas that <strong>the</strong> laser energy also easily wasconcentrated <strong>in</strong> high peak power pulsesof a duration of c. 20 ns. Development oflaser rangef<strong>in</strong>der systems for fire controluse started as early as 1962 at ourplant <strong>in</strong> Molndal near Go<strong>the</strong>nburg. Thisdevelopment constituted a natural expansionof our activities s<strong>in</strong>ce <strong>the</strong> majorpart of our bus<strong>in</strong>ess consists of radarsystems for military search and fire controlapplications. The first rangef<strong>in</strong>derprototype was field tested dur<strong>in</strong>g 1965.In <strong>the</strong> spr<strong>in</strong>g of 1968 we obta<strong>in</strong>ed ourfirst large laser rangef<strong>in</strong>der productioncontract. This system was a long distancelaser rangef<strong>in</strong>der for coast artilleryfire control and was based on rubylaser technology. To <strong>the</strong> best of ourknowledge this was one of <strong>the</strong> very firstproduction contracts placed for a laserrangef<strong>in</strong>der <strong>in</strong>tended for operativemilitary use. Fig. 1 shows a picture of <strong>the</strong>transceiver unit mounted on a platform,on top of a TV camera.S<strong>in</strong>ce <strong>the</strong>n LM Ericsson have obta<strong>in</strong>edFig. 1Laser rangef<strong>in</strong>der for coast artillery mounted ona platform and on top of a TV camera


67GORAN DAHLorders for more than 1000 laser rangef<strong>in</strong>ders^ _ Missile, target area 0.5 m 2for such applications as artillery,Ml DivisionTelefonaktiebolaget LM Ericssoncoast artillery, anti-aircraft artillery andtank fire control. Of <strong>the</strong> 1000 lasers soldabout 250 are of <strong>the</strong> high repetition rateanti-aircraft artillery type. Ever s<strong>in</strong>ce <strong>the</strong>start <strong>in</strong> 1962 we have been work<strong>in</strong>g<strong>in</strong>dependently with laser rangef<strong>in</strong>dertechnology without obta<strong>in</strong><strong>in</strong>g any licenceagreement from any o<strong>the</strong>r organization.Present production anddevelopmentThe present large scale production oflaser rangef<strong>in</strong>ders comprises long distanceequipment for artillery and coastartillery and high repetition rate systemsfor anti-aircraft fire control. Fig. 2 showsFig. 2Laser rangef<strong>in</strong>der for anti-aircraft fire controlFig. 3a picture of <strong>the</strong> anti-aircraft laser rangef<strong>in</strong>der.The system consists of a transceiverunit and a power module.Anti-aircraft laser range capabilitymmm_ Transport aircraft, target area 10 m 2The transceiver unit is mounted on a__ Strike aircraft, strike helicopter, target area 2 m 2servo-positioned director and <strong>the</strong> angulartrack<strong>in</strong>g is performed ei<strong>the</strong>r automaticallyby a TV or <strong>in</strong>frared sensor, ormanually with an optical sight. The laseris based on neodymium-YAG technology(wavelength 1.06/;m) and <strong>the</strong> repetitionrate is 10 pulses/sec. <strong>the</strong> rangecapability aga<strong>in</strong>st aircrafts is typically8 — 10 km. This is shown <strong>in</strong> greater detailas a function of <strong>the</strong> optical visibility <strong>in</strong>fig. 3. Range accuracy is ±4 m (1 a value).The transmitter is cooled by forcedair circulation with<strong>in</strong> <strong>the</strong> transceiverunit. We have five different productioncontracts for this system and a numberof prototypes are also under evaluation.In a couple of <strong>the</strong>se prototypes <strong>the</strong>transmitted laser beam width can becontrolled and set to ei<strong>the</strong>r 1.5 or 3mrad. Anti-aircraft fire control utiliz<strong>in</strong>gelectro-optical sensors is a rapidyadvanc<strong>in</strong>g technology.The <strong>new</strong> generation of <strong>the</strong> LM Ericssoncoast artillery lasers typically have range


Fig. 5Artillery laser rangef<strong>in</strong>derThe laser is mounted on a tripod. Azimuth and elevationangles are obta<strong>in</strong>ed with an accuracy ot 1 milliradlancoverages aga<strong>in</strong>st ship targets out to 20km. The repetition rate is 2 Hz. This alsomakes possible quick rang<strong>in</strong>g aga<strong>in</strong>stwater splashes from gun shells. Rangeseparation between target and shellscan be measured and used for fire controlcorrections.Fig. 4 shows <strong>the</strong> transceiver unit and anelectronic unit compris<strong>in</strong>g controls,range displays, range counters, <strong>in</strong>terfacecircuitry to adjacent fire controlequipment and power converters. Wenow have over 100 equipments of thisk<strong>in</strong>d under production.LM Ericsson now use only neodymium-YAGtechnology for both productionand <strong>the</strong> development of prototypes.The development of this technologynow makes it possible to design smallsize rangef<strong>in</strong>ders for Army use. MostArmy applications demand small andlight-weight equipment. At present wehave four laser rangef<strong>in</strong>der developmentcontracts at LM Ericsson for <strong>the</strong>Army.These equipments <strong>in</strong>clude a smalltripod mounted rangef<strong>in</strong>der <strong>in</strong>tendedfor field artillery forward observers. Thisrangef<strong>in</strong>der, which is now be<strong>in</strong>g fieldtested by <strong>the</strong> Swedish Army, is shown <strong>in</strong>fig. 5. The laser head, which weighsabout4 kg <strong>in</strong>clud<strong>in</strong>g <strong>the</strong> optical sight, ismounted on a 2-axis goniometer fromwhich target angles can be obta<strong>in</strong>edwith an accuracy of 1 mrad. The totalweight is 11 kg with <strong>the</strong> tripod and asmall size NiCd battery. The rangecapability is 10 km and measurementscan be performed every 2 secondsAbout 500 measurements can be madeon one battery charge.A still smaller equipment under developmentis a hand-held version of <strong>the</strong>artillery laser. Fig. 6 gives an idea of <strong>the</strong>dimensions. The total weight <strong>in</strong>clud<strong>in</strong>gbattery is approx. 2.5 kg. It is <strong>in</strong>tendedfor artillery forward observers, <strong>in</strong>fantryuse, mortar fire control, etc., and forranges up to 5 km. The equipment canbe mounted on a small size goniometer,also be<strong>in</strong>g developed, which gives anangular accuracy of 3 mrad. The totalweight <strong>in</strong>clud<strong>in</strong>g laser, battery andgoniometer with tripod is 7 kg. Field test<strong>in</strong>gof a number of prototypes will startearly 1978.A third equipment, also <strong>in</strong>tended forArmy use, is a laser rangef<strong>in</strong>der <strong>in</strong>tegrated<strong>in</strong>to a tank gunner's sight, fig. 7.Laser rangef<strong>in</strong>d<strong>in</strong>g will considerably <strong>in</strong>crease<strong>the</strong> range with<strong>in</strong> which an acceptablehit probability is obta<strong>in</strong>ed. Thefirst application is a laser sight for <strong>the</strong>Fig. 4Coast artillery laser rangef<strong>in</strong>derThe transceiver unit to <strong>the</strong> left and <strong>the</strong> electronic unitto <strong>the</strong> right


69improvement of <strong>the</strong> old Centurion tanks.Among <strong>the</strong> features of this sight is anoptical system, with a dual field of view,<strong>the</strong> wider field for surveillance, <strong>the</strong> narrowerhas a magnify<strong>in</strong>g power of about 8times and is used for gun-lay<strong>in</strong>g. In thislatter telescope is <strong>in</strong>tegrated a spot <strong>in</strong>jectionsystem. An electrically steerablepo<strong>in</strong>t gives an "<strong>in</strong>dependent" aim<strong>in</strong>gmark after <strong>the</strong> range measurement hasbeen performed and <strong>the</strong> gun has beenpo<strong>in</strong>ted <strong>in</strong> elevation and azimuth. While<strong>the</strong> orig<strong>in</strong>al l<strong>in</strong>e of sight follows <strong>the</strong> gun<strong>the</strong> aim<strong>in</strong>g mark rema<strong>in</strong>s on <strong>the</strong> targetand is used for fur<strong>the</strong>r target track<strong>in</strong>g.The <strong>in</strong>jection system is based on a l<strong>in</strong>earLED array which is driven by a servomechanism <strong>in</strong> <strong>the</strong> azimuth direction.Elevation is chosen by switch<strong>in</strong>g on oneof <strong>the</strong> 100 elements of <strong>the</strong> array. The deflectionof this aim<strong>in</strong>g mark is controlledby a fire control computer cooperat<strong>in</strong>gwith <strong>the</strong> laser rangef<strong>in</strong>der system. Theequipment can be <strong>in</strong>stalled without anymodifications to <strong>the</strong> Centurion tank.Boresight<strong>in</strong>g to <strong>the</strong> gun is made by twothumb wheels on <strong>the</strong> sight. The lasersight can of course easily be <strong>in</strong>terfacedto suit also o<strong>the</strong>r armoured vehicles.Field test<strong>in</strong>g of <strong>the</strong> system has beenmade this year.F<strong>in</strong>ally we are develop<strong>in</strong>g a laser rangef<strong>in</strong>dersight for anti-tank weapons. Thisequipment <strong>in</strong>cludes circuits that computesuperelevation of <strong>the</strong> weapon fromdata such as target range, gun powdertemperature and air temperature. Amov<strong>in</strong>g horizontal bar <strong>in</strong> <strong>the</strong> sight givesan aim<strong>in</strong>g mark for <strong>the</strong> gunner.All <strong>the</strong>se four Army applications utilize<strong>the</strong> same "common modules" fortransmitter, receiver, range countercircuitry, etc. The transmitter module isbased on a passively Q-switched Nd-YAG rod.We expect series production of lightweightArmy rangef<strong>in</strong>ders to start dur<strong>in</strong>g1978.Transmitter and receivertechnologyS<strong>in</strong>ce laser rangef<strong>in</strong>der developmentstarted at LM Ericsson <strong>in</strong> 1962 <strong>the</strong> availablebasic laser material technologyhas improved very much. This has led to<strong>the</strong> efficiency of <strong>the</strong> Q-switched lasertransmitter be<strong>in</strong>g <strong>in</strong>creased substantially.Data given <strong>in</strong> table 1 illustrate thisclearly. Because of this improvement ithas been possible to reduce dimensionsand weights for rangef<strong>in</strong>ders very significantly.When we built our first "portable"laser rangef<strong>in</strong>der <strong>in</strong> <strong>the</strong> beg<strong>in</strong>n<strong>in</strong>gof <strong>the</strong> sixties you could say that <strong>the</strong> opti-Fig. 6 to <strong>the</strong> leftHand-held rangef<strong>in</strong>derRange coverage c. 5 kmFig. 7 to <strong>the</strong> rightLaser sight for armoured vehicles


70Table 1Laser transmitter dataIn rangef<strong>in</strong>d<strong>in</strong>g laser equipment <strong>the</strong> emitted laserenergy must be concentrated <strong>in</strong> one s<strong>in</strong>gle highpeak power-pulse. The method to achieve this iscalled Q-switch<strong>in</strong>g Axial laser oscillations will startonly when <strong>the</strong> excitation of <strong>the</strong> laser material is atmaximum. There are various ways to proceed Ahigh speed rotat<strong>in</strong>g and retro-reflect<strong>in</strong>g 90 degreeprism will toge<strong>the</strong>r with a fix mounted mirror dur<strong>in</strong>gshort time <strong>in</strong>tervals form <strong>the</strong> laser cavity. Only dur<strong>in</strong>gthose time <strong>in</strong>tervals laser oscillations will begenerated. The position of <strong>the</strong> prism and <strong>the</strong>"pump<strong>in</strong>g" of <strong>the</strong> laser rod are synchronized <strong>in</strong> away so that <strong>the</strong> cavity is formed at that momentwhen <strong>the</strong> excitation is at maximum In ano<strong>the</strong>rmethod an optical filter that absorbs <strong>the</strong> laser radiationis <strong>in</strong>troduced <strong>in</strong>to <strong>the</strong> cavity Dur<strong>in</strong>g <strong>in</strong>itial laserradiation this filter is saturated and becomes transparentAfter this strong laser oscillations will bedeveloped between two mirrors fix mounted onboth sides of <strong>the</strong> laser rod. The absorbtion coefficientis selected <strong>in</strong> a way that saturation is achievedonly when <strong>the</strong> excitation on <strong>the</strong> laser material hasreached its maximum. This method is called "passive"Q-switch<strong>in</strong>g.cal sight for aim<strong>in</strong>g was mounted on <strong>the</strong>laser. Today it would be more true (seefigs. 5, 6 and 7) to say that <strong>the</strong> laser isadded to an optical sight. Through <strong>the</strong>years <strong>the</strong> ruby crystal was succeededfirst by neodymium-glass and later byneodymium-YAG. S<strong>in</strong>ce about 2 yearsago all development and productionutilize <strong>the</strong> Nd-YAG laser.Until <strong>the</strong> development of <strong>the</strong> abovementioned Army applications started weused a rotat<strong>in</strong>g prism for Q-switch<strong>in</strong>g.Contrary to what has often been saidabout high speed rotat<strong>in</strong>g Q-switcheswe have found <strong>the</strong>ir reliability to bewholly adequate for our applications.Our transmitter "m<strong>in</strong>imodule", however,works with a dye or "passive" Q-switch. The use of this considerably reduces<strong>the</strong> weight, volume and complexityof <strong>the</strong> transmitter and also gives alower overall power consumption for<strong>the</strong> complete system. Moreover, <strong>the</strong>equipment noise level is very much reduced,which is of importance <strong>in</strong> certa<strong>in</strong>applications. Fig.8 shows a comparisonbetween an older Nd-glass transmitterwith its rotat<strong>in</strong>g prism Q-switch and <strong>the</strong><strong>new</strong> transmitter module.Fig. 9 shows <strong>in</strong>put-output energydiagrams for <strong>the</strong> module and an earlierNd-YAG transmitter of <strong>the</strong> same outputlevel and work<strong>in</strong>g with a rotat<strong>in</strong>g prism.Pulse lengths are 12 and 20 ns respectively.There is an <strong>in</strong>terest<strong>in</strong>g differencebetween <strong>the</strong> two curves <strong>in</strong> <strong>the</strong> diagramof fig. 9. In <strong>the</strong> case of <strong>the</strong> rotat<strong>in</strong>g Q-switch <strong>the</strong> output above <strong>the</strong> threshold<strong>in</strong>creases gradually with <strong>the</strong> <strong>in</strong>put to <strong>the</strong>flashtube that pumps <strong>the</strong> laser rod. At aFig. 8Earlier and <strong>new</strong> neodymium laser transmitters


71certa<strong>in</strong> level <strong>the</strong> threshold for doublepuls<strong>in</strong>gis reached. By <strong>the</strong>n <strong>the</strong> energythat rema<strong>in</strong>s <strong>in</strong> <strong>the</strong> flashtube pulse, afteremission of <strong>the</strong> first laser pulse, is sufficientto create a second pulse.In <strong>the</strong> case of <strong>the</strong> laser transmitter utiliz<strong>in</strong>ga passive Q-switch <strong>the</strong> pulse growsup to a top amplitude value immediatelyafter <strong>the</strong> threshold is reached and staysconstant even if more pump<strong>in</strong>g energyis supplied. The reason for this is thatonce <strong>the</strong> laser rod has reached a level ofexcitation where "prelas<strong>in</strong>g" radiationis strong enough to saturate and open<strong>the</strong> passive Q-switch dye, all <strong>the</strong> energystored is released <strong>in</strong> a short high peakpower pulse. The only th<strong>in</strong>g that happenswhen more pump<strong>in</strong>g energy issupplied is that <strong>the</strong> laser pulse is generatedearlier dur<strong>in</strong>g <strong>the</strong> pump<strong>in</strong>g <strong>in</strong>terval.If <strong>the</strong> pump<strong>in</strong>g level is high enough <strong>the</strong>threshold level of <strong>the</strong> rod will be reacheda second time and ano<strong>the</strong>r laser pulse of<strong>the</strong> same amplitude will be emitted. Ascompared to <strong>the</strong> rotat<strong>in</strong>g Q-switch thisis a very favourable situation. The levelof <strong>the</strong> <strong>in</strong>put energy is much less critical.Fig. 10 gives an idea of <strong>the</strong> dimensionsand <strong>the</strong> design of <strong>the</strong> passive Q-switchtransmitter. The size of <strong>the</strong> laser rod is4x63 mm and a krypton flashtube isused for pump<strong>in</strong>g.The Q-switch consists of an optical filterthat absorbs laser radiation at 1.06«mThere is an upper limit for <strong>the</strong> absorptionability of <strong>the</strong> filter. This is reachedwhen all absorb<strong>in</strong>g molecules havebeen excited by <strong>the</strong> laser radiation. Thefilter material has been produced byKodak. Typically an output of 25 mJ isreached at a pump<strong>in</strong>g level of 5 J. S<strong>in</strong>ce<strong>the</strong> half width of <strong>the</strong> pulse is approx. 12ns this means a peak power of 2 MW.Beam divergence out of <strong>the</strong> transmitteris 3 mrad and can be reduced by opticsto its desired value. Without any specialcool<strong>in</strong>g laser pulses can be repeatedwith<strong>in</strong> 2 seconds. This is wholly adequate<strong>in</strong> equipment where <strong>the</strong> range ismanually read from a display.Over an ambient temperature <strong>in</strong>tervalfrom -35°C to +55°C <strong>the</strong> thresholdchanges less than 5 % <strong>in</strong> energy. As canbe seen from <strong>the</strong> diagram of figure 9 nosteps <strong>the</strong>refore have to be taken to adjust<strong>the</strong> pump<strong>in</strong>g level. Output energyvariations are with<strong>in</strong> ±15% over <strong>the</strong>temperature <strong>in</strong>terval. Lifetests done on<strong>the</strong> transmitter show that more than100 000 pulses can be fired without anydegradation.Higher peak power transmitter levels, orcirca 5 MW, are used for coast artilleryand anti-aircraft artillery lasers. Fig. 11Fig. 9Laser transmitter characteristicsX Double pulse ,


72Fig. 115 MW laser transmitter energy characteristicsFig. 10Transmitter moduleshows a typical <strong>in</strong>put-output energydiagram. As can be seen from thisdiagram an efficiency of about 1 % isobta<strong>in</strong>ed. The rod size is 1/4x3 <strong>in</strong>chesand a rotat<strong>in</strong>g prism Q-switch (24.000rpm and optical doubl<strong>in</strong>g) is used. Thebeam divergence from <strong>the</strong> transmitter isapprox. 2 mrad.When develop<strong>in</strong>g ruby laser transmittersabout 10 years ago we spent a considerableamount of time study<strong>in</strong>g howto cool <strong>the</strong> rod and flashtube assemblyby a forced air stream. The methods weused <strong>in</strong> our first ruby laser rangef<strong>in</strong>derwere found to be applicable also forhigh repetition rate Nd-YAG transmitters.A high speed blower deliver<strong>in</strong>g airat <strong>the</strong> rate of 0.5 m 3 /m<strong>in</strong>ute provides <strong>the</strong>cool<strong>in</strong>g. The air is forced through <strong>the</strong>rod and flashtube assembly and <strong>the</strong>npasses over both Xe-flashtube holdersand is cooled by <strong>the</strong> walls of <strong>the</strong> transceiverunit. Compared to o<strong>the</strong>r methodsused, such as liquid cool<strong>in</strong>g or highpressure gas cool<strong>in</strong>g, cool<strong>in</strong>g by forcedair offers a simple and <strong>in</strong>expensive solution.Moreover it has turned out to bevery reliable and is easy to ma<strong>in</strong>ta<strong>in</strong>.The high repetition lasers now be<strong>in</strong>gproduced operate cont<strong>in</strong>ously at 10 Hzwithout any practical limitation of time.The flashtube lamp load is circa 100 W.In fact over shorter <strong>in</strong>tervals of <strong>the</strong> orderof a few m<strong>in</strong>utes, <strong>the</strong> repetition rate maybe <strong>in</strong>creased to 15-20 Hz.A high repetition rate laser transmitter isshown <strong>in</strong> fig. 12. A fairly long cavity isneeded <strong>in</strong> order to obta<strong>in</strong> an energy ofover 100 mJ <strong>in</strong> one s<strong>in</strong>gle pulse and witha rotat<strong>in</strong>g Q-switch. In this case we use alength of approximately 30 cm. Thelonger <strong>the</strong> cavity, <strong>the</strong> shorter is that time<strong>in</strong>terval dur<strong>in</strong>g which laser oscillationscan be generated. Outside this time <strong>in</strong>tervallaser radiation will be lost quickeras <strong>the</strong> cavity becomes longer. In fig. 12<strong>the</strong> laser transmitter is <strong>the</strong> second unitfrom <strong>the</strong> right.Our life tests on high repetition ratelaser transmitters show that a couple ofmillion shots can be fired without anyserious reduction <strong>in</strong> output energy andwithout any necessary service to bedone.A silicon avalanche photodiode is usedas detector for <strong>the</strong> rangef<strong>in</strong>der receiversystem. To obta<strong>in</strong> maximum signalsensitivity <strong>the</strong> detector bias must be setto an accuracy of approx. 5 V out of 300


73V. Fur<strong>the</strong>rmore this optimum bias valueis dependent on ambient temperatureand background illum<strong>in</strong>ation. It can beshown that this bias is reached when <strong>the</strong>detector noise is about equal to <strong>the</strong>noise generated by <strong>the</strong> preamplifier. Inorder to be able to control <strong>the</strong> detectorat various ambient temperatures andbackgrounds <strong>the</strong> total receiver noise is<strong>the</strong>refore measured and made to def<strong>in</strong>e<strong>the</strong> level of <strong>the</strong> bias voltage source.With <strong>the</strong> latest avalanche photodiodes,utiliz<strong>in</strong>g a so-called "reach through"structure, a signal sensitivity ofapproximately 10 nW is obta<strong>in</strong>ed for a 20ns pulse, at a wavelength of 1.06fi. Thisis at a signal-to-noise ratio of about 7times. The detector signal ga<strong>in</strong> is by<strong>the</strong>n 80— 100 times. As a preamplifier weuse a FET cascode design. The equivalent<strong>in</strong>put current noise is 8-10 nAr.m.s. at a bandwidth of 25 MHz. To avoidbackscatter signals at short rangesfrom <strong>the</strong> atmosphere and from small"targets" of no concern, <strong>the</strong>signal amplifieris provided with a time variablega<strong>in</strong> function. Dur<strong>in</strong>g time <strong>in</strong>tervals correspond<strong>in</strong>gto short ranges <strong>the</strong> ga<strong>in</strong> isreduced. At m<strong>in</strong>imum range this reductionis 30 — 40 dB. The ga<strong>in</strong> is gradually<strong>in</strong>creased and reaches its full and f<strong>in</strong>alvalue at a time correspond<strong>in</strong>g to 1 to 2km.1.06/< is very close to <strong>the</strong> absorptionedge of silicon and <strong>the</strong> quantum efficiencyof <strong>the</strong> detector is only about20%. Fur<strong>the</strong>rmore this quantum efficiencyis slightly dependent on <strong>the</strong>ambient temperature. Fig. 13 shows <strong>the</strong>temperature dependence which wehave measured for <strong>the</strong> signal sensitivity.The quantum efficiency is reduced by afactor of two at —30°C. In <strong>the</strong> region of+ 70 to +90°C <strong>the</strong> sensitivity is reducedra<strong>the</strong>r quickly as <strong>the</strong> dark current becomes<strong>the</strong> limit<strong>in</strong>g factor. This receivertemperature dependence must be taken<strong>in</strong>to account when calculat<strong>in</strong>g rangeperformances for military environments.The subunit to <strong>the</strong> extreme right <strong>in</strong> fig.12 is an example of a receiver module.Our latest module is only about a fourthof this size.The receiver sensitivity for 1.06 u laserrangef<strong>in</strong>ders migh be improved <strong>in</strong> <strong>the</strong>not too distant future. It has been reportedthat GaAsT-xSbx avalanchephotodiodes with a quantum efficiencyof over 96 % at 1.06/


74Fig. 13Signal sensitivity temperature dependence'Equipment for generation of imagery based ontemperature radiationO<strong>the</strong>r laser activities atLM EricssonIn addition to what has been mentionedabove we are also work<strong>in</strong>g on a coupleof o<strong>the</strong>r laser developments, which areworth mention<strong>in</strong>g here:With<strong>in</strong> an R & D programme we have developedlaser designators and functionalmodels of laser seeker heads forsemiactive guidance systems. The Nd-YAG designators work with repetitionfrequencies of up to 25 Hz and pulsepowers of approximately 3 MW. Laserseekers utilize PIN photodiode quadrantdetectors to generate an angular errorsignal. With <strong>the</strong> laser designator on <strong>the</strong>ground, flight test<strong>in</strong>g <strong>in</strong> a slow transportaircraft of <strong>the</strong> gimballed laser seeker hasbeen carried out. Acquisition rangesand track<strong>in</strong>g performances were <strong>in</strong> accordancewith <strong>the</strong> <strong>the</strong>oretical calculations.We are now also carry<strong>in</strong>g outstudies of counter-measure methodsaga<strong>in</strong>st such semiactive guidancesystems.With<strong>in</strong> an experimental programme weare add<strong>in</strong>g an angular track<strong>in</strong>g functionto our anti-aircraft artillery rangef<strong>in</strong>der.For this a receiver utiliz<strong>in</strong>g four detectorsmounted <strong>in</strong> a quadrant arrangementis built <strong>in</strong>to a transceiver unitof <strong>the</strong> same k<strong>in</strong>d as we are now produc<strong>in</strong>g(fig. 2). The same detectors will alsobe used for rangef<strong>in</strong>d<strong>in</strong>g. The repetitionfrequency will be <strong>in</strong>creased to 20 Hz.Field test<strong>in</strong>g of this experimental systemwill start dur<strong>in</strong>g <strong>the</strong> spr<strong>in</strong>g of 1978. Thesystem will <strong>the</strong>n be mounted on LMEricsson's general purpose sensorplatform.For some years we have been participat<strong>in</strong>g<strong>in</strong> evaluation of laser rangef<strong>in</strong>dersfor air-to-ground rang<strong>in</strong>g from attackaircrafts. It has been proven that a laserrangef<strong>in</strong>der is extremely useful for improv<strong>in</strong>g<strong>the</strong> precision of bomb toss<strong>in</strong>g,of rocket delivery, etc.ConclusionsLaser rangef<strong>in</strong>ders for use <strong>in</strong> military firecontrol systems are now fully developedproducts and <strong>the</strong>ir usefulness <strong>in</strong> varioussuch applications has been well proven.S<strong>in</strong>ce a number of years <strong>the</strong>se devicesare produced <strong>in</strong> large quantities.For example, laser rangef<strong>in</strong>ders areused <strong>in</strong> armoured vehicles where <strong>the</strong>y,compared with <strong>the</strong> old optical rangef<strong>in</strong>ders,provide an exact target rangevery quickly. Radar is a far less attractivealternative for such applications as tankfire control and forward artilleryobservers. Because of <strong>the</strong> much widerbeams used by radar equipment <strong>in</strong>dividualtargets cannot be po<strong>in</strong>ted outwith sufficient unambiguity. The laser ishere <strong>the</strong> solution to a problem. In o<strong>the</strong>rapplications, such as for example antiaircraftfire control, laser rangef<strong>in</strong>derswill ei<strong>the</strong>r be used <strong>in</strong>stead of a radarsystem or as a complement<strong>in</strong>g back-upoptical alternative.Compared with <strong>the</strong> correspond<strong>in</strong>g radarsystems, an electro-optical fire controlequipment, which <strong>in</strong>cludes a laserrangef<strong>in</strong>der and ei<strong>the</strong>r an optical sight,TV tracker or FLIR* equipment for angulartrack<strong>in</strong>g, is less vulnerable to activecounter-measures. Angular track<strong>in</strong>g isperformed by passive equipment andtransmitted laser signals are conf<strong>in</strong>ed tovery narrow zones. Moreover <strong>the</strong> dimensionsand weights of electro-opticalequipment are generally considerablysmaller.To cont<strong>in</strong>ue <strong>the</strong> comparison with radarsystems, 1 ,w laser rangef<strong>in</strong>ders ofcourse have a handicap because of <strong>the</strong>irlimited performance dur<strong>in</strong>g reducedoptical visibility. However, our experienceis that "when <strong>the</strong> target is opticallyvisible, it can also be ranged with <strong>the</strong>laser". This is a general rule from which<strong>the</strong>re are exceptions, for example sometimesdur<strong>in</strong>g heavy ra<strong>in</strong> and heavysnow-fall. Because of <strong>the</strong>ir longerwavelength Nd-lasers are less dependenton <strong>the</strong> wea<strong>the</strong>r than <strong>the</strong> older rubyrangef<strong>in</strong>ders. In <strong>the</strong> future when FLIRtechnology will be taken <strong>in</strong>to operativeuse it might be of <strong>in</strong>terest to use C0 2laser technology for rangef<strong>in</strong>d<strong>in</strong>g. TheC0 2 laser wavelength of 10.6// will bettermatch <strong>the</strong> ability of <strong>the</strong> FLIR to seethrough haze, light fog, smoke, etc. Weare now study<strong>in</strong>g this subject.It is well-known that <strong>the</strong> radiation fromhigh peak power lasers is hazardous to<strong>the</strong>eye. Maximum permissibleexposurelevels have now been recommended forvarious types of lasers. (See for exampleANSI 136J^J3Z6AJiv<strong>the</strong> case of direct


75view<strong>in</strong>g <strong>in</strong>to <strong>the</strong> beam of an Nd-laserrangef<strong>in</strong>der this level is 5/


Digital Multiplex Equipment for 8and 34 Mbit/s L<strong>in</strong>e SystemsStig Karlsson and Walter WidlThe future development of digital networks <strong>in</strong>cludes different k<strong>in</strong>ds of pulse transmissionsystems, which constitute <strong>the</strong> p.cm. system hierarchy. Digital multiplexersare employed for <strong>the</strong> conversion between <strong>the</strong> different hierarchical levels.As early as 1974 LM Ericsson had developed a 120-channel digital multiplexer <strong>in</strong><strong>the</strong> M4 design^ The <strong>in</strong>troduction of <strong>the</strong> M5 design 2 and <strong>new</strong> components made itpossible to m<strong>in</strong>iaturize and modernize <strong>the</strong> digital multiplex equipment. The articledescribes multiplex equipment for 8 and 34 Mbit/s l<strong>in</strong>e systems (i.e. for 120 and 480<strong>telephone</strong> channels respectively). The multiplexers use positive justification asrecommended by CCITT. Different branch<strong>in</strong>g options and extensive supervisioncan be obta<strong>in</strong>ed.The same shelf can accommodate units for 120-channel or 480-channel multiplexers.This considerably simplifies ma<strong>in</strong>tenance and plann<strong>in</strong>g.UDC 621 376.56621.395.43Fig. 1Digital multiplex <strong>in</strong>terfacesLIU L<strong>in</strong>e <strong>in</strong>terlace unitBU Buffer unitCUT Transmit control unitCUR Receive control unit2 Corresponds to 2048 kbit/s8 Corresponds to 8448 kbit/s34 Corresponds to 34368 kbit/sAB CD Tributary pulse MowsThe basic task of a digital multiplexer isto comb<strong>in</strong>e a number of <strong>in</strong>com<strong>in</strong>g pulseflows (tributaries) <strong>in</strong>to one outgo<strong>in</strong>gpulse flow with a gross digit rate whichis somewhat higher than <strong>the</strong> sum of <strong>the</strong>tributary bit rates (and vice versa). Differentmultiplex<strong>in</strong>g methods, based on<strong>the</strong> 24- and 30-channel p.cm. multiplexers,synchronous or asynchronouswork<strong>in</strong>g, positive, positive-negative orpositive-zero-negative justification andbit or time-slot <strong>in</strong>terleav<strong>in</strong>g, have beendiscussed <strong>in</strong>ternationally to a great extentby adm<strong>in</strong>istrations and manufacturers.As a result a number of CCITT recommendationshave been issued cover<strong>in</strong>ghigher orderment.digitalmultiplexequip-The described digital multiplex equipmentswork asynchronously with positivejustification and bit <strong>in</strong>terleav<strong>in</strong>g ascovered by CCITT recommendations G742 (120 channels) and G 751 (480channels).The <strong>in</strong>terfaces are def<strong>in</strong>ed by recommendationG 703.The second order digital multiplexequipment ZAK 30/120-2 designed byLM Ericsson comb<strong>in</strong>es four 2048 kbit/stributaries <strong>in</strong>to one 8448 kbit/s signal.Correspond<strong>in</strong>gly <strong>the</strong> third order digitalmultiplex equipment ZAK 120/480 comb<strong>in</strong>esfour 8448 kbit/s tributaries <strong>in</strong>toone signal with a 34368 kbit/s gross digitrate. Both multiplexers are built <strong>in</strong> <strong>the</strong><strong>new</strong> M5 design.Due to similarities <strong>in</strong> basic pr<strong>in</strong>ciplesand standardization, as well as to suitableblock configurations, both k<strong>in</strong>ds ofmultiplexers use <strong>the</strong> same shelf constructionwith several common units.Fig. 1 <strong>in</strong>dicates <strong>in</strong>terfaces and units, fig.2 <strong>the</strong> frame structures for both multiplexers.Ow<strong>in</strong>g to <strong>the</strong> similarities of <strong>the</strong>multiplexers it is sufficient to describeonly one of <strong>the</strong>m <strong>in</strong> detail—<strong>the</strong> second


77STIG KARLSSONWALTER WIDLTransmission DivisionTelefonaktiebolaget LM Ericssonordermultiplexer-and just <strong>in</strong>dicate <strong>the</strong>differences between <strong>the</strong> two.Multiplex<strong>in</strong>g pr<strong>in</strong>cipleUp to four <strong>in</strong>dependent primary 2048kbit/s digital signals (tributaries A, B, Cand D) are comb<strong>in</strong>ed to form one secondary8448 kbit/s digital signal. Thebits from <strong>the</strong> different tributaries aretransmitted bit <strong>in</strong>terleaved. Additionalbits for frame alignment, alarm transmissionand tributary tim<strong>in</strong>g transmissionare arranged <strong>in</strong> <strong>the</strong> second orderframe structure.S<strong>in</strong>ce no synchronism is required between<strong>the</strong> tributaries and <strong>the</strong> 8448 kbit/spulse flow, provisions have to be madeto <strong>in</strong>form <strong>the</strong> tributary receivers about<strong>the</strong> gross digit rates generated by <strong>the</strong>tributary transmitters. The process <strong>in</strong>volved,pulse justification, is based on<strong>the</strong> use of additional tim<strong>in</strong>g <strong>in</strong>formationrelated to each tributary.The multiplex<strong>in</strong>g and demultiplex<strong>in</strong>gprocess is expla<strong>in</strong>ed <strong>in</strong> more detail forone tributary. The cont<strong>in</strong>uous 2048kbit/s pulse flow from <strong>the</strong> tributary iswritten <strong>in</strong>to a bit rate conversion memory.The read<strong>in</strong>g out from this memorytakes place discont<strong>in</strong>uously at 2112 kHz(8448:4 = 2112 kHz) due to pause <strong>in</strong>tervals<strong>in</strong> <strong>the</strong> second order frame structure.The majority of <strong>the</strong> pause <strong>in</strong>tervals arefixed, i.e. <strong>the</strong> read<strong>in</strong>g out is <strong>in</strong>terrupteddur<strong>in</strong>g <strong>the</strong> transmission of <strong>the</strong> framealignment and justification service bits.The basic pr<strong>in</strong>ciple is expla<strong>in</strong>ed <strong>in</strong> fig. 3where <strong>the</strong> memory bit positions areshown as a function of time dur<strong>in</strong>g <strong>the</strong>period of a secondary frame (read clockphase relative to write clock). The sequencestarts with memory bit position 0po<strong>in</strong>t X. After <strong>the</strong> duration of a secondaryframe without use of positivejustification, memory position Y isobta<strong>in</strong>ed. When us<strong>in</strong>g positive justification,however, memory position Z isreached.Positive justification (connected with acerta<strong>in</strong> triburary pulse flow) means thatone particular bit position <strong>in</strong> <strong>the</strong> secondorder frame (bit position 155 <strong>in</strong> ac-Fig. 2Second and third order digital multiplex framestructures, _„, h 848 blt/s (1536 bit/s)l'° me e " 9 bu, arv 206 bit/s (378 bit/s)Max Slicatlon rate per tributary 10 kbit/s (22375 bit/s)figures <strong>in</strong> brackets are related tothird order multiplex.• Bits available for justification


Fig. 3Justification processThe <strong>in</strong>com<strong>in</strong>g tributary signal is fed <strong>in</strong>to a buffer memorycont<strong>in</strong>uously and read out discont<strong>in</strong>uously at a somewhathigher clock frequency <strong>in</strong> order to ma<strong>in</strong>ta<strong>in</strong> a bufferequilibrium. Dur<strong>in</strong>g <strong>the</strong> <strong>in</strong>terruptions <strong>in</strong> <strong>the</strong> read<strong>in</strong>g out,service Information for <strong>the</strong> multiplex<strong>in</strong>g is <strong>in</strong>serted <strong>in</strong>to<strong>the</strong> pulse flow. This Information Is removed <strong>in</strong> <strong>the</strong>demultiplex<strong>in</strong>g process.Just servicebits 1Just.servicebits 2Just servicebits 3Fig. 4Generation of wait<strong>in</strong>g time jitterMemory underflow leads to justification request. Justificationoccurs after a certa<strong>in</strong> wait<strong>in</strong>g time when <strong>the</strong>justifiable bit position In <strong>the</strong> frame Is available. Thewait<strong>in</strong>g time variations f are responsible for low-frequencyjitterFig. 5Digital multiplexer jitter modelThe <strong>in</strong>com<strong>in</strong>g jitter and <strong>the</strong> muldex Internal jitter areattenuated by <strong>the</strong> jitter transfer function|H(1 Jitter transfer functionpr] Multiplex <strong>in</strong>ternal jitter generator[J] AdderBitpositionscordance with CCITT recommendations)is not used for tributary transmissionand a dummy bit is <strong>in</strong>serted. Therefore,a pause <strong>in</strong>terval of one bit length isadded to <strong>the</strong> fixed pause <strong>in</strong>tervals dur<strong>in</strong>gone secondary frame and <strong>the</strong> bit flowrelated to <strong>the</strong> tributary <strong>in</strong> question is delayedone bit. In order to <strong>in</strong>form <strong>the</strong> receiverthat bit position 155 (connectedwith a certa<strong>in</strong> tributary) should beignored, a three-bit signal consist<strong>in</strong>g ofjustification service bits 1, 2 and 3 isgenerated e.g. A1, A2 and A3 for tributaryA. Positive justification is <strong>in</strong>dicatedby <strong>the</strong> signal 111, no justification by <strong>the</strong>signal 000. The detection of this signal <strong>in</strong><strong>the</strong> demultiplexer is based on majoritydecision. The load<strong>in</strong>g of <strong>the</strong> memory ischecked by a comparator circuit. Secondaryframes without any justificationbits alternate with frames with a justificationbit per tributary <strong>in</strong> order toguarantee a load<strong>in</strong>g equilibrium <strong>in</strong> <strong>the</strong>multiplexer bit rate conversion memory.The alternat<strong>in</strong>g sequence depends on<strong>the</strong> precise relationship between write<strong>in</strong>and read-out frequencies as <strong>in</strong>dicated<strong>in</strong> fig. 4 for a number of sequences.In <strong>the</strong> demultiplexer part of <strong>the</strong> equipment<strong>the</strong> <strong>in</strong>verse operation takes place.After separation <strong>in</strong>to four tributary signals<strong>the</strong> <strong>in</strong>com<strong>in</strong>g data is written <strong>in</strong>toa demultiplexer bit rate conversionmemory under <strong>the</strong> control of a tim<strong>in</strong>gsignal derived from <strong>the</strong> <strong>in</strong>com<strong>in</strong>g 8448kbit/s stream. The tim<strong>in</strong>g works discont<strong>in</strong>uously<strong>in</strong> order to prevent framealignment digits, justification controldigits and justification digits from be<strong>in</strong>gwritten <strong>in</strong>to <strong>the</strong> bit rate conversionmemory.The read clock rate should be <strong>the</strong> averageof <strong>the</strong> write clock rate and this isachieved by deriv<strong>in</strong>g <strong>the</strong> read clock froma phase-controlled oscillator which iscontrolled us<strong>in</strong>g a phase comparatormonitor<strong>in</strong>g <strong>the</strong> read and write clocks.The phase difference of <strong>the</strong> clocks has acharacteristic similar to that shown <strong>in</strong>fig-4.Jitter <strong>in</strong>fluenceIn many cases <strong>the</strong> tributary pulse flowsto digital multiplexers are <strong>in</strong>fluenced bytransmission disturbances. The result<strong>in</strong>gshort term variations of <strong>the</strong> pulsedurations lead to pulse flow jitter.


Fig. 7Typical values for tolerable <strong>in</strong>put jitterThe jitter amplitudes are related to nom<strong>in</strong>al signalelement length. The amplitudes accepted by <strong>the</strong> multiplexerfor errorfree transmission depend on <strong>the</strong> frequencyof <strong>the</strong> litter.(T) High frequency fitter behaviour, <strong>the</strong> multiplexertolerates jitter amplitudes up to <strong>the</strong> nom<strong>in</strong>al pulsewidth(5) The tim<strong>in</strong>g recovery circuit at <strong>the</strong> tributary Input isable to follow <strong>the</strong> Input jitter. Simultaneously <strong>the</strong> jitteris absorbed by <strong>the</strong> multiplexer bit rate conversionmemory3 The justification system is able to transmit <strong>the</strong> <strong>in</strong>putlitter from <strong>the</strong> tributary Input to <strong>the</strong> demultiplexerbit rate conversion memory.(4) The jitter is absorbed by <strong>the</strong> demultiplexer bit rateconversion memory(5) The tim<strong>in</strong>g recovery circuit at <strong>the</strong> tributary output isable to follow <strong>the</strong> <strong>in</strong>put jitterFig. 6Jitter transfer functionThe jitter amplitudes are attenuated above <strong>the</strong> cut-offfrequency of <strong>the</strong> clock regeneratorT0 nom<strong>in</strong>al pulse width = 1/2 unit <strong>in</strong>tervall p.t.p.TIr <strong>in</strong>put jitter amplitudeTout output jitter amplitudef, jitter frequencyF, jitter ga<strong>in</strong>:20 log z-^-As shown by <strong>the</strong> simplified model <strong>in</strong> fig.5 multiplexer <strong>in</strong>ternal jitter is addedto <strong>the</strong> <strong>in</strong>com<strong>in</strong>g tributary jitter. Theperformance of a digital multiplexer isdeterm<strong>in</strong>ed by its ability both to tolerateand attenuate <strong>the</strong> jitter at <strong>the</strong> tributary<strong>in</strong>puts and to limit <strong>the</strong> <strong>in</strong>ternal generatedjitter components.Fig. 6 shows <strong>the</strong> jitter ga<strong>in</strong> for <strong>the</strong> multiplexequipment ZAK 30/120-2 as functionof s<strong>in</strong>usoidal jitter frequencies.The jitter <strong>in</strong>put tolerance mask <strong>in</strong>dicates<strong>the</strong> amount of <strong>in</strong>put jitter which can behandled by a digital multiplexer. Thisparameter is of importance for <strong>the</strong> functionof a digital multiplexer as part of atransmission path and is treated extensively<strong>in</strong> CCITT. In fig. 7 both <strong>the</strong> tolerancemask provisionally discussed byCCITT and <strong>the</strong> performance of <strong>the</strong>multiplexer ZAK 30/120-2 are shown.The different sections of <strong>the</strong> jitter <strong>in</strong>putperformance can be derived <strong>in</strong> <strong>the</strong> follow<strong>in</strong>gway:LHigh frequency jitter behaviour, <strong>the</strong>multiplexer tolerates jitter amplitudesup to <strong>the</strong> nom<strong>in</strong>al pulse width.2.The tim<strong>in</strong>g recovery circuit at <strong>the</strong>tributary <strong>in</strong>put is able to follow <strong>the</strong> <strong>in</strong>putjitter. Simultaneously <strong>the</strong> jitter isabsorbed by <strong>the</strong> multiplexer bit rateconversion memory.3. The justification system is able totransmit <strong>the</strong> <strong>in</strong>put jitter from <strong>the</strong>tributary <strong>in</strong>put to <strong>the</strong> demultiplexerbit rate conversion memory.4. The jitter is absorbed by <strong>the</strong> demultiplexerbit rate conversion memory.5. The tim<strong>in</strong>g recovery circuit at <strong>the</strong>tributary output is able to follow <strong>the</strong><strong>in</strong>put jitter.The multiplex<strong>in</strong>g and demultiplex<strong>in</strong>grout<strong>in</strong>es described above lead to <strong>the</strong>generation of a number of jitter componentswith different jitter frequencies.The jitter generated by <strong>the</strong> digital multiplex<strong>in</strong>gand demultiplex<strong>in</strong>g consists of:— Systematic jitter caused by <strong>the</strong> removalof frame alignment and justificationcontrol bits. The jitter conta<strong>in</strong>sfrequency components above 10 kHz.— Justification jitter caused by <strong>the</strong> <strong>in</strong>sertionof justification bits at <strong>the</strong>nom<strong>in</strong>al justification rate of 4.23 kHz.Fig. 8Block schematic for digital multiplex ZAK 30/120-2In order to obta<strong>in</strong> <strong>the</strong> digital multiplex ZAK 120/480 <strong>the</strong>units LIU 2, BU 2 and LIU 8 are replaced by <strong>the</strong> units LIU 8,BU 8 and LIU 34. In <strong>the</strong> case of branch<strong>in</strong>g <strong>the</strong> buffer unitBU 2 (resp. BU 8) of <strong>the</strong> D-tributary is replaced by <strong>the</strong>branch<strong>in</strong>g unitLIU 2 2 Mbit/s l<strong>in</strong>e <strong>in</strong>terface unitHDBD HDB 3 decoderHDBC HDB 3 coderCR 2 2 MHz clock regeneratorBU 2 2 Mbit/s buffer unitMEM Bit rate conversion memoryCOM Phase comparatorAL.IND Alarm IndicationVCO Voltage controlled oscillatorJCR Justification control receiverCUT8/34 Transmit control unitJCT Justification control transmitterFAL Frame alignment logicFTL Frame & tim<strong>in</strong>g logicRTG Pseudo random bit sequence generatorCUR 8/34 Receive control unitTS Tributary selection circuitFTR Frame & tim<strong>in</strong>g receiverAL.DET. Alarm detector circuitsLIU8 8 Mblt/s l<strong>in</strong>e <strong>in</strong>terface unitPS Parallel-serial converterSP Serial-parallel converterCR8 8 MHz clock regeneratorA B C D Tributariesni ' ' 2 Mblt/s digital l<strong>in</strong>k Interface02 8 Mbit/s digital l<strong>in</strong>k <strong>in</strong>terface


80- Wait<strong>in</strong>g time jitter caused by <strong>the</strong> factthat a justification request can not becarried out immediately. The durationof <strong>the</strong> wait<strong>in</strong>g time varies and results<strong>in</strong> wait<strong>in</strong>g time jitter which can havespectral components at very low frequencies.The effect of digital multiplex<strong>in</strong>g anddemultiplex<strong>in</strong>g on a tributary is <strong>in</strong>creasedjitter. However, with proper design<strong>the</strong> generated jitter can be kept wellbelow <strong>the</strong> levels where it wouldjeopardize <strong>the</strong> function of subsequentsystems. The values shown <strong>in</strong> figs. 6 and7 lie well with<strong>in</strong> <strong>the</strong> limits discussed <strong>in</strong>ternationally.Digital multiplexer functionThe function of <strong>the</strong> multiplexer is illustratedby <strong>the</strong> block schematic <strong>in</strong> fig.8. The 8448 kbit/s gross digit transmitrate and <strong>the</strong> tributary read-out frequency2112 kHz are derived from a 8448 kHztim<strong>in</strong>g generator conta<strong>in</strong><strong>in</strong>g a crystalcontrolledoscillator and a phase comparatorcircuit (VCO loop). The phasecomparator is located on <strong>the</strong> transmitcontrol unit (CUT 8/34) and <strong>the</strong> oscillatoron <strong>the</strong> l<strong>in</strong>e <strong>in</strong>terface unit (LIU 8).The 8 Mbit/s VCO loop can also be controlledby an external 2112 kHz clocksignal. This frequency has been chosen<strong>in</strong> order to simplify <strong>the</strong> clock signal distribution.The oscillator frequency dividedby 4 controls <strong>the</strong> tim<strong>in</strong>g logic(FTL) which generates secondary framesignals such as frame alignment andalarm bits and also <strong>the</strong> justification bitand justification control bits for eachtributary.The HDB 3 coded tributary signals com<strong>in</strong>gfrom <strong>the</strong> D1 -<strong>in</strong>terface are converted<strong>in</strong>to b<strong>in</strong>ary signals and simultaneously<strong>the</strong> tributary gross digit rate is retrieved<strong>in</strong> <strong>the</strong> l<strong>in</strong>e <strong>in</strong>terface unit. (LIU 2). Thesubsequent buffer unit (BU 2) conta<strong>in</strong>s abit rate conversion memory and a comparator,which <strong>in</strong>terwork with <strong>the</strong> justificationcontrol transmitter (JCT) on <strong>the</strong>transmit control unit (CUT 8/34). Thetributary signals and <strong>the</strong>ir bits for tim<strong>in</strong>gtransmission, <strong>the</strong> frame alignment bitsand alarm bits are assembled <strong>in</strong> <strong>the</strong>frame assemble logic (FAL) andgrouped <strong>in</strong> a 4-bit parallel format for <strong>the</strong>transmission to <strong>the</strong> 8 Mbit/s l<strong>in</strong>e <strong>in</strong>terfaceunit (LIU 8). In <strong>the</strong> l<strong>in</strong>e <strong>in</strong>terfaceunit serial representation is once aga<strong>in</strong>obta<strong>in</strong>ed, coded <strong>in</strong>to HDB 3 signals andfed to <strong>the</strong> D2 digital <strong>in</strong>terface.In <strong>the</strong> reverse direction <strong>the</strong> <strong>in</strong>com<strong>in</strong>g 8Mbit/s HDB 3 signals are decoded with<strong>the</strong> help of <strong>the</strong> regenerated 8 MHz clockand <strong>the</strong> serial representation is con-Fig. 9Branch<strong>in</strong>gFig. 9a shows <strong>the</strong> traditional branch<strong>in</strong>g pr<strong>in</strong>ciple withback-to-back connected multiplexersFig. 9a and 9c <strong>in</strong>dicate branch<strong>in</strong>g with LM Ericsson'sunique branch<strong>in</strong>g pr<strong>in</strong>ciple, permitt<strong>in</strong>g branch<strong>in</strong>g withonly one multiplexerButler unitBranch<strong>in</strong>g unitL<strong>in</strong>e <strong>in</strong>terface unitTransm.justif.unit +Receive justif.unit +L<strong>in</strong>e <strong>in</strong>terface unit


81Fig. 11Spectrum distribution of 8448 kbit/s pulse flowThe connection of unused tributary <strong>in</strong>puts to an <strong>in</strong>ternalpseudo-random pulse generator permits spectrumshap<strong>in</strong>g suitable for l<strong>in</strong>e transmission systems. A correspond<strong>in</strong>gfacility exists for <strong>the</strong> multiplexer ZAK 120/480.verted <strong>in</strong>to a 4-bit parallel format. Theframe and tim<strong>in</strong>g regenerator (FTR) <strong>in</strong><strong>the</strong> receive control unit (CUR 8/34)performs frame alignment and generationof tributary bit positions, justificationbit positions and justification controlbit positions for each tributary. Inaddition, a tributary selection signal ispassed to <strong>the</strong> tributary selector (TS) and<strong>the</strong> <strong>in</strong>formation related to <strong>the</strong> tributariesis obta<strong>in</strong>ed on four separate tributarybuses. Each bufferunit(BU2)conta<strong>in</strong>sabit rate conversion memory for <strong>the</strong> outgo<strong>in</strong>gtributary signals. The <strong>in</strong>formationis written <strong>in</strong> discont<strong>in</strong>uously with 2112kHz clock signals and read out with acont<strong>in</strong>uous 2048 kHz tim<strong>in</strong>g signal. Thistim<strong>in</strong>g signal is regenerated by a tim<strong>in</strong>ggenerator which is controlled by <strong>the</strong>memory load<strong>in</strong>g. The low cut-off frequencyof <strong>the</strong> LP-filter <strong>in</strong> <strong>the</strong> VCOfeedbackloop decreases <strong>the</strong> jitter generated<strong>in</strong> <strong>the</strong> fram<strong>in</strong>g process. Ow<strong>in</strong>g to<strong>the</strong> jitter suppression <strong>the</strong> 2 Mbit/s l<strong>in</strong>esystem can be connected to <strong>the</strong> multiplexertributary outputs.Branch<strong>in</strong>g pr<strong>in</strong>ciplesThe <strong>in</strong>troduction of digital multiplex<strong>in</strong>g<strong>in</strong> multi-po<strong>in</strong>t networks often requiresbranch<strong>in</strong>g of tributaries at differentmultiplex<strong>in</strong>g levels. Two back-to-backcoupled digital multiplexersare normallyrequired <strong>in</strong> order to obta<strong>in</strong> access to<strong>the</strong> tributaries. An example is shown <strong>in</strong>fig. 9a, where tributaries C and D arethrough-connected from Term<strong>in</strong>al I to IIIvia a branch<strong>in</strong>g Term<strong>in</strong>al II. TributariesA, A', B and B 1 are term<strong>in</strong>ated <strong>in</strong> II. Thiscase requires two fully-equipped multiplexers<strong>in</strong> Term<strong>in</strong>al II. The8 Mbit/s l<strong>in</strong>esbetween Term<strong>in</strong>als I and II, and II and IIIrespectively are not synchronizedHowever, LM Ericsson's digital multiplexershave been equipped withfacilities which simplify branch<strong>in</strong>g, as<strong>in</strong>dicated <strong>in</strong> <strong>the</strong> follow<strong>in</strong>g examples ofleak and stop branch<strong>in</strong>g.The pr<strong>in</strong>ciples used for simplified leakbranch<strong>in</strong>g are expla<strong>in</strong>ed <strong>in</strong> fig. 9b. The 8Mbit/s l<strong>in</strong>es between I and II and II and IIIrespectively are syncronized. This permitsthrough-connection of tributariesC and D through <strong>the</strong> use of an 8 Mbit/sbranch<strong>in</strong>g unit, a unit which is commonfor all through-connected tributaries.The 8 Mbit/s signal from Term<strong>in</strong>al IIIsynchronizes Term<strong>in</strong>al II. The secondaryframe with <strong>the</strong> C and D tributary bits isdetected <strong>in</strong> <strong>the</strong> branch<strong>in</strong>g unit (whichrecognizes <strong>the</strong> secondary frame alignmentword) and <strong>the</strong> bits are distributedto <strong>the</strong> proper positions <strong>in</strong> <strong>the</strong> secondaryframe transmitted from Term<strong>in</strong>al II toTerm<strong>in</strong>al I. In <strong>the</strong> reverse direction <strong>the</strong>complete secondary frame received atTerm<strong>in</strong>al II is distributed to Term<strong>in</strong>al IIIfor selection of <strong>the</strong> C and D tributarybits. The l<strong>in</strong>k between Term<strong>in</strong>als II andIII is synchronized by <strong>the</strong> l<strong>in</strong>k between Iand II. The arrangement <strong>in</strong> <strong>the</strong> branch<strong>in</strong>gstation is simple: The D-tributary 2Fig. 10Alarm relations, second order digital multiplexThe nroarammlng facilities permit simple adaptation ton»«onal ma<strong>in</strong>tenance pr<strong>in</strong>ciples. Correspond<strong>in</strong>g relations"isifor <strong>the</strong> multiplexer ZAK 120/480


82Mbit/s l<strong>in</strong>e <strong>in</strong>terface unit is replaced byan 8 Mbit/s l<strong>in</strong>e <strong>in</strong>terface unit and <strong>the</strong>correspond<strong>in</strong>g 2 Mbit/s buffer unit isreplaced by <strong>the</strong> branch<strong>in</strong>g unit.The stop branch<strong>in</strong>g, see fig. 9c, is basedon leak branch<strong>in</strong>g. The connection betweenTerm<strong>in</strong>al III and Term<strong>in</strong>al II ismade via Term<strong>in</strong>al I by loop<strong>in</strong>g of <strong>the</strong>tributary <strong>in</strong>terfaces <strong>in</strong> Term<strong>in</strong>al I. Theexamples <strong>in</strong> figs. 9b and 9c show thatone fully-equipped digital multiplexercan be saved <strong>in</strong> certa<strong>in</strong> branch<strong>in</strong>g configurations.Alarm functions andma<strong>in</strong>tenanceThe digital multiplexer complies withLM Ericsson's general alarm philosophy,i.e. alarms from equipment placed<strong>in</strong> shelves cause bay frame alarms andcentralized station alarms. In addition,visual alarm <strong>in</strong>dications are provided foreach <strong>in</strong>dividual equipment. Primaryalarms are generated automatically ormanually <strong>in</strong> <strong>the</strong> equipment itself (nearend) or are received from <strong>the</strong> far end.The alarms result <strong>in</strong> secondary alarmswhich are processed and <strong>in</strong>dicated visuallyat <strong>the</strong> near end, transferred to <strong>the</strong>bay frame and station alarm units andtransmitted to <strong>the</strong> far end. The relationshipbetween primary and result<strong>in</strong>g(secondary) alarms is determ<strong>in</strong>ed mostlyby PROMs (programmable read onlymemories) and <strong>in</strong> some cases by wirestrapp<strong>in</strong>gs.Fig. 10 shows <strong>the</strong> alarms provided <strong>in</strong> <strong>the</strong>digital multiplexer, ZAK 30/120, that arecommon for all tributaries. In addition,an LED <strong>in</strong>dication of failure of <strong>the</strong> 2Mbit/s tributary tim<strong>in</strong>g is provided foreach 2 Mbit/s buffer unit and detectionof branch<strong>in</strong>g tim<strong>in</strong>g and fram<strong>in</strong>g failurefor each branch<strong>in</strong>g unit. The providedalarm functions and LED <strong>in</strong>dications(situated on <strong>the</strong> transmit control unitCUT 8/34) permit easy location ofequipment failures and simplify equipmentma<strong>in</strong>tenance. In fig. 10 <strong>the</strong> correspond<strong>in</strong>galarm function for <strong>the</strong> thirdorder digital multiplexer is <strong>in</strong>dicated <strong>in</strong>brackets.The transmit control unit of <strong>the</strong> multiplexerconta<strong>in</strong>s a pseudo random bitsequence generator RTG. The signalsfrom this generator can be used ei<strong>the</strong>r<strong>in</strong>stead of <strong>in</strong>com<strong>in</strong>g tributary signals orfor measur<strong>in</strong>g purposes. For partlyequipped multiplexers <strong>the</strong> empty tributary<strong>in</strong>puts can be connected to <strong>the</strong>pseudo random signal source <strong>in</strong> orderto shape <strong>the</strong> spectrum of <strong>the</strong> higher ordersignal.Fig. 12Shelf for two digital multiplexersThe same shelf houses ei<strong>the</strong>r two multiplexers ZAK30/120-2 or two multiplexers ZAK 120/480


83Technical dataZAK 30/120-2 ZAK 120/480Nom<strong>in</strong>al bit rate 8448 kbit/s 34368 kbit/sTolerance ±30x10~ 6 ±20x10" 6Frame structure See fig. 2Frame alignment rout<strong>in</strong>essee CCITT Recommendations G 742 G751JitterTributary <strong>in</strong>put mask See fig. 6Jitter ga<strong>in</strong> See fig. 7Digital l<strong>in</strong>k <strong>in</strong>terfaces D1, D2 and D375 L> unbalSee CCITT Recommendation G 703 G 703Permitted attenuation of <strong>the</strong> <strong>in</strong>put signal 0-6 dB 0-12 dBExternal and reference clock frequency 2112 kHz 8592 kHz(1/4 of gross digit clock rate.)Alarm functions See fig 10Criteria See CCITT Rec. G742 G 751Alarm <strong>in</strong>dication signals (AIS):Transmitted on tributary outputs when <strong>the</strong>multiplexer is <strong>in</strong> <strong>the</strong> alarm state256 onesThe alarm <strong>in</strong>dication state is activated atI<strong>the</strong> reception of256 onesat <strong>the</strong> higher order signal <strong>in</strong>putSignall<strong>in</strong>g channel bit 12E- and M-type <strong>in</strong>terface, gross digit rate of 9.96 kbit/s 22.375 kbit/sPower supplyBattery 24, 36, 48, 60 V d.c. ( + 20%-15%)Ma<strong>in</strong>s 110, 127, 220 Va.c. ( + 10% —10%)Power consumption 22 W 48 WDimensionsBay frameMultiplex shelfHeight 2743 mmWidth 600 mmDepth 225 mmHeight 244 mmWidth 473 mmDepth 225 mmFig. 11 shows <strong>the</strong> spectrum of a multiplexerwork<strong>in</strong>g with only one tributarywith and without transmission ofrandomized signals <strong>in</strong> <strong>the</strong> empty tributarybit position. The smooth spectraldensity of <strong>the</strong> randomized l<strong>in</strong>e signal reduces<strong>the</strong> risk of crosstalk.Mechanical designThe digital multiplexers are built <strong>in</strong> <strong>the</strong>M5 design. A standard M5 shelf accomodatestwo second order digitalmultiplexers, ZAK 30/120-2 (see fig. 12)or two third order digital multiplexersZAK 120/480. The same multiplexershelf is used for different branch<strong>in</strong>galternatives.The second order digital multiplexer isequipped with a special <strong>in</strong>terface between<strong>the</strong> 2 Mbit/s l<strong>in</strong>e <strong>in</strong>terface unitand <strong>the</strong> 2 Mbit/s buffer unit (Ta <strong>in</strong>terface).The same <strong>in</strong>terlace exists <strong>in</strong> <strong>the</strong>30-channel p.cm. term<strong>in</strong>al as an option,i.e. when comb<strong>in</strong><strong>in</strong>g both 30-channelp.cm. term<strong>in</strong>als and a second orderdigital multiplex equipment with<strong>in</strong> <strong>the</strong>same bay frame. This makes possible adirect <strong>in</strong>terconnection based on <strong>the</strong> Ta<strong>in</strong>terface which saves two 2 Mbit/s l<strong>in</strong>e<strong>in</strong>terface units per tributary. The digitall<strong>in</strong>k <strong>in</strong>terface resp. external clock <strong>in</strong>terfaceconsist of easily accessiblecoaxial contacts situated on <strong>the</strong> left sideof <strong>the</strong> shelf.References1. Fremstad, P., Karl, H. and Karlsson,S.: Multiplex and Radio-RelayEquipment for a 120-channel PCMsystem Ericsson Rev. 52 (1975):2,pp. 76-89.2. Axelson, K., Harris, P.-O. and Storesund,E.: M5 Construction Practicefor Transmission Equipment.Ericsson Rev. 52 (1975):3/4, pp.94-105.


The Ericsson GroupWith associated companies and representativesEUROPESWEDENStockholm1. Telefonaktiebolaget LM Ericsson2. LM Ericsson Telematenel AB1. AB Rifa1. Sieverts Kabelverk AB1. SRA Communications AB5. ELLEMTELUtveckl<strong>in</strong>gs AB1. AB Transvertex4. Svenska Elgrossist AB SELGA1. Kabmatik AB4. Holm & Encsons Elektnska AB4. Mellansvenska Elektnska AB4. SELGA Mellansvenge ABAl<strong>in</strong>gsas3. Kabeldon ABGavle2. Vanadis Entreprenad ABGo<strong>the</strong>nburg4. SELGA Vastsvenge ABKungsbacka3. Bofa Kabel ABMalmd3. B|urhagens Fabnkers AB4. SELGA Sydsvenge ABNorrkbp<strong>in</strong>g3. AB Norrkopmgs Kabelfabnk4. SELGA Ostsvenge ABNykop<strong>in</strong>g1. Thorsman & Co ABSundsvall4. SELGA Norrland ABVaxjo1. Widells Metallprodukter ABEUROPE (exclud<strong>in</strong>gSweden)BELGIUMBrussels2. Ericsson Belgium sa/nvDENMARKCopenhagen2. LM Ericsson A/S1. Dansk Signal Industri A/S3. GNT AUTOMATIC A/S1. I Bager& Co A/S2. Thorsman & Co ApSTastrup2. LM Ericsson Radio ApSFINLANDHels<strong>in</strong>ki2. Oy Thorsman & Co AbJorvas1. Oy LM Ericsson AbFRANCEBoulogne sur Mer1. RIFAS.A.Colombes3. Societe Francaise desTelephones EricssonMarseille4. Etablissements Ferrer-Auran S.AIRELANDAthlone1. LM Ericsson Ltd.Drogheda2. Thorsman Ireland LtdITALYRome1. FATMESoc. per Az1. Scarf<strong>in</strong>iSoc per Az5. SETEMERSoc. per Az.2. SIELTESoc. per Az.The NETHERLANDS1.'Wesson Telefoonmaatschappi) B.V.NORWAYNesbru•x A/S Elektrisk BureauJCnrtS Mar<strong>in</strong>e Electronics A/SOslo2. SRA Radio A/S2. Thorsman & Co A/S4. A/S Telesystemer4. A/S InstallatorDram men3. A/S Norsk KabelfabrikPOLANDWarszaw7. Telefonaktiebolaget LM EricssonPORTUGALLisbon2. Sociedade Ericsson de Portugal LdaSPAINMadrid1. Industnas de Telecomunicacibn S.A.(Intelsa)1. LM Ericsson S.ASWITZERLANDZurich2. Ericsson AGUNITED KINGDOMChorley2. Thorsman & Co (UK) Ltd.Horsham4. Thorn-Ericsson Telecommunications(Sales) Ltd.3. Thorn-Ericsson Telecommunications(Rentals) Ltd5. Swedish Ericsson Company Ltd.3. Thorn-Ericsson Telecommunications(Mfg) Ltd6. Thorn-Ericsson TelecommunicationsLtd.London4. United Mar<strong>in</strong>e Leas<strong>in</strong>g Ltd.4. United Mar<strong>in</strong>e Electronics (UK) LtdWEST GERMANYFrankfurt-am-Ma<strong>in</strong>2. RifaGmbHHamburg4. UME Mar<strong>in</strong>e Nachnchtentechnik, GmbHHanover2. Ericsson Centrum GmbHLudenscheid2. Thorsman & Co GmbHRepresentatives <strong>in</strong>:Austria. Greece, Iceland. Luxembourg,Yugoslavia.LATIN AMERICAARGENTINABuenos Aires1. Cia Ericsson S A.C.I.1. Industnas Electncas de Ouilmes S.A.5. Cia Argent<strong>in</strong>a de Telefonos S.A.5. Cia Entrernana de Telefonos S.A.BOLIVIALa Paz7. Telefonaktiebolaget LM EricssonBRAZILSao Paulo1. Ericsson do Brasil Comercio eIndustna S.A4. Sielte S.A. Instalacoes Eletncas eTelefonicas4. TELEPLAN, Proietos e Planeiamentosde Telecommunicates S.ARio de Janeiro3. Fios e Cabos Plasticos doBrasil S.ASao Jose dos Campos1. Telecomponentes Comercio eIndustria S.A.Santiago2. Cia Ericsson de Chile S.A.Bogota1. Ericsson de Colombia S A.1. Fabncas Colombianas de MaterialesEI6ctncos Facomec S.A.COSTA RICASan Jose7. Telefonaktiebolaget LM EricssonECUADORQuito2. Telefonos Ericsson C AGUATEMALAGuatemala City7. Telefonaktiebolaget LM EricssonHAITIPort-au-Pr<strong>in</strong>ce7. LM EricssonMEXICOMexico D.F.1. Tele<strong>in</strong>dustna Ericsson, S.A.1, Lat<strong>in</strong>oamencana de Cables S.A.deC V2. Telefonos Ericsson S.A.2. Telemontaje, S.A. de C.V.PANAMAPanama City2. Telequipos S.A.7. Telefonaktiebolaget LM EricssonPERULima2. Cia Ericsson S.A.EL SALVADORSan Salvador7. Telefonaktiebolaget LM EricssonURUGUAYMontevideo2. Cia Ericsson S.A.VENEZUELACaracas1. Cfa An6nima EricssonRepresentatives <strong>in</strong>:Bolivia, Costa Rica, Dom<strong>in</strong>ican Republic,French Guiana, Guadeloupe, Guatemala.Guyana, Honduras, Mart<strong>in</strong>ique, Ne<strong>the</strong>rlandsAntilles, Nicaragua, Panama, Paraguay, ElSalvador, Sur<strong>in</strong>am, Tr<strong>in</strong>idad. TobagoAFRICAAlgiers7. Telefonaktiebolaget LM EricssonEGYPTCairo7. Telefonaktiebolaget LM EricssonLIBYATripoli7. Telefonaktiebolaget LM EricssonNIGERIALagos1. LM Ericsson (Nigeria) Ltd.TUNISIATunis7. Telefonaktiebolaget LM EricssonZAMBIALusaka2. Ericsson (Zambia) Limited2. Telefonaktiebolaget LM EricssonInstallation BranchRepresentatives <strong>in</strong>:Angola. Ben<strong>in</strong>, Botswana. Cameroon, CentralAfrican Empire, Chad, Congo, Egypt.Ethiopia, Gabon, Ivory Coast, Kenya, Lesotho,Liberia. Libyan Arab Republic, Madagaskar,Malawi, Mali, Malta, Mauretania,Morocco, Mozambique. Namibia, Niger, Nigeria,Reunion South Africa, Senegal, Sudan,Swaziland, United Republic of Tanzania,Togo, Tunisia, Uganda, Upper Volta,Zaire.ASIANew Delhi1. Ericsson India LimitedINDONESIAJakarta4. Ericsson Telephone SalesCorporation ABIRAQBaghdad7. Telefonaktiebolaget LM EricssonIRANTeheran4. Ericsson Telephone SalesCorporation AB3. Simco Ericsson Ltd.4. Aktiebolaget ErifonKUWAITKuwait7. Telefonaktiebolaget LM EricssonLEBANONBeirut2. Societe Libanaise des TelephonesEricssonMALAYSIAShah Alam1. Ericsson TelecommunicationsSdn BhdOMANMuscat7. Telefonaktiebolaget LM EricssonSAUDI ARABIARiyadh7. Telefonaktiebolaget LM EricssonBangkok4. Ericsson Telephone CorporationFar East ABAnkara2. Ericsson Turk Ticaret Ltd. SirketiRepresentatives <strong>in</strong>:Bahre<strong>in</strong>, Bangladesh, Burma, Cyprus, HongKong. Indonesia, Iran, Iraq, Jordan, Kuwait.Lebanon, Macao. Nepal. Oman, Pakistan,Phillippmes, Qatar, Saudi Arabia, S<strong>in</strong>gapore,Sri Lanka, Syrian Arab Republic, UnitedArab EmiratesUNITED STATES andCANADAUNITED STATESWoodbury NY.2. LM Ericsson Telecommunications Inc.New York, NY.5. The Ericsson CorporationMontreal2. LM Ericsson Limitee/LimitedAUSTRALIA andOCEANIAMelbourne1. LM Ericsson Pty Ltd1. RifaPty. Ltd5. Telenc Pty Ltd5. LM Ericsson F<strong>in</strong>ance Pty, Ltd.Sydney3. Conqueror Cables LtdRepresentatives <strong>in</strong>:New Caledonia. New Zealand, Tahit1. Sales company with manufactur<strong>in</strong>g2. Sales and <strong>in</strong>stallation company3. Associated sales company with manufactur<strong>in</strong>g4. Associated company with sales and<strong>in</strong>stallation5. O<strong>the</strong>r company6. O<strong>the</strong>r associated company7. Technical office


TELEFONAKTIEBOLAGET LM ERICSSONISSN 0014-0171 a.ir,t„,< .„ g,.,„^rn | ,i,nnf^,rat3rio„ Orebro 197!

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!