12.07.2015 Views

QCD Dressed, Met EW - INFN - Torino Personal pages

QCD Dressed, Met EW - INFN - Torino Personal pages

QCD Dressed, Met EW - INFN - Torino Personal pages

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

OutlinesWhen Higgs Production ¡ Decay<strong>QCD</strong> <strong>Dressed</strong>, <strong>Met</strong> <strong>EW</strong>Giampiero PASSARINODipartimento di Fisica Teorica, Università di <strong>Torino</strong>, Italy<strong>INFN</strong>, Sezione di <strong>Torino</strong>, ItalyHEPTOOLS NetworkWorkshop on Higgs Boson Phenomenology,Zürich,Switzerland 7 - 9 January 2009


OutlinesBased on work done in collaboration withStefano Actis,Christian Sturm and Sandro UcciratiThanks: M. Grazzini, M. Spira, P. Kant¢


OutlinesOutlines(1, 2,)1 From the analytical structure of <strong>EW</strong> NNLOs2 to their numerical evaluation and their interplay with<strong>QCD</strong>,what else, but the inevitable!£


OutlinesOutlines(1, 2,)1 From the analytical structure of <strong>EW</strong> NNLOs2 to their numerical evaluation and their interplay with<strong>QCD</strong>,what else, but the inevitable!¤


OutlinesOutlines(1, 2,)1 From the analytical structure of <strong>EW</strong> NNLOs2 to their numerical evaluation and their interplay with<strong>QCD</strong>,what else, but the inevitable!¥


IntroductionPart IPreludio¦


Introduction & Motivationwo-loop→¨Calculation & Techniques Results & Discussion Summary &©Conclusioncayvember<strong>QCD</strong> Introduction & MotivationHiggs production10 5 SM Higgs productiongg → h10 4qq →LHCσ [fb]qqh10 3qq → Whbb h10 2gg,qq → tthqb → qthqq → ZhTeV4LHC Higgs working group100 200 300 400 500m h [GeV]Dominant production mechanism:Gluon fusionNLO <strong>QCD</strong>– Heavy top-quark limit:Dawson; Djouadi, Spira, Zerwas– Entire Higgs-mass range:Djouadi, Graudenz, Spira, Zerwas; Harlander,Kant; Anastasiou, Beerli, Bucherer, Daleo,Kunszt; Aglietti, Bonciani, Degrassi, VinciniNNLO <strong>QCD</strong>Harlander; Catani, Florian, Grazzini;Harlander, Kilgore; Anastasiou, Melnikov;Ravindran, Smith, Neerven; Anastasiou,Melnikov, Petriello; Catani, Grazzini¨C. SturmBrookhaven Forum, Terra Incognita: from LHC to Cosmology, No 7th, 2008T electroweak corrections to Higgs production and de at LHC 3§


Introduction<strong>QCD</strong> ¡ K - factor(s)bulk TheFrom LO to NNLO and NNLL


IntroductionWhat about <strong>EW</strong>? NLO for <strong>EW</strong>420-2[%]δ-4-6-8-10-12-14δ complex W-boson mass<strong>EW</strong>δ real W-boson mass<strong>EW</strong>152 154 156 158 160M h[GeV]


.}wo-loop0!&~cay|vemberIntroductionIntroduction & Motivation<strong>EW</strong>Introduction Globally & MotivationHiggs decayCalculation & Techniques Results & Discussion Summary &ConclusionWXYZ[\[]^_^^`67812 45 3 +,"# ./--UVV' ( ) *$%abaaacDjouadi, Graudenz, Spira, Zerwas9 : ;< =? @A BC D EFFF GHH IJJ KLL MNN OPQ RST >d WWe H ZZ dominant process for heavyHiggs bosonf Hgbbhdominant process for light Higgs,but huge <strong>QCD</strong> background.i j k H rare Brl 10m3nprocess ,but experimentally cleanNLO <strong>EW</strong>– corrections ofo p G f m 2 tqLiao,Li; Fugel, Kniehl, Steinhauser– ofr s corrections G f mh2 uKorner, Melnikov, Yakovlevt– exact light-fermion contributionAglietti, Bonciani, Degrassi, Vincini– Contributions involving top-quark andweak bosons exp. in M 2 hvDegrassi, Maltoniyzfull <strong>EW</strong> corrections: in this talkC Sturm{Actis, Passarino, C.S., UcciratiBrookhaven Forum, Terra Incognita: from LHC to Cosmology, No 7th, 2008T electroweak corrections to Higgs production and de at LHC 4w 4M 2 wx


IntroductionStatusSynopsisFrom PO to ROfrom gg H to pp gg‚ƒ H„†… XHiggs‡ˆ 1‰ 1‰2‰ ˆ 2‰<strong>QCD</strong>, lightNLO K-fact. 7 9NNLO K-fact. 0 2Š <strong>EW</strong> 2008approximateincompletedivergentUncertaintyRemaining sources of large corrections?€


IntroductionStatusSynopsisFrom PO to ROfrom gg H to pp gg‚ƒ H„†… XHiggs‡ˆ 1‰ 1‰2‰ ˆ 2‰<strong>QCD</strong>, lightNLO K-fact. 7 9NNLO K-fact. 0 2Š <strong>EW</strong> 2008approximateincompletedivergentUncertaintyRemaining sources of large corrections?‹


IntroductionStatusSynopsisFrom PO to ROfrom gg H to pp gg‚ƒ H„†… XHiggs‡ˆ 1‰ 1‰2‰ ˆ 2‰<strong>QCD</strong>, lightNLO K-fact. 7 9NNLO K-fact. 0 2Š <strong>EW</strong> 2008approximateincompletedivergentUncertaintyRemaining sources of large corrections?Œ


IntroductionStatusSynopsisFrom PO to ROfrom gg H to pp gg‚ƒ H„†… XHiggs‡ˆ 1‰ 1‰2‰ ˆ 2‰<strong>QCD</strong>, lightNLO K-fact. 7 9NNLO K-fact. 0 2Š <strong>EW</strong> 2008approximateincompletedivergentUncertaintyRemaining sources of large corrections?


ToolsPart IIIntermezzoŽ


.}wo-loop~cay, ˜ štW, ’ “ ”, › œ|vemberToolsIntroduction & MotivationCalculation & Techniques Results & Discussion Summary & ConclusionCalculation GraphShot& package Techniques I...some diagrams contributing to the <strong>EW</strong> 2-loop correctionsgg ‘ H:LOtNLOt Z W tH • – — :LOt WfermionicbosonicNLOt WZWWtC SturmBrookhaven Forum, Terra Incognita: from LHC to Cosmology, No 7th, 2008T electroweak corrections to Higgs production and de at LHC 5ž


.¬ªwo-loop­cay«vemberToolsIntroduction & MotivationCalculation & Techniques Results & Discussion Summary & ConclusionCalculation GraphShot& package Techniques II2-loop contributions are computed numerically:Diagrams: GraphShotS. Actis, A. Ferroglia, G. Passarino, M. Passera, C.S., S.UcciratiForm3 based package for automatic generation andmanipulation of 1- and 2-loop Feynman diagrams:insert Feynman-rules, perform traces, remove reduciblescalar products, symmetrize integrals, reduction, counter terms,renormalization,...UV-finite integrals classified into:s¢calar, vector and tensor type integrals¡mapped on form factors£Form factors are evaluated numerically in parametric spaceBefore num. integration: Cancel collinear sing.¥+ Study threshold¦ ¤ŸFor a moment consider § ¨ © H without loss of generalityC Sturm Brookhaven Forum, Terra Incognita: from LHC to Cosmology, No 7th, 2008T electroweak corrections to Higgs production and de at LHC 6®


Toolsµ µ · ¸ ¸ ¸µ¸º¹µ À µ µ µ¸ ¸ ¸ ¸ µ¸º¹ µ µ µ · ¸ ¸ ¸ ¸ ¸ µ¸º¹ µ µ µ · ¸¿¸ ¸ ¸º¹À à µ µ µ µ µ ¸ ¸Ã ÃãåñüìÙêâùúãÞƒÝÂéûý áõÝ© ì£ûãÞƒð†ìôÞàÝÖèãÞàÝÎìôóØêçæƒÝ ö ø é²ãåùôðîáßù©ûêõæàÝÎñÒÝÂäâìîÞƒéé²ãåùôðîáßù©óáõì/© êçæàÝÎé²ãåùôðîáßù© ñüù ì0£ûÝôþ ÿ æàÝ ùúáõáõì01 ñòãÞàé²ãä¾ù¾êßÝ êçæƒÝ äâìîáÒáçÝâñÒí ìôÞàé²ÝâÞàäâÝÂñ2 Ýßê31 ÝâÝâÞ¿¿ÀReductionGenerating the Amplitude: reduction°²± ³ °ƒ´°²»¼¾½¼ÂÁ· ÄÅÁ¯ÆÈÇÊÉÌËÎ̓ϲÐÒÑÓÇÔÆÇÊÕÖËÎÉØ×ÙÐÒÚÓÛÜÎÝßÞàÝâáÒãåäÖäçæƒãèåéëêçìîíïìîèìîðîãåÝÂñòìôóÊêõæàÝ÷öÎøëíïùúáçÝßÞûêüêçìîíïìîèìîðôýûþ ÿ æàÝ¢¡¤£ûݦ¥èãÞàÝ÷ö¨§èãÞƒÝÎäÂìôÞûêßùôãÞàñÓêçæƒÝ äõæƒãèåéëêçìîíïìîèìîðîãåÝÂñòìôó ö§ö ùôÞƒé "!âþ ÿüæƒÝÖêõæƒãáçéëèãÞàÝäÂìôÞûêßùôãÞàñÓêõæàÝ êßìôí ìôèåìîðîãåÝâñ#%$&')( ùúÞàé*,+-ƒìÙêâùúãÞàÝâéûý áçÝ.© ì£ûãÞƒð†ìôÞàÝÖèãÞƒÝíïùúáçÝâÞÅê ùúÞàé äçæƒãèåéëêçìîíïìîèìîðîãåÝÂñâþ


ToolsPermutationsGenerating the AmpitudeStrategygroup diagrams into families, paying attention to permutation ofexternal legsp 3 p 3 p 3 p 3p 1 p 1 p 5 1 p 1p 2 p 2p 2 p 3p 2p 2p 3p 1p 1p 24


Tools=6


Tools=m 5p 2m 3m 4m 2m 1p 1@


ToolsMIList-of-diagrams: all what is neededT AT BS A S C S E S DV E V I V G V M V K V HA


ToolsPolesC LogsAll-you-can-do-analyticrule-of-the-gameAdelante Numerics, cum judicioUVUV poles, of coursebeware, overlappingdivergenciesIR/CollIR poles, of courseCollinear logs, of courseupshotCancellations, if any, enforced analyticallyB


ToolsPolesC LogsAll-you-can-do-analyticrule-of-the-gameAdelante Numerics, cum judicioUVUV poles, of coursebeware, overlappingdivergenciesIR/CollIR poles, of courseCollinear logs, of courseupshotCancellations, if any, enforced analyticallyD


ToolsJJLast term integrate in x and y ln 2JColl ICollinearExampledouble divergency Fdouble subtraction01dxdy1xyAG xH yIKJ1L BG xH yI'M01dxdy1xyAG xH yIKJ1L BG xH yI ;N;1xyAG xH 0IOJ L BG xH 0I ;xyAG 0H yIOJ L BG 0H yI ;H L 50ESecond (third) term 5 integrate in y(x) P ln L0xyAG 0H 0IOJL BG 0H 0I


ToolsMRColl IIExtracting Collinear divergenciesTheoremCoefficients of collinear logarithms are integrals of one-loopfunctionsp 2mm: PM 5M 4M 3mmln m2s01dy: PM 5M 4M 3p 2J finite partQp 11: yS p 1yp 1


ToolsMColl IIIExtracting Collinear divergenciesExampleSometimes the answer is explicitp 2: PmUmMmmUp 1ln m2s ln mV 2s Li 2Li 3ssM 2 2 J S 12M 29 ln M2s Li 2sM 2 ln m2 2Js ln smV JsM 2 J finite partT


ToolsMTheorem IGeneral results IColl. behavior of arbitrary two-loop q -scalar, UV-finite diagramsqmzppq X pmqY1a Z[Z[Z qYmaln m2s01dz1] z^ p\qY1a Z[Z_Z qYma J coll. fin.W


ToolsMfTheorem IIGeneral results IIGeneralization to tensor integralsqmpq X p1Z[Z_Z qarqY1a Z[Z[Z qYmaqamln m2s9cb 12dzpsIm29eb ln4 sUVG01dz G 9 zIr1] z^ p\qY1a Z[Z[Z qYma pg 1hihih pgrJ c. f. `


ToolszMMw1 q zx p 1lTheorem IIIGeneral results IIIp 2Vdc H 9 P M 2P 2 M 2P 2{ H 2 l|q 1m p 1n 4o q 1m p 1p2l klnG 1 9z I2 q PMmmMmr1lu L Lv l 12 1 l ltsltslu lu n 1 Li l ss s 2 omrp 1p o L l Lv pp 2y zp 1k 2 1 nn 201dz o 1n zp P 2 L l o P 2 l 2 q m p 2p Lv q PMMj0


ToolsMMMH‚‚‚‚‚RRRUVExtracting Ultraviolet divergenciesV I: Pm 5m 1m 2m 3m 4p 2p 11~ 4d n q 1 d n q 2 2€ 1€x3€4€5€q 2 m12 1ƒ„ 1;2ƒ„ q 1: q 2 S 2 m22 ;q 2 m32 3ƒ„ 2;q 2; 4ƒ„ p 1 S 2 m42 ;q PS 5ƒ„2 2; m52 ;y 1 y 2 y 3C…01dxdS 3 G y 1 H y 2 H y 3 IG x 9 1: …‡† 2G 1 9 y xI€1 I….† 2: 1 V : 1: …The single pole can always be expressed in terms of 1L.V I Mm 1m3 2 m32m 2f : Pp 2m 5J finite part hm 4m 3 p 1}


Tools‰‰‰‰JJY Z ‰Š‰‰JJ‰MMWSTIChecksOff-shell WSTIs involving special sourcescontracted sources black circlesphysical ones 5gray boxes5HHH‰X0Y AWH00ŠX ‰ˆ


Tools‘MMNumerics ITasting numerical evaluationFinite Œ partsWrite the finite part of a FD in one of the following forms:1 dxxSV R xS VG xIŽ 0;QR2 dx QG xI ln n VG xI ;3 dxxSV R xS fQRV xSP R R xSfG xIln n G 1J xI&H Li n G xI&H S n p G xITypical integrand with k Feynman variables:z n 11 ii zn kk z 1H hihih H z k I ln m VG z 1 H hihih H z k I&H V#G 1€k0H‹1H 9 2H“’ z”–•9V quadratic with respect to a subset ’ z” of in which each zi2proportional to one squared external momentum.is


Tools˜˜Numerics IIbite-and-run strategy IMultivariate PolylogsV is not completek n 1 and m k 0 (m 0 similar)a x l11xb a ln 1 ab x l k“šk n 2 and m k 0 (m 0 similar)1a x y b x c y l dp2 k noln 1 l l a d n b cp x› ob axy bx cy l l dpo l la d n b cš x š y—


ToolsMMZ K t H 9 1B L : 9 K t H 1 K : HH M MMMMžMNumerics IIIbite-and-run strategy IIMultivariate PolyLogsV is completeVG zIz t H z J 2 K t z J L MG z t 9 Z t I H G z 9 ZINJ BQG zIJBHž t Ÿz QG zIV G zIe.g. V : 19 QG zI&H9 ž t Ÿ1 9 ž t ŸzzG z 9 Z I { 2H 91dy y¡01Q ln 1 QBJ: 1 QG zI y J Bœ


<strong>EW</strong> thresholdsPart IIIAndante¢


<strong>EW</strong> thresholds‰‰‰‰‰‰‰‰Around thresholdHWWduuuHWWduuuHZZuuuuHWWduuu£


<strong>EW</strong> thresholds¥sSingularitiesFD have a complicated analytical structureA frequently encountered singular behavior is associatedwith the so-called normal thresholds: the leading Landausingularities of self-energy-like diagramswhich can appear, in more complicated diagrams, assub-leading singularities.¤


<strong>EW</strong> thresholdsMJfBubbles-behavior1§¨Hmmm9- m 2mHmmmreg. partat ©M0¦


<strong>EW</strong> thresholdsOrigin of 1§¨(1-loop diagrams) ¬¯°°°°Bubbles II« (1-loop ¬ diagrams) (H wave-function FR)HHW­ ® ¯(W mass FR)WHWWPure 2-loop diagramsWª


<strong>EW</strong> thresholdsµ ln W²²²µ 1· WCoulombLogarithmic singularitiesHW³_´W³_´W³_´W³[´Remnant ofCoulombsingularityW³_´²HW³_´W³_´W³_´±W³_´


<strong>EW</strong> thresholds²²²Complex for CoulombCure for logarithmic singularitiesComplex W MassW³_´HW³_´W³[´W³_´W³_´0-20-402 VK]Re[s-60-80-100-120-140Γ WΓ¹WWΓ W= 2.093 GeV= 2.093/2 GeV= 2.093/10 GeV= 0 GeV154 156 158 160 162 164 166 168 170s [GeV]¸


¼¼Γ WΓ WΓ WΓ W= 2.093 GeV= 2.093/2 GeV= 2.093/10 GeV= 0 GeV154 156 158 160 162 164 166 168 170ºs [GeV]


Complex polesPart IVImpetuoso½


Complex polesÀNLOMSolutionsRM ¿ scheme - nonewhere masses are the real on-shell ones; it gives theextension of the generalized minimal subtraction schemeup to two loop level.MCM scheme - minimalstart by removing the Re label in those terms that, comingfrom finite renormalization, violate WSTIs.split the amplitudeA SR i¾i„ W ZiJ A LOG ln 9 2W9 i0 J A REM H


Complex polesÀNLOMSolutionsRM ¿ scheme - nonewhere masses are the real on-shell ones; it gives theextension of the generalized minimal subtraction schemeup to two loop level.MCM scheme - minimalstart by removing the Re label in those terms that, comingfrom finite renormalization, violate WSTIs.split the amplitudeA SR iÁi„ W ZiJ A LOG ln 9 2W9 i0 J A REM H


Complex polesMM1 J1 JMCMSolutionsMCM scheme - minimalAfter proving that all coefficients, gauge-parameterindependent by construction, satisfy the WST identities, weminimally modify the amplitude introducing thecomplex-mass scheme of for the divergent terms.m 2 iM 2 iG F M 2 W2 2 ReÄ R1SiG Mi 2 I Å~ 2ÃÂm 2 is iG F s W2 2 Ä R1SiG s i I H ~ 2Ã


Complex polesMCM IISolutionspitfallsA nice feature of the MCM scheme is its simplicityMCM scheme - minimalThe MCM, however, does not deal with cusps associatedwith the crossing of normal thresholds.MCM scheme - minimalThe large and artificial effects arising around normal Æthresholds in the MCM scheme (or in RM scheme) areaesthetically unattractive.In addition, they represent a concrete problem in assessingthe impact of two-loop <strong>EW</strong> corrections on processes


Complex polesMCM IISolutionspitfallsA nice feature of the MCM scheme is its simplicityMCM scheme - minimalThe MCM, however, does not deal with cusps associatedwith the crossing of normal thresholds.MCM scheme - minimalThe large and artificial effects arising around normal Çthresholds in the MCM scheme (or in RM scheme) areaesthetically unattractive.In addition, they represent a concrete problem in assessingthe impact of two-loop <strong>EW</strong> corrections on processes


Complex polesCMSolutionsCM scheme - completeThe procedure described for the divergent terms has beenextended to the remainder A REM . In particular, all two-loopdiagrams have been computed with complex masses forthe internal vector bosons.CM scheme - completeIn the full CM setup, the real parts of the W and ZÈself-energies induced by one-loop renormalization of themasses and the couplings have to be traded for theassociated complex expressions.


Complex polesCMSolutionsCM scheme - completeThe procedure described for the divergent terms has beenextended to the remainder A REM . In particular, all two-loopdiagrams have been computed with complex masses forthe internal vector bosons.CM scheme - completeIn the full CM setup, the real parts of the W and ZÉself-energies induced by one-loop renormalization of themasses and the couplings have to be traded for theassociated complex expressions.


ResultsPart VAllegroÊ


ResultsÓÓ<strong>EW</strong> on gluon-gluon fusionÑ8WW ZZ ttÐ6Òδ <strong>EW</strong>, total4δ <strong>EW</strong>[%]Ï2Î0WW 5ZZÔtt-2Ë-4Ì100 150 200 250 300M H[GeV]Ì350400 450 500Í


ResultsDecay<strong>EW</strong> on decay (Ö×Ö )Í5Ø4Ì3<strong>EW</strong>,δÙCMδÚ<strong>QCD</strong>δÙ<strong>QCD</strong>δ <strong>EW</strong>, MCM<strong>EW</strong>, CM +δ Ú2[%]δ1Î0-1-2Õ-3100 110 120 130 140 150 160 170M H[GeV]


CM Û


ResultsComparison IComparing10 WW ZZÝttÑ8Ð6δ <strong>EW</strong>, light ferm.δ <strong>EW</strong>, light ferm., Fig.2 of first paper of Ref.[27]δ <strong>EW</strong>, total, CMδ <strong>EW</strong>[%]Ø42Î0-2Ü-4Ì150 200 250 300M H[GeV]Ì350400


10 WWÞßZZ86δ <strong>EW</strong>, light ferm.δ <strong>EW</strong>, light ferm., Fig.2 of firstδ <strong>EW</strong>, total, CM42


ResultsComparison IIComparing10WWZZæ8å6δè<strong>EW</strong>, total, CMδ<strong>EW</strong>, total, MCMèèδ<strong>EW</strong>, total, obtained from Table 2 of Ref.[28]δ <strong>EW</strong>[%]ä4ã2â0-2á-4100 120 140 160 180 200 220 240M H[GeV]


ïòúýResultsêCorrections to gëg ì H <strong>Met</strong>hod for NLO <strong>EW</strong>Comparison IIThreshold behaviour í for HComplex SummaryThreshold behaviour Results ConclusionsîComparison of <strong>EW</strong> ó ô õ corrections to H around the WW t÷hreshold,obtained using different schemes for treating unstable particlesù øöð ñ4WWû20[%]δ-2-4-6realümassesMCM (div.)CM (all)-8150 152 154 156 158 160 162 164 166 168 170M H [GeV]þResult obtained with real masses divergent at WW ; good approx. below;écompletely off above threshold, since no cancellation mechanism occursResult in MCM setup finite, shows cusp; result in CM setup is smoothÿAt threshold, result in MCM ¡ 3¢ setup 5 ; result in CM setup ¤ 2¥ 7¦£prediction at the ¨ level requires complete CMS implementation§


ïúýêCorrections toëg© g H <strong>Met</strong>hod for NLO <strong>EW</strong>Threshold behaviour for HThreshold behaviour Results Conclusionsî òComparison of <strong>EW</strong> corrections to H around the WW t÷hreshold,obtained using different schemes for treating unstable particlesù øö4WWû20[%]δ-2-4-6realümassesMCM (div.)CM (all)-8150 152 154 156 158 160 162 164 166 168 170M H [GeV]Result obtained with real masses divergent at WW ; good approx. below;completely off above threshold, since no cancellation mechanism occursResult in MCM setup finite, shows cusp; result in CM setup is smoothAt threshold, result in MCM setup 3 5 ; result in CM setup 2 7prediction at the level requires complete CMS implementation


More ResultsPart VIAllegro Con Brio


More Results 0G ij Û 01 !#" <strong>EW</strong>$ M 2 H % G ij &<strong>EW</strong> on K-factors - uncertaintyWe introduce two options for including NLO electroweakcorrectionsCF (Complete Factorization):PF (Partial Factorization): 0G ij Û 0G ij !#'22" <strong>EW</strong>$ R % M 2 G 0 H * % ijS$)(Can we do it better? Babis, Radja and Frank say yes


More Results,LHC<strong>EW</strong> on K-factors - LHCK factor2.72.62.52.42.32.22.1pp → H + XMRST 2002−√s = 14 TeV2+1.9NNLO <strong>QCD</strong>NNLO <strong>QCD</strong> + NLO <strong>EW</strong>1.8100 150 200 250 300 350 400 450 500M H [GeV]


More Introduction Results & Motivation Calculation & Techniques Results & Discussion Summary & Conclusion.LHCAnother Result: viewThe hadronic process pp / H 0 XUse Fortran program HiggsNNLO by M. GrazziniK-factor: Ratio cross section with higher orders over LO result2.72.6pp → H + Xs=14 TeVMRST20022.52.4K factor2.32.22.121.9NNLO <strong>QCD</strong>NNLO <strong>QCD</strong> + NLO <strong>EW</strong>1.8100 150 200 250 300 350 400 450 500M H [GeV]-Uncertainty band: Variation 1 of 2 R, F , PF, CFCentral value for cross section is shifted by 2-5% ( M H 4 120 GeV)35C. Sturm Brookhaven Forum, Terra Incognita: from LHC to Cosmology, November 7th, 20087 68Two-loop electroweak corrections to Higgs production and decay at LHC 119


More Results,Tevatron<strong>EW</strong> on K-factors - TevatronK factor43.83.63.43.232.8pp−→ H + XMRST 2002−√s = 1.96 TeV:2.6NNLO <strong>QCD</strong>NNLO <strong>QCD</strong> + NLO <strong>EW</strong>2.4100 120 140 160 180 200M H [GeV]


yrqãäéÍÔÏÍMore Cêorrections Resultsto gTevatronNLO <strong>EW</strong> corrections at the TevatronTevatron summaryëg < H <strong>Met</strong>hod for NLO <strong>EW</strong> Threshold behaviour Results Conclusionsê =Impact of NLO <strong>EW</strong> effects at > Tevatron ? 1@ II, s 96 TeV,100 A GeV B M H 200 GeV (using HIGGSNNLO, by M.Grazzini)D Cvwx }~z{| stuk lmn ope fgh ija bcd[ \]^ _`M H [GeV] CF PF 120 4 9 6140 5 7 8160 8 5180 0 5 0 1200 1 0 6‚ ‚ ƒ „ … † ‡ ˆ ‰ Š ‹ Œ Ž ‘ ’ “ ” • – — ˜ š › œ€Ÿ ¡ ¢ £ ¤ ¥ ¦ § ¨ © ª « žUncertainty band shows stronger sensitivity on the Higgs mass, onceNLO <strong>EW</strong> effects are includedImpact of NLO <strong>EW</strong> corrections smaller respect to NNLL resummationCatani,de Florian,Grazzini,Nason’03 (å æ ;for M 12ç H 120 GeV) èê 95 CL exclusion of a SM Higgs for M H 170 GeV, ì eëCM result employed by Anastasiou,Boughezal,Petriello’08,òprediction is ï 10ð 7 larger ñ than used by TEVNPH WGò îí ffects relevant;


# up{More Côorrections Resultsto gTevatronNLO <strong>EW</strong> corrections at the LHCLHC summaryõ g ö H <strong>Met</strong>hod for NLO <strong>EW</strong> Threshold behaviour Results Conclusionsô ÷Impact of NLO <strong>EW</strong> effects ø at ù LHC, s 14 TeV,ú 100 GeV M H 500 GeV (using HIGGSNNLO, by M.Grazzini)Ï û$%& '() !"M H [GeV] C120 9 4150 5 9 8200 1 0310 7 0 9410 0 8 0 8ü ý þ ÿ ¡¡pUncertainty band shows stronger sensitivity on the Higgs mass, onceNLO <strong>EW</strong> effects are included*++ ,-. /00 123 455 678 9:: ;??everywhere CMsƒImpact of NLO <strong>EW</strong> corrections comparable to that of NNLLresummation Catani,de Florian,Grazzini,Nason’03 („ 6… forM H† 120 GeV); for large M H NLO <strong>EW</strong> corrections turn negative,screening effect with NNLL resummation‚WW and tt thresholds visible, but smooth having introducedóA BC DE F G H IJ KL M @


FactorizationConclusionsPart VIICrescendo‡


FactorizationŠConclusionsFactorization Iyes is thre loops at M H0: effective theory ‰Operator expansion plus matchingor brute force tadpolesHHH Š Hˆ


FactorizationŠConclusionsFactorization IIBuilding with Effective theorym t m H 0H Š HHH‹


FactorizationConclusionsFactorize or not Factorize?Missing the real McCoy IDefineMthe mixed three-loop ;<strong>EW</strong>the two-loop <strong>EW</strong> .How good is MŽ 0 ? wrt MŽ M H? Assume it isWhat is usually done:the difference isMŽ M H‘ MŽ 0“’ EMŽ M H•” MŽ 0<strong>EW</strong>Ž0with Esmall<strong>EW</strong>ŽM HMŽ H—– MŽ <strong>EW</strong>Ž <strong>EW</strong>Ž<strong>EW</strong>Ž0 M M H00Œ


FactorizationConclusionsFactorize or not Factorize?Missing the real McCoy IIIf E is almost zero this difference isMŽ 0<strong>EW</strong>Ž0<strong>EW</strong>ŽM H–<strong>EW</strong>Ž0so, the effective error is inwithe<strong>EW</strong>ŽM HMŽ M Hš MŽ 0 Ž 1’ eat M H170 GeV this difference is not tiny at all which,contradicts the assumption that E is small.<strong>EW</strong>Ž0– 1›˜


Factorizationx Ž 1’ConclusionsFactorize or not Factorize?M H0 versus finite M ‰ HHoweverthe altrenative iswhere doesn’t depend on x.MŽ xš<strong>EW</strong>ŽHow zero is <strong>EW</strong>Ž M HŽŽ M 0ž–Ÿ H?impossible to prove it with just one point, x 0;plausible, soft gluon dominance;more difficult than before, if the top triangle is almostpoint-like, here there is a structure with openings ofthresholds etc.œ


Factorizationfrom Harlander¥ Kant Ž 170 GeV§¦¨ Ž 0ž– 1 5› 25©ConclusionsFactorize or not Factorize?Facts or Misfits?ExampleHow good is heavy-top NLO <strong>QCD</strong> wrt complete NLO <strong>QCD</strong>?from excellent,¡¢¡¢¡literature:From the Lion’s Mouth (Spira):the deviations of the heavy top mass limit from the fullymassive result is in the range 6£ of for 170 GeV Higgsmass at the Tevatron.less 15£ than for Higgs below¤ masses 700 GeV


FactorizationApproximation is fair enough if it remains« 10© of our 6©ConclusionsFactorize or not Factorize?Difficult to say at NNLOExampleThe main source of difference could come from diagramswithout top: is M Hm ¬ t M ¥ W a good approximation?HZ Zqª


FactorizationConclusionsConclusionsRecapitulation ®No matter what, NLO <strong>EW</strong> corrections to gg ” H are undercontrol without incongruent large effects around <strong>EW</strong> thresholdsRefrainNext update of Tevatron analysis with higher luminosityshould appear in February/March,¡¢¡¢¡ , it looks like theold times with the two communities busy to fill a gap¡¢¡¢¡Or, if I create a negative Higgs field and bombard the rest ofthe community with a stream of Higgs anti-bosons, it­might disintegrate (free adaptation from StephenSoderbergh’s Solaris, 2002).


FactorizationConclusionsConclusionsRecapitulation ®No matter what, NLO <strong>EW</strong> corrections to gg ” H are undercontrol without incongruent large effects around <strong>EW</strong> thresholdsRefrainNext update of Tevatron analysis with higher luminosityshould appear in February/March,¡¢¡¢¡ , it looks like theold times with the two communities busy to fill a gap¡¢¡¢¡Or, if I create a negative Higgs field and bombard the rest ofthe community with a stream of Higgs anti-bosons, it¯might disintegrate (free adaptation from StephenSoderbergh’s Solaris, 2002).

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!