02.12.2012 Views

analysis of the influences of solar radiation and façade glazing ...

analysis of the influences of solar radiation and façade glazing ...

analysis of the influences of solar radiation and façade glazing ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

ANALYSIS OF THE INFLUENCES OF SOLAR<br />

RADIATION AND FAÇADE GLAZING AREAS<br />

ON THE THERMAL PERFORMANCE OF<br />

MULTI-FAMILY BUILDINGS<br />

Dipl.-Ing. Günter Haese<br />

Hannover<br />

Thesis submitted in partial fulfillment <strong>of</strong> <strong>the</strong> requirements <strong>of</strong> <strong>the</strong> Technical<br />

University <strong>of</strong> Bialystok<br />

for <strong>the</strong> degree <strong>of</strong> Doctor <strong>of</strong> Technical Sciences<br />

Doctoral adviser : Dr. hab. Ing. Miroslaw Zukowski Pr<strong>of</strong>. PB<br />

Reviewer : Pr<strong>of</strong>. Dr. hab. Ing. Wladyslaw Szaflik<br />

: Pr<strong>of</strong>. Dr. hab. Ing. Jerzy Andrzej Pogorzelski<br />

Defense <strong>of</strong> doctor’s <strong>the</strong>sis : December 6 th 2010<br />

Faculty <strong>of</strong> Building <strong>and</strong> Environmental Engineering<br />

Technical University <strong>of</strong> Bialystok<br />

2010


Abstract<br />

Modern, urban multi-family buildings are characterized by large <strong>façade</strong> <strong>glazing</strong> areas.<br />

Under <strong>the</strong> perspective <strong>of</strong> ecology <strong>and</strong> <strong>the</strong> duty to design energy-efficient buildings, <strong>the</strong>se<br />

market requirements are contributing to a technical conflict <strong>of</strong> goals. It is well known that<br />

large <strong>glazing</strong> openings are not only responsible for a large part <strong>of</strong> heat loss in cold periods,<br />

but can also help to collect a lot <strong>of</strong> energy for living rooms through <strong>the</strong> passive effect <strong>of</strong><br />

<strong>solar</strong> <strong>radiation</strong>. The question is which opening sizes, which technical <strong>glazing</strong> properties<br />

<strong>and</strong> which directions support an optimal situation between <strong>the</strong>rmal comfort <strong>and</strong> <strong>the</strong> use <strong>of</strong><br />

primary energy. A qualified answer can only be found in an integrated approach with <strong>the</strong><br />

application <strong>of</strong> modern <strong>and</strong> complex computer simulation programs which include all<br />

parameters <strong>of</strong> building geometry, building materials used <strong>and</strong> <strong>the</strong> interaction between all<br />

installed heating, cooling <strong>and</strong> ventilation systems. The aim <strong>of</strong> this work is to show new<br />

ways <strong>of</strong> designing modern, energy-efficient dwelling-houses taking <strong>solar</strong> <strong>radiation</strong> into<br />

special consideration. Three co-operative apartment houses, which are being built in<br />

Hannover in 2009, are <strong>the</strong> object <strong>of</strong> this dissertation.<br />

The detailed simulation method was chosen for <strong>the</strong> current work. The use <strong>of</strong> <strong>the</strong><br />

EnergyPlus V3-0 simulation tool helped to combine heat <strong>and</strong> mass transfers, to simulate<br />

multi-zone airflow <strong>and</strong> to operate heating, cooling <strong>and</strong> ventilation systems for long periods.<br />

Special attention was focused on <strong>the</strong> heat transfer through windows. Twelve cases <strong>of</strong><br />

fenestration products with different types <strong>of</strong> low-e-coatings <strong>and</strong> different configurations <strong>of</strong><br />

optical filters on glass surfaces were examined. All relevant parameters <strong>of</strong> <strong>the</strong> developed<br />

<strong>glazing</strong> systems were determined with <strong>the</strong> help <strong>of</strong> <strong>the</strong> WINDOWS 5.2 computer program.<br />

Based on <strong>the</strong> above <strong>analysis</strong>, a general procedural method was presented to determine an<br />

optimal window-to-wall ratio (WWR) for any dwelling house. As it turned out in <strong>the</strong><br />

investigated case, <strong>the</strong> annual heating energy consumption could be reduced by over 30 %<br />

when using <strong>the</strong> considered WWR optimization. The simulations were conducted with<br />

different wea<strong>the</strong>r pr<strong>of</strong>iles for several locations in Germany. Additionally, experimental<br />

investigations were carried out to determine <strong>the</strong> <strong>the</strong>rmal performance <strong>of</strong> a considered<br />

external wall in solid construction <strong>and</strong> <strong>the</strong>n to calibrate <strong>the</strong> building simulation s<strong>of</strong>tware.<br />

Fur<strong>the</strong>rmore, <strong>the</strong> <strong>analysis</strong> <strong>of</strong> <strong>the</strong> influence <strong>of</strong> <strong>the</strong> <strong>glazing</strong> system area on <strong>the</strong> buildings´<br />

energy dem<strong>and</strong> showed that <strong>the</strong>re is an approximate linear correlation between energy<br />

consumption for space heating <strong>and</strong> <strong>the</strong> WWR. Ano<strong>the</strong>r aspect <strong>of</strong> <strong>the</strong> investigations was to<br />

determine <strong>the</strong> relationship between <strong>the</strong> energy dem<strong>and</strong> for space heating <strong>and</strong> <strong>the</strong> windows´<br />

height above ground level in different seasons. Simulation results indicated that <strong>the</strong><br />

difference between <strong>the</strong> first <strong>and</strong> <strong>the</strong> last floor is high <strong>and</strong> equal to 31 % for balconywindows<br />

<strong>and</strong> up to 66 % for windows in winter. Large fenestration areas can generate<br />

overheating problems for living spaces during intensive <strong>solar</strong> <strong>radiation</strong>. Coupled with<br />

external shading devices, cooling through <strong>the</strong> use <strong>of</strong> ambient air driven by ventilation<br />

systems is an effective <strong>and</strong> energy-efficient solution if <strong>the</strong> ambient temperature is lower


than <strong>the</strong> inner air temperature. It was found that <strong>the</strong> amplitude between day <strong>and</strong> night<br />

internal air temperatures is significantly higher for apartments with variable air volume<br />

systems in comparison to constant air volume systems. The difference between <strong>the</strong> mean<br />

operative temperature reaches up to 4.4°C. Window shades with <strong>the</strong> highest reflective<br />

surface mounted outside <strong>and</strong> near <strong>the</strong> fenestration guarantee <strong>the</strong> best protection <strong>of</strong> gains<br />

from <strong>solar</strong> <strong>radiation</strong>. In order to compile <strong>the</strong> energy balance <strong>of</strong> <strong>the</strong> analyzed building, <strong>the</strong><br />

operation <strong>of</strong> a <strong>solar</strong> domestic hot water system (SDHW) was investigated. Several tilt<br />

angles were tested for <strong>the</strong> <strong>solar</strong> collectors, whereas <strong>the</strong> simulation showed that an angle <strong>of</strong><br />

35° is optimal in summer time <strong>and</strong> an angle <strong>of</strong> 70°C is optimal for <strong>the</strong> cold period. If a<br />

fixed tilt angle <strong>of</strong> 45° is used throughout <strong>the</strong> year <strong>the</strong> absorbed <strong>solar</strong> energy varies only<br />

about 10 % maximum. It turned out that <strong>the</strong> <strong>solar</strong> conversion process is about ten times<br />

lower in winter than those during <strong>the</strong> summer time. Ano<strong>the</strong>r important question in <strong>the</strong><br />

design <strong>of</strong> a SDHW system is <strong>the</strong> optimal value <strong>of</strong> a stratified storage tank. Based on <strong>the</strong><br />

<strong>analysis</strong> <strong>of</strong> <strong>the</strong> influence <strong>of</strong> <strong>the</strong> volume <strong>of</strong> accumulated water on <strong>the</strong> <strong>the</strong>rmal performance<br />

<strong>of</strong> <strong>the</strong> SDHW system, it can be concluded that <strong>the</strong> recommended volume <strong>of</strong> <strong>the</strong> storage<br />

tank for <strong>the</strong> developed case is 4 m 3 . Results <strong>of</strong> <strong>the</strong> calculations showed that <strong>the</strong> temperature<br />

<strong>of</strong> storage water increased by over 50°C between April <strong>and</strong> September. Hereby it could be<br />

shown that <strong>the</strong> total designed area <strong>of</strong> <strong>solar</strong> collectors is too small to be an effective support<br />

<strong>of</strong> <strong>the</strong> heating system during <strong>the</strong> whole year.


Table <strong>of</strong> contents<br />

ABSTRACT ………………………………………………………..………………………………………………………..…………. 2<br />

TABLE OF CONTENTS .………………………………………………………………………………………………………….…. 4<br />

NOMENCLATURE ………………………………………………………………………………………………..………………….. 6<br />

1 SCIENTIFIC FRAMEWORK .............................................................................................................. 8<br />

1.1 INTRODUCTION .................................................................................................................................... 8<br />

1.2 BACKGROUND AND LITERATURE REVIEW .......................................................................................... 10<br />

1.2.1 Method for modelling <strong>and</strong> simulation <strong>of</strong> building <strong>the</strong>rmal behaviour ..................................... 10<br />

1.2.2 Solar heat gain through windows ............................................................................................ 18<br />

1.2.3 Influence <strong>of</strong> envelope features on energy consumption <strong>and</strong> potential savings ........................ 23<br />

1.2.4 Modelling <strong>and</strong> designing <strong>solar</strong> domestic hot water systems .................................................... 26<br />

1.2.5 Summary <strong>of</strong> literature review .................................................................................................. 39<br />

1.3 RESEARCH GOALS AND HYPOTHESIS .................................................................................................. 40<br />

1.3.1 Scientific goals ......................................................................................................................... 40<br />

1.3.2 Hypho<strong>the</strong>sis ............................................................................................................................. 40<br />

2 RESEARCH METHODS .................................................................................................................... 41<br />

2.1 BUILDING ENERGY SIMULATION SOFTWARE ...................................................................................... 41<br />

2.2 EXPERIMENTAL RESEARCH METHODS ................................................................................................ 47<br />

2.2.1 Experimental apparatus .......................................................................................................... 47<br />

2.2.2 Experimental methods ............................................................................................................. 48<br />

3 RESULTS AND DISCUSSION .......................................................................................................... 51<br />

3.1 BUILDING DESCRIPTION ..................................................................................................................... 52<br />

3.1.1 Description <strong>of</strong> building substructures <strong>and</strong> HVAC systems ...................................................... 52<br />

3.1.2 Wea<strong>the</strong>r conditions for <strong>the</strong> simulation <strong>analysis</strong> ....................................................................... 66<br />

3.2 SELECTION OF THE OPTIMAL GLAZING SYSTEM .................................................................................. 68<br />

3.3 ESTIMATION OF THERMAL ENERGY GAIN AND LOSS THROUGH BUILDING FENESTRATION .................. 70<br />

3.3.1 Characterization <strong>of</strong> heat gain <strong>and</strong> loss through <strong>glazing</strong> .......................................................... 70<br />

3.3.2 Analysis <strong>of</strong> <strong>the</strong> energy balance for windows ............................................................................ 71<br />

3.3.3 Definition <strong>of</strong> an optimal value <strong>of</strong> window-to-wall ratio .......................................................... 76<br />

3.4 TESTING OF A BUILDING INDOOR ENVIRONMENT DURING THE WARM PERIOD .................................... 79<br />

3.5 OPTIMIZATION OF A SOLAR DOMESTIC HOT WATER SYSTEM .............................................................. 90<br />

3.5.1 Description <strong>of</strong> <strong>the</strong> <strong>solar</strong> collectors........................................................................................... 90<br />

3.5.2 Solar heating systems control .................................................................................................. 91<br />

3.5.3 Assumed parameters <strong>of</strong> domestic hot water systems ............................................................... 91<br />

3.5.4 Results <strong>of</strong> computational <strong>analysis</strong> ........................................................................................... 92<br />

4 SUMMARY AND CONCLUSIONS .................................................................................................. 99


4.1 SUMMARY .......................................................................................................................................... 99<br />

4.2 COMMENTS AND CONCLUSIONS ....................................................................................................... 101<br />

4.3 FUTURE RESEARCH .......................................................................................................................... 103<br />

REFERENCES ……………………………………………………………………………………………………………..……..… 104<br />

APPENDICES ……….…………………………………………………………………………………………………………….… 112<br />

APPENDIX 1 PLANS OF BUILDING SUBSTRUCTURES AND THE FRONT/BACK/SIDE ELEVATION VIEWS ……….. 112<br />

APPENDIX 2 LISTING OF THE BUILDING AND HVAC SYSTEM MODEL ……………………………………………..…. 122


Nomenclature<br />

Roman Letter Symbols<br />

a1 – <strong>the</strong>rmal transmittance coefficient simple, W/m 2 K<br />

a2 – <strong>the</strong>rmal transmittance coefficient square, W/m 2 K 2<br />

A – area, m 2<br />

c – specific heat, J/kgK<br />

C – correction factor, –<br />

C – heat capacitance, J/°C<br />

DD – degree-day, °Cd<br />

E – energy, J or kWh<br />

f – fraction <strong>of</strong> time, –<br />

F – angle factor, –<br />

G – <strong>solar</strong> ir<strong>radiation</strong>, W/m 2<br />

G& – mass flow rate, kg/s<br />

h – convective heat transfer coefficient, W/m 2 K<br />

I – intensity <strong>of</strong> <strong>solar</strong> <strong>radiation</strong>, W/m 2<br />

k – <strong>the</strong>rmal conductivity, W/mK<br />

nl – number <strong>of</strong> heat loads, –<br />

ns – number <strong>of</strong> heat transfer surfaces, –<br />

nz – number <strong>of</strong> adjacent zones, –<br />

N – number <strong>of</strong> hours, –<br />

o – operative temperature, °C<br />

P – power, W<br />

P – energy per building area, kWh/m 2<br />

q ′ – heat flux, W/m 2<br />

r – frame to glass ratio for a window, –<br />

R – <strong>the</strong>rmal resistance, mK/W<br />

t – time, s<br />

U – heat transfer coefficient, W/m 2 K<br />

WWR – window-to-wall ratio, –<br />

V& – volume flow rate, m 3 /s<br />

Xj, Yj, Zj – outside, cross <strong>and</strong> inside CTF coefficients. W/m 2 K<br />

Greek symbols<br />

α – <strong>solar</strong> absorption <strong>of</strong> <strong>the</strong> surface, –<br />

δ – layer thickness, m<br />

ε – surface emissivity, –<br />

η – efficiency, –


Subscripts<br />

σ – Stefan-Boltzmann constant, W m –2 K –4<br />

θ – temperature, K<br />

ρ – density, kg/m 3<br />

φ – <strong>solar</strong> azimuth angle, degree<br />

Φ – flux CTF coefficient. –<br />

a – air,<br />

A – ambient,<br />

b – brick,<br />

BR – beam <strong>radiation</strong><br />

c – cold side,<br />

c – cooling,<br />

CON – conduction,<br />

CONV – convection,<br />

eq – equivalent,<br />

E – external,<br />

G – ground,<br />

h – hot side,<br />

h – heating,<br />

I – internal,<br />

in – inlet boundary,<br />

in – inflow,<br />

INF – infiltration,<br />

l – loss,<br />

LWR – long wave <strong>radiation</strong>,<br />

m – mortar,<br />

M – mean,<br />

MD – mean daily,<br />

MR – mean radiant,<br />

out – outlet boundary,<br />

out – outflow,<br />

S – surface,<br />

SDR – sky diffuse <strong>radiation</strong>,<br />

SWR – short wave <strong>radiation</strong>,<br />

sf – surface,<br />

SUP – supply,<br />

w – wall,<br />

∞ – steady-state conditions.


1.1 Introduction 8<br />

1 Scientific Framework<br />

1.1 Introduction<br />

It is estimated that <strong>the</strong> building sector consumes nearly 40 % <strong>of</strong> <strong>the</strong> total energy used in<br />

European countries. The potential for saving energy needed for heating, cooling, lighting<br />

<strong>and</strong> o<strong>the</strong>r services is still significant.<br />

Modelling <strong>and</strong> simulation techniques can help to predict <strong>the</strong> environmental performance <strong>of</strong><br />

building <strong>and</strong> HVAC systems in <strong>the</strong> future. Both <strong>of</strong> <strong>the</strong>se methods are very important in <strong>the</strong><br />

early stages <strong>of</strong> designing, as well as during <strong>the</strong> operation <strong>and</strong> management processes.<br />

Modern buildings should be characterized by a low level <strong>of</strong> primary energy dem<strong>and</strong>s <strong>and</strong><br />

also provide an optimal <strong>the</strong>rmal comfort environment <strong>and</strong> indoor air quality for occupants.<br />

Only computer-based predictions can reconcile <strong>the</strong>se o<strong>the</strong>r contradictory <strong>and</strong> conflicting<br />

requirements. Moreover, energy simulations help to underst<strong>and</strong> <strong>the</strong> interactions between<br />

occupants, building construction, HVAC systems, indoor <strong>and</strong> outdoor climate conditions.<br />

A sharp rise in energy prices <strong>and</strong> continuous development in <strong>the</strong> building industry dem<strong>and</strong><br />

a new design methodology. Traditional methods <strong>of</strong> calculation for steady-state conditions<br />

cannot be used in solving <strong>the</strong> problems <strong>of</strong> <strong>solar</strong> gain, passive <strong>and</strong> active <strong>the</strong>rmal energy<br />

storage, night cooling ventilation <strong>and</strong> <strong>the</strong> optimal strategy in automatic control <strong>of</strong> HVAC<br />

systems. Solar <strong>radiation</strong>, as an energy source, is very time-dependent. In addition to<br />

variable character, absorption <strong>and</strong> reflection phenomena make it difficult to estimate its<br />

potential for space heating during <strong>the</strong> winter <strong>and</strong> to define its’ influence on <strong>the</strong> internal<br />

<strong>the</strong>rmal environment during warm periods. Internal <strong>and</strong> external shading devices, building<br />

overhangs, wing walls <strong>and</strong> window performance can play a significant role in assessing<br />

<strong>solar</strong> gain. Modern buildings are characterized by large glazed areas. It provides <strong>the</strong><br />

improvement <strong>of</strong> a visual environment. But on <strong>the</strong> o<strong>the</strong>r h<strong>and</strong>, large window sizes lead to<br />

overheating problems during <strong>the</strong> summer <strong>and</strong> may result in increasing <strong>the</strong> energy dem<strong>and</strong><br />

for heating in <strong>the</strong> winter. Only computer-aid modelling can help designers find <strong>the</strong> optimal<br />

solution to <strong>the</strong>se complex problems. Also, installing large domestic hot water (DHW)<br />

systems operating with <strong>solar</strong> panels should be preceded by a simulation <strong>analysis</strong>. Among<br />

o<strong>the</strong>r things, detailed calculations can answer <strong>the</strong> following questions:<br />

• What kind <strong>of</strong> system connection diagram should be applied?<br />

• What is <strong>the</strong> optimal number <strong>and</strong> <strong>the</strong>rmal capacity <strong>of</strong> storage tanks?<br />

• How does <strong>the</strong> tilt angle <strong>of</strong> <strong>solar</strong> collectors influence <strong>the</strong> <strong>the</strong>rmal performance <strong>of</strong> <strong>the</strong><br />

DHW system <strong>and</strong> <strong>the</strong> effectiveness <strong>of</strong> energy conversion?<br />

• What is <strong>the</strong> optimal <strong>and</strong> maximum power <strong>of</strong> an auxiliary heater?


1.1 Introduction 9<br />

Ano<strong>the</strong>r problem, which cannot be analyzed by traditional analytical methods, is <strong>the</strong><br />

energy storage process. This phenomenon is clearly observed when <strong>solar</strong> energy transfers<br />

significantly change, for example during <strong>the</strong> day <strong>and</strong> night. Simulation <strong>of</strong> <strong>the</strong> <strong>the</strong>rmal<br />

energy storage mechanism can be a precondition before sizing large free <strong>and</strong> mechanical<br />

night cooling ventilation, passive <strong>and</strong> active <strong>solar</strong>-supported heating systems.<br />

Recapitulating above digressions, one should say that modelling <strong>and</strong> simulation techniques<br />

are necessary tools in <strong>the</strong> energy-efficient design <strong>of</strong> buildings. The current research is<br />

carried out as a multi-layered <strong>and</strong> detailed case study <strong>analysis</strong> <strong>of</strong> modern dwelling houses<br />

from <strong>the</strong> energy consumption point <strong>of</strong> view. The main goals <strong>of</strong> this complex investigation<br />

are <strong>the</strong> reduction <strong>of</strong> space heating dem<strong>and</strong>s <strong>and</strong> <strong>the</strong> minimization <strong>of</strong> <strong>the</strong> environmental<br />

effects on <strong>the</strong> auxiliary energy sources.


1.2 Background <strong>and</strong> literature review 10<br />

1.2 Background <strong>and</strong> literature review<br />

The duty <strong>of</strong> environmental protection <strong>and</strong> its sustainable development requires <strong>the</strong> design<br />

<strong>of</strong> energy efficient buildings. Computer-based simulations play a very important role in<br />

this process. Additionally, this type <strong>of</strong> <strong>analysis</strong> can be useful in achieving <strong>the</strong>rmal comfort<br />

in occupied spaces. First a survey <strong>of</strong> problems concerned with <strong>the</strong> subject <strong>of</strong> <strong>the</strong> current<br />

dissertation was carried out in order to perform a more detailed <strong>and</strong> complex <strong>analysis</strong> <strong>of</strong><br />

<strong>the</strong> <strong>the</strong>rmal behavior <strong>of</strong> buildings <strong>and</strong> to determine <strong>the</strong> most important factors, especially<br />

<strong>solar</strong> <strong>radiation</strong> affecting energy consumption. A strong development <strong>of</strong> modelling<br />

techniques is observed <strong>and</strong> <strong>the</strong>re are a lot <strong>of</strong> analytical <strong>and</strong> experimental works related to<br />

energy simulation in buildings. For <strong>the</strong>se reasons, <strong>the</strong> literature review is limited mainly to<br />

scientific investigations that have been performed during <strong>the</strong> last decade. The current<br />

bibliographic survey <strong>and</strong> a short description <strong>of</strong> <strong>the</strong> elaborated problems are shared in <strong>the</strong><br />

following sections <strong>and</strong> are presented below:<br />

• modelling <strong>and</strong> simulation <strong>of</strong> building <strong>the</strong>rmal behavior,<br />

• <strong>analysis</strong> <strong>of</strong> <strong>solar</strong> heat gain through windows,<br />

• influence <strong>of</strong> building envelope construction on energy consumption,<br />

• modelling <strong>and</strong> designing <strong>solar</strong> domestic hot water (SDHW) systems.<br />

1.2.1 Method for modelling <strong>and</strong> simulation <strong>of</strong> building <strong>the</strong>rmal<br />

behaviour<br />

Building energy simulation methods can be divided into two basic levels: simplified <strong>and</strong><br />

detailed <strong>analysis</strong> techniques. We find in <strong>the</strong> paper written by Al-Homoud (Al-Homoud,<br />

2001) a complex review <strong>of</strong> both building energy simulation approaches. It is possible to<br />

distinguish between <strong>the</strong> four basic simplified methods <strong>of</strong> estimating energy consumption<br />

that are summarized below.<br />

SIMPIFIED METHODS<br />

Degree-Day (DD) method<br />

The Degree-Day method assumes that heat loss <strong>and</strong> gain are proportional to <strong>the</strong> equivalent<br />

heat-loss coefficient <strong>of</strong> <strong>the</strong> building envelope. This steady-state procedure is very popular<br />

<strong>and</strong> widely used to estimate heating <strong>and</strong> cooling energy dem<strong>and</strong>s mainly in small<br />

buildings. The calculating procedure is based on <strong>the</strong> assumption that <strong>the</strong> average energy<br />

gain during a long-term counterbalance heat loss for <strong>the</strong> mean daily inside temperature θF<br />

equals to 18.3°C (65°F), also called a balance point temperature. Therefore, energy<br />

consumption will be proportional to <strong>the</strong> difference between θF <strong>and</strong> <strong>the</strong> mean daily<br />

temperature θMD.


1.2 Background <strong>and</strong> literature review 11<br />

We can estimate <strong>the</strong> heating degree-day DDh using <strong>the</strong> following equation:<br />

∑ = d<br />

Dm<br />

+<br />

��� � ( θ −θ<br />

) . (1.1)<br />

d = 1<br />

F<br />

MD<br />

Sign + means that we can only take <strong>the</strong> positive values. Analogically, Eq. (1.2) is used to<br />

determine <strong>the</strong> cooling degree-day DDc.<br />

∑ = d<br />

Dm<br />

+<br />

��� � ( θ −θ<br />

) . (1.2)<br />

d=<br />

1<br />

MD<br />

F<br />

Based on degree-day DDh it is possible to calculate <strong>the</strong> energy required for central heating<br />

systems.<br />

E � �<br />

where:<br />

q<br />

DD<br />

L h 24 , (1.3)<br />

( θI −θ<br />

E ) ηhV<br />

f<br />

qL – design heat loss <strong>of</strong> <strong>the</strong> buildings,<br />

θI – internal air temperature <strong>of</strong> <strong>the</strong> house,<br />

θE – external air temperature (ambient),<br />

ηh – efficiency <strong>of</strong> <strong>the</strong> heating system,<br />

Vf – heating value <strong>of</strong> fuel.<br />

Modified Degree-Day method<br />

In order to reduce <strong>the</strong> inaccuracy <strong>of</strong> <strong>the</strong> DD procedure, an empirical correction factor CD<br />

(ASHRAE Systems H<strong>and</strong>book, 1976) that is a function <strong>of</strong> outdoor design temperature, is<br />

introduced.<br />

� � �<br />

q DD C<br />

L h D<br />

24 , (1.4)<br />

( θI −θ<br />

E ) ηhV<br />

f<br />

where CD is a correction factor for <strong>the</strong> heating effect versus degree days.


1.2 Background <strong>and</strong> literature review 12<br />

Variable Base Degree-Day (VBDD) method<br />

The VBDD procedure first calculates <strong>the</strong> balance point temperature θB – Eq. (1.5) – that is<br />

<strong>the</strong> estimate for <strong>the</strong> whole building.<br />

Q g<br />

�� � I<br />

UA<br />

− θ , (1.5)<br />

where:<br />

Qg – a <strong>solar</strong> <strong>and</strong> internal heat gain,<br />

U – an overall coefficient <strong>of</strong> heat loss,<br />

A – an area <strong>of</strong> building elements.<br />

Then <strong>the</strong> heating <strong>and</strong> cooling degree hours are calculated based on θB. This approach takes<br />

into account different building conditions <strong>and</strong> requires an hourly wea<strong>the</strong>r database. Eq.<br />

(1.6) is used to calculate degree-days for heating in month m <strong>and</strong> period t out <strong>of</strong> 24 hours.<br />

d Dm<br />

+<br />

��� � ( θ −θ<br />

) . (1.6)<br />

∑ =<br />

d = 1<br />

B,<br />

i<br />

MD<br />

Consistently, <strong>the</strong> energy required for heating <strong>the</strong> building can be calculated as follows:<br />

� � �<br />

where:<br />

i n<br />

∑<br />

i<br />

=<br />

=1<br />

( f )<br />

24<br />

iUADDh<br />

η<br />

,<br />

h<br />

n – a number <strong>of</strong> operating periods,<br />

fi – a fraction <strong>of</strong> time for <strong>the</strong> period t.<br />

In a similar way, we can estimate <strong>the</strong> energy required for cooling <strong>the</strong> building.<br />

(1.7)<br />

d Dm<br />

+<br />

��� � ( θ −θ<br />

) . (1.8)<br />

∑ =<br />

d = 1<br />

MD<br />

B,<br />

i


1.2 Background <strong>and</strong> literature review 13<br />

� � �<br />

i n<br />

∑<br />

i<br />

=<br />

=1<br />

( f )<br />

24<br />

iUADDc<br />

η<br />

,<br />

c<br />

(1.9)<br />

Eq. (1.9) takes into account only heat transfers by conductance. Energy dem<strong>and</strong>s for<br />

ventilation <strong>and</strong> infiltration have to be calculated separately.<br />

Bin method <strong>and</strong> Bin modified method<br />

This method evolves from <strong>the</strong> VBDD procedure. It is used to calculate <strong>the</strong> annual building<br />

heating <strong>and</strong> cooling loads for a set <strong>of</strong> temperature samples called “bins”. The space-heating<br />

energy dem<strong>and</strong> is determined based on <strong>the</strong> following relation:<br />

�� � ∑ ( )<br />

= i n UA<br />

NBIN,<br />

i θB,<br />

i −θMD,<br />

i<br />

η<br />

where:<br />

h<br />

i=<br />

1<br />

n – a number <strong>of</strong> bins,<br />

NBIN,i – a number <strong>of</strong> hours for i bin.<br />

+<br />

, (1.10)<br />

The Bin procedure is recommended for buildings where <strong>the</strong> magnitude <strong>of</strong> internal gains is<br />

dominated. The Bin modified method accounts for <strong>the</strong> impact <strong>of</strong> <strong>solar</strong> <strong>and</strong> wind effects on<br />

energy consumption <strong>and</strong> is useful for buildings which do not exceed 2,500 m 2 <strong>of</strong> floor area.<br />

DETAILED DYNAMIC SIMULATION METHODS<br />

The simulation models are detailed <strong>and</strong> satisfactorily accurate tools that can be very useful<br />

both for energy-efficient design <strong>and</strong> for <strong>the</strong> cost-effective retr<strong>of</strong>itting <strong>of</strong> buildings. The<br />

flow chart <strong>of</strong> computer s<strong>of</strong>tware for <strong>the</strong> use in determining <strong>the</strong> <strong>the</strong>rmal behavior <strong>of</strong><br />

buildings is presented in Fig. 1.1.


1.2 Background <strong>and</strong> literature review 14<br />

BUILDING DESCRIPTION<br />

Location<br />

Design data<br />

Construction data<br />

Thermal zones<br />

Internal loads<br />

Usage pr<strong>of</strong>iles<br />

Infiltration<br />

SYSTEM DESCRIPTION<br />

System types <strong>and</strong> sizes<br />

Supply <strong>and</strong> return fans<br />

Control <strong>and</strong> schedules<br />

Outside air requirements<br />

PLANT DESCRIPTION<br />

Equipment types <strong>and</strong> sizes<br />

Performance characteristics<br />

Auxiliary equipment<br />

Load assignment<br />

Fuel types<br />

ECONOMIC DATA<br />

Economic factors<br />

Project life<br />

First cost<br />

Maintenance cost<br />

WEATHER LIBRARY<br />

Dry-bulb temperature<br />

Wet-bulb temperature<br />

Cloud factor<br />

Wind speed<br />

Pressure<br />

LOADS<br />

ANALYSIS<br />

Peak heating <strong>and</strong><br />

cooling loads<br />

SYSTEM<br />

ANALYSIS<br />

Hourly equipment<br />

loads by system<br />

PLANT<br />

ANALYSIS<br />

Fuel dem<strong>and</strong> <strong>and</strong><br />

consumption<br />

ECONOMIC<br />

ANALYSIS<br />

Life-cycle cost<br />

Fig. 1.1: The overall structure <strong>of</strong> <strong>the</strong> building energy simulation s<strong>of</strong>tware by ASHRAE H<strong>and</strong>book -<br />

Fundamentals (2005)<br />

Large amounts <strong>of</strong> energy simulation s<strong>of</strong>tware have been released during <strong>the</strong> last half<br />

century. Two tendencies in <strong>the</strong> simulation <strong>of</strong> <strong>the</strong> energy transfer processes in buildings can<br />

be distinguished. First, <strong>the</strong> conception consists <strong>of</strong> performing heat balance in iso<strong>the</strong>rmal<br />

zones that are component parts <strong>of</strong> <strong>the</strong> building. Depending on <strong>the</strong> requirements, <strong>the</strong><br />

<strong>analysis</strong> can be performed over a very long period with different time intervals. We can<br />

find a comparison <strong>of</strong> <strong>the</strong> features <strong>of</strong> twenty major building energy simulation programs<br />

with a heat balance engine in a detailed <strong>and</strong> complex report prepared by Crawley<br />

(Crawley, et al., 2008) (Crawley, et al., 2005).<br />

Very <strong>of</strong>ten <strong>the</strong> agreement between <strong>the</strong>oretical calculations <strong>and</strong> experimental values do not<br />

work well for large spaces <strong>and</strong> structures. The second conception is a compilation <strong>of</strong>


1.2 Background <strong>and</strong> literature review 15<br />

traditional balancing methods <strong>and</strong> Computational Fluid Dynamics (CFD) algorithms.<br />

Accuracy <strong>and</strong> agreement between <strong>the</strong> results <strong>of</strong> <strong>the</strong>oretical modelling <strong>and</strong> physical reality<br />

are <strong>the</strong> best advantages <strong>of</strong> this procedure. Simulations are usually performed for not very<br />

long periods <strong>of</strong> time in respect to complicated 3-D models, short-time calculating steps <strong>and</strong><br />

long-time computer work. Often, this hybrid method is used to do steady-state <strong>analysis</strong>.<br />

The overview <strong>of</strong> computer s<strong>of</strong>tware for testing energy transfer in <strong>the</strong> built environment is<br />

also presented by Addison <strong>and</strong> Nall (Addison, et al., 2001). The authors concluded that <strong>the</strong><br />

best energy <strong>analysis</strong> tools for <strong>the</strong> complex <strong>and</strong> atypical geometry <strong>of</strong> living spaces should<br />

apply hybrid algorithms. (Rees, et al., 1999) (Maliska, 2001) (Broderick, et al., 2001)<br />

(Beausoleil-Morrison, 2001) They came to similar conclusions about modelling strategy.<br />

Available literature concerning advanced techniques <strong>and</strong> algorithms, which are used in<br />

whole-building energy performance simulations, is wide-ranging. An overview <strong>of</strong> <strong>the</strong> most<br />

important scientific projects is presented below.<br />

Treeck <strong>and</strong> Rank (Treeck, et al., 2007) developed an algorithm for transforming building<br />

geometry which can be applied to energy simulation codes. The approach is based on a<br />

graph <strong>the</strong>ory. The following graph is selected from a building model: a structural<br />

component, room faces, whole room <strong>and</strong> relational objects that represent <strong>the</strong> geometrical<br />

structure in a hierarchical manner. In order to demonstrate <strong>the</strong> capabilities <strong>of</strong> developed<br />

algorithms, <strong>the</strong> authors showed a practical example <strong>of</strong> <strong>the</strong> decomposition model based on a<br />

three-storey building with an integrated inner courtyard.<br />

The building shape significantly <strong>influences</strong> its’ <strong>the</strong>rmal performance. Ourghi <strong>and</strong> coworkers<br />

(Ourghi, et al., 2007) developed a simplified calculation method concerning this<br />

problem. A detailed simulation procedure was carried out with specialized s<strong>of</strong>tware DOE-2<br />

for several locations around <strong>the</strong> world. The authors analyzed several building<br />

configurations with different shapes, relative compactness, <strong>and</strong> various <strong>glazing</strong> types with<br />

different <strong>solar</strong> heat gain coefficient <strong>and</strong> window sizes. Estimates showed a strong influence<br />

<strong>of</strong> <strong>the</strong> building shape, <strong>the</strong> type <strong>and</strong> <strong>the</strong> percent <strong>of</strong> <strong>glazing</strong> on energy consumption.<br />

A meteorological <strong>and</strong> a sociological (attitude <strong>and</strong> culture) influence on <strong>the</strong>rmal load <strong>and</strong><br />

energy consumption in buildings was investigated by Pedersen (Pedersen, 2007). The<br />

following different representations <strong>of</strong> wea<strong>the</strong>r data were analyzed: The test reference year<br />

(TRY), design reference year (DRY), typical meteorological year (TMY) <strong>and</strong> wea<strong>the</strong>r year<br />

for energy calculations (WYEC). The current work has presented a summary <strong>of</strong> different<br />

methodologies for <strong>the</strong> energy load <strong>and</strong> its’ estimations such as: neural networks (NN),<br />

engineering method (EM) conditional <strong>and</strong> dem<strong>and</strong> <strong>analysis</strong> (CDA).<br />

Detailed building <strong>the</strong>rmal performance is possible to estimate when we apply both<br />

computational fluid dynamic algorithms <strong>and</strong> building energy simulation tools. The hard<br />

problem <strong>of</strong> an integration <strong>of</strong> <strong>the</strong> two different calculation techniques, which provide<br />

complementary information, was intensely developed <strong>and</strong> widely applied by Zhai <strong>and</strong>


1.2 Background <strong>and</strong> literature review 16<br />

Chen (Zhai, et al., 2002) (Zhai, et al., 2003) (Zhai, et al., 2005) (Zhai, et al., 2006). They<br />

proposed different static, dynamic <strong>and</strong> bin coupling strategies to decrease <strong>the</strong> computing<br />

time. A new coupling building energy simulation tool was developed <strong>and</strong> validated with<br />

experimental data available in literature. It was found that <strong>the</strong> best efficient coupling<br />

method is a transfer <strong>of</strong> surface temperatures from <strong>the</strong> energy simulation code to a CFD<br />

preprocessor. After calculation, heat transfer coefficients <strong>and</strong> gradients <strong>of</strong> air temperature<br />

are returned in <strong>the</strong> opposite direction. In order to reduce CPU-time dem<strong>and</strong>s, Zhai <strong>and</strong><br />

Chen proposed <strong>the</strong> optimal staged coupling strategy.<br />

The European Joule–Thermie OFFICE project concerned with labeling buildings checked<br />

<strong>the</strong> compliance <strong>of</strong> a building with regulations <strong>and</strong> evaluated <strong>the</strong> efficiency <strong>of</strong> <strong>the</strong> retr<strong>of</strong>it.<br />

Within this research project framework Roulet with colleagues (Roulet, et al., 2002)<br />

developed multi-criteria procedures based on a principle component <strong>analysis</strong> <strong>and</strong> on <strong>the</strong><br />

ELECTRE family partial aggregation method. The proposed methodology can be used<br />

both before <strong>and</strong> after <strong>the</strong> retr<strong>of</strong>it.<br />

Energy management <strong>and</strong> control units can monitor <strong>and</strong> optimize <strong>the</strong> work <strong>of</strong> various<br />

HVAC components during operation. Salsbury <strong>and</strong> Diamond (Salsbury, et al., 2000)<br />

created <strong>the</strong> concept <strong>of</strong> using simulation in <strong>the</strong> validation <strong>and</strong> energy <strong>analysis</strong> <strong>of</strong> HVAC<br />

systems in buildings. In this conception, a complex system is composed <strong>of</strong> a number <strong>of</strong><br />

several linked subsystem models. The potential <strong>of</strong> using a simulation, which represents<br />

virtual <strong>and</strong> real parallel operating systems, was seen in a dual-duct air-h<strong>and</strong>ling unit<br />

located in an <strong>of</strong>fice building in San Francisco. Calculations were performed in <strong>the</strong><br />

MATLAB programming environment. It was indicated that <strong>the</strong> use <strong>of</strong> simplified models<br />

can decrease <strong>the</strong> number <strong>of</strong> configuration parameters in a simulation.<br />

Building energy performance can be predicted based on an artificial neural networks<br />

(ANN) method. Yezioro <strong>and</strong> co-workers (Yezioro, et al., 2008) developed <strong>and</strong> tested ANN<br />

using data from one week <strong>of</strong> an experimental period. The Pittsburgh Synergy Solar House<br />

was selected as <strong>the</strong> reference building. The experimental database consisted <strong>of</strong> <strong>the</strong><br />

following electricity consumption: total, lighting, HVAC <strong>and</strong> electricity generated in <strong>the</strong><br />

photovoltaic system. The MATLAB environment was used to implement <strong>the</strong> considered<br />

model <strong>of</strong> ANN. Calculation results from four building performance simulation tools:<br />

Energy_10, Green Building Studio, eQuest <strong>and</strong> EnergyPlus were used for <strong>the</strong> comparison<br />

<strong>of</strong> ANN purposes. It presented a good correlation (mean absolute error equal to 0.9 %)<br />

between <strong>the</strong> predictions <strong>and</strong> <strong>the</strong> results from <strong>the</strong> ma<strong>the</strong>matical model.<br />

Reducing <strong>the</strong> number <strong>of</strong> tests for complex systems can be done by <strong>the</strong> use <strong>of</strong> a lattice<br />

method for global optimization (LMGO) which was developed by Saporito (Saporito, et<br />

al., 2001). The influence <strong>of</strong> different design parameters <strong>of</strong> building energy consumption<br />

was investigated. In order to identify <strong>the</strong> main energy saving features, simulations <strong>of</strong><br />

<strong>the</strong>rmal behavior in simple <strong>of</strong>fice buildings located in Kew (London) with help <strong>of</strong><br />

APACHE code were performed. The authors concluded that LMGO can be successfully


1.2 Background <strong>and</strong> literature review 17<br />

used in both sensitivity studies <strong>of</strong> dynamic systems <strong>and</strong> in building optimization problems<br />

with a large number <strong>of</strong> combination tests.<br />

Building structures <strong>and</strong> environments are modeled by a system <strong>of</strong> differential algebraic<br />

equations. Required smoothness assumptions that can be applied in <strong>the</strong> solution <strong>of</strong> <strong>the</strong>se<br />

types <strong>of</strong> equation sets have been proposed by Wetter (Wetter, 2005). A new multi-zone<br />

building energy simulation program called BuildOpt, which differs from o<strong>the</strong>r s<strong>of</strong>tware<br />

because <strong>of</strong> <strong>the</strong> inclusion <strong>of</strong> various smoothing algorithms, was presented. The numerical<br />

experiments indicated a reduction in <strong>the</strong> computation time <strong>and</strong> a high precision <strong>of</strong><br />

smoothing techniques proposed by <strong>the</strong> author.<br />

Multi-objective genetic algorithm (MOGA) was used by Wright (Wright, et al., 2002) to<br />

estimate <strong>the</strong> optimum pay-<strong>of</strong>f characteristic between daily energy costs <strong>and</strong> <strong>the</strong> quality <strong>of</strong><br />

<strong>the</strong> <strong>the</strong>rmal environment in <strong>the</strong> building. An example <strong>of</strong> a single zone HVAC system<br />

composed <strong>of</strong> cooling <strong>and</strong> heating coils, a regenerative heat exchanger <strong>and</strong> a supply fan was<br />

used to show <strong>the</strong> benefits <strong>of</strong> <strong>the</strong> multi-criterion optimization genetic algorithm. Estimates<br />

indicated that MOGA search methods can be successfully used in <strong>the</strong> <strong>the</strong>rmal design <strong>of</strong><br />

buildings in respect to occupant comfort.<br />

Genetic algorithms were used by Xu <strong>and</strong> Wang (Xu, et al., 2007) in <strong>the</strong> <strong>the</strong>rmal modelling<br />

<strong>of</strong> <strong>the</strong> building envelope. They developed a method to optimize <strong>the</strong> parameters <strong>of</strong> <strong>the</strong><br />

simplified dynamic model based on frequency domain regression. Validation <strong>of</strong> <strong>the</strong><br />

optimization method <strong>and</strong> its effectiveness were conducted by comparing <strong>the</strong> predictions<br />

with <strong>the</strong> results from <strong>the</strong> <strong>the</strong>oretical model. It was found that <strong>the</strong> frequency domain<br />

<strong>analysis</strong> greatly simplified <strong>the</strong> search for optimal parameters.<br />

Earth-contact heat transfers in built environments were investigated by Davies <strong>and</strong><br />

colleagues (Davies, et al., 2001). They improved <strong>the</strong> efficiency <strong>of</strong> <strong>the</strong> numerical technique<br />

by adopting some elements from <strong>the</strong> response factor method. The results <strong>of</strong> calculations<br />

based on <strong>the</strong> new model showed a dramatic decrease in <strong>the</strong> computing time <strong>of</strong> <strong>the</strong><br />

simulations compared to <strong>the</strong> traditional finite volume technique in keeping with accuracy<br />

<strong>and</strong> flexibility.<br />

The accuracy <strong>of</strong> <strong>the</strong> building energy simulations strongly depends on <strong>the</strong> estimate <strong>of</strong> <strong>solar</strong><br />

irradiance on external facades. Loutzenhiser, along with co-workers (Loutzenhiser, et al.,<br />

2007), validated short-wave <strong>radiation</strong> in <strong>solar</strong> gain models applied in energy simulation<br />

s<strong>of</strong>tware. In <strong>the</strong> experiment, a database <strong>of</strong> <strong>solar</strong> <strong>radiation</strong> from two 25-day measurements<br />

performed on <strong>the</strong> EMPA campus located in Duebendorf (Switzerl<strong>and</strong>) was used.<br />

Calculations were made using four building energy simulation programs: EnergyPlus,<br />

DOE-2.1e, ESP-r <strong>and</strong> TRNSYS-TUD <strong>and</strong> seven <strong>solar</strong> <strong>radiation</strong> models. Using <strong>the</strong> mean<br />

absolute differences method, it verified that <strong>the</strong> uncertainties <strong>of</strong> <strong>the</strong> models are as follows:<br />

14.9 % for <strong>the</strong> isotropic sky, 9.1 % for <strong>the</strong> Hay–Davies, 9.4 % for <strong>the</strong> Reindl, 7.6 % for <strong>the</strong><br />

Muneer, 13.2 % for <strong>the</strong> Klucher, 9.0 % for <strong>the</strong> modified Perez <strong>and</strong> 7.9 % for Perez.


1.2 Background <strong>and</strong> literature review 18<br />

Wurtz <strong>and</strong> co-workers (Wurtz, et al., 2006) developed energy simulation tools which<br />

implemented a zonal method. The first program was created in an object-oriented SPARK<br />

environment in order to develop <strong>and</strong> test new algorithms <strong>and</strong> simulation models. The<br />

second tool, called SIM_ZONAL integrated definite models to quickly estimate <strong>the</strong> quality<br />

<strong>of</strong> <strong>the</strong> indoor <strong>the</strong>rmal environment. These applications integrated single-node models with<br />

computational fluid dynamics algorithms. The authors concluded that <strong>the</strong> zonal method<br />

implemented in <strong>the</strong>ir computer programs can be used to indicate room temperature <strong>and</strong><br />

environment quality with adequate accuracy.<br />

The integration <strong>of</strong> <strong>the</strong> CFD environment with building simulation techniques was <strong>the</strong> main<br />

goal <strong>of</strong> <strong>the</strong> European Commission project number ERB IC15 CT98 0511, which was<br />

realized by Bartak (Bartak, et al., 2002). The approach taken within <strong>the</strong> ESP-r computer<br />

code was created. The empirical validation <strong>of</strong> <strong>the</strong> new module was carried out at <strong>the</strong><br />

Technical University in Prague (Czech Republic). It was also compared with simulation<br />

results supported by measurements realized in a multi-storey block <strong>of</strong> flats in Gliwice<br />

(Pol<strong>and</strong>). (The authors obtained good agreement between predictions <strong>and</strong> <strong>the</strong> results <strong>of</strong><br />

measurements as <strong>the</strong> relative error did not exceed 14 %.)<br />

Yan, along with colleagues (Yan, et al., 2008), carried out a method to simultaneously<br />

estimate <strong>the</strong>rmal performance <strong>and</strong> indoor air quality in buildings. The new integrated<br />

simulation tool is characterized by applying <strong>the</strong> following: flexible system control strategy,<br />

multi-parameters <strong>analysis</strong>, flexible equipment selection <strong>and</strong> a new zonal model based on<br />

room air age. Computer programs can be used to estimate <strong>the</strong> energy dem<strong>and</strong>s <strong>and</strong> predict<br />

different indoor parameters (e.g., temperature, humidity, CO2, volatile organic compounds,<br />

particular matter) under different HVAC systems <strong>and</strong> automatic control strategies. A<br />

detailed <strong>analysis</strong> <strong>of</strong> <strong>the</strong> dynamic performance <strong>of</strong> a hypo<strong>the</strong>tical health care building in<br />

Miami (USA) was carried out to show all <strong>the</strong> capabilities <strong>of</strong> <strong>the</strong> developed simulation tool.<br />

1.2.2 Solar heat gain through windows<br />

Glazed openings are very important elements in building design. Windows provide natural<br />

daylight into rooms to reduce <strong>the</strong> use <strong>of</strong> electric light <strong>and</strong> allow heat gain from <strong>solar</strong><br />

<strong>radiation</strong>. But large areas <strong>of</strong> <strong>glazing</strong> in each facade may result both in increased heat losses<br />

in winter <strong>and</strong> in deteriorating <strong>the</strong>rmal comfort conditions for occupants by overheating in<br />

summer. The optimal value <strong>of</strong> <strong>the</strong> window-to-wall area ratio can be properly estimated<br />

only by energy balancing for a typical year <strong>of</strong> wea<strong>the</strong>r data with <strong>the</strong> use <strong>of</strong> simulation<br />

methods.<br />

A good statement used to reduce energy consumption in buildings in cold climates is <strong>the</strong><br />

application <strong>of</strong> low-emissivity window glass coverings. This film layer on <strong>the</strong> internal side<br />

<strong>of</strong> <strong>the</strong> window may significantly reduce heat transmission by long-wave <strong>radiation</strong>.


1.2 Background <strong>and</strong> literature review 19<br />

Different energy performance <strong>of</strong> glazed openings is needed in warm climates. Spectrally<br />

selective coatings should reflect <strong>the</strong> infra-red <strong>and</strong> ultra-violet spectrums <strong>and</strong><br />

simultaneously transmit visible <strong>solar</strong> <strong>radiation</strong>.<br />

Shading devices such as screens, blinds, shutters, drapes, pull-down shades, overhangs <strong>and</strong><br />

wing walls can both reduce overheating in summer as well as energy consumption in cold<br />

periods. Simulation tools should allow setting a different location <strong>of</strong> <strong>the</strong>se devices, as<br />

shown in Fig. 1.2.<br />

exterior blind<br />

interior screen<br />

between glass blind<br />

Fig. 1.2: Location options <strong>of</strong> shading devices.<br />

fixed louvre sunshade<br />

Electrochromic <strong>glazing</strong> technology is <strong>the</strong> best solution for buildings in moderate climates<br />

on account <strong>of</strong> its dynamically varied energy performance. Depending on <strong>the</strong> voltage<br />

generated by a photovoltaic layer, <strong>the</strong> window film coating adapts to actual environmental<br />

conditions. It is a very promising future technology but many challenging problems will<br />

need to be resolved such as <strong>the</strong> control <strong>and</strong> time change <strong>of</strong> <strong>the</strong> spectral properties in<br />

electrochromic layers. The newest shading devices consist <strong>of</strong> external horizontal louvers<br />

with spectrally selective holographic optical elements (HOE) that redirect sunlight.<br />

A short description <strong>of</strong> <strong>the</strong> most important scientific research connected with <strong>the</strong> <strong>analysis</strong> <strong>of</strong><br />

<strong>solar</strong> gain entering a building is presented below.<br />

interior blind<br />

motorized blind<br />

exterior screen


1.2 Background <strong>and</strong> literature review 20<br />

Yohanis <strong>and</strong> Norton (Yohanis, et al., 2000) revealed that <strong>the</strong> investigation <strong>of</strong> direct <strong>solar</strong><br />

gain utilization in buildings can be properly carried out based on a zone-by-zone <strong>analysis</strong>.<br />

The base-case building (located Hemel Hempstead, Engl<strong>and</strong>) was divided into fourteen<br />

volume subjects, called zones. The SERI-RES computer program was chosen for<br />

simulation tests. The usefulness <strong>of</strong> heating buildings is a function <strong>of</strong> <strong>the</strong> ratio. The<br />

calculation <strong>of</strong> <strong>solar</strong> gain as a function <strong>of</strong> <strong>the</strong> ratio <strong>of</strong> total <strong>solar</strong> to total loss (TS/TL) on a<br />

base <strong>of</strong> whole-building <strong>analysis</strong> can only lead to rough results.<br />

The absorption <strong>of</strong> <strong>solar</strong> <strong>radiation</strong> in buildings depends on <strong>the</strong> orientation <strong>and</strong> <strong>the</strong>rmal mass<br />

<strong>of</strong> <strong>the</strong> building. This problem was investigated by <strong>the</strong> same authors (Yohanis, et al., 2002)<br />

based on a single-storey building with <strong>glazing</strong> areas equal to 42 % <strong>of</strong> <strong>the</strong> east <strong>and</strong> west<br />

elevations <strong>and</strong> located in London (latitude <strong>of</strong> 52°). A model <strong>of</strong> <strong>the</strong> base-case building was<br />

created in <strong>the</strong> <strong>the</strong>rmal simulation code SERI-RES. Estimates indicated that for large<br />

<strong>the</strong>rmal mass <strong>and</strong> for smaller values <strong>of</strong> <strong>the</strong> total <strong>solar</strong> to total loss, <strong>the</strong> impact <strong>of</strong> orientation<br />

is not significant. But for <strong>the</strong> small mass <strong>of</strong> <strong>the</strong> considered buildings, <strong>the</strong> percentage<br />

differences increase to 8 % for east, 10 % for west <strong>and</strong> 12 % for north orientations.<br />

Florides, with co-workers (Florides, et al., 2002), carried out a <strong>the</strong>rmal response <strong>of</strong> modern<br />

houses taking into consideration ventilation, <strong>solar</strong> shading <strong>and</strong> <strong>the</strong> type <strong>of</strong> <strong>glazing</strong>, as well<br />

as <strong>the</strong> shape, orientation <strong>and</strong> <strong>the</strong>rmal mass <strong>of</strong> <strong>the</strong> buildings. The heating <strong>and</strong> cooling loads<br />

were calculated with use <strong>of</strong> computer s<strong>of</strong>tware TRNSYS <strong>and</strong> a typical meteorological year<br />

(TMY) for Nicosia, Cyprus. The considered modern house had a floor area <strong>of</strong> 196 m 2 <strong>and</strong><br />

consisted <strong>of</strong> four external walls with a low conductance <strong>and</strong> low transmittance window<br />

<strong>glazing</strong> with area equal to 5.2 m 2 . The simulation results for <strong>the</strong> warm period indicated that<br />

night ventilation can reduce peak internal temperatures by 2°C, 3°C <strong>and</strong> 7°C for one, two<br />

<strong>and</strong> eleven air changes per hour, respectively. Moreover, nine air changes per hour can<br />

lead to a 7.7 % reduction (maximum value) in annual cooling load.<br />

The problem <strong>of</strong> controlling <strong>the</strong> <strong>solar</strong> heat gains in order to reduce <strong>the</strong> capacity <strong>of</strong> an air<br />

conditioning system was studied by Saleh (Saleh, et al., 2004). They proposed a horizontal<br />

rotation <strong>of</strong> glass windowpanes. The computer program was developed to determine <strong>the</strong> sun<br />

declination <strong>and</strong> limits <strong>of</strong> sunlight hours. It was found that <strong>the</strong> percentage <strong>of</strong> direct <strong>solar</strong><br />

heat gain changes achievable by a rotation-angle magnitude <strong>of</strong> 30 0 <strong>and</strong> for east wall<br />

orientation equals to -11 % <strong>and</strong> 42 % for summer <strong>and</strong> winter solstice time, respectively.<br />

A novel <strong>glazing</strong> system with a rotatable frame for buildings located in climates where<br />

heating <strong>and</strong> cooling are required, was investigated by Etzion <strong>and</strong> Erell (Etzion, et al.,<br />

2000). Frame holds have transparent <strong>glazing</strong> <strong>and</strong> absorptive <strong>glazing</strong> with a low shading<br />

coefficient. Before a heating season, <strong>the</strong> <strong>glazing</strong> system rotates <strong>and</strong> <strong>the</strong> absorbing part is on<br />

<strong>the</strong> interior side. The experimental investigations for warm periods showed that <strong>the</strong> interior<br />

<strong>radiation</strong> for <strong>the</strong> reversible new <strong>glazing</strong> system <strong>and</strong> reference st<strong>and</strong>ard 3 mm transparent<br />

<strong>glazing</strong> were reduced to approximately 5 % <strong>and</strong> 37 % <strong>of</strong> exterior levels, respectively. For


1.2 Background <strong>and</strong> literature review 21<br />

winter conditions, <strong>the</strong> <strong>solar</strong> <strong>radiation</strong> through <strong>the</strong> tested windows was identical to <strong>the</strong><br />

st<strong>and</strong>ard window.<br />

Fissore <strong>and</strong> Fonseca (Fissore, et al., 2007) investigated <strong>the</strong> <strong>the</strong>rmal behavior <strong>of</strong> an enclosed<br />

space with fenestration for temperate winter climates. Experiments were carried out for<br />

heating season conditions <strong>and</strong> during summer periods. An uncertainly <strong>analysis</strong> indicated<br />

that <strong>the</strong> most significant errors are generated from measurements <strong>of</strong> surfaces <strong>and</strong> air<br />

temperature. Errors connected with <strong>the</strong>rmocouples <strong>and</strong> voltage measurement can be<br />

significant. The same authors (Fissore, et al., 2007) analyzed <strong>the</strong> <strong>the</strong>rmal balance <strong>of</strong> a<br />

window in an <strong>of</strong>fice in climate conditions typical for Concepcion (Chile). One-year<br />

measurements <strong>of</strong> ambient <strong>and</strong> indoor parameters under simulation <strong>of</strong> various operation<br />

conditions showed that heat consumption for uncovered windows during clear winter days<br />

could be smaller about 50 % compared to a cloudy period. For autumn conditions, this<br />

value was reduced to 26.6 %.<br />

The Task 34/Annex 43 project <strong>of</strong> <strong>the</strong> International Energy Agency (IEA) included six<br />

experiments in an outdoor test cell in order to provide <strong>the</strong> necessary data for <strong>the</strong> validation<br />

<strong>of</strong> building energy simulation models <strong>and</strong> computer s<strong>of</strong>tware (Manza, et al., 2006). The<br />

experimental facility was assembled with two identical cuboid shape test cells with<br />

removable <strong>façade</strong> elements. An air-water heat exchanger was used to control <strong>the</strong> air<br />

temperature inside guarded zones. DOE-2.1E, EnergyPlus, ESP-r <strong>and</strong> HELIOS building<br />

energy simulation computer programs were used for modelling <strong>the</strong> <strong>the</strong>rmal behavior <strong>of</strong> <strong>the</strong><br />

tested spaces. Experimental data, which are available on <strong>the</strong> Internet from<br />

www.empa.ch/ieatask34, can be a good base to investigate <strong>solar</strong> gains through transparent<br />

elements <strong>and</strong> can also be used to validate existing s<strong>of</strong>tware for <strong>the</strong> energy <strong>analysis</strong> <strong>of</strong><br />

buildings.<br />

The beam <strong>solar</strong> <strong>radiation</strong> incident on building fenestration can be controlled with<br />

holographic optical elements. This system was tested by James <strong>and</strong> Bahaj (James, et al.,<br />

2005) in modern, highly glazed <strong>of</strong>fice extensions with a low <strong>the</strong>rmal mass at Southampton<br />

University (UK). The possible solutions <strong>of</strong> <strong>the</strong> <strong>solar</strong> control problem were tested based on<br />

<strong>the</strong> transient <strong>the</strong>rmal simulation <strong>of</strong> <strong>the</strong> building structure with help <strong>of</strong> <strong>the</strong> computer code<br />

TRNSYS. The authors assumed that <strong>the</strong> HOE systems function at a 100 % diffraction<br />

efficiency but required alignment between incident direct <strong>radiation</strong> <strong>and</strong> <strong>the</strong> angle <strong>of</strong> <strong>the</strong><br />

hologram. Moreover, <strong>the</strong> effects <strong>of</strong> glare <strong>and</strong> spectral dispersion may cause <strong>the</strong> unsuitable<br />

functioning <strong>of</strong> holographic elements.<br />

Coating with a spectrally selective layer on external walls can affect heat transfer. Prager<br />

<strong>and</strong> co-workers (Prager, et al., 2006) analyzed <strong>the</strong> influence <strong>of</strong> <strong>solar</strong> <strong>radiation</strong> <strong>and</strong><br />

convection on <strong>the</strong> energy balance <strong>of</strong> a building based on test facilities in Freiburg<br />

(Germany). It was found that <strong>the</strong> considered IR radiative component reduces <strong>the</strong> heat<br />

dem<strong>and</strong> to between 5 % <strong>and</strong> 15 % during <strong>the</strong> winter season. However, in summer time, <strong>the</strong>


1.2 Background <strong>and</strong> literature review 22<br />

cooling energy dem<strong>and</strong> increases to between 10 % <strong>and</strong> 50 % depending on <strong>the</strong> <strong>the</strong>rmal<br />

resistance <strong>of</strong> <strong>the</strong> wall.<br />

One <strong>of</strong> <strong>the</strong> factors that influence <strong>the</strong> building energy balance is ground reflectivity.<br />

Thevenard <strong>and</strong> Haddad (Thevenard, et al., 2006) developed two snow albedo models. The<br />

first simple approach can be operated toge<strong>the</strong>r with a typical year <strong>and</strong> uses <strong>the</strong> monthly<br />

snow cover. The second advanced model assumes daily or hourly records <strong>of</strong> snow depth.<br />

Two objects were tested: a passive <strong>solar</strong> house located in a rural setting in Canada <strong>and</strong> a<br />

photovoltaic system in order to evaluate both models considered. ESP-r was used as a<br />

simulation tool. The authors indicated that <strong>the</strong> ground albedo value depends on <strong>the</strong> surface<br />

<strong>and</strong> may range from 0.07 to 0.6 in <strong>the</strong> absence <strong>of</strong> snow. For snow cover age, this value<br />

ranges from 0.2 to 0.7.<br />

The glazed openings percentage (GOP) may strongly affect a <strong>the</strong>rmal comfort in <strong>the</strong><br />

building. A dynamic <strong>the</strong>rmal-circuit zone method to study a type <strong>of</strong> <strong>glazing</strong> <strong>and</strong> <strong>the</strong> area <strong>of</strong><br />

fenestration influence on <strong>the</strong> maximum <strong>and</strong> minimum indoor air temperatures was used by<br />

Kontoleon <strong>and</strong> Bikas (Kontoleon, et al., 2002). The solution procedure assumed <strong>the</strong><br />

combined heat transfer by conduction, convection <strong>and</strong> <strong>radiation</strong> in <strong>the</strong> space for changing<br />

internal <strong>and</strong> external environmental behaviors. The simulation results showed that<br />

overheating is observed in buildings with double-<strong>glazing</strong> <strong>and</strong> interior insulation when <strong>the</strong><br />

GOP exceeds 70 % during <strong>the</strong> winter season. For <strong>the</strong> summer period, overheating<br />

disappears if <strong>the</strong> glazed openings percentage is less than 60 % <strong>and</strong> exterior insulation is<br />

placed on <strong>the</strong> horizontal surfaces.<br />

Alvarez with co-workers (Alvarez, et al., 2005) tested <strong>the</strong> <strong>solar</strong> heat gain coefficient<br />

(SHGC) for commercial sheet glasses with <strong>the</strong> following <strong>solar</strong> control coatings: ZnS (40<br />

nm) – CuS (150 nm) <strong>and</strong> ZnS (40 nm) – Bi2S3 (75 nm) – CuS (150 nm) at exterior<br />

temperatures <strong>of</strong> 15°C <strong>and</strong> 32°C. This work presented <strong>the</strong> <strong>the</strong>rmal performance <strong>of</strong> <strong>the</strong><br />

different types <strong>of</strong> laminated <strong>glazing</strong>s as a function <strong>of</strong> indoor <strong>and</strong> outdoor convective heat<br />

transfer coefficients. A reduction in SHGC that depends on exterior conditions was<br />

changed from 12 % to 20 % for single <strong>glazing</strong> with SnO2-based transparent conductive<br />

oxide film.<br />

Double-<strong>glazing</strong> with vacuum or inert gas is characterized by low heat loss. This type <strong>of</strong><br />

window with s<strong>of</strong>t <strong>and</strong> hard emittance coatings was investigated by Fang (Fang, et al.,<br />

2007). A three-dimensional finite volume model was developed for obtaining vacuum<br />

<strong>glazing</strong> <strong>the</strong>rmal performance. Experiments with <strong>the</strong> use <strong>of</strong> a guarded hot box calorimeter<br />

were carried out as well. It was found that vacuum <strong>glazing</strong> with a single low emittance has<br />

excellent performance. But <strong>the</strong> use <strong>of</strong> two low emittance coatings provides limited<br />

improvement.


1.2 Background <strong>and</strong> literature review 23<br />

1.2.3 Influence <strong>of</strong> envelope features on energy consumption <strong>and</strong><br />

potential savings<br />

Envelope features play an essential role in absorbing <strong>solar</strong> <strong>and</strong> internal gains. The storing<br />

<strong>of</strong> heat has a positive influence on less temperature fluctuations in living spaces <strong>and</strong><br />

improves <strong>the</strong> quality <strong>of</strong> <strong>the</strong> <strong>the</strong>rmal environment. Building structural elements, such as<br />

walls <strong>and</strong> floors, should be made with materials that have a high heat capacity <strong>and</strong> density<br />

in passive <strong>solar</strong> houses. Many complex problems are connected with <strong>the</strong> natural store <strong>of</strong><br />

heat such as <strong>the</strong> location <strong>of</strong> <strong>the</strong>rmal masses, wall configuration, insulation thickness, colour<br />

<strong>and</strong> structure <strong>of</strong> elevation. Moreover, it is necessary to estimate <strong>the</strong> optimal value <strong>of</strong> <strong>the</strong><br />

<strong>solar</strong> heat gain coefficient (SHGC), which depends on climate factors, in passive heating<br />

design. The current part <strong>of</strong> <strong>the</strong> literature review is dedicated to highlighting <strong>the</strong>se kinds <strong>of</strong><br />

issues.<br />

Lindberg with colleagues (Lindberg, et al., 2004) presented <strong>the</strong> <strong>the</strong>rmal performance <strong>of</strong> six<br />

different exterior walls which were determined based on a detailed experiment. The<br />

construction <strong>of</strong> <strong>the</strong> tested walls were as follows: polyurethane insulated wooden frame<br />

wall, insulated cavity brick wall, insulated log wall, plastered massive brick wall,<br />

autoclaved aerated concrete (AAC) block wall <strong>and</strong> log wall. The dimensions <strong>of</strong> each test<br />

building were as follows: width <strong>and</strong> length equal to 2.4 m <strong>and</strong> height equal to 2.6 m. A<br />

1500 W electric radiator was used as a heat source. Measurements were very detailed <strong>and</strong><br />

included: horizontal global <strong>solar</strong> <strong>radiation</strong>, wind speed <strong>and</strong> direction, infiltration, air<br />

tightness, relative humidity, inside-outside air temperatures <strong>and</strong> temperatures at various<br />

depths within each side <strong>of</strong> <strong>the</strong> exterior wall facades. The authors concluded that <strong>the</strong><br />

<strong>the</strong>rmal mass <strong>of</strong> <strong>the</strong> walls reduces temperature fluctuations <strong>and</strong> absorbs energy surpluses<br />

from <strong>solar</strong> <strong>and</strong> internal gains. As it turned out, <strong>the</strong> <strong>the</strong>rmal performance <strong>of</strong> <strong>the</strong> AAC block<br />

wall is better than that <strong>of</strong> <strong>the</strong> massive brick wall. The results <strong>of</strong> <strong>the</strong> calculation showed that<br />

one steady-state method leads to an overestimate <strong>of</strong> <strong>the</strong> heating or cooling energy transfer<br />

through <strong>the</strong> building envelope by 40 %.<br />

A method to assess <strong>the</strong> cost-effectiveness <strong>of</strong> residential building exterior walls for cold<br />

climate conditions was proposed by Wang (Wang, et al., 2007). Among o<strong>the</strong>r things, <strong>the</strong><br />

cost/benefit difference is calculated by comparing insulated exterior walls with typical for<br />

Chinese non-insulated solid clay brick exterior walls. An application <strong>of</strong> <strong>the</strong> proposed<br />

method was presented by <strong>the</strong> authors. A seven-storey residential building constructed with<br />

three types <strong>of</strong> different exterior walls <strong>and</strong> located in Nor<strong>the</strong>rn China was chosen as <strong>the</strong><br />

object <strong>of</strong> <strong>the</strong> cost-efficiency <strong>analysis</strong>. The calculation results indicated that <strong>the</strong> economical<br />

evaluation <strong>of</strong> <strong>the</strong> insulated exterior walls is a proper <strong>and</strong> easy way thanks to applying <strong>the</strong><br />

proposed methodology. Future work on this project will include <strong>the</strong> integration <strong>of</strong> cooling<br />

aspects <strong>and</strong> o<strong>the</strong>r difficulties in construction <strong>and</strong> environmental impacts.<br />

Smeds <strong>and</strong> Wall (Smeds, et al., 2007) compared a multi-family apartment building <strong>and</strong> a<br />

single-family detached house, designed according to <strong>the</strong> Nordic Building Code, with high<br />

performance houses using <strong>the</strong> best available technology, which fulfills <strong>the</strong> target


1.2 Background <strong>and</strong> literature review 24<br />

requirements <strong>of</strong> IEATask 28 (2003). Simulations <strong>of</strong> <strong>the</strong> buildings for cold climate data in<br />

Stockholm were carried out with computer code DEROB-LTH (2005). This dynamic<br />

simulation tool was built based on a ray tracing model. The results <strong>of</strong> <strong>the</strong> calculation<br />

revealed that <strong>the</strong> space-heating dem<strong>and</strong> can be reduced by up to 83 % for single-family<br />

houses <strong>and</strong> by up to 85 % for apartment buildings. The authors’ conclusion was that we<br />

should take into consideration <strong>the</strong> following design features: tightness <strong>of</strong> <strong>the</strong> building<br />

envelope, air ventilation balancing <strong>and</strong> heat recovery systems in order to obtain dem<strong>and</strong><br />

space-heating requirements equaling less than 15 – 25 kWh/m 2 .<br />

Experimental investigations <strong>of</strong> three Danish single-family houses constructed according to<br />

<strong>the</strong> new building energy requirements introduced in Denmark in 2006, were carried out by<br />

Tommerup <strong>and</strong> co-authors (Tommerup, et al., 2007). This project assumed a complex<br />

measure <strong>of</strong> energy consumption for space heating, domestic hot water <strong>and</strong> electricity<br />

consumption, <strong>solar</strong> <strong>radiation</strong>, outdoor <strong>and</strong> indoor temperatures <strong>and</strong> temperatures in HVAC<br />

systems. Findings <strong>of</strong> <strong>the</strong> experiment indicated that <strong>the</strong> energy consumption <strong>of</strong> all<br />

investigated houses can be classified as ‘‘low-energy house class 2’’. It means that energy<br />

consumption is 75 % <strong>of</strong> <strong>the</strong> required maximum value. Fur<strong>the</strong>rmore, applying existing lowenergy<br />

products in analyzed buildings can reduce consumption <strong>of</strong> electricity by about 40<br />

%. The authors hope that <strong>the</strong> results <strong>of</strong> <strong>the</strong> current project will be a good basis for <strong>the</strong><br />

development <strong>of</strong> energy-saving buildings in <strong>the</strong> future.<br />

Turkish St<strong>and</strong>ard Number 825 (TS 825) introduces four different degree-day (DD) regions<br />

namely: Izmir (DD: 1450), Bursa (DD: 2203), Eskis-ehir (DD: 3215) <strong>and</strong> Erzurum (DD:<br />

4856). For <strong>the</strong>se provinces Sisman <strong>and</strong> co-workers (Sisman, et al., 2007) determined an<br />

optimum insulation thickness for a lifetime <strong>of</strong> N years. Optimization calculations assumed<br />

exterior air temperature, length <strong>of</strong> <strong>the</strong> heating period, operating time <strong>of</strong> <strong>the</strong> system,<br />

economical lifetime <strong>and</strong> properties <strong>of</strong> <strong>the</strong> insulation material. The optimum value <strong>of</strong><br />

insulation thickness, which is <strong>the</strong> result <strong>of</strong> <strong>the</strong> current <strong>analysis</strong>, is equal to 0.033 m for<br />

Izmir, 0.047 m for Bursa, 0.061 m for Eskis-ehir <strong>and</strong> 0.08 m for Erzurum.<br />

Bakos (Bakos, 2000) analyzed <strong>the</strong> <strong>the</strong>rmal insulation in residential <strong>and</strong> tertiary sector,<br />

which was built before <strong>the</strong> enactment <strong>of</strong> <strong>the</strong> Greek Thermal Insulation Code. Various<br />

insulation protection approaches for buildings situated in Kavala (Nor<strong>the</strong>rn Greece) were<br />

investigated. The economical <strong>analysis</strong> took into account <strong>the</strong> costs <strong>of</strong> insulation material,<br />

labour <strong>and</strong> insurance. Bakos concluded that <strong>the</strong> correct combination <strong>of</strong> insulation materials<br />

can make substantial energy savings.<br />

The <strong>analysis</strong> <strong>of</strong> heat transfer through composite ro<strong>of</strong>s consisting <strong>of</strong> different positions <strong>of</strong><br />

insulation materials was realized by Ozel <strong>and</strong> Pihtili (2007). They applied numerical<br />

models based on an implicit finite difference scheme <strong>and</strong> MATLAB environment in <strong>the</strong>ir<br />

simulations. Twelve different ro<strong>of</strong> constructions were investigated for both winter <strong>and</strong><br />

summer periods. Ozel <strong>and</strong> Pihtili (Ozel, et al., 2007) states that “<strong>the</strong> best load leveling was<br />

achieved in <strong>the</strong> case where three pieces <strong>of</strong> insulation <strong>of</strong> equal thickness were placed one at<br />

<strong>the</strong> outdoor surface <strong>of</strong> <strong>the</strong> ro<strong>of</strong>, <strong>the</strong> second piece <strong>of</strong> insulation was placed in <strong>the</strong> middle <strong>of</strong><br />

<strong>the</strong> ro<strong>of</strong> <strong>and</strong> <strong>the</strong> third piece <strong>of</strong> insulation was placed on <strong>the</strong> indoor surface <strong>of</strong> <strong>the</strong> ro<strong>of</strong>”.


1.2 Background <strong>and</strong> literature review 25<br />

Fig. 1.3 presents <strong>the</strong> best location <strong>of</strong> insulation inside a ro<strong>of</strong>.<br />

glass wool<br />

concrete block<br />

glass wool<br />

concrete block<br />

glass wool<br />

Fig. 1.3: Configuration <strong>of</strong> insulation selected by Ozel <strong>and</strong> Pihtili (2007) as <strong>the</strong> best solution.<br />

Dombayci <strong>and</strong> co-workers (Dombayci, et al., 2006) investigated <strong>the</strong> optimization <strong>of</strong><br />

external wall insulation thickness for Denizli (southwestern Turkey) wea<strong>the</strong>r conditions.<br />

The effects <strong>of</strong> <strong>the</strong> energy source types (coal, natural gas, LPG, fuel oil, electricity) on<br />

energy savings <strong>and</strong> <strong>the</strong> use <strong>of</strong> different insulation materials (exp<strong>and</strong>ed polystyrene, rock<br />

wool) were analyzed. The difference between <strong>the</strong> buildings’ heating costs, with <strong>and</strong><br />

without <strong>the</strong> insulation <strong>of</strong> external walls, was used in a life-cycle cost <strong>analysis</strong> (LCCA).<br />

Results <strong>of</strong> <strong>the</strong> calculations revealed that <strong>the</strong> life cycle savings are $ 14.09 per square metre<br />

<strong>of</strong> wall surface area <strong>and</strong> a very short payback period <strong>of</strong> 1.43 years for <strong>the</strong> optimum<br />

insulation-thickness. These results were obtained with coal as <strong>the</strong> energy source <strong>and</strong><br />

exp<strong>and</strong>ed polystyrene as <strong>the</strong> insulating material.<br />

Khaled (Khaled, 2003) comprised two types <strong>of</strong> ro<strong>of</strong> insulation (polystyrene <strong>and</strong> fiberglass)<br />

for warm <strong>and</strong> cold climate conditions. Energy <strong>analysis</strong> was carried out for a 108 m 2 house<br />

in two USA locations: College Station (Texas) <strong>and</strong> Minneapolis (Minnesota). The<br />

RENCON simulation program (Degelman, et al., 1991) was used to determine annual<br />

heating <strong>and</strong> cooling energy consumption. Six different insulation resistance levels <strong>of</strong> <strong>the</strong><br />

ro<strong>of</strong> (R5, R10, R15, R20, R25, R30) were examined. In Khaled’s opinion, <strong>the</strong> most costeffective<br />

<strong>the</strong>rmal resistance for polystyrene is R5 <strong>and</strong> for fiberglass is R10. Besides this,<br />

<strong>the</strong> author remarked that <strong>the</strong> payback time <strong>of</strong> using insulation in a cold climate is shorter<br />

than that <strong>of</strong> a warm climate <strong>and</strong> that <strong>the</strong> best solution for <strong>the</strong>rmal insulation design is <strong>the</strong><br />

use <strong>of</strong> a life-cycle cost <strong>analysis</strong> ra<strong>the</strong>r than <strong>the</strong> construction budget limitation.<br />

The problem concerning <strong>the</strong> best insulation level <strong>of</strong> <strong>the</strong> envelope <strong>of</strong> new residential<br />

buildings in 6 Italian climatic zones was studied by Lollini (Lollini, et al., 2006).<br />

Economical <strong>analysis</strong> was based on two main parameters <strong>of</strong> investment efficiency: <strong>the</strong> net<br />

present value (NPV) <strong>and</strong> <strong>the</strong> payback rate (PBR). The methodology used in this project<br />

included <strong>the</strong> following factors: calculation <strong>of</strong> <strong>the</strong> optimal insulation thickness, analyses <strong>of</strong><br />

market <strong>and</strong> cost, energy calculation <strong>of</strong> <strong>the</strong> reference buildings, calculation for different


1.2 Background <strong>and</strong> literature review 26<br />

configurations <strong>of</strong> insulation levels <strong>and</strong> evaluation <strong>of</strong> <strong>the</strong> environmental impact. The EC501<br />

computer code was used to determine <strong>the</strong> energy consumption for many configurations,<br />

which assumed climatic conditions, selected building characteristics <strong>and</strong> <strong>the</strong> insulation<br />

levels. The Lollini at al. study revealed that <strong>the</strong> better insulated buildings can strongly<br />

reduce <strong>the</strong> heating energy dem<strong>and</strong>. Moreover, PBR is always shorter than 5 years for <strong>the</strong><br />

tower building, <strong>and</strong> <strong>the</strong> payback rate is shorter than 8 years for <strong>the</strong> single-family house.<br />

Persson, with colleagues (Persson, et al., 2006), analyzed <strong>the</strong> influence <strong>of</strong> decreasing <strong>the</strong><br />

window size facing south <strong>and</strong> increasing <strong>the</strong> window size facing north on <strong>the</strong> energy<br />

consumption <strong>of</strong> 20 terraced passive houses, which were built outside Go<strong>the</strong>nburg in<br />

Spring, 2001. DEROB-LTH s<strong>of</strong>tware (DEROB-LTH, 2005) was used to simulate <strong>the</strong><br />

energy dem<strong>and</strong> dynamic conditions over a whole year. Calculations considered different<br />

orientations <strong>of</strong> buildings <strong>and</strong> window types. The findings <strong>of</strong> <strong>the</strong> simulation showed that it<br />

is possible to enlarge north window areas in order to obtain better conditions in natural<br />

lighting. There is also an optimal south window area, which is smaller than <strong>the</strong> designed<br />

size <strong>of</strong> <strong>the</strong> existing terraced passive houses.<br />

1.2.4 Modelling <strong>and</strong> designing <strong>solar</strong> domestic hot water systems<br />

Solar <strong>radiation</strong> can be converted into <strong>the</strong>rmal <strong>and</strong> electric energy. In <strong>the</strong> last two decades a<br />

large-scale development <strong>of</strong> <strong>solar</strong> domestic hot water systems has been observed, even in<br />

cold climates. These applications may provide between 40 % to 70 % annual DHW<br />

dem<strong>and</strong> <strong>and</strong> even 100 % during summer months. A typical SDHW heater is made up <strong>of</strong><br />

<strong>solar</strong> panels, storage tanks <strong>and</strong> supplemental heat sources.<br />

There are two alternative types <strong>of</strong> <strong>solar</strong> collectors for heating water. The most popular in<br />

Europe are flat plate panels which unfortunately have a low efficiency performance <strong>and</strong><br />

high energy losses during winter. A typical conversion device is made up <strong>of</strong> metal or<br />

plastic casing, insulation, a glass or plastic cover <strong>and</strong> an absorber plate. The collector heats<br />

up a circulating fluid. Tube <strong>solar</strong> water heaters have a quite different structure. They are<br />

constructed <strong>of</strong> a series <strong>of</strong> annealed glass tubes with an integrated metal absorber plate.<br />

There is a vacuum between <strong>the</strong> inner <strong>and</strong> outer glass tubes.<br />

European St<strong>and</strong>ard (EN12975-2, 2007) introduced a simple calculation method for <strong>the</strong><br />

estimation <strong>of</strong> <strong>solar</strong> collector efficiency ηSC. The value <strong>of</strong> ηSC depends on six parameters<br />

<strong>and</strong> is defined by:<br />

( )<br />

2<br />

θ M −θ<br />

A θ M −θ<br />

A<br />

η � η 0 − a1<br />

− a2<br />

, (1.11)<br />

�� G<br />

G<br />

where:<br />

η0 – zero-loss collector efficiency (conversion factor),


1.2 Background <strong>and</strong> literature review 27<br />

a1, a2 – <strong>the</strong>rmal transmittance (loss) coefficients,<br />

G – <strong>solar</strong> ir<strong>radiation</strong>,<br />

θM – collector mean temperature,<br />

θA – ambient air temperature.<br />

Consequently, <strong>the</strong> <strong>solar</strong> collector power PSC is obtained by <strong>the</strong> following relation:<br />

��� � η SC AG , (1.12)<br />

where A is an area <strong>of</strong> <strong>the</strong> <strong>solar</strong> collector absorber.<br />

The value <strong>of</strong> <strong>solar</strong> <strong>radiation</strong> strongly depends on <strong>the</strong> time <strong>of</strong> day <strong>and</strong> <strong>the</strong> year. For this<br />

reason, it is necessary to use storage tanks <strong>and</strong> auxiliary heating units. Photo<strong>the</strong>rmal<br />

conversion <strong>of</strong> <strong>solar</strong> energy can be carried out as an active or a passive solution. The basic<br />

schemes <strong>of</strong> SDHW systems are presented in Fig. 1.4 – Fig. 1.7.<br />

<strong>solar</strong><br />

collector<br />

Storage tank<br />

Fig. 1.4: Connection diagram <strong>of</strong> <strong>the</strong>rmosyphon SDHW with two separate loops.<br />

DHW supply<br />

cold water


1.2 Background <strong>and</strong> literature review 28<br />

<strong>solar</strong><br />

collector<br />

Fig. 1.5: Connection diagram <strong>of</strong> <strong>the</strong>rmosyphon SDHW with open water loop.<br />

The passive systems do not include any mechanical devices, but are used mostly in<br />

moderate <strong>and</strong> hot climate regions.<br />

<strong>solar</strong><br />

collector<br />

Storage tank<br />

DHW supply<br />

Fig. 1.6: Connection diagram <strong>of</strong> active SDHW system that is coupled with supplementary heater.<br />

Storage tank<br />

DHW supply<br />

cold water<br />

Auxiliary heat source<br />

cold water


1.2 Background <strong>and</strong> literature review 29<br />

<strong>solar</strong><br />

collector<br />

Fig. 1.7: Connection diagram <strong>of</strong> active SDHW system with separate supplementary heater.<br />

The closed-loop active systems are recommended in colder climates because <strong>the</strong>y have<br />

high efficiency <strong>and</strong> can operate throughout <strong>the</strong> year.<br />

The complexity <strong>of</strong> <strong>the</strong> energy conversion effect <strong>and</strong> <strong>the</strong> dependence <strong>of</strong> <strong>the</strong> <strong>solar</strong> <strong>radiation</strong><br />

rate currently <strong>of</strong>ten cause problems in designing large-scale applications. Computer<br />

simulations carried out for <strong>the</strong> full annual operating period may help to optimize <strong>the</strong> area<br />

<strong>of</strong> <strong>solar</strong> collectors <strong>and</strong> <strong>the</strong> volume <strong>of</strong> storage tanks. Additionally, this type <strong>of</strong> <strong>analysis</strong> is<br />

used to estimate energy production by photo<strong>the</strong>rmal conversion. The review <strong>of</strong> <strong>the</strong> newest<br />

research projects that has focused on <strong>the</strong> modelling <strong>and</strong> experimental testing <strong>of</strong> DHW<br />

systems integrated with <strong>solar</strong> panels is presented below.<br />

A complex overview <strong>of</strong> <strong>the</strong> main tendency in modelling <strong>and</strong> designing in simulation <strong>of</strong> <strong>the</strong><br />

<strong>solar</strong> heating process was carried out by Nafey (Nafey, 2005). In order to systematize this<br />

problem, <strong>the</strong> author classified methods, algorithms, techniques <strong>and</strong> computer programs.<br />

Two main types <strong>of</strong> simulation programs were distinguished: special purpose (on-<strong>of</strong>f<br />

programs) <strong>and</strong> general-purpose (modular programs). The author created a simplified flow<br />

diagram for <strong>the</strong> simulation <strong>of</strong> <strong>the</strong> <strong>solar</strong> heating process performance as shown in Fig. 1.8.<br />

Each block represents a separate processing unit <strong>and</strong> <strong>the</strong> arrow lines represent possible unit<br />

connections with a pipe system.<br />

FEED 1<br />

UNIT A UNIT B UNIT C<br />

FEED 2<br />

Fig. 1.8: Flow chart <strong>of</strong> Nafey (2005), which shows <strong>the</strong> sequence <strong>of</strong> actions within <strong>the</strong> simulation <strong>of</strong> <strong>the</strong><br />

<strong>solar</strong> heating process.<br />

Storage tank<br />

Auxiliary heat source<br />

~<br />

DHW supply<br />

cold water


1.2 Background <strong>and</strong> literature review 30<br />

The exergy concept <strong>and</strong> <strong>the</strong> use <strong>of</strong> a new feature <strong>of</strong> <strong>the</strong> visual programming with<br />

comfortable interfaces were mentioned as developments in <strong>the</strong> simulation <strong>of</strong> <strong>solar</strong> heating<br />

processes in <strong>the</strong> future.<br />

Kulkarni, with co-workers (Kulkarni, et al., 2007), presented a methodology in <strong>the</strong> design<br />

space approach for <strong>the</strong> syn<strong>the</strong>sis, <strong>analysis</strong> <strong>and</strong> optimization <strong>of</strong> <strong>solar</strong> water heating systems.<br />

The design space in this concept is obtained by tracing constant <strong>solar</strong> fraction lines on a<br />

collector area versus <strong>the</strong> storage volume diagram. Results <strong>of</strong> <strong>the</strong> calculation showed that a<br />

minimum <strong>and</strong> maximum storage volume for a given <strong>solar</strong> fraction <strong>and</strong> an area <strong>of</strong> collector<br />

exists. Apart from that, it can be observed that a minimum <strong>and</strong> maximum collector area for<br />

a fixed <strong>solar</strong> fraction <strong>and</strong> storage volume exists. Benefits <strong>of</strong> <strong>the</strong> energy savings <strong>of</strong> <strong>the</strong><br />

SDHW system were determined using <strong>the</strong> economical objective function based on annual<br />

life cycle costs. The methodology proposed by Kulkarni <strong>and</strong> co-workers can be used in<br />

many different <strong>solar</strong> <strong>the</strong>rmal configurations, as well as in retr<strong>of</strong>it cases.<br />

Furbo <strong>and</strong> Shah (Furbo, et al., 2003) examined <strong>the</strong> influence <strong>of</strong> a glass cover with<br />

antireflection surfaces on <strong>the</strong> <strong>the</strong>rmal performance <strong>of</strong> <strong>solar</strong> heating systems <strong>and</strong> <strong>the</strong><br />

efficiency <strong>of</strong> <strong>solar</strong> panels. Two glass plates were compared. One <strong>of</strong> <strong>the</strong>m was covered by<br />

an antireflection layer. Measurement <strong>of</strong> surface transmittances was performed for different<br />

incidence angles. The dependence <strong>of</strong> <strong>the</strong> incidence angle on <strong>the</strong> transmittance <strong>of</strong> <strong>the</strong><br />

antireflection surfaces was increased by 5–9 %. The <strong>influences</strong> in increasing <strong>solar</strong> collector<br />

efficiency by 4–6 % are due to <strong>the</strong> antireflection. The yearly simulation <strong>of</strong> <strong>the</strong> <strong>the</strong>rmal<br />

performance <strong>of</strong> <strong>solar</strong> systems revealed that <strong>the</strong> energy produced by a <strong>solar</strong> collector<br />

increased by about 12 % using antireflection surfaces, if <strong>the</strong> mean <strong>solar</strong> collector fluid<br />

temperature is 60°C. We can obtain a 20 % savings for fluid temperature equal to 100°C.<br />

A discharge process from different levels in <strong>solar</strong> storage tanks was investigated by Furbo<br />

(Furbo a, et al., 2005) (Furbo b, et al., 2005). They tested two identical small low-flow<br />

SDHW systems which contained st<strong>and</strong>ard mantle tanks. The difference between <strong>the</strong> tanks<br />

lay in that first one was equipped with a PEX pipe for hot water draw-<strong>of</strong>f from <strong>the</strong> very top<br />

<strong>of</strong> <strong>the</strong> tank <strong>and</strong> <strong>the</strong> second had an additional PEX pipe placed in <strong>the</strong> middle <strong>of</strong> <strong>the</strong> device.<br />

Auxiliary energy sources were used as electric heating elements in both cases. The<br />

experiment was carried out during a 6-week-period with a draw-<strong>of</strong>f temperature <strong>of</strong> 50°C<br />

<strong>and</strong> for 7 weeks with a draw-<strong>of</strong>f temperature <strong>of</strong> 47°C. The Mantlsim model, which was<br />

developed at <strong>the</strong> Technical University <strong>of</strong> Denmark by Furbo <strong>and</strong> Knudsen (Furbo, et al.,<br />

2004), was used to analyze two low-flow storage systems. Simulations were carried out<br />

with <strong>the</strong> use <strong>of</strong> wea<strong>the</strong>r data from <strong>the</strong> Danish Test Reference Year. The findings <strong>of</strong> <strong>the</strong><br />

study indicated that <strong>the</strong> best level <strong>of</strong> <strong>the</strong> second draw-<strong>of</strong>f is in <strong>the</strong> middle <strong>of</strong> <strong>the</strong> tank <strong>and</strong><br />

that <strong>the</strong> increase in <strong>the</strong> <strong>the</strong>rmal performance by <strong>the</strong> second draw-<strong>of</strong>f level is about 6 %.<br />

The application <strong>of</strong> <strong>the</strong> transparent insulation material (TIM) in minimizing top heat losses<br />

<strong>of</strong> <strong>solar</strong> water heaters was proposed by Chaurasia <strong>and</strong> Twidell (Chaurasia, et al., 2001).<br />

Two identical <strong>solar</strong> water heaters were tested in order to determine <strong>the</strong> role <strong>of</strong> transparent


1.2 Background <strong>and</strong> literature review 31<br />

insulation. The TIM cover was placed on <strong>the</strong> absorbing surface <strong>of</strong> one unit to prevent heat<br />

losses during <strong>the</strong> night period. The insulation was made <strong>of</strong> polycarbonate material<br />

consisting <strong>of</strong> a honeycomb construction with a square section <strong>of</strong> 3 mm on 3 mm tubes <strong>and</strong><br />

100 mm long. The TIM <strong>glazing</strong> was found to be quite effective as compared to glass<br />

<strong>glazing</strong> SWH. Experiments showed water at higher temperatures <strong>of</strong> 8.5°C to 9.5°C by <strong>the</strong><br />

next morning thanks to <strong>the</strong> use <strong>of</strong> transparent insulation materials. Also, it was found that<br />

<strong>the</strong> efficiency <strong>of</strong> <strong>solar</strong> storage water heaters was 39.8 % with TIM <strong>glazing</strong> compared to<br />

15.1 % without this insulation.<br />

A method for determining <strong>the</strong> performance <strong>of</strong> <strong>solar</strong> water heating systems was developed<br />

by Yohanis <strong>and</strong> co-authors (Yohanis, et al., 2006). If <strong>the</strong> <strong>solar</strong>-heated rate is at a settemperature,<br />

this approach can be used to determine <strong>the</strong> number <strong>of</strong> days each month that<br />

<strong>solar</strong> heating alone satisfies <strong>the</strong> needs. The authors maintained that <strong>the</strong>ir method is easy to<br />

underst<strong>and</strong> by users without knowledge <strong>of</strong> <strong>solar</strong> systems which is different from <strong>the</strong> <strong>solar</strong><br />

fractions approach. The computer <strong>analysis</strong> tool TRNSYS was used to simulate a domesticscale<br />

<strong>solar</strong> hot water system (Fig. 1.9), which consisted <strong>of</strong> a <strong>solar</strong> collector, storage tank,<br />

auxiliary heater <strong>and</strong> controller.<br />

<strong>solar</strong><br />

collector<br />

insulated storage tank<br />

controller<br />

Fig. 1.9: SDHW system, which was analyzed by Yohanis at al. (2006).<br />

Auxiliary heater<br />

~<br />

DHW<br />

supply<br />

cold water supply


1.2 Background <strong>and</strong> literature review 32<br />

In calculations, typical meteorological years (TMY) for Belfast (Nor<strong>the</strong>rn Irel<strong>and</strong>) were<br />

applied. Finally, it was concluded that for a lower normalized number <strong>of</strong> days, <strong>solar</strong><br />

fraction is less defined than for a higher number <strong>of</strong> days <strong>and</strong> high <strong>solar</strong> fraction does not<br />

necessarily mean that <strong>the</strong> storage tank water temperature reached a set temperature.<br />

Norton <strong>and</strong> Lo (Norton, et al., 2006) discussed technical developments in <strong>solar</strong> <strong>the</strong>rmal<br />

applications. They presented <strong>the</strong> taxonomy <strong>of</strong> principle generic tracking <strong>and</strong> stationary<br />

<strong>solar</strong> <strong>the</strong>rmal collectors. It is stated that a <strong>the</strong>rmal characteristic <strong>of</strong> <strong>solar</strong> collectors can be<br />

seen, shown in Fig. 1.10, <strong>and</strong> that it is impossible to select <strong>the</strong> universally best <strong>solar</strong> panel.<br />

The authors quoted <strong>the</strong> following example “in low temperature applications in areas with<br />

high insulation, an unglazed collector with a plastic absorber resistant to ultra-violet<br />

<strong>radiation</strong> may be <strong>the</strong> optimal choice. On <strong>the</strong> o<strong>the</strong>r h<strong>and</strong>, under high insulation conditions,<br />

<strong>solar</strong> <strong>the</strong>rmal electricity generation requires <strong>the</strong> use <strong>of</strong> evacuated tubes located at <strong>the</strong><br />

focus <strong>of</strong> line-axis tracking parabolic reflectors; direct steam generation takes place in <strong>the</strong><br />

absorber tube which is coated with a high temperature <strong>solar</strong> selective absorber”.<br />

ηSC<br />

SC<br />

1,0<br />

0,9<br />

0,8<br />

0,7<br />

0,6<br />

0,5<br />

0,4<br />

0,3<br />

0,2<br />

0,1<br />

0,0<br />

Plastic absorber<br />

Air collector<br />

Plat plate collector<br />

Evacuated tube collector<br />

0,00 0,02 0,04 0,06 0,08 0,10 0,12 0,14 0,16 0,18 0,20<br />

(θ M -θ A )/G [Km 2 /W]<br />

Fig. 1.10: Hottel-Whillier-Bliss performance characteristic <strong>of</strong> low <strong>and</strong> medium temperature <strong>solar</strong> collectors.<br />

An alternative way to solve problems concerning <strong>the</strong> simulation <strong>of</strong> <strong>solar</strong> energy conversion<br />

systems is <strong>the</strong> Artificial Neural Networks (ANN) technology.<br />

Kalogirou <strong>and</strong> co-workers (Kalogirou, et al., 1999) tested an ANN in order to evaluate <strong>the</strong><br />

performance characteristics <strong>of</strong> <strong>solar</strong> domestic water heating systems. The ANN test<br />

database included 30 known cases varying from collector areas between 1.81 m 2 <strong>and</strong> 4.38<br />

m 2 . Apart from that, open <strong>and</strong> closed systems, horizontal <strong>and</strong> vertical storage tanks, which<br />

operate in variety <strong>of</strong> wea<strong>the</strong>r conditions, were investigated. The energy extracted from <strong>the</strong><br />

SDHW system <strong>and</strong> <strong>the</strong> rises in temperature in <strong>the</strong> storage tank were <strong>the</strong> results <strong>of</strong><br />

calculations based on an ANN algorithm. The ANN method can be successfully used even


1.2 Background <strong>and</strong> literature review 33<br />

in <strong>the</strong> simulation <strong>of</strong> completely unknown systems because <strong>the</strong> authors obtained predictions<br />

within 7.1 % <strong>and</strong> 9.7 %.<br />

The results <strong>of</strong> computer simulations <strong>of</strong> <strong>solar</strong> domestic hot water systems, based on <strong>the</strong> time<br />

marching model, were obtained by Bojic (Bojic, et al., 2002). The analyzed system, which<br />

was used for a typical Yugoslavian family, consisted <strong>of</strong> a flat-plate <strong>solar</strong> panel having an<br />

area <strong>of</strong> 3 m 2 , a storage tank (volume ranged from 60 l to 400 l), an auxiliary heater <strong>and</strong> a<br />

mixing device. A computer tool called TEMP was created which can be used to design <strong>and</strong><br />

operate SDHW systems. Estimates showed, among o<strong>the</strong>r things, that when <strong>the</strong> volume <strong>of</strong> a<br />

storage tank is larger, <strong>the</strong> fraction <strong>of</strong> <strong>solar</strong> <strong>radiation</strong> is less sensitive to a variation in <strong>the</strong><br />

operation parameters <strong>of</strong> <strong>the</strong> system.<br />

Furbo <strong>and</strong> co-workers (Furbo a, et al., 2005) investigated small systems in which domestic<br />

water may be heated by <strong>solar</strong> collectors or by an auxiliary electric heat source. Three<br />

different tanks (one traditional <strong>and</strong> two smart), shown in Fig. 1.11, were experimentally<br />

<strong>and</strong> <strong>the</strong>oretically examined in <strong>the</strong> same operating conditions.<br />

electric<br />

heating<br />

element<br />

to <strong>solar</strong><br />

collector<br />

cold water hot water<br />

electric<br />

heating<br />

element<br />

from<br />

<strong>solar</strong><br />

collector<br />

electric<br />

heating<br />

element<br />

to <strong>solar</strong><br />

collector<br />

plastic<br />

pipe<br />

to <strong>solar</strong><br />

collector<br />

cold water hot water<br />

Fig. 1.11: Three <strong>solar</strong> tanks investigated by Furbo at. al (2005).<br />

side arm<br />

from<br />

<strong>solar</strong><br />

collector<br />

cold water hot water<br />

electric<br />

heating<br />

element<br />

from<br />

<strong>solar</strong><br />

collector


1.2 Background <strong>and</strong> literature review 34<br />

The experimental systems were supplied by 3 m 2 <strong>solar</strong> collectors <strong>and</strong> by horizontal <strong>and</strong><br />

vertical electric heating elements. Investigations revealed that <strong>the</strong> <strong>the</strong>rmal performance <strong>of</strong><br />

SDHW systems based on smart <strong>solar</strong> tanks is 5 % – 35 % higher compared to traditional<br />

systems.<br />

An <strong>analysis</strong> <strong>of</strong> heat transfer in a vertical mantle tank, as illustrated in Fig. 1.12, was <strong>the</strong><br />

main goal <strong>of</strong> <strong>the</strong> Shah, L.J. project (Shah, 2000). The main advantages <strong>of</strong> <strong>the</strong> mantle tank<br />

are a large heat transfer area <strong>and</strong> an effective fluid distribution over <strong>the</strong> tank wall.<br />

electric heating element<br />

tank<br />

<strong>solar</strong><br />

collector Storage<br />

cold water supply<br />

DHW supply<br />

Fig. 1.12: Sketch <strong>of</strong> a <strong>solar</strong> domestic hot water system analyzed by Shah L.J. (2000), which is typical in<br />

Denmark <strong>and</strong> Holl<strong>and</strong>.<br />

The CFD technique was used for <strong>the</strong> three-dimensional flow simulation in a mantle tank.<br />

The results <strong>of</strong> <strong>the</strong> calculations were validated by comparing <strong>the</strong> measurements <strong>and</strong> good<br />

agreement was reached. Based on <strong>the</strong> CFD simulations, Shah L.J. (Shah, 2000) introduced<br />

heat transfer correlations for <strong>the</strong> analyzed systems.<br />

Investigations <strong>of</strong> <strong>the</strong> SDHW systems are mainly based on energy balance. But <strong>the</strong>re are not<br />

many works which utilize exergetic <strong>analysis</strong>. Gunerhan <strong>and</strong> Hepbasli (Gunerhan, et al.,<br />

2007) used <strong>the</strong> exergy approach to model a system, which consisted <strong>of</strong> a flat <strong>solar</strong> collector<br />

(2 m 2 aperture area), a storage tank as a heat exchanger <strong>and</strong> a circulation pump. A<br />

characteristic performance <strong>of</strong> <strong>the</strong> system was evaluated based on <strong>the</strong> measurements <strong>of</strong><br />

mass flow rates, water temperatures, <strong>solar</strong> flux, wind velocity <strong>and</strong> ambient atmospheric<br />

pressure. The experiment was made at <strong>the</strong> Ege University (Turkey). Estimates indicated<br />

that <strong>the</strong> exergy efficiency varied in <strong>the</strong> following ranges: 2,02 % – 3,37 % for <strong>the</strong> <strong>solar</strong><br />

panel, 10,0 % – 16,67 % for <strong>the</strong> circulation pump <strong>and</strong> 16 % – 51,72 % for <strong>the</strong> heat<br />

exchanger at a reference state fluid temperature equal to 32.77°C.


1.2 Background <strong>and</strong> literature review 35<br />

Strategies (costs <strong>and</strong> feasibility) <strong>of</strong> <strong>solar</strong> energy conversion based on open loop, flat-plate<br />

<strong>solar</strong> collector systems were studied by Badescu (Badescu, 2008). The optimization<br />

problem was solved by using a direct shooting approach - trajectory optimization by<br />

ma<strong>the</strong>matical programming (TOMP) developed by Kraft (Kraft, 1994). A registry-type,<br />

flat-plate <strong>solar</strong> collector <strong>and</strong> meteorological database for Bucharest were used in this study.<br />

Simulations were performed during a one-year operating period <strong>and</strong> good agreement was<br />

observed in calculations with <strong>the</strong> measurements available in literature. Estimates obtained<br />

for <strong>the</strong> considered system indicated that <strong>the</strong> maximum exergetic efficiency was usually less<br />

than 3 %.<br />

The next study <strong>of</strong> Badescu (Badescu, 2008) was also conducted to determine <strong>the</strong> optimal<br />

flow control in a closed loop flat plate <strong>solar</strong> collector, which cooperated with a water<br />

storage tank. The following design configurations were analyzed: a tank with one<br />

serpentine <strong>and</strong> a tank with two serpentines. In both cases, a fully mixed regime in <strong>the</strong><br />

storage tanks was considered. In <strong>the</strong> present project, <strong>the</strong> author implemented an indirect<br />

optimal control technique based on Pontryagin’s maximum principle. As it turned out, <strong>the</strong><br />

first considered system performed better than <strong>the</strong> second configuration. There is one<br />

limitation in <strong>the</strong> storage system with one serpentine. It should not operate during <strong>the</strong> winter<br />

period in regions with higher latitudes. Badescu (Badescu, 2008) stated that <strong>the</strong> optimal<br />

operation strategy consists <strong>of</strong> two jump steps up <strong>and</strong> two jump steps down between zero<br />

<strong>and</strong> <strong>the</strong> maximum rate <strong>of</strong> fluid flow in <strong>the</strong> primary circuit <strong>of</strong> <strong>the</strong> storage tank.<br />

Biaou <strong>and</strong> Bernier (Biaou, et al., 2008) carried out research in <strong>the</strong> various ways <strong>of</strong><br />

domestic hot water production for two climate conditions: Montreal <strong>and</strong> Los Angeles. The<br />

following renewable energy sources were examined:<br />

� conventional electric hot water tank,<br />

� ground-source heat pump (GSHP) desuperheater (refrigerant-to-water heat<br />

exchanger) combined with a regular electric hot water tank,<br />

� SDHW system composed <strong>of</strong> flat plate <strong>solar</strong> collectors, an external heat exchanger, a<br />

<strong>solar</strong> water storage tank <strong>and</strong> a regular auxiliary electric water tank, two circulators<br />

<strong>and</strong> a temperature controller (Fig. 1.13),<br />

� heat pump water heater (HPWH) indirectly coupled to a space conditioning<br />

ground-source heat pump.<br />

Four alternative systems were applied in zero-net energy homes (ZNEH), consisting <strong>of</strong> a<br />

well-insulated two-storey 156 m 2 residence with an unheated half-basement.


1.2 Background <strong>and</strong> literature review 36<br />

<strong>solar</strong><br />

collector<br />

Fig. 1.13: SDHW system studied by Biaou <strong>and</strong> Bernier (2008).<br />

The main examined components were modeled using a TRSNYS <strong>and</strong> IISIBAT interface.<br />

The results <strong>of</strong> <strong>the</strong> simulations explicitly indicated that <strong>the</strong> system with <strong>solar</strong> collectors was<br />

<strong>the</strong> best solution for <strong>the</strong> production <strong>of</strong> DHW in zero-net energy homes.<br />

The main goal <strong>of</strong> <strong>the</strong> Cardinale <strong>and</strong> co-workers (Cardinale, et al., 2003) study was an<br />

economical optimization <strong>of</strong> low-flow <strong>solar</strong> domestic hot water plants. Domestic hot-water<br />

production was 500 litres a day for a four-person Italian family. The analyzed system, as<br />

shown in Fig. 1.14, consisted <strong>of</strong> a <strong>solar</strong> collector (1.9 m 2 surface area), a 2.16 m height<br />

storage tank, two pumps powered by photovoltaic panels <strong>and</strong> an auxiliary heater. The<br />

TRNSYS code was used to estimate <strong>the</strong> <strong>the</strong>rmo–energetic performances <strong>of</strong> <strong>the</strong> <strong>solar</strong> plant.<br />

<strong>solar</strong><br />

collector<br />

heat<br />

exchanger<br />

controller<br />

external heat<br />

exchanger<br />

PV pump PV pump<br />

Storage tank<br />

storage tank<br />

Fig. 1.14: Schematic sketch <strong>of</strong> <strong>the</strong> system studied by Cardinale at al. (2003).<br />

cold water<br />

backup tank<br />

auxiliary heater<br />

DHW<br />

supply<br />

electric heaters<br />

to load<br />

from main


1.2 Background <strong>and</strong> literature review 37<br />

Simulations indicated that <strong>the</strong>re are many advantages for <strong>the</strong> considered <strong>solar</strong> system in<br />

comparison with <strong>the</strong> utilization <strong>of</strong> electric energy. Moreover, <strong>the</strong> authors concluded that<br />

<strong>the</strong> tested plant can be clearly justified when fossil fuel consumption is dramatically<br />

reduced.<br />

The Dahm, with co-workers (Dahm, et al., 1998), tested system, which consisted <strong>of</strong> an<br />

electrical auxiliary storage heater with a volume <strong>of</strong> 750 litres, internal heat exchangers <strong>and</strong><br />

tempering valves. Fig. 1.15 presents four different storage considered systems.<br />

Investigations were carried out on a statistically generated six-day test sequence <strong>and</strong> a <strong>solar</strong><br />

collector simulator under conditions similar to those in Sweden.<br />

1<br />

2 2<br />

Configuration 1<br />

3<br />

1<br />

1<br />

Configuration 3<br />

Fig. 1.15: The schematic layout <strong>of</strong> <strong>the</strong> four configurations considered in <strong>the</strong> Dahm (1998) experiments.<br />

An acceptable accuracy rate (relative <strong>and</strong> absolute difference) between <strong>the</strong> measured <strong>and</strong><br />

calculated energy transfer for <strong>solar</strong> <strong>and</strong> load heat exchangers was obtained. The authors<br />

concluded that when using a real wea<strong>the</strong>r database, <strong>the</strong> <strong>solar</strong> fraction is about 10 % lower<br />

than <strong>the</strong> measured value based on <strong>the</strong> considered six-day test system for <strong>the</strong> summer<br />

period.<br />

3<br />

1<br />

1<br />

Configuration 2<br />

1<br />

1<br />

Configuration 4


1.2 Background <strong>and</strong> literature review 38<br />

Ma<strong>the</strong>r, with co-workers (Ma<strong>the</strong>r, et al., 2002), investigated a SDHW system, shown in<br />

Fig. 1.16, with a multi-tank configuration <strong>and</strong> a total volume <strong>of</strong> water larger than 2000 l.<br />

The authors have proposed an arrangement <strong>of</strong> small tanks that are serially connected by<br />

immersed-coil heat exchangers. Experimental tests demonstrated a <strong>the</strong>rmodynamically<br />

advantageous ‘<strong>the</strong>rmal diode’ effect that <strong>the</strong> examined system can achieve. A model for a<br />

considered tank configuration based on a reversion-elimination algorithm <strong>of</strong> Marshall <strong>and</strong><br />

Li (Marshall, et al., 1991) <strong>and</strong> Newton (Newton, et al., 1995) was developed. Experimental<br />

<strong>and</strong> analytical modelling proved to be an economical advantage <strong>of</strong> <strong>the</strong> <strong>the</strong>rmal energy<br />

storage based on multi-tank systems over a single circulating tank system. The authors<br />

listed <strong>the</strong> reduction <strong>of</strong> installation <strong>and</strong> engineering costs as <strong>the</strong> main advantages <strong>of</strong> <strong>the</strong><br />

developed configuration.<br />

<strong>solar</strong><br />

collector<br />

cold fluid to collector<br />

Fig. 1.16: A schematic view <strong>of</strong> a multi-tank <strong>the</strong>rmal storage system investigated by Ma<strong>the</strong>r at al. (2002).<br />

A control strategy <strong>of</strong> <strong>the</strong> <strong>solar</strong> domestic hot water system with a mantle exchanger<br />

manufactured in Switzerl<strong>and</strong> was investigated by Prud'homme <strong>and</strong> Gillet (Prud'homme, et<br />

al., 2001). Three smaller electrical elements with different lengths as an auxiliary heater<br />

were used in <strong>the</strong> storage tank under consideration. A principle <strong>of</strong> a developed optimization<br />

algorithm is explained in Fig. 1.17.<br />

ESTIMATIONS<br />

Wea<strong>the</strong>r forcasts:<br />

- <strong>solar</strong> <strong>radiation</strong>,<br />

- ambient temperature.<br />

Users’ needs:<br />

- tapped water.<br />

tank 1 tank 2 tank 3 tank 4<br />

hottest<br />

tank<br />

hot fluid to load<br />

MODEL-BASED<br />

OPTYMIZER<br />

heat<br />

load<br />

coldest<br />

tank<br />

OPTIMAL INPUTS<br />

Flow rate in <strong>the</strong> collector loop<br />

Power supplies <strong>of</strong> <strong>the</strong> auxiliary heaters<br />

Fig. 1.17: A scheme illustrating a control principle introduced by Prud'homme <strong>and</strong> Gillet (2001).


1.2 Background <strong>and</strong> literature review 39<br />

The authors stated that an advanced control strategy (structural <strong>and</strong> control level), coupled<br />

with a considered storage tank, can lead to a significant increase in <strong>the</strong> <strong>solar</strong> fraction <strong>and</strong> a<br />

higher degree <strong>of</strong> comfort. However, an on/<strong>of</strong>f control system can be more suitable from a<br />

computational point <strong>of</strong> view.<br />

1.2.5 Summary <strong>of</strong> literature review<br />

The literature review shows that <strong>the</strong> impact <strong>of</strong> <strong>solar</strong> <strong>radiation</strong> on <strong>the</strong> <strong>the</strong>rmal behavior <strong>of</strong><br />

buildings is very complicated <strong>and</strong> still under investigation by scientists. The last decade<br />

has brought a large amount <strong>of</strong> research on particular aspects <strong>of</strong> this problem. But according<br />

to <strong>the</strong> author’s knowledge, <strong>the</strong>re is still not a comprehensive study which includes <strong>the</strong> wide<br />

scope <strong>of</strong> <strong>the</strong> current dissertation research. According to bibliographic searches, one can say<br />

that using detailed <strong>analysis</strong> techniques, i.e. <strong>the</strong> energy simulation method, may certainly<br />

lead to an accurate estimation <strong>of</strong> <strong>the</strong> dependence <strong>of</strong> building performance on <strong>solar</strong><br />

<strong>radiation</strong>. The newest simulation s<strong>of</strong>tware includes: annual wea<strong>the</strong>r data-bases that contain<br />

<strong>solar</strong> <strong>radiation</strong>, wind speed <strong>and</strong> direction, humidity <strong>and</strong> air temperature. This option<br />

enables one to model wea<strong>the</strong>r conditions throughout <strong>the</strong> year as well as during a particular<br />

period with very short time steps. It is especially important due to <strong>the</strong> strong dependence <strong>of</strong><br />

<strong>solar</strong> <strong>radiation</strong> on time. There are some works that have applied simplified methods, but<br />

<strong>the</strong>se types <strong>of</strong> steady-state procedures only give approximate results that may be seen in<br />

preliminary studies. Therefore, in order to prove <strong>the</strong> <strong>the</strong>sis <strong>of</strong> this dissertation, it was<br />

decided to apply <strong>the</strong> detailed simulation method based on <strong>the</strong> dynamic heat balance <strong>of</strong><br />

iso<strong>the</strong>rmal zones. As scientific literature shows, it is necessary to integrate balancing<br />

techniques with CFD algorithms to improve <strong>the</strong> accuracy <strong>of</strong> <strong>the</strong> calculation results. Mainly,<br />

this coupled method is recommended for analyzing large spaces <strong>and</strong> structures with more<br />

complicated ventilation air-paths. Considering a small volume <strong>of</strong> iso<strong>the</strong>rmal zones, <strong>the</strong><br />

author has decided to not take <strong>the</strong> CFD <strong>analysis</strong> into account. In <strong>the</strong> current work, it is<br />

assumed that a single apartment is a base energy balance cell. Fur<strong>the</strong>rmore, <strong>the</strong> detailed<br />

simulation method was chosen, as recommended in <strong>the</strong> literature, as <strong>the</strong> best tool for <strong>the</strong><br />

research <strong>of</strong> active <strong>solar</strong> domestic hot water, heating, ventilation <strong>and</strong> air conditioning<br />

systems. Simultaneous modelling <strong>of</strong> building <strong>the</strong>rmal behavior <strong>and</strong> <strong>the</strong> operation <strong>of</strong> plant<br />

<strong>and</strong> HVAC systems was employed by <strong>the</strong> author in order to achieve simulation results with<br />

physical reality.


1.3 Research goals <strong>and</strong> hypo<strong>the</strong>sis 40<br />

1.3 Research goals <strong>and</strong> hypo<strong>the</strong>sis<br />

The current <strong>the</strong>sis framework <strong>and</strong> scope was formulated based on knowledge <strong>and</strong><br />

experiences ga<strong>the</strong>red during <strong>the</strong> design time <strong>of</strong> high-end apartment buildings in Hannover.<br />

The project, called VASATI 2.0, has been realized by Wohnungsgenossenschaft<br />

Gartenheim eG, architecture <strong>of</strong>fice Peter Lassen, engineering <strong>of</strong>fice Udo Sprengel <strong>and</strong><br />

Wienerberger in cooperation with <strong>the</strong> Technical University <strong>of</strong> Bialystok.<br />

1.3.1 Scientific goals<br />

The main objectives pursued in this <strong>the</strong>sis are <strong>the</strong> following:<br />

� determination <strong>of</strong> an optimal value <strong>of</strong> a window-to-wall ratio that leads to minimum<br />

energy consumption for space heating,<br />

� testing <strong>the</strong> influence <strong>of</strong> <strong>the</strong>rmal <strong>and</strong> optical properties <strong>of</strong> <strong>glazing</strong> systems on <strong>the</strong><br />

<strong>the</strong>rmal performance <strong>of</strong> buildings,<br />

� analyzing how a type <strong>of</strong> <strong>glazing</strong> systems may influence <strong>the</strong> <strong>the</strong>rmal comfort in <strong>the</strong><br />

considered houses,<br />

� optimization <strong>of</strong> a <strong>solar</strong> domestic hot water system,<br />

� experimental determination <strong>of</strong> <strong>the</strong> <strong>the</strong>rmal performance <strong>of</strong> a POROTON-T9-30,0<br />

brick in order to calibrate an energy-simulation tool for buildings.<br />

1.3.2 Hypho<strong>the</strong>sis<br />

Based on literature review <strong>and</strong> preliminary <strong>analysis</strong>, <strong>the</strong> following hypo<strong>the</strong>sis is proposed:<br />

Through <strong>the</strong> <strong>analysis</strong> <strong>of</strong> <strong>the</strong> influence <strong>of</strong> <strong>the</strong> <strong>solar</strong> <strong>radiation</strong> in <strong>the</strong> energy balance <strong>of</strong> a<br />

multifamily building it is possible to determine an optimal value <strong>of</strong> window-to-wall ratio<br />

that leads to a minimum <strong>of</strong> energy consumption for space heating.


2.1 Building energy simulation s<strong>of</strong>tware 41<br />

2 Research methods<br />

In order to prove <strong>the</strong> hypo<strong>the</strong>sis, three basic research methods were chosen. Firstly,<br />

detailed literature searches were conducted to identify current published knowledge<br />

concerning <strong>the</strong> impact <strong>of</strong> <strong>solar</strong> <strong>radiation</strong> on <strong>the</strong>rmal behavior in buildings. Computer<br />

simulation techniques, which grow in popularity each year, were selected as <strong>the</strong> next step<br />

in our investigation. Additionally, experimental investigations were carried out for <strong>the</strong><br />

determination <strong>of</strong> <strong>the</strong> <strong>the</strong>rmal performance <strong>of</strong> <strong>the</strong> considered external wall <strong>and</strong> <strong>the</strong>n for<br />

calibrating building simulation s<strong>of</strong>tware.<br />

2.1 Building energy simulation s<strong>of</strong>tware<br />

The main goal <strong>of</strong> this project was to determine <strong>the</strong> <strong>the</strong>rmal performance <strong>of</strong> <strong>the</strong> dwelling<br />

house. The most popular <strong>and</strong> advanced simulation s<strong>of</strong>tware that can be used for this type <strong>of</strong><br />

<strong>analysis</strong> for residential <strong>and</strong> <strong>of</strong>fice buildings are <strong>the</strong> following: BLAST, BSim, DeST, DOE-<br />

2.1E, ECOTECT, Ener-Win, Energy Express, Energy-10, EnergyPlus, eQUEST, ESP-r,<br />

IDA ICE, IES/VES, HAP, HEED, PowerDomus, SUNREL, Tas, TRACE <strong>and</strong> TRNSYS.<br />

The EnergyPlus V3-0, as a verified <strong>and</strong> fully-validated tool, was chosen from a wide<br />

variety <strong>of</strong> simulation programs. This s<strong>of</strong>tware contains structured, modular code models<br />

combining heat <strong>and</strong> mass transfer, simulating multizone airflow <strong>and</strong> operating conditions<br />

<strong>of</strong> heating, cooling <strong>and</strong> ventilation systems in all kinds <strong>of</strong> buildings for long periods. The<br />

modularity structure <strong>of</strong> EnergyPlus <strong>and</strong> links to o<strong>the</strong>r programming elements are shown in<br />

Fig. 2.1.


2.1 Building energy simulation s<strong>of</strong>tware 42<br />

WINDOW 5<br />

AIRFLOW<br />

NETWORK<br />

GROUND HEAT<br />

TRANSFER<br />

FUTURE MODULES<br />

Fig. 2.1: Network structure <strong>of</strong> EnergyPlus by getting started with EnergyPlus (2007)<br />

EnergyPlus integrates all <strong>the</strong> following aspects <strong>of</strong> <strong>the</strong> simulation process: loads, systems<br />

<strong>and</strong> plants. Fig. 2.2 depicts connections <strong>and</strong> relations between <strong>the</strong>se essential parts <strong>of</strong><br />

energy modelling for buildings.<br />

SKY MODEL<br />

MODULE<br />

SHADING<br />

MODULE<br />

DAY-<br />

LIGHTING<br />

MODULE<br />

WINDOW<br />

GLASS<br />

MODULE<br />

CTF CAL-<br />

CULATION<br />

MODULE<br />

DATA<br />

DATA<br />

BUILDING DESCRIPTION<br />

HEAT AND<br />

MASS BALANCE<br />

SIMULATION<br />

ENERGYPLUS<br />

SIMULATION<br />

MANAGER<br />

ENERGYPLUS INTEGRATED SOLUTION MANAGER<br />

SURFACE HEAT<br />

BALANCE<br />

MANAGER<br />

BUILDING<br />

SYSTEMS<br />

SIMULATION<br />

ZONE CONDITIONS<br />

UPDATE FEEDBACK<br />

CALCULATION RESULTS<br />

DATA<br />

AIR HEAT<br />

BALANCE<br />

MANAGER<br />

AIRFLOW NETWORK<br />

MODULE<br />

BUILDING<br />

SYSTEMS<br />

SIMULATION<br />

MANAGER<br />

ZONE EQUIP.<br />

MODULE<br />

AIR LOOP<br />

MODULE<br />

PLANT LOOP<br />

MODULE<br />

CONDEN-SER<br />

LOOP<br />

MODULE<br />

PHOTO-<br />

VOLTAIC<br />

MODULE<br />

Fig. 2.2: Basic overview <strong>of</strong> <strong>the</strong> integration <strong>of</strong> internal elements structure by getting started with EnergyPlus<br />

(2007)<br />

DATA<br />

SPARK<br />

POLLUTION<br />

MODELS<br />

ON-SIDE POWER<br />

DATA<br />

FUTURE MODULES<br />

DATA<br />

DESCRIBE BUILDING<br />

THIRD-PARTY USER<br />

INTERFACES<br />

DISPLAY RESULTS


2.1 Building energy simulation s<strong>of</strong>tware 43<br />

In EnergyPlus, <strong>the</strong> scheme <strong>of</strong> calculations, shown in Fig. 2.3, is based on a series <strong>of</strong><br />

elements connected by air or water loops. Each fluid circuit has supply <strong>and</strong> dem<strong>and</strong> sides.<br />

The Gauss-Seidell scheme is used to integrate, control <strong>and</strong> solve mass <strong>and</strong> energy balance<br />

equations for all loops.<br />

Fig. 2.3: Simultaneous solution scheme used in EnergyPlus<br />

A concept <strong>of</strong> heat <strong>and</strong> mass transfer modelling in EnergyPlus is based on <strong>the</strong> following<br />

balancing equation for each analyzed zone.<br />

q � q CONV IL + qCONV−S<br />

+ qMIX<br />

+ qINF<br />

+ qSYS<br />

��<br />

where:<br />

q<br />

CONV −S<br />

q<br />

MIX<br />

INF<br />

=<br />

=<br />

q<br />

− , (2.1)<br />

q<br />

Zi<br />

CONV − IL<br />

dθZi<br />

= CZi<br />

– energy stored in air inside control volume,<br />

dt<br />

=<br />

∑ = i nl<br />

i=<br />

1<br />

q<br />

L i<br />

, – convective internal heat loads,<br />

∑ ( )<br />

= i ns<br />

hi<br />

Ai<br />

θ Si −θ<br />

Zi – convective heat transfer from <strong>the</strong> internal surfaces,<br />

i=<br />

1<br />

∑ ( )<br />

= i nz<br />

G&<br />

ic<br />

p θ zj −θ<br />

Zi – heat transfer between zones due to air mixing,<br />

i=<br />

1<br />

INF<br />

cp<br />

( θe − Zi )<br />

( θ − )<br />

q = G θ & – heat transfer due to infiltration,<br />

q = G c θ<br />

& – energy provided to <strong>the</strong> zone by <strong>the</strong> ventilation system,<br />

SYS<br />

SUP<br />

p<br />

SUP<br />

ZONE<br />

Zi<br />

C Zi – heat capacitance <strong>of</strong> air inside zone,<br />

θ – temperature <strong>of</strong> air inside zone,<br />

Zi<br />

t – time,<br />

nl – number <strong>of</strong> heat loads,<br />

q L,<br />

i – internal heat load by convection,<br />

ns – number <strong>of</strong> heat transfer surfaces,<br />

h – convective heat transfer coefficient,<br />

i<br />

A – heat transfer surface area,<br />

i<br />

SYSTEM<br />

< FLUID LOOPS ><br />

PLANT


2.1 Building energy simulation s<strong>of</strong>tware 44<br />

θ Si – internal surface temperature,<br />

nz – number <strong>of</strong> adjacent zones,<br />

Gi & – mass flow rate <strong>of</strong> air transferred between zones,<br />

c p – air specific heat at constant pressure,<br />

θ zj – temperature <strong>of</strong> air inside adjacent zone,<br />

GINF & – mass flow rate <strong>of</strong> infiltrated air,<br />

θ – external air temperature,<br />

e<br />

GSUP & – mass flow rate <strong>of</strong> supply air,<br />

θ – temperature <strong>of</strong> supply air.<br />

SUP<br />

A finite difference approximation <strong>of</strong> <strong>the</strong> heat balance equation (2.1), after application <strong>of</strong><br />

Euler’s formula provides <strong>the</strong> relation, is <strong>the</strong>n implemented in <strong>the</strong> algorithm <strong>of</strong> <strong>the</strong> building<br />

energy simulation s<strong>of</strong>tware.<br />

C<br />

Zi<br />

i=<br />

nl<br />

∑<br />

i=<br />

1<br />

t t<br />

θZi<br />

−θ<br />

Zi<br />

Δt<br />

q<br />

L,<br />

i<br />

i=<br />

i=<br />

nz<br />

t ⎛<br />

+ θZi⎜∑hiAi+<br />

∑G&<br />

ic<br />

⎝ i=<br />

1 i=<br />

1<br />

−δt ns<br />

i=<br />

ns<br />

t−δt<br />

∑hiAiθSi + ∑<br />

i=<br />

1 i=<br />

1<br />

p<br />

+ G&<br />

i=<br />

nz<br />

INF<br />

c<br />

p<br />

t−δt<br />

Zj<br />

+ G&<br />

+ G&<br />

c θ +<br />

G&<br />

c θ + G&<br />

c θ .<br />

SUP<br />

p<br />

SUP<br />

i<br />

p<br />

SUP<br />

c<br />

INF<br />

p<br />

⎞<br />

⎟<br />

⎠<br />

p<br />

�<br />

t−δt<br />

e<br />

(2.2)<br />

In EnergyPlus, <strong>the</strong> heat conduction through <strong>the</strong> walls is simulated by widely-used<br />

conduction transfer function (CTF) methods. On <strong>the</strong> account <strong>of</strong> linear relationships <strong>and</strong> <strong>the</strong><br />

constant values <strong>of</strong> coefficients applied in this approach, <strong>the</strong> CPU time consumption can be<br />

greatly reduced. The basic form <strong>of</strong> a solution is shown by <strong>the</strong> conduction transfer function<br />

for indoor is described by Eq. (2.3) <strong>and</strong> Eq. (2.4) <strong>and</strong> suits outside heat flux.<br />

q′<br />

′<br />

q′<br />

′<br />

CONi<br />

CONe<br />

where:<br />

i=<br />

nz<br />

∑<br />

j=<br />

1<br />

i=<br />

nz<br />

i=<br />

nq<br />

t−<br />

jδ<br />

t<br />

t−<br />

jδ<br />

t−<br />

jδ<br />

+ + ∑ + ∑Φ<br />

′<br />

Si Yeθ<br />

Se Yjθ<br />

Se<br />

jqSi<br />

j=<br />

1<br />

j=<br />

1<br />

t<br />

( t)<br />

= −Z<br />

oθ<br />

Si − Z jθ<br />

, (2.3)<br />

i=<br />

nz<br />

∑<br />

j=<br />

1<br />

i=<br />

nz<br />

i=<br />

nq<br />

t−<br />

jδ<br />

t<br />

t−<br />

jδ<br />

t−<br />

jδ<br />

+ + ∑ + ∑Φ<br />

′<br />

Si X eθ<br />

Se X jθ<br />

Se<br />

jqSe<br />

j=<br />

1<br />

j=<br />

1<br />

t<br />

( t)<br />

= −Yoθ<br />

Si − Yjθ<br />

. (2.4)<br />

Xj, Yj, Zj – outside, cross <strong>and</strong> indoor CFT coefficients,<br />

Φ – flux CFT coefficient.


2.1 Building energy simulation s<strong>of</strong>tware 45<br />

The state space method is implemented in EnergyPlus for calculating conduction transfer<br />

functions under transient conditions. This technique uses a finite difference grid for<br />

building elements <strong>and</strong> eliminates <strong>the</strong> determination <strong>of</strong> nodal temperatures.<br />

Heat balance on <strong>the</strong> faces <strong>of</strong> external <strong>and</strong> internal zone surfaces (Fig. 2.4) is modeled in<br />

EnergyPlus by using three main components: free <strong>and</strong> forced convection, conduction <strong>and</strong><br />

short- <strong>and</strong> longwave <strong>radiation</strong>.<br />

Fig. 2.4: Heat balance on inside <strong>and</strong> outside faces <strong>of</strong> <strong>the</strong> zone surfaces<br />

The following equation illustrates <strong>the</strong> heat exchange on an inside surface:<br />

� CON � q LWR,<br />

ex + qLWR,<br />

eq + qSWR,<br />

l + qSWR,<br />

si + qCONV<br />

, (2.5)<br />

where:<br />

qCON – conduction flux,<br />

qLWR,ex – longwave <strong>radiation</strong> flux between inside surfaces,<br />

qLWR,eq – longwave <strong>radiation</strong> flux from equipment,<br />

qSWR,l – shortwave <strong>radiation</strong> flux from lights,<br />

qSWR,si – <strong>solar</strong> <strong>radiation</strong> flux,<br />

qCONV – convection flux.<br />

The heat balance on <strong>the</strong> external side <strong>of</strong> building walls is calculated as follows:<br />

′′ ′′ ′′ ′′ ′′ ′′ , (2.6)<br />

q CON = qSWR,<br />

se + qCONV<br />

+ qLWR,<br />

gr + qLWR,<br />

sky + qLWR,<br />

air<br />

where:<br />

Longwave <strong>radiation</strong> - qLWR,e<br />

Convection - qCONV,e<br />

Shortwave <strong>radiation</strong> - qSWR,e<br />

′′ – direct <strong>and</strong> indirect <strong>solar</strong> <strong>radiation</strong> flux,<br />

q SWR,<br />

se<br />

Conduction-qCON<br />

Longwave <strong>radiation</strong> - qLWR,i<br />

external environment internal environment<br />

Convection - qCONV,i<br />

Shortwave <strong>radiation</strong> - qSWR,i


2.1 Building energy simulation s<strong>of</strong>tware 46<br />

4 4 ( θ )<br />

q′′ = εσF −θ<br />

– longwave <strong>radiation</strong> flux exchanged with <strong>the</strong> ground,<br />

LWR,<br />

gr gr Se gr<br />

q′′ = εσF 4 4<br />

θ −θ<br />

ε – surface emissivity,<br />

σ – Stefan-Boltzmann constant,<br />

– longwave <strong>radiation</strong> flux exchanged with <strong>the</strong> sky,<br />

( Se )<br />

4 4 ( θ )<br />

LWR,<br />

sky sky sky<br />

q′′ = εσF −θ<br />

– longwave <strong>radiation</strong> flux exchanged with <strong>the</strong> ambient air.<br />

LWR,<br />

air air Se air<br />

In EnergyPlus, <strong>solar</strong> gain through <strong>the</strong> transparent structure that depends on direct <strong>and</strong><br />

indirect <strong>solar</strong> <strong>radiation</strong> is calculated by using <strong>the</strong> following equation:<br />

⎛ A<br />

⎞<br />

SUN<br />

q′ ′ =<br />

⎜<br />

+ +<br />

⎟<br />

SG α I BR cos θ I SDRFS<br />

−S IG<br />

FS<br />

−G<br />

, (2.7)<br />

⎝ ASURF<br />

⎠<br />

where:<br />

α – <strong>solar</strong> absorption <strong>of</strong> <strong>the</strong> surface,<br />

IBR – intensity <strong>of</strong> beam <strong>radiation</strong>,<br />

θ – angle <strong>of</strong> incidence <strong>of</strong> <strong>the</strong> sun's rays<br />

ASUN – sunlit area,<br />

ASURF – area <strong>of</strong> <strong>the</strong> surface,<br />

ISDR – intensity <strong>of</strong> sky indirect <strong>radiation</strong>,<br />

FS-S – angle factor between <strong>the</strong> surface <strong>and</strong> <strong>the</strong> sky,<br />

IG – intensity <strong>of</strong> ground reflected diffuse <strong>radiation</strong>,<br />

– angle factor between <strong>the</strong> surface <strong>and</strong> <strong>the</strong> ground,<br />

FS-G<br />

1+ cosφ<br />

(2.8)<br />

F S−S<br />

= ,<br />

2<br />

1− cosφ<br />

(2.9)<br />

F S−G<br />

= ,<br />

2<br />

φ – <strong>solar</strong> azimuth angle.<br />

The shadowing calculations are based on two procedures: The Groth <strong>and</strong> Lokmanhekim<br />

(Groth, et al., 1969) coordinate transformation method <strong>and</strong> <strong>the</strong> Walton (Walton, 1978)<br />

(Walton, 1983) shadow overlap method. These EnergyPlus procedures were adopted from<br />

BLAST <strong>and</strong> TARP s<strong>of</strong>tware.


2.2 Experimental research methods 47<br />

2.2 Experimental research methods<br />

2.2.1 Experimental apparatus<br />

A schematic diagram <strong>of</strong> <strong>the</strong> experimental apparatus <strong>and</strong> instrumentation is shown in Fig.<br />

2.5.<br />

~<br />

8<br />

6<br />

Fig. 2.5: Sketch <strong>of</strong> <strong>the</strong> experimental set-up.<br />

4<br />

7<br />

5<br />

The tested Poroton-T9 (1) is insulated with 15 cm polystyrene foam sheets <strong>and</strong> 5 cm<br />

mineral wool (2). An exp<strong>and</strong>ed chamber (3) is fitted tightly to <strong>the</strong> brick. This construction<br />

is connected with <strong>the</strong> axial fan (4) via plastic ducts. They are joined in a close-loop circuit.<br />

An electronic frequency controller (5), which operates <strong>the</strong> fan, is used to adjust <strong>the</strong> air flow<br />

rate. The circulating air is heated by an electrical resistance heater (6). A digital PID<br />

<strong>the</strong>rmo-regulator (7) is used to control <strong>the</strong> air temperature with an accuracy <strong>of</strong> ± 0.3 K. A<br />

sensor <strong>of</strong> <strong>the</strong> temperature regulator is placed inside <strong>the</strong> exp<strong>and</strong>ed chamber (3). The<br />

volumetric rate <strong>of</strong> air flow is measured by <strong>the</strong> vane-anemometer (8), which is mounted<br />

inside <strong>the</strong> outlet duct. The temperature is measured by Pt100 resistance sensors <strong>and</strong> <strong>the</strong><br />

results are recorded by a 20-channel data logger (9). Apart from that, <strong>the</strong> <strong>the</strong>rmal<br />

anemometer is used to measure <strong>the</strong> air velocity inside <strong>the</strong> chamber <strong>and</strong> <strong>the</strong> temperature<br />

field on <strong>the</strong> external surface <strong>of</strong> <strong>the</strong> insulation is monitored by a calibrated infrared<br />

θin<br />

3<br />

θout<br />

2<br />

θ1 θ2 θ3 θ4<br />

1<br />

9<br />

θh θc


2.2 Experimental research methods 48<br />

<strong>the</strong>rmometer. The experimental set-up is particularly designed to simulate different<br />

convection heat transfer conditions on both sides <strong>of</strong> <strong>the</strong> tested object.<br />

2.2.2 Experimental methods<br />

The main effect <strong>of</strong> <strong>the</strong> experimental <strong>analysis</strong> is to determine <strong>the</strong> <strong>the</strong>rmal performance <strong>of</strong><br />

<strong>the</strong> considered external wall. Some results <strong>of</strong> <strong>the</strong> investigations can be used to calibrate <strong>the</strong><br />

building simulation s<strong>of</strong>tware EnergyPlus.<br />

Normally, in order to examine <strong>the</strong> <strong>the</strong>rmal behavior <strong>of</strong> building materials, <strong>the</strong> temperature<br />

difference on both sides <strong>of</strong> <strong>the</strong> sample is simulated. The resultant temperature response<br />

depends on <strong>the</strong> physical properties <strong>of</strong> <strong>the</strong> hollow brick. The tested building material is<br />

characterized by a large <strong>the</strong>rmal-storage capacity. For this reason, <strong>the</strong> data logger ports are<br />

scanned in 60-second intervals <strong>and</strong> <strong>the</strong> recording <strong>of</strong> <strong>the</strong> data is stopped when <strong>the</strong><br />

temperature on <strong>the</strong> colder brick side does not change during 30 minutes.<br />

The experimental cases were conducted for three temperature differences: 30°C, 25°C <strong>and</strong><br />

20°C. The air temperature inside <strong>the</strong> laboratory was stabilized with an electric convector<br />

heater with ± 0.3°C accuracy <strong>and</strong> <strong>the</strong> relative humidity was varied between 35 % <strong>and</strong> 38 %<br />

during <strong>the</strong> experimental sessions.<br />

A heat flux q ′ sf on <strong>the</strong> hot face <strong>of</strong> <strong>the</strong> brick was determined based on <strong>the</strong> following heat<br />

balance equation:<br />

a<br />

a<br />

p<br />

( θin<br />

−θout<br />

) − ql<br />

= qsf<br />

Asf<br />

V & ρ c<br />

′′ . (2.10)<br />

The rate <strong>of</strong> heat loss ql through <strong>the</strong> chamber walls was estimated based on <strong>the</strong> temperature<br />

measurements on <strong>the</strong> external surface <strong>of</strong> <strong>the</strong> insulation. The value <strong>of</strong> <strong>the</strong> heat flux q ′ sf was<br />

obtained after transformation <strong>of</strong> Eq. (2.10).<br />

V&<br />

aρ<br />

ac<br />

q′<br />

′ =<br />

sf<br />

p<br />

( θ −θ<br />

)<br />

in<br />

A<br />

sf<br />

out<br />

− q<br />

l<br />

.<br />

(2.11)<br />

Eq. (2.12) was applied to calculate <strong>the</strong> <strong>the</strong>rmal resistance Rb <strong>of</strong> Poroton-T9 <strong>and</strong> based on<br />

Eq. (2.13) its equivalent <strong>the</strong>rmal conductivity keq at steady-state conditions was<br />

determined.<br />

R<br />

b<br />

θsf<br />

, h −θ<br />

sf<br />

=<br />

q ′′<br />

sf , ∞<br />

, c<br />

.<br />

(2.12)


2.2 Experimental research methods 49<br />

k<br />

δ<br />

b<br />

eq = ,<br />

Rb<br />

where sf , h<br />

<strong>and</strong> ′′ sf , ∞<br />

(2.13)<br />

θ was measured on <strong>the</strong> hot side, θ sf , c on <strong>the</strong> cold side <strong>of</strong> <strong>the</strong> material’s surface<br />

q was obtained in steady-state.<br />

The next part <strong>of</strong> <strong>the</strong> study was dedicated to <strong>the</strong> unsteady tests. The temperature variations<br />

measured inside <strong>the</strong> sample were compared with <strong>the</strong> results <strong>of</strong> <strong>the</strong> numerical simulations in<br />

order to check if <strong>the</strong> heat capacity <strong>of</strong> <strong>the</strong> brick components was correctly estimated. A<br />

computational model was used (Fig. 2.6), which was implemented in <strong>the</strong> Fluent code by<br />

Miroslaw Zukowski according to EN 1745.<br />

Fig. 2.6: Sketch <strong>of</strong> <strong>the</strong> brick model developed by Miroslaw Zukowski.<br />

The experiment consisted <strong>of</strong> changing <strong>the</strong> specific heat capacity under numerical<br />

simulations <strong>and</strong> agreed with physical reality at an acceptable accuracy rate.<br />

The final results <strong>of</strong> experimental <strong>and</strong> numerical testing are presented in <strong>the</strong> third chapter <strong>of</strong><br />

this dissertation <strong>and</strong> <strong>the</strong> detailed information about all <strong>the</strong> experiment runs was submitted<br />

as a paper to <strong>the</strong> Energy&Buildings Journal.<br />

Apart from that, it should be noted that <strong>the</strong> <strong>the</strong>rmal resistance <strong>of</strong> <strong>the</strong> wall Req,w, which<br />

consisted <strong>of</strong> a Poroton-T9 <strong>and</strong> a mortar layer, can be treated as two resistances in a parallel<br />

circuit. Thus it is possible to apply <strong>the</strong> following equation:<br />

1<br />

R<br />

eq,<br />

w<br />

1 1<br />

= + .<br />

R R<br />

b<br />

m<br />

(2.14)


2.2 Experimental research methods 50<br />

Thus,<br />

R<br />

eq,<br />

w<br />

where:<br />

Rb<br />

+ R<br />

=<br />

R R<br />

b<br />

m<br />

m<br />

Hb – brick height,<br />

,<br />

Hm – thickness <strong>of</strong> mortar joints between bricks,<br />

R<br />

δ<br />

m<br />

m = .<br />

km<br />

(2.15)


2.2 Experimental research methods 51<br />

3 Results <strong>and</strong> discussion<br />

A multi-storey flat building, marked in red colour on Fig. 3.1, is <strong>the</strong> object <strong>of</strong> <strong>the</strong> current<br />

project. It is situated in <strong>the</strong> central area <strong>of</strong> Hannover, Germany.<br />

Fig. 3.1: Building location plan.<br />

A rendered view <strong>of</strong> <strong>the</strong> energy-saving housing estate is shown in Fig. 3.2.<br />

Fig. 3.2: The view <strong>of</strong> future buildings (east side) prepared by architect Peter Lassen.<br />

Detailed plans <strong>of</strong> <strong>the</strong> building substructures <strong>and</strong> <strong>the</strong> front/backside elevation views are<br />

found in APPENDIX 1.


3.1 Building description 52<br />

The main goal <strong>of</strong> this part <strong>of</strong> <strong>the</strong> dissertation is to determine <strong>the</strong> <strong>the</strong>rmal performance <strong>of</strong> <strong>the</strong><br />

analyzed dwelling house.<br />

The current simulation is divided into five sections <strong>and</strong> is described in <strong>the</strong> following<br />

sequence:<br />

• determination <strong>of</strong> <strong>the</strong> <strong>the</strong>rmal performance <strong>of</strong> <strong>the</strong> building,<br />

• determination <strong>and</strong> comparison <strong>of</strong> <strong>the</strong> gain <strong>and</strong> loss <strong>of</strong> <strong>the</strong>rmal energy through<br />

building fenestration,<br />

• determination <strong>of</strong> <strong>the</strong> <strong>the</strong>rmal environment in <strong>the</strong> apartments during <strong>the</strong> warm<br />

period,<br />

• modelling <strong>of</strong> a domestic <strong>solar</strong> water heating system, which has <strong>the</strong> following<br />

components: tube collectors, storage tanks <strong>and</strong> auxiliary water heater.<br />

3.1 Building description<br />

The analyzed five-storey house consists <strong>of</strong> nineteen apartments, a staircase <strong>and</strong> a storeroom.<br />

The building envelope is designed for <strong>the</strong> optimal utilization <strong>of</strong> <strong>solar</strong> <strong>radiation</strong><br />

energy during <strong>the</strong> heating season.<br />

3.1.1 Description <strong>of</strong> building substructures <strong>and</strong> HVAC systems<br />

External walls<br />

The external walls are designed as a three-layer structure. A load-bearing wall is<br />

constructed <strong>of</strong> ceramic hollow-bricks POROTON Block-T 24,0-1,2 (Fig. 3.3). A new kind<br />

<strong>of</strong> building material POROTON-T9 (Fig. 3.4) is used to make <strong>the</strong> curtain walls. The<br />

traditional hollows are filled with a <strong>the</strong>rmal insulation material called perlite. Thanks to<br />

this procedure a very low value <strong>of</strong> <strong>the</strong>rmal conductivity is obtained.<br />

Fig. 3.3: POROTON Block-T 24,0-1,2.


3.1 Building description 53<br />

Fig. 3.4: POROTON-T9.<br />

A detailed characteristic <strong>of</strong> <strong>the</strong>se two types <strong>of</strong> bricks is presented in Table 3.1.<br />

Type<br />

POROTON BLOCK-T<br />

24,0-1,2<br />

POROTON-T9-30,0<br />

Table 3.1: Properties <strong>of</strong> Wienerberger hollow-bricks.<br />

Dimensions<br />

L×W×H<br />

[cm]<br />

Weight <strong>of</strong><br />

one brick<br />

[kg]<br />

Density<br />

[kg/m 3 ]<br />

37.3×24.0×23.8 21.5 1009.12<br />

24.8×30.0×24.9 12.1 653.15<br />

The steady-state temperature measurements (described in <strong>the</strong> previous chapter) were used<br />

to determine <strong>the</strong> <strong>the</strong>rmal resistance <strong>and</strong> <strong>the</strong> equivalent heat conductivity <strong>of</strong> <strong>the</strong> POROTON-<br />

T9-30,0 brick. The results <strong>of</strong> <strong>the</strong> three temperature differences between <strong>the</strong> brick sides are<br />

summarized in Table 3.2.<br />

Table 3.2: Thermal properties <strong>of</strong> <strong>the</strong> POROTON-T9.<br />

θh – θc<br />

Rb<br />

[m 2 K/W]<br />

keq<br />

[W/mK]<br />

20 3.29 0.0912<br />

30 3.11 0.0965<br />

40 3.36 0.0893


3.1 Building description 54<br />

Numerical calculations gave <strong>the</strong> similar results i.e. Rb=3,205 m 2 K/W <strong>and</strong> keq=0,0936<br />

W/mK. The average value <strong>of</strong> <strong>the</strong> equivalent heat conductivity keq=0,0923 W/mK <strong>and</strong> <strong>the</strong><br />

equivalent value <strong>of</strong> specific heat capacity equal 855,1 J/kgK were adopted in <strong>the</strong> present<br />

study to develop a model in <strong>the</strong> EnergyPlus environment.<br />

The load-bearing walls <strong>and</strong> <strong>the</strong> curtain walls were separated by a 2 cm layer <strong>of</strong> mineral<br />

wool in accordance with construction requirements. Of course <strong>the</strong> interior <strong>and</strong> exterior<br />

surfaces <strong>of</strong> all walls received a coat <strong>of</strong> plaster.<br />

Ro<strong>of</strong><br />

The outside ro<strong>of</strong> insulation was made <strong>of</strong> Polystyrol with an average thickness <strong>of</strong> 35 cm <strong>and</strong><br />

a <strong>the</strong>rmal conductivity <strong>of</strong> 0.035 W/mK. The load-bearing layer will be formed by 20 cm<br />

reinforced concrete with an average <strong>the</strong>rmal conductivity equal to 1.7 W/mK.<br />

Floor/ceiling<br />

The construction <strong>of</strong> <strong>the</strong> floor/ceiling slab was designed in three layers:<br />

• floating floor with a thickness <strong>of</strong> 5 – 6 cm <strong>and</strong> a <strong>the</strong>rmal conductivity <strong>of</strong> 1.35<br />

W/mK,<br />

• footfall sound insulation <strong>and</strong> Polystyrol insulation with a thickness <strong>of</strong> 8 cm <strong>and</strong> a<br />

<strong>the</strong>rmal conductivity <strong>of</strong> 0.035 W/mK,<br />

• concrete slab with a thickness <strong>of</strong> 20 cm <strong>and</strong> a <strong>the</strong>rmal conductivity <strong>of</strong> 1.7 W/mK.<br />

Basement ceiling<br />

The basement ceiling consisted <strong>of</strong> <strong>the</strong> following layers:<br />

• floating floor with a thickness <strong>of</strong> 5 – 6 cm <strong>and</strong> a <strong>the</strong>rmal conductivity <strong>of</strong> 1.35<br />

W/mK,<br />

• footfall sound insulation <strong>and</strong> Polystyrol insulation with a thickness <strong>of</strong> 8 cm <strong>and</strong> a<br />

<strong>the</strong>rmal conductivity <strong>of</strong> 0.035 W/mK,<br />

• concrete slab with a thickness <strong>of</strong> 20 cm <strong>and</strong> a <strong>the</strong>rmal conductivity <strong>of</strong> 2.3 W/mK,<br />

• insulation made <strong>of</strong> mineral wool with a thickness <strong>of</strong> 10 cm <strong>and</strong> a <strong>the</strong>rmal<br />

conductivity <strong>of</strong> 0.035 W/mK.


3.1 Building description 55<br />

All internal walls received a special kind <strong>of</strong> machine-sprayed plaster with an average<br />

thickness <strong>of</strong> 1.5 cm, which contains a high part <strong>of</strong> crushed clay. The feeling <strong>and</strong> <strong>the</strong><br />

biological data <strong>of</strong> <strong>the</strong> inside plaster is very similar to loam rendering. The external walls<br />

got a mineral render with a thickness <strong>of</strong> 2 – 3 cm, which is very permeable for vapor<br />

diffusion.<br />

Windows<br />

The type <strong>of</strong> <strong>glazing</strong> materials used in building construction makes a significant<br />

contribution to <strong>the</strong> annual energy consumption. For this reason, it was decided to examine<br />

twelve cases <strong>of</strong> fenestration products. The <strong>glazing</strong> systems in Case A1/B1 <strong>and</strong> Case A2/B2<br />

with low-e coatings are recommended for regions with cold climates. Low <strong>solar</strong> heat gains<br />

<strong>and</strong> high reflectivity are characteristic for windows in Case A5/B5 <strong>and</strong> Case A6/B6. This<br />

type <strong>of</strong> product is a very good choice for fully air-conditioned living spaces. Meanwhile<br />

<strong>glazing</strong> systems in Case A3/B3 <strong>and</strong> Case A4/B4 are designed for maximizing heat gain<br />

throughout <strong>the</strong> heating period <strong>and</strong> for reducing cooling costs during summer months.<br />

It is planned to use double glazed balcony windows (cases marked with letter A) <strong>and</strong> triple<strong>glazing</strong><br />

system for north <strong>and</strong> east elevation windows (cases marked with letter B).<br />

For all cases, it is decided to choose Xenon gas-fill on account <strong>of</strong> <strong>the</strong> best <strong>the</strong>rmal<br />

insulation properties, which are <strong>the</strong> result <strong>of</strong> very low effective conductivity equal to<br />

0.00516 W/mK.<br />

Thermal <strong>and</strong> optical properties depend on <strong>the</strong> location <strong>of</strong> coatings. Therefore, different<br />

configurations <strong>of</strong> optical filters on a glass surface are analyzed as shown in Fig. 3.5.<br />

outboard glass<br />

gas<br />

inboard glass<br />

filter location<br />

Case A1,3,5 Case A2,4,6<br />

Fig. 3.5: Location <strong>of</strong> a glass coating for <strong>the</strong> investigated cases.<br />

outboard glass<br />

gas<br />

inboard glass<br />

outboard glass<br />

Table 3.3 shows <strong>the</strong> detailed characteristics <strong>of</strong> <strong>the</strong> proposed <strong>glazing</strong> systems, which are<br />

prepared based on <strong>the</strong> publicly available International Glazing Database (IGDB) (2008).<br />

gas<br />

internal glass<br />

filter location<br />

gas<br />

inboard glass<br />

outboard glass<br />

gas<br />

internal glass<br />

gas<br />

Case B1,3,5 Case B2,4,6<br />

inboard glass


3.1 Building description 56<br />

This database is <strong>the</strong> collection <strong>of</strong> spectral optical, <strong>the</strong>rmal <strong>and</strong> structural data for over 2500<br />

glass materials.<br />

Table 3.3: Glass <strong>and</strong> gas data for testing <strong>glazing</strong> systems.<br />

Case no. Mode Th. Tsol Rsol1 Rsol2 Tvis Rvis1 Rvis2 Tir ε1 ε2 keff<br />

Case A1<br />

Case A2<br />

Case A3<br />

Case A4<br />

Case A5<br />

Case A6<br />

Case B1<br />

Case B2<br />

Case B3<br />

Case B4<br />

FCMFTIR_3,AFG 3.2 0.496 0.331 0.395 0.780 0.158 0.126 0.000 0.840 0.033 1.000<br />

Xenon 12.7 0.019<br />

GREEN_3,AFG 3.2 0.610 0.059 0.059 0.833 0.070 0.070 0.000 0.840 0.840 1.000<br />

GREEN_3,AFG 3.2 0.610 0.059 0.059 0.833 0.070 0.070 0.000 0.840 0.840 1.000<br />

Xenon 12.7 0.019<br />

CMFTIR_3,AFG 3.2 0.496 0.395 0.331 0.780 0.126 0.158 0.000 0.033 0.840 1.000<br />

FTiPS_3,AFG 3.1 0.583 0.220 0.280 0.856 0.055 0.045 0.000 0.841 0.060 1.000<br />

Xenon 12.7 0.019<br />

GREEN_3,AFG 3.2 0.610 0.059 0.059 0.833 0.070 0.070 0.000 0.840 0.840 1.000<br />

GREEN_3,AFG 3.2 0.610 0.059 0.059 0.833 0.070 0.070 0.000 0.840 0.840 1.000<br />

Xenon 12.7 0.019<br />

TiPS_3,AFG 3.1 0.583 0.280 0.220 0.856 0.045 0.055 0.000 0.060 0.841 1.000<br />

FCMFTIAC3,AFG 3.1 0.411 0.391 0.457 0.672 0.249 0.189 0.000 0.840 0.037 1.000<br />

Xenon 12.7 0.023<br />

GREEN_3,AFG 3.2 0.610 0.059 0.059 0.833 0.070 0.070 0.000 0.840 0.840 1.000<br />

GREEN_3,AFG 3.2 0.610 0.059 0.059 0.833 0.070 0.070 0.000 0.840 0.840 1.000<br />

Xenon 12.7 0.019<br />

CMFTIAC3,AFG 3.1 0.411 0.457 0.391 0.672 0.189 0.249 0.000 0.037 0.840 1.000<br />

FCMFTIR_3,AFG 3.2 0.496 0.331 0.395 0.780 0.158 0.126 0.000 0.840 0.033 1.000<br />

Xenon 12.7 0.019<br />

GREEN_3,AFG 3.2 0.610 0.059 0.059 0.833 0.070 0.070 0.000 0.840 0.840 1.000<br />

Xenon 12.7 0.019<br />

GREEN_3,AFG 3.2 0.610 0.059 0.059 0.833 0.070 0.070 0.000 0.840 0.840 1.000<br />

GREEN_3,AFG 3.2 0.610 0.059 0.059 0.833 0.070 0.070 0.000 0.840 0.840 1.000<br />

Xenon 12.7 0.019<br />

GREEN_3,AFG 3.2 0.610 0.059 0.059 0.833 0.070 0.070 0.000 0.840 0.840 1.000<br />

Xenon 12.7 0.019<br />

CMFTIR_3,AFG 3.2 0.496 0.395 0.331 0.780 0.126 0.158 0.000 0.033 0.840 1.000<br />

FTiPS_3,AFG 3.1 0.583 0.220 0.280 0.856 0.055 0.045 0.000 0.841 0.060 1.000<br />

Xenon 12.7 0.019<br />

GREEN_3,AFG 3.2 0.610 0.059 0.059 0.833 0.070 0.070 0.000 0.840 0.840 1.000<br />

Xenon 12.7 0.019<br />

GREEN_3,AFG 3.2 0.610 0.059 0.059 0.833 0.070 0.070 0.000 0.840 0.840 1.000<br />

GREEN_3,AFG 3.2 0.610 0.059 0.059 0.833 0.070 0.070 0.000 0.840 0.840 1.000<br />

Xenon 12.7 0.019<br />

GREEN_3,AFG 3.2 0.610 0.059 0.059 0.833 0.070 0.070 0.000 0.840 0.840 1.000


3.1 Building description 57<br />

Case B5<br />

Case B6<br />

Xenon 12.7 0.019<br />

TiPS_3,AFG 3.1 0.583 0.280 0.220 0.856 0.045 0.055 0.000 0.060 0.841 1.000<br />

FCMFTIAC3,AFG 3.1 0.411 0.391 0.457 0.672 0.249 0.189 0.000 0.840 0.037 1.000<br />

Xenon 12.7 0.023<br />

GREEN_3,AFG 3.2 0.610 0.059 0.059 0.833 0.070 0.070 0.000 0.840 0.840 1.000<br />

Xenon 12.7 0.023<br />

GREEN_3,AFG 3.2 0.610 0.059 0.059 0.833 0.070 0.070 0.000 0.840 0.840 1.000<br />

GREEN_3,AFG 3.2 0.610 0.059 0.059 0.833 0.070 0.070 0.000 0.840 0.840 1.000<br />

Xenon 12.7 0.019<br />

GREEN_3,AFG 3.2 0.610 0.059 0.059 0.833 0.070 0.070 0.000 0.840 0.840 1.000<br />

Xenon 12.7 0.019<br />

CMFTIAC3,AFG 3.1 0.411 0.457 0.391 0.672 0.189 0.249 0.000 0.037 0.840 1.000<br />

Explanation <strong>of</strong> symbols used in <strong>the</strong> Table 3.3:<br />

Mode – an identifier to determine <strong>the</strong> glass layer in debase,<br />

Th. – glass thickness; mm,<br />

Tsol – <strong>solar</strong> transmittance <strong>of</strong> <strong>the</strong> <strong>glazing</strong> layer,<br />

Rsol1 – <strong>solar</strong> reflectance <strong>of</strong> <strong>the</strong> exterior side <strong>of</strong> <strong>the</strong> <strong>glazing</strong> layer,<br />

Rsol2 – <strong>solar</strong> reflectance <strong>of</strong> <strong>the</strong> interior side <strong>of</strong> <strong>the</strong> <strong>glazing</strong> layer,<br />

Tvis – visible transmittance <strong>of</strong> <strong>the</strong> <strong>glazing</strong> layer,<br />

Rvis1 – visible reflectance <strong>of</strong> <strong>the</strong> exterior side <strong>of</strong> <strong>the</strong> <strong>glazing</strong> layer,<br />

Rvis2 – visible reflectance <strong>of</strong> <strong>the</strong> interior side <strong>of</strong> <strong>the</strong> <strong>glazing</strong> layer,<br />

Tir – <strong>the</strong>rmal longwave transmittance <strong>of</strong> <strong>the</strong> <strong>glazing</strong> layer,<br />

ε1 – longwave emittance <strong>of</strong> <strong>the</strong> exterior side <strong>of</strong> <strong>the</strong> <strong>glazing</strong> layer,<br />

ε2 – longwave emittance <strong>of</strong> <strong>the</strong> interior side <strong>of</strong> <strong>the</strong> <strong>glazing</strong> layer,<br />

keff – effective conductivity <strong>of</strong> <strong>the</strong> <strong>glazing</strong> system; W/mK.<br />

The next parameters <strong>of</strong> <strong>glazing</strong> systems such as visible transmittances, U-factor, <strong>solar</strong> heat<br />

gain <strong>and</strong> shading coefficients are determined with <strong>the</strong> help <strong>of</strong> <strong>the</strong> latest release <strong>of</strong> <strong>the</strong><br />

computer program WINDOW 5.2 (2006). The algorithm for analyzing window <strong>the</strong>rmal<br />

<strong>and</strong> optical performance is developed by <strong>the</strong> National Fenestration Rating Council (NFRC)<br />

based on <strong>the</strong> ISO 15099 st<strong>and</strong>ard (2003). The results <strong>of</strong> <strong>the</strong> calculations <strong>of</strong> <strong>the</strong> <strong>the</strong>rmal <strong>and</strong><br />

optical transmission properties for twelve cases are presented below in Table 3.4.<br />

Table 3.4: Thermal <strong>and</strong> optical properties <strong>of</strong> <strong>glazing</strong> systems.<br />

Case no. keff Width U-factor SHGCc SCc VTc RHG<br />

Case A1 0.0187 19.050 1.16 0.47 0.54 0.66 343.55<br />

Case A2 0.0187 19.050 1.16 0.42 0.48 0.66 310.31<br />

Case A3 0.0201 18.975 1.23 0.54 0.62 0.72 400.80


3.1 Building description 58<br />

Case A4 0.0201 18.975 1.23 0.48 0.55 0.72 355.94<br />

Case A5 0.0189 19.025 1.17 0.39 0.45 0.57 288.36<br />

Case A6 0.0189 19.025 1.17 0.38 0.44 0.57 282.96<br />

Case B1 0.0303 34.925 0.89 0.43 0.49 0.55 315.67<br />

Case B2 0.0285 34.925 0.84 0.35 0.40 0.55 257.89<br />

Case B3 0.0320 34.850 0.93 0.49 0.57 0.60 363.31<br />

Case B4 0.0303 34.850 0.89 0.38 0.45 0.60 287.21<br />

Case B5 0.0305 34.900 0.89 0.36 0.41 0.48 266.59<br />

Case B6 0.0288 34.900 0.85 0.32 0.37 0.48 241.40<br />

Explanation <strong>of</strong> symbols used in <strong>the</strong> Table 3.4:<br />

Width – <strong>glazing</strong> system width; mm,<br />

U-factor – st<strong>and</strong>ard measure <strong>of</strong> <strong>the</strong> rate <strong>of</strong> heat flow through <strong>the</strong> center <strong>of</strong><br />

(alternatively named glass in this case; W/m 2 K,<br />

U-value)<br />

SHGCc – <strong>the</strong> <strong>solar</strong> heat gain coefficient represents <strong>the</strong> <strong>solar</strong> heat gain<br />

through <strong>the</strong> center <strong>of</strong> <strong>the</strong> <strong>glazing</strong> system relative to <strong>the</strong> total<br />

incident <strong>solar</strong> <strong>radiation</strong>,<br />

SCc – shading coefficient defines <strong>the</strong> amount <strong>of</strong> heat gain through <strong>the</strong><br />

center <strong>of</strong> glass compared to clear glass with 3 mm thickness,<br />

VTc – visible transmittance defines <strong>the</strong> amount <strong>of</strong> light in <strong>the</strong> visible<br />

<strong>radiation</strong> (portion <strong>of</strong> <strong>the</strong> <strong>solar</strong> spectrum between 380 nm to<br />

760 nm) that passes through <strong>the</strong> center <strong>of</strong> <strong>glazing</strong> material,<br />

The value <strong>of</strong> <strong>the</strong> U-factor depends on <strong>the</strong> <strong>the</strong>rmal <strong>and</strong> optical properties <strong>of</strong> <strong>the</strong> <strong>glazing</strong><br />

systems as well as <strong>the</strong> external <strong>and</strong> internal environmental factors. The following<br />

conditions are assumed in <strong>the</strong> computer code WINDOW 5.2:<br />

• outside temperature – -21°C,<br />

• indoor temperature – 18°C,<br />

• windward speed – 5.5 m/s,<br />

• sky temperature – -18°C,<br />

• sky emissivity – 1.0,<br />

• direct <strong>solar</strong> <strong>radiation</strong> flux – 0.0 W/m 2 .


3.1 Building description 59<br />

Of course <strong>the</strong> visible transmittance <strong>of</strong> <strong>glazing</strong> systems should be calculated for different<br />

environmental conditions:<br />

• outside temperature – 32°C,<br />

• indoor temperature – 24°C,<br />

• windward speed – 2,75 m/s,<br />

• sky temperature – 32°C,<br />

• sky emissivity – 1.0,<br />

• direct <strong>solar</strong> <strong>radiation</strong> flux – 783 W/m 2 .<br />

In <strong>the</strong> current project, hardwood (Meranti) is used for <strong>the</strong> window frame pr<strong>of</strong>iles with <strong>the</strong><br />

following properties:<br />

• projected frame dimension – 60 mm,<br />

• material absorption – 0.9,<br />

• frame U-value – 1.9 W/m 2 K.<br />

The parameters <strong>of</strong> <strong>the</strong> six <strong>glazing</strong> systems will be utilized in fur<strong>the</strong>r energy simulations <strong>of</strong><br />

<strong>the</strong> whole building.<br />

U-value <strong>of</strong> building assemblies<br />

The U-value describes <strong>the</strong> rate <strong>of</strong> heat flow per unit area through a single building<br />

assembly in steady-state conditions. The insulation characteristic <strong>of</strong> each structural<br />

building component is presented in Table 3.5.<br />

Table 3.5: Exterior opaque <strong>and</strong> fenestration U-value.<br />

Construction U-Factor [W/m 2 K]<br />

Exterior wall * 0.225<br />

Ro<strong>of</strong> * 0.090<br />

Basement ceiling * 0.210<br />

Windows (east, north)<br />

Balcony windows<br />

* - no film coefficients<br />

0.89 (Case B1)<br />

1.16 (Case A1)


3.1 Building description 60<br />

Building envelope<br />

The building envelope is characterized by <strong>the</strong> enlarged value <strong>of</strong> <strong>the</strong> window-to-wall ratio,<br />

which is highlighted in Table 3.6.<br />

Table 3.6: Window-to-Wall Ratio.<br />

Total<br />

North<br />

315 to 45<br />

deg<br />

East<br />

45 to 135<br />

deg<br />

South<br />

135 to 225<br />

deg<br />

West<br />

225 to 315<br />

deg<br />

Gross Wall Area * (m 2 ) 1855.4 448.41 478.83 448.41 479.74<br />

Window Opening Area (m 2 ) 768.42 148.11 155.67 205.26 259.37<br />

Window-Wall Ratio (%) 41.42 33.03 32.51 45.78 54.07<br />

* - dimensions at wall axis<br />

HVAC <strong>and</strong> DHW systems<br />

The simulation takes a Variable Air Volume (VAV) system into consideration using a heat<br />

recovery exchanger with its economizer (free cooling) controller <strong>and</strong> baseboard convective<br />

heaters. Fig. 3.6 shows a general schema <strong>of</strong> zone heating <strong>and</strong> ventilation equipment.<br />

HVAC systems are designed specifically to reduce energy waste. Details <strong>of</strong> an energysaving<br />

air distribution unit are presented in Fig. 3.7<br />

.<br />

Return air<br />

Zone i (single apartment)<br />

High temperature convection<strong>radiation</strong><br />

heating system<br />

Fig. 3.6: Diagram <strong>of</strong> HVAC system for a single zone.<br />

Air distribution system<br />

Supply air


3.1 Building description 61<br />

Outside air<br />

Relief air<br />

Fig. 3.7: Controlled ventilation system with a heat recovery unit KWL EC 300.<br />

Domestic hot water (DHW) will be warmed by using tube collectors <strong>and</strong> auxiliary water<br />

heaters. Gas-fired condensing boilers are used in this case as a heat source for DHW <strong>and</strong><br />

central heating systems. (Fig. 3.8)<br />

<strong>solar</strong><br />

collector<br />

Mixed Air System<br />

Heat Recovery<br />

Return Fan<br />

Apartment exhaust<br />

Supply Fan<br />

Storage tank<br />

option<br />

Fig. 3.8: Two-tank <strong>solar</strong> heating system connection diagram set in calculations.<br />

Heating Coil<br />

Zone i (single apartment)<br />

Cooling Coil<br />

Apartment supply<br />

Zone equipment<br />

Heat source<br />

Auxiliary water heater


3.1 Building description 62<br />

EnergyPlus 3-D model <strong>of</strong> <strong>the</strong> building<br />

In <strong>the</strong> EneryPlus-System, heat <strong>and</strong> mass balance calculations are conducted for <strong>the</strong><br />

separate control volumes called zones. The modelling <strong>of</strong> heat transfer for building<br />

components includes conduction, natural/forced convection <strong>and</strong> long/short wave <strong>radiation</strong>.<br />

In order to achieve a good accuracy rate <strong>of</strong> calculations, a detailed geometric model <strong>of</strong> <strong>the</strong><br />

building, based on <strong>the</strong> architectural plans <strong>and</strong> specifications, is created in a threedimensional<br />

Cartesian right h<strong>and</strong> coordinate system (X-axis points east, Y-axis points<br />

north, Z-axis points up). Rendering views <strong>of</strong> 3-D models with shading detached <strong>and</strong><br />

attached surfaces are presented in Fig. 3.9 <strong>and</strong> Fig. 3.10.<br />

Fig. 3.9: The complete view <strong>of</strong> <strong>the</strong> house without movable protection shield.


3.1 Building description 63<br />

In order to determine <strong>solar</strong> heat gains it is necessary to calculate shading <strong>and</strong> sunlit areas.<br />

In <strong>the</strong> EnergyPlus-System a shadow algorithm is based on <strong>the</strong> Groth <strong>and</strong> Lokmanhekim<br />

(1969) coordinate transformation method <strong>and</strong> <strong>the</strong> Walton (1983) shadow overlap scheme.<br />

Two houses (house number 146 <strong>and</strong> 150) <strong>and</strong> two rows <strong>of</strong> trees are used as detached<br />

external surfaces to generate shadows. The houses are not transparent for <strong>solar</strong> <strong>radiation</strong><br />

but <strong>the</strong> trees have seasonally changed <strong>the</strong>ir diffuse properties.<br />

Fig. 3.10: The complete model view with movable protection shields mounted on a rail construction on <strong>the</strong><br />

level <strong>of</strong> <strong>the</strong> building <strong>façade</strong> <strong>and</strong> detached shading objects.<br />

The tested building is split into 21 iso<strong>the</strong>rmal zones. The zone is defined as an air volume<br />

at a uniform temperature plus all <strong>the</strong> heat transfer <strong>and</strong> heat storage surfaces bounding. The<br />

symbol <strong>of</strong> each zone depends on <strong>the</strong> floor level <strong>and</strong> is shown in <strong>the</strong> figures below.


3.1 Building description 64<br />

EG6<br />

EG1<br />

Fig. 3.11: Separation <strong>of</strong> <strong>the</strong> building model on iso<strong>the</strong>rmal zones - ground floor.<br />

OG1<br />

OG1-2<br />

OG1-3<br />

COR<br />

EG2<br />

OG2<br />

OG2-2<br />

OG2-3<br />

COR<br />

OG4<br />

OG4-2<br />

OG4-3<br />

OG3<br />

OG3-2<br />

OG3-3<br />

Fig. 3.12: Separation <strong>of</strong> <strong>the</strong> building model on iso<strong>the</strong>rmal zones – <strong>the</strong> second, third, <strong>and</strong> forth storey.<br />

EG4<br />

EG3


3.1 Building description 65<br />

Fig. 3.13: Separation <strong>of</strong> <strong>the</strong> building model on iso<strong>the</strong>rmal zones – <strong>the</strong> top storey.<br />

A complete listing <strong>of</strong> <strong>the</strong> model description in <strong>the</strong> EnergyPlus environment is included as<br />

APPENDIX 2.<br />

Table 3.7 presents a characteristic <strong>of</strong> each zone that is separated from <strong>the</strong> building<br />

structure <strong>and</strong> represents one <strong>of</strong> <strong>the</strong> apartments.<br />

Zone<br />

Area *<br />

[m 2 ]<br />

DG1<br />

Conditioned<br />

COR<br />

Table 3.7: Zone summary.<br />

Volume *<br />

[m 3 ]<br />

Gross Wall<br />

Area *<br />

[m 2 ]<br />

Window Glass<br />

Area<br />

[m 2 ]<br />

People<br />

[persons]<br />

EG1 94 Yes 284.81 75.08 32.17 2<br />

EG2 71.87 Yes 217.76 51.78 27.13 2<br />

EG3 101.02 Yes 306.10 75.66 39.07 2<br />

EG4 100.78 Yes 305.37 95.51 23.25 2<br />

EG6 22.28 No 67.52 35.24 2.67 0<br />

OG1 125.05 Yes 378.90 114.87 39.89 2<br />

OG2 71.87 Yes 217.76 51.78 27.13 2<br />

OG3 101.02 Yes 306.10 75.66 39.07 2<br />

OG4 100.78 Yes 305.37 100.05 25.73 2<br />

OG1-2 250.1 Yes 126.3 114.87 39.89 2<br />

OG2-2 143.74 Yes 72.59 51.78 27.13 2<br />

OG3-2 202.05 Yes 102.03 75.66 39.07 2<br />

OG4-2 201.56 Yes 101.79 100.05 25.73 2<br />

OG1-3 125.05 Yes 378.90 114.87 39.89 2<br />

OG2-3 71.87 Yes 217.76 51.78 27.13 2<br />

EG4<br />

DG3


3.1 Building description 66<br />

OG3-3 101.02 Yes 306.10 75.66 39.07 2<br />

OG4-3 100.78 Yes 305.37 100.05 25.73 2<br />

DG1 124.71 Yes 379.06 128.81 41.63 2<br />

DG3 101.65 Yes 307.99 104.32 36.87 2<br />

DG4 83.44 Yes 252.81 111.35 30.93 2<br />

COR 57.95 No 909.98 150.56 83.42 0<br />

* - dimensions at wall axis<br />

3.1.2 Wea<strong>the</strong>r conditions for <strong>the</strong> simulation <strong>analysis</strong><br />

Wea<strong>the</strong>r data<br />

Calculations were performed for 8760 hours (year-round). Detailed wea<strong>the</strong>r data for<br />

Bremen (<strong>the</strong> nearest town to Hannover) came from <strong>the</strong> ASHRAE H<strong>and</strong>book (ASHRAE,<br />

2005). Some basic parameters <strong>of</strong> <strong>the</strong> climate are presented in Fig. 3.14 – Fig. 3.15 for<br />

outdoor dry bulb temperature <strong>and</strong> in Fig. 3.16 – Fig. 3.17 for daily average surface <strong>solar</strong><br />

<strong>radiation</strong>.<br />

Fig. 3.14: Daily average outdoor dry bulb temperature at heating period.


3.1 Building description 67<br />

Fig. 3.15: Daily average outdoor dry bulb temperature during hot periods.<br />

As we see in <strong>the</strong> above figures, temperature conditions were moderate. In <strong>the</strong> EnergyPlus<br />

algorithm, direct as well as indirect <strong>solar</strong> <strong>radiation</strong> is considered. We can observe that <strong>the</strong><br />

largest level <strong>of</strong> direct <strong>radiation</strong> appears in March <strong>and</strong> indirect <strong>radiation</strong> reaches <strong>the</strong><br />

maximum level from May to August.<br />

Surface Ext Solar Beam Incident [W/m 2 ]<br />

200<br />

180<br />

160<br />

140<br />

120<br />

100<br />

80<br />

60<br />

40<br />

20<br />

0<br />

01/01<br />

01/21<br />

02/10<br />

03/02<br />

03/22<br />

04/11<br />

05/01<br />

Fig. 3.16: Daily average surface <strong>solar</strong> beam <strong>radiation</strong> incident on a south vertical surface.<br />

05/21<br />

06/10<br />

06/30<br />

07/20<br />

08/09<br />

08/29<br />

09/18<br />

10/08<br />

10/28<br />

11/17<br />

12/07<br />

12/27


3.2 Selection <strong>of</strong> <strong>the</strong> optimal <strong>glazing</strong> system 68<br />

Surface Solar Sky Diffuse Incident [W/m 2 ]<br />

80<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

0<br />

01/01<br />

01/21<br />

02/10<br />

03/02<br />

03/22<br />

Fig. 3.17: Daily average surface <strong>solar</strong> sky diffuse <strong>radiation</strong> incident on a south vertical surface.<br />

3.2 Selection <strong>of</strong> <strong>the</strong> optimal <strong>glazing</strong> system<br />

04/11<br />

05/01<br />

05/21<br />

06/10<br />

Six cases <strong>of</strong> different types <strong>of</strong> <strong>glazing</strong> systems were analyzed <strong>and</strong> are described in <strong>the</strong><br />

above Table 3.3 <strong>and</strong> Table 3.4. The simulation results are presented as indexes <strong>of</strong> building<br />

energy consumption, as well as heating <strong>and</strong> cooling energy dem<strong>and</strong>s. Table 3.8 contains<br />

<strong>the</strong> main parameters ga<strong>the</strong>red over 4752 hours <strong>of</strong> a warm period (from 1 st April to 15 th<br />

October) <strong>and</strong> 4056 hours <strong>of</strong> a heating season (from 15 th October to 31 st March). Fig. 3.18<br />

shows <strong>the</strong> total building energy consumption for testing variants.<br />

Table 3.8: Results <strong>of</strong> <strong>the</strong> building energy simulation for different types <strong>of</strong> <strong>glazing</strong> systems.<br />

Case no. Eh h q Ph Ec c q Pc Eb<br />

Case AB1 29138.56 45331.63 21.98 12054.21 77179.71 5.30 41192.77<br />

Case AB2 31925.54 45124.46 23.20 8886.29 55309.06 3.91 40811.83<br />

Case AB3 29277.56 47050.68 22.04 13466.47 86803.23 5.93 42744.03<br />

Case AB4 32591.46 46853.40 23.50 9759.97 61415.59 4.30 42351.43<br />

Case AB5 32213.23 45592.23 23.33 10554.55 67030.77 4.64 42767.78<br />

Case AB6 33533.86 45387.89 23.91 8940.56 55780.04 3.93 42474.42<br />

06/30<br />

07/20<br />

08/09<br />

08/29<br />

09/18<br />

10/08<br />

10/28<br />

11/17<br />

12/07<br />

12/27


3.2 Selection <strong>of</strong> <strong>the</strong> optimal <strong>glazing</strong> system 69<br />

Explanation <strong>of</strong> symbols used in <strong>the</strong> Table 3.8<br />

Eh – district heating energy; kWh,<br />

q – h design heating load; W,<br />

Ph – heating energy per conditioned building area; kWh/m 2 ,<br />

Ec – cooling energy; kWh,<br />

q c – design cooling load; W,<br />

Pc – cooling energy per conditioned building area; kWh/m 2 ,<br />

Eb – total energy for heating <strong>and</strong> cooling; kWh.<br />

Energy consumption [kWh]<br />

35000<br />

25000<br />

15000<br />

5000<br />

‐5000<br />

‐15000<br />

29 139<br />

‐12 054<br />

Cooling<br />

Heating<br />

31 926<br />

‐8 886<br />

29 278<br />

‐13 466<br />

Fig. 3.18: Building energy consumption for different types <strong>of</strong> <strong>glazing</strong> system.<br />

32 591 32 213 33 534<br />

‐9 760 ‐10 555 ‐8 941<br />

Case AB1 Case AB2 Case AB3 Case AB4 Case AB5 Case AB6<br />

Air-conditioning systems are installed only as an optional device for an additional cost in<br />

<strong>the</strong> new building. For this reason, <strong>glazing</strong> systems described in Case AB1 that will be<br />

applied in <strong>the</strong> next simulations have been selected. As <strong>the</strong> calculation results show, <strong>the</strong>se<br />

combinations <strong>of</strong> <strong>the</strong>rmal <strong>and</strong> optical properties provide small energy consumption<br />

throughout <strong>the</strong> winter months due to <strong>the</strong> highest passive <strong>solar</strong> transmission. Unfortunately,<br />

increased <strong>solar</strong> heat gain may cause low quality <strong>of</strong> <strong>the</strong>rmal comfort inside <strong>the</strong> apartments<br />

during summer periods.


3.3 Estimation <strong>of</strong> <strong>the</strong>rmal energy gain <strong>and</strong> loss through building fenestration 70<br />

3.3 Estimation <strong>of</strong> <strong>the</strong>rmal energy gain <strong>and</strong> loss through<br />

building fenestration<br />

3.3.1 Characterization <strong>of</strong> heat gain <strong>and</strong> loss through <strong>glazing</strong><br />

The <strong>solar</strong> heat gain through <strong>glazing</strong> systems depends on many factors such as:<br />

• <strong>the</strong>rmal <strong>and</strong> optical properties <strong>of</strong> <strong>glazing</strong> systems,<br />

• <strong>the</strong> current sun position in <strong>the</strong> sky,<br />

• degree <strong>of</strong> cloudiness,<br />

• external <strong>and</strong> internal shading devices,<br />

• shaded constructions attached to <strong>the</strong> building such as awnings <strong>and</strong> ro<strong>of</strong> overhangs,<br />

• detached shading surfaces such as trees <strong>and</strong> o<strong>the</strong>r buildings,<br />

• window shading devices such as screens, shutters, curtains <strong>and</strong> blinds,<br />

• window facings.<br />

The first parameters, i.e. <strong>the</strong> <strong>the</strong>rmal <strong>and</strong> optical properties <strong>of</strong> windows, are examined in<br />

great detail in <strong>the</strong> previous chapter. As mentioned before, <strong>the</strong> distribution <strong>of</strong> passive <strong>solar</strong><br />

gain strongly depends upon <strong>the</strong> time <strong>of</strong> <strong>the</strong> day as well as <strong>the</strong> time <strong>of</strong> year. Graphs in Fig.<br />

3.19 <strong>and</strong> Fig. 3.20 present <strong>the</strong> daily <strong>and</strong> monthly differences between gain <strong>and</strong> loss energy<br />

through 1m 2 <strong>of</strong> balcony windows facing south.<br />

Window Heat Gain <strong>and</strong> Loss Energy [kWh/m 2 ]<br />

0,015<br />

0,010<br />

0,005<br />

0,000<br />

‐0,005<br />

‐0,010<br />

‐0,015<br />

‐0,020<br />

12/01 01:00<br />

12/01 02:00<br />

12/01 03:00<br />

12/01 04:00<br />

12/01 05:00<br />

12/01 06:00<br />

12/01 07:00<br />

12/01 08:00<br />

12/01 09:00<br />

12/01 10:00<br />

12/01 11:00<br />

12/01 12:00<br />

12/01 13:00<br />

12/01 14:00<br />

12/01 15:00<br />

12/01 16:00<br />

12/01 17:00<br />

12/01 18:00<br />

12/01 19:00<br />

12/01 20:00<br />

12/01 21:00<br />

12/01 22:00<br />

12/01 23:00<br />

12/01 24:00<br />

Window Heat Gain <strong>and</strong> Loss Energy [kWh/m 2 ]<br />

Fig. 3.19: Energy balance for <strong>the</strong> south window on <strong>the</strong> first day in December (left side <strong>of</strong> fig.) <strong>and</strong> on <strong>the</strong><br />

first day in March (right side <strong>of</strong> fig.).<br />

0,270<br />

0,220<br />

0,170<br />

0,120<br />

0,070<br />

0,020<br />

‐0,030<br />

03/01 01:00<br />

03/01 02:00<br />

03/01 03:00<br />

03/01 04:00<br />

03/01 05:00<br />

03/01 06:00<br />

03/01 07:00<br />

03/01 08:00<br />

03/01 09:00<br />

03/01 10:00<br />

03/01 11:00<br />

03/01 12:00<br />

03/01 13:00<br />

03/01 14:00<br />

03/01 15:00<br />

03/01 16:00<br />

03/01 17:00<br />

03/01 18:00<br />

03/01 19:00<br />

03/01 20:00<br />

03/01 21:00<br />

03/01 22:00<br />

03/01 23:00<br />

03/01 24:00


3.3 Estimation <strong>of</strong> <strong>the</strong>rmal energy gain <strong>and</strong> loss through building fenestration 71<br />

Window Heat Gain <strong>and</strong> Loss Energy [kWh/m 2 ]<br />

1,000<br />

0,800<br />

0,600<br />

0,400<br />

0,200<br />

0,000<br />

‐0,200<br />

‐0,400<br />

12/01<br />

12/03<br />

12/05<br />

12/07<br />

12/09<br />

12/11<br />

12/13<br />

12/15<br />

12/17<br />

12/19<br />

12/21<br />

Fig. 3.20: Energy balance for <strong>the</strong> south window in December (left side <strong>of</strong> fig.) <strong>and</strong> in March (right side <strong>of</strong><br />

fig.).<br />

From <strong>the</strong> above figures, it can clearly be seen that even a window with a view facing south<br />

has a negative balance <strong>of</strong> energy during December. Therefore it is necessary to analyze not<br />

only <strong>the</strong> entire building performance, but each <strong>façade</strong> separately <strong>and</strong> <strong>the</strong>ir influence on <strong>the</strong><br />

total energy consumption. All shading surfaces, attached as well as detached to <strong>the</strong><br />

building structure, are included within <strong>the</strong> energy simulation model in order to create <strong>the</strong><br />

optimal physical reality.<br />

3.3.2 Analysis <strong>of</strong> <strong>the</strong> energy balance for windows<br />

12/23<br />

12/25<br />

12/27<br />

12/29<br />

12/31<br />

Window Heat Gain <strong>and</strong> Loss Energy [kWh/m 2 ]<br />

This part <strong>of</strong> <strong>the</strong> dissertation focuses on <strong>the</strong> relationship between <strong>the</strong> space-heating energy<br />

consumption <strong>and</strong> <strong>the</strong> area <strong>of</strong> <strong>the</strong> <strong>glazing</strong> system. It was decided to change <strong>the</strong> window-towall<br />

ratio (WWR) for <strong>the</strong> whole building to ensure that <strong>the</strong> optimal value <strong>of</strong> WWR exists in<br />

<strong>the</strong> first order. The simulations were done for a heating period <strong>and</strong> <strong>the</strong> results are shown in<br />

Fig. 3.21.<br />

1,800<br />

1,600<br />

1,400<br />

1,200<br />

1,000<br />

0,800<br />

0,600<br />

0,400<br />

0,200<br />

0,000<br />

‐0,200<br />

‐0,400<br />

03/01<br />

03/03<br />

03/05<br />

03/07<br />

03/09<br />

03/11<br />

03/13<br />

03/15<br />

03/17<br />

03/19<br />

03/21<br />

03/23<br />

03/25<br />

03/27<br />

03/29<br />

03/31


3.3 Estimation <strong>of</strong> <strong>the</strong>rmal energy gain <strong>and</strong> loss through building fenestration 72<br />

District heating [kWh]<br />

30 000<br />

29 000<br />

28 000<br />

27 000<br />

26 000<br />

25 000<br />

24 000<br />

23 000<br />

22 000<br />

21 000<br />

20 000<br />

design value<br />

0 10 20 30 40 50<br />

Window-Wall Ratio [%]<br />

Fig. 3.21: Relationship between energy for space heating <strong>and</strong> window-to-wall area.<br />

As it turned out, we could describe <strong>the</strong> relationship between <strong>the</strong> energy consumption for<br />

space heating Eh <strong>and</strong> <strong>the</strong> window-to-wall ratio with a high level <strong>of</strong> accuracy by using <strong>the</strong><br />

following linear equation:<br />

Eh = 210 , 8⋅WWR+<br />

20262.<br />

(3.1)<br />

It is important to emphasize that it is impossible to find an optimal value <strong>of</strong> WWR if we use<br />

this simple approach to <strong>the</strong> subject under examination.<br />

It was proposed to find a procedure for determining <strong>the</strong> optimal value <strong>of</strong> <strong>the</strong> window-towall<br />

ratio. This method consists <strong>of</strong> <strong>the</strong> three following steps:<br />

I. calculation <strong>of</strong> energy balance for windows on each side <strong>of</strong> <strong>the</strong> building separately,<br />

II. increase an area <strong>of</strong> <strong>the</strong> windows with <strong>the</strong> positive energy balance to <strong>the</strong> maximum<br />

limit,<br />

III. reduce <strong>the</strong> size <strong>of</strong> <strong>the</strong> windows with a negative energy balance to <strong>the</strong> minimal<br />

value, which depends on <strong>the</strong> floor space for all living rooms.<br />

Therefore, in <strong>the</strong> beginning it was necessary to examine each building <strong>façade</strong> separately.<br />

Fig. 3.22 – Fig. 3.25 show <strong>the</strong> energy balance <strong>of</strong> <strong>the</strong> <strong>glazing</strong> systems for <strong>the</strong> north, south,<br />

west <strong>and</strong> east faces <strong>of</strong> <strong>the</strong> building, respectively. Simulations were conducted for <strong>the</strong><br />

following five locations in Germany: Hannover, Berlin, Düsseldorf, Frankfurt <strong>and</strong>


3.3 Estimation <strong>of</strong> <strong>the</strong>rmal energy gain <strong>and</strong> loss through building fenestration 73<br />

Hamburg under different wea<strong>the</strong>r conditions. Reports <strong>of</strong> <strong>the</strong> calculations are presented for<br />

triple-glazed windows as well as for double–glazed balcony windows.<br />

(Window Heat Gain Energy -<br />

Window Heat Loss Energy)<br />

per 1m2 <strong>of</strong> <strong>glazing</strong> system<br />

[kWh/m2 ]<br />

0,00<br />

-5,00<br />

-10,00<br />

-15,00<br />

-20,00<br />

-25,00<br />

-30,00<br />

-35,00<br />

-40,00<br />

-45,00<br />

HANNOVER BERLIN DUSSELDORF FRANKFURT HAMBURG<br />

North-Balcony window -39,98 -40,32 -33,70 -37,38 -40,09<br />

North-Window -27,86 -28,37 -22,52 -25,41 -28,23<br />

Fig. 3.22: Difference between heat gain <strong>and</strong> loss energy from north-side windows during a typical heating<br />

season.<br />

(Window Heat Gain Energy -<br />

Window Heat Loss Energy)<br />

per 1m2 <strong>of</strong> <strong>glazing</strong> system<br />

[kWh/m2 ]<br />

25,00<br />

20,00<br />

15,00<br />

10,00<br />

5,00<br />

0,00<br />

HANNOVER BERLIN DUSSELDORF FRANKFURT HAMBURG<br />

South-Balcony window 17,35 10,85 15,87 19,13 11,28<br />

South-Window 18,66 14,48 19,30 23,24 14,71<br />

Fig. 3.23: Difference between heat gain <strong>and</strong> loss energy from south-side windows during a typical heating<br />

season.


3.3 Estimation <strong>of</strong> <strong>the</strong>rmal energy gain <strong>and</strong> loss through building fenestration 74<br />

(Window Heat Gain Energy -<br />

Window Heat Loss Energy)<br />

per 1m2 <strong>of</strong> <strong>glazing</strong> system<br />

[kWh/m2 ]<br />

0,00<br />

-5,00<br />

-10,00<br />

-15,00<br />

-20,00<br />

-25,00<br />

-30,00<br />

HANNOVER BERLIN DUSSELDORF FRANKFURT HAMBURG<br />

West-Balcony window -26,52 -29,43 -22,46 -21,23 -27,86<br />

Fig. 3.24: Difference between heat gain <strong>and</strong> loss energy from west-side windows during a typical heating<br />

season.<br />

(Window Heat Gain Energy -<br />

Window Heat Loss Energy)<br />

per 1m2 <strong>of</strong> <strong>glazing</strong> system<br />

[kWh/m2 ]<br />

0,00<br />

-5,00<br />

-10,00<br />

-15,00<br />

-20,00<br />

-25,00<br />

-30,00<br />

HANNOVER BERLIN DUSSELDORF FRANKFURT HAMBURG<br />

East-Window -21,29 -22,86 -16,97 -15,90 -22,24<br />

Fig. 3.25: Difference between heat gain <strong>and</strong> loss energy from east-side windows during a typical heating<br />

season.<br />

The results <strong>of</strong> simulations indicate that:<br />

• only south-side windows have a positive energy balance for all examined locations,<br />

• <strong>the</strong> most intensive <strong>solar</strong> heat gain can be achieved for <strong>the</strong> wea<strong>the</strong>r conditions in<br />

Frankfurt,<br />

• <strong>the</strong> lowest heat loss through <strong>the</strong> windows we found were in <strong>the</strong> <strong>the</strong> locations <strong>of</strong><br />

Düsseldorf <strong>and</strong> Frankfurt,<br />

• <strong>the</strong> most favourable wea<strong>the</strong>r, from <strong>the</strong> viewpoint <strong>of</strong> energy consumption, appears in<br />

<strong>the</strong> areas surrounding Berlin.


3.3 Estimation <strong>of</strong> <strong>the</strong>rmal energy gain <strong>and</strong> loss through building fenestration 75<br />

A positive energy balance <strong>of</strong> south-faced windows concerns <strong>the</strong> whole heating period. This<br />

does not mean that heat gains exceeded losses for each “cold” month. As we can see in<br />

Fig. 3.26 in December <strong>and</strong> January <strong>the</strong> windows energy balance is negative.<br />

(Window Heat Gain Energy -<br />

Window Heat Loss Energy)<br />

per 1m2 <strong>of</strong> <strong>glazing</strong> system<br />

[kWh/m2 ]<br />

10,00<br />

8,00<br />

6,00<br />

4,00<br />

2,00<br />

0,00<br />

-2,00<br />

-4,00<br />

-6,00<br />

October November December January February March<br />

South-Balcony window 5,104 3,466 -4,064 -1,748 5,730 8,862<br />

Fig. 3.26: Month-average energy balance <strong>of</strong> south-side windows.<br />

The next problem, which <strong>the</strong> computer simulations disclosed, was <strong>the</strong> variability <strong>of</strong> passive<br />

<strong>solar</strong> gain connected to <strong>the</strong> windows height to <strong>the</strong> ground level. This relationship is<br />

illustrated in Fig. 3.27.<br />

(Window Heat Gain Energy -<br />

Window Heat Loss Energy)<br />

per 1m2 <strong>of</strong> <strong>glazing</strong> system<br />

[kWh/m2 ]<br />

25,00<br />

20,00<br />

15,00<br />

10,00<br />

5,00<br />

0,00<br />

1st floor 2nd floor 3rd floor 4th floor 5th floor<br />

South-Balcony window 13,70 14,16 15,14 17,35 19,95<br />

South-Window 8,42 9,37 13,21 18,66 25,20<br />

Fig. 3.27: Difference between <strong>solar</strong> gain <strong>and</strong> heat loss for south <strong>façade</strong>.<br />

As expected, <strong>the</strong> results <strong>of</strong> <strong>the</strong> calculations showed a strong relationship between <strong>the</strong><br />

passive <strong>solar</strong> gains <strong>and</strong> <strong>the</strong> relative height <strong>of</strong> <strong>the</strong> <strong>glazing</strong> system. It should be noted that <strong>the</strong>


3.3 Estimation <strong>of</strong> <strong>the</strong>rmal energy gain <strong>and</strong> loss through building fenestration 76<br />

energy balance is positive for each storey. The difference between <strong>the</strong> first <strong>and</strong> <strong>the</strong> highest<br />

floor is equal to 31 % for balcony-windows <strong>and</strong> up to 66 % for windows.<br />

(Window Heat Gain Energy -<br />

Window Heat Loss Energy)<br />

per 1m2 <strong>of</strong> <strong>glazing</strong> system<br />

[kWh/m2 ]<br />

30,00<br />

25,00<br />

20,00<br />

15,00<br />

10,00<br />

5,00<br />

0,00<br />

Fig. 3.28: Dependence <strong>of</strong> <strong>solar</strong> gain <strong>and</strong> heat loss difference in <strong>the</strong> middle <strong>of</strong> each storey’s height.<br />

The dependence <strong>of</strong> <strong>the</strong> energy transfer Et on windows highest above ground level hs,<br />

shown in Fig. 3.27, we can approximate with a high level <strong>of</strong> accuracy using <strong>the</strong> following<br />

equations:<br />

• for <strong>the</strong> south-facing window:<br />

2<br />

Et<br />

= 0,<br />

099hs<br />

− 0,<br />

07hs<br />

+ 8,<br />

13,<br />

• for <strong>the</strong> south-facing balcony window:<br />

2<br />

Et<br />

= 0,<br />

042hs<br />

− 0,<br />

12hs<br />

+ 13,<br />

78.<br />

South‐Balcony window<br />

South‐Window<br />

Approximation<br />

0 2 4 6 8 10 12 14<br />

Middle <strong>of</strong> <strong>the</strong> storey’s height [m]<br />

3.3.3 Definition <strong>of</strong> an optimal value <strong>of</strong> window-to-wall ratio<br />

(3.2)<br />

(3.3)<br />

To summarize <strong>the</strong> above <strong>analysis</strong>, it should be noted that only south <strong>glazing</strong> systems<br />

provide heat gains for all locations in Germany. As mentioned before, east, west <strong>and</strong> most<br />

<strong>of</strong> all north <strong>façade</strong>s’ contributions to energy consumption increase during a heating period.<br />

So, it is impossible to talk about <strong>the</strong> optimal value <strong>of</strong> window-to-wall ratios with a<br />

reference to <strong>the</strong>se sides <strong>of</strong> <strong>the</strong> building. We can determine WWR only for <strong>the</strong> whole<br />

building with <strong>the</strong> additional investigation <strong>of</strong> each type <strong>of</strong> apartment (zones).


3.3 Estimation <strong>of</strong> <strong>the</strong>rmal energy gain <strong>and</strong> loss through building fenestration 77<br />

In <strong>the</strong> second step <strong>of</strong> <strong>the</strong> optimization procedure we should increase an area <strong>of</strong> <strong>the</strong> southfacing<br />

windows to <strong>the</strong> maximum value with respect to <strong>the</strong> building construction limits.<br />

Then, in <strong>the</strong> third step, <strong>the</strong> size <strong>of</strong> <strong>the</strong> o<strong>the</strong>r windows must be reduced <strong>and</strong> some windows<br />

must be removed. The starting point <strong>of</strong> this <strong>analysis</strong> should be to determine <strong>the</strong> value <strong>of</strong> a<br />

minimal window area based on natural lighting requirements. The ratio <strong>of</strong> <strong>the</strong> <strong>glazing</strong><br />

elements area to <strong>the</strong> floor space for all living rooms is equal to 0.125 by German st<strong>and</strong>ards<br />

in Lower Saxony (DVNBauO, 2004). It is important to underline that <strong>the</strong> window<br />

dimensions are calculated in an unfinished state, i.e. without frames. The new value <strong>of</strong> <strong>the</strong><br />

suitable <strong>glazing</strong> area Ag can be calculated by using <strong>the</strong> following equation:<br />

g<br />

f<br />

( + r )<br />

A = 0 , 125A<br />

1 − , (3.4)<br />

where:<br />

g<br />

f<br />

Af – area <strong>of</strong> <strong>the</strong> floor,<br />

rg-f = 0,25 – frame to glass ratio for a window.<br />

The results <strong>of</strong> <strong>the</strong> optimization process are shown in Table 3.9 <strong>and</strong> Table 3.10, <strong>and</strong> <strong>the</strong><br />

view <strong>of</strong> <strong>the</strong> new model is presented in Fig. 3.29.<br />

Fig. 3.29: The view <strong>of</strong> <strong>the</strong> complete house after <strong>the</strong> change <strong>of</strong> <strong>the</strong> <strong>glazing</strong> system.<br />

The new characteristic <strong>of</strong> <strong>the</strong> building envelope after <strong>the</strong> change in window size is shown<br />

in Table 3.9. As seen, <strong>the</strong> total <strong>glazing</strong> area is reduced by over 46 %. As it turned out, <strong>the</strong>


3.3 Estimation <strong>of</strong> <strong>the</strong>rmal energy gain <strong>and</strong> loss through building fenestration 78<br />

optimal value <strong>of</strong> <strong>the</strong> window-to-wall ratio for <strong>the</strong> entire building was equal to over 22 %.<br />

But <strong>the</strong> area <strong>of</strong> <strong>the</strong> south-facing windows was enlarged to 58 % <strong>of</strong> <strong>the</strong> <strong>façade</strong> size. The<br />

lowest value <strong>of</strong> WWR, only equal to about 4 %, characterizes <strong>the</strong> north <strong>façade</strong> <strong>of</strong> <strong>the</strong><br />

building under consideration.<br />

Window Opening Area<br />

- design value (m 2 )<br />

Window Opening Area<br />

- optimal value (m 2 )<br />

Difference between design <strong>and</strong><br />

optimal value (m 2 )<br />

Difference between design <strong>and</strong><br />

optimal value (%)<br />

Optimal value <strong>of</strong> <strong>the</strong><br />

Window-to-Wall Ratio (%)<br />

Table 3.9: Optimal value <strong>of</strong> Window-to-Wall Ratio.<br />

Total<br />

North<br />

315 to 45<br />

deg<br />

East<br />

45 to 135<br />

deg<br />

South<br />

135 to 225<br />

deg<br />

West<br />

225 to 315<br />

deg<br />

768.42 148.11 155.67 205.26 259.37<br />

410.70 17.78 53.77 260.38 78.77<br />

357.72 130.33 101.9 -55.12 180.6<br />

46.55 88.00 65.46 -26.85 69.63<br />

22.15 3.96 11.23 58.07 16.45<br />

It is crucial to note that <strong>the</strong> optimal value <strong>of</strong> WWR can significantly provide a reduction in<br />

energy consumption. As we see in Table 3.10, it is possible to decrease <strong>the</strong> space heating<br />

energy requirements by over 30 %.<br />

Design value<br />

Optimal value<br />

Difference between design <strong>and</strong><br />

optimal value<br />

Difference between design <strong>and</strong><br />

optimal value (%)<br />

Table 3.10: Heating energy consumption.<br />

District<br />

Heating<br />

(kWh)<br />

Energy Per Total<br />

Building Area<br />

(kWh/m 2 )<br />

Energy Per Conditioned<br />

Building Area (kWh/m 2 )<br />

29138.56 21.23 21.98<br />

19963.75 17.32 17.93<br />

9174.81 3.910 4.050<br />

31.49 18.42 18.43<br />

It is important to underline that <strong>the</strong> results <strong>of</strong> <strong>the</strong> optimization procedure, shown above,<br />

cannot be applied to o<strong>the</strong>r multi-family buildings because <strong>the</strong> optimal value <strong>of</strong> WWR<br />

mainly depends upon <strong>the</strong> apartment arrangement, <strong>the</strong> <strong>the</strong>rmal <strong>and</strong> optical performance <strong>of</strong><br />

windows <strong>and</strong> <strong>the</strong> building shape. However, <strong>the</strong> proposed optimization procedure is<br />

universal <strong>and</strong> can be used for single-family as well as multi-family buildings.


3.4 Testing <strong>of</strong> a building indoor environment during <strong>the</strong> warm period 79<br />

3.4 Testing <strong>of</strong> a building indoor environment during <strong>the</strong> warm<br />

period<br />

The simulation was carried out to audit <strong>the</strong> <strong>the</strong>rmal environment in <strong>the</strong> apartments during<br />

<strong>the</strong> warm period. Calculations were performed with <strong>the</strong> following assumptions:<br />

• <strong>the</strong> cooling system is turned <strong>of</strong>f,<br />

• mechanical intensive night ventilation with outside air <strong>and</strong> at a variable flow rate<br />

was realized.<br />

Reduction <strong>of</strong> gains from <strong>solar</strong> <strong>radiation</strong> during <strong>the</strong> summer was performed by:<br />

• protection shields made by movable glass parts printed with various patterns, which<br />

were positioned on a movable rails construction on <strong>the</strong> level <strong>of</strong> <strong>the</strong> building facade<br />

in front <strong>of</strong> <strong>the</strong> balconies,<br />

• alternatively an internal or external window shade with high reflect parameters.<br />

The zone’s <strong>the</strong>rmal environment was defined by using: Predicted Mean Vote (PMV),<br />

Predicted Percentage <strong>of</strong> Dissatisfied (PPD) <strong>and</strong> operative temperature θO given by:<br />

( A)<br />

MR<br />

θO = Aθa , i + 1−<br />

θ , (3.5)<br />

where:<br />

A = hr / (hc + hr)<br />

hr – surface heat transfer coefficient by <strong>radiation</strong>,<br />

hc – surface heat transfer coefficient by convection,<br />

θa,i – <strong>the</strong> air temperature inside <strong>the</strong> zone-i,<br />

θMR – <strong>the</strong> mean radiant temperature.<br />

The calculation <strong>of</strong> <strong>the</strong> mean radiant temperature was done by equation (3.6).<br />

n<br />

4 ∑<br />

i=<br />

1<br />

θ = F θ ,<br />

MR<br />

where:<br />

4<br />

o−i<br />

i,<br />

r<br />

n – <strong>the</strong> number <strong>of</strong> surfaces inside <strong>the</strong> zone-i,<br />

Fo-i – <strong>the</strong> view factor <strong>of</strong> <strong>the</strong> human body,<br />

– <strong>the</strong> radiant temperature <strong>of</strong> <strong>the</strong> iso<strong>the</strong>rmal surface.<br />

θi,r<br />

(3.6)


3.4 Testing <strong>of</strong> a building indoor environment during <strong>the</strong> warm period 80<br />

For a ‘good’ indoor climate, <strong>the</strong> following value is recommended: -0.5 < PMV < +0.5.<br />

The calculations were performed from 1 April to 15 October. The optical <strong>and</strong> <strong>the</strong>rmal<br />

characteristics <strong>of</strong> a high reflect shading device, used in simulations, is presented in Table<br />

3.11.<br />

Table 3.11: Characteristic <strong>of</strong> a window shading device.<br />

Parameter Value<br />

Solar Transmittance 0.280<br />

Solar Reflectance 0.700<br />

Visible Transmittance 0.280<br />

Visible Reflectance 0.700<br />

Thermal Hemispherical Emissivity 0.850<br />

Thermal Transmittance 0.100<br />

Thickness [m] 0.005<br />

Conductivity [W/mK] 0.100<br />

Shade to Glass Distance [m] 0.050<br />

The <strong>solar</strong> transmittance value for <strong>the</strong> shading surfaces is set to 0.3 for <strong>the</strong> protection<br />

movable shield, 0.2 for trees as detached shading surfaces <strong>and</strong> 0 for adjacent buildings.<br />

The following four cases were analyzed:<br />

Case 1 - protection facade shields were used to reduce <strong>solar</strong> gain,<br />

Case 2 - exterior window shades were used to reduce <strong>solar</strong> gain,<br />

Case 3 - window shades are located on internal sides,<br />

Case 4 - <strong>the</strong>re are not any protection systems (an extremely disadvantageous<br />

situation).<br />

The selected results for four apartments located on <strong>the</strong> middle storey are presented below.


36<br />

34<br />

32<br />

30<br />

28<br />

26<br />

24<br />

22<br />

20<br />

18<br />

36<br />

34<br />

32<br />

30<br />

28<br />

26<br />

24<br />

22<br />

20<br />

18<br />

3.4 Testing <strong>of</strong> a building indoor environment during <strong>the</strong> warm period 81<br />

Case 1<br />

1‐Apr 1‐May 1‐Jun 1‐Jul 1‐Aug 1‐Sep 1‐Oct 1‐Apr 1‐May 1‐Jun 1‐Jul 1‐Aug 1‐Sep 1‐Oct 1‐Apr 1‐May 1‐Jun 1‐Jul 1‐Aug 1‐Sep 1‐Oct 1‐Apr 1‐May 1‐Jun 1‐Jul 1‐Aug 1‐Sep 1‐Oct<br />

Case 1<br />

Case 2<br />

Fig. 3.30: Zone operate temperature for apartment OG1.<br />

Case 2<br />

1‐Apr 1‐May 1‐Jun 1‐Jul 1‐Aug 1‐Sep 1‐Oct 1‐Apr 1‐May 1‐Jun 1‐Jul 1‐Aug 1‐Sep 1‐Oct 1‐Apr 1‐May 1‐Jun 1‐Jul 1‐Aug 1‐Sep 1‐Oct 1‐Apr 1‐May 1‐Jun 1‐Jul 1‐Aug 1‐Sep 1‐Oct<br />

Fig. 3.31: Zone operate temperature for apartment OG2.<br />

Case 3<br />

Case 3<br />

Case 4<br />

Case 4


36<br />

34<br />

32<br />

30<br />

28<br />

26<br />

24<br />

22<br />

20<br />

18<br />

36<br />

34<br />

32<br />

30<br />

28<br />

26<br />

24<br />

22<br />

20<br />

18<br />

3.4 Testing <strong>of</strong> a building indoor environment during <strong>the</strong> warm period 82<br />

Case 1<br />

1‐Apr 1‐May 1‐Jun 1‐Jul 1‐Aug 1‐Sep 1‐Oct 1‐Apr 1‐May 1‐Jun 1‐Jul 1‐Aug 1‐Sep 1‐Oct 1‐Apr 1‐May 1‐Jun 1‐Jul 1‐Aug 1‐Sep 1‐Oct 1‐Apr 1‐May 1‐Jun 1‐Jul 1‐Aug 1‐Sep 1‐Oct<br />

Case 1<br />

Case 2<br />

Fig. 3.32: Zone operate temperature for apartment OG3.<br />

Case 2<br />

1‐Apr 1‐May 1‐Jun 1‐Jul 1‐Aug 1‐Sep 1‐Oct 1‐Apr 1‐May 1‐Jun 1‐Jul 1‐Aug 1‐Sep 1‐Oct 1‐Apr 1‐May 1‐Jun 1‐Jul 1‐Aug 1‐Sep 1‐Oct 1‐Apr 1‐May 1‐Jun 1‐Jul 1‐Aug 1‐Sep 1‐Oct<br />

Fig. 3.33: Zone operate temperature for apartment OG4.<br />

Case 3<br />

Case 3<br />

Case 4<br />

Case 4


3,00<br />

2,50<br />

2,00<br />

1,50<br />

1,00<br />

0,50<br />

0,00<br />

‐0,50<br />

‐1,00<br />

3,00<br />

2,50<br />

2,00<br />

1,50<br />

1,00<br />

0,50<br />

0,00<br />

‐0,50<br />

‐1,00<br />

3.4 Testing <strong>of</strong> a building indoor environment during <strong>the</strong> warm period 83<br />

Case 1<br />

1‐Apr 1‐May 1‐Jun 1‐Jul 1‐Aug 1‐Sep 1‐Oct Apr 1‐May 1‐Jun 1‐Jul 1‐Aug 1‐Sep 1‐Oct Apr 1‐May 1‐Jun 1‐Jul 1‐Aug 1‐Sep 1‐Oct Apr 1‐May 1‐Jun 1‐Jul 1‐Aug 1‐Sep 1‐Oct<br />

Case 1<br />

Case 2<br />

Fig. 3.34: PMV comfort <strong>the</strong>rmal index for OG1 apartment.<br />

Case 2<br />

1‐Apr 1‐May 1‐Jun 1‐Jul 1‐Aug 1‐Sep 1‐Oct Apr 1‐May 1‐Jun 1‐Jul 1‐Aug 1‐Sep 1‐Oct Apr 1‐May 1‐Jun 1‐Jul 1‐Aug 1‐Sep 1‐Oct Apr 1‐May 1‐Jun 1‐Jul 1‐Aug 1‐Sep 1‐Oct<br />

Fig. 3.35: PMV comfort <strong>the</strong>rmal index for OG2 apartment.<br />

Case 3<br />

Case 3<br />

Case 4<br />

Case 4


3,00<br />

2,50<br />

2,00<br />

1,50<br />

1,00<br />

0,50<br />

0,00<br />

‐0,50<br />

‐1,00<br />

3,00<br />

2,50<br />

2,00<br />

1,50<br />

1,00<br />

0,50<br />

0,00<br />

‐0,50<br />

‐1,00<br />

3.4 Testing <strong>of</strong> a building indoor environment during <strong>the</strong> warm period 84<br />

Case 1<br />

1‐Apr 1‐May 1‐Jun 1‐Jul 1‐Aug 1‐Sep 1‐Oct Apr 1‐May 1‐Jun 1‐Jul 1‐Aug 1‐Sep 1‐Oct Apr 1‐May 1‐Jun 1‐Jul 1‐Aug 1‐Sep 1‐Oct Apr 1‐May 1‐Jun 1‐Jul 1‐Aug 1‐Sep 1‐Oct<br />

Case 1<br />

Case 2<br />

Fig. 3.36: PMV comfort <strong>the</strong>rmal index for OG3 apartment.<br />

Case 2<br />

1‐Apr 1‐May 1‐Jun 1‐Jul 1‐Aug 1‐Sep 1‐Oct Apr 1‐May 1‐Jun 1‐Jul 1‐Aug 1‐Sep 1‐Oct Apr 1‐May 1‐Jun 1‐Jul 1‐Aug 1‐Sep 1‐Oct Apr 1‐May 1‐Jun 1‐Jul 1‐Aug 1‐Sep 1‐Oct<br />

Fig. 3.37: PMV comfort <strong>the</strong>rmal index for OG4 apartment.<br />

Case 3<br />

Case 3<br />

Case 4<br />

Case 4


3.4 Testing <strong>of</strong> a building indoor environment during <strong>the</strong> warm period 85<br />

Based on <strong>the</strong> results <strong>of</strong> <strong>the</strong> simulation we can affirm that:<br />

• Intensive cooling with outside air at night, protection facade shields <strong>and</strong> window<br />

shades located on <strong>the</strong> internal side do not secure <strong>the</strong>rmal comfort during more than<br />

half <strong>of</strong> <strong>the</strong> warm period,<br />

• The window shade with <strong>the</strong> high reflection surface mounted outside <strong>and</strong> near <strong>the</strong><br />

fenestration guarantees <strong>the</strong> best protection <strong>of</strong> gains resulting from <strong>solar</strong> <strong>radiation</strong><br />

during <strong>the</strong> summer.<br />

First <strong>of</strong> all, <strong>the</strong> relatively high inside operate air temperature is <strong>the</strong> result <strong>of</strong> a large<br />

fenestration area <strong>of</strong> each segment <strong>and</strong> also <strong>of</strong> internal heat gains. Apart from that, <strong>the</strong> high<br />

<strong>the</strong>rmal insulation <strong>of</strong> <strong>the</strong> windows limits heat transfer when <strong>the</strong> outside air temperature is<br />

lower than <strong>the</strong> inside temperature. We can observe <strong>the</strong> lowest level <strong>of</strong> <strong>the</strong>rmal comfort in<br />

apartments OG2 <strong>and</strong> OG3. The PMV index reaches about 3 in June <strong>and</strong> September.<br />

Comparatively good conditions <strong>of</strong> comfort are present in segments OG1 <strong>and</strong> OG4. Due to<br />

effective external shading devices <strong>and</strong> night cooling, <strong>the</strong> internal air temperature stays<br />

below 28°C.<br />

The next simulations were conducted to compare <strong>the</strong> designed fenestration area with <strong>the</strong><br />

optimal windows area in summer conditions. Results <strong>of</strong> <strong>the</strong> <strong>analysis</strong> are presented in <strong>the</strong><br />

figures below.


30<br />

28<br />

26<br />

24<br />

22<br />

20<br />

18<br />

3.4 Testing <strong>of</strong> a building indoor environment during <strong>the</strong> warm period 86<br />

1‐Apr 1‐May 1‐Jun 1‐Jul 1‐Aug 1‐Sep 1‐Oct Apr 1‐May 1‐Jun 1‐Jul 1‐Aug 1‐Sep 1‐Oct Apr 1‐May 1‐Jun 1‐Jul 1‐Aug 1‐Sep 1‐Oct Apr 1‐May 1‐Jun 1‐Jul 1‐Aug 1‐Sep 1‐Oct<br />

1,50<br />

1,25<br />

1,00<br />

0,75<br />

0,50<br />

0,25<br />

0,00<br />

‐0,25<br />

‐0,50<br />

‐0,75<br />

‐1,00<br />

OG 1<br />

Fig. 3.38: Zone operate temperature for apartments located on <strong>the</strong> middle storey (red colour – building with optimal value <strong>of</strong> window-to-wall ratio, blue colour – designed<br />

building).<br />

OG 1<br />

OG 2<br />

OG 2<br />

1‐Apr 1‐May 1‐Jun 1‐Jul 1‐Aug 1‐Sep 1‐Oct Apr 1‐May 1‐Jun 1‐Jul 1‐Aug 1‐Sep 1‐Oct Apr 1‐May 1‐Jun 1‐Jul 1‐Aug 1‐Sep 1‐Oct Apr 1‐May 1‐Jun 1‐Jul 1‐Aug 1‐Sep 1‐Oct<br />

Fig. 3.39: PMV comfort <strong>the</strong>rmal index for apartments located on <strong>the</strong> middle storey (orange colour – building with optimal value <strong>of</strong> window-to-wall ratio, blue colour –<br />

designed building).<br />

OG 3<br />

OG 3<br />

OG 4<br />

OG 4


3.4 Testing <strong>of</strong> a building indoor environment during <strong>the</strong> warm period 87<br />

As seen in Fig. 3.38 <strong>and</strong> Fig. 3.39, a reduction <strong>of</strong> <strong>the</strong> <strong>glazing</strong> area in an optimal variant<br />

leads to a decrease in <strong>the</strong> operate temperature <strong>and</strong> raises <strong>the</strong>rmal comfort conditions. We<br />

can observe <strong>the</strong>se effects in apartments OG1 <strong>and</strong> OG2. In <strong>the</strong> calculation <strong>of</strong> <strong>the</strong> optimal<br />

value <strong>of</strong> WWR it is assumed that <strong>the</strong> south facing windows area in apartments OG3 <strong>and</strong><br />

OG4 were increased to <strong>the</strong> maximum. As it turned out, this assumption does not<br />

significantly influence <strong>the</strong> <strong>the</strong>rmal comfort in this part <strong>of</strong> <strong>the</strong> building. So, we can conclude<br />

that <strong>the</strong> optimal window-to-wall ratio, which was determined to achieve energy savings in<br />

heating periods, provides a better quality <strong>of</strong> <strong>the</strong>rmal environment during a warm season.<br />

In order to reduce <strong>the</strong> internal air temperature we can use intensive mechanical ventilation<br />

when <strong>the</strong> outdoor temperature is lower than <strong>the</strong> air temperature in <strong>the</strong> rooms. The next<br />

series <strong>of</strong> calculations were performed to investigate how a variable air volume system<br />

<strong>influences</strong> <strong>the</strong> <strong>the</strong>rmal environment in living spaces. The typical work schedule <strong>of</strong> a<br />

ventilation system with intensive night cooling in OG1 apartment for <strong>the</strong> last week <strong>of</strong> July<br />

is shown in Fig. 3.40. The total volume <strong>of</strong> outside air varied approximately between 60 <strong>and</strong><br />

210 m 3 /h. The maximum value <strong>of</strong> <strong>the</strong> flow rate appeared very <strong>of</strong>ten from 10 p.m. to 7 a.m.<br />

Practical results <strong>of</strong> a one-week operation <strong>of</strong> a VAV system <strong>and</strong> <strong>the</strong> comparison with<br />

constant air flow ventilation are demonstrated in Fig. 3.41. We observed that <strong>the</strong> amplitude<br />

between day <strong>and</strong> night internal air temperatures was significantly higher for <strong>the</strong> apartment<br />

with a variable air volume system. Due to this effect we could relatively quickly reduce<br />

<strong>and</strong> stabilize <strong>the</strong> air temperature inside <strong>the</strong> living spaces on a lower level.<br />

As shown in Fig. 3.42 <strong>the</strong> difference between <strong>the</strong> operate temperature in an apartment with<br />

<strong>the</strong> constant air volume system <strong>and</strong> with a night cooling system using <strong>the</strong> variable air<br />

volume flow grew from April to first half <strong>of</strong> June. This value stayed at approximately <strong>the</strong><br />

same level equal to about 3.5°C on <strong>the</strong> next period <strong>of</strong> warm season. The maximum value<br />

differed from 4.1°C for apartment OG2 to 4.4°C for apartment OG1 <strong>and</strong> <strong>the</strong> mean value<br />

differed from 2.7°C to 3.0°C, respectively.<br />

As it turned out, cooling by ambient air can be an energy saving solution. This ventilation<br />

system, coupled with external shading devices, is sufficient to prevent living spaces from<br />

excessive overheating during warm seasons.


3.4 Testing <strong>of</strong> a building indoor environment during <strong>the</strong> warm period 88<br />

Volume <strong>of</strong> Outside Air [m 3 ]<br />

220<br />

200<br />

180<br />

160<br />

140<br />

120<br />

100<br />

80<br />

60<br />

40<br />

20<br />

0<br />

0 12 24 36 48 60 72 84 96 108 120 132 144 156 168<br />

Time [hour]<br />

Fig. 3.40: Mechanical ventilation in apartment OG1 - total volume <strong>of</strong> outside air<br />

Air temperature [ 0 C]<br />

35<br />

34<br />

33<br />

32<br />

31<br />

30<br />

29<br />

28<br />

CAV<br />

VAV<br />

0 12 24 36 48 60 72 84 96 108 120 132 144 156 168<br />

Time [hour]<br />

Fig. 3.41: Air temperature in apartment OG1 with different types <strong>of</strong> air volume flow rate<br />

CAV<br />

VAV


3.4 Testing <strong>of</strong> a building indoor environment during <strong>the</strong> warm period 89<br />

4,5<br />

4<br />

3,5<br />

3<br />

2,5<br />

2<br />

1,5<br />

1<br />

0,5<br />

0<br />

OG 1 OG 2 OG 3 OG 3<br />

1‐Apr 1‐May 1‐Jun 1‐Jul 1‐Aug 1‐Sep 1‐Oct Apr 1‐May 1‐Jun 1‐Jul 1‐Aug 1‐Sep 1‐Oct Apr 1‐May 1‐Jun 1‐Jul 1‐Aug 1‐Sep 1‐Oct Apr 1‐May 1‐Jun 1‐Jul 1‐Aug 1‐Sep 1‐Oct<br />

Fig. 3.42: Operate temperature difference in apartments with <strong>the</strong> constant air volume system <strong>and</strong> with <strong>the</strong> night cooling system using <strong>the</strong> variable air volume flow.


3.5 Optimization <strong>of</strong> a <strong>solar</strong> domestic hot water system 90<br />

It was decided to check <strong>the</strong> correlation between <strong>the</strong> <strong>solar</strong> passive gain <strong>and</strong> <strong>the</strong> relative<br />

height <strong>of</strong> <strong>the</strong> <strong>glazing</strong> system as was done earlier for <strong>the</strong> heating period.<br />

(Window Heat Gain Energy -<br />

Window Heat Loss Energy)<br />

per 1m2 <strong>of</strong> <strong>glazing</strong> system<br />

[kWh/m2 ]<br />

120<br />

115<br />

110<br />

105<br />

100<br />

95<br />

90<br />

85<br />

80<br />

75<br />

70<br />

0 2 4 6 8 10 12 14<br />

Middle <strong>of</strong> <strong>the</strong> storey’s height [m]<br />

Fig. 3.43: Dependence <strong>of</strong> <strong>the</strong> <strong>solar</strong> gain <strong>and</strong> heat loss difference on <strong>the</strong> middle <strong>of</strong> <strong>the</strong> storey’s height during<br />

<strong>the</strong> warm period.<br />

The windows’ energy balance (Fig. 3.43) shows that <strong>the</strong> difference between <strong>the</strong> first <strong>and</strong><br />

<strong>the</strong> last floor is small in comparison to <strong>the</strong> results which were obtained for <strong>the</strong> heating<br />

season. This effect comes from <strong>the</strong> sun's higher elevation above <strong>the</strong> horizon.<br />

3.5 Optimization <strong>of</strong> a <strong>solar</strong> domestic hot water system<br />

A developed DHW system is composed <strong>of</strong> <strong>the</strong> tube <strong>solar</strong> collectors, storage tanks <strong>and</strong> an<br />

auxiliary water heater. As commonly known, <strong>the</strong> storage tank accumulates heat from <strong>the</strong><br />

<strong>solar</strong> collectors. The auxiliary water heater provides additional heat if <strong>the</strong> storage tank<br />

water temperature is too low. A connection diagram, which was assumed in <strong>the</strong><br />

computational model <strong>of</strong> a DHW system, is shown in chapter 3.1.1.<br />

3.5.1 Description <strong>of</strong> <strong>the</strong> <strong>solar</strong> collectors<br />

The <strong>solar</strong> domestic hot water system is designed using 14 vacuum tube collectors (heat<br />

pipe principle) VITOSOL 300-T SP3, which are described by <strong>the</strong> following specifications:<br />

� gross area – 2.88 m 2 ,<br />

� absorber area – 2.05 m 2 ,<br />

� aperture area – 2.11 m 2<br />

South‐Balcony window<br />

South‐Window<br />

Approximation


3.5 Optimization <strong>of</strong> a <strong>solar</strong> domestic hot water system 91<br />

The total gross area <strong>of</strong> <strong>the</strong> <strong>solar</strong> collectors, which are connected in a parallel liquid flow, is<br />

equal to 40.32 m 2 . For numerical calculations <strong>of</strong> energy conversion, <strong>the</strong> <strong>solar</strong> panel <strong>the</strong>rmal<br />

performance was adapted from SRCC (2007).<br />

3.5.2 Solar heating systems control<br />

The efficiency <strong>of</strong> HVAC systems strongly depends on <strong>the</strong> algorithm which controls <strong>the</strong><br />

operation. “The differential <strong>the</strong>rmostat” is chosen to control a developed <strong>solar</strong> heating<br />

system. In this type <strong>of</strong> regulation technique, <strong>the</strong> temperature in <strong>the</strong> water heater is<br />

compared to <strong>the</strong> temperature inside <strong>the</strong> <strong>solar</strong> collector loop. The pump is turned on when<br />

<strong>the</strong>re is a useful heat gain.<br />

In <strong>the</strong> current <strong>analysis</strong>, <strong>the</strong> Temperature Difference On Limit was set to 10°C <strong>and</strong> <strong>the</strong><br />

Temperature Difference Off Limit was set to 2°C. If <strong>the</strong> temperature difference between <strong>the</strong><br />

collector outlet <strong>and</strong> <strong>the</strong> storage tank source outlet was above <strong>the</strong> Temperature Difference<br />

On Limit, <strong>the</strong> system was turned on. The system was turned <strong>of</strong>f when <strong>the</strong> temperature<br />

difference was below <strong>the</strong> Temperature Difference Off Limit.<br />

3.5.3 Assumed parameters <strong>of</strong> domestic hot water systems<br />

In accordance to <strong>the</strong> building owner’s suggestion, each apartment will be occupied by two<br />

persons. The average DHW consumption was estimated at 30 litres per person per day. It<br />

resulted in an annual consumption <strong>of</strong> 416.1 m 3 . The temperature <strong>of</strong> <strong>the</strong> DHW in <strong>the</strong> storage<br />

tank was set to 60°C <strong>and</strong> a mixed temperature in <strong>the</strong> water tap was set to 45°C.<br />

The simulations included domestic hot water use such as showers, dishwashers, washing<br />

machines, dryers <strong>and</strong> all types <strong>of</strong> water outlets toge<strong>the</strong>r. The following schedule <strong>of</strong> hot<br />

water equipment use was established.<br />

Table 3.12: Schedules for DHW equipment<br />

Sinks schedule Showers schedule Clo<strong>the</strong>swasher schedule Dishwasher schedule<br />

Through: 12/31,<br />

For: AllDays,<br />

Until: 7:00,<br />

0.0,<br />

Until: 8:00,<br />

0.3,<br />

Until: 9:00,<br />

0.7,<br />

Until: 11:00,<br />

0.0,<br />

Until: 12:00,<br />

0.1,<br />

Until: 13:00,<br />

0.3,<br />

Until: 17:00,<br />

0.0,<br />

Through: 12/31,<br />

For: AllDays,<br />

Until: 6:00,<br />

0.0,<br />

Until: 6:30,<br />

0.2,<br />

Until: 7:00,<br />

0.9,<br />

Until: 7:30,<br />

0.0,<br />

Until: 13:00,<br />

0.0,<br />

Until: 19:30,<br />

0.7,<br />

Until: 24:00,<br />

0.0;<br />

Through: 12/31,<br />

For: Weekends<br />

SummerDesignDay<br />

WinterDesignDay,<br />

Until: 6:00,<br />

0.0,<br />

Until: 7:00,<br />

1.0,<br />

Until: 12:00,<br />

0.0,<br />

Until: 24:00,<br />

0.0;<br />

For: AllO<strong>the</strong>rDays,<br />

Until: 24:00,<br />

0.0;<br />

Through: 12/31,<br />

For: AllDays,<br />

Until: 20:00,<br />

0.0,<br />

Until: 20:30,<br />

1.0,<br />

Until: 22:00,<br />

0.0,<br />

Until: 24:00,<br />

0.0;


3.5 Optimization <strong>of</strong> a <strong>solar</strong> domestic hot water system 92<br />

Until: 18:00,<br />

0.2,<br />

Until: 19:00,<br />

0.5,<br />

Until: 20:00,<br />

0.2,<br />

Until: 24:00,<br />

0.0;<br />

The peak volumetric flow rate for water equipment use was set to: 0,000077m 3 /s for water<br />

outlets, 0.0001022 m 3 /s for showers, 0.0000786 m 3 /s for washing machines <strong>and</strong> 0.0000504<br />

m 3 /s for dishwashers. The annual consumption equal to 416.11 m 3 was given.<br />

3.5.4 Results <strong>of</strong> computational <strong>analysis</strong><br />

In <strong>the</strong> EnergyPlus-System, <strong>the</strong> model <strong>of</strong> <strong>the</strong> <strong>solar</strong> collectors adapts <strong>the</strong> equations from <strong>the</strong><br />

ASHRAE St<strong>and</strong>ard 96-1980 (1989), ASHRAE St<strong>and</strong>ard 93-1986 (1991) <strong>and</strong> Duffie <strong>and</strong><br />

Beckman (1991) work. The calculations were performed for an annual operation <strong>of</strong> <strong>the</strong><br />

DHW system <strong>and</strong> some <strong>of</strong> <strong>the</strong> more important results are presented in Table 3.13 <strong>and</strong><br />

Table 3.14.<br />

Total Site Energy<br />

[kWh]<br />

Table 3.13: Site energy dem<strong>and</strong> for heat up DHW.<br />

Energy Per Total Building Area<br />

[kWh/m 2 ]<br />

Energy Per Conditioned Building Area<br />

[kWh/m 2 ]<br />

6430.36 2.73 2.83<br />

Table 3.14: Comparison <strong>of</strong> energy <strong>and</strong> uses.<br />

Electricity [kWh] Purchased Heating [kWh] Water [m 3 ]<br />

Pumps 756.51 0.00 0.00<br />

Water Systems 0.00 5673.85 416.11<br />

Total End Uses 756.51 5673.85 416.11<br />

The total site energy (in Table 3.13) can be defined as <strong>the</strong> sum <strong>of</strong> purchased fossil fuel,<br />

electricity, chilled water <strong>and</strong> steam (<strong>the</strong> overall energy use at <strong>the</strong> building site for all<br />

energy types <strong>and</strong> categories <strong>of</strong> use). Purchased heating (in Table 3.14) is defined as heating<br />

available from permanently installed heating units.<br />

The total energy dem<strong>and</strong> for heating domestic water per building is equal to 17198.07<br />

kWh/a. This value consists <strong>of</strong> an auxiliary source plus pumps energy (6430.36 kWh/a) <strong>and</strong>


3.5 Optimization <strong>of</strong> a <strong>solar</strong> domestic hot water system 93<br />

a <strong>solar</strong> collectors system (10767.71 kWh/a). It gives only 2.73 kWh/m 2 energy per total<br />

building area.<br />

As we know, <strong>the</strong> <strong>solar</strong> collector heat transfer energy depends on its tilt angle. The heat<br />

transfer performance for ten angles is simulated: 0°, 25°, 35°, 40°, 45°, 50°, 55°, 60°, 75°<br />

<strong>and</strong> 90° for latitude in Hannover. The results <strong>of</strong> <strong>the</strong> calculations are presented in a graph<br />

form in Fig. 3.44 <strong>and</strong> Fig. 3.45.<br />

E abs [kWh/month]<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

0<br />

January<br />

February<br />

March<br />

April<br />

May<br />

Fig. 3.44: Dependence <strong>of</strong> <strong>solar</strong> collector’s heat transfer energy on a collector tilt angle during each month.<br />

June<br />

July<br />

August<br />

September<br />

October<br />

November<br />

0<br />

25<br />

35<br />

40<br />

45<br />

50<br />

55<br />

60<br />

75<br />

90<br />

December


3.5 Optimization <strong>of</strong> a <strong>solar</strong> domestic hot water system 94<br />

Eabs [kWh/period]<br />

400<br />

350<br />

300<br />

250<br />

200<br />

150<br />

100<br />

50<br />

0<br />

annual<br />

summer winter<br />

0 10 20 30 40 50 60 70 80 90<br />

Collector angle [deg]<br />

Fig. 3.45: Dependence <strong>of</strong> <strong>solar</strong> collectors heat transfer energy for cold <strong>and</strong> warm periods in <strong>the</strong> year on a<br />

collector tilt angle.<br />

The results indicate that if we change <strong>the</strong> collector tilt angle from 25° to 60°, <strong>the</strong> absorbed<br />

<strong>solar</strong> energy varies only about 10 % in <strong>the</strong> period <strong>of</strong> a year. However, applying <strong>the</strong> extreme<br />

angles 0° (a horizontal position) <strong>and</strong> 90° (a vertical position) leads to a significant<br />

reduction <strong>of</strong> <strong>the</strong> DHW system’s efficiency. The energy conversion decreases to 70 % <strong>of</strong><br />

<strong>the</strong> maximal value in optimal panel position for <strong>the</strong> angle 0° <strong>and</strong> for an angle <strong>of</strong> 90° <strong>the</strong><br />

same reduction reaches about 50 %.<br />

As <strong>the</strong> simulation results show, <strong>the</strong> best <strong>solar</strong> collector tilt angle is 70° for <strong>the</strong> cold period<br />

<strong>and</strong> 35° for <strong>the</strong> summer time. If <strong>the</strong> tilt angel is fixed, <strong>the</strong> best <strong>the</strong>rmal performance is<br />

obtained at 45°.<br />

It should be noted that <strong>the</strong> <strong>solar</strong> installation will heat water in <strong>the</strong> winter period but <strong>the</strong><br />

<strong>solar</strong> conversion will be about ten times lower than those during <strong>the</strong> summer time. A<br />

simple calculation method for estimating <strong>the</strong> <strong>solar</strong> collector efficiency ηSC by EN12975-2<br />

(2007) is described in chapter 1.2.4 <strong>of</strong> <strong>the</strong> current work. The value <strong>of</strong> ηSC varies strongly<br />

during <strong>the</strong> day due to changes in <strong>the</strong> <strong>solar</strong> <strong>radiation</strong> flux as shown in Fig. 3.46.


3.5 Optimization <strong>of</strong> a <strong>solar</strong> domestic hot water system 95<br />

η SC [-]<br />

0,60<br />

0,50<br />

0,40<br />

0,30<br />

0,20<br />

0,10<br />

0,00<br />

08/12 01:00:00<br />

08/12 07:00:00<br />

08/12 13:00:00<br />

08/12 19:00:00<br />

08/13 01:00:00<br />

08/13 07:00:00<br />

08/13 13:00:00<br />

Fig. 3.46: Efficiency fluctuation, which is caused by <strong>solar</strong> <strong>radiation</strong> vary throughout a day.<br />

08/13 19:00:00<br />

08/14 01:00:00<br />

Ano<strong>the</strong>r factor associated with <strong>the</strong> <strong>the</strong>rmal performance <strong>of</strong> <strong>solar</strong> panels is <strong>the</strong> heat loss to<br />

ambient air caused by convection, conduction <strong>and</strong> infrared <strong>radiation</strong>. This disadvantageous<br />

effect can be characterized by a1 <strong>and</strong> a2 loss coefficients in efficiency Eq. (1.11).<br />

VITOSOL 300-T SP3, assumed in simulations, is specified by a1 = 0.9156 W/m 2 K <strong>and</strong> a2 =<br />

0.003 W/m 2 K 2 . The lowest value <strong>of</strong> performance variables a1 <strong>and</strong> a2, as in <strong>the</strong> current case,<br />

leads to <strong>the</strong> higher efficiency <strong>of</strong> <strong>the</strong> DHW system. Fluctuation in a heat loss <strong>of</strong> <strong>the</strong> <strong>solar</strong><br />

panels, presented in Fig. 3.47, strongly depends on ambient air temperature <strong>and</strong> lasts for<br />

over half a year.<br />

08/14 07:00:00<br />

08/14 13:00:00<br />

08/14 19:00:00<br />

08/15 01:00:00<br />

08/15 07:00:00<br />

08/15 13:00:00<br />

08/15 19:00:00<br />

08/16 01:00:00<br />

08/16 07:00:00<br />

08/16 13:00:00<br />

08/16 19:00:00


3.5 Optimization <strong>of</strong> a <strong>solar</strong> domestic hot water system 96<br />

Q st [W/m 2 absorber]<br />

0<br />

-1<br />

-2<br />

-3<br />

-4<br />

-5<br />

-6<br />

January<br />

-2,62<br />

February<br />

-5,87<br />

March<br />

-2,12<br />

April<br />

-1,48<br />

May<br />

June<br />

Fig. 3.47: The monthly average value <strong>of</strong> <strong>solar</strong> collector heat loss.<br />

Ano<strong>the</strong>r important consideration in <strong>the</strong> design <strong>of</strong> a DHW system is <strong>the</strong> optimal volume <strong>of</strong> a<br />

storage tank. Calculations were performed for storage volumes ranging from 1 m 3 to 12 m 3 .<br />

The accumulated <strong>solar</strong> energy rose <strong>and</strong> auxiliary energy dem<strong>and</strong> decreased with <strong>the</strong><br />

enlargement <strong>of</strong> <strong>the</strong> volume <strong>of</strong> <strong>the</strong> storage tank. As shown in graph below (Fig. 3.48), <strong>the</strong><br />

recommended volume <strong>of</strong> accumulated water, which will be heated by <strong>the</strong> <strong>solar</strong> panels, is<br />

about 4 m 3 . Design <strong>of</strong> two storage tanks is recommended. One device will work during <strong>the</strong><br />

winter <strong>and</strong> both in parallel connection will be used during <strong>the</strong> warm periods <strong>of</strong> <strong>the</strong> year.<br />

July<br />

August<br />

September<br />

October<br />

November<br />

-2,24<br />

December<br />

-1,66


3.5 Optimization <strong>of</strong> a <strong>solar</strong> domestic hot water system 97<br />

Fig. 3.48: Dependence <strong>of</strong> accumulated <strong>solar</strong> energy on <strong>the</strong> storage tank volume.<br />

Fig. 3.49 depicts <strong>the</strong> average daily water temperature inside <strong>the</strong> storage tank with a volume<br />

<strong>of</strong> 2 m 3 (solid line) <strong>and</strong> <strong>of</strong> 6 m 3 (dashed line). We can clearly observe that <strong>the</strong> increase in<br />

system <strong>the</strong>rmal capacity leads to <strong>the</strong> prolonging <strong>of</strong> <strong>the</strong> storage tanks operating period with<br />

raised output temperatures. As shown in Fig. 3.49, <strong>the</strong> simulation results can be<br />

approximated by <strong>the</strong> second order polynomial function <strong>of</strong> temperature versus time.<br />

Storage tank temperatute [ 0 C]<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

0<br />

Energy [kWh]<br />

01/01<br />

12 000<br />

10 000<br />

8 000<br />

6 000<br />

4 000<br />

2 000<br />

01/21<br />

0<br />

02/10<br />

Auxiliary energy dem<strong>and</strong><br />

Solar energy<br />

0 1 2 3 4 5 6 7 8 9 10 11 12<br />

Storage tank volume [m 3 ]<br />

03/02<br />

03/22<br />

04/11<br />

Fig. 3.49: Average daily storage tank temperature for a volume <strong>of</strong> 2 m 3 <strong>and</strong> <strong>of</strong> 6 m 3 .<br />

05/01<br />

05/21<br />

2 m3<br />

6 m3<br />

Approx. 2 m3<br />

Approx. 6 m3<br />

06/10<br />

Eq. (3.7) represents temperature pr<strong>of</strong>ile for 2 m 3 tank volume <strong>and</strong> Eq. (3.8) fit <strong>the</strong><br />

numerical data for 6 m 3 tank volume.<br />

06/30<br />

07/20<br />

08/09<br />

08/29<br />

09/18<br />

10/08<br />

10/28<br />

11/17<br />

12/07<br />

12/27


3.5 Optimization <strong>of</strong> a <strong>solar</strong> domestic hot water system 98<br />

2<br />

θ = −0.<br />

0011t<br />

+ 0,<br />

3904t<br />

+ 11,<br />

749.<br />

(3.7)<br />

2<br />

θ = −0.<br />

0012t<br />

+ 0,<br />

4409t<br />

+ 11,<br />

863.<br />

(3.8)<br />

In <strong>the</strong> authors’ opinion, this analytical form describing a physical process can be used in<br />

simplified, but at <strong>the</strong> same time accurate, modelling <strong>of</strong> <strong>the</strong>rmal energy storage in <strong>solar</strong><br />

conversion systems.<br />

Additionally, <strong>the</strong> capability <strong>of</strong> a <strong>solar</strong> collector installation for supporting <strong>the</strong> heating<br />

central system is verified. The graph, which is presented in Fig. 3.49, shows that <strong>the</strong><br />

temperature <strong>of</strong> stored water increases to over 50°C between April <strong>and</strong> September.<br />

Unfortunately, <strong>the</strong> heating system is turned <strong>of</strong>f at this period <strong>of</strong> <strong>the</strong> year. So, it can be<br />

concluded that <strong>the</strong> total designed area <strong>of</strong> <strong>solar</strong> collectors is too small for realizing this<br />

conception.


4.1 Summary 99<br />

4 Summary <strong>and</strong> conclusions<br />

4.1 Summary<br />

The duty <strong>of</strong> environmental protection <strong>and</strong> its sustainable development requires <strong>the</strong> design<br />

<strong>of</strong> energy-efficient buildings. Computer-based simulations play a very important role in<br />

this process. Additionally, this type <strong>of</strong> <strong>analysis</strong> can be useful in achieving <strong>the</strong>rmal comfort<br />

in <strong>the</strong> occupied spaces.<br />

Three co-operative apartment houses, which are currently being built in Hannover, are <strong>the</strong><br />

object <strong>of</strong> this dissertation. Each <strong>of</strong> <strong>the</strong> five storey buildings consists <strong>of</strong> nineteen<br />

apartments, a staircase <strong>and</strong> a storeroom for each home. The house envelope was designed<br />

for <strong>the</strong> optimal utilization <strong>of</strong> <strong>solar</strong> <strong>radiation</strong> energy during <strong>the</strong> heating season. A HVAC<br />

system <strong>of</strong> <strong>the</strong> considered buildings consists <strong>of</strong> mechanical ventilation, a heat recovery<br />

exchanger with its economizer controller <strong>and</strong> a combination <strong>of</strong> baseboard convective<br />

heaters <strong>and</strong> floor heating.<br />

In order to prove <strong>the</strong> hypo<strong>the</strong>sis, three basic research methods were chosen. Firstly,<br />

detailed literature research was conducted to identify <strong>the</strong> current published knowledge<br />

concerning <strong>the</strong> impact <strong>of</strong> <strong>solar</strong> <strong>radiation</strong> on <strong>the</strong> <strong>the</strong>rmal behavior <strong>of</strong> buildings. Computer<br />

simulation technique, which grows in popularity each year, was selected as <strong>the</strong> next<br />

investigation method. Additionally, experimental investigations were carried out to<br />

determine <strong>the</strong> <strong>the</strong>rmal performance <strong>of</strong> <strong>the</strong> considered external wall <strong>and</strong> <strong>the</strong>n for calibrating<br />

a building simulation s<strong>of</strong>tware.<br />

The bibliographic review <strong>and</strong> state-<strong>of</strong>-<strong>the</strong>-art technology was focused on <strong>solar</strong> heat gain<br />

through windows, <strong>the</strong> simulation <strong>of</strong> building <strong>the</strong>rmal behavior, <strong>the</strong> influence <strong>of</strong> <strong>the</strong><br />

building envelope construction on energy consumption <strong>and</strong> modelling <strong>and</strong> designing <strong>solar</strong><br />

domestic hot water systems.<br />

The detailed simulation method was chosen, as recommended in <strong>the</strong> literature, as <strong>the</strong> best<br />

tool for <strong>the</strong> research <strong>of</strong> active <strong>solar</strong> domestic hot water, heating, ventilation <strong>and</strong> air<br />

conditioning systems. Simultaneous modelling <strong>of</strong> building <strong>the</strong>rmal behavior <strong>and</strong> <strong>the</strong><br />

operation <strong>of</strong> plant <strong>and</strong> HVAC systems was employed by <strong>the</strong> author to approach simulation<br />

results with physical reality. The EnergyPlus V3-0, as <strong>the</strong> verified <strong>and</strong> fully validated tool,<br />

was chosen from a wide variety <strong>of</strong> simulation programs. This s<strong>of</strong>tware with structured,<br />

modular code models combines heat <strong>and</strong> mass transfer, simulates multi-zone airflow <strong>and</strong><br />

operates heating, cooling <strong>and</strong> ventilating systems in all kinds <strong>of</strong> buildings for long periods<br />

<strong>of</strong> time under varying conditions.<br />

First <strong>of</strong> all, a survey <strong>of</strong> problems concerned with <strong>the</strong> subject <strong>of</strong> <strong>the</strong> current dissertation in<br />

order to perform a more detailed <strong>and</strong> complex <strong>analysis</strong> <strong>of</strong> <strong>the</strong>rmal behavior <strong>of</strong> buildings


4.1 Summary 100<br />

<strong>and</strong> determine <strong>the</strong> most important factors, especially <strong>solar</strong> <strong>radiation</strong>, affecting energy<br />

consumption was carried out.<br />

Special attention was focused on <strong>the</strong> heat transfer through windows. One <strong>of</strong> <strong>the</strong> main goals<br />

<strong>of</strong> <strong>the</strong> current work was <strong>the</strong> determination <strong>and</strong> comparison <strong>of</strong> <strong>the</strong> gain <strong>and</strong> loss <strong>of</strong> <strong>the</strong>rmal<br />

energy through <strong>the</strong> building fenestration. Glazed openings are very important elements in<br />

building design. Windows provide natural day-light into rooms to reduce <strong>the</strong> use <strong>of</strong> electric<br />

lights <strong>and</strong> allow heat gain from <strong>solar</strong> <strong>radiation</strong>. The type <strong>of</strong> <strong>glazing</strong> materials used in a<br />

building construction makes a significant contribution to <strong>the</strong> annual energy consumption.<br />

For this reason, it was decided to examine twelve cases <strong>of</strong> fenestration products with<br />

different types <strong>of</strong> low-e coatings <strong>and</strong> different configurations <strong>of</strong> optical filters on a glass<br />

surface. The parameters <strong>of</strong> <strong>the</strong> developed <strong>glazing</strong> systems such as visible transmittances,<br />

U-factor, <strong>solar</strong> heat gain <strong>and</strong> shading coefficients were determined with help <strong>of</strong> <strong>the</strong><br />

computer program WINDOW 5.2. The simulation results as indexes <strong>of</strong> building energy<br />

consumption, heating <strong>and</strong> cooling energy dem<strong>and</strong> were used to select <strong>the</strong> optimal window<br />

performance. Combinations <strong>of</strong> <strong>the</strong>rmal <strong>and</strong> optical properties <strong>of</strong> <strong>the</strong> recommended <strong>glazing</strong><br />

system should provide low energy consumption throughout <strong>the</strong> winter months due to <strong>the</strong><br />

highest passive <strong>solar</strong> transmission.<br />

Large areas <strong>of</strong> <strong>glazing</strong> in each facade <strong>of</strong> <strong>the</strong> developed buildings may result both in <strong>the</strong><br />

increase <strong>of</strong> heat losses in winter <strong>and</strong> <strong>the</strong> deterioration <strong>of</strong> <strong>the</strong>rmal comfort conditions for <strong>the</strong><br />

occupants by overheating during <strong>the</strong> summer. So, that is why <strong>the</strong> optimization procedure<br />

was presented <strong>and</strong> an optimal value <strong>of</strong> window-to-wall ratio that leads to a minimum<br />

energy consumption for space heating was determined.<br />

The current work reports energy balance <strong>of</strong> <strong>glazing</strong> system for north, south, west <strong>and</strong> east<br />

face <strong>of</strong> <strong>the</strong> developed building. Simulations were conducted for <strong>the</strong> following five<br />

locations in Germany: Hannover, Berlin, Düsseldorf, Frankfurt <strong>and</strong> Hamburg with<br />

different wea<strong>the</strong>r conditions.<br />

The variability <strong>of</strong> passive <strong>solar</strong> gains connected to <strong>the</strong> windows height above <strong>the</strong> ground<br />

level for heating <strong>and</strong> warm periods separately was <strong>the</strong> next problem resolved by <strong>the</strong> author.<br />

The research results concerning an <strong>analysis</strong> <strong>of</strong> <strong>the</strong> <strong>the</strong>rmal environment in <strong>the</strong> living<br />

apartments during <strong>the</strong> warm period were presented as well. The building indoor<br />

environment was described by using an operative temperature <strong>and</strong> a PMV index.<br />

A reduction <strong>of</strong> gains from <strong>solar</strong> <strong>radiation</strong> during <strong>the</strong> summer was performed by different<br />

combinations <strong>of</strong> protection shields made by movable glass parts printed with various<br />

patterns <strong>and</strong> internal alternatively external window shades with highly reflective<br />

parameters. In order to reduce <strong>the</strong> internal air temperature, we used intensive mechanical<br />

ventilation when <strong>the</strong> outdoor temperature was lower than <strong>the</strong> air temperature in rooms. The<br />

next series <strong>of</strong> calculations were performed to investigate how variable air volume system<br />

<strong>influences</strong> <strong>the</strong> <strong>the</strong>rmal environment in living spaces.


4.2 Comments <strong>and</strong> conclusions 101<br />

Solar <strong>radiation</strong> can be converted into <strong>the</strong>rmal energy by using technical solutions too. In<br />

order to compile <strong>the</strong> energy balance <strong>of</strong> <strong>the</strong> analyzed building, <strong>the</strong> operation <strong>of</strong> a <strong>solar</strong><br />

domestic hot water system was also investigated. The developed DHW system was<br />

composed <strong>of</strong> <strong>solar</strong> collectors, storage tanks <strong>and</strong> an auxiliary water heater. The heat transfer<br />

performance for tilt angles <strong>of</strong> <strong>solar</strong> panels changing from 0° to 90° for Hannover latitude<br />

was simulated.<br />

Ano<strong>the</strong>r factor that strongly <strong>influences</strong> <strong>the</strong> conversion efficiency was heat loss to <strong>the</strong><br />

ambient caused by convection, conduction <strong>and</strong> infrared <strong>radiation</strong>. The flux <strong>of</strong> heat loss<br />

from <strong>the</strong> <strong>solar</strong> panels was also estimated <strong>and</strong> discussed.<br />

Ano<strong>the</strong>r important question in <strong>the</strong> design <strong>of</strong> a DHW system is <strong>the</strong> optimal volume <strong>of</strong> a<br />

storage tank. Calculations were performed for a storage volume ranging between 1 m 3 to<br />

12 m 3 . The capability <strong>of</strong> a developed <strong>solar</strong> active system for supporting <strong>the</strong> heating central<br />

system was also verified <strong>and</strong> reported.<br />

General comments <strong>and</strong> conclusions that could be drawn are summarized in this research.<br />

4.2 Comments <strong>and</strong> conclusions<br />

Based on <strong>the</strong> <strong>analysis</strong> <strong>of</strong> extensive results obtained from this study <strong>the</strong> following<br />

conclusions can be made.<br />

� It is proposed to find a procedure for determining <strong>the</strong> optimal value <strong>of</strong> window-towall<br />

ratio. This estimation technique consists <strong>of</strong> <strong>the</strong> following steps:<br />

- calculation <strong>of</strong> <strong>the</strong> energy balance for <strong>the</strong> windows on each side <strong>of</strong> <strong>the</strong><br />

building separately,<br />

- increase an area <strong>of</strong> <strong>the</strong> windows with <strong>the</strong> positive energy balance to <strong>the</strong><br />

maximum limit,<br />

- reduce <strong>the</strong> size <strong>of</strong> windows with negative energy balances to <strong>the</strong> minimal<br />

value (or remove), which depends on <strong>the</strong> floor space for all living rooms.<br />

This developed procedure is universal <strong>and</strong> can be used for any dwelling house.<br />

As it turned out, <strong>the</strong> optimal value <strong>of</strong> <strong>the</strong> window-to-wall ratio for <strong>the</strong> whole<br />

considered building was equal to 22 %. The total <strong>glazing</strong> area can be reduced by<br />

over 46 % in comparison to <strong>the</strong> original version. But <strong>the</strong> area <strong>of</strong> <strong>the</strong> south facing<br />

windows can be enlarged to 58 % <strong>of</strong> <strong>the</strong> <strong>façade</strong> size. It is crucial to note that <strong>the</strong><br />

optimal value <strong>of</strong> WWR can provide a reduction in heating energy consumption<br />

significantly, i.e. over 30 %. Therefore, it can be concluded that <strong>the</strong> hypo<strong>the</strong>sis,<br />

which is raised in this dissertation, has been proven.


4.2 Comments <strong>and</strong> conclusions 102<br />

Apart from that, a reduction <strong>of</strong> <strong>the</strong> <strong>glazing</strong> area lead to a decrease in <strong>the</strong> operate<br />

temperature during <strong>the</strong> warm season, thus provided better <strong>the</strong>rmal environment<br />

quality in living spaces.<br />

Fur<strong>the</strong>rmore, <strong>the</strong> <strong>analysis</strong> <strong>of</strong> <strong>the</strong> influence <strong>of</strong> <strong>the</strong> <strong>glazing</strong> system area on <strong>the</strong><br />

buildings energy dem<strong>and</strong>s showed that <strong>the</strong>re is a linear correlation, described by<br />

Eq. (3.1), between energy consumption for space heating <strong>and</strong> <strong>the</strong> window-to-wall<br />

ratio.<br />

� The next finding <strong>of</strong> this study was <strong>the</strong> determination <strong>of</strong> <strong>the</strong> relation between <strong>the</strong><br />

energy transfer <strong>and</strong> <strong>the</strong> windows’ height above ground level for <strong>the</strong> warm season as<br />

well for <strong>the</strong> heating period – Eq. (3.2) <strong>and</strong> Eq. (3.3). Simulation results indicated<br />

that <strong>the</strong> difference between <strong>the</strong> first <strong>and</strong> <strong>the</strong> last floor is high <strong>and</strong> equal to 31 % for<br />

balcony-windows <strong>and</strong> up to 66 % for windows in winter month. The windows’<br />

energy balance for <strong>the</strong> summer month showed that <strong>the</strong> difference between <strong>the</strong> first<br />

<strong>and</strong> <strong>the</strong> last floor is quite small due to <strong>the</strong> sun's higher elevation above <strong>the</strong> horizon.<br />

� The present work was also focused on <strong>the</strong> investigation <strong>of</strong> an intensive night<br />

ventilation system during <strong>the</strong> warm months when <strong>the</strong> ambient temperature is lower<br />

than inner air temperature. As it turned out, cooling by ambient air can be an<br />

energy-saving solution. This ventilation system, coupled with external shading<br />

devices, is sufficient to prevent living spaces from excessive overheating during <strong>the</strong><br />

entire warm part <strong>of</strong> <strong>the</strong> year. It was found that <strong>the</strong> amplitude between day <strong>and</strong> night<br />

internal air temperatures is significantly higher for apartments with variable air<br />

volume systems. Due to this effect, we can relatively quickly reduce <strong>and</strong> stabilize<br />

<strong>the</strong> air temperature to a lower level inside living spaces. The difference between <strong>the</strong><br />

operate temperature in apartments with constant air volume systems <strong>and</strong> with night<br />

cooling systems using <strong>the</strong> variable air volume flow increases from April to <strong>the</strong> first<br />

half <strong>of</strong> June. This value stays approximately at <strong>the</strong> same level equal to 3.5°C for <strong>the</strong><br />

next period <strong>of</strong> <strong>the</strong> warm season. The maximum value differs from 4.1°C to 4.4°C<br />

<strong>and</strong> <strong>the</strong> mean value differs from 2.7°C to 3.0°C depending on <strong>the</strong> apartment<br />

location.<br />

� Based on <strong>the</strong> results <strong>of</strong> <strong>the</strong> multivariate testing <strong>of</strong> <strong>the</strong> buildings’ energy<br />

performance <strong>and</strong> <strong>the</strong>rmal comfort conditions for warm seasons, we are allowed to<br />

state that <strong>the</strong> window shade with <strong>the</strong> highest reflection surface mounted outside <strong>and</strong><br />

near <strong>the</strong> fenestration guarantees <strong>the</strong> best protection <strong>of</strong> gains from <strong>solar</strong> <strong>radiation</strong>.<br />

� The results indicate that if we change <strong>the</strong> collector tilt angle from 25° to 60°, <strong>the</strong><br />

absorbed <strong>solar</strong> energy varies only about 10 % in <strong>the</strong> period <strong>of</strong> a year. However,<br />

applying <strong>the</strong> extreme angles 0° (a horizontal position) <strong>and</strong> 90° (a vertical position)<br />

leads to a significant reduction <strong>of</strong> <strong>the</strong> DHW systems efficiency. Energy conversion<br />

decreases to 70 % <strong>of</strong> <strong>the</strong> maximal value in an optimal panel position for <strong>the</strong> angle<br />

0° <strong>and</strong> for <strong>the</strong> angle 90° <strong>the</strong> same reduction reaches about 50 %. Simulation results


4.3 Future research 103<br />

<strong>of</strong> <strong>the</strong> annual operation <strong>of</strong> <strong>the</strong> <strong>solar</strong> domestic hot water system revealed that <strong>the</strong> best<br />

<strong>solar</strong> collector tilt angle is 70° for <strong>the</strong> cold period <strong>and</strong> 35° for summer time. If <strong>the</strong><br />

tilt angel is fixed, <strong>the</strong> best <strong>the</strong>rmal performance can be obtained at an angle <strong>of</strong> 45°.<br />

It turned out that <strong>the</strong> <strong>solar</strong> conversion process is about ten times lower in winter<br />

than those during <strong>the</strong> summer time. Based on <strong>the</strong> <strong>analysis</strong> <strong>of</strong> <strong>the</strong> influence <strong>of</strong> <strong>the</strong><br />

volume <strong>of</strong> accumulated water on <strong>the</strong> <strong>the</strong>rmal performance <strong>of</strong> <strong>the</strong> <strong>solar</strong> DHW<br />

system, it can be concluded that <strong>the</strong> recommended volume <strong>of</strong> <strong>the</strong> storage tank for<br />

<strong>the</strong> developed case is 4 m 3 . Moreover, it was shown how <strong>the</strong> increase <strong>of</strong> system<br />

<strong>the</strong>rmal capacity leads to <strong>the</strong> prolonging <strong>of</strong> <strong>the</strong> storage tank operating period with<br />

raised output temperature <strong>and</strong> a simplified description <strong>of</strong> this physical process was<br />

proposed. Results <strong>of</strong> <strong>the</strong> calculations showed that <strong>the</strong> temperature <strong>of</strong> storage water<br />

increased over 50°C only between April <strong>and</strong> September. We can conclude that <strong>the</strong><br />

total designed area <strong>of</strong> <strong>solar</strong> collectors is too small to support <strong>the</strong> heating system.<br />

� It is suggested to use <strong>the</strong> following equivalent parameters <strong>of</strong> Poroton-T9 in <strong>the</strong><br />

calculations: heat capacity equal to 855,1 J/kgK, heat conductivity equal to 0,09<br />

W/mK <strong>and</strong> unit weight equal to 653,15 kg/m 3 .<br />

4.3 Future research<br />

The future work within <strong>the</strong> VASATI 2.0 project will be focused on:<br />

� design <strong>and</strong> practical application <strong>of</strong> a building performance monitoring system,<br />

� fur<strong>the</strong>r experimental investigations <strong>of</strong> <strong>the</strong> <strong>the</strong>rmal performance <strong>of</strong> complete external<br />

walls <strong>and</strong> <strong>the</strong> estimation <strong>of</strong> real energy consumption when <strong>the</strong> co-operative<br />

apartment buildings are occupied in order to verify <strong>the</strong> results <strong>of</strong> selected<br />

estimations presented in this dissertation.


References 104<br />

References<br />

Addison, M. <strong>and</strong> Nall, D. 2001. Cooling via underfloor air distribution: Current design<br />

issues <strong>and</strong> <strong>analysis</strong> options. From: Cooling Frontiers: The Advanced Edge <strong>of</strong> Cooling<br />

Research <strong>and</strong> Applications in <strong>the</strong> Built Environment. Arizona State University : College <strong>of</strong><br />

Architecture <strong>and</strong> Environmental Design, 2001.<br />

Al-Homoud, M.S. 2001. Computer-aided building energy <strong>analysis</strong> techniques. 2001.<br />

Building <strong>and</strong> Environment 36: 421–433..<br />

Alvarez, G., et al. 2005. Spectrally selective laminated <strong>glazing</strong> consisting <strong>of</strong> <strong>solar</strong> control<br />

<strong>and</strong> heat mirror coated glass: preparation, characterization <strong>and</strong> modelling <strong>of</strong> heat<br />

transfer. 2005. Solar Energy 78: 113–124.<br />

ASHRAE. 2005. ASHRAE H<strong>and</strong>book - Fundamentals. Atlanta : American Society <strong>of</strong><br />

Heating, Refrigerating <strong>and</strong> Air Conditioning Engeneers Inc., 2005.<br />

ASHRAE. 1976. ASHRAE Systems H<strong>and</strong>book. New York : American Society <strong>of</strong> Heating,<br />

Refrigerating <strong>and</strong> Air Conditioning Engineers, 1976.<br />

ASHRAE. 1999. HVAC Applications H<strong>and</strong>book. Atlanta, Georgia : American Society <strong>of</strong><br />

Heating, Refrigerating <strong>and</strong> Air Conditioning Engeneers Inc., 1999.<br />

ASHRAE-St<strong>and</strong>ard-93-1986. 1991. Methods <strong>of</strong> Testing to Determine <strong>the</strong> Thermal<br />

Performance <strong>of</strong> Solar Collectors. Atlanta : American Society <strong>of</strong> Heating, Refrigerating <strong>and</strong><br />

Air Conditioning Engeneers Inc., 1991.<br />

ASHRAE-St<strong>and</strong>ard-96-1980. 1989. Methods <strong>of</strong> Testing to Determine <strong>the</strong> Thermal<br />

Performance <strong>of</strong> Unglazed Flat-Plate Liquid-Type Solar Collectors. Atlanta : American<br />

Society <strong>of</strong> Heating, Refrigerating <strong>and</strong> Air Conditioning Engeneers Inc., 1989.<br />

Badescu, V. 2008. Optimal control <strong>of</strong> flow in <strong>solar</strong> collector systems with fully mixed<br />

water storage tanks. 2008. Energy Conversion <strong>and</strong> Management 49: 169–184.<br />

Bakos, G.C. 2000. Insulation protection studies for energy saving in residential <strong>and</strong><br />

tertiary sector. 2000. Energy <strong>and</strong> Buildings 3: 1251–259.<br />

Bartak, M., et al. 2002. Integrating CFD <strong>and</strong> building simulation. 2002. Building <strong>and</strong><br />

Environment 37: 865 – 871.


References 105<br />

Beausoleil-Morrison, I. 2001. The adaptive coupling <strong>of</strong> computational fluid dynamics<br />

with whole-building <strong>the</strong>rmal simulation. 2001. In: Proceedings <strong>of</strong> Building Simulation, Rio<br />

de Janeiro, Brazil.<br />

Biaou, A.L. <strong>and</strong> Bernier, M.A. 2008. Achieving total domestic hot water production with<br />

renewable energy. 2008. Building <strong>and</strong> Environment 43: 651–660.<br />

Bojic, M., Kalogirou, S. <strong>and</strong> Petronijevic, K. 2002. Simulation <strong>of</strong> a <strong>solar</strong> domestic water<br />

heating system using a time marching model. 2002. Renewable Energy 27: 441–452.<br />

Broderick, C. <strong>and</strong> Chen, Q. 2001. A simple interface to CFD codes for building<br />

environment simulations. 2001. In: Proceedings <strong>of</strong> Building Simulation, Rio de Janeiro,<br />

Brazil.<br />

Cardinale, N., Piccininni, F. <strong>and</strong> Stefanizzi, P. 2003. Economic optimization <strong>of</strong> low-flow<br />

<strong>solar</strong> domestic hot water plants. 2003. Renewable Energy 28: 1899–1914.<br />

Chaurasia, P.B.L. <strong>and</strong> Twidell, J. 2001. Collector cum storage <strong>solar</strong> water heaters with<br />

<strong>and</strong> without transparent insulation material. 2001. Solar Energy 70 (5): 403–416.<br />

Crawley, D.B., et al. 2008. Contrasting <strong>the</strong> capabilities <strong>of</strong> building energy performance<br />

simulation programs. 2008. Building <strong>and</strong> Environment 43: 661–673.<br />

Crawley, D.B., et al. 2005. Contrasting <strong>the</strong> capabilities <strong>of</strong> building energy performance<br />

simulation programs. Washington, DC : US Department <strong>of</strong> Energy, 2005.<br />

Dahm, J., et al. 1998. Evaluation <strong>of</strong> storage configurations with internal heat exchangers.<br />

1998. Solar Energy, Vol. 62 (6): 407–417.<br />

Davies, M., Zoras, S. <strong>and</strong> Adjali, M.H. 2001. Improving <strong>the</strong> efficiency <strong>of</strong> <strong>the</strong> numerical<br />

modelling <strong>of</strong> built environment earth-contact heat transfers. 2001. Applied Energy 68: 31–<br />

42.<br />

Degelman, L. <strong>and</strong> Kim, B. 1991. RENCON program for Energy Simulation. 1991.<br />

College Station, TX: Texas A&M University.<br />

DEROB-LTH. 2005. User Manual for Windows - Report No. TABK-95/7019. Lund<br />

University, Sweden : Lund Institute <strong>of</strong> Technology, Department <strong>of</strong> Building Science, 2005.<br />

Dombayci, O.A., Golcu, M. <strong>and</strong> Pancar, Y. 2006. Optimization <strong>of</strong> insulation thickness<br />

for external walls using different energy-sources. 2006. Applied Energy 83: 921–928.<br />

Duffie, J.A. <strong>and</strong> Beckman, W.A. 1991. Solar Engineering <strong>of</strong> Thermal Processes. New<br />

York : Wiley-Interscience, 1991. Second Edition.<br />

DVNBauO. 2004. Allgemeine Durchführungsverordnung zur Niedersächsischen<br />

Bauordnung, § 19. Hannover : L<strong>and</strong> Niedersachsen, 2004.


References 106<br />

EN12975-2. 2007. Thermal <strong>solar</strong> systems <strong>and</strong> components. s.l. : European St<strong>and</strong>ard, 2007.<br />

Solar collectors – Part 2: Test methods.<br />

EN1745:2004/Apl. 2006. Masonry <strong>and</strong> masonry products. Methods for determing design<br />

<strong>the</strong>rmal values. s.l. : European St<strong>and</strong>ard, 2006.<br />

EnergyPlus-Documentation. 2007. Getting Startet with EnergyPlus. s.l. : The board <strong>of</strong><br />

trustees <strong>of</strong> University <strong>of</strong> Illinois <strong>and</strong> <strong>the</strong> regents <strong>of</strong> <strong>the</strong> University <strong>of</strong> California, 2007.<br />

Etzion, Y. <strong>and</strong> Erell, E. 2000. Controlling <strong>the</strong> transmission <strong>of</strong> radiant energy through<br />

windows: a novel ventilated reversible <strong>glazing</strong> system. 2000. Building <strong>and</strong> Environment<br />

35: 433–444.<br />

Fang, Y., et al. 2007. Low emittance coatings <strong>and</strong> <strong>the</strong> <strong>the</strong>rmal performance <strong>of</strong> vacuum<br />

<strong>glazing</strong>. 2007. Solar Energy 81: 8–12.<br />

Fissore, A. <strong>and</strong> Fonseca, N. 2007. Experimental study <strong>of</strong> <strong>the</strong> <strong>the</strong>rmal balance <strong>of</strong> a<br />

window, design description. 2007. Building <strong>and</strong> Environment 42: 3309–3321.<br />

Fissore, A. <strong>and</strong> Fonseca, N. 2007. Measurement results <strong>and</strong> experimental <strong>analysis</strong> study<br />

<strong>of</strong> <strong>the</strong> <strong>the</strong>rmal balance <strong>of</strong> a window. 2007. Building <strong>and</strong> Environment 42: 3570–3581.<br />

Florides, G.A., et al. 2002. Measures used to lower building energy consumption <strong>and</strong><br />

<strong>the</strong>ir cost effectiveness. 2002. Applied Energy 73: 299–328.<br />

Furbo a, S., et al. 2005. Smart <strong>solar</strong> tanks for small <strong>solar</strong> domestic hot water systems.<br />

2005. Solar Energy 78: 269–279.<br />

Furbo b, S., et al. 2005. Performance improvement by discharge from different levels in<br />

<strong>solar</strong> storage tanks. 2005. Solar Energy 79: 431–439.<br />

Furbo, S. <strong>and</strong> Knudsen, S. 2004. Low flow SDHW systems based on mantle tanks–recent<br />

findings. Freiburg, Germany : In proceedings <strong>of</strong> EuroSun 2004, 2004. Vol. 1: 272–281.<br />

Furbo, S. <strong>and</strong> Shah, L.J. 2003. Thermal advantages for <strong>solar</strong> heating systems with a<br />

glass cover with antireflection surfaces. 2003. Solar Energy 74: 513–523.<br />

Groth, C.C., Lokmanhekim, M. <strong>and</strong> Shadow. 1969. A New Technique for <strong>the</strong><br />

Calculation <strong>of</strong> Shadow Shapes <strong>and</strong> Areas by Digital Computer. 1969. Second Hawaii<br />

International Conference on System Sciences, Honolulu, HI, January 22-24.<br />

Gunerhan, H. <strong>and</strong> Hepbasli, A. 2007. Exergetic modelling <strong>and</strong> performance evaluation<br />

<strong>of</strong> <strong>solar</strong> water heating systems for building applications. 2007. Energy <strong>and</strong> Buildings 39:<br />

509–516.<br />

Haese, G. <strong>and</strong> Zukowski, M. 2007. Symulacje stanów termicznych pomieszczeń. 2007.<br />

Energia i Budynek. 9: 27–31.


References 107<br />

Hendron, R., et al. 2004. Development <strong>of</strong> an Energy Savings Benchmark for All<br />

Residential End-Users. Bolder, Colorado, USA : SIMBUILD 2004 Conference, 2004.<br />

Holman, J.P. 1986. Heat transfer. 1986. McGraw-Hill, New York.<br />

International-Glazing-Database. 2008. IDDB Version 16.2. s.l. : THe Windows <strong>and</strong><br />

Daylighting Group <strong>of</strong> <strong>the</strong> Lawrence Berkeley National Laboratory (LBNL), 2008.<br />

ISO15099. 2003. Thermal performance <strong>of</strong> windows, doors <strong>and</strong> shading devices - Detailed<br />

Calcualtions. 2003.<br />

James, P.A.B. <strong>and</strong> Bahaj, A.S. 2005. Smart <strong>glazing</strong> solutions to glare <strong>and</strong> <strong>solar</strong> gain: a<br />

‘sick building’ case study. 2005. Energy <strong>and</strong> Buildings 37: 1058–1067.<br />

Kalogirou, S.A., Panteliou, S. <strong>and</strong> Dentsoras, A. 1999. Modelling <strong>of</strong> <strong>solar</strong> domestic<br />

water heating systems using artificial neural networks. 1999. Solar Energy Vol. 65 (6):<br />

335–342.<br />

Khaled, A.A. 2003. Comparison between polystyrene <strong>and</strong> fiberglass ro<strong>of</strong> insulation in<br />

warm <strong>and</strong> cold climates. 2003. Renewable Energy 28: 603–611.<br />

Kontoleon, K.J. <strong>and</strong> Bikas, D.K. 2002. Modelling <strong>the</strong> influence <strong>of</strong> glazed openings<br />

percentage <strong>and</strong> type <strong>of</strong> <strong>glazing</strong> on <strong>the</strong> <strong>the</strong>rmal zone behavior. 2002. Energy <strong>and</strong> Buildings<br />

34: 389–399.<br />

Kraft, D. 1994. Algorithm 733: TOMP – Fortran modules for optimal control<br />

calculations. 1994. ACM Trans. Math. S<strong>of</strong>tware 20 (3): 262–281.<br />

Kulkarni, G.N., Kedare, S.B. <strong>and</strong> B<strong>and</strong>yopadhyay, S. 2007. Determination <strong>of</strong> design<br />

space <strong>and</strong> optimization <strong>of</strong> <strong>solar</strong> water heating systems. 2007. Solar Energy 81: 958–968.<br />

Lindberg, R., Binamu, A. <strong>and</strong> Teikari, M. 2004. Five-year data <strong>of</strong> measured wea<strong>the</strong>r,<br />

energy consumption, <strong>and</strong> time-dependent temperature variations within different exterior<br />

wall structures. 2004. Energy <strong>and</strong> Buildings 36: 495–501.<br />

Lollini, et al. 2006. Optimisation <strong>of</strong> opaque components <strong>of</strong> <strong>the</strong> building envelope. Energy,<br />

economic <strong>and</strong> environmental issues. 2006. Building <strong>and</strong> Environment 41: 1001–1013.<br />

Loutzenhiser, P.G., et al. 2007. Empirical validation <strong>of</strong> models to compute <strong>solar</strong><br />

irradiance on inclined surfaces for building energy simulation. 2007. Solar Energy 81:<br />

254–267.<br />

Maliska, C. 2001. Issues on <strong>the</strong> integration <strong>of</strong> CFD to building simulation tools. 2001. In:<br />

Proceedings <strong>of</strong> Building Simulation, Rio de Janeiro, Brazil.<br />

Manza, H., et al. 2006. Series <strong>of</strong> experiments for empirical validation <strong>of</strong> <strong>solar</strong> gain<br />

modelling in building energy simulation codes – Experimental setup, test cell


References 108<br />

characterization, specifications <strong>and</strong> uncertainty <strong>analysis</strong>. 2006. Building <strong>and</strong> Environment<br />

41: 1784–1797.<br />

Marshall, R.M. <strong>and</strong> Li, C.L.W. 1991. The prototype 4-port store model <strong>and</strong> usage<br />

programs for identification <strong>and</strong> validation. In Test Procedures for Short Term Thermal<br />

Stores. s.l. : Visser H. <strong>and</strong> van Dijk H.A.L. (Eds.), 1991. Kluwer Academic, Dordrecht:<br />

135–162.<br />

Ma<strong>the</strong>r, D.W., Holl<strong>and</strong>s, K.G.T. <strong>and</strong> Wright, J.L. 2002. Single- <strong>and</strong> multi-tank energy<br />

storage for <strong>solar</strong> heating systems: fundamentals. 2002. Solar Energy Vol. 73, No. 1: 3–13.<br />

Nafey, A.S. 2005. Simulation <strong>of</strong> <strong>solar</strong> heating systems–an overview. 2005. Renewable <strong>and</strong><br />

Sustainable Energy Reviews 9: 576–591.<br />

Newton, B.J., et al. 1995. Storage tank models. 1995. In Proceedings <strong>of</strong> ASME/<br />

JSME/JSME International Solar Energy Conference, March 19–24, 1995, Maui, Hawaii.<br />

American Society <strong>of</strong> Mechanical Engineers, New York, Part 2: 1111–1116.<br />

NFRC-THERM5.2. 2006. WINDOWS 5.2 Simulation Manual. s.l. : Building<br />

Technologies Department, Enviromental Energy Technologies Division, Lawrence<br />

National Laboratory, 2006.<br />

Norton, B. <strong>and</strong> Lo, S. 2006. Anatomy <strong>of</strong> a <strong>solar</strong> collector. Developments in Materials,<br />

Components <strong>and</strong> Efficiency Improvements in Solar Thermal Collector Systems –<br />

ReFOCUS. 2006.<br />

Ourghi, R., Al-Anzi, A. <strong>and</strong> Krarti, M. 2007. A simplified <strong>analysis</strong> method to predict <strong>the</strong><br />

impact <strong>of</strong> shape on annual energy use for <strong>of</strong>fice buildings. 2007. Energy Conversion <strong>and</strong><br />

Management 48: 300–305.<br />

Ozel, M. <strong>and</strong> Pihtili, K. 2007. Investigation <strong>of</strong> <strong>the</strong> most suitable location <strong>of</strong> insulation<br />

applying on building ro<strong>of</strong> from maximum load levelling point <strong>of</strong> view. 2007. Building <strong>and</strong><br />

Environment 42: 2360–2368.<br />

Pedersen, L. 2007. Use <strong>of</strong> different methodologies for <strong>the</strong>rmal load <strong>and</strong> energy<br />

estimations in buildings including meteorological <strong>and</strong> sociological input parameters.<br />

2007. Renewable <strong>and</strong> Sustainable Energy Reviews 11: 998–1007.<br />

Persson, M.-L., Roos, A. <strong>and</strong> Wall, M. 2006. Influence <strong>of</strong> window size on <strong>the</strong> energy<br />

balance <strong>of</strong> low energy houses. 2006. Energy <strong>and</strong> Buildings 38: 181–188.<br />

Prager, C., et al. 2006. The influence <strong>of</strong> <strong>the</strong> IR reflection <strong>of</strong> painted facades on <strong>the</strong> energy<br />

balance <strong>of</strong> a building. 2006. Energy <strong>and</strong> Buildings 38: 1369–1379.<br />

Prud'homme, T. <strong>and</strong> Gillet, D. 2001. Advanced control strategy <strong>of</strong> a <strong>solar</strong> domestic hot<br />

water system with a segmented auxiliary heater. 2001. Energy <strong>and</strong> Buildings 33: 463–475.


References 109<br />

Rees, S. <strong>and</strong> Haves, P. 1999. A nodal model for displacement ventilation <strong>and</strong> chilled<br />

ceiling systems in <strong>of</strong>fice spaces. 1999. In: Proceedings <strong>of</strong> Building Simulation, Kyoto,<br />

Japan.<br />

Rohsenow, W.M., Hartnett, J.P. <strong>and</strong> Ganic, E.N. 1985. H<strong>and</strong>book <strong>of</strong> heat transfer<br />

applications. 1985. 2 Ed., McGraw-Hill Book Co., New York.<br />

Roulet, C.-A., et al. 2002. ORME: A multicriteria rating methodology for buildings. 2002.<br />

Building <strong>and</strong> Environment 37: 579 – 586.<br />

Saleh, M.A., Kaseb, S. <strong>and</strong> El-Refaie, M.F. 2004. Glass–azimuth modification to reform<br />

direct <strong>solar</strong> heat gain. 2004. Building <strong>and</strong> Environment 39: 653–659.<br />

Salsbury, T. <strong>and</strong> Diamond, R. 2000. Performance validation <strong>and</strong> energy <strong>analysis</strong> <strong>of</strong><br />

HVAC systems using simulation. 2000. Energy <strong>and</strong> Buildings 32: 5–17.<br />

SAP. 2005. Version 9,80. s.l. : The Government's St<strong>and</strong>ard Assessment Validation <strong>of</strong><br />

Energy Ratiing <strong>of</strong> Dwellings, Department <strong>of</strong> Enviroment, Food <strong>and</strong> Rural Affairs, UK,<br />

2005.<br />

Saporito, A., et al. 2001. Multi-parameter building <strong>the</strong>rmal <strong>analysis</strong> using <strong>the</strong> lattice<br />

method for global optimisation. 2001. Energy <strong>and</strong> Buildings 33: 267–274.<br />

Shah, L.J. 2000. Heat transfer correlations for vertical mantle heat exchangers. 2000.<br />

Solar Energy Vol. 69 (Suppl.), Nos. 1–6: 157–171.<br />

SHC-Task28/Annex38. 2003. Sustainable Solar Housing Report SHC/BCS. s.l. : Swiss<br />

Federal Office <strong>of</strong> Energy represented by R.Hastings, AEU GmbH, 2003.<br />

Sisman, N., et al. 2007. Determination <strong>of</strong> optimum insulation thicknesses <strong>of</strong> <strong>the</strong> external<br />

walls <strong>and</strong> ro<strong>of</strong> (ceiling) for Turkey’s different degree-day regions. 2007. Energy Policy 35:<br />

5151–5155.<br />

Smeds, J. <strong>and</strong> Wall, M. 2007. Enhanced energy conservation in houses through high<br />

performance design. 2007. Energy <strong>and</strong> Buildings 39: 273-278.<br />

SRCC. 2007. Directory <strong>of</strong> Certified Solar Collector Ratings, OG 100. Cocoa, Florida :<br />

Solar Rating <strong>and</strong> Certification Corporation, 2007.<br />

Thevenard, D. <strong>and</strong> Haddad, K. 2006. Ground reflectivity in <strong>the</strong> context <strong>of</strong> building<br />

energy simulation. 2006. Energy <strong>and</strong> Buildings 38: 972–980.<br />

Tommerup, H., Rose, J. <strong>and</strong> Svendsen, S. 2007. Energy-efficient houses built according<br />

to <strong>the</strong> energy performance requirements introduced in Denmark in 2006. 2007. Energy <strong>and</strong><br />

Buildings 39: 1123–1130.


References 110<br />

Treeck, C. <strong>and</strong> Rank, E. 2007. Dimensional reduction <strong>of</strong> 3D building models using graph<br />

<strong>the</strong>ory<strong>and</strong> its application in building energy simulation. 2007. Engineering with<br />

Computers 23: 109–122.<br />

Walton, G.N. 1978. The Application <strong>of</strong> Homogeneous Coordinates to Shadowing<br />

Calculations. 1978. American Society <strong>of</strong> Heating Refrigeration <strong>and</strong> Air-Conditioning<br />

Engineers, ASHRAE Transactions, Vol 84, Part I.<br />

Walton, G.N. 1983. The Thermal Analysis Research Program Reference Manual Program<br />

(TARP). 1983. National Bureau <strong>of</strong> St<strong>and</strong>ards.<br />

Wang, Y., Huang, Z. <strong>and</strong> Heng, L. 2007. Cost-effectiveness assessment <strong>of</strong> insulated<br />

exterior walls <strong>of</strong> residential buildings in cold climate. 2007. International Journal <strong>of</strong><br />

Project Management 25: 143–149.<br />

Wetter, M. 2005. BuildOpt – a new building energy simulation program that is built on<br />

smooth models. 2005. Building <strong>and</strong> Environment 40: 1085–1092.<br />

Wienerberger. 2008. Technisches Datenblatt POROTON-T9. s.l. : The Wienerberger<br />

Group, 2008.<br />

Wright, J.A., Loosemore, H.A. <strong>and</strong> Farmani, R. 2002. Optimization <strong>of</strong> building <strong>the</strong>rmal<br />

design <strong>and</strong> control by multi-criterion genetic algorithm. 2002. Energy <strong>and</strong> Buildings 34:<br />

959–972.<br />

Wurtz, E., Mora, L. <strong>and</strong> Inard, C. 2006. An equation-based simulation environment to<br />

investigate fast building simulation. 2006. Building <strong>and</strong> Environment 41: 1571–1583.<br />

Xu, X. <strong>and</strong> Wang, S. 2007. Optimal simplified <strong>the</strong>rmal models <strong>of</strong> building envelope based<br />

on frequency domain regression using genetic algorithm. 2007. Energy <strong>and</strong> Buildings 39:<br />

525–536.<br />

Yan, D., et al. 2008. An integrated modelling tool for simultaneous <strong>analysis</strong> <strong>of</strong> <strong>the</strong>rmal<br />

performance <strong>and</strong> indoor air quality in buildings. 2008. Building <strong>and</strong> Environment 43:<br />

287–293.<br />

Yezioro, A., Dong, B. <strong>and</strong> Leite, F. 2008. An applied artificial intelligence approach<br />

towards assessing building performance simulation tools. 2008. Energy <strong>and</strong> Buildings 40:<br />

612–620.<br />

Yohanis, Y.G. <strong>and</strong> Norton, B. 2000. A comparison <strong>of</strong> <strong>the</strong> <strong>analysis</strong> <strong>of</strong> <strong>the</strong> useful net <strong>solar</strong><br />

gain for space heating, zone-by-zone <strong>and</strong> for a whole-building. 2000. Renewable Energy<br />

19: 435–442.<br />

Yohanis, Y.G. <strong>and</strong> Norton, B. 2002. Useful <strong>solar</strong> heat gains in multi-zone non-domestic<br />

buildings as a function <strong>of</strong> orientation <strong>and</strong> <strong>the</strong>rmal time constant. 2002. Renewable Energy<br />

27: 87–95.


References 111<br />

Yohanis, Y.G., et al. 2006. The annual number <strong>of</strong> days that <strong>solar</strong> heated water satisfies a<br />

specified dem<strong>and</strong> temperature. 2006. Solar Energy 80: 1021–1030.<br />

Zhai, Z. <strong>and</strong> Chen, Q. 2005. Performance <strong>of</strong> coupled building energy <strong>and</strong> CFD<br />

Simulations. 2005. Energy <strong>and</strong> Buildings 37 (4): 333–344.<br />

Zhai, Z. <strong>and</strong> Chen, Q. 2006. Sensitivity <strong>analysis</strong> <strong>and</strong> application guides for integrated<br />

building energy <strong>and</strong> CFD simulation. 2006. Energy <strong>and</strong> Buildings 38: 1060–1068.<br />

Zhai, Z. <strong>and</strong> Chen, Q. 2003. Solution characters <strong>of</strong> iterative coupling between energy<br />

simulation <strong>and</strong> CFD programs. 2003. Energy <strong>and</strong> Building 35 (5): 493–505.<br />

Zhai, Z., et al. 2002. On approaches to couple energy simulation <strong>and</strong> computational fluid<br />

dynamics programs. 2002. Building <strong>and</strong> Environment 37: 857–864.


Appendix 1 112<br />

PLANS OF BUILDING SUBSTRUCTURES AND THE FRONT / BACK /<br />

SIDE ELEVATION VIEWS


Appendix 1 113<br />

Fig. A1.1 VASATI 2.0-Projekt in Hannover, north elevation view


Appendix 1 114<br />

Fig. A1.2 VASATI 2.0-Projekt in Hannover, east elevation view


Appendix 1 115<br />

Fig. A1.3 VASATI 2.0-Projekt in Hannover, south elevation view


Appendix 1 116<br />

Fig. A1.4 VASATI 2.0-Projekt in Hannover, west elevation view


Appendix 1 117<br />

Fig. A1.5 VASATI 2.0-Projekt in Hannover, apartment floor plan EG


Appendix 1 118<br />

Fig. A1.6 VASATI 2.0-Projekt in Hannover, apartment floor plan OG.1


Appendix 1 119<br />

Fig. A1.7 VASATI 2.0-Projekt in Hannover, apartment floor plan OG.2


Appendix 1 120<br />

Fig. A1.8 VASATI 2.0-Projekt in Hannover, apartment floor plan OG.3


Appendix 1 121<br />

Fig. A1.9 VASATI 2.0-Projekt in Hannover, apartment floor plan DG


Appendix 2 122<br />

LISTING OF THE BUILDING AND HVAC SYSTEM MODEL


Appendix 2 123<br />

!-Generator IDFEditor 1.31<br />

!-Option SortedOrder<br />

!-NOTE: All comments with '!-' are ignored by <strong>the</strong> IDFEditor <strong>and</strong> are<br />

generated automatically.<br />

!- Use '!' comments if <strong>the</strong>y need to be retained when using <strong>the</strong> IDFEditor.<br />

!- == ALL OBJECTS IN CLASS: VERSION ==<br />

VERSION,<br />

3.0; !- Version Identifier<br />

!- == ALL OBJECTS IN CLASS: BUILDING ==<br />

Building,<br />

148 - DIPL. ING. GÜNTER HAESE, !- Name<br />

0, !- North Axis {deg}<br />

Urban, !- Terrain<br />

0.04, !- Loads Convergence Tolerance Value<br />

0.2, !- Temperature Convergence Tolerance Value {deltaC}<br />

FullExterior, !- Solar Distribution<br />

50; !- Maximum Number <strong>of</strong> Warmup Days<br />

!- == ALL OBJECTS IN CLASS: TIMESTEP IN HOUR ==<br />

Timestep,<br />

4; !- Number <strong>of</strong> Timesteps per Hour<br />

!- == ALL OBJECTS IN CLASS: INSIDE CONVECTION ALGORITHM ==<br />

SurfaceConvectionAlgorithm:Inside,<br />

Detailed; !- Algorithm<br />

!- == ALL OBJECTS IN CLASS: OUTSIDE CONVECTION ALGORITHM ==<br />

SurfaceConvectionAlgorithm:Outside,<br />

Detailed; !- Algorithm<br />

!- == ALL OBJECTS IN CLASS: SOLUTION ALGORITHM ==<br />

HeatBalanceAlgorithm,<br />

ConductionTransferFunction; !- Algorithm<br />

!- == ALL OBJECTS IN CLASS: SHADOWING CALCULATIONS ==<br />

ShadowCalculation,<br />

20, !- Calculation Frequency<br />

200; !- Maximum Figures in Shadow Overlap Calculations<br />

!- == ALL OBJECTS IN CLASS: DIAGNOSTICS ==<br />

Output:Diagnostics,<br />

DoNotMirrorDetachedShading, !- Key 1<br />

DisplayExtraWarnings; !- Key 2<br />

!- == ALL OBJECTS IN CLASS: ZONE VOLUME CAPACITANCE<br />

MULTIPLIER ==<br />

ZoneCapacitanceMultiplier,<br />

1; !- Multiplier<br />

!- == ALL OBJECTS IN CLASS: RUN CONTROL ==<br />

SimulationControl,<br />

Yes, !- Do Zone Sizing Calculation<br />

No, !- Do System Sizing Calculation<br />

No, !- Do Plant Sizing Calculation<br />

No, !- Run Simulation for Sizing Periods<br />

Yes; !- Run Simulation for Wea<strong>the</strong>r File Run Periods<br />

!- == ALL OBJECTS IN CLASS: RUNPERIOD ==<br />

RunPeriod,<br />

10, !- Begin Month<br />

14, !- Begin Day <strong>of</strong> Month<br />

3, !- End Month<br />

31, !- End Day <strong>of</strong> Month<br />

Monday, !- Day <strong>of</strong> Week for Start Day<br />

No, !- Use Wea<strong>the</strong>r File Holidays <strong>and</strong> Special Days<br />

Yes, !- Use Wea<strong>the</strong>r File Daylight Saving Period<br />

No, !- Apply Weekend Holiday Rule<br />

Yes, !- Use Wea<strong>the</strong>r File Rain Indicators<br />

Yes; !- Use Wea<strong>the</strong>r File Snow Indicators<br />

!- == ALL OBJECTS IN CLASS: LOCATION ==<br />

Site:Location,<br />

HANNOVER, !- Name<br />

52.47, !- Latitude {deg}<br />

9.7, !- Longitude {deg}<br />

1, !- Time Zone {hr}<br />

55; !- Elevation {m}<br />

!- == ALL OBJECTS IN CLASS: DESIGNDAY ==<br />

SizingPeriod:DesignDay,<br />

Winter Design Day, !- Name<br />

-12.7, !- Maximum Dry-Bulb Temperature {C}<br />

0, !- Daily Temperature Range {deltaC}<br />

-12.7, !- Humidity Indicating Conditions at Maximum Dry-Bulb<br />

100666, !- Barometric Pressure {Pa}<br />

0, !- Wind Speed {m/s}<br />

0, !- Wind Direction {deg}<br />

0, !- Sky Clearness<br />

0, !- Rain Indicator<br />

0, !- Snow Indicator<br />

15, !- Day <strong>of</strong> Month<br />

1, !- Month<br />

Monday, !- Day Type<br />

0, !- Daylight Saving Time Indicator<br />

WetBulb; !- Humidity Indicating Type<br />

SizingPeriod:DesignDay,<br />

Summer Design Day, !- Name<br />

28.9, !- Maximum Dry-Bulb Temperature {C}<br />

10, !- Daily Temperature Range {deltaC}<br />

19.3, !- Humidity Indicating Conditions at Maximum Dry-Bulb<br />

100666, !- Barometric Pressure {Pa}<br />

0, !- Wind Speed {m/s}<br />

0, !- Wind Direction {deg}<br />

0.98, !- Sky Clearness<br />

0, !- Rain Indicator<br />

0, !- Snow Indicator<br />

15, !- Day <strong>of</strong> Month<br />

7, !- Month<br />

Monday, !- Day Type<br />

1, !- Daylight Saving Time Indicator<br />

WetBulb; !- Humidity Indicating Type<br />

!- == ALL OBJECTS IN CLASS: GROUNDREFLECTANCES ==<br />

Site:GroundReflectance,<br />

0.2, !- January Ground Reflectance {dimensionless}<br />

0.2, !- February Ground Reflectance {dimensionless}<br />

0.2, !- March Ground Reflectance {dimensionless}<br />

0.2, !- April Ground Reflectance {dimensionless}<br />

0.2, !- May Ground Reflectance {dimensionless}<br />

0.2, !- June Ground Reflectance {dimensionless}<br />

0.2, !- July Ground Reflectance {dimensionless}<br />

0.2, !- August Ground Reflectance {dimensionless}<br />

0.2, !- September Ground Reflectance {dimensionless}<br />

0.2, !- October Ground Reflectance {dimensionless}<br />

0.2, !- November Ground Reflectance {dimensionless}<br />

0.2; !- December Ground Reflectance {dimensionless}<br />

!- == ALL OBJECTS IN CLASS: SNOW GROUND REFLECTANCE<br />

MODIFIERS ==<br />

Site:GroundReflectance:SnowModifier,<br />

1.0, !- Ground Reflected Solar Modifier<br />

1.0; !- Daylighting Ground Reflected Solar Modifier


Appendix 2 124<br />

!- == ALL OBJECTS IN CLASS: MATERIAL:REGULAR ==<br />

Material,<br />

Terracotta, !- Name<br />

MediumSmooth, !- Roughness<br />

0.015, !- Thickness {m}<br />

1.3, !- Conductivity {W/m-K}<br />

2500, !- Density {kg/m3}<br />

1200, !- Specific Heat {J/kg-K}<br />

0.85, !- Thermal Absorptance<br />

0.78, !- Solar Absorptance<br />

0.78; !- Visible Absorptance<br />

Material,<br />

Stucco, !- Name<br />

Smooth, !- Roughness<br />

0.015, !- Thickness {m}<br />

0.57, !- Conductivity {W/m-K}<br />

1856, !- Density {kg/m3}<br />

840, !- Specific Heat {J/kg-K}<br />

0.8, !- Thermal Absorptance<br />

0.6500000, !- Solar Absorptance<br />

0.6500000; !- Visible Absorptance<br />

Material,<br />

Poroton_0_24, !- Name<br />

Rough, !- Roughness<br />

0.24, !- Thickness {m}<br />

0.5, !- Conductivity {W/m-K}<br />

1009.12, !- Density {kg/m3}<br />

1000, !- Specific Heat {J/kg-K}<br />

0.9, !- Thermal Absorptance<br />

0.75, !- Solar Absorptance<br />

0.75; !- Visible Absorptance<br />

Material,<br />

Poroton_0_30, !- Name<br />

Rough, !- Roughness<br />

0.3, !- Thickness {m}<br />

0.0923, !- Conductivity {W/m-K}<br />

653.15, !- Density {kg/m3}<br />

855.1, !- Specific Heat {J/kg-K}<br />

0.9, !- Thermal Absorptance<br />

0.75, !- Solar Absorptance<br />

0.75; !- Visible Absorptance<br />

Material,<br />

Mineral_fiber_0_02, !- Name<br />

Rough, !- Roughness<br />

0.02, !- Thickness {m}<br />

0.035, !- Conductivity {W/m-K}<br />

20., !- Density {kg/m3}<br />

750., !- Specific Heat {J/kg-K}<br />

0.9, !- Thermal Absorptance<br />

0.75, !- Solar Absorptance<br />

0.75; !- Visible Absorptance<br />

Material,<br />

Mineral_daub, !- Name<br />

MediumSmooth, !- Roughness<br />

0.01, !- Thickness {m}<br />

0.7, !- Conductivity {W/m-K}<br />

1600, !- Density {kg/m3}<br />

1200, !- Specific Heat {J/kg-K}<br />

0.85, !- Thermal Absorptance<br />

0.7, !- Solar Absorptance<br />

0.7; !- Visible Absorptance<br />

Material,<br />

silicate_brick_0_12, !- Name<br />

Rough, !- Roughness<br />

0.12, !- Thickness {m}<br />

0.8, !- Conductivity {W/m-K}<br />

1600, !- Density {kg/m3}<br />

880, !- Specific Heat {J/kg-K}<br />

0.85, !- Thermal Absorptance<br />

0.7, !- Solar Absorptance<br />

0.7; !- Visible Absorptance<br />

Material,<br />

concrete_0_12, !- Name<br />

Rough, !- Roughness<br />

0.12, !- Thickness {m}<br />

0.72, !- Conductivity {W/m-K}<br />

1400, !- Density {kg/m3}<br />

840, !- Specific Heat {J/kg-K}<br />

0.9, !- Thermal Absorptance<br />

0.7, !- Solar Absorptance<br />

0.7; !- Visible Absorptance<br />

Material,<br />

concrete_0_20, !- Name<br />

Rough, !- Roughness<br />

0.20, !- Thickness {m}<br />

1.7, !- Conductivity {W/m-K}<br />

2500, !- Density {kg/m3}<br />

840, !- Specific Heat {J/kg-K}<br />

0.9, !- Thermal Absorptance<br />

0.7, !- Solar Absorptance<br />

0.7; !- Visible Absorptance<br />

Material,<br />

concrete_0_05, !- Name<br />

Rough, !- Roughness<br />

0.05, !- Thickness {m}<br />

1.35, !- Conductivity {W/m-K}<br />

1900, !- Density {kg/m3}<br />

840, !- Specific Heat {J/kg-K}<br />

0.9, !- Thermal Absorptance<br />

0.7, !- Solar Absorptance<br />

0.7; !- Visible Absorptance<br />

Material,<br />

F17 Carpet, !- Name<br />

MediumRough, !- Roughness<br />

0.0127, !- Thickness {m}<br />

0.06, !- Conductivity {W/m-K}<br />

288, !- Density {kg/m3}<br />

1380; !- Specific Heat {J/kg-K}<br />

Material,<br />

I02 50mm insulation board, !- Name<br />

MediumRough, !- Roughness<br />

0.05, !- Thickness {m}<br />

0.035, !- Conductivity {W/m-K}<br />

43, !- Density {kg/m3}<br />

1210; !- Specific Heat {J/kg-K}<br />

Material,<br />

Wood subfloor - 19mm, !- Name<br />

MediumSmooth, !- Roughness<br />

0.019, !- Thickness {m}<br />

0.115, !- Conductivity {W/m-K}<br />

800, !- Density {kg/m3}<br />

1380; !- Specific Heat {J/kg-K}<br />

Material,<br />

I03 80mm insulation board, !- Name<br />

MediumRough, !- Roughness<br />

0.08, !- Thickness {m}<br />

0.045, !- Conductivity {W/m-K}<br />

43, !- Density {kg/m3}<br />

1210; !- Specific Heat {J/kg-K}<br />

Material,<br />

I03 100mm insulation board, !- Name<br />

MediumRough, !- Roughness<br />

0.1, !- Thickness {m}<br />

0.035, !- Conductivity {W/m-K}<br />

43, !- Density {kg/m3}<br />

1210; !- Specific Heat {J/kg-K}<br />

Material,<br />

I04 150mm insulation board, !- Name<br />

MediumRough, !- Roughness<br />

0.15, !- Thickness {m}


Appendix 2 125<br />

0.035, !- Conductivity {W/m-K}<br />

43, !- Density {kg/m3}<br />

1210; !- Specific Heat {J/kg-K}<br />

Material,<br />

I05 300mm insulation board, !- Name<br />

MediumRough, !- Roughness<br />

0.3, !- Thickness {m}<br />

0.035, !- Conductivity {W/m-K}<br />

43, !- Density {kg/m3}<br />

1210; !- Specific Heat {J/kg-K}<br />

Material,<br />

I05 350mm insulation board, !- Name<br />

MediumRough, !- Roughness<br />

0.35, !- Thickness {m}<br />

0.035, !- Conductivity {W/m-K}<br />

43, !- Density {kg/m3}<br />

1210; !- Specific Heat {J/kg-K}<br />

Material,<br />

I06 400mm insulation board, !- Name<br />

MediumRough, !- Roughness<br />

0.4, !- Thickness {m}<br />

0.035, !- Conductivity {W/m-K}<br />

43, !- Density {kg/m3}<br />

1210; !- Specific Heat {J/kg-K}<br />

Material,<br />

Wood door - 35mm, !- Name<br />

MediumSmooth, !- Roughness<br />

0.035, !- Thickness {m}<br />

0.18, !- Conductivity {W/m-K}<br />

800, !- Density {kg/m3}<br />

1380; !- Specific Heat {J/kg-K}<br />

Material,<br />

GP01, !- Name<br />

MediumSmooth, !- Roughness<br />

1.2700000E-02, !- Thickness {m}<br />

0.1600000, !- Conductivity {W/m-K}<br />

801.0000, !- Density {kg/m3}<br />

837.0000, !- Specific Heat {J/kg-K}<br />

0.9000000, !- Thermal Absorptance<br />

0.7500000, !- Solar Absorptance<br />

0.7500000; !- Visible Absorptance<br />

!- == ALL OBJECTS IN CLASS: MATERIAL:WINDOWGLASS ==<br />

WindowMaterial:Glazing,<br />

CLEAR 3MM, !- Name<br />

SpectralAverage, !- Optical Data Type<br />

, !- Window Glass Spectral Data Set Name<br />

0.0032, !- Thickness {m}<br />

0.610, !- Solar Transmittance at Normal Incidence<br />

0.059, !- Front Side Solar Reflectance at Normal Incidence<br />

0.059, !- Back Side Solar Reflectance at Normal Incidence<br />

0.833, !- Visible Transmittance at Normal Incidence<br />

0.070, !- Front Side Visible Reflectance at Normal Incidence<br />

0.070, !- Back Side Visible Reflectance at Normal Incidence<br />

0.0, !- Infrared Transmittance at Normal Incidence<br />

0.840, !- Front Side Infrared Hemispherical Emissivity<br />

0.840, !- Back Side Infrared Hemispherical Emissivity<br />

1.000, !- Conductivity {W/m-K}<br />

1; !- Dirt Correction Factor for Solar <strong>and</strong> Visible Transmittance<br />

WindowMaterial:Glazing,<br />

COAT 3MM, !- Name<br />

SpectralAverage, !- Optical Data Type<br />

, !- Window Glass Spectral Data Set Name<br />

0.032, !- Thickness {m}<br />

0.496, !- Solar Transmittance at Normal Incidence<br />

0.331, !- Front Side Solar Reflectance at Normal Incidence<br />

0.395, !- Back Side Solar Reflectance at Normal Incidence<br />

0.780, !- Visible Transmittance at Normal Incidence<br />

0.158, !- Front Side Visible Reflectance at Normal Incidence<br />

0.126, !- Back Side Visible Reflectance at Normal Incidence<br />

0.0, !- Infrared Transmittance at Normal Incidence<br />

0.840, !- Front Side Infrared Hemispherical Emissivity<br />

0.033, !- Back Side Infrared Hemispherical Emissivity<br />

1.000, !- Conductivity {W/m-K}<br />

1; !- Dirt Correction Factor for Solar <strong>and</strong> Visible Transmittance<br />

!- == ALL OBJECTS IN CLASS: MATERIAL:WINDOWGAS ==<br />

WindowMaterial:Gas,<br />

XENON 12_7MM, !- Name<br />

Xenon, !- Gas Type<br />

0.0127; !- Thickness {m}<br />

!- == ALL OBJECTS IN CLASS: MATERIAL:WINDOWSHADE ==<br />

WindowMaterial:Shade,<br />

HIGH REFLECT - LOW TRANS SHADE, !- Name<br />

0.28, !- Solar Transmittance<br />

0.7, !- Solar Reflectance<br />

0.28, !- Visible Transmittance<br />

0.7, !- Visible Reflectance<br />

0.85, !- Thermal Hemispherical Emissivity<br />

0.1, !- Thermal Transmittance<br />

0.005, !- Thickness {m}<br />

0.1, !- Conductivity {W/m-K}<br />

0.05, !- Shade to Glass Distance {m}<br />

0.5, !- Top Opening Multiplier<br />

0.5, !- Bottom Opening Multiplier<br />

0.5, !- Left-Side Opening Multiplier<br />

0.5, !- Right-Side Opening Multiplier<br />

0.0; !- Airflow Permeability<br />

!- == ALL OBJECTS IN CLASS: MATERIAL:WINDOWSCREEN ==<br />

WindowMaterial:Screen,<br />

BRIGHT ALUMINUM SCREEN, !- Name<br />

ModelAsDiffuse, !- Reflected Beam Transmittance Accounting Method<br />

0.6, !- Diffuse Solar Reflectance {dimensionless}<br />

0.6, !- Diffuse Visible Reflectance {dimensionless}<br />

0.9, !- Thermal Hemispherical Emissivity {dimensionless}<br />

221.0, !- Conductivity {W/m-K}<br />

0.00154, !- Screen Material Spacing {m}<br />

0.000254, !- Screen Material Diameter {m}<br />

0.025, !- Screen to Glass Distance {m}<br />

0.0, !- Top Opening Multiplier {dimensionless}<br />

0.0, !- Bottom Opening Multiplier {dimensionless}<br />

0.0, !- Left Side Opening Multiplier {dimensionless}<br />

0.0, !- Right Side Opening Multiplier {dimensionless}<br />

0; !- Angle <strong>of</strong> Resolution for Screen Transmittance Output Map {deg}<br />

!- == ALL OBJECTS IN CLASS: CONSTRUCTION ==<br />

Construction,<br />

O-Dbl Clr 3mm/13mm Arg, !- Name<br />

COAT 3MM, !- Outside Layer<br />

XENON 12_7MM, !- Layer 2<br />

CLEAR 3MM, !- Layer 3<br />

XENON 12_7MM, !- Layer 4<br />

CLEAR 3MM; !- Layer 5<br />

Construction,<br />

L-Dbl Clr 3mm/13mm Arg, !- Name<br />

COAT 3MM, !- Outside Layer<br />

XENON 12_7MM, !- Layer 2<br />

CLEAR 3MM; !- Layer 3<br />

Construction,<br />

DOOR-OUT, !- Name<br />

COAT 3MM, !- Outside Layer<br />

XENON 12_7MM, !- Layer 2<br />

CLEAR 3MM; !- Layer 3<br />

Construction,<br />

WALL-IN, !- Name<br />

Mineral_daub, !- Outside Layer<br />

silicate_brick_0_12, !- Layer 2<br />

Mineral_daub; !- Layer 3


Appendix 2 126<br />

Construction,<br />

FLOOR, !- Name<br />

Mineral_daub, !- Outside Layer<br />

I03 100mm insulation board, !- Layer 2<br />

concrete_0_20, !- Layer 3<br />

I03 80mm insulation board, !- Layer 4<br />

concrete_0_05, !- Layer 5<br />

F17 Carpet; !- Layer 6<br />

Construction,<br />

CEILING, !- Name<br />

F17 Carpet, !- Outside Layer<br />

concrete_0_05, !- Layer 2<br />

I03 80mm insulation board, !- Layer 3<br />

concrete_0_20, !- Layer 4<br />

Mineral_daub; !- Layer 5<br />

Construction,<br />

INTRNAL-MASS, !- Name<br />

silicate_brick_0_12; !- Outside Layer<br />

Construction,<br />

DOOR-IN, !- Name<br />

Wood door - 35mm; !- Outside Layer<br />

Construction,<br />

ROOF, !- Name<br />

Mineral_daub, !- Outside Layer<br />

concrete_0_05, !- Layer 2<br />

I05 350mm insulation board, !- Layer 3<br />

concrete_0_20, !- Layer 4<br />

Mineral_daub; !- Layer 5<br />

Construction,<br />

WALL-OUT, !- Name<br />

Mineral_daub, !- Outside Layer<br />

Poroton_0_30, !- Layer 2<br />

Mineral_fiber_0_02, !- Layer 3<br />

Poroton_0_24, !- Layer 4<br />

Stucco; !- Layer 5<br />

Construction,<br />

Screen_O-Dbl Clr 3mm/13mm Arg, !- Name<br />

BRIGHT ALUMINUM SCREEN, !- Outside Layer<br />

COAT 3MM, !- Layer 2<br />

XENON 12_7MM, !- Layer 3<br />

CLEAR 3MM, !- Layer 4<br />

XENON 12_7MM, !- Layer 5<br />

CLEAR 3MM; !- Layer 6<br />

Construction,<br />

Screen_L-Dbl Clr 3mm/13mm Arg, !- Name<br />

BRIGHT ALUMINUM SCREEN, !- Outside Layer<br />

COAT 3MM, !- Layer 2<br />

XENON 12_7MM, !- Layer 3<br />

CLEAR 3MM; !- Layer 4<br />

Construction,<br />

Shade_O-Dbl Clr 3mm/13mm Arg, !- Name<br />

COAT 3MM, !- Outside Layer<br />

XENON 12_7MM, !- Layer 2<br />

CLEAR 3MM, !- Layer 3<br />

XENON 12_7MM, !- Layer 4<br />

CLEAR 3MM, !- Layer 5<br />

HIGH REFLECT - LOW TRANS SHADE; !- Layer 6<br />

Construction,<br />

Shade_L-Dbl Clr 3mm/13mm Arg, !- Name<br />

COAT 3MM, !- Outside Layer<br />

XENON 12_7MM, !- Layer 2<br />

CLEAR 3MM, !- Layer 3<br />

HIGH REFLECT - LOW TRANS SHADE; !- Layer 4<br />

!- == ALL OBJECTS IN CLASS: CONSTRUCTION WITH INTERNAL<br />

SOURCE ==<br />

Construction:InternalSource,<br />

Slab Floor with Radiant, !- Name<br />

4, !- Source Present After Layer Number<br />

4, !- Temperature Calculation Requested After Layer Number<br />

1, !- Dimensions for <strong>the</strong> CTF Calculation<br />

0.15, !- Tube Spacing {m}<br />

Mineral_daub, !- Outside Layer<br />

concrete_0_12, !- Layer 2<br />

I02 50mm insulation board, !- Layer 3<br />

concrete_0_05, !- Layer 4<br />

Terracotta; !- Layer 5<br />

!- == ALL OBJECTS IN CLASS: ZONE ==<br />

Zone,<br />

EG1, !- Name<br />

, !- Direction <strong>of</strong> Relative North {deg}<br />

0, !- X Origin {m}<br />

0, !- Y Origin {m}<br />

0, !- Z Origin {m}<br />

1, !- Type<br />

1, !- Multiplier<br />

0, !- Ceiling Height {m}<br />

0, !- Volume {m3}<br />

, !- Zone Inside Convection Algorithm<br />

, !- Zone Outside Convection Algorithm<br />

Yes; !- Part <strong>of</strong> Total Floor Area<br />

Zone,<br />

EG2, !- Name<br />

, !- Direction <strong>of</strong> Relative North {deg}<br />

0, !- X Origin {m}<br />

0, !- Y Origin {m}<br />

0, !- Z Origin {m}<br />

1, !- Type<br />

1, !- Multiplier<br />

0, !- Ceiling Height {m}<br />

0, !- Volume {m3}<br />

, !- Zone Inside Convection Algorithm<br />

, !- Zone Outside Convection Algorithm<br />

Yes; !- Part <strong>of</strong> Total Floor Area<br />

Zone,<br />

EG3, !- Name<br />

, !- Direction <strong>of</strong> Relative North {deg}<br />

0, !- X Origin {m}<br />

0, !- Y Origin {m}<br />

0, !- Z Origin {m}<br />

1, !- Type<br />

1, !- Multiplier<br />

0, !- Ceiling Height {m}<br />

0, !- Volume {m3}<br />

, !- Zone Inside Convection Algorithm<br />

, !- Zone Outside Convection Algorithm<br />

Yes; !- Part <strong>of</strong> Total Floor Area<br />

Zone,<br />

EG4, !- Name<br />

, !- Direction <strong>of</strong> Relative North {deg}<br />

0, !- X Origin {m}<br />

0, !- Y Origin {m}<br />

0, !- Z Origin {m}<br />

1, !- Type<br />

1, !- Multiplier<br />

0, !- Ceiling Height {m}<br />

0, !- Volume {m3}<br />

, !- Zone Inside Convection Algorithm<br />

, !- Zone Outside Convection Algorithm<br />

Yes; !- Part <strong>of</strong> Total Floor Area<br />

Zone,<br />

EG6, !- Name<br />

, !- Direction <strong>of</strong> Relative North {deg}<br />

0, !- X Origin {m}<br />

0, !- Y Origin {m}<br />

0, !- Z Origin {m}<br />

1, !- Type<br />

1, !- Multiplier<br />

0, !- Ceiling Height {m}<br />

0, !- Volume {m3}


Appendix 2 127<br />

, !- Zone Inside Convection Algorithm<br />

, !- Zone Outside Convection Algorithm<br />

Yes; !- Part <strong>of</strong> Total Floor Area<br />

Zone,<br />

OG1, !- Name<br />

, !- Direction <strong>of</strong> Relative North {deg}<br />

0, !- X Origin {m}<br />

0, !- Y Origin {m}<br />

0, !- Z Origin {m}<br />

1, !- Type<br />

1, !- Multiplier<br />

0, !- Ceiling Height {m}<br />

0, !- Volume {m3}<br />

, !- Zone Inside Convection Algorithm<br />

, !- Zone Outside Convection Algorithm<br />

Yes; !- Part <strong>of</strong> Total Floor Area<br />

Zone,<br />

OG2, !- Name<br />

, !- Direction <strong>of</strong> Relative North {deg}<br />

0, !- X Origin {m}<br />

0, !- Y Origin {m}<br />

0, !- Z Origin {m}<br />

1, !- Type<br />

1, !- Multiplier<br />

0, !- Ceiling Height {m}<br />

0, !- Volume {m3}<br />

, !- Zone Inside Convection Algorithm<br />

, !- Zone Outside Convection Algorithm<br />

Yes; !- Part <strong>of</strong> Total Floor Area<br />

Zone,<br />

OG3, !- Name<br />

, !- Direction <strong>of</strong> Relative North {deg}<br />

0, !- X Origin {m}<br />

0, !- Y Origin {m}<br />

0, !- Z Origin {m}<br />

1, !- Type<br />

1, !- Multiplier<br />

0, !- Ceiling Height {m}<br />

0, !- Volume {m3}<br />

, !- Zone Inside Convection Algorithm<br />

, !- Zone Outside Convection Algorithm<br />

Yes; !- Part <strong>of</strong> Total Floor Area<br />

Zone,<br />

OG4, !- Name<br />

, !- Direction <strong>of</strong> Relative North {deg}<br />

0, !- X Origin {m}<br />

0, !- Y Origin {m}<br />

0, !- Z Origin {m}<br />

1, !- Type<br />

1, !- Multiplier<br />

0, !- Ceiling Height {m}<br />

0, !- Volume {m3}<br />

, !- Zone Inside Convection Algorithm<br />

, !- Zone Outside Convection Algorithm<br />

Yes; !- Part <strong>of</strong> Total Floor Area<br />

Zone,<br />

OG1-2, !- Name<br />

, !- Direction <strong>of</strong> Relative North {deg}<br />

0, !- X Origin {m}<br />

0, !- Y Origin {m}<br />

0, !- Z Origin {m}<br />

1, !- Type<br />

1, !- Multiplier<br />

0, !- Ceiling Height {m}<br />

0, !- Volume {m3}<br />

, !- Zone Inside Convection Algorithm<br />

, !- Zone Outside Convection Algorithm<br />

Yes; !- Part <strong>of</strong> Total Floor Area<br />

Zone,<br />

OG2-2, !- Name<br />

, !- Direction <strong>of</strong> Relative North {deg}<br />

0, !- X Origin {m}<br />

0, !- Y Origin {m}<br />

0, !- Z Origin {m}<br />

1, !- Type<br />

1, !- Multiplier<br />

0, !- Ceiling Height {m}<br />

0, !- Volume {m3}<br />

, !- Zone Inside Convection Algorithm<br />

, !- Zone Outside Convection Algorithm<br />

Yes; !- Part <strong>of</strong> Total Floor Area<br />

Zone,<br />

OG3-2, !- Name<br />

, !- Direction <strong>of</strong> Relative North {deg}<br />

0, !- X Origin {m}<br />

0, !- Y Origin {m}<br />

0, !- Z Origin {m}<br />

1, !- Type<br />

1, !- Multiplier<br />

0, !- Ceiling Height {m}<br />

0, !- Volume {m3}<br />

, !- Zone Inside Convection Algorithm<br />

, !- Zone Outside Convection Algorithm<br />

Yes; !- Part <strong>of</strong> Total Floor Area<br />

Zone,<br />

OG4-2, !- Name<br />

, !- Direction <strong>of</strong> Relative North {deg}<br />

0, !- X Origin {m}<br />

0, !- Y Origin {m}<br />

0, !- Z Origin {m}<br />

1, !- Type<br />

1, !- Multiplier<br />

0, !- Ceiling Height {m}<br />

0, !- Volume {m3}<br />

, !- Zone Inside Convection Algorithm<br />

, !- Zone Outside Convection Algorithm<br />

Yes; !- Part <strong>of</strong> Total Floor Area<br />

Zone,<br />

OG1-3, !- Name<br />

, !- Direction <strong>of</strong> Relative North {deg}<br />

0, !- X Origin {m}<br />

0, !- Y Origin {m}<br />

0, !- Z Origin {m}<br />

1, !- Type<br />

1, !- Multiplier<br />

0, !- Ceiling Height {m}<br />

0, !- Volume {m3}<br />

, !- Zone Inside Convection Algorithm<br />

, !- Zone Outside Convection Algorithm<br />

Yes; !- Part <strong>of</strong> Total Floor Area<br />

Zone,<br />

OG2-3, !- Name<br />

, !- Direction <strong>of</strong> Relative North {deg}<br />

0, !- X Origin {m}<br />

0, !- Y Origin {m}<br />

0, !- Z Origin {m}<br />

1, !- Type<br />

1, !- Multiplier<br />

0, !- Ceiling Height {m}<br />

0, !- Volume {m3}<br />

, !- Zone Inside Convection Algorithm<br />

, !- Zone Outside Convection Algorithm<br />

Yes; !- Part <strong>of</strong> Total Floor Area<br />

Zone,<br />

OG3-3, !- Name<br />

, !- Direction <strong>of</strong> Relative North {deg}<br />

0, !- X Origin {m}<br />

0, !- Y Origin {m}<br />

0, !- Z Origin {m}<br />

1, !- Type<br />

1, !- Multiplier<br />

0, !- Ceiling Height {m}<br />

0, !- Volume {m3}<br />

, !- Zone Inside Convection Algorithm<br />

, !- Zone Outside Convection Algorithm


Appendix 2 128<br />

Yes; !- Part <strong>of</strong> Total Floor Area<br />

Zone,<br />

OG4-3, !- Name<br />

, !- Direction <strong>of</strong> Relative North {deg}<br />

0, !- X Origin {m}<br />

0, !- Y Origin {m}<br />

0, !- Z Origin {m}<br />

1, !- Type<br />

1, !- Multiplier<br />

0, !- Ceiling Height {m}<br />

0, !- Volume {m3}<br />

, !- Zone Inside Convection Algorithm<br />

, !- Zone Outside Convection Algorithm<br />

Yes; !- Part <strong>of</strong> Total Floor Area<br />

Zone,<br />

DG1, !- Name<br />

, !- Direction <strong>of</strong> Relative North {deg}<br />

0, !- X Origin {m}<br />

0, !- Y Origin {m}<br />

0, !- Z Origin {m}<br />

1, !- Type<br />

1, !- Multiplier<br />

0, !- Ceiling Height {m}<br />

0, !- Volume {m3}<br />

, !- Zone Inside Convection Algorithm<br />

, !- Zone Outside Convection Algorithm<br />

Yes; !- Part <strong>of</strong> Total Floor Area<br />

Zone,<br />

DG3, !- Name<br />

, !- Direction <strong>of</strong> Relative North {deg}<br />

0, !- X Origin {m}<br />

0, !- Y Origin {m}<br />

0, !- Z Origin {m}<br />

1, !- Type<br />

1, !- Multiplier<br />

0, !- Ceiling Height {m}<br />

0, !- Volume {m3}<br />

, !- Zone Inside Convection Algorithm<br />

, !- Zone Outside Convection Algorithm<br />

Yes; !- Part <strong>of</strong> Total Floor Area<br />

Zone,<br />

DG4, !- Name<br />

, !- Direction <strong>of</strong> Relative North {deg}<br />

0, !- X Origin {m}<br />

0, !- Y Origin {m}<br />

0, !- Z Origin {m}<br />

1, !- Type<br />

1, !- Multiplier<br />

0, !- Ceiling Height {m}<br />

0, !- Volume {m3}<br />

, !- Zone Inside Convection Algorithm<br />

, !- Zone Outside Convection Algorithm<br />

Yes; !- Part <strong>of</strong> Total Floor Area<br />

Zone,<br />

COR, !- Name<br />

, !- Direction <strong>of</strong> Relative North {deg}<br />

0, !- X Origin {m}<br />

0, !- Y Origin {m}<br />

0, !- Z Origin {m}<br />

1, !- Type<br />

1, !- Multiplier<br />

0, !- Ceiling Height {m}<br />

0, !- Volume {m3}<br />

, !- Zone Inside Convection Algorithm<br />

, !- Zone Outside Convection Algorithm<br />

Yes; !- Part <strong>of</strong> Total Floor Area<br />

!- == ALL OBJECTS IN CLASS: WINDOWSHADINGCONTROL ==<br />

WindowProperty:ShadingControl,<br />

DOUBLE PANE WITH SHADE_W,!- Name<br />

InteriorShade, !- Shading Type<br />

Shade_O-Dbl Clr 3mm/13mm Arg, !- Construction with Shading Name<br />

OnIfScheduleAllows, !- Shading Control Type<br />

Shade_Schedule, !- Schedule Name<br />

10.0, !- Setpoint {W/m2, W or deg C}<br />

YES, !- Shading Control Is Scheduled<br />

NO, !- Glare Control Is Active<br />

, !- Shading Device Material Name<br />

, !- Type <strong>of</strong> Slat Angle Control for Blinds<br />

; !- Slat Angle Schedule Name<br />

WindowProperty:ShadingControl,<br />

DOUBLE PANE WITH SHADE_L,!- Name<br />

InteriorShade, !- Shading Type<br />

Shade_L-Dbl Clr 3mm/13mm Arg, !- Construction with Shading Name<br />

OnIfScheduleAllows, !- Shading Control Type<br />

Shade_Schedule, !- Schedule Name<br />

10, !- Setpoint {W/m2, W or deg C}<br />

YES, !- Shading Control Is Scheduled<br />

NO, !- Glare Control Is Active<br />

, !- Shading Device Material Name<br />

, !- Type <strong>of</strong> Slat Angle Control for Blinds<br />

; !- Slat Angle Schedule Name<br />

!- == ALL OBJECTS IN CLASS: WINDOWFRAMEANDDIVIDER ==<br />

WindowProperty:FrameAndDivider,<br />

Frame1, !- Name<br />

0.06, !- Frame Width {m}<br />

0.06, !- Frame Outside Projection {m}<br />

0.06, !- Frame Inside Projection {m}<br />

1.9, !- Frame Conductance {W/m2-K}<br />

1.2, !- Ratio <strong>of</strong> Frame-Edge Glass Conductance to Center-Of-Glass<br />

Conductance<br />

0.9, !- Frame Solar Absorptance<br />

0.9, !- Frame Visible Absorptance<br />

0.9, !- Frame Thermal Hemispherical Emissivity<br />

, !- Divider Type<br />

, !- Divider Width {m}<br />

, !- Number <strong>of</strong> Horizontal Dividers<br />

, !- Number <strong>of</strong> Vertical Dividers<br />

, !- Divider Outside Projection {m}<br />

, !- Divider Inside Projection {m}<br />

, !- Divider Conductance {W/m2-K}<br />

, !- Ratio <strong>of</strong> Divider-Edge Glass Conductance to Center-Of-Glass<br />

Conductance<br />

, !- Divider Solar Absorptance<br />

, !- Divider Visible Absorptance<br />

; !- Divider Thermal Hemispherical Emissivity<br />

!- == ALL OBJECTS IN CLASS: OTHERSIDECOEFFICIENTS ==<br />

SurfaceProperty:O<strong>the</strong>rSideCoefficients,<br />

KG-temperature, !- Name<br />

6.0, !- Combined Convective/Radiative Film Coefficient<br />

16.0, !- Constant Temperature {C}<br />

1, !- Constant Temperature Coefficient<br />

0, !- External Dry-Bulb Temperature Coefficient<br />

0, !- Ground Temperature Coefficient<br />

0, !- Wind Speed Coefficient<br />

0; !- Zone Air Temperature Coefficient<br />

!- == ALL OBJECTS IN CLASS: SCHEDULETYPE ==<br />

ScheduleTypeLimits,<br />

Any Number; !- Name<br />

ScheduleTypeLimits,<br />

Fraction, !- Name<br />

0.0 : 1.0, !- Range<br />

Continuous; !- Numeric Type<br />

ScheduleTypeLimits,<br />

Temperature, !- Name<br />

-60:200, !- Range<br />

Continuous; !- Numeric Type<br />

ScheduleTypeLimits,<br />

Control Type, !- Name<br />

0:4, !- Range


Appendix 2 129<br />

Discrete; !- Numeric Type<br />

ScheduleTypeLimits,<br />

On/Off, !- Name<br />

0:1, !- Range<br />

Discrete; !- Numeric Type<br />

ScheduleTypeLimits,<br />

FlowRate, !- Name<br />

0.0:10, !- Range<br />

Continuous; !- Numeric Type<br />

ScheduleTypeLimits,<br />

Integer, !- Name<br />

0.0:1.0, !- Range<br />

Discrete; !- Numeric Type<br />

ScheduleTypeLimits,<br />

Air Conditioner:Window Zone1WindAC Cycling Fan Schedule Type; !- Name<br />

ScheduleTypeLimits,<br />

Air Conditioner:Window Zone2WindAC Continuous Fan Schedule Type; !-<br />

Name<br />

ScheduleTypeLimits,<br />

Air Conditioner:Window Zone3WindAC Continuous Fan Schedule Type; !-<br />

Name<br />

ScheduleTypeLimits,<br />

Air Conditioner:Window Zone4WindAC Continuous Fan Schedule Type; !-<br />

Name<br />

ScheduleTypeLimits,<br />

Air Conditioner:Window Zone5WindAC Continuous Fan Schedule Type; !-<br />

Name<br />

ScheduleTypeLimits,<br />

Air Conditioner:Window Zone6WindAC Continuous Fan Schedule Type; !-<br />

Name<br />

ScheduleTypeLimits,<br />

Air Conditioner:Window Zone7WindAC Continuous Fan Schedule Type; !-<br />

Name<br />

ScheduleTypeLimits,<br />

Air Conditioner:Window Zone8WindAC Continuous Fan Schedule Type; !-<br />

Name<br />

ScheduleTypeLimits,<br />

Air Conditioner:Window Zone9WindAC Continuous Fan Schedule Type; !-<br />

Name<br />

ScheduleTypeLimits,<br />

Air Conditioner:Window Zone10WindAC Continuous Fan Schedule Type; !-<br />

Name<br />

ScheduleTypeLimits,<br />

Air Conditioner:Window Zone11WindAC Continuous Fan Schedule Type; !-<br />

Name<br />

ScheduleTypeLimits,<br />

Air Conditioner:Window Zone12WindAC Continuous Fan Schedule Type; !-<br />

Name<br />

ScheduleTypeLimits,<br />

Air Conditioner:Window Zone13WindAC Continuous Fan Schedule Type; !-<br />

Name<br />

ScheduleTypeLimits,<br />

Air Conditioner:Window Zone14WindAC Continuous Fan Schedule Type; !-<br />

Name<br />

ScheduleTypeLimits,<br />

Air Conditioner:Window Zone15WindAC Continuous Fan Schedule Type; !-<br />

Name<br />

ScheduleTypeLimits,<br />

Air Conditioner:Window Zone16WindAC Continuous Fan Schedule Type; !-<br />

Name<br />

ScheduleTypeLimits,<br />

Air Conditioner:Window Zone17WindAC Continuous Fan Schedule Type; !-<br />

Name<br />

ScheduleTypeLimits,<br />

Air Conditioner:Window Zone18WindAC Continuous Fan Schedule Type; !-<br />

Name<br />

ScheduleTypeLimits,<br />

Air Conditioner:Window Zone19WindAC Continuous Fan Schedule Type; !-<br />

Name<br />

!- == ALL OBJECTS IN CLASS: SCHEDULE:COMPACT ==<br />

Schedule:Compact,<br />

Work Eff Sch, !- Name<br />

Any Number, !- Schedule Type Limits Name<br />

Through: 12/31, !- Field 1<br />

For: AllDays, !- Field 2<br />

Until: 24:00, !- Field 3<br />

0.0; !- Field 4<br />

Schedule:Compact,<br />

INTERMITTENT, !- Name<br />

Fraction, !- Schedule Type Limits Name<br />

Through: 12/31, !- Field 1<br />

For: WeekDays SummerDesignDay, !- Field 2<br />

Until: 8:00, !- Field 3<br />

1.0, !- Field 4<br />

Until: 18:00, !- Field 5<br />

1.0, !- Field 6<br />

Until: 24:00, !- Field 7<br />

1.0, !- Field 8<br />

For: AllO<strong>the</strong>rDays, !- Field 9<br />

Until: 24:00, !- Field 10<br />

1.0; !- Field 11<br />

Schedule:Compact,<br />

ON, !- Name<br />

Fraction, !- Schedule Type Limits Name<br />

Through: 12/31, !- Field 1<br />

For: AllDays, !- Field 2<br />

Until: 24:00, !- Field 3<br />

1.0; !- Field 4<br />

Schedule:Compact,<br />

Seasonal Reset Supply Air Temp Sch, !- Name<br />

Temperature, !- Schedule Type Limits Name<br />

Through: 4/1, !- Field 1<br />

For: AllDays, !- Field 2<br />

Until: 24:00, !- Field 3<br />

16.0, !- Field 4<br />

Through: 10/15, !- Field 5<br />

For: AllDays, !- Field 6<br />

Until: 24:00, !- Field 7<br />

12.0, !- Field 8<br />

Through: 12/31, !- Field 9<br />

For: AllDays, !- Field 10<br />

Until: 24:00, !- Field 11<br />

16.0; !- Field 12<br />

Schedule:Compact,<br />

CW Loop Temp Schedule, !- Name<br />

Temperature, !- Schedule Type Limits Name<br />

Through: 12/31, !- Field 1<br />

For: AllDays, !- Field 2<br />

Until: 24:00, !- Field 3<br />

6.67; !- Field 4<br />

Schedule:Compact,<br />

HW Loop Temp Schedule, !- Name<br />

Temperature, !- Schedule Type Limits Name<br />

Through: 12/31, !- Field 1<br />

For: AllDays, !- Field 2<br />

Until: 24:00, !- Field 3


Appendix 2 130<br />

60; !- Field 4<br />

Schedule:Compact,<br />

FanAndCoilAvailSched, !- Name<br />

Fraction, !- Schedule Type Limits Name<br />

Through: 4/1, !- Field 1<br />

For: AllDays, !- Field 2<br />

Until: 24:00, !- Field 3<br />

1.0, !- Field 4<br />

Through: 10/15, !- Field 5<br />

For: WeekDays SummerDesignDay, !- Field 6<br />

Until: 7:00, !- Field 7<br />

1.0, !- Field 8<br />

Until: 22:00, !- Field 9<br />

1.0, !- Field 10<br />

Until: 24:00, !- Field 11<br />

1.0, !- Field 12<br />

For: WinterDesignDay, !- Field 13<br />

Until: 24:00, !- Field 14<br />

0.0, !- Field 15<br />

For: AllO<strong>the</strong>rDays, !- Field 16<br />

Until: 24:00, !- Field 17<br />

1.0, !- Field 18<br />

Through: 12/31, !- Field 19<br />

For: AllDays, !- Field 20<br />

Until: 24:00, !- Field 21<br />

1.0; !- Field 22<br />

Schedule:Compact,<br />

Baseboard_Sch, !- Name<br />

Fraction, !- Schedule Type Limits Name<br />

Through: 4/1, !- Field 1<br />

For: AllDays, !- Field 2<br />

Until: 24:00, !- Field 3<br />

1.0, !- Field 4<br />

Through: 10/15, !- Field 5<br />

For: AllDays, !- Field 6<br />

Until: 24:00, !- Field 7<br />

0.0, !- Field 8<br />

Through: 12/31, !- Field 9<br />

For: AllDays, !- Field 10<br />

Until: 24:00, !- Field 11<br />

1.0; !- Field 12<br />

Schedule:Compact,<br />

CoolingCoilAvailSched, !- Name<br />

Fraction, !- Schedule Type Limits Name<br />

Through: 4/1, !- Field 1<br />

For: AllDays, !- Field 2<br />

Until: 24:00, !- Field 3<br />

0.0, !- Field 4<br />

Through: 10/15, !- Field 5<br />

For: WeekDays SummerDesignDay, !- Field 6<br />

Until: 7:00, !- Field 7<br />

1.0, !- Field 8<br />

Until: 22:00, !- Field 9<br />

1.0, !- Field 10<br />

Until: 24:00, !- Field 11<br />

1.0, !- Field 12<br />

For: WinterDesignDay, !- Field 13<br />

Until: 24:00, !- Field 14<br />

0.0, !- Field 15<br />

For: AllO<strong>the</strong>rDays, !- Field 16<br />

Until: 24:00, !- Field 17<br />

1.0, !- Field 18<br />

Through: 12/31, !- Field 19<br />

For: AllDays, !- Field 20<br />

Until: 24:00, !- Field 21<br />

0.0; !- Field 22<br />

Schedule:Compact,<br />

Heating Setpoints, !- Name<br />

Temperature, !- Schedule Type Limits Name<br />

Through: 4/1, !- Field 1<br />

For: AllDays, !- Field 2<br />

Until: 7:00, !- Field 3<br />

18.0, !- Field 4<br />

Until: 22:00, !- Field 5<br />

21.0, !- Field 6<br />

Until: 24:00, !- Field 7<br />

18.0, !- Field 8<br />

Through: 10/15, !- Field 9<br />

For: AllDays, !- Field 10<br />

Until: 7:00, !- Field 11<br />

15.0, !- Field 12<br />

Until: 22:00, !- Field 13<br />

15.0, !- Field 14<br />

Until: 24:00, !- Field 15<br />

15.0, !- Field 16<br />

Through: 12/31, !- Field 17<br />

For: AllDays, !- Field 18<br />

Until: 7:00, !- Field 19<br />

18.0, !- Field 20<br />

Until: 22:00, !- Field 21<br />

21.0, !- Field 22<br />

Until: 24:00, !- Field 23<br />

18.0; !- Field 24<br />

Schedule:Compact,<br />

Cooling Setpoints, !- Name<br />

Temperature, !- Schedule Type Limits Name<br />

Through: 12/31, !- Field 1<br />

For: AllDays, !- Field 2<br />

Until: 7:00, !- Field 3<br />

24.0, !- Field 4<br />

Until: 22:00, !- Field 5<br />

24.0, !- Field 6<br />

Until: 24:00, !- Field 7<br />

24.0; !- Field 8<br />

Schedule:Compact,<br />

Zone Control Type Sched, !- Name<br />

Control Type, !- Schedule Type Limits Name<br />

Through: 4/1, !- Field 1<br />

For: AllDays, !- Field 2<br />

Until: 24:00, !- Field 3<br />

1, !- Field 4<br />

Through: 10/15, !- Field 5<br />

For: AllDays, !- Field 6<br />

Until: 24:00, !- Field 7<br />

2, !- Field 8<br />

Through: 12/31, !- Field 9<br />

For: AllDays, !- Field 10<br />

Until: 24:00, !- Field 11<br />

1; !- Field 12<br />

Schedule:Compact,<br />

Shading_Surf_Det, !- Name<br />

Fraction, !- Schedule Type Limits Name<br />

Through: 4/1, !- Field 1<br />

For: AllDays, !- Field 2<br />

Until: 24:00, !- Field 3<br />

1.0, !- Field 4<br />

Through: 10/15, !- Field 5<br />

For: AllDays, !- Field 6<br />

Until: 7:00, !- Field 7<br />

0.05, !- Field 8<br />

Until: 20:00, !- Field 9<br />

0.05, !- Field 10<br />

Until: 24:00, !- Field 11<br />

0.05, !- Field 12<br />

Through: 12/31, !- Field 13<br />

For: AllDays, !- Field 14<br />

Until: 24:00, !- Field 15<br />

1.0; !- Field 16<br />

Schedule:Compact,<br />

Shading_Surf_Det_House, !- Name<br />

Fraction, !- Schedule Type Limits Name<br />

Through: 12/31, !- Field 1<br />

For: AllDays, !- Field 2<br />

Until: 24:00, !- Field 3<br />

0.0; !- Field 4<br />

Schedule:Compact,<br />

Shading_Surf_Det_Trees, !- Name


Appendix 2 131<br />

Fraction, !- Schedule Type Limits Name<br />

Through: 4/1, !- Field 1<br />

For: AllDays, !- Field 2<br />

Until: 24:00, !- Field 3<br />

0.95, !- Field 4<br />

Through: 10/15, !- Field 5<br />

For: AllDays, !- Field 6<br />

Until: 24:00, !- Field 11<br />

0.20, !- Field 12<br />

Through: 12/31, !- Field 13<br />

For: AllDays, !- Field 14<br />

Until: 24:00, !- Field 15<br />

0.95; !- Field 16<br />

Schedule:Compact,<br />

Heat Exchanger Supply Air Temp Sch, !- Name<br />

Temperature, !- Schedule Type Limits Name<br />

Through: 12/31, !- Field 1<br />

For: AllDays, !- Field 2<br />

Until: 24:00, !- Field 3<br />

12.0; !- Field 4<br />

Schedule:Compact,<br />

OCCUPY-1, !- Name<br />

Fraction, !- Schedule Type Limits Name<br />

Through: 12/31, !- Field 1<br />

For: AllDays, !- Field 2<br />

Until: 8:00, !- Field 3<br />

1.0, !- Field 4<br />

Until: 11:00, !- Field 5<br />

0.50, !- Field 6<br />

Until: 12:00, !- Field 7<br />

0.50, !- Field 8<br />

Until: 13:00, !- Field 9<br />

0.50, !- Field 10<br />

Until: 16:00, !- Field 11<br />

0.50, !- Field 12<br />

Until: 17:00, !- Field 13<br />

1.00, !- Field 14<br />

Until: 19:00, !- Field 15<br />

1.00, !- Field 16<br />

Until: 24:00, !- Field 17<br />

1.00; !- Field 18<br />

Schedule:Compact,<br />

LIGHTS-1, !- Name<br />

Fraction, !- Schedule Type Limits Name<br />

Through: 12/31, !- Field 1<br />

For: AllDays, !- Field 2<br />

Until: 8:00, !- Field 3<br />

0.05, !- Field 4<br />

Until: 9:00, !- Field 5<br />

0.05, !- Field 6<br />

Until: 10:00, !- Field 7<br />

0.05, !- Field 8<br />

Until: 11:00, !- Field 9<br />

0.05, !- Field 10<br />

Until: 12:00, !- Field 11<br />

0.05, !- Field 12<br />

Until: 13:00, !- Field 13<br />

0.05, !- Field 14<br />

Until: 14:00, !- Field 15<br />

0.05, !- Field 16<br />

Until: 17:00, !- Field 17<br />

0.5, !- Field 18<br />

Until: 20:00, !- Field 19<br />

1.0, !- Field 20<br />

Until: 23:00, !- Field 21<br />

0.3, !- Field 22<br />

Until: 24:00, !- Field 23<br />

0.05; !- Field 24<br />

Schedule:Compact,<br />

EQUIP-1, !- Name<br />

Fraction, !- Schedule Type Limits Name<br />

Through: 12/31, !- Field 1<br />

For: AllDays, !- Field 2<br />

Until: 7:00, !- Field 3<br />

0.5, !- Field 4<br />

Until: 9:00, !- Field 5<br />

0.2, !- Field 6<br />

Until: 14:00, !- Field 7<br />

0.5, !- Field 8<br />

Until: 15:00, !- Field 9<br />

0.6, !- Field 10<br />

Until: 16:00, !- Field 11<br />

0.8, !- Field 12<br />

Until: 18:00, !- Field 13<br />

1.0, !- Field 14<br />

Until: 22:00, !- Field 15<br />

0.2, !- Field 16<br />

Until: 24:00, !- Field 17<br />

0.02; !- Field 18<br />

Schedule:Compact,<br />

ActSchd, !- Name<br />

Any Number, !- Schedule Type Limits Name<br />

Through: 12/31, !- Field 1<br />

For: AllDays, !- Field 2<br />

Until: 24:00, !- Field 3<br />

117.239997864; !- Field 4<br />

Schedule:Compact,<br />

Clothing Sch, !- Name<br />

Any Number, !- Schedule Type Limits Name<br />

Through: 12/31, !- Field 1<br />

For: AllDays, !- Field 2<br />

Until: 24:00, !- Field 3<br />

1.0; !- Field 4<br />

Schedule:Compact,<br />

Air Velo Sch, !- Name<br />

Any Number, !- Schedule Type Limits Name<br />

Through: 12/31, !- Field 1<br />

For: AllDays, !- Field 2<br />

Until: 24:00, !- Field 3<br />

0.137; !- Field 4<br />

Schedule:Compact,<br />

Shade_Schedule, !- Name<br />

Integer, !- Schedule Type Limits Name<br />

Through: 4/1, !- Field 1<br />

For: AllDays, !- Field 2<br />

Until: 24:00, !- Field 3<br />

0, !- Field 4<br />

Through: 10/15, !- Field 5<br />

For: AllDays, !- Field 6<br />

Until: 24:00, !- Field 7<br />

1, !- Field 8<br />

Through: 12/31, !- Field 9<br />

For: AllDays, !- Field 10<br />

Until: 24:00, !- Field 11<br />

0; !- Field 12<br />

Schedule:Compact,<br />

INFIL-SCH, !- Name<br />

Fraction, !- Schedule Type Limits Name<br />

Through: 12/31, !- Field 1<br />

For: WeekDays CustomDay1 CustomDay2, !- Field 2<br />

Until: 7:00, !- Field 3<br />

1.0, !- Field 4<br />

Until: 21:00, !- Field 5<br />

1.0, !- Field 6<br />

Until: 24:00, !- Field 7<br />

1.0, !- Field 8<br />

For: Weekends Holiday, !- Field 9<br />

Until: 24:00, !- Field 10<br />

1.0, !- Field 11<br />

For: SummerDesignDay, !- Field 12<br />

Until: 24:00, !- Field 13<br />

1.0, !- Field 14<br />

For: WinterDesignDay, !- Field 15<br />

Until: 24:00, !- Field 16<br />

1.0; !- Field 17


Appendix 2 132<br />

Schedule:Compact,<br />

Air Conditioner:Window Zone1WindAC Cycling Fan Schedule, !- Name<br />

Air Conditioner:Window Zone1WindAC Cycling Fan Schedule Type, !-<br />

Schedule Type Limits Name<br />

Through: 12/31, !- Field 1<br />

For: AllDays, !- Field 2<br />

Until: 24:00, !- Field 3<br />

0; !- Field 4<br />

Schedule:Compact,<br />

Air Conditioner:Window Zone2WindAC Continuous Fan Schedule, !- Name<br />

Air Conditioner:Window Zone2WindAC Continuous Fan Schedule Type, !-<br />

Schedule Type Limits Name<br />

Through: 12/31, !- Field 1<br />

For: AllDays, !- Field 2<br />

Until: 24:00, !- Field 3<br />

1; !- Field 4<br />

Schedule:Compact,<br />

Air Conditioner:Window Zone3WindAC Continuous Fan Schedule, !- Name<br />

Air Conditioner:Window Zone3WindAC Continuous Fan Schedule Type, !-<br />

Schedule Type Limits Name<br />

Through: 12/31, !- Field 1<br />

For: AllDays, !- Field 2<br />

Until: 24:00, !- Field 3<br />

1; !- Field 4<br />

Schedule:Compact,<br />

Air Conditioner:Window Zone4WindAC Continuous Fan Schedule, !- Name<br />

Air Conditioner:Window Zone4WindAC Continuous Fan Schedule Type, !-<br />

Schedule Type Limits Name<br />

Through: 12/31, !- Field 1<br />

For: AllDays, !- Field 2<br />

Until: 24:00, !- Field 3<br />

1; !- Field 4<br />

Schedule:Compact,<br />

Air Conditioner:Window Zone5WindAC Continuous Fan Schedule, !- Name<br />

Air Conditioner:Window Zone5WindAC Continuous Fan Schedule Type, !-<br />

Schedule Type Limits Name<br />

Through: 12/31, !- Field 1<br />

For: AllDays, !- Field 2<br />

Until: 24:00, !- Field 3<br />

1; !- Field 4<br />

Schedule:Compact,<br />

Air Conditioner:Window Zone6WindAC Continuous Fan Schedule, !- Name<br />

Air Conditioner:Window Zone6WindAC Continuous Fan Schedule Type, !-<br />

Schedule Type Limits Name<br />

Through: 12/31, !- Field 1<br />

For: AllDays, !- Field 2<br />

Until: 24:00, !- Field 3<br />

1; !- Field 4<br />

Schedule:Compact,<br />

Air Conditioner:Window Zone7WindAC Continuous Fan Schedule, !- Name<br />

Air Conditioner:Window Zone7WindAC Continuous Fan Schedule Type, !-<br />

Schedule Type Limits Name<br />

Through: 12/31, !- Field 1<br />

For: AllDays, !- Field 2<br />

Until: 24:00, !- Field 3<br />

1; !- Field 4<br />

Schedule:Compact,<br />

Air Conditioner:Window Zone8WindAC Continuous Fan Schedule, !- Name<br />

Air Conditioner:Window Zone8WindAC Continuous Fan Schedule Type, !-<br />

Schedule Type Limits Name<br />

Through: 12/31, !- Field 1<br />

For: AllDays, !- Field 2<br />

Until: 24:00, !- Field 3<br />

1; !- Field 4<br />

Schedule:Compact,<br />

Air Conditioner:Window Zone9WindAC Continuous Fan Schedule, !- Name<br />

Air Conditioner:Window Zone9WindAC Continuous Fan Schedule Type, !-<br />

Schedule Type Limits Name<br />

Through: 12/31, !- Field 1<br />

For: AllDays, !- Field 2<br />

Until: 24:00, !- Field 3<br />

1; !- Field 4<br />

Schedule:Compact,<br />

Air Conditioner:Window Zone10WindAC Continuous Fan Schedule, !- Name<br />

Air Conditioner:Window Zone10WindAC Continuous Fan Schedule Type, !-<br />

Schedule Type Limits Name<br />

Through: 12/31, !- Field 1<br />

For: AllDays, !- Field 2<br />

Until: 24:00, !- Field 3<br />

1; !- Field 4<br />

Schedule:Compact,<br />

Air Conditioner:Window Zone11WindAC Continuous Fan Schedule, !- Name<br />

Air Conditioner:Window Zone11WindAC Continuous Fan Schedule Type, !-<br />

Schedule Type Limits Name<br />

Through: 12/31, !- Field 1<br />

For: AllDays, !- Field 2<br />

Until: 24:00, !- Field 3<br />

1; !- Field 4<br />

Schedule:Compact,<br />

Air Conditioner:Window Zone12WindAC Continuous Fan Schedule, !- Name<br />

Air Conditioner:Window Zone12WindAC Continuous Fan Schedule Type, !-<br />

Schedule Type Limits Name<br />

Through: 12/31, !- Field 1<br />

For: AllDays, !- Field 2<br />

Until: 24:00, !- Field 3<br />

1; !- Field 4<br />

Schedule:Compact,<br />

Air Conditioner:Window Zone13WindAC Continuous Fan Schedule, !- Name<br />

Air Conditioner:Window Zone13WindAC Continuous Fan Schedule Type, !-<br />

Schedule Type Limits Name<br />

Through: 12/31, !- Field 1<br />

For: AllDays, !- Field 2<br />

Until: 24:00, !- Field 3<br />

1; !- Field 4<br />

Schedule:Compact,<br />

Air Conditioner:Window Zone14WindAC Continuous Fan Schedule, !- Name<br />

Air Conditioner:Window Zone14WindAC Continuous Fan Schedule Type, !-<br />

Schedule Type Limits Name<br />

Through: 12/31, !- Field 1<br />

For: AllDays, !- Field 2<br />

Until: 24:00, !- Field 3<br />

1; !- Field 4<br />

Schedule:Compact,<br />

Air Conditioner:Window Zone15WindAC Continuous Fan Schedule, !- Name<br />

Air Conditioner:Window Zone15WindAC Continuous Fan Schedule Type, !-<br />

Schedule Type Limits Name<br />

Through: 12/31, !- Field 1<br />

For: AllDays, !- Field 2<br />

Until: 24:00, !- Field 3<br />

1; !- Field 4<br />

Schedule:Compact,<br />

Air Conditioner:Window Zone16WindAC Continuous Fan Schedule, !- Name<br />

Air Conditioner:Window Zone16WindAC Continuous Fan Schedule Type, !-<br />

Schedule Type Limits Name<br />

Through: 12/31, !- Field 1<br />

For: AllDays, !- Field 2<br />

Until: 24:00, !- Field 3<br />

1; !- Field 4<br />

Schedule:Compact,<br />

Air Conditioner:Window Zone17WindAC Continuous Fan Schedule, !- Name<br />

Air Conditioner:Window Zone17WindAC Continuous Fan Schedule Type, !-<br />

Schedule Type Limits Name<br />

Through: 12/31, !- Field 1<br />

For: AllDays, !- Field 2<br />

Until: 24:00, !- Field 3<br />

1; !- Field 4<br />

Schedule:Compact,<br />

Air Conditioner:Window Zone18WindAC Continuous Fan Schedule, !- Name


Appendix 2 133<br />

Air Conditioner:Window Zone18WindAC Continuous Fan Schedule Type, !-<br />

Schedule Type Limits Name<br />

Through: 12/31, !- Field 1<br />

For: AllDays, !- Field 2<br />

Until: 24:00, !- Field 3<br />

1; !- Field 4<br />

Schedule:Compact,<br />

Air Conditioner:Window Zone19WindAC Continuous Fan Schedule, !- Name<br />

Air Conditioner:Window Zone19WindAC Continuous Fan Schedule Type, !-<br />

Schedule Type Limits Name<br />

Through: 12/31, !- Field 1<br />

For: AllDays, !- Field 2<br />

Until: 24:00, !- Field 3<br />

1; !- Field 4<br />

!- == ALL OBJECTS IN CLASS: PEOPLE ==<br />

People,<br />

EG1 - People, !- Name<br />

EG1, !- Zone Name<br />

OCCUPY-1, !- Number <strong>of</strong> People Schedule Name<br />

People, !- Number <strong>of</strong> People Calculation Method<br />

2, !- Number <strong>of</strong> People<br />

, !- People per Zone Floor Area {person/m2}<br />

, !- Zone Floor Area per Person {m2/person}<br />

0.3, !- Fraction Radiant<br />

, !- Sensible Heat Fraction<br />

ActSchd, !- Activity Level Schedule Name<br />

, !- Enable ASHRAE 55 Comfort Warnings<br />

ZoneAveraged, !- Mean Radiant Temperature Calculation Type<br />

, !- Surface Name/Angle Factor List Name<br />

Work Eff Sch, !- Work Efficiency Schedule Name<br />

Clothing Sch, !- Clothing Insulation Schedule Name<br />

Air Velo Sch, !- Air Velocity Schedule Name<br />

Fanger; !- Thermal Comfort Model 1 Type<br />

People,<br />

EG2 - People, !- Name<br />

EG2, !- Zone Name<br />

OCCUPY-1, !- Number <strong>of</strong> People Schedule Name<br />

People, !- Number <strong>of</strong> People Calculation Method<br />

2, !- Number <strong>of</strong> People<br />

, !- People per Zone Floor Area {person/m2}<br />

, !- Zone Floor Area per Person {m2/person}<br />

0.3, !- Fraction Radiant<br />

, !- Sensible Heat Fraction<br />

ActSchd, !- Activity Level Schedule Name<br />

, !- Enable ASHRAE 55 Comfort Warnings<br />

ZoneAveraged, !- Mean Radiant Temperature Calculation Type<br />

, !- Surface Name/Angle Factor List Name<br />

Work Eff Sch, !- Work Efficiency Schedule Name<br />

Clothing Sch, !- Clothing Insulation Schedule Name<br />

Air Velo Sch, !- Air Velocity Schedule Name<br />

Fanger; !- Thermal Comfort Model 1 Type<br />

People,<br />

EG3 - People, !- Name<br />

EG3, !- Zone Name<br />

OCCUPY-1, !- Number <strong>of</strong> People Schedule Name<br />

People, !- Number <strong>of</strong> People Calculation Method<br />

2, !- Number <strong>of</strong> People<br />

, !- People per Zone Floor Area {person/m2}<br />

, !- Zone Floor Area per Person {m2/person}<br />

0.3, !- Fraction Radiant<br />

, !- Sensible Heat Fraction<br />

ActSchd, !- Activity Level Schedule Name<br />

, !- Enable ASHRAE 55 Comfort Warnings<br />

ZoneAveraged, !- Mean Radiant Temperature Calculation Type<br />

, !- Surface Name/Angle Factor List Name<br />

Work Eff Sch, !- Work Efficiency Schedule Name<br />

Clothing Sch, !- Clothing Insulation Schedule Name<br />

Air Velo Sch, !- Air Velocity Schedule Name<br />

Fanger; !- Thermal Comfort Model 1 Type<br />

People,<br />

EG4 - People, !- Name<br />

EG4, !- Zone Name<br />

OCCUPY-1, !- Number <strong>of</strong> People Schedule Name<br />

People, !- Number <strong>of</strong> People Calculation Method<br />

2, !- Number <strong>of</strong> People<br />

, !- People per Zone Floor Area {person/m2}<br />

, !- Zone Floor Area per Person {m2/person}<br />

0.3, !- Fraction Radiant<br />

, !- Sensible Heat Fraction<br />

ActSchd, !- Activity Level Schedule Name<br />

, !- Enable ASHRAE 55 Comfort Warnings<br />

ZoneAveraged, !- Mean Radiant Temperature Calculation Type<br />

, !- Surface Name/Angle Factor List Name<br />

Work Eff Sch, !- Work Efficiency Schedule Name<br />

Clothing Sch, !- Clothing Insulation Schedule Name<br />

Air Velo Sch, !- Air Velocity Schedule Name<br />

Fanger; !- Thermal Comfort Model 1 Type<br />

People,<br />

OG1 - People, !- Name<br />

OG1, !- Zone Name<br />

OCCUPY-1, !- Number <strong>of</strong> People Schedule Name<br />

People, !- Number <strong>of</strong> People Calculation Method<br />

2, !- Number <strong>of</strong> People<br />

, !- People per Zone Floor Area {person/m2}<br />

, !- Zone Floor Area per Person {m2/person}<br />

0.3, !- Fraction Radiant<br />

, !- Sensible Heat Fraction<br />

ActSchd, !- Activity Level Schedule Name<br />

, !- Enable ASHRAE 55 Comfort Warnings<br />

ZoneAveraged, !- Mean Radiant Temperature Calculation Type<br />

, !- Surface Name/Angle Factor List Name<br />

Work Eff Sch, !- Work Efficiency Schedule Name<br />

Clothing Sch, !- Clothing Insulation Schedule Name<br />

Air Velo Sch, !- Air Velocity Schedule Name<br />

Fanger; !- Thermal Comfort Model 1 Type<br />

People,<br />

OG2 - People, !- Name<br />

OG2, !- Zone Name<br />

OCCUPY-1, !- Number <strong>of</strong> People Schedule Name<br />

People, !- Number <strong>of</strong> People Calculation Method<br />

2, !- Number <strong>of</strong> People<br />

, !- People per Zone Floor Area {person/m2}<br />

, !- Zone Floor Area per Person {m2/person}<br />

0.3, !- Fraction Radiant<br />

, !- Sensible Heat Fraction<br />

ActSchd, !- Activity Level Schedule Name<br />

, !- Enable ASHRAE 55 Comfort Warnings<br />

ZoneAveraged, !- Mean Radiant Temperature Calculation Type<br />

, !- Surface Name/Angle Factor List Name<br />

Work Eff Sch, !- Work Efficiency Schedule Name<br />

Clothing Sch, !- Clothing Insulation Schedule Name<br />

Air Velo Sch, !- Air Velocity Schedule Name<br />

Fanger; !- Thermal Comfort Model 1 Type<br />

People,<br />

OG3 - People, !- Name<br />

OG3, !- Zone Name<br />

OCCUPY-1, !- Number <strong>of</strong> People Schedule Name<br />

People, !- Number <strong>of</strong> People Calculation Method<br />

2, !- Number <strong>of</strong> People<br />

, !- People per Zone Floor Area {person/m2}<br />

, !- Zone Floor Area per Person {m2/person}<br />

0.3, !- Fraction Radiant<br />

, !- Sensible Heat Fraction<br />

ActSchd, !- Activity Level Schedule Name<br />

, !- Enable ASHRAE 55 Comfort Warnings<br />

ZoneAveraged, !- Mean Radiant Temperature Calculation Type<br />

, !- Surface Name/Angle Factor List Name<br />

Work Eff Sch, !- Work Efficiency Schedule Name<br />

Clothing Sch, !- Clothing Insulation Schedule Name<br />

Air Velo Sch, !- Air Velocity Schedule Name<br />

Fanger; !- Thermal Comfort Model 1 Type<br />

People,<br />

OG4 - People, !- Name<br />

OG4, !- Zone Name<br />

OCCUPY-1, !- Number <strong>of</strong> People Schedule Name<br />

People, !- Number <strong>of</strong> People Calculation Method


Appendix 2 134<br />

2, !- Number <strong>of</strong> People<br />

, !- People per Zone Floor Area {person/m2}<br />

, !- Zone Floor Area per Person {m2/person}<br />

0.3, !- Fraction Radiant<br />

, !- Sensible Heat Fraction<br />

ActSchd, !- Activity Level Schedule Name<br />

, !- Enable ASHRAE 55 Comfort Warnings<br />

ZoneAveraged, !- Mean Radiant Temperature Calculation Type<br />

, !- Surface Name/Angle Factor List Name<br />

Work Eff Sch, !- Work Efficiency Schedule Name<br />

Clothing Sch, !- Clothing Insulation Schedule Name<br />

Air Velo Sch, !- Air Velocity Schedule Name<br />

Fanger; !- Thermal Comfort Model 1 Type<br />

People,<br />

OG1-2 - People, !- Name<br />

OG1-2, !- Zone Name<br />

OCCUPY-1, !- Number <strong>of</strong> People Schedule Name<br />

People, !- Number <strong>of</strong> People Calculation Method<br />

2, !- Number <strong>of</strong> People<br />

, !- People per Zone Floor Area {person/m2}<br />

, !- Zone Floor Area per Person {m2/person}<br />

0.3, !- Fraction Radiant<br />

, !- Sensible Heat Fraction<br />

ActSchd, !- Activity Level Schedule Name<br />

, !- Enable ASHRAE 55 Comfort Warnings<br />

ZoneAveraged, !- Mean Radiant Temperature Calculation Type<br />

, !- Surface Name/Angle Factor List Name<br />

Work Eff Sch, !- Work Efficiency Schedule Name<br />

Clothing Sch, !- Clothing Insulation Schedule Name<br />

Air Velo Sch, !- Air Velocity Schedule Name<br />

Fanger; !- Thermal Comfort Model 1 Type<br />

People,<br />

OG2-2 - People, !- Name<br />

OG2-2, !- Zone Name<br />

OCCUPY-1, !- Number <strong>of</strong> People Schedule Name<br />

People, !- Number <strong>of</strong> People Calculation Method<br />

2, !- Number <strong>of</strong> People<br />

, !- People per Zone Floor Area {person/m2}<br />

, !- Zone Floor Area per Person {m2/person}<br />

0.3, !- Fraction Radiant<br />

, !- Sensible Heat Fraction<br />

ActSchd, !- Activity Level Schedule Name<br />

, !- Enable ASHRAE 55 Comfort Warnings<br />

ZoneAveraged, !- Mean Radiant Temperature Calculation Type<br />

, !- Surface Name/Angle Factor List Name<br />

Work Eff Sch, !- Work Efficiency Schedule Name<br />

Clothing Sch, !- Clothing Insulation Schedule Name<br />

Air Velo Sch, !- Air Velocity Schedule Name<br />

Fanger; !- Thermal Comfort Model 1 Type<br />

People,<br />

OG3-2 - People, !- Name<br />

OG3-2, !- Zone Name<br />

OCCUPY-1, !- Number <strong>of</strong> People Schedule Name<br />

People, !- Number <strong>of</strong> People Calculation Method<br />

2, !- Number <strong>of</strong> People<br />

, !- People per Zone Floor Area {person/m2}<br />

, !- Zone Floor Area per Person {m2/person}<br />

0.3, !- Fraction Radiant<br />

, !- Sensible Heat Fraction<br />

ActSchd, !- Activity Level Schedule Name<br />

, !- Enable ASHRAE 55 Comfort Warnings<br />

ZoneAveraged, !- Mean Radiant Temperature Calculation Type<br />

, !- Surface Name/Angle Factor List Name<br />

Work Eff Sch, !- Work Efficiency Schedule Name<br />

Clothing Sch, !- Clothing Insulation Schedule Name<br />

Air Velo Sch, !- Air Velocity Schedule Name<br />

Fanger; !- Thermal Comfort Model 1 Type<br />

People,<br />

OG4-2 - People, !- Name<br />

OG4-2, !- Zone Name<br />

OCCUPY-1, !- Number <strong>of</strong> People Schedule Name<br />

People, !- Number <strong>of</strong> People Calculation Method<br />

2, !- Number <strong>of</strong> People<br />

, !- People per Zone Floor Area {person/m2}<br />

, !- Zone Floor Area per Person {m2/person}<br />

0.3, !- Fraction Radiant<br />

, !- Sensible Heat Fraction<br />

ActSchd, !- Activity Level Schedule Name<br />

, !- Enable ASHRAE 55 Comfort Warnings<br />

ZoneAveraged, !- Mean Radiant Temperature Calculation Type<br />

, !- Surface Name/Angle Factor List Name<br />

Work Eff Sch, !- Work Efficiency Schedule Name<br />

Clothing Sch, !- Clothing Insulation Schedule Name<br />

Air Velo Sch, !- Air Velocity Schedule Name<br />

Fanger; !- Thermal Comfort Model 1 Type<br />

People,<br />

OG1-3 - People, !- Name<br />

OG1-3, !- Zone Name<br />

OCCUPY-1, !- Number <strong>of</strong> People Schedule Name<br />

People, !- Number <strong>of</strong> People Calculation Method<br />

2, !- Number <strong>of</strong> People<br />

, !- People per Zone Floor Area {person/m2}<br />

, !- Zone Floor Area per Person {m2/person}<br />

0.3, !- Fraction Radiant<br />

, !- Sensible Heat Fraction<br />

ActSchd, !- Activity Level Schedule Name<br />

, !- Enable ASHRAE 55 Comfort Warnings<br />

ZoneAveraged, !- Mean Radiant Temperature Calculation Type<br />

, !- Surface Name/Angle Factor List Name<br />

Work Eff Sch, !- Work Efficiency Schedule Name<br />

Clothing Sch, !- Clothing Insulation Schedule Name<br />

Air Velo Sch, !- Air Velocity Schedule Name<br />

Fanger; !- Thermal Comfort Model 1 Type<br />

People,<br />

OG2-3 - People, !- Name<br />

OG2-3, !- Zone Name<br />

OCCUPY-1, !- Number <strong>of</strong> People Schedule Name<br />

People, !- Number <strong>of</strong> People Calculation Method<br />

2, !- Number <strong>of</strong> People<br />

, !- People per Zone Floor Area {person/m2}<br />

, !- Zone Floor Area per Person {m2/person}<br />

0.3, !- Fraction Radiant<br />

, !- Sensible Heat Fraction<br />

ActSchd, !- Activity Level Schedule Name<br />

, !- Enable ASHRAE 55 Comfort Warnings<br />

ZoneAveraged, !- Mean Radiant Temperature Calculation Type<br />

, !- Surface Name/Angle Factor List Name<br />

Work Eff Sch, !- Work Efficiency Schedule Name<br />

Clothing Sch, !- Clothing Insulation Schedule Name<br />

Air Velo Sch, !- Air Velocity Schedule Name<br />

Fanger; !- Thermal Comfort Model 1 Type<br />

People,<br />

OG3-3 - People, !- Name<br />

OG3-3, !- Zone Name<br />

OCCUPY-1, !- Number <strong>of</strong> People Schedule Name<br />

People, !- Number <strong>of</strong> People Calculation Method<br />

2, !- Number <strong>of</strong> People<br />

, !- People per Zone Floor Area {person/m2}<br />

, !- Zone Floor Area per Person {m2/person}<br />

0.3, !- Fraction Radiant<br />

, !- Sensible Heat Fraction<br />

ActSchd, !- Activity Level Schedule Name<br />

, !- Enable ASHRAE 55 Comfort Warnings<br />

ZoneAveraged, !- Mean Radiant Temperature Calculation Type<br />

, !- Surface Name/Angle Factor List Name<br />

Work Eff Sch, !- Work Efficiency Schedule Name<br />

Clothing Sch, !- Clothing Insulation Schedule Name<br />

Air Velo Sch, !- Air Velocity Schedule Name<br />

Fanger; !- Thermal Comfort Model 1 Type<br />

People,<br />

OG4-3 - People, !- Name<br />

OG4-3, !- Zone Name<br />

OCCUPY-1, !- Number <strong>of</strong> People Schedule Name<br />

People, !- Number <strong>of</strong> People Calculation Method<br />

2, !- Number <strong>of</strong> People<br />

, !- People per Zone Floor Area {person/m2}<br />

, !- Zone Floor Area per Person {m2/person}<br />

0.3, !- Fraction Radiant


Appendix 2 135<br />

, !- Sensible Heat Fraction<br />

ActSchd, !- Activity Level Schedule Name<br />

, !- Enable ASHRAE 55 Comfort Warnings<br />

ZoneAveraged, !- Mean Radiant Temperature Calculation Type<br />

, !- Surface Name/Angle Factor List Name<br />

Work Eff Sch, !- Work Efficiency Schedule Name<br />

Clothing Sch, !- Clothing Insulation Schedule Name<br />

Air Velo Sch, !- Air Velocity Schedule Name<br />

Fanger; !- Thermal Comfort Model 1 Type<br />

People,<br />

DG1 - People, !- Name<br />

DG1, !- Zone Name<br />

OCCUPY-1, !- Number <strong>of</strong> People Schedule Name<br />

People, !- Number <strong>of</strong> People Calculation Method<br />

2, !- Number <strong>of</strong> People<br />

, !- People per Zone Floor Area {person/m2}<br />

, !- Zone Floor Area per Person {m2/person}<br />

0.3, !- Fraction Radiant<br />

, !- Sensible Heat Fraction<br />

ActSchd, !- Activity Level Schedule Name<br />

, !- Enable ASHRAE 55 Comfort Warnings<br />

ZoneAveraged, !- Mean Radiant Temperature Calculation Type<br />

, !- Surface Name/Angle Factor List Name<br />

Work Eff Sch, !- Work Efficiency Schedule Name<br />

Clothing Sch, !- Clothing Insulation Schedule Name<br />

Air Velo Sch, !- Air Velocity Schedule Name<br />

Fanger; !- Thermal Comfort Model 1 Type<br />

People,<br />

DG3 - People, !- Name<br />

DG3, !- Zone Name<br />

OCCUPY-1, !- Number <strong>of</strong> People Schedule Name<br />

People, !- Number <strong>of</strong> People Calculation Method<br />

2, !- Number <strong>of</strong> People<br />

, !- People per Zone Floor Area {person/m2}<br />

, !- Zone Floor Area per Person {m2/person}<br />

0.3, !- Fraction Radiant<br />

, !- Sensible Heat Fraction<br />

ActSchd, !- Activity Level Schedule Name<br />

, !- Enable ASHRAE 55 Comfort Warnings<br />

ZoneAveraged, !- Mean Radiant Temperature Calculation Type<br />

, !- Surface Name/Angle Factor List Name<br />

Work Eff Sch, !- Work Efficiency Schedule Name<br />

Clothing Sch, !- Clothing Insulation Schedule Name<br />

Air Velo Sch, !- Air Velocity Schedule Name<br />

Fanger; !- Thermal Comfort Model 1 Type<br />

People,<br />

DG4 - People, !- Name<br />

DG4, !- Zone Name<br />

OCCUPY-1, !- Number <strong>of</strong> People Schedule Name<br />

People, !- Number <strong>of</strong> People Calculation Method<br />

2, !- Number <strong>of</strong> People<br />

, !- People per Zone Floor Area {person/m2}<br />

, !- Zone Floor Area per Person {m2/person}<br />

0.3, !- Fraction Radiant<br />

, !- Sensible Heat Fraction<br />

ActSchd, !- Activity Level Schedule Name<br />

, !- Enable ASHRAE 55 Comfort Warnings<br />

ZoneAveraged, !- Mean Radiant Temperature Calculation Type<br />

, !- Surface Name/Angle Factor List Name<br />

Work Eff Sch, !- Work Efficiency Schedule Name<br />

Clothing Sch, !- Clothing Insulation Schedule Name<br />

Air Velo Sch, !- Air Velocity Schedule Name<br />

Fanger; !- Thermal Comfort Model 1 Type<br />

!- == ALL OBJECTS IN CLASS: LIGHTS ==<br />

Lights,<br />

OG1 Lights 1, !- Name<br />

OG1, !- Zone Name<br />

LIGHTS-1, !- Schedule Name<br />

LightingLevel, !- Design Level Calculation Method<br />

301, !- Lighting Level {W}<br />

, !- Watts per Zone Floor Area {W/m2}<br />

, !- Watts per Person {W/person}<br />

0.2, !- Return Air Fraction<br />

0.59, !- Fraction Radiant<br />

0.2, !- Fraction Visible<br />

0, !- Fraction Replaceable<br />

GeneralLights; !- End-Use Subcategory<br />

Lights,<br />

OG2 Lights 1, !- Name<br />

OG2, !- Zone Name<br />

LIGHTS-1, !- Schedule Name<br />

LightingLevel, !- Design Level Calculation Method<br />

251, !- Lighting Level {W}<br />

, !- Watts per Zone Floor Area {W/m2}<br />

, !- Watts per Person {W/person}<br />

0.2, !- Return Air Fraction<br />

0.59, !- Fraction Radiant<br />

0.2, !- Fraction Visible<br />

0, !- Fraction Replaceable<br />

GeneralLights; !- End-Use Subcategory<br />

Lights,<br />

OG3 Lights 1, !- Name<br />

OG3, !- Zone Name<br />

LIGHTS-1, !- Schedule Name<br />

LightingLevel, !- Design Level Calculation Method<br />

281, !- Lighting Level {W}<br />

, !- Watts per Zone Floor Area {W/m2}<br />

, !- Watts per Person {W/person}<br />

0.2, !- Return Air Fraction<br />

0.59, !- Fraction Radiant<br />

0.2, !- Fraction Visible<br />

0, !- Fraction Replaceable<br />

GeneralLights; !- End-Use Subcategory<br />

Lights,<br />

OG4 Lights 1, !- Name<br />

OG4, !- Zone Name<br />

LIGHTS-1, !- Schedule Name<br />

LightingLevel, !- Design Level Calculation Method<br />

271, !- Lighting Level {W}<br />

, !- Watts per Zone Floor Area {W/m2}<br />

, !- Watts per Person {W/person}<br />

0.2, !- Return Air Fraction<br />

0.59, !- Fraction Radiant<br />

0.2, !- Fraction Visible<br />

0, !- Fraction Replaceable<br />

GeneralLights; !- End-Use Subcategory<br />

Lights,<br />

OG1-2 Lights 1, !- Name<br />

OG1-2, !- Zone Name<br />

LIGHTS-1, !- Schedule Name<br />

LightingLevel, !- Design Level Calculation Method<br />

301, !- Lighting Level {W}<br />

, !- Watts per Zone Floor Area {W/m2}<br />

, !- Watts per Person {W/person}<br />

0.2, !- Return Air Fraction<br />

0.59, !- Fraction Radiant<br />

0.2, !- Fraction Visible<br />

0, !- Fraction Replaceable<br />

GeneralLights; !- End-Use Subcategory<br />

Lights,<br />

OG2-2 Lights 1, !- Name<br />

OG2-2, !- Zone Name<br />

LIGHTS-1, !- Schedule Name<br />

LightingLevel, !- Design Level Calculation Method<br />

251, !- Lighting Level {W}<br />

, !- Watts per Zone Floor Area {W/m2}<br />

, !- Watts per Person {W/person}<br />

0.2, !- Return Air Fraction<br />

0.59, !- Fraction Radiant<br />

0.2, !- Fraction Visible<br />

0, !- Fraction Replaceable<br />

GeneralLights; !- End-Use Subcategory<br />

Lights,<br />

OG3-2 Lights 1, !- Name<br />

OG3-2, !- Zone Name


Appendix 2 136<br />

LIGHTS-1, !- Schedule Name<br />

LightingLevel, !- Design Level Calculation Method<br />

281, !- Lighting Level {W}<br />

, !- Watts per Zone Floor Area {W/m2}<br />

, !- Watts per Person {W/person}<br />

0.2, !- Return Air Fraction<br />

0.59, !- Fraction Radiant<br />

0.2, !- Fraction Visible<br />

0, !- Fraction Replaceable<br />

GeneralLights; !- End-Use Subcategory<br />

Lights,<br />

OG4-2 Lights 1, !- Name<br />

OG4-2, !- Zone Name<br />

LIGHTS-1, !- Schedule Name<br />

LightingLevel, !- Design Level Calculation Method<br />

271, !- Lighting Level {W}<br />

, !- Watts per Zone Floor Area {W/m2}<br />

, !- Watts per Person {W/person}<br />

0.2, !- Return Air Fraction<br />

0.59, !- Fraction Radiant<br />

0.2, !- Fraction Visible<br />

0, !- Fraction Replaceable<br />

GeneralLights; !- End-Use Subcategory<br />

Lights,<br />

OG1-3 Lights 1, !- Name<br />

OG1-3, !- Zone Name<br />

LIGHTS-1, !- Schedule Name<br />

LightingLevel, !- Design Level Calculation Method<br />

301, !- Lighting Level {W}<br />

, !- Watts per Zone Floor Area {W/m2}<br />

, !- Watts per Person {W/person}<br />

0.2, !- Return Air Fraction<br />

0.59, !- Fraction Radiant<br />

0.2, !- Fraction Visible<br />

0, !- Fraction Replaceable<br />

GeneralLights; !- End-Use Subcategory<br />

Lights,<br />

OG2-3 Lights 1, !- Name<br />

OG2-3, !- Zone Name<br />

LIGHTS-1, !- Schedule Name<br />

LightingLevel, !- Design Level Calculation Method<br />

251, !- Lighting Level {W}<br />

, !- Watts per Zone Floor Area {W/m2}<br />

, !- Watts per Person {W/person}<br />

0.2, !- Return Air Fraction<br />

0.59, !- Fraction Radiant<br />

0.2, !- Fraction Visible<br />

0, !- Fraction Replaceable<br />

GeneralLights; !- End-Use Subcategory<br />

Lights,<br />

OG3-3 Lights 1, !- Name<br />

OG3-3, !- Zone Name<br />

LIGHTS-1, !- Schedule Name<br />

LightingLevel, !- Design Level Calculation Method<br />

281, !- Lighting Level {W}<br />

, !- Watts per Zone Floor Area {W/m2}<br />

, !- Watts per Person {W/person}<br />

0.2, !- Return Air Fraction<br />

0.59, !- Fraction Radiant<br />

0.2, !- Fraction Visible<br />

0, !- Fraction Replaceable<br />

GeneralLights; !- End-Use Subcategory<br />

Lights,<br />

OG4-3 Lights 1, !- Name<br />

OG4-3, !- Zone Name<br />

LIGHTS-1, !- Schedule Name<br />

LightingLevel, !- Design Level Calculation Method<br />

271, !- Lighting Level {W}<br />

, !- Watts per Zone Floor Area {W/m2}<br />

, !- Watts per Person {W/person}<br />

0.2, !- Return Air Fraction<br />

0.59, !- Fraction Radiant<br />

0.2, !- Fraction Visible<br />

0, !- Fraction Replaceable<br />

GeneralLights; !- End-Use Subcategory<br />

Lights,<br />

DG1 Lights 1, !- Name<br />

DG1, !- Zone Name<br />

LIGHTS-1, !- Schedule Name<br />

LightingLevel, !- Design Level Calculation Method<br />

301, !- Lighting Level {W}<br />

, !- Watts per Zone Floor Area {W/m2}<br />

, !- Watts per Person {W/person}<br />

0.2, !- Return Air Fraction<br />

0.59, !- Fraction Radiant<br />

0.2, !- Fraction Visible<br />

0, !- Fraction Replaceable<br />

GeneralLights; !- End-Use Subcategory<br />

Lights,<br />

DG3 Lights 1, !- Name<br />

DG3, !- Zone Name<br />

LIGHTS-1, !- Schedule Name<br />

LightingLevel, !- Design Level Calculation Method<br />

251, !- Lighting Level {W}<br />

, !- Watts per Zone Floor Area {W/m2}<br />

, !- Watts per Person {W/person}<br />

0.2, !- Return Air Fraction<br />

0.59, !- Fraction Radiant<br />

0.2, !- Fraction Visible<br />

0, !- Fraction Replaceable<br />

GeneralLights; !- End-Use Subcategory<br />

Lights,<br />

DG4 Lights 1, !- Name<br />

DG4, !- Zone Name<br />

LIGHTS-1, !- Schedule Name<br />

LightingLevel, !- Design Level Calculation Method<br />

281, !- Lighting Level {W}<br />

, !- Watts per Zone Floor Area {W/m2}<br />

, !- Watts per Person {W/person}<br />

0.2, !- Return Air Fraction<br />

0.59, !- Fraction Radiant<br />

0.2, !- Fraction Visible<br />

0, !- Fraction Replaceable<br />

GeneralLights; !- End-Use Subcategory<br />

Lights,<br />

EG1 Lights 1, !- Name<br />

EG1, !- Zone Name<br />

LIGHTS-1, !- Schedule Name<br />

LightingLevel, !- Design Level Calculation Method<br />

301, !- Lighting Level {W}<br />

, !- Watts per Zone Floor Area {W/m2}<br />

, !- Watts per Person {W/person}<br />

0.2, !- Return Air Fraction<br />

0.59, !- Fraction Radiant<br />

0.2, !- Fraction Visible<br />

0, !- Fraction Replaceable<br />

GeneralLights; !- End-Use Subcategory<br />

Lights,<br />

EG2 Lights 1, !- Name<br />

EG2, !- Zone Name<br />

LIGHTS-1, !- Schedule Name<br />

LightingLevel, !- Design Level Calculation Method<br />

251, !- Lighting Level {W}<br />

, !- Watts per Zone Floor Area {W/m2}<br />

, !- Watts per Person {W/person}<br />

0.2, !- Return Air Fraction<br />

0.59, !- Fraction Radiant<br />

0.2, !- Fraction Visible<br />

0, !- Fraction Replaceable<br />

GeneralLights; !- End-Use Subcategory<br />

Lights,<br />

EG3 Lights 1, !- Name<br />

EG3, !- Zone Name<br />

LIGHTS-1, !- Schedule Name<br />

LightingLevel, !- Design Level Calculation Method


Appendix 2 137<br />

281, !- Lighting Level {W}<br />

, !- Watts per Zone Floor Area {W/m2}<br />

, !- Watts per Person {W/person}<br />

0.2, !- Return Air Fraction<br />

0.59, !- Fraction Radiant<br />

0.2, !- Fraction Visible<br />

0, !- Fraction Replaceable<br />

GeneralLights; !- End-Use Subcategory<br />

Lights,<br />

EG4 Lights 1, !- Name<br />

EG4, !- Zone Name<br />

LIGHTS-1, !- Schedule Name<br />

LightingLevel, !- Design Level Calculation Method<br />

271, !- Lighting Level {W}<br />

, !- Watts per Zone Floor Area {W/m2}<br />

, !- Watts per Person {W/person}<br />

0.2, !- Return Air Fraction<br />

0.59, !- Fraction Radiant<br />

0.2, !- Fraction Visible<br />

0, !- Fraction Replaceable<br />

GeneralLights; !- End-Use Subcategory<br />

Lights,<br />

EG6 Lights 1, !- Name<br />

EG6, !- Zone Name<br />

LIGHTS-1, !- Schedule Name<br />

LightingLevel, !- Design Level Calculation Method<br />

151, !- Lighting Level {W}<br />

, !- Watts per Zone Floor Area {W/m2}<br />

, !- Watts per Person {W/person}<br />

0.2, !- Return Air Fraction<br />

0.59, !- Fraction Radiant<br />

0.2, !- Fraction Visible<br />

0, !- Fraction Replaceable<br />

GeneralLights; !- End-Use Subcategory<br />

Lights,<br />

COR Lights 1, !- Name<br />

COR, !- Zone Name<br />

LIGHTS-1, !- Schedule Name<br />

LightingLevel, !- Design Level Calculation Method<br />

301, !- Lighting Level {W}<br />

, !- Watts per Zone Floor Area {W/m2}<br />

, !- Watts per Person {W/person}<br />

0.2, !- Return Air Fraction<br />

0.59, !- Fraction Radiant<br />

0.2, !- Fraction Visible<br />

0, !- Fraction Replaceable<br />

GeneralLights; !- End-Use Subcategory<br />

!- == ALL OBJECTS IN CLASS: ELECTRIC EQUIPMENT ==<br />

ElectricEquipment,<br />

OG1 ElecEq 1, !- Name<br />

OG1, !- Zone Name<br />

EQUIP-1, !- Schedule Name<br />

EquipmentLevel, !- Design Level Calculation Method<br />

350.001, !- Design Level {W}<br />

, !- Watts per Zone Floor Area {W/m2}<br />

, !- Watts per Person {W/person}<br />

0, !- Fraction Latent<br />

0.3000000, !- Fraction Radiant<br />

0; !- Fraction Lost<br />

ElectricEquipment,<br />

OG2 ElecEq 1, !- Name<br />

OG2, !- Zone Name<br />

EQUIP-1, !- Schedule Name<br />

EquipmentLevel, !- Design Level Calculation Method<br />

280.001, !- Design Level {W}<br />

, !- Watts per Zone Floor Area {W/m2}<br />

, !- Watts per Person {W/person}<br />

0, !- Fraction Latent<br />

0.3000000, !- Fraction Radiant<br />

0; !- Fraction Lost<br />

ElectricEquipment,<br />

OG3 ElecEq 1, !- Name<br />

OG3, !- Zone Name<br />

EQUIP-1, !- Schedule Name<br />

EquipmentLevel, !- Design Level Calculation Method<br />

300.001, !- Design Level {W}<br />

, !- Watts per Zone Floor Area {W/m2}<br />

, !- Watts per Person {W/person}<br />

0, !- Fraction Latent<br />

0.3000000, !- Fraction Radiant<br />

0; !- Fraction Lost<br />

ElectricEquipment,<br />

OG4 ElecEq 1, !- Name<br />

OG4, !- Zone Name<br />

EQUIP-1, !- Schedule Name<br />

EquipmentLevel, !- Design Level Calculation Method<br />

300.001, !- Design Level {W}<br />

, !- Watts per Zone Floor Area {W/m2}<br />

, !- Watts per Person {W/person}<br />

0, !- Fraction Latent<br />

0.3000000, !- Fraction Radiant<br />

0; !- Fraction Lost<br />

ElectricEquipment,<br />

EG1 ElecEq 1, !- Name<br />

EG1, !- Zone Name<br />

EQUIP-1, !- Schedule Name<br />

EquipmentLevel, !- Design Level Calculation Method<br />

350.001, !- Design Level {W}<br />

, !- Watts per Zone Floor Area {W/m2}<br />

, !- Watts per Person {W/person}<br />

0, !- Fraction Latent<br />

0.3000000, !- Fraction Radiant<br />

0; !- Fraction Lost<br />

ElectricEquipment,<br />

EG2 ElecEq 1, !- Name<br />

EG2, !- Zone Name<br />

EQUIP-1, !- Schedule Name<br />

EquipmentLevel, !- Design Level Calculation Method<br />

280.001, !- Design Level {W}<br />

, !- Watts per Zone Floor Area {W/m2}<br />

, !- Watts per Person {W/person}<br />

0, !- Fraction Latent<br />

0.3000000, !- Fraction Radiant<br />

0; !- Fraction Lost<br />

ElectricEquipment,<br />

EG3 ElecEq 1, !- Name<br />

EG3, !- Zone Name<br />

EQUIP-1, !- Schedule Name<br />

EquipmentLevel, !- Design Level Calculation Method<br />

300.001, !- Design Level {W}<br />

, !- Watts per Zone Floor Area {W/m2}<br />

, !- Watts per Person {W/person}<br />

0, !- Fraction Latent<br />

0.3000000, !- Fraction Radiant<br />

0; !- Fraction Lost<br />

ElectricEquipment,<br />

EG4 ElecEq 1, !- Name<br />

EG4, !- Zone Name<br />

EQUIP-1, !- Schedule Name<br />

EquipmentLevel, !- Design Level Calculation Method<br />

300.001, !- Design Level {W}<br />

, !- Watts per Zone Floor Area {W/m2}<br />

, !- Watts per Person {W/person}<br />

0, !- Fraction Latent<br />

0.3000000, !- Fraction Radiant<br />

0; !- Fraction Lost<br />

ElectricEquipment,<br />

DG1 ElecEq 1, !- Name<br />

OG1, !- Zone Name<br />

EQUIP-1, !- Schedule Name<br />

EquipmentLevel, !- Design Level Calculation Method<br />

350.001, !- Design Level {W}<br />

, !- Watts per Zone Floor Area {W/m2}


Appendix 2 138<br />

, !- Watts per Person {W/person}<br />

0, !- Fraction Latent<br />

0.3000000, !- Fraction Radiant<br />

0; !- Fraction Lost<br />

ElectricEquipment,<br />

DG3 ElecEq 1, !- Name<br />

DG3, !- Zone Name<br />

EQUIP-1, !- Schedule Name<br />

EquipmentLevel, !- Design Level Calculation Method<br />

300.001, !- Design Level {W}<br />

, !- Watts per Zone Floor Area {W/m2}<br />

, !- Watts per Person {W/person}<br />

0, !- Fraction Latent<br />

0.3000000, !- Fraction Radiant<br />

0; !- Fraction Lost<br />

ElectricEquipment,<br />

DG4 ElecEq 1, !- Name<br />

DG4, !- Zone Name<br />

EQUIP-1, !- Schedule Name<br />

EquipmentLevel, !- Design Level Calculation Method<br />

300.001, !- Design Level {W}<br />

, !- Watts per Zone Floor Area {W/m2}<br />

, !- Watts per Person {W/person}<br />

0, !- Fraction Latent<br />

0.3000000, !- Fraction Radiant<br />

0; !- Fraction Lost<br />

ElectricEquipment,<br />

OG1-2 ElecEq 1, !- Name<br />

OG1-2, !- Zone Name<br />

EQUIP-1, !- Schedule Name<br />

EquipmentLevel, !- Design Level Calculation Method<br />

350.001, !- Design Level {W}<br />

, !- Watts per Zone Floor Area {W/m2}<br />

, !- Watts per Person {W/person}<br />

0, !- Fraction Latent<br />

0.3000000, !- Fraction Radiant<br />

0; !- Fraction Lost<br />

ElectricEquipment,<br />

OG2-2 ElecEq 1, !- Name<br />

OG2-2, !- Zone Name<br />

EQUIP-1, !- Schedule Name<br />

EquipmentLevel, !- Design Level Calculation Method<br />

280.001, !- Design Level {W}<br />

, !- Watts per Zone Floor Area {W/m2}<br />

, !- Watts per Person {W/person}<br />

0, !- Fraction Latent<br />

0.3000000, !- Fraction Radiant<br />

0; !- Fraction Lost<br />

ElectricEquipment,<br />

OG3-2 ElecEq 1, !- Name<br />

OG3-2, !- Zone Name<br />

EQUIP-1, !- Schedule Name<br />

EquipmentLevel, !- Design Level Calculation Method<br />

300.001, !- Design Level {W}<br />

, !- Watts per Zone Floor Area {W/m2}<br />

, !- Watts per Person {W/person}<br />

0, !- Fraction Latent<br />

0.3000000, !- Fraction Radiant<br />

0; !- Fraction Lost<br />

ElectricEquipment,<br />

OG4-2 ElecEq 1, !- Name<br />

OG4-2, !- Zone Name<br />

EQUIP-1, !- Schedule Name<br />

EquipmentLevel, !- Design Level Calculation Method<br />

300.001, !- Design Level {W}<br />

, !- Watts per Zone Floor Area {W/m2}<br />

, !- Watts per Person {W/person}<br />

0, !- Fraction Latent<br />

0.3000000, !- Fraction Radiant<br />

0; !- Fraction Lost<br />

ElectricEquipment,<br />

OG1-3 ElecEq 1, !- Name<br />

OG1-3, !- Zone Name<br />

EQUIP-1, !- Schedule Name<br />

EquipmentLevel, !- Design Level Calculation Method<br />

350.001, !- Design Level {W}<br />

, !- Watts per Zone Floor Area {W/m2}<br />

, !- Watts per Person {W/person}<br />

0, !- Fraction Latent<br />

0.3000000, !- Fraction Radiant<br />

0; !- Fraction Lost<br />

ElectricEquipment,<br />

OG2-3 ElecEq 1, !- Name<br />

OG2-3, !- Zone Name<br />

EQUIP-1, !- Schedule Name<br />

EquipmentLevel, !- Design Level Calculation Method<br />

280.001, !- Design Level {W}<br />

, !- Watts per Zone Floor Area {W/m2}<br />

, !- Watts per Person {W/person}<br />

0, !- Fraction Latent<br />

0.3000000, !- Fraction Radiant<br />

0; !- Fraction Lost<br />

ElectricEquipment,<br />

OG3-3 ElecEq 1, !- Name<br />

OG3-3, !- Zone Name<br />

EQUIP-1, !- Schedule Name<br />

EquipmentLevel, !- Design Level Calculation Method<br />

300.001, !- Design Level {W}<br />

, !- Watts per Zone Floor Area {W/m2}<br />

, !- Watts per Person {W/person}<br />

0, !- Fraction Latent<br />

0.3000000, !- Fraction Radiant<br />

0; !- Fraction Lost<br />

ElectricEquipment,<br />

OG4-3 ElecEq 1, !- Name<br />

OG4-3, !- Zone Name<br />

EQUIP-1, !- Schedule Name<br />

EquipmentLevel, !- Design Level Calculation Method<br />

300.001, !- Design Level {W}<br />

, !- Watts per Zone Floor Area {W/m2}<br />

, !- Watts per Person {W/person}<br />

0, !- Fraction Latent<br />

0.3000000, !- Fraction Radiant<br />

0; !- Fraction Lost<br />

!- == ALL OBJECTS IN CLASS: INFILTRATION ==<br />

ZoneInfiltration,<br />

COR InfilTRATION, !- Name<br />

COR, !- Zone Name<br />

INFIL-SCH, !- Schedule Name<br />

Flow/Zone, !- Design Flow Rate Calculation Method<br />

0.015, !- Design Flow Rate {m3/s}<br />

, !- Flow per Zone Floor Area {m3/s-m2}<br />

, !- Flow per Exterior Surface Area {m3/s-m2}<br />

, !- Air Changes per Hour<br />

0, !- Constant Term Coefficient<br />

0, !- Temperature Term Coefficient<br />

0.2237, !- Velocity Term Coefficient<br />

0; !- Velocity Squared Term Coefficient<br />

ZoneInfiltration,<br />

OG1 InfilTRATION, !- Name<br />

OG1, !- Zone Name<br />

INFIL-SCH, !- Schedule Name<br />

Flow/Zone, !- Design Flow Rate Calculation Method<br />

0.0045, !- Design Flow Rate {m3/s}<br />

, !- Flow per Zone Floor Area {m3/s-m2}<br />

, !- Flow per Exterior Surface Area {m3/s-m2}<br />

, !- Air Changes per Hour<br />

0, !- Constant Term Coefficient<br />

0, !- Temperature Term Coefficient<br />

0.2237, !- Velocity Term Coefficient<br />

0; !- Velocity Squared Term Coefficient<br />

ZoneInfiltration,


Appendix 2 139<br />

OG2 InfilTRATION, !- Name<br />

OG2, !- Zone Name<br />

INFIL-SCH, !- Schedule Name<br />

Flow/Zone, !- Design Flow Rate Calculation Method<br />

0.0027, !- Design Flow Rate {m3/s}<br />

, !- Flow per Zone Floor Area {m3/s-m2}<br />

, !- Flow per Exterior Surface Area {m3/s-m2}<br />

, !- Air Changes per Hour<br />

0, !- Constant Term Coefficient<br />

0, !- Temperature Term Coefficient<br />

0.2237, !- Velocity Term Coefficient<br />

0; !- Velocity Squared Term Coefficient<br />

ZoneInfiltration,<br />

OG3 InfilTRATION, !- Name<br />

OG3, !- Zone Name<br />

INFIL-SCH, !- Schedule Name<br />

Flow/Zone, !- Design Flow Rate Calculation Method<br />

0.0038, !- Design Flow Rate {m3/s}<br />

, !- Flow per Zone Floor Area {m3/s-m2}<br />

, !- Flow per Exterior Surface Area {m3/s-m2}<br />

, !- Air Changes per Hour<br />

0, !- Constant Term Coefficient<br />

0, !- Temperature Term Coefficient<br />

0.2237, !- Velocity Term Coefficient<br />

0; !- Velocity Squared Term Coefficient<br />

ZoneInfiltration,<br />

OG4 InfilTRATION, !- Name<br />

OG4, !- Zone Name<br />

INFIL-SCH, !- Schedule Name<br />

Flow/Zone, !- Design Flow Rate Calculation Method<br />

0.0036, !- Design Flow Rate {m3/s}<br />

, !- Flow per Zone Floor Area {m3/s-m2}<br />

, !- Flow per Exterior Surface Area {m3/s-m2}<br />

, !- Air Changes per Hour<br />

0, !- Constant Term Coefficient<br />

0, !- Temperature Term Coefficient<br />

0.2237, !- Velocity Term Coefficient<br />

0; !- Velocity Squared Term Coefficient<br />

ZoneInfiltration,<br />

OG1-2 InfilTRATION, !- Name<br />

OG1-2, !- Zone Name<br />

INFIL-SCH, !- Schedule Name<br />

Flow/Zone, !- Design Flow Rate Calculation Method<br />

0.0045, !- Design Flow Rate {m3/s}<br />

, !- Flow per Zone Floor Area {m3/s-m2}<br />

, !- Flow per Exterior Surface Area {m3/s-m2}<br />

, !- Air Changes per Hour<br />

0, !- Constant Term Coefficient<br />

0, !- Temperature Term Coefficient<br />

0.2237, !- Velocity Term Coefficient<br />

0; !- Velocity Squared Term Coefficient<br />

ZoneInfiltration,<br />

OG2-2 InfilTRATION, !- Name<br />

OG2-2, !- Zone Name<br />

INFIL-SCH, !- Schedule Name<br />

Flow/Zone, !- Design Flow Rate Calculation Method<br />

0.0027, !- Design Flow Rate {m3/s}<br />

, !- Flow per Zone Floor Area {m3/s-m2}<br />

, !- Flow per Exterior Surface Area {m3/s-m2}<br />

, !- Air Changes per Hour<br />

0, !- Constant Term Coefficient<br />

0, !- Temperature Term Coefficient<br />

0.2237, !- Velocity Term Coefficient<br />

0; !- Velocity Squared Term Coefficient<br />

ZoneInfiltration,<br />

OG3-2 InfilTRATION, !- Name<br />

OG3-2, !- Zone Name<br />

INFIL-SCH, !- Schedule Name<br />

Flow/Zone, !- Design Flow Rate Calculation Method<br />

0.0038, !- Design Flow Rate {m3/s}<br />

, !- Flow per Zone Floor Area {m3/s-m2}<br />

, !- Flow per Exterior Surface Area {m3/s-m2}<br />

, !- Air Changes per Hour<br />

0, !- Constant Term Coefficient<br />

0, !- Temperature Term Coefficient<br />

0.2237, !- Velocity Term Coefficient<br />

0; !- Velocity Squared Term Coefficient<br />

ZoneInfiltration,<br />

OG4-2 InfilTRATION, !- Name<br />

OG4-2, !- Zone Name<br />

INFIL-SCH, !- Schedule Name<br />

Flow/Zone, !- Design Flow Rate Calculation Method<br />

0.0036, !- Design Flow Rate {m3/s}<br />

, !- Flow per Zone Floor Area {m3/s-m2}<br />

, !- Flow per Exterior Surface Area {m3/s-m2}<br />

, !- Air Changes per Hour<br />

0, !- Constant Term Coefficient<br />

0, !- Temperature Term Coefficient<br />

0.2237, !- Velocity Term Coefficient<br />

0; !- Velocity Squared Term Coefficient<br />

ZoneInfiltration,<br />

OG1-3 InfilTRATION, !- Name<br />

OG1-3, !- Zone Name<br />

INFIL-SCH, !- Schedule Name<br />

Flow/Zone, !- Design Flow Rate Calculation Method<br />

0.0045, !- Design Flow Rate {m3/s}<br />

, !- Flow per Zone Floor Area {m3/s-m2}<br />

, !- Flow per Exterior Surface Area {m3/s-m2}<br />

, !- Air Changes per Hour<br />

0, !- Constant Term Coefficient<br />

0, !- Temperature Term Coefficient<br />

0.2237, !- Velocity Term Coefficient<br />

0; !- Velocity Squared Term Coefficient<br />

ZoneInfiltration,<br />

OG2-3 InfilTRATION, !- Name<br />

OG2-3, !- Zone Name<br />

INFIL-SCH, !- Schedule Name<br />

Flow/Zone, !- Design Flow Rate Calculation Method<br />

0.0027, !- Design Flow Rate {m3/s}<br />

, !- Flow per Zone Floor Area {m3/s-m2}<br />

, !- Flow per Exterior Surface Area {m3/s-m2}<br />

, !- Air Changes per Hour<br />

0, !- Constant Term Coefficient<br />

0, !- Temperature Term Coefficient<br />

0.2237, !- Velocity Term Coefficient<br />

0; !- Velocity Squared Term Coefficient<br />

ZoneInfiltration,<br />

OG3-3 InfilTRATION, !- Name<br />

OG3-3, !- Zone Name<br />

INFIL-SCH, !- Schedule Name<br />

Flow/Zone, !- Design Flow Rate Calculation Method<br />

0.0038, !- Design Flow Rate {m3/s}<br />

, !- Flow per Zone Floor Area {m3/s-m2}<br />

, !- Flow per Exterior Surface Area {m3/s-m2}<br />

, !- Air Changes per Hour<br />

0, !- Constant Term Coefficient<br />

0, !- Temperature Term Coefficient<br />

0.2237, !- Velocity Term Coefficient<br />

0; !- Velocity Squared Term Coefficient<br />

ZoneInfiltration,<br />

OG4-3 InfilTRATION, !- Name<br />

OG4-3, !- Zone Name<br />

INFIL-SCH, !- Schedule Name<br />

Flow/Zone, !- Design Flow Rate Calculation Method<br />

0.0036, !- Design Flow Rate {m3/s}<br />

, !- Flow per Zone Floor Area {m3/s-m2}<br />

, !- Flow per Exterior Surface Area {m3/s-m2}<br />

, !- Air Changes per Hour<br />

0, !- Constant Term Coefficient<br />

0, !- Temperature Term Coefficient<br />

0.2237, !- Velocity Term Coefficient<br />

0; !- Velocity Squared Term Coefficient<br />

ZoneInfiltration,<br />

EG1 InfilTRATION, !- Name<br />

EG1, !- Zone Name


Appendix 2 140<br />

INFIL-SCH, !- Schedule Name<br />

Flow/Zone, !- Design Flow Rate Calculation Method<br />

0.0045, !- Design Flow Rate {m3/s}<br />

, !- Flow per Zone Floor Area {m3/s-m2}<br />

, !- Flow per Exterior Surface Area {m3/s-m2}<br />

, !- Air Changes per Hour<br />

0, !- Constant Term Coefficient<br />

0, !- Temperature Term Coefficient<br />

0.2237, !- Velocity Term Coefficient<br />

0; !- Velocity Squared Term Coefficient<br />

ZoneInfiltration,<br />

EG2 InfilTRATION, !- Name<br />

EG2, !- Zone Name<br />

INFIL-SCH, !- Schedule Name<br />

Flow/Zone, !- Design Flow Rate Calculation Method<br />

0.0027, !- Design Flow Rate {m3/s}<br />

, !- Flow per Zone Floor Area {m3/s-m2}<br />

, !- Flow per Exterior Surface Area {m3/s-m2}<br />

, !- Air Changes per Hour<br />

0, !- Constant Term Coefficient<br />

0, !- Temperature Term Coefficient<br />

0.2237, !- Velocity Term Coefficient<br />

0; !- Velocity Squared Term Coefficient<br />

ZoneInfiltration,<br />

EG3 InfilTRATION, !- Name<br />

EG3, !- Zone Name<br />

INFIL-SCH, !- Schedule Name<br />

Flow/Zone, !- Design Flow Rate Calculation Method<br />

0.0038, !- Design Flow Rate {m3/s}<br />

, !- Flow per Zone Floor Area {m3/s-m2}<br />

, !- Flow per Exterior Surface Area {m3/s-m2}<br />

, !- Air Changes per Hour<br />

0, !- Constant Term Coefficient<br />

0, !- Temperature Term Coefficient<br />

0.2237, !- Velocity Term Coefficient<br />

0; !- Velocity Squared Term Coefficient<br />

ZoneInfiltration,<br />

EG4 InfilTRATION, !- Name<br />

EG4, !- Zone Name<br />

INFIL-SCH, !- Schedule Name<br />

Flow/Zone, !- Design Flow Rate Calculation Method<br />

0.0036, !- Design Flow Rate {m3/s}<br />

, !- Flow per Zone Floor Area {m3/s-m2}<br />

, !- Flow per Exterior Surface Area {m3/s-m2}<br />

, !- Air Changes per Hour<br />

0, !- Constant Term Coefficient<br />

0, !- Temperature Term Coefficient<br />

0.2237, !- Velocity Term Coefficient<br />

0; !- Velocity Squared Term Coefficient<br />

ZoneInfiltration,<br />

DG1 InfilTRATION, !- Name<br />

DG1, !- Zone Name<br />

INFIL-SCH, !- Schedule Name<br />

Flow/Zone, !- Design Flow Rate Calculation Method<br />

0.0045, !- Design Flow Rate {m3/s}<br />

, !- Flow per Zone Floor Area {m3/s-m2}<br />

, !- Flow per Exterior Surface Area {m3/s-m2}<br />

, !- Air Changes per Hour<br />

0, !- Constant Term Coefficient<br />

0, !- Temperature Term Coefficient<br />

0.2237, !- Velocity Term Coefficient<br />

0; !- Velocity Squared Term Coefficient<br />

ZoneInfiltration,<br />

EG6 InfilTRATION, !- Name<br />

EG6, !- Zone Name<br />

INFIL-SCH, !- Schedule Name<br />

Flow/Zone, !- Design Flow Rate Calculation Method<br />

0.0027, !- Design Flow Rate {m3/s}<br />

, !- Flow per Zone Floor Area {m3/s-m2}<br />

, !- Flow per Exterior Surface Area {m3/s-m2}<br />

, !- Air Changes per Hour<br />

0, !- Constant Term Coefficient<br />

0, !- Temperature Term Coefficient<br />

0.2237, !- Velocity Term Coefficient<br />

0; !- Velocity Squared Term Coefficient<br />

ZoneInfiltration,<br />

DG3 InfilTRATION, !- Name<br />

DG3, !- Zone Name<br />

INFIL-SCH, !- Schedule Name<br />

Flow/Zone, !- Design Flow Rate Calculation Method<br />

0.0038, !- Design Flow Rate {m3/s}<br />

, !- Flow per Zone Floor Area {m3/s-m2}<br />

, !- Flow per Exterior Surface Area {m3/s-m2}<br />

, !- Air Changes per Hour<br />

0, !- Constant Term Coefficient<br />

0, !- Temperature Term Coefficient<br />

0.2237, !- Velocity Term Coefficient<br />

0; !- Velocity Squared Term Coefficient<br />

ZoneInfiltration,<br />

DG4 InfilTRATION, !- Name<br />

DG4, !- Zone Name<br />

INFIL-SCH, !- Schedule Name<br />

Flow/Zone, !- Design Flow Rate Calculation Method<br />

0.0036, !- Design Flow Rate {m3/s}<br />

, !- Flow per Zone Floor Area {m3/s-m2}<br />

, !- Flow per Exterior Surface Area {m3/s-m2}<br />

, !- Air Changes per Hour<br />

0, !- Constant Term Coefficient<br />

0, !- Temperature Term Coefficient<br />

0.2237, !- Velocity Term Coefficient<br />

0; !- Velocity Squared Term Coefficient<br />

!- == ALL OBJECTS IN CLASS: ZONE SIZING ==<br />

Sizing:Zone,<br />

OG1, !- Zone Name<br />

16, !- Zone Cooling Design Supply Air Temperature {C}<br />

50., !- Zone Heating Design Supply Air Temperature {C}<br />

0.009, !- Zone Cooling Design Supply Air Humidity Ratio {kg-H2O/kg-air}<br />

0.004, !- Zone Heating Design Supply Air Humidity Ratio {kg-H2O/kg-air}<br />

Flow/Person, !- Outdoor Air Method<br />

0.008333333, !- Outdoor Air Flow per Person {m3/s}<br />

0.0, !- Outdoor Air Flow per Zone Floor Area {m3/s-m2}<br />

0.0, !- Outdoor Air Flow per Zone {m3/s}<br />

0.0, !- Zone Sizing Factor<br />

DesignDayWithLimit, !- Cooling Design Air Flow Method<br />

, !- Cooling Design Air Flow Rate {m3/s}<br />

, !- Cooling Minimum Air Flow per Zone Floor Area {m3/s-m2}<br />

, !- Cooling Minimum Air Flow {m3/s}<br />

, !- Cooling Minimum Air Flow Fraction<br />

DesignDay, !- Heating Design Air Flow Method<br />

, !- Heating Design Air Flow Rate {m3/s}<br />

, !- Heating Maximum Air Flow per Zone Floor Area {m3/s-m2}<br />

, !- Heating Maximum Air Flow {m3/s}<br />

; !- Heating Maximum Air Flow Fraction<br />

Sizing:Zone,<br />

OG2, !- Zone Name<br />

16, !- Zone Cooling Design Supply Air Temperature {C}<br />

50., !- Zone Heating Design Supply Air Temperature {C}<br />

0.009, !- Zone Cooling Design Supply Air Humidity Ratio {kg-H2O/kg-air}<br />

0.004, !- Zone Heating Design Supply Air Humidity Ratio {kg-H2O/kg-air}<br />

Flow/Person, !- Outdoor Air Method<br />

0.008333333, !- Outdoor Air Flow per Person {m3/s}<br />

0.0, !- Outdoor Air Flow per Zone Floor Area {m3/s-m2}<br />

0.0, !- Outdoor Air Flow per Zone {m3/s}<br />

0.0, !- Zone Sizing Factor<br />

DesignDayWithLimit, !- Cooling Design Air Flow Method<br />

, !- Cooling Design Air Flow Rate {m3/s}<br />

, !- Cooling Minimum Air Flow per Zone Floor Area {m3/s-m2}<br />

, !- Cooling Minimum Air Flow {m3/s}<br />

, !- Cooling Minimum Air Flow Fraction<br />

DesignDay, !- Heating Design Air Flow Method<br />

, !- Heating Design Air Flow Rate {m3/s}<br />

, !- Heating Maximum Air Flow per Zone Floor Area {m3/s-m2}<br />

, !- Heating Maximum Air Flow {m3/s}<br />

; !- Heating Maximum Air Flow Fraction<br />

Sizing:Zone,


Appendix 2 141<br />

OG3, !- Zone Name<br />

16, !- Zone Cooling Design Supply Air Temperature {C}<br />

50., !- Zone Heating Design Supply Air Temperature {C}<br />

0.009, !- Zone Cooling Design Supply Air Humidity Ratio {kg-H2O/kg-air}<br />

0.004, !- Zone Heating Design Supply Air Humidity Ratio {kg-H2O/kg-air}<br />

Flow/Person, !- Outdoor Air Method<br />

0.008333333, !- Outdoor Air Flow per Person {m3/s}<br />

0.0, !- Outdoor Air Flow per Zone Floor Area {m3/s-m2}<br />

0.0, !- Outdoor Air Flow per Zone {m3/s}<br />

0.0, !- Zone Sizing Factor<br />

DesignDayWithLimit, !- Cooling Design Air Flow Method<br />

, !- Cooling Design Air Flow Rate {m3/s}<br />

, !- Cooling Minimum Air Flow per Zone Floor Area {m3/s-m2}<br />

, !- Cooling Minimum Air Flow {m3/s}<br />

, !- Cooling Minimum Air Flow Fraction<br />

DesignDay, !- Heating Design Air Flow Method<br />

, !- Heating Design Air Flow Rate {m3/s}<br />

, !- Heating Maximum Air Flow per Zone Floor Area {m3/s-m2}<br />

, !- Heating Maximum Air Flow {m3/s}<br />

; !- Heating Maximum Air Flow Fraction<br />

Sizing:Zone,<br />

OG4, !- Zone Name<br />

16, !- Zone Cooling Design Supply Air Temperature {C}<br />

50., !- Zone Heating Design Supply Air Temperature {C}<br />

0.009, !- Zone Cooling Design Supply Air Humidity Ratio {kg-H2O/kg-air}<br />

0.004, !- Zone Heating Design Supply Air Humidity Ratio {kg-H2O/kg-air}<br />

Flow/Person, !- Outdoor Air Method<br />

0.008333333, !- Outdoor Air Flow per Person {m3/s}<br />

0.0, !- Outdoor Air Flow per Zone Floor Area {m3/s-m2}<br />

0.0, !- Outdoor Air Flow per Zone {m3/s}<br />

0.0, !- Zone Sizing Factor<br />

DesignDayWithLimit, !- Cooling Design Air Flow Method<br />

, !- Cooling Design Air Flow Rate {m3/s}<br />

, !- Cooling Minimum Air Flow per Zone Floor Area {m3/s-m2}<br />

, !- Cooling Minimum Air Flow {m3/s}<br />

, !- Cooling Minimum Air Flow Fraction<br />

DesignDay, !- Heating Design Air Flow Method<br />

, !- Heating Design Air Flow Rate {m3/s}<br />

, !- Heating Maximum Air Flow per Zone Floor Area {m3/s-m2}<br />

, !- Heating Maximum Air Flow {m3/s}<br />

; !- Heating Maximum Air Flow Fraction<br />

Sizing:Zone,<br />

EG1, !- Zone Name<br />

16, !- Zone Cooling Design Supply Air Temperature {C}<br />

50., !- Zone Heating Design Supply Air Temperature {C}<br />

0.009, !- Zone Cooling Design Supply Air Humidity Ratio {kg-H2O/kg-air}<br />

0.004, !- Zone Heating Design Supply Air Humidity Ratio {kg-H2O/kg-air}<br />

Flow/Person, !- Outdoor Air Method<br />

0.008333333, !- Outdoor Air Flow per Person {m3/s}<br />

0.0, !- Outdoor Air Flow per Zone Floor Area {m3/s-m2}<br />

0.0, !- Outdoor Air Flow per Zone {m3/s}<br />

0.0, !- Zone Sizing Factor<br />

DesignDayWithLimit, !- Cooling Design Air Flow Method<br />

, !- Cooling Design Air Flow Rate {m3/s}<br />

, !- Cooling Minimum Air Flow per Zone Floor Area {m3/s-m2}<br />

, !- Cooling Minimum Air Flow {m3/s}<br />

, !- Cooling Minimum Air Flow Fraction<br />

DesignDay, !- Heating Design Air Flow Method<br />

, !- Heating Design Air Flow Rate {m3/s}<br />

, !- Heating Maximum Air Flow per Zone Floor Area {m3/s-m2}<br />

, !- Heating Maximum Air Flow {m3/s}<br />

; !- Heating Maximum Air Flow Fraction<br />

Sizing:Zone,<br />

EG2, !- Zone Name<br />

16, !- Zone Cooling Design Supply Air Temperature {C}<br />

50., !- Zone Heating Design Supply Air Temperature {C}<br />

0.009, !- Zone Cooling Design Supply Air Humidity Ratio {kg-H2O/kg-air}<br />

0.004, !- Zone Heating Design Supply Air Humidity Ratio {kg-H2O/kg-air}<br />

Flow/Person, !- Outdoor Air Method<br />

0.008333333, !- Outdoor Air Flow per Person {m3/s}<br />

0.0, !- Outdoor Air Flow per Zone Floor Area {m3/s-m2}<br />

0.0, !- Outdoor Air Flow per Zone {m3/s}<br />

0.0, !- Zone Sizing Factor<br />

DesignDayWithLimit, !- Cooling Design Air Flow Method<br />

, !- Cooling Design Air Flow Rate {m3/s}<br />

, !- Cooling Minimum Air Flow per Zone Floor Area {m3/s-m2}<br />

, !- Cooling Minimum Air Flow {m3/s}<br />

, !- Cooling Minimum Air Flow Fraction<br />

DesignDay, !- Heating Design Air Flow Method<br />

, !- Heating Design Air Flow Rate {m3/s}<br />

, !- Heating Maximum Air Flow per Zone Floor Area {m3/s-m2}<br />

, !- Heating Maximum Air Flow {m3/s}<br />

; !- Heating Maximum Air Flow Fraction<br />

Sizing:Zone,<br />

EG3, !- Zone Name<br />

16, !- Zone Cooling Design Supply Air Temperature {C}<br />

50., !- Zone Heating Design Supply Air Temperature {C}<br />

0.009, !- Zone Cooling Design Supply Air Humidity Ratio {kg-H2O/kg-air}<br />

0.004, !- Zone Heating Design Supply Air Humidity Ratio {kg-H2O/kg-air}<br />

Flow/Person, !- Outdoor Air Method<br />

0.008333333, !- Outdoor Air Flow per Person {m3/s}<br />

0.0, !- Outdoor Air Flow per Zone Floor Area {m3/s-m2}<br />

0.0, !- Outdoor Air Flow per Zone {m3/s}<br />

0.0, !- Zone Sizing Factor<br />

DesignDayWithLimit, !- Cooling Design Air Flow Method<br />

, !- Cooling Design Air Flow Rate {m3/s}<br />

, !- Cooling Minimum Air Flow per Zone Floor Area {m3/s-m2}<br />

, !- Cooling Minimum Air Flow {m3/s}<br />

, !- Cooling Minimum Air Flow Fraction<br />

DesignDay, !- Heating Design Air Flow Method<br />

, !- Heating Design Air Flow Rate {m3/s}<br />

, !- Heating Maximum Air Flow per Zone Floor Area {m3/s-m2}<br />

, !- Heating Maximum Air Flow {m3/s}<br />

; !- Heating Maximum Air Flow Fraction<br />

Sizing:Zone,<br />

EG4, !- Zone Name<br />

16, !- Zone Cooling Design Supply Air Temperature {C}<br />

50., !- Zone Heating Design Supply Air Temperature {C}<br />

0.009, !- Zone Cooling Design Supply Air Humidity Ratio {kg-H2O/kg-air}<br />

0.004, !- Zone Heating Design Supply Air Humidity Ratio {kg-H2O/kg-air}<br />

Flow/Person, !- Outdoor Air Method<br />

0.008333333, !- Outdoor Air Flow per Person {m3/s}<br />

0.0, !- Outdoor Air Flow per Zone Floor Area {m3/s-m2}<br />

0.0, !- Outdoor Air Flow per Zone {m3/s}<br />

0.0, !- Zone Sizing Factor<br />

DesignDayWithLimit, !- Cooling Design Air Flow Method<br />

, !- Cooling Design Air Flow Rate {m3/s}<br />

, !- Cooling Minimum Air Flow per Zone Floor Area {m3/s-m2}<br />

, !- Cooling Minimum Air Flow {m3/s}<br />

, !- Cooling Minimum Air Flow Fraction<br />

DesignDay, !- Heating Design Air Flow Method<br />

, !- Heating Design Air Flow Rate {m3/s}<br />

, !- Heating Maximum Air Flow per Zone Floor Area {m3/s-m2}<br />

, !- Heating Maximum Air Flow {m3/s}<br />

; !- Heating Maximum Air Flow Fraction<br />

Sizing:Zone,<br />

DG1, !- Zone Name<br />

16, !- Zone Cooling Design Supply Air Temperature {C}<br />

50., !- Zone Heating Design Supply Air Temperature {C}<br />

0.009, !- Zone Cooling Design Supply Air Humidity Ratio {kg-H2O/kg-air}<br />

0.004, !- Zone Heating Design Supply Air Humidity Ratio {kg-H2O/kg-air}<br />

Flow/Person, !- Outdoor Air Method<br />

0.008333333, !- Outdoor Air Flow per Person {m3/s}<br />

0.0, !- Outdoor Air Flow per Zone Floor Area {m3/s-m2}<br />

0.0, !- Outdoor Air Flow per Zone {m3/s}<br />

0.0, !- Zone Sizing Factor<br />

DesignDayWithLimit, !- Cooling Design Air Flow Method<br />

, !- Cooling Design Air Flow Rate {m3/s}<br />

, !- Cooling Minimum Air Flow per Zone Floor Area {m3/s-m2}<br />

, !- Cooling Minimum Air Flow {m3/s}<br />

, !- Cooling Minimum Air Flow Fraction<br />

DesignDay, !- Heating Design Air Flow Method<br />

, !- Heating Design Air Flow Rate {m3/s}<br />

, !- Heating Maximum Air Flow per Zone Floor Area {m3/s-m2}<br />

, !- Heating Maximum Air Flow {m3/s}<br />

; !- Heating Maximum Air Flow Fraction<br />

Sizing:Zone,<br />

DG3, !- Zone Name<br />

16, !- Zone Cooling Design Supply Air Temperature {C}


Appendix 2 142<br />

50., !- Zone Heating Design Supply Air Temperature {C}<br />

0.009, !- Zone Cooling Design Supply Air Humidity Ratio {kg-H2O/kg-air}<br />

0.004, !- Zone Heating Design Supply Air Humidity Ratio {kg-H2O/kg-air}<br />

Flow/Person, !- Outdoor Air Method<br />

0.008333333, !- Outdoor Air Flow per Person {m3/s}<br />

0.0, !- Outdoor Air Flow per Zone Floor Area {m3/s-m2}<br />

0.0, !- Outdoor Air Flow per Zone {m3/s}<br />

0.0, !- Zone Sizing Factor<br />

DesignDayWithLimit, !- Cooling Design Air Flow Method<br />

, !- Cooling Design Air Flow Rate {m3/s}<br />

, !- Cooling Minimum Air Flow per Zone Floor Area {m3/s-m2}<br />

, !- Cooling Minimum Air Flow {m3/s}<br />

, !- Cooling Minimum Air Flow Fraction<br />

DesignDay, !- Heating Design Air Flow Method<br />

, !- Heating Design Air Flow Rate {m3/s}<br />

, !- Heating Maximum Air Flow per Zone Floor Area {m3/s-m2}<br />

, !- Heating Maximum Air Flow {m3/s}<br />

; !- Heating Maximum Air Flow Fraction<br />

Sizing:Zone,<br />

DG4, !- Zone Name<br />

16, !- Zone Cooling Design Supply Air Temperature {C}<br />

50., !- Zone Heating Design Supply Air Temperature {C}<br />

0.009, !- Zone Cooling Design Supply Air Humidity Ratio {kg-H2O/kg-air}<br />

0.004, !- Zone Heating Design Supply Air Humidity Ratio {kg-H2O/kg-air}<br />

Flow/Person, !- Outdoor Air Method<br />

0.008333333, !- Outdoor Air Flow per Person {m3/s}<br />

0.0, !- Outdoor Air Flow per Zone Floor Area {m3/s-m2}<br />

0.0, !- Outdoor Air Flow per Zone {m3/s}<br />

0.0, !- Zone Sizing Factor<br />

DesignDayWithLimit, !- Cooling Design Air Flow Method<br />

, !- Cooling Design Air Flow Rate {m3/s}<br />

, !- Cooling Minimum Air Flow per Zone Floor Area {m3/s-m2}<br />

, !- Cooling Minimum Air Flow {m3/s}<br />

, !- Cooling Minimum Air Flow Fraction<br />

DesignDay, !- Heating Design Air Flow Method<br />

, !- Heating Design Air Flow Rate {m3/s}<br />

, !- Heating Maximum Air Flow per Zone Floor Area {m3/s-m2}<br />

, !- Heating Maximum Air Flow {m3/s}<br />

; !- Heating Maximum Air Flow Fraction<br />

Sizing:Zone,<br />

OG1-2, !- Zone Name<br />

16, !- Zone Cooling Design Supply Air Temperature {C}<br />

50., !- Zone Heating Design Supply Air Temperature {C}<br />

0.009, !- Zone Cooling Design Supply Air Humidity Ratio {kg-H2O/kg-air}<br />

0.004, !- Zone Heating Design Supply Air Humidity Ratio {kg-H2O/kg-air}<br />

Flow/Person, !- Outdoor Air Method<br />

0.008333333, !- Outdoor Air Flow per Person {m3/s}<br />

0.0, !- Outdoor Air Flow per Zone Floor Area {m3/s-m2}<br />

0.0, !- Outdoor Air Flow per Zone {m3/s}<br />

0.0, !- Zone Sizing Factor<br />

DesignDayWithLimit, !- Cooling Design Air Flow Method<br />

, !- Cooling Design Air Flow Rate {m3/s}<br />

, !- Cooling Minimum Air Flow per Zone Floor Area {m3/s-m2}<br />

, !- Cooling Minimum Air Flow {m3/s}<br />

, !- Cooling Minimum Air Flow Fraction<br />

DesignDay, !- Heating Design Air Flow Method<br />

, !- Heating Design Air Flow Rate {m3/s}<br />

, !- Heating Maximum Air Flow per Zone Floor Area {m3/s-m2}<br />

, !- Heating Maximum Air Flow {m3/s}<br />

; !- Heating Maximum Air Flow Fraction<br />

Sizing:Zone,<br />

OG2-2, !- Zone Name<br />

16, !- Zone Cooling Design Supply Air Temperature {C}<br />

50., !- Zone Heating Design Supply Air Temperature {C}<br />

0.009, !- Zone Cooling Design Supply Air Humidity Ratio {kg-H2O/kg-air}<br />

0.004, !- Zone Heating Design Supply Air Humidity Ratio {kg-H2O/kg-air}<br />

Flow/Person, !- Outdoor Air Method<br />

0.008333333, !- Outdoor Air Flow per Person {m3/s}<br />

0.0, !- Outdoor Air Flow per Zone Floor Area {m3/s-m2}<br />

0.0, !- Outdoor Air Flow per Zone {m3/s}<br />

0.0, !- Zone Sizing Factor<br />

DesignDayWithLimit, !- Cooling Design Air Flow Method<br />

, !- Cooling Design Air Flow Rate {m3/s}<br />

, !- Cooling Minimum Air Flow per Zone Floor Area {m3/s-m2}<br />

, !- Cooling Minimum Air Flow {m3/s}<br />

, !- Cooling Minimum Air Flow Fraction<br />

DesignDay, !- Heating Design Air Flow Method<br />

, !- Heating Design Air Flow Rate {m3/s}<br />

, !- Heating Maximum Air Flow per Zone Floor Area {m3/s-m2}<br />

, !- Heating Maximum Air Flow {m3/s}<br />

; !- Heating Maximum Air Flow Fraction<br />

Sizing:Zone,<br />

OG3-2, !- Zone Name<br />

16, !- Zone Cooling Design Supply Air Temperature {C}<br />

50., !- Zone Heating Design Supply Air Temperature {C}<br />

0.009, !- Zone Cooling Design Supply Air Humidity Ratio {kg-H2O/kg-air}<br />

0.004, !- Zone Heating Design Supply Air Humidity Ratio {kg-H2O/kg-air}<br />

Flow/Person, !- Outdoor Air Method<br />

0.008333333, !- Outdoor Air Flow per Person {m3/s}<br />

0.0, !- Outdoor Air Flow per Zone Floor Area {m3/s-m2}<br />

0.0, !- Outdoor Air Flow per Zone {m3/s}<br />

0.0, !- Zone Sizing Factor<br />

DesignDayWithLimit, !- Cooling Design Air Flow Method<br />

, !- Cooling Design Air Flow Rate {m3/s}<br />

, !- Cooling Minimum Air Flow per Zone Floor Area {m3/s-m2}<br />

, !- Cooling Minimum Air Flow {m3/s}<br />

, !- Cooling Minimum Air Flow Fraction<br />

DesignDay, !- Heating Design Air Flow Method<br />

, !- Heating Design Air Flow Rate {m3/s}<br />

, !- Heating Maximum Air Flow per Zone Floor Area {m3/s-m2}<br />

, !- Heating Maximum Air Flow {m3/s}<br />

; !- Heating Maximum Air Flow Fraction<br />

Sizing:Zone,<br />

OG4-2, !- Zone Name<br />

16, !- Zone Cooling Design Supply Air Temperature {C}<br />

50., !- Zone Heating Design Supply Air Temperature {C}<br />

0.009, !- Zone Cooling Design Supply Air Humidity Ratio {kg-H2O/kg-air}<br />

0.004, !- Zone Heating Design Supply Air Humidity Ratio {kg-H2O/kg-air}<br />

Flow/Person, !- Outdoor Air Method<br />

0.008333333, !- Outdoor Air Flow per Person {m3/s}<br />

0.0, !- Outdoor Air Flow per Zone Floor Area {m3/s-m2}<br />

0.0, !- Outdoor Air Flow per Zone {m3/s}<br />

0.0, !- Zone Sizing Factor<br />

DesignDayWithLimit, !- Cooling Design Air Flow Method<br />

, !- Cooling Design Air Flow Rate {m3/s}<br />

, !- Cooling Minimum Air Flow per Zone Floor Area {m3/s-m2}<br />

, !- Cooling Minimum Air Flow {m3/s}<br />

, !- Cooling Minimum Air Flow Fraction<br />

DesignDay, !- Heating Design Air Flow Method<br />

, !- Heating Design Air Flow Rate {m3/s}<br />

, !- Heating Maximum Air Flow per Zone Floor Area {m3/s-m2}<br />

, !- Heating Maximum Air Flow {m3/s}<br />

; !- Heating Maximum Air Flow Fraction<br />

Sizing:Zone,<br />

OG1-3, !- Zone Name<br />

16, !- Zone Cooling Design Supply Air Temperature {C}<br />

50., !- Zone Heating Design Supply Air Temperature {C}<br />

0.009, !- Zone Cooling Design Supply Air Humidity Ratio {kg-H2O/kg-air}<br />

0.004, !- Zone Heating Design Supply Air Humidity Ratio {kg-H2O/kg-air}<br />

Flow/Person, !- Outdoor Air Method<br />

0.008333333, !- Outdoor Air Flow per Person {m3/s}<br />

0.0, !- Outdoor Air Flow per Zone Floor Area {m3/s-m2}<br />

0.0, !- Outdoor Air Flow per Zone {m3/s}<br />

0.0, !- Zone Sizing Factor<br />

DesignDayWithLimit, !- Cooling Design Air Flow Method<br />

, !- Cooling Design Air Flow Rate {m3/s}<br />

, !- Cooling Minimum Air Flow per Zone Floor Area {m3/s-m2}<br />

, !- Cooling Minimum Air Flow {m3/s}<br />

, !- Cooling Minimum Air Flow Fraction<br />

DesignDay, !- Heating Design Air Flow Method<br />

, !- Heating Design Air Flow Rate {m3/s}<br />

, !- Heating Maximum Air Flow per Zone Floor Area {m3/s-m2}<br />

, !- Heating Maximum Air Flow {m3/s}<br />

; !- Heating Maximum Air Flow Fraction<br />

Sizing:Zone,<br />

OG2-3, !- Zone Name<br />

16, !- Zone Cooling Design Supply Air Temperature {C}<br />

50., !- Zone Heating Design Supply Air Temperature {C}<br />

0.009, !- Zone Cooling Design Supply Air Humidity Ratio {kg-H2O/kg-air}


Appendix 2 143<br />

0.004, !- Zone Heating Design Supply Air Humidity Ratio {kg-H2O/kg-air}<br />

Flow/Person, !- Outdoor Air Method<br />

0.008333333, !- Outdoor Air Flow per Person {m3/s}<br />

0.0, !- Outdoor Air Flow per Zone Floor Area {m3/s-m2}<br />

0.0, !- Outdoor Air Flow per Zone {m3/s}<br />

0.0, !- Zone Sizing Factor<br />

DesignDayWithLimit, !- Cooling Design Air Flow Method<br />

, !- Cooling Design Air Flow Rate {m3/s}<br />

, !- Cooling Minimum Air Flow per Zone Floor Area {m3/s-m2}<br />

, !- Cooling Minimum Air Flow {m3/s}<br />

, !- Cooling Minimum Air Flow Fraction<br />

DesignDay, !- Heating Design Air Flow Method<br />

, !- Heating Design Air Flow Rate {m3/s}<br />

, !- Heating Maximum Air Flow per Zone Floor Area {m3/s-m2}<br />

, !- Heating Maximum Air Flow {m3/s}<br />

; !- Heating Maximum Air Flow Fraction<br />

Sizing:Zone,<br />

OG3-3, !- Zone Name<br />

16, !- Zone Cooling Design Supply Air Temperature {C}<br />

50., !- Zone Heating Design Supply Air Temperature {C}<br />

0.009, !- Zone Cooling Design Supply Air Humidity Ratio {kg-H2O/kg-air}<br />

0.004, !- Zone Heating Design Supply Air Humidity Ratio {kg-H2O/kg-air}<br />

Flow/Person, !- Outdoor Air Method<br />

0.008333333, !- Outdoor Air Flow per Person {m3/s}<br />

0.0, !- Outdoor Air Flow per Zone Floor Area {m3/s-m2}<br />

0.0, !- Outdoor Air Flow per Zone {m3/s}<br />

0.0, !- Zone Sizing Factor<br />

DesignDayWithLimit, !- Cooling Design Air Flow Method<br />

, !- Cooling Design Air Flow Rate {m3/s}<br />

, !- Cooling Minimum Air Flow per Zone Floor Area {m3/s-m2}<br />

, !- Cooling Minimum Air Flow {m3/s}<br />

, !- Cooling Minimum Air Flow Fraction<br />

DesignDay, !- Heating Design Air Flow Method<br />

, !- Heating Design Air Flow Rate {m3/s}<br />

, !- Heating Maximum Air Flow per Zone Floor Area {m3/s-m2}<br />

, !- Heating Maximum Air Flow {m3/s}<br />

; !- Heating Maximum Air Flow Fraction<br />

Sizing:Zone,<br />

OG4-3, !- Zone Name<br />

16, !- Zone Cooling Design Supply Air Temperature {C}<br />

50., !- Zone Heating Design Supply Air Temperature {C}<br />

0.009, !- Zone Cooling Design Supply Air Humidity Ratio {kg-H2O/kg-air}<br />

0.004, !- Zone Heating Design Supply Air Humidity Ratio {kg-H2O/kg-air}<br />

Flow/Person, !- Outdoor Air Method<br />

0.008333333, !- Outdoor Air Flow per Person {m3/s}<br />

0.0, !- Outdoor Air Flow per Zone Floor Area {m3/s-m2}<br />

0.0, !- Outdoor Air Flow per Zone {m3/s}<br />

0.0, !- Zone Sizing Factor<br />

DesignDayWithLimit, !- Cooling Design Air Flow Method<br />

, !- Cooling Design Air Flow Rate {m3/s}<br />

, !- Cooling Minimum Air Flow per Zone Floor Area {m3/s-m2}<br />

, !- Cooling Minimum Air Flow {m3/s}<br />

, !- Cooling Minimum Air Flow Fraction<br />

DesignDay, !- Heating Design Air Flow Method<br />

, !- Heating Design Air Flow Rate {m3/s}<br />

, !- Heating Maximum Air Flow per Zone Floor Area {m3/s-m2}<br />

, !- Heating Maximum Air Flow {m3/s}<br />

; !- Heating Maximum Air Flow Fraction<br />

!- == ALL OBJECTS IN CLASS: CURVE:BIQUADRATIC ==<br />

Curve:Biquadratic,<br />

WindACCoolCapFT, !- Name<br />

0.942587793, !- Coefficient1 Constant<br />

0.009543347, !- Coefficient2 x<br />

0.000683770, !- Coefficient3 x**2<br />

-0.011042676, !- Coefficient4 y<br />

0.000005249, !- Coefficient5 y**2<br />

-0.000009720, !- Coefficient6 x*y<br />

12.77778, !- Minimum Value <strong>of</strong> x<br />

23.88889, !- Maximum Value <strong>of</strong> x<br />

23.88889, !- Minimum Value <strong>of</strong> y<br />

46.11111; !- Maximum Value <strong>of</strong> y<br />

Curve:Biquadratic,<br />

WindACEIRFT, !- Name<br />

0.342414409, !- Coefficient1 Constant<br />

0.034885008, !- Coefficient2 x<br />

-0.000623700, !- Coefficient3 x**2<br />

0.004977216, !- Coefficient4 y<br />

0.000437951, !- Coefficient5 y**2<br />

-0.000728028, !- Coefficient6 x*y<br />

12.77778, !- Minimum Value <strong>of</strong> x<br />

23.88889, !- Maximum Value <strong>of</strong> x<br />

23.88889, !- Minimum Value <strong>of</strong> y<br />

46.11111; !- Maximum Value <strong>of</strong> y<br />

!- == ALL OBJECTS IN CLASS: CURVE:QUADRATIC ==<br />

Curve:Quadratic,<br />

WindACCoolCapFFF, !- Name<br />

0.8, !- Coefficient1 Constant<br />

0.2, !- Coefficient2 x<br />

0.0, !- Coefficient3 x**2<br />

0.5, !- Minimum Value <strong>of</strong> x<br />

1.5; !- Maximum Value <strong>of</strong> x<br />

Curve:Quadratic,<br />

WindACEIRFFF, !- Name<br />

1.1552, !- Coefficient1 Constant<br />

-0.1808, !- Coefficient2 x<br />

0.0256, !- Coefficient3 x**2<br />

0.5, !- Minimum Value <strong>of</strong> x<br />

1.5; !- Maximum Value <strong>of</strong> x<br />

Curve:Quadratic,<br />

WindACPLFFPLR, !- Name<br />

0.85, !- Coefficient1 Constant<br />

0.15, !- Coefficient2 x<br />

0.0, !- Coefficient3 x**2<br />

0.0, !- Minimum Value <strong>of</strong> x<br />

1.0; !- Maximum Value <strong>of</strong> x<br />

!- == ALL OBJECTS IN CLASS: NODE LIST ==<br />

NodeList,<br />

Hot Water Loop Setpoint Node List, !- Name<br />

HW Supply Outlet Node; !- Node 1 Name<br />

NodeList,<br />

OutsideAirInletNodes, !- Name<br />

Zone1WindACOAInNode, !- Node 1 Name<br />

Zone2WindACOAInNode, !- Node 2 Name<br />

Zone3WindACOAInNode, !- Node 3 Name<br />

Zone4WindACOAInNode, !- Node 4 Name<br />

Zone5WindACOAInNode, !- Node 5 Name<br />

Zone6WindACOAInNode, !- Node 6 Name<br />

Zone7WindACOAInNode, !- Node 7 Name<br />

Zone8WindACOAInNode, !- Node 8 Name<br />

Zone9WindACOAInNode, !- Node 9 Name<br />

Zone10WindACOAInNode, !- Node 10 Name<br />

Zone11WindACOAInNode, !- Node 11 Name<br />

Zone12WindACOAInNode, !- Node 12 Name<br />

Zone13WindACOAInNode, !- Node 13 Name<br />

Zone14WindACOAInNode, !- Node 14 Name<br />

Zone15WindACOAInNode, !- Node 15 Name<br />

Zone16WindACOAInNode, !- Node 16 Name<br />

Zone17WindACOAInNode, !- Node 17 Name<br />

Zone18WindACOAInNode, !- Node 18 Name<br />

Zone19WindACOAInNode; !- Node 19 Name<br />

NodeList,<br />

OutsideAirInletNodesERV, !- Name<br />

ERV Outside Air Inlet Node, !- Node 1 Name<br />

ERV Outside Air Inlet Node 2, !- Node 2 Name<br />

ERV Outside Air Inlet Node 3, !- Node 3 Name<br />

ERV Outside Air Inlet Node 4, !- Node 4 Name<br />

ERV Outside Air Inlet Node 5, !- Node 5 Name<br />

ERV Outside Air Inlet Node 6, !- Node 6 Name<br />

ERV Outside Air Inlet Node 7, !- Node 7 Name<br />

ERV Outside Air Inlet Node 8, !- Node 8 Name<br />

ERV Outside Air Inlet Node 9, !- Node 9 Name<br />

ERV Outside Air Inlet Node 10, !- Node 10 Name<br />

ERV Outside Air Inlet Node 11, !- Node 11 Name


Appendix 2 144<br />

ERV Outside Air Inlet Node 12, !- Node 12 Name<br />

ERV Outside Air Inlet Node 13, !- Node 13 Name<br />

ERV Outside Air Inlet Node 14, !- Node 14 Name<br />

ERV Outside Air Inlet Node 15, !- Node 15 Name<br />

ERV Outside Air Inlet Node 16, !- Node 16 Name<br />

ERV Outside Air Inlet Node 17, !- Node 17 Name<br />

ERV Outside Air Inlet Node 18, !- Node 18 Name<br />

ERV Outside Air Inlet Node 19; !- Node 19 Name<br />

NodeList,<br />

Zone1Inlets, !- Name<br />

Zone1WindACAirOutletNode,!- Node 1 Name<br />

St<strong>and</strong> Alone ERV Supply Fan Outlet Node; !- Node 2 Name<br />

NodeList,<br />

Zone1Exhausts, !- Name<br />

Zone1WindACAirInletNode, !- Node 1 Name<br />

Zone 1 Exhaust Node; !- Node 2 Name<br />

NodeList,<br />

Zone2Inlets, !- Name<br />

Zone2WindACAirOutletNode,!- Node 1 Name<br />

St<strong>and</strong> Alone ERV Supply Fan Outlet Node 2; !- Node 2 Name<br />

NodeList,<br />

Zone2Exhausts, !- Name<br />

Zone2WindACAirInletNode, !- Node 1 Name<br />

Zone 2 Exhaust Node; !- Node 2 Name<br />

NodeList,<br />

Zone3Inlets, !- Name<br />

Zone3WindACAirOutletNode,!- Node 1 Name<br />

St<strong>and</strong> Alone ERV Supply Fan Outlet Node 3; !- Node 2 Name<br />

NodeList,<br />

Zone3Exhausts, !- Name<br />

Zone3WindACAirInletNode, !- Node 1 Name<br />

Zone 3 Exhaust Node; !- Node 2 Name<br />

NodeList,<br />

Zone4Inlets, !- Name<br />

Zone4WindACAirOutletNode,!- Node 1 Name<br />

St<strong>and</strong> Alone ERV Supply Fan Outlet Node 4; !- Node 2 Name<br />

NodeList,<br />

Zone4Exhausts, !- Name<br />

Zone4WindACAirInletNode, !- Node 1 Name<br />

Zone 4 Exhaust Node; !- Node 2 Name<br />

NodeList,<br />

Zone5Inlets, !- Name<br />

Zone5WindACAirOutletNode,!- Node 1 Name<br />

St<strong>and</strong> Alone ERV Supply Fan Outlet Node 5; !- Node 2 Name<br />

NodeList,<br />

Zone5Exhausts, !- Name<br />

Zone5WindACAirInletNode, !- Node 1 Name<br />

Zone 5 Exhaust Node; !- Node 2 Name<br />

NodeList,<br />

Zone6Inlets, !- Name<br />

Zone6WindACAirOutletNode,!- Node 1 Name<br />

St<strong>and</strong> Alone ERV Supply Fan Outlet Node 6; !- Node 2 Name<br />

NodeList,<br />

Zone6Exhausts, !- Name<br />

Zone6WindACAirInletNode, !- Node 1 Name<br />

Zone 6 Exhaust Node; !- Node 2 Name<br />

NodeList,<br />

Zone7Inlets, !- Name<br />

Zone7WindACAirOutletNode,!- Node 1 Name<br />

St<strong>and</strong> Alone ERV Supply Fan Outlet Node 7; !- Node 2 Name<br />

NodeList,<br />

Zone7Exhausts, !- Name<br />

Zone7WindACAirInletNode, !- Node 1 Name<br />

Zone 7 Exhaust Node; !- Node 2 Name<br />

NodeList,<br />

Zone8Inlets, !- Name<br />

Zone8WindACAirOutletNode,!- Node 1 Name<br />

St<strong>and</strong> Alone ERV Supply Fan Outlet Node 8; !- Node 2 Name<br />

NodeList,<br />

Zone8Exhausts, !- Name<br />

Zone8WindACAirInletNode, !- Node 1 Name<br />

Zone 8 Exhaust Node; !- Node 2 Name<br />

NodeList,<br />

Zone9Inlets, !- Name<br />

Zone9WindACAirOutletNode,!- Node 1 Name<br />

St<strong>and</strong> Alone ERV Supply Fan Outlet Node 9; !- Node 2 Name<br />

NodeList,<br />

Zone9Exhausts, !- Name<br />

Zone9WindACAirInletNode, !- Node 1 Name<br />

Zone 9 Exhaust Node; !- Node 2 Name<br />

NodeList,<br />

Zone10Inlets, !- Name<br />

Zone10WindACAirOutletNode, !- Node 1 Name<br />

St<strong>and</strong> Alone ERV Supply Fan Outlet Node 10; !- Node 2 Name<br />

NodeList,<br />

Zone10Exhausts, !- Name<br />

Zone10WindACAirInletNode,!- Node 1 Name<br />

Zone 10 Exhaust Node; !- Node 2 Name<br />

NodeList,<br />

Zone11Inlets, !- Name<br />

Zone11WindACAirOutletNode, !- Node 1 Name<br />

St<strong>and</strong> Alone ERV Supply Fan Outlet Node 11; !- Node 2 Name<br />

NodeList,<br />

Zone11Exhausts, !- Name<br />

Zone11WindACAirInletNode,!- Node 1 Name<br />

Zone 11 Exhaust Node; !- Node 2 Name<br />

NodeList,<br />

Zone12Inlets, !- Name<br />

Zone12WindACAirOutletNode, !- Node 1 Name<br />

St<strong>and</strong> Alone ERV Supply Fan Outlet Node 12; !- Node 2 Name<br />

NodeList,<br />

Zone12Exhausts, !- Name<br />

Zone12WindACAirInletNode,!- Node 1 Name<br />

Zone 12 Exhaust Node; !- Node 2 Name<br />

NodeList,<br />

Zone13Inlets, !- Name<br />

Zone13WindACAirOutletNode, !- Node 1 Name<br />

St<strong>and</strong> Alone ERV Supply Fan Outlet Node 13; !- Node 2 Name<br />

NodeList,<br />

Zone13Exhausts, !- Name<br />

Zone13WindACAirInletNode,!- Node 1 Name<br />

Zone 13 Exhaust Node; !- Node 2 Name<br />

NodeList,<br />

Zone14Inlets, !- Name<br />

Zone14WindACAirOutletNode, !- Node 1 Name<br />

St<strong>and</strong> Alone ERV Supply Fan Outlet Node 14; !- Node 2 Name<br />

NodeList,<br />

Zone14Exhausts, !- Name<br />

Zone14WindACAirInletNode,!- Node 1 Name<br />

Zone 14 Exhaust Node; !- Node 2 Name<br />

NodeList,<br />

Zone15Inlets, !- Name<br />

Zone15WindACAirOutletNode, !- Node 1 Name<br />

St<strong>and</strong> Alone ERV Supply Fan Outlet Node 15; !- Node 2 Name<br />

NodeList,<br />

Zone15Exhausts, !- Name


Appendix 2 145<br />

Zone15WindACAirInletNode,!- Node 1 Name<br />

Zone 15 Exhaust Node; !- Node 2 Name<br />

NodeList,<br />

Zone16Inlets, !- Name<br />

Zone16WindACAirOutletNode, !- Node 1 Name<br />

St<strong>and</strong> Alone ERV Supply Fan Outlet Node 16; !- Node 2 Name<br />

NodeList,<br />

Zone16Exhausts, !- Name<br />

Zone16WindACAirInletNode,!- Node 1 Name<br />

Zone 16 Exhaust Node; !- Node 2 Name<br />

NodeList,<br />

Zone17Inlets, !- Name<br />

Zone17WindACAirOutletNode, !- Node 1 Name<br />

St<strong>and</strong> Alone ERV Supply Fan Outlet Node 17; !- Node 2 Name<br />

NodeList,<br />

Zone17Exhausts, !- Name<br />

Zone17WindACAirInletNode,!- Node 1 Name<br />

Zone 17 Exhaust Node; !- Node 2 Name<br />

NodeList,<br />

Zone18Inlets, !- Name<br />

Zone18WindACAirOutletNode, !- Node 1 Name<br />

St<strong>and</strong> Alone ERV Supply Fan Outlet Node 18; !- Node 2 Name<br />

NodeList,<br />

Zone18Exhausts, !- Name<br />

Zone18WindACAirInletNode,!- Node 1 Name<br />

Zone 18 Exhaust Node; !- Node 2 Name<br />

NodeList,<br />

Zone19Inlets, !- Name<br />

Zone19WindACAirOutletNode, !- Node 1 Name<br />

St<strong>and</strong> Alone ERV Supply Fan Outlet Node 19; !- Node 2 Name<br />

NodeList,<br />

Zone19Exhausts, !- Name<br />

Zone19WindACAirInletNode,!- Node 1 Name<br />

Zone 19 Exhaust Node; !- Node 2 Name<br />

NodeList,<br />

Heat Exchanger Supply Air Nodes, !- Name<br />

St<strong>and</strong> Alone ERV Supply Fan Outlet Node, !- Node 1 Name<br />

St<strong>and</strong> Alone ERV Supply Fan Outlet Node 2, !- Node 2 Name<br />

St<strong>and</strong> Alone ERV Supply Fan Outlet Node 3, !- Node 3 Name<br />

St<strong>and</strong> Alone ERV Supply Fan Outlet Node 4, !- Node 4 Name<br />

St<strong>and</strong> Alone ERV Supply Fan Outlet Node 5, !- Node 5 Name<br />

St<strong>and</strong> Alone ERV Supply Fan Outlet Node 6, !- Node 6 Name<br />

St<strong>and</strong> Alone ERV Supply Fan Outlet Node 7, !- Node 7 Name<br />

St<strong>and</strong> Alone ERV Supply Fan Outlet Node 8, !- Node 8 Name<br />

St<strong>and</strong> Alone ERV Supply Fan Outlet Node 9, !- Node 9 Name<br />

St<strong>and</strong> Alone ERV Supply Fan Outlet Node 10, !- Node 10 Name<br />

St<strong>and</strong> Alone ERV Supply Fan Outlet Node 11, !- Node 11 Name<br />

St<strong>and</strong> Alone ERV Supply Fan Outlet Node 12, !- Node 12 Name<br />

St<strong>and</strong> Alone ERV Supply Fan Outlet Node 13, !- Node 13 Name<br />

St<strong>and</strong> Alone ERV Supply Fan Outlet Node 14, !- Node 14 Name<br />

St<strong>and</strong> Alone ERV Supply Fan Outlet Node 15, !- Node 15 Name<br />

St<strong>and</strong> Alone ERV Supply Fan Outlet Node 16, !- Node 16 Name<br />

St<strong>and</strong> Alone ERV Supply Fan Outlet Node 17, !- Node 17 Name<br />

St<strong>and</strong> Alone ERV Supply Fan Outlet Node 18, !- Node 18 Name<br />

St<strong>and</strong> Alone ERV Supply Fan Outlet Node 19; !- Node 19 Name<br />

NodeList,<br />

Heat Exchanger Supply Air Nodes HR, !- Name<br />

Heat Recovery Outlet Node, !- Node 1 Name<br />

Heat Recovery Outlet Node 2, !- Node 2 Name<br />

Heat Recovery Outlet Node 3, !- Node 3 Name<br />

Heat Recovery Outlet Node 4, !- Node 4 Name<br />

Heat Recovery Outlet Node 5, !- Node 5 Name<br />

Heat Recovery Outlet Node 6, !- Node 6 Name<br />

Heat Recovery Outlet Node 7, !- Node 7 Name<br />

Heat Recovery Outlet Node 8, !- Node 8 Name<br />

Heat Recovery Outlet Node 9, !- Node 9 Name<br />

Heat Recovery Outlet Node 10, !- Node 10 Name<br />

Heat Recovery Outlet Node 11, !- Node 11 Name<br />

Heat Recovery Outlet Node 12, !- Node 12 Name<br />

Heat Recovery Outlet Node 13, !- Node 13 Name<br />

Heat Recovery Outlet Node 14, !- Node 14 Name<br />

Heat Recovery Outlet Node 15, !- Node 15 Name<br />

Heat Recovery Outlet Node 16, !- Node 16 Name<br />

Heat Recovery Outlet Node 17, !- Node 17 Name<br />

Heat Recovery Outlet Node 18, !- Node 18 Name<br />

Heat Recovery Outlet Node 19; !- Node 19 Name<br />

!- == ALL OBJECTS IN CLASS: BRANCH LIST ==<br />

BranchList,<br />

Heating Supply Side Branches, !- Name<br />

Heating Supply Inlet Branch, !- Branch 1 Name<br />

Heating Purchased Hot Water Branch, !- Branch 2 Name<br />

Heating Supply Bypass Branch, !- Branch 3 Name<br />

Heating Supply Outlet Branch; !- Branch 4 Name<br />

BranchList,<br />

Heating Dem<strong>and</strong> Side Branches, !- Name<br />

ZonesHWInletBranch, !- Branch 1 Name<br />

Zone1HWBranch, !- Branch 2 Name<br />

Zone2HWBranch, !- Branch 3 Name<br />

Zone3HWBranch, !- Branch 4 Name<br />

Zone4HWBranch, !- Branch 5 Name<br />

Zone5HWBranch, !- Branch 6 Name<br />

Zone6HWBranch, !- Branch 7 Name<br />

Zone7HWBranch, !- Branch 8 Name<br />

Zone8HWBranch, !- Branch 9 Name<br />

Zone9HWBranch, !- Branch 10 Name<br />

Zone10HWBranch, !- Branch 11 Name<br />

Zone11HWBranch, !- Branch 12 Name<br />

Zone12HWBranch, !- Branch 13 Name<br />

Zone13HWBranch, !- Branch 14 Name<br />

Zone14HWBranch, !- Branch 15 Name<br />

Zone15HWBranch, !- Branch 16 Name<br />

Zone16HWBranch, !- Branch 17 Name<br />

Zone17HWBranch, !- Branch 18 Name<br />

Zone18HWBranch, !- Branch 19 Name<br />

Zone19HWBranch, !- Branch 20 Name<br />

ZonesHWBypassBranch, !- Branch 21 Name<br />

ZonesHWOutletBranch; !- Branch 22 Name<br />

!- == ALL OBJECTS IN CLASS: CONNECTOR LIST ==<br />

ConnectorList,<br />

Heating Supply Side Connectors, !- Name<br />

Connector:Splitter, !- Connector 1 Object Type<br />

Heating Supply Splitter, !- Connector 1 Name<br />

Connector:Mixer, !- Connector 2 Object Type<br />

Heating Supply Mixer; !- Connector 2 Name<br />

ConnectorList,<br />

Heating Dem<strong>and</strong> Side Connectors, !- Name<br />

Connector:Splitter, !- Connector 1 Object Type<br />

Zones HW Splitter, !- Connector 1 Name<br />

Connector:Mixer, !- Connector 2 Object Type<br />

Zones HW Mixer; !- Connector 2 Name<br />

!- == ALL OBJECTS IN CLASS: BRANCH ==<br />

Branch,<br />

Heating Supply Inlet Branch, !- Name<br />

0, !- Maximum Flow Rate {m3/s}<br />

Pump:VariableSpeed, !- Component 1 Object Type<br />

HW Circ Pump, !- Component 1 Name<br />

HW Supply Inlet Node, !- Component 1 Inlet Node Name<br />

HW Pump Outlet Node, !- Component 1 Outlet Node Name<br />

Active; !- Component 1 Branch Control Type<br />

Branch,<br />

Heating Purchased Hot Water Branch, !- Name<br />

0, !- Maximum Flow Rate {m3/s}<br />

DistrictHeating, !- Component 1 Object Type<br />

Purchased Heating, !- Component 1 Name<br />

Purchased Heat Inlet Node, !- Component 1 Inlet Node Name<br />

Purchased Heat Outlet Node, !- Component 1 Outlet Node Name<br />

Active; !- Component 1 Branch Control Type


Appendix 2 146<br />

Branch,<br />

Heating Supply Bypass Branch, !- Name<br />

0, !- Maximum Flow Rate {m3/s}<br />

Pipe:Adiabatic, !- Component 1 Object Type<br />

Heating Supply Side Bypass, !- Component 1 Name<br />

Heating Supply Bypass Inlet Node, !- Component 1 Inlet Node Name<br />

Heating Supply Bypass Outlet Node, !- Component 1 Outlet Node Name<br />

Bypass; !- Component 1 Branch Control Type<br />

Branch,<br />

Heating Supply Outlet Branch, !- Name<br />

0, !- Maximum Flow Rate {m3/s}<br />

Pipe:Adiabatic, !- Component 1 Object Type<br />

Heating Supply Outlet, !- Component 1 Name<br />

Heating Supply Exit Pipe Inlet Node, !- Component 1 Inlet Node Name<br />

HW Supply Outlet Node, !- Component 1 Outlet Node Name<br />

Passive; !- Component 1 Branch Control Type<br />

Branch,<br />

ZonesHWInletBranch, !- Name<br />

0, !- Maximum Flow Rate {m3/s}<br />

Pipe:Adiabatic, !- Component 1 Object Type<br />

ZonesHWInletPipe, !- Component 1 Name<br />

HW Dem<strong>and</strong> Inlet Node, !- Component 1 Inlet Node Name<br />

HW Dem<strong>and</strong> Entrance Pipe Outlet Node, !- Component 1 Outlet Node Name<br />

Passive; !- Component 1 Branch Control Type<br />

Branch,<br />

ZonesHWOutletBranch, !- Name<br />

0, !- Maximum Flow Rate {m3/s}<br />

Pipe:Adiabatic, !- Component 1 Object Type<br />

ZonesHWOutletPipe, !- Component 1 Name<br />

HW Dem<strong>and</strong> Exit Pipe Inlet Node, !- Component 1 Inlet Node Name<br />

HW Dem<strong>and</strong> Outlet Node, !- Component 1 Outlet Node Name<br />

Passive; !- Component 1 Branch Control Type<br />

Branch,<br />

Zone1HWBranch, !- Name<br />

0, !- Maximum Flow Rate {m3/s}<br />

ZoneHVAC:Baseboard:Convective:Water, !- Component 1 Object Type<br />

Zone1Baseboard, !- Component 1 Name<br />

Zone1BBHWInletNode, !- Component 1 Inlet Node Name<br />

Zone1BBHWOutletNode, !- Component 1 Outlet Node Name<br />

Active; !- Component 1 Branch Control Type<br />

Branch,<br />

Zone2HWBranch, !- Name<br />

0, !- Maximum Flow Rate {m3/s}<br />

ZoneHVAC:Baseboard:Convective:Water, !- Component 1 Object Type<br />

Zone2Baseboard, !- Component 1 Name<br />

Zone2BBHWInletNode, !- Component 1 Inlet Node Name<br />

Zone2BBHWOutletNode, !- Component 1 Outlet Node Name<br />

Active; !- Component 1 Branch Control Type<br />

Branch,<br />

Zone3HWBranch, !- Name<br />

0, !- Maximum Flow Rate {m3/s}<br />

ZoneHVAC:Baseboard:Convective:Water, !- Component 1 Object Type<br />

Zone3Baseboard, !- Component 1 Name<br />

Zone3BBHWInletNode, !- Component 1 Inlet Node Name<br />

Zone3BBHWOutletNode, !- Component 1 Outlet Node Name<br />

Active; !- Component 1 Branch Control Type<br />

Branch,<br />

Zone4HWBranch, !- Name<br />

0, !- Maximum Flow Rate {m3/s}<br />

ZoneHVAC:Baseboard:Convective:Water, !- Component 1 Object Type<br />

Zone4Baseboard, !- Component 1 Name<br />

Zone4BBHWInletNode, !- Component 1 Inlet Node Name<br />

Zone4BBHWOutletNode, !- Component 1 Outlet Node Name<br />

Active; !- Component 1 Branch Control Type<br />

Branch,<br />

Zone5HWBranch, !- Name<br />

0, !- Maximum Flow Rate {m3/s}<br />

ZoneHVAC:Baseboard:Convective:Water, !- Component 1 Object Type<br />

Zone5Baseboard, !- Component 1 Name<br />

Zone5BBHWInletNode, !- Component 1 Inlet Node Name<br />

Zone5BBHWOutletNode, !- Component 1 Outlet Node Name<br />

Active; !- Component 1 Branch Control Type<br />

Branch,<br />

Zone6HWBranch, !- Name<br />

0, !- Maximum Flow Rate {m3/s}<br />

ZoneHVAC:Baseboard:Convective:Water, !- Component 1 Object Type<br />

Zone6Baseboard, !- Component 1 Name<br />

Zone6BBHWInletNode, !- Component 1 Inlet Node Name<br />

Zone6BBHWOutletNode, !- Component 1 Outlet Node Name<br />

Active; !- Component 1 Branch Control Type<br />

Branch,<br />

Zone7HWBranch, !- Name<br />

0, !- Maximum Flow Rate {m3/s}<br />

ZoneHVAC:Baseboard:Convective:Water, !- Component 1 Object Type<br />

Zone7Baseboard, !- Component 1 Name<br />

Zone7BBHWInletNode, !- Component 1 Inlet Node Name<br />

Zone7BBHWOutletNode, !- Component 1 Outlet Node Name<br />

Active; !- Component 1 Branch Control Type<br />

Branch,<br />

Zone8HWBranch, !- Name<br />

0, !- Maximum Flow Rate {m3/s}<br />

ZoneHVAC:Baseboard:Convective:Water, !- Component 1 Object Type<br />

Zone8Baseboard, !- Component 1 Name<br />

Zone8BBHWInletNode, !- Component 1 Inlet Node Name<br />

Zone8BBHWOutletNode, !- Component 1 Outlet Node Name<br />

Active; !- Component 1 Branch Control Type<br />

Branch,<br />

Zone9HWBranch, !- Name<br />

0, !- Maximum Flow Rate {m3/s}<br />

ZoneHVAC:Baseboard:Convective:Water, !- Component 1 Object Type<br />

Zone9Baseboard, !- Component 1 Name<br />

Zone9BBHWInletNode, !- Component 1 Inlet Node Name<br />

Zone9BBHWOutletNode, !- Component 1 Outlet Node Name<br />

Active; !- Component 1 Branch Control Type<br />

Branch,<br />

Zone10HWBranch, !- Name<br />

0, !- Maximum Flow Rate {m3/s}<br />

ZoneHVAC:Baseboard:Convective:Water, !- Component 1 Object Type<br />

Zone10Baseboard, !- Component 1 Name<br />

Zone10BBHWInletNode, !- Component 1 Inlet Node Name<br />

Zone10BBHWOutletNode, !- Component 1 Outlet Node Name<br />

Active; !- Component 1 Branch Control Type<br />

Branch,<br />

Zone11HWBranch, !- Name<br />

0, !- Maximum Flow Rate {m3/s}<br />

ZoneHVAC:Baseboard:Convective:Water, !- Component 1 Object Type<br />

Zone11Baseboard, !- Component 1 Name<br />

Zone11BBHWInletNode, !- Component 1 Inlet Node Name<br />

Zone11BBHWOutletNode, !- Component 1 Outlet Node Name<br />

Active; !- Component 1 Branch Control Type<br />

Branch,<br />

Zone12HWBranch, !- Name<br />

0, !- Maximum Flow Rate {m3/s}<br />

ZoneHVAC:Baseboard:Convective:Water, !- Component 1 Object Type<br />

Zone12Baseboard, !- Component 1 Name<br />

Zone12BBHWInletNode, !- Component 1 Inlet Node Name<br />

Zone12BBHWOutletNode, !- Component 1 Outlet Node Name<br />

Active; !- Component 1 Branch Control Type<br />

Branch,<br />

Zone13HWBranch, !- Name<br />

0, !- Maximum Flow Rate {m3/s}<br />

ZoneHVAC:Baseboard:Convective:Water, !- Component 1 Object Type<br />

Zone13Baseboard, !- Component 1 Name<br />

Zone13BBHWInletNode, !- Component 1 Inlet Node Name<br />

Zone13BBHWOutletNode, !- Component 1 Outlet Node Name<br />

Active; !- Component 1 Branch Control Type<br />

Branch,<br />

Zone14HWBranch, !- Name


Appendix 2 147<br />

0, !- Maximum Flow Rate {m3/s}<br />

ZoneHVAC:Baseboard:Convective:Water, !- Component 1 Object Type<br />

Zone14Baseboard, !- Component 1 Name<br />

Zone14BBHWInletNode, !- Component 1 Inlet Node Name<br />

Zone14BBHWOutletNode, !- Component 1 Outlet Node Name<br />

Active; !- Component 1 Branch Control Type<br />

Branch,<br />

Zone15HWBranch, !- Name<br />

0, !- Maximum Flow Rate {m3/s}<br />

ZoneHVAC:Baseboard:Convective:Water, !- Component 1 Object Type<br />

Zone15Baseboard, !- Component 1 Name<br />

Zone15BBHWInletNode, !- Component 1 Inlet Node Name<br />

Zone15BBHWOutletNode, !- Component 1 Outlet Node Name<br />

Active; !- Component 1 Branch Control Type<br />

Branch,<br />

Zone16HWBranch, !- Name<br />

0, !- Maximum Flow Rate {m3/s}<br />

ZoneHVAC:Baseboard:Convective:Water, !- Component 1 Object Type<br />

Zone16Baseboard, !- Component 1 Name<br />

Zone16BBHWInletNode, !- Component 1 Inlet Node Name<br />

Zone16BBHWOutletNode, !- Component 1 Outlet Node Name<br />

Active; !- Component 1 Branch Control Type<br />

Branch,<br />

Zone17HWBranch, !- Name<br />

0, !- Maximum Flow Rate {m3/s}<br />

ZoneHVAC:Baseboard:Convective:Water, !- Component 1 Object Type<br />

Zone17Baseboard, !- Component 1 Name<br />

Zone17BBHWInletNode, !- Component 1 Inlet Node Name<br />

Zone17BBHWOutletNode, !- Component 1 Outlet Node Name<br />

Active; !- Component 1 Branch Control Type<br />

Branch,<br />

Zone18HWBranch, !- Name<br />

0, !- Maximum Flow Rate {m3/s}<br />

ZoneHVAC:Baseboard:Convective:Water, !- Component 1 Object Type<br />

Zone18Baseboard, !- Component 1 Name<br />

Zone18BBHWInletNode, !- Component 1 Inlet Node Name<br />

Zone18BBHWOutletNode, !- Component 1 Outlet Node Name<br />

Active; !- Component 1 Branch Control Type<br />

Branch,<br />

Zone19HWBranch, !- Name<br />

0, !- Maximum Flow Rate {m3/s}<br />

ZoneHVAC:Baseboard:Convective:Water, !- Component 1 Object Type<br />

Zone19Baseboard, !- Component 1 Name<br />

Zone19BBHWInletNode, !- Component 1 Inlet Node Name<br />

Zone19BBHWOutletNode, !- Component 1 Outlet Node Name<br />

Active; !- Component 1 Branch Control Type<br />

Branch,<br />

ZonesHWBypassBranch, !- Name<br />

0, !- Maximum Flow Rate {m3/s}<br />

Pipe:Adiabatic, !- Component 1 Object Type<br />

ZonesHWBypassPipe, !- Component 1 Name<br />

ZonesHWBypassInletNode, !- Component 1 Inlet Node Name<br />

ZonesHWBypassOutletNode, !- Component 1 Outlet Node Name<br />

Bypass; !- Component 1 Branch Control Type<br />

!- == ALL OBJECTS IN CLASS: PIPE ==<br />

Pipe:Adiabatic,<br />

Heating Supply Side Bypass, !- Name<br />

Heating Supply Bypass Inlet Node, !- Inlet Node Name<br />

Heating Supply Bypass Outlet Node; !- Outlet Node Name<br />

Pipe:Adiabatic,<br />

Heating Supply Outlet, !- Name<br />

Heating Supply Exit Pipe Inlet Node, !- Inlet Node Name<br />

HW Supply Outlet Node; !- Outlet Node Name<br />

Pipe:Adiabatic,<br />

ZonesHWInletPipe, !- Name<br />

HW Dem<strong>and</strong> Inlet Node, !- Inlet Node Name<br />

HW Dem<strong>and</strong> Entrance Pipe Outlet Node; !- Outlet Node Name<br />

Pipe:Adiabatic,<br />

ZonesHWOutletPipe, !- Name<br />

HW Dem<strong>and</strong> Exit Pipe Inlet Node, !- Inlet Node Name<br />

HW Dem<strong>and</strong> Outlet Node; !- Outlet Node Name<br />

Pipe:Adiabatic,<br />

ZonesHWBypassPipe, !- Name<br />

ZonesHWBypassInletNode, !- Inlet Node Name<br />

ZonesHWBypassOutletNode; !- Outlet Node Name<br />

!- == ALL OBJECTS IN CLASS: PLANT LOOP ==<br />

PlantLoop,<br />

Hot Water Loop, !- Name<br />

Water, !- Fluid Type<br />

Hot Loop Operation, !- Plant Equipment Operation Scheme Name<br />

HW Supply Outlet Node, !- Loop Temperature Setpoint Node Name<br />

90, !- Maximum Loop Temperature {C}<br />

10, !- Minimum Loop Temperature {C}<br />

0.05, !- Maximum Loop Flow Rate {m3/s}<br />

0.0, !- Minimum Loop Flow Rate {m3/s}<br />

autocalculate, !- Plant Loop Volume {m3}<br />

HW Supply Inlet Node, !- Plant Side Inlet Node Name<br />

HW Supply Outlet Node, !- Plant Side Outlet Node Name<br />

Heating Supply Side Branches, !- Plant Side Branch List Name<br />

Heating Supply Side Connectors, !- Plant Side Connector List Name<br />

HW Dem<strong>and</strong> Inlet Node, !- Dem<strong>and</strong> Side Inlet Node Name<br />

HW Dem<strong>and</strong> Outlet Node, !- Dem<strong>and</strong> Side Outlet Node Name<br />

Heating Dem<strong>and</strong> Side Branches, !- Dem<strong>and</strong> Side Branch List Name<br />

Heating Dem<strong>and</strong> Side Connectors, !- Dem<strong>and</strong> Side Connector List Name<br />

Optimal; !- Load Distribution Scheme<br />

!- == ALL OBJECTS IN CLASS: PLANT OPERATION SCHEMES ==<br />

PlantEquipmentOperationSchemes,<br />

Hot Loop Operation, !- Name<br />

PlantEquipmentOperation:HeatingLoad, !- Control Scheme 1 Object Type<br />

Purchased Heating Only, !- Control Scheme 1 Name<br />

ON; !- Control Scheme 1 Schedule Name<br />

!- == ALL OBJECTS IN CLASS: HEATING LOAD RANGE BASED<br />

OPERATION ==<br />

PlantEquipmentOperation:HeatingLoad,<br />

Purchased Heating Only, !- Name<br />

0, !- Load Range 1 Lower Limit {W}<br />

1000000, !- Load Range 1 Upper Limit {W}<br />

heating plant; !- Priority Control 1 Equipment List Name<br />

!- == ALL OBJECTS IN CLASS: PLANT EQUIPMENT LIST ==<br />

PlantEquipmentList,<br />

heating plant, !- Name<br />

DistrictHeating, !- Equipment 1 Object Type<br />

Purchased Heating; !- Equipment 1 Name<br />

!- == ALL OBJECTS IN CLASS: SPLITTER ==<br />

Connector:Splitter,<br />

Heating Supply Splitter, !- Name<br />

Heating Supply Inlet Branch, !- Inlet Branch Name<br />

Heating Purchased Hot Water Branch, !- Outlet Branch 1 Name<br />

Heating Supply Bypass Branch; !- Outlet Branch 2 Name<br />

Connector:Splitter,<br />

Zones HW Splitter, !- Name<br />

ZonesHWInletBranch, !- Inlet Branch Name<br />

Zone1HWBranch, !- Outlet Branch 1 Name<br />

Zone2HWBranch, !- Outlet Branch 2 Name<br />

Zone3HWBranch, !- Outlet Branch 3 Name<br />

Zone4HWBranch, !- Outlet Branch 4 Name<br />

Zone5HWBranch, !- Outlet Branch 5 Name<br />

Zone6HWBranch, !- Outlet Branch 6 Name<br />

Zone7HWBranch, !- Outlet Branch 7 Name<br />

Zone8HWBranch, !- Outlet Branch 8 Name<br />

Zone9HWBranch, !- Outlet Branch 9 Name<br />

Zone10HWBranch, !- Outlet Branch 10 Name<br />

Zone11HWBranch, !- Outlet Branch 11 Name


Appendix 2 148<br />

Zone12HWBranch, !- Outlet Branch 12 Name<br />

Zone13HWBranch, !- Outlet Branch 13 Name<br />

Zone14HWBranch, !- Outlet Branch 14 Name<br />

Zone15HWBranch, !- Outlet Branch 15 Name<br />

Zone16HWBranch, !- Outlet Branch 16 Name<br />

Zone17HWBranch, !- Outlet Branch 17 Name<br />

Zone18HWBranch, !- Outlet Branch 18 Name<br />

Zone19HWBranch, !- Outlet Branch 19 Name<br />

ZonesHWBypassBranch; !- Outlet Branch 20 Name<br />

!- == ALL OBJECTS IN CLASS: MIXER ==<br />

Connector:Mixer,<br />

Heating Supply Mixer, !- Name<br />

Heating Supply Outlet Branch, !- Outlet Branch Name<br />

Heating Purchased Hot Water Branch, !- Inlet Branch 1 Name<br />

Heating Supply Bypass Branch; !- Inlet Branch 2 Name<br />

Connector:Mixer,<br />

Zones HW Mixer, !- Name<br />

ZonesHWOutletBranch, !- Outlet Branch Name<br />

Zone1HWBranch, !- Inlet Branch 1 Name<br />

Zone2HWBranch, !- Inlet Branch 2 Name<br />

Zone3HWBranch, !- Inlet Branch 3 Name<br />

Zone4HWBranch, !- Inlet Branch 4 Name<br />

Zone5HWBranch, !- Inlet Branch 5 Name<br />

Zone6HWBranch, !- Inlet Branch 6 Name<br />

Zone7HWBranch, !- Inlet Branch 7 Name<br />

Zone8HWBranch, !- Inlet Branch 8 Name<br />

Zone9HWBranch, !- Inlet Branch 9 Name<br />

Zone10HWBranch, !- Inlet Branch 10 Name<br />

Zone11HWBranch, !- Inlet Branch 11 Name<br />

Zone12HWBranch, !- Inlet Branch 12 Name<br />

Zone13HWBranch, !- Inlet Branch 13 Name<br />

Zone14HWBranch, !- Inlet Branch 14 Name<br />

Zone15HWBranch, !- Inlet Branch 15 Name<br />

Zone16HWBranch, !- Inlet Branch 16 Name<br />

Zone17HWBranch, !- Inlet Branch 17 Name<br />

Zone18HWBranch, !- Inlet Branch 18 Name<br />

Zone19HWBranch, !- Inlet Branch 19 Name<br />

ZonesHWBypassBranch; !- Inlet Branch 20 Name<br />

!- == ALL OBJECTS IN CLASS: OUTSIDE AIR INLET NODE LIST ==<br />

OutdoorAir:NodeList,<br />

OutsideAirInletNodes, !- Node or NodeList Name 1<br />

OutsideAirInletNodesERV; !- Node or NodeList Name 2<br />

!- == ALL OBJECTS IN CLASS: OUTSIDE AIR MIXER ==<br />

OutdoorAir:Mixer,<br />

Zone1WindACOAMixer, !- Name<br />

Zone1WindACOAMixerOutletNode, !- Mixed Air Node Name<br />

Zone1WindACOAInNode, !- Outdoor Air Stream Node Name<br />

Zone1WindACExhNode, !- Relief Air Stream Node Name<br />

Zone1WindACAirInletNode; !- Return Air Stream Node Name<br />

OutdoorAir:Mixer,<br />

Zone2WindACOAMixer, !- Name<br />

Zone2WindACOAMixerOutletNode, !- Mixed Air Node Name<br />

Zone2WindACOAInNode, !- Outdoor Air Stream Node Name<br />

Zone2WindACExhNode, !- Relief Air Stream Node Name<br />

Zone2WindACAirInletNode; !- Return Air Stream Node Name<br />

OutdoorAir:Mixer,<br />

Zone3WindACOAMixer, !- Name<br />

Zone3WindACOAMixerOutletNode, !- Mixed Air Node Name<br />

Zone3WindACOAInNode, !- Outdoor Air Stream Node Name<br />

Zone3WindACExhNode, !- Relief Air Stream Node Name<br />

Zone3WindACAirInletNode; !- Return Air Stream Node Name<br />

OutdoorAir:Mixer,<br />

Zone4WindACOAMixer, !- Name<br />

Zone4WindACOAMixerOutletNode, !- Mixed Air Node Name<br />

Zone4WindACOAInNode, !- Outdoor Air Stream Node Name<br />

Zone4WindACExhNode, !- Relief Air Stream Node Name<br />

Zone4WindACAirInletNode; !- Return Air Stream Node Name<br />

OutdoorAir:Mixer,<br />

Zone5WindACOAMixer, !- Name<br />

Zone5WindACOAMixerOutletNode, !- Mixed Air Node Name<br />

Zone5WindACOAInNode, !- Outdoor Air Stream Node Name<br />

Zone5WindACExhNode, !- Relief Air Stream Node Name<br />

Zone5WindACAirInletNode; !- Return Air Stream Node Name<br />

OutdoorAir:Mixer,<br />

Zone6WindACOAMixer, !- Name<br />

Zone6WindACOAMixerOutletNode, !- Mixed Air Node Name<br />

Zone6WindACOAInNode, !- Outdoor Air Stream Node Name<br />

Zone6WindACExhNode, !- Relief Air Stream Node Name<br />

Zone6WindACAirInletNode; !- Return Air Stream Node Name<br />

OutdoorAir:Mixer,<br />

Zone7WindACOAMixer, !- Name<br />

Zone7WindACOAMixerOutletNode, !- Mixed Air Node Name<br />

Zone7WindACOAInNode, !- Outdoor Air Stream Node Name<br />

Zone7WindACExhNode, !- Relief Air Stream Node Name<br />

Zone7WindACAirInletNode; !- Return Air Stream Node Name<br />

OutdoorAir:Mixer,<br />

Zone8WindACOAMixer, !- Name<br />

Zone8WindACOAMixerOutletNode, !- Mixed Air Node Name<br />

Zone8WindACOAInNode, !- Outdoor Air Stream Node Name<br />

Zone8WindACExhNode, !- Relief Air Stream Node Name<br />

Zone8WindACAirInletNode; !- Return Air Stream Node Name<br />

OutdoorAir:Mixer,<br />

Zone9WindACOAMixer, !- Name<br />

Zone9WindACOAMixerOutletNode, !- Mixed Air Node Name<br />

Zone9WindACOAInNode, !- Outdoor Air Stream Node Name<br />

Zone9WindACExhNode, !- Relief Air Stream Node Name<br />

Zone9WindACAirInletNode; !- Return Air Stream Node Name<br />

OutdoorAir:Mixer,<br />

Zone10WindACOAMixer, !- Name<br />

Zone10WindACOAMixerOutletNode, !- Mixed Air Node Name<br />

Zone10WindACOAInNode, !- Outdoor Air Stream Node Name<br />

Zone10WindACExhNode, !- Relief Air Stream Node Name<br />

Zone10WindACAirInletNode;!- Return Air Stream Node Name<br />

OutdoorAir:Mixer,<br />

Zone11WindACOAMixer, !- Name<br />

Zone11WindACOAMixerOutletNode, !- Mixed Air Node Name<br />

Zone11WindACOAInNode, !- Outdoor Air Stream Node Name<br />

Zone11WindACExhNode, !- Relief Air Stream Node Name<br />

Zone11WindACAirInletNode;!- Return Air Stream Node Name<br />

OutdoorAir:Mixer,<br />

Zone12WindACOAMixer, !- Name<br />

Zone12WindACOAMixerOutletNode, !- Mixed Air Node Name<br />

Zone12WindACOAInNode, !- Outdoor Air Stream Node Name<br />

Zone12WindACExhNode, !- Relief Air Stream Node Name<br />

Zone12WindACAirInletNode;!- Return Air Stream Node Name<br />

OutdoorAir:Mixer,<br />

Zone13WindACOAMixer, !- Name<br />

Zone13WindACOAMixerOutletNode, !- Mixed Air Node Name<br />

Zone13WindACOAInNode, !- Outdoor Air Stream Node Name<br />

Zone13WindACExhNode, !- Relief Air Stream Node Name<br />

Zone13WindACAirInletNode;!- Return Air Stream Node Name<br />

OutdoorAir:Mixer,<br />

Zone14WindACOAMixer, !- Name<br />

Zone14WindACOAMixerOutletNode, !- Mixed Air Node Name<br />

Zone14WindACOAInNode, !- Outdoor Air Stream Node Name<br />

Zone14WindACExhNode, !- Relief Air Stream Node Name<br />

Zone14WindACAirInletNode;!- Return Air Stream Node Name<br />

OutdoorAir:Mixer,<br />

Zone15WindACOAMixer, !- Name<br />

Zone15WindACOAMixerOutletNode, !- Mixed Air Node Name<br />

Zone15WindACOAInNode, !- Outdoor Air Stream Node Name<br />

Zone15WindACExhNode, !- Relief Air Stream Node Name<br />

Zone15WindACAirInletNode;!- Return Air Stream Node Name<br />

OutdoorAir:Mixer,


Appendix 2 149<br />

Zone16WindACOAMixer, !- Name<br />

Zone16WindACOAMixerOutletNode, !- Mixed Air Node Name<br />

Zone16WindACOAInNode, !- Outdoor Air Stream Node Name<br />

Zone16WindACExhNode, !- Relief Air Stream Node Name<br />

Zone16WindACAirInletNode;!- Return Air Stream Node Name<br />

OutdoorAir:Mixer,<br />

Zone17WindACOAMixer, !- Name<br />

Zone17WindACOAMixerOutletNode, !- Mixed Air Node Name<br />

Zone17WindACOAInNode, !- Outdoor Air Stream Node Name<br />

Zone17WindACExhNode, !- Relief Air Stream Node Name<br />

Zone17WindACAirInletNode;!- Return Air Stream Node Name<br />

OutdoorAir:Mixer,<br />

Zone18WindACOAMixer, !- Name<br />

Zone18WindACOAMixerOutletNode, !- Mixed Air Node Name<br />

Zone18WindACOAInNode, !- Outdoor Air Stream Node Name<br />

Zone18WindACExhNode, !- Relief Air Stream Node Name<br />

Zone18WindACAirInletNode;!- Return Air Stream Node Name<br />

OutdoorAir:Mixer,<br />

Zone19WindACOAMixer, !- Name<br />

Zone19WindACOAMixerOutletNode, !- Mixed Air Node Name<br />

Zone19WindACOAInNode, !- Outdoor Air Stream Node Name<br />

Zone19WindACExhNode, !- Relief Air Stream Node Name<br />

Zone19WindACAirInletNode;!- Return Air Stream Node Name<br />

!- == ALL OBJECTS IN CLASS: SET POINT MANAGER:SCHEDULED ==<br />

SetpointManager:Scheduled,<br />

Hot Water Loop Setpoint Manager, !- Name<br />

Temperature, !- Control Variable<br />

HW Loop Temp Schedule, !- Schedule Name<br />

Hot Water Loop Setpoint Node List; !- Setpoint Node or NodeList Name<br />

SetpointManager:Scheduled,<br />

Heat Exchanger Supply Air Temp Manager, !- Name<br />

Temperature, !- Control Variable<br />

Heat Exchanger Supply Air Temp Sch, !- Schedule Name<br />

Heat Exchanger Supply Air Nodes; !- Setpoint Node or NodeList Name<br />

SetpointManager:Scheduled,<br />

Heat Exchanger Supply Air Temp Manager HR, !- Name<br />

Temperature, !- Control Variable<br />

Heat Exchanger Supply Air Temp Sch, !- Schedule Name<br />

Heat Exchanger Supply Air Nodes HR; !- Setpoint Node or NodeList Name<br />

!- == ALL OBJECTS IN CLASS: CONTROLLER:STAND ALONE ERV ==<br />

ZoneHVAC:EnergyRecoveryVentilator:Controller,<br />

ERV OA Controller 1, !- Name<br />

19., !- Temperature High Limit {C}<br />

14., !- Temperature Low Limit {C}<br />

, !- Enthalpy High Limit {J/kg}<br />

, !- Dewpoint Temperature Limit {C}<br />

, !- Electronic Enthalpy Limit Curve Name<br />

NoExhaustAirTemperatureLimit, !- Exhaust Air Temperature Limit<br />

NoExhaustAirEnthalpyLimit; !- Exhaust Air Enthalpy Limit<br />

ZoneHVAC:EnergyRecoveryVentilator:Controller,<br />

ERV OA Controller 2, !- Name<br />

19., !- Temperature High Limit {C}<br />

14., !- Temperature Low Limit {C}<br />

, !- Enthalpy High Limit {J/kg}<br />

, !- Dewpoint Temperature Limit {C}<br />

, !- Electronic Enthalpy Limit Curve Name<br />

NoExhaustAirTemperatureLimit, !- Exhaust Air Temperature Limit<br />

NoExhaustAirEnthalpyLimit; !- Exhaust Air Enthalpy Limit<br />

ZoneHVAC:EnergyRecoveryVentilator:Controller,<br />

ERV OA Controller 3, !- Name<br />

19., !- Temperature High Limit {C}<br />

14., !- Temperature Low Limit {C}<br />

, !- Enthalpy High Limit {J/kg}<br />

, !- Dewpoint Temperature Limit {C}<br />

, !- Electronic Enthalpy Limit Curve Name<br />

NoExhaustAirTemperatureLimit, !- Exhaust Air Temperature Limit<br />

NoExhaustAirEnthalpyLimit; !- Exhaust Air Enthalpy Limit<br />

ZoneHVAC:EnergyRecoveryVentilator:Controller,<br />

ERV OA Controller 4, !- Name<br />

19., !- Temperature High Limit {C}<br />

14., !- Temperature Low Limit {C}<br />

, !- Enthalpy High Limit {J/kg}<br />

, !- Dewpoint Temperature Limit {C}<br />

, !- Electronic Enthalpy Limit Curve Name<br />

NoExhaustAirTemperatureLimit, !- Exhaust Air Temperature Limit<br />

NoExhaustAirEnthalpyLimit; !- Exhaust Air Enthalpy Limit<br />

ZoneHVAC:EnergyRecoveryVentilator:Controller,<br />

ERV OA Controller 5, !- Name<br />

19., !- Temperature High Limit {C}<br />

14., !- Temperature Low Limit {C}<br />

, !- Enthalpy High Limit {J/kg}<br />

, !- Dewpoint Temperature Limit {C}<br />

, !- Electronic Enthalpy Limit Curve Name<br />

NoExhaustAirTemperatureLimit, !- Exhaust Air Temperature Limit<br />

NoExhaustAirEnthalpyLimit; !- Exhaust Air Enthalpy Limit<br />

ZoneHVAC:EnergyRecoveryVentilator:Controller,<br />

ERV OA Controller 6, !- Name<br />

19., !- Temperature High Limit {C}<br />

14., !- Temperature Low Limit {C}<br />

, !- Enthalpy High Limit {J/kg}<br />

, !- Dewpoint Temperature Limit {C}<br />

, !- Electronic Enthalpy Limit Curve Name<br />

NoExhaustAirTemperatureLimit, !- Exhaust Air Temperature Limit<br />

NoExhaustAirEnthalpyLimit; !- Exhaust Air Enthalpy Limit<br />

ZoneHVAC:EnergyRecoveryVentilator:Controller,<br />

ERV OA Controller 7, !- Name<br />

19., !- Temperature High Limit {C}<br />

14., !- Temperature Low Limit {C}<br />

, !- Enthalpy High Limit {J/kg}<br />

, !- Dewpoint Temperature Limit {C}<br />

, !- Electronic Enthalpy Limit Curve Name<br />

NoExhaustAirTemperatureLimit, !- Exhaust Air Temperature Limit<br />

NoExhaustAirEnthalpyLimit; !- Exhaust Air Enthalpy Limit<br />

ZoneHVAC:EnergyRecoveryVentilator:Controller,<br />

ERV OA Controller 8, !- Name<br />

19., !- Temperature High Limit {C}<br />

14., !- Temperature Low Limit {C}<br />

, !- Enthalpy High Limit {J/kg}<br />

, !- Dewpoint Temperature Limit {C}<br />

, !- Electronic Enthalpy Limit Curve Name<br />

NoExhaustAirTemperatureLimit, !- Exhaust Air Temperature Limit<br />

NoExhaustAirEnthalpyLimit; !- Exhaust Air Enthalpy Limit<br />

ZoneHVAC:EnergyRecoveryVentilator:Controller,<br />

ERV OA Controller 9, !- Name<br />

19., !- Temperature High Limit {C}<br />

14., !- Temperature Low Limit {C}<br />

, !- Enthalpy High Limit {J/kg}<br />

, !- Dewpoint Temperature Limit {C}<br />

, !- Electronic Enthalpy Limit Curve Name<br />

NoExhaustAirTemperatureLimit, !- Exhaust Air Temperature Limit<br />

NoExhaustAirEnthalpyLimit; !- Exhaust Air Enthalpy Limit<br />

ZoneHVAC:EnergyRecoveryVentilator:Controller,<br />

ERV OA Controller 10, !- Name<br />

19., !- Temperature High Limit {C}<br />

14., !- Temperature Low Limit {C}<br />

, !- Enthalpy High Limit {J/kg}<br />

, !- Dewpoint Temperature Limit {C}<br />

, !- Electronic Enthalpy Limit Curve Name<br />

NoExhaustAirTemperatureLimit, !- Exhaust Air Temperature Limit<br />

NoExhaustAirEnthalpyLimit; !- Exhaust Air Enthalpy Limit<br />

ZoneHVAC:EnergyRecoveryVentilator:Controller,<br />

ERV OA Controller 11, !- Name<br />

19., !- Temperature High Limit {C}<br />

14., !- Temperature Low Limit {C}<br />

, !- Enthalpy High Limit {J/kg}<br />

, !- Dewpoint Temperature Limit {C}<br />

, !- Electronic Enthalpy Limit Curve Name


Appendix 2 150<br />

NoExhaustAirTemperatureLimit, !- Exhaust Air Temperature Limit<br />

NoExhaustAirEnthalpyLimit; !- Exhaust Air Enthalpy Limit<br />

ZoneHVAC:EnergyRecoveryVentilator:Controller,<br />

ERV OA Controller 12, !- Name<br />

19., !- Temperature High Limit {C}<br />

14., !- Temperature Low Limit {C}<br />

, !- Enthalpy High Limit {J/kg}<br />

, !- Dewpoint Temperature Limit {C}<br />

, !- Electronic Enthalpy Limit Curve Name<br />

NoExhaustAirTemperatureLimit, !- Exhaust Air Temperature Limit<br />

NoExhaustAirEnthalpyLimit; !- Exhaust Air Enthalpy Limit<br />

ZoneHVAC:EnergyRecoveryVentilator:Controller,<br />

ERV OA Controller 13, !- Name<br />

19., !- Temperature High Limit {C}<br />

14., !- Temperature Low Limit {C}<br />

, !- Enthalpy High Limit {J/kg}<br />

, !- Dewpoint Temperature Limit {C}<br />

, !- Electronic Enthalpy Limit Curve Name<br />

NoExhaustAirTemperatureLimit, !- Exhaust Air Temperature Limit<br />

NoExhaustAirEnthalpyLimit; !- Exhaust Air Enthalpy Limit<br />

ZoneHVAC:EnergyRecoveryVentilator:Controller,<br />

ERV OA Controller 14, !- Name<br />

19., !- Temperature High Limit {C}<br />

14., !- Temperature Low Limit {C}<br />

, !- Enthalpy High Limit {J/kg}<br />

, !- Dewpoint Temperature Limit {C}<br />

, !- Electronic Enthalpy Limit Curve Name<br />

NoExhaustAirTemperatureLimit, !- Exhaust Air Temperature Limit<br />

NoExhaustAirEnthalpyLimit; !- Exhaust Air Enthalpy Limit<br />

ZoneHVAC:EnergyRecoveryVentilator:Controller,<br />

ERV OA Controller 15, !- Name<br />

19., !- Temperature High Limit {C}<br />

14., !- Temperature Low Limit {C}<br />

, !- Enthalpy High Limit {J/kg}<br />

, !- Dewpoint Temperature Limit {C}<br />

, !- Electronic Enthalpy Limit Curve Name<br />

NoExhaustAirTemperatureLimit, !- Exhaust Air Temperature Limit<br />

NoExhaustAirEnthalpyLimit; !- Exhaust Air Enthalpy Limit<br />

ZoneHVAC:EnergyRecoveryVentilator:Controller,<br />

ERV OA Controller 16, !- Name<br />

19., !- Temperature High Limit {C}<br />

14., !- Temperature Low Limit {C}<br />

, !- Enthalpy High Limit {J/kg}<br />

, !- Dewpoint Temperature Limit {C}<br />

, !- Electronic Enthalpy Limit Curve Name<br />

NoExhaustAirTemperatureLimit, !- Exhaust Air Temperature Limit<br />

NoExhaustAirEnthalpyLimit; !- Exhaust Air Enthalpy Limit<br />

ZoneHVAC:EnergyRecoveryVentilator:Controller,<br />

ERV OA Controller 17, !- Name<br />

19., !- Temperature High Limit {C}<br />

14., !- Temperature Low Limit {C}<br />

, !- Enthalpy High Limit {J/kg}<br />

, !- Dewpoint Temperature Limit {C}<br />

, !- Electronic Enthalpy Limit Curve Name<br />

NoExhaustAirTemperatureLimit, !- Exhaust Air Temperature Limit<br />

NoExhaustAirEnthalpyLimit; !- Exhaust Air Enthalpy Limit<br />

ZoneHVAC:EnergyRecoveryVentilator:Controller,<br />

ERV OA Controller 18, !- Name<br />

19., !- Temperature High Limit {C}<br />

14., !- Temperature Low Limit {C}<br />

, !- Enthalpy High Limit {J/kg}<br />

, !- Dewpoint Temperature Limit {C}<br />

, !- Electronic Enthalpy Limit Curve Name<br />

NoExhaustAirTemperatureLimit, !- Exhaust Air Temperature Limit<br />

NoExhaustAirEnthalpyLimit; !- Exhaust Air Enthalpy Limit<br />

ZoneHVAC:EnergyRecoveryVentilator:Controller,<br />

ERV OA Controller 19, !- Name<br />

19., !- Temperature High Limit {C}<br />

14., !- Temperature Low Limit {C}<br />

, !- Enthalpy High Limit {J/kg}<br />

, !- Dewpoint Temperature Limit {C}<br />

, !- Electronic Enthalpy Limit Curve Name<br />

NoExhaustAirTemperatureLimit, !- Exhaust Air Temperature Limit<br />

NoExhaustAirEnthalpyLimit; !- Exhaust Air Enthalpy Limit<br />

!- == ALL OBJECTS IN CLASS: CONTROLLED ZONE EQUIP<br />

CONFIGURATION ==<br />

ZoneHVAC:EquipmentConnections,<br />

OG1, !- Zone Name<br />

Zone1Equipment, !- Zone Conditioning Equipment List Name<br />

Zone1Inlets, !- Zone Air Inlet Node or NodeList Name<br />

Zone1Exhausts, !- Zone Air Exhaust Node or NodeList Name<br />

Zone 1 Node, !- Zone Air Node Name<br />

Zone 1 Outlet Node; !- Zone Return Air Node Name<br />

ZoneHVAC:EquipmentConnections,<br />

OG2, !- Zone Name<br />

Zone2Equipment, !- Zone Conditioning Equipment List Name<br />

Zone2Inlets, !- Zone Air Inlet Node or NodeList Name<br />

Zone2Exhausts, !- Zone Air Exhaust Node or NodeList Name<br />

Zone 2 Node, !- Zone Air Node Name<br />

Zone 2 Outlet Node; !- Zone Return Air Node Name<br />

ZoneHVAC:EquipmentConnections,<br />

OG3, !- Zone Name<br />

Zone3Equipment, !- Zone Conditioning Equipment List Name<br />

Zone3Inlets, !- Zone Air Inlet Node or NodeList Name<br />

Zone3Exhausts, !- Zone Air Exhaust Node or NodeList Name<br />

Zone 3 Node, !- Zone Air Node Name<br />

Zone 3 Outlet Node; !- Zone Return Air Node Name<br />

ZoneHVAC:EquipmentConnections,<br />

OG4, !- Zone Name<br />

Zone4Equipment, !- Zone Conditioning Equipment List Name<br />

Zone4Inlets, !- Zone Air Inlet Node or NodeList Name<br />

Zone4Exhausts, !- Zone Air Exhaust Node or NodeList Name<br />

Zone 4 Node, !- Zone Air Node Name<br />

Zone 4 Outlet Node; !- Zone Return Air Node Name<br />

ZoneHVAC:EquipmentConnections,<br />

EG1, !- Zone Name<br />

Zone5Equipment, !- Zone Conditioning Equipment List Name<br />

Zone5Inlets, !- Zone Air Inlet Node or NodeList Name<br />

Zone5Exhausts, !- Zone Air Exhaust Node or NodeList Name<br />

Zone 5 Node, !- Zone Air Node Name<br />

Zone 5 Outlet Node; !- Zone Return Air Node Name<br />

ZoneHVAC:EquipmentConnections,<br />

EG2, !- Zone Name<br />

Zone6Equipment, !- Zone Conditioning Equipment List Name<br />

Zone6Inlets, !- Zone Air Inlet Node or NodeList Name<br />

Zone6Exhausts, !- Zone Air Exhaust Node or NodeList Name<br />

Zone 6 Node, !- Zone Air Node Name<br />

Zone 6 Outlet Node; !- Zone Return Air Node Name<br />

ZoneHVAC:EquipmentConnections,<br />

EG3, !- Zone Name<br />

Zone7Equipment, !- Zone Conditioning Equipment List Name<br />

Zone7Inlets, !- Zone Air Inlet Node or NodeList Name<br />

Zone7Exhausts, !- Zone Air Exhaust Node or NodeList Name<br />

Zone 7 Node, !- Zone Air Node Name<br />

Zone 7 Outlet Node; !- Zone Return Air Node Name<br />

ZoneHVAC:EquipmentConnections,<br />

EG4, !- Zone Name<br />

Zone8Equipment, !- Zone Conditioning Equipment List Name<br />

Zone8Inlets, !- Zone Air Inlet Node or NodeList Name<br />

Zone8Exhausts, !- Zone Air Exhaust Node or NodeList Name<br />

Zone 8 Node, !- Zone Air Node Name<br />

Zone 8 Outlet Node; !- Zone Return Air Node Name<br />

ZoneHVAC:EquipmentConnections,<br />

OG1-2, !- Zone Name<br />

Zone9Equipment, !- Zone Conditioning Equipment List Name<br />

Zone9Inlets, !- Zone Air Inlet Node or NodeList Name<br />

Zone9Exhausts, !- Zone Air Exhaust Node or NodeList Name<br />

Zone 9 Node, !- Zone Air Node Name


Appendix 2 151<br />

Zone 9 Outlet Node; !- Zone Return Air Node Name<br />

ZoneHVAC:EquipmentConnections,<br />

OG2-2, !- Zone Name<br />

Zone10Equipment, !- Zone Conditioning Equipment List Name<br />

Zone10Inlets, !- Zone Air Inlet Node or NodeList Name<br />

Zone10Exhausts, !- Zone Air Exhaust Node or NodeList Name<br />

Zone 10 Node, !- Zone Air Node Name<br />

Zone 10 Outlet Node; !- Zone Return Air Node Name<br />

ZoneHVAC:EquipmentConnections,<br />

OG3-2, !- Zone Name<br />

Zone11Equipment, !- Zone Conditioning Equipment List Name<br />

Zone11Inlets, !- Zone Air Inlet Node or NodeList Name<br />

Zone11Exhausts, !- Zone Air Exhaust Node or NodeList Name<br />

Zone 11 Node, !- Zone Air Node Name<br />

Zone 11 Outlet Node; !- Zone Return Air Node Name<br />

ZoneHVAC:EquipmentConnections,<br />

OG4-2, !- Zone Name<br />

Zone12Equipment, !- Zone Conditioning Equipment List Name<br />

Zone12Inlets, !- Zone Air Inlet Node or NodeList Name<br />

Zone12Exhausts, !- Zone Air Exhaust Node or NodeList Name<br />

Zone 12 Node, !- Zone Air Node Name<br />

Zone 12 Outlet Node; !- Zone Return Air Node Name<br />

ZoneHVAC:EquipmentConnections,<br />

OG1-3, !- Zone Name<br />

Zone13Equipment, !- Zone Conditioning Equipment List Name<br />

Zone13Inlets, !- Zone Air Inlet Node or NodeList Name<br />

Zone13Exhausts, !- Zone Air Exhaust Node or NodeList Name<br />

Zone 13 Node, !- Zone Air Node Name<br />

Zone 13 Outlet Node; !- Zone Return Air Node Name<br />

ZoneHVAC:EquipmentConnections,<br />

OG2-3, !- Zone Name<br />

Zone14Equipment, !- Zone Conditioning Equipment List Name<br />

Zone14Inlets, !- Zone Air Inlet Node or NodeList Name<br />

Zone14Exhausts, !- Zone Air Exhaust Node or NodeList Name<br />

Zone 14 Node, !- Zone Air Node Name<br />

Zone 14 Outlet Node; !- Zone Return Air Node Name<br />

ZoneHVAC:EquipmentConnections,<br />

OG3-3, !- Zone Name<br />

Zone15Equipment, !- Zone Conditioning Equipment List Name<br />

Zone15Inlets, !- Zone Air Inlet Node or NodeList Name<br />

Zone15Exhausts, !- Zone Air Exhaust Node or NodeList Name<br />

Zone 15 Node, !- Zone Air Node Name<br />

Zone 15 Outlet Node; !- Zone Return Air Node Name<br />

ZoneHVAC:EquipmentConnections,<br />

OG4-3, !- Zone Name<br />

Zone16Equipment, !- Zone Conditioning Equipment List Name<br />

Zone16Inlets, !- Zone Air Inlet Node or NodeList Name<br />

Zone16Exhausts, !- Zone Air Exhaust Node or NodeList Name<br />

Zone 16 Node, !- Zone Air Node Name<br />

Zone 16 Outlet Node; !- Zone Return Air Node Name<br />

ZoneHVAC:EquipmentConnections,<br />

DG1, !- Zone Name<br />

Zone17Equipment, !- Zone Conditioning Equipment List Name<br />

Zone17Inlets, !- Zone Air Inlet Node or NodeList Name<br />

Zone17Exhausts, !- Zone Air Exhaust Node or NodeList Name<br />

Zone 17 Node, !- Zone Air Node Name<br />

Zone 17 Outlet Node; !- Zone Return Air Node Name<br />

ZoneHVAC:EquipmentConnections,<br />

DG3, !- Zone Name<br />

Zone18Equipment, !- Zone Conditioning Equipment List Name<br />

Zone18Inlets, !- Zone Air Inlet Node or NodeList Name<br />

Zone18Exhausts, !- Zone Air Exhaust Node or NodeList Name<br />

Zone 18 Node, !- Zone Air Node Name<br />

Zone 18 Outlet Node; !- Zone Return Air Node Name<br />

ZoneHVAC:EquipmentConnections,<br />

DG4, !- Zone Name<br />

Zone19Equipment, !- Zone Conditioning Equipment List Name<br />

Zone19Inlets, !- Zone Air Inlet Node or NodeList Name<br />

Zone19Exhausts, !- Zone Air Exhaust Node or NodeList Name<br />

Zone 19 Node, !- Zone Air Node Name<br />

Zone 19 Outlet Node; !- Zone Return Air Node Name<br />

!- == ALL OBJECTS IN CLASS: ZONE EQUIPMENT LIST ==<br />

ZoneHVAC:EquipmentList,<br />

Zone1Equipment, !- Name<br />

ZoneHVAC:EnergyRecoveryVentilator, !- Zone Equipment 1 Object Type<br />

St<strong>and</strong> Alone ERV 1, !- Zone Equipment 1 Name<br />

1, !- Zone Equipment 1 Cooling Priority<br />

1, !- Zone Equipment 1 Heating Priority<br />

ZoneHVAC:WindowAirConditioner, !- Zone Equipment 2 Object Type<br />

Zone1WindAC, !- Zone Equipment 2 Name<br />

2, !- Zone Equipment 2 Cooling Priority<br />

3, !- Zone Equipment 2 Heating Priority<br />

ZoneHVAC:Baseboard:Convective:Water, !- Zone Equipment 3 Object Type<br />

Zone1Baseboard, !- Zone Equipment 3 Name<br />

3, !- Zone Equipment 3 Cooling Priority<br />

2; !- Zone Equipment 3 Heating Priority<br />

ZoneHVAC:EquipmentList,<br />

Zone2Equipment, !- Name<br />

ZoneHVAC:EnergyRecoveryVentilator, !- Zone Equipment 1 Object Type<br />

St<strong>and</strong> Alone ERV 2, !- Zone Equipment 1 Name<br />

1, !- Zone Equipment 1 Cooling Priority<br />

1, !- Zone Equipment 1 Heating Priority<br />

ZoneHVAC:WindowAirConditioner, !- Zone Equipment 2 Object Type<br />

Zone2WindAC, !- Zone Equipment 2 Name<br />

2, !- Zone Equipment 2 Cooling Priority<br />

3, !- Zone Equipment 2 Heating Priority<br />

ZoneHVAC:Baseboard:Convective:Water, !- Zone Equipment 3 Object Type<br />

Zone2Baseboard, !- Zone Equipment 3 Name<br />

3, !- Zone Equipment 3 Cooling Priority<br />

2; !- Zone Equipment 3 Heating Priority<br />

ZoneHVAC:EquipmentList,<br />

Zone3Equipment, !- Name<br />

ZoneHVAC:EnergyRecoveryVentilator, !- Zone Equipment 1 Object Type<br />

St<strong>and</strong> Alone ERV 3, !- Zone Equipment 1 Name<br />

1, !- Zone Equipment 1 Cooling Priority<br />

1, !- Zone Equipment 1 Heating Priority<br />

ZoneHVAC:WindowAirConditioner, !- Zone Equipment 2 Object Type<br />

Zone3WindAC, !- Zone Equipment 2 Name<br />

2, !- Zone Equipment 2 Cooling Priority<br />

3, !- Zone Equipment 2 Heating Priority<br />

ZoneHVAC:Baseboard:Convective:Water, !- Zone Equipment 3 Object Type<br />

Zone3Baseboard, !- Zone Equipment 3 Name<br />

3, !- Zone Equipment 3 Cooling Priority<br />

2; !- Zone Equipment 3 Heating Priority<br />

ZoneHVAC:EquipmentList,<br />

Zone4Equipment, !- Name<br />

ZoneHVAC:EnergyRecoveryVentilator, !- Zone Equipment 1 Object Type<br />

St<strong>and</strong> Alone ERV 4, !- Zone Equipment 1 Name<br />

1, !- Zone Equipment 1 Cooling Priority<br />

1, !- Zone Equipment 1 Heating Priority<br />

ZoneHVAC:WindowAirConditioner, !- Zone Equipment 2 Object Type<br />

Zone4WindAC, !- Zone Equipment 2 Name<br />

2, !- Zone Equipment 2 Cooling Priority<br />

3, !- Zone Equipment 2 Heating Priority<br />

ZoneHVAC:Baseboard:Convective:Water, !- Zone Equipment 3 Object Type<br />

Zone4Baseboard, !- Zone Equipment 3 Name<br />

3, !- Zone Equipment 3 Cooling Priority<br />

2; !- Zone Equipment 3 Heating Priority<br />

ZoneHVAC:EquipmentList,<br />

Zone5Equipment, !- Name<br />

ZoneHVAC:EnergyRecoveryVentilator, !- Zone Equipment 1 Object Type<br />

St<strong>and</strong> Alone ERV 5, !- Zone Equipment 1 Name<br />

1, !- Zone Equipment 1 Cooling Priority<br />

1, !- Zone Equipment 1 Heating Priority<br />

ZoneHVAC:WindowAirConditioner, !- Zone Equipment 2 Object Type<br />

Zone5WindAC, !- Zone Equipment 2 Name<br />

2, !- Zone Equipment 2 Cooling Priority<br />

3, !- Zone Equipment 2 Heating Priority<br />

ZoneHVAC:Baseboard:Convective:Water, !- Zone Equipment 3 Object Type<br />

Zone5Baseboard, !- Zone Equipment 3 Name


Appendix 2 152<br />

3, !- Zone Equipment 3 Cooling Priority<br />

2; !- Zone Equipment 3 Heating Priority<br />

ZoneHVAC:EquipmentList,<br />

Zone6Equipment, !- Name<br />

ZoneHVAC:EnergyRecoveryVentilator, !- Zone Equipment 1 Object Type<br />

St<strong>and</strong> Alone ERV 6, !- Zone Equipment 1 Name<br />

1, !- Zone Equipment 1 Cooling Priority<br />

1, !- Zone Equipment 1 Heating Priority<br />

ZoneHVAC:WindowAirConditioner, !- Zone Equipment 2 Object Type<br />

Zone6WindAC, !- Zone Equipment 2 Name<br />

2, !- Zone Equipment 2 Cooling Priority<br />

3, !- Zone Equipment 2 Heating Priority<br />

ZoneHVAC:Baseboard:Convective:Water, !- Zone Equipment 3 Object Type<br />

Zone6Baseboard, !- Zone Equipment 3 Name<br />

3, !- Zone Equipment 3 Cooling Priority<br />

2; !- Zone Equipment 3 Heating Priority<br />

ZoneHVAC:EquipmentList,<br />

Zone7Equipment, !- Name<br />

ZoneHVAC:EnergyRecoveryVentilator, !- Zone Equipment 1 Object Type<br />

St<strong>and</strong> Alone ERV 7, !- Zone Equipment 1 Name<br />

1, !- Zone Equipment 1 Cooling Priority<br />

1, !- Zone Equipment 1 Heating Priority<br />

ZoneHVAC:WindowAirConditioner, !- Zone Equipment 2 Object Type<br />

Zone7WindAC, !- Zone Equipment 2 Name<br />

2, !- Zone Equipment 2 Cooling Priority<br />

3, !- Zone Equipment 2 Heating Priority<br />

ZoneHVAC:Baseboard:Convective:Water, !- Zone Equipment 3 Object Type<br />

Zone7Baseboard, !- Zone Equipment 3 Name<br />

3, !- Zone Equipment 3 Cooling Priority<br />

2; !- Zone Equipment 3 Heating Priority<br />

ZoneHVAC:EquipmentList,<br />

Zone8Equipment, !- Name<br />

ZoneHVAC:EnergyRecoveryVentilator, !- Zone Equipment 1 Object Type<br />

St<strong>and</strong> Alone ERV 8, !- Zone Equipment 1 Name<br />

1, !- Zone Equipment 1 Cooling Priority<br />

1, !- Zone Equipment 1 Heating Priority<br />

ZoneHVAC:WindowAirConditioner, !- Zone Equipment 2 Object Type<br />

Zone8WindAC, !- Zone Equipment 2 Name<br />

2, !- Zone Equipment 2 Cooling Priority<br />

3, !- Zone Equipment 2 Heating Priority<br />

ZoneHVAC:Baseboard:Convective:Water, !- Zone Equipment 3 Object Type<br />

Zone8Baseboard, !- Zone Equipment 3 Name<br />

3, !- Zone Equipment 3 Cooling Priority<br />

2; !- Zone Equipment 3 Heating Priority<br />

ZoneHVAC:EquipmentList,<br />

Zone9Equipment, !- Name<br />

ZoneHVAC:EnergyRecoveryVentilator, !- Zone Equipment 1 Object Type<br />

St<strong>and</strong> Alone ERV 9, !- Zone Equipment 1 Name<br />

1, !- Zone Equipment 1 Cooling Priority<br />

1, !- Zone Equipment 1 Heating Priority<br />

ZoneHVAC:WindowAirConditioner, !- Zone Equipment 2 Object Type<br />

Zone9WindAC, !- Zone Equipment 2 Name<br />

2, !- Zone Equipment 2 Cooling Priority<br />

3, !- Zone Equipment 2 Heating Priority<br />

ZoneHVAC:Baseboard:Convective:Water, !- Zone Equipment 3 Object Type<br />

Zone9Baseboard, !- Zone Equipment 3 Name<br />

3, !- Zone Equipment 3 Cooling Priority<br />

2; !- Zone Equipment 3 Heating Priority<br />

ZoneHVAC:EquipmentList,<br />

Zone10Equipment, !- Name<br />

ZoneHVAC:EnergyRecoveryVentilator, !- Zone Equipment 1 Object Type<br />

St<strong>and</strong> Alone ERV 10, !- Zone Equipment 1 Name<br />

1, !- Zone Equipment 1 Cooling Priority<br />

1, !- Zone Equipment 1 Heating Priority<br />

ZoneHVAC:WindowAirConditioner, !- Zone Equipment 2 Object Type<br />

Zone10WindAC, !- Zone Equipment 2 Name<br />

2, !- Zone Equipment 2 Cooling Priority<br />

3, !- Zone Equipment 2 Heating Priority<br />

ZoneHVAC:Baseboard:Convective:Water, !- Zone Equipment 3 Object Type<br />

Zone10Baseboard, !- Zone Equipment 3 Name<br />

3, !- Zone Equipment 3 Cooling Priority<br />

2; !- Zone Equipment 3 Heating Priority<br />

ZoneHVAC:EquipmentList,<br />

Zone11Equipment, !- Name<br />

ZoneHVAC:EnergyRecoveryVentilator, !- Zone Equipment 1 Object Type<br />

St<strong>and</strong> Alone ERV 11, !- Zone Equipment 1 Name<br />

1, !- Zone Equipment 1 Cooling Priority<br />

1, !- Zone Equipment 1 Heating Priority<br />

ZoneHVAC:WindowAirConditioner, !- Zone Equipment 2 Object Type<br />

Zone11WindAC, !- Zone Equipment 2 Name<br />

2, !- Zone Equipment 2 Cooling Priority<br />

3, !- Zone Equipment 2 Heating Priority<br />

ZoneHVAC:Baseboard:Convective:Water, !- Zone Equipment 3 Object Type<br />

Zone11Baseboard, !- Zone Equipment 3 Name<br />

3, !- Zone Equipment 3 Cooling Priority<br />

2; !- Zone Equipment 3 Heating Priority<br />

ZoneHVAC:EquipmentList,<br />

Zone12Equipment, !- Name<br />

ZoneHVAC:EnergyRecoveryVentilator, !- Zone Equipment 1 Object Type<br />

St<strong>and</strong> Alone ERV 12, !- Zone Equipment 1 Name<br />

1, !- Zone Equipment 1 Cooling Priority<br />

1, !- Zone Equipment 1 Heating Priority<br />

ZoneHVAC:WindowAirConditioner, !- Zone Equipment 2 Object Type<br />

Zone12WindAC, !- Zone Equipment 2 Name<br />

2, !- Zone Equipment 2 Cooling Priority<br />

3, !- Zone Equipment 2 Heating Priority<br />

ZoneHVAC:Baseboard:Convective:Water, !- Zone Equipment 3 Object Type<br />

Zone12Baseboard, !- Zone Equipment 3 Name<br />

3, !- Zone Equipment 3 Cooling Priority<br />

2; !- Zone Equipment 3 Heating Priority<br />

ZoneHVAC:EquipmentList,<br />

Zone13Equipment, !- Name<br />

ZoneHVAC:EnergyRecoveryVentilator, !- Zone Equipment 1 Object Type<br />

St<strong>and</strong> Alone ERV 13, !- Zone Equipment 1 Name<br />

1, !- Zone Equipment 1 Cooling Priority<br />

1, !- Zone Equipment 1 Heating Priority<br />

ZoneHVAC:WindowAirConditioner, !- Zone Equipment 2 Object Type<br />

Zone13WindAC, !- Zone Equipment 2 Name<br />

2, !- Zone Equipment 2 Cooling Priority<br />

3, !- Zone Equipment 2 Heating Priority<br />

ZoneHVAC:Baseboard:Convective:Water, !- Zone Equipment 3 Object Type<br />

Zone13Baseboard, !- Zone Equipment 3 Name<br />

3, !- Zone Equipment 3 Cooling Priority<br />

2; !- Zone Equipment 3 Heating Priority<br />

ZoneHVAC:EquipmentList,<br />

Zone14Equipment, !- Name<br />

ZoneHVAC:EnergyRecoveryVentilator, !- Zone Equipment 1 Object Type<br />

St<strong>and</strong> Alone ERV 14, !- Zone Equipment 1 Name<br />

1, !- Zone Equipment 1 Cooling Priority<br />

1, !- Zone Equipment 1 Heating Priority<br />

ZoneHVAC:WindowAirConditioner, !- Zone Equipment 2 Object Type<br />

Zone14WindAC, !- Zone Equipment 2 Name<br />

2, !- Zone Equipment 2 Cooling Priority<br />

3, !- Zone Equipment 2 Heating Priority<br />

ZoneHVAC:Baseboard:Convective:Water, !- Zone Equipment 3 Object Type<br />

Zone14Baseboard, !- Zone Equipment 3 Name<br />

3, !- Zone Equipment 3 Cooling Priority<br />

2; !- Zone Equipment 3 Heating Priority<br />

ZoneHVAC:EquipmentList,<br />

Zone15Equipment, !- Name<br />

ZoneHVAC:EnergyRecoveryVentilator, !- Zone Equipment 1 Object Type<br />

St<strong>and</strong> Alone ERV 15, !- Zone Equipment 1 Name<br />

1, !- Zone Equipment 1 Cooling Priority<br />

1, !- Zone Equipment 1 Heating Priority<br />

ZoneHVAC:WindowAirConditioner, !- Zone Equipment 2 Object Type<br />

Zone15WindAC, !- Zone Equipment 2 Name<br />

2, !- Zone Equipment 2 Cooling Priority<br />

3, !- Zone Equipment 2 Heating Priority<br />

ZoneHVAC:Baseboard:Convective:Water, !- Zone Equipment 3 Object Type<br />

Zone15Baseboard, !- Zone Equipment 3 Name<br />

3, !- Zone Equipment 3 Cooling Priority<br />

2; !- Zone Equipment 3 Heating Priority<br />

ZoneHVAC:EquipmentList,<br />

Zone16Equipment, !- Name<br />

ZoneHVAC:EnergyRecoveryVentilator, !- Zone Equipment 1 Object Type


Appendix 2 153<br />

St<strong>and</strong> Alone ERV 16, !- Zone Equipment 1 Name<br />

1, !- Zone Equipment 1 Cooling Priority<br />

1, !- Zone Equipment 1 Heating Priority<br />

ZoneHVAC:WindowAirConditioner, !- Zone Equipment 2 Object Type<br />

Zone16WindAC, !- Zone Equipment 2 Name<br />

2, !- Zone Equipment 2 Cooling Priority<br />

3, !- Zone Equipment 2 Heating Priority<br />

ZoneHVAC:Baseboard:Convective:Water, !- Zone Equipment 3 Object Type<br />

Zone16Baseboard, !- Zone Equipment 3 Name<br />

3, !- Zone Equipment 3 Cooling Priority<br />

2; !- Zone Equipment 3 Heating Priority<br />

ZoneHVAC:EquipmentList,<br />

Zone17Equipment, !- Name<br />

ZoneHVAC:EnergyRecoveryVentilator, !- Zone Equipment 1 Object Type<br />

St<strong>and</strong> Alone ERV 17, !- Zone Equipment 1 Name<br />

1, !- Zone Equipment 1 Cooling Priority<br />

1, !- Zone Equipment 1 Heating Priority<br />

ZoneHVAC:WindowAirConditioner, !- Zone Equipment 2 Object Type<br />

Zone17WindAC, !- Zone Equipment 2 Name<br />

2, !- Zone Equipment 2 Cooling Priority<br />

3, !- Zone Equipment 2 Heating Priority<br />

ZoneHVAC:Baseboard:Convective:Water, !- Zone Equipment 3 Object Type<br />

Zone17Baseboard, !- Zone Equipment 3 Name<br />

3, !- Zone Equipment 3 Cooling Priority<br />

2; !- Zone Equipment 3 Heating Priority<br />

ZoneHVAC:EquipmentList,<br />

Zone18Equipment, !- Name<br />

ZoneHVAC:EnergyRecoveryVentilator, !- Zone Equipment 1 Object Type<br />

St<strong>and</strong> Alone ERV 18, !- Zone Equipment 1 Name<br />

1, !- Zone Equipment 1 Cooling Priority<br />

1, !- Zone Equipment 1 Heating Priority<br />

ZoneHVAC:WindowAirConditioner, !- Zone Equipment 2 Object Type<br />

Zone18WindAC, !- Zone Equipment 2 Name<br />

2, !- Zone Equipment 2 Cooling Priority<br />

3, !- Zone Equipment 2 Heating Priority<br />

ZoneHVAC:Baseboard:Convective:Water, !- Zone Equipment 3 Object Type<br />

Zone18Baseboard, !- Zone Equipment 3 Name<br />

3, !- Zone Equipment 3 Cooling Priority<br />

2; !- Zone Equipment 3 Heating Priority<br />

ZoneHVAC:EquipmentList,<br />

Zone19Equipment, !- Name<br />

ZoneHVAC:EnergyRecoveryVentilator, !- Zone Equipment 1 Object Type<br />

St<strong>and</strong> Alone ERV 19, !- Zone Equipment 1 Name<br />

1, !- Zone Equipment 1 Cooling Priority<br />

1, !- Zone Equipment 1 Heating Priority<br />

ZoneHVAC:WindowAirConditioner, !- Zone Equipment 2 Object Type<br />

Zone19WindAC, !- Zone Equipment 2 Name<br />

2, !- Zone Equipment 2 Cooling Priority<br />

3, !- Zone Equipment 2 Heating Priority<br />

ZoneHVAC:Baseboard:Convective:Water, !- Zone Equipment 3 Object Type<br />

Zone19Baseboard, !- Zone Equipment 3 Name<br />

3, !- Zone Equipment 3 Cooling Priority<br />

2; !- Zone Equipment 3 Heating Priority<br />

!- == ALL OBJECTS IN CLASS: AIR CONDITIONER:WINDOW:CYCLING<br />

==<br />

ZoneHVAC:WindowAirConditioner,<br />

Zone1WindAC, !- Name<br />

CoolingCoilAvailSched, !- Availability Schedule Name<br />

0.6, !- Maximum Supply Air Flow Rate {m3/s}<br />

0.0, !- Maximum Outdoor Air Flow Rate {m3/s}<br />

Zone1WindACAirInletNode, !- Air Inlet Node Name<br />

Zone1WindACAirOutletNode,!- Air Outlet Node Name<br />

Zone1WindACOAInNode, !- Outdoor Air Node Name<br />

Zone1WindACExhNode, !- Air Relief Node Name<br />

Zone1WindACOAMixer, !- Outdoor Air Mixer Name<br />

Zone1WindACFan, !- Fan Name<br />

Zone1WindACDXCoil, !- DX Cooling Coil Name<br />

Air Conditioner:Window Zone1WindAC Cycling Fan Schedule, !- Supply Air<br />

Fan Operating Mode Schedule Name<br />

BlowThrough, !- Fan Placement<br />

0.001, !- Cooling Convergence Tolerance<br />

Coil:Cooling:DX:SingleSpeed; !- Cooling Coil Object Type<br />

ZoneHVAC:WindowAirConditioner,<br />

Zone2WindAC, !- Name<br />

CoolingCoilAvailSched, !- Availability Schedule Name<br />

0.6, !- Maximum Supply Air Flow Rate {m3/s}<br />

0.0, !- Maximum Outdoor Air Flow Rate {m3/s}<br />

Zone2WindACAirInletNode, !- Air Inlet Node Name<br />

Zone2WindACAirOutletNode,!- Air Outlet Node Name<br />

Zone2WindACOAInNode, !- Outdoor Air Node Name<br />

Zone2WindACExhNode, !- Air Relief Node Name<br />

Zone2WindACOAMixer, !- Outdoor Air Mixer Name<br />

Zone2WindACFan, !- Fan Name<br />

Zone2WindACDXCoil, !- DX Cooling Coil Name<br />

Air Conditioner:Window Zone2WindAC Continuous Fan Schedule, !- Supply<br />

Air Fan Operating Mode Schedule Name<br />

BlowThrough, !- Fan Placement<br />

0.001, !- Cooling Convergence Tolerance<br />

Coil:Cooling:DX:SingleSpeed; !- Cooling Coil Object Type<br />

ZoneHVAC:WindowAirConditioner,<br />

Zone3WindAC, !- Name<br />

CoolingCoilAvailSched, !- Availability Schedule Name<br />

0.6, !- Maximum Supply Air Flow Rate {m3/s}<br />

0.0, !- Maximum Outdoor Air Flow Rate {m3/s}<br />

Zone3WindACAirInletNode, !- Air Inlet Node Name<br />

Zone3WindACAirOutletNode,!- Air Outlet Node Name<br />

Zone3WindACOAInNode, !- Outdoor Air Node Name<br />

Zone3WindACExhNode, !- Air Relief Node Name<br />

Zone3WindACOAMixer, !- Outdoor Air Mixer Name<br />

Zone3WindACFan, !- Fan Name<br />

Zone3WindACDXCoil, !- DX Cooling Coil Name<br />

Air Conditioner:Window Zone3WindAC Continuous Fan Schedule, !- Supply<br />

Air Fan Operating Mode Schedule Name<br />

DrawThrough, !- Fan Placement<br />

0.001, !- Cooling Convergence Tolerance<br />

Coil:Cooling:DX:SingleSpeed; !- Cooling Coil Object Type<br />

ZoneHVAC:WindowAirConditioner,<br />

Zone4WindAC, !- Name<br />

CoolingCoilAvailSched, !- Availability Schedule Name<br />

0.6, !- Maximum Supply Air Flow Rate {m3/s}<br />

0.0, !- Maximum Outdoor Air Flow Rate {m3/s}<br />

Zone4WindACAirInletNode, !- Air Inlet Node Name<br />

Zone4WindACAirOutletNode,!- Air Outlet Node Name<br />

Zone4WindACOAInNode, !- Outdoor Air Node Name<br />

Zone4WindACExhNode, !- Air Relief Node Name<br />

Zone4WindACOAMixer, !- Outdoor Air Mixer Name<br />

Zone4WindACFan, !- Fan Name<br />

Zone4WindACDXCoil, !- DX Cooling Coil Name<br />

Air Conditioner:Window Zone4WindAC Continuous Fan Schedule, !- Supply<br />

Air Fan Operating Mode Schedule Name<br />

DrawThrough, !- Fan Placement<br />

0.001, !- Cooling Convergence Tolerance<br />

Coil:Cooling:DX:SingleSpeed; !- Cooling Coil Object Type<br />

ZoneHVAC:WindowAirConditioner,<br />

Zone5WindAC, !- Name<br />

CoolingCoilAvailSched, !- Availability Schedule Name<br />

0.6, !- Maximum Supply Air Flow Rate {m3/s}<br />

0.0, !- Maximum Outdoor Air Flow Rate {m3/s}<br />

Zone5WindACAirInletNode, !- Air Inlet Node Name<br />

Zone5WindACAirOutletNode,!- Air Outlet Node Name<br />

Zone5WindACOAInNode, !- Outdoor Air Node Name<br />

Zone5WindACExhNode, !- Air Relief Node Name<br />

Zone5WindACOAMixer, !- Outdoor Air Mixer Name<br />

Zone5WindACFan, !- Fan Name<br />

Zone5WindACDXCoil, !- DX Cooling Coil Name<br />

Air Conditioner:Window Zone5WindAC Continuous Fan Schedule, !- Supply<br />

Air Fan Operating Mode Schedule Name<br />

DrawThrough, !- Fan Placement<br />

0.001, !- Cooling Convergence Tolerance<br />

Coil:Cooling:DX:SingleSpeed; !- Cooling Coil Object Type<br />

ZoneHVAC:WindowAirConditioner,<br />

Zone6WindAC, !- Name<br />

CoolingCoilAvailSched, !- Availability Schedule Name<br />

0.6, !- Maximum Supply Air Flow Rate {m3/s}<br />

0.0, !- Maximum Outdoor Air Flow Rate {m3/s}<br />

Zone6WindACAirInletNode, !- Air Inlet Node Name


Appendix 2 154<br />

Zone6WindACAirOutletNode,!- Air Outlet Node Name<br />

Zone6WindACOAInNode, !- Outdoor Air Node Name<br />

Zone6WindACExhNode, !- Air Relief Node Name<br />

Zone6WindACOAMixer, !- Outdoor Air Mixer Name<br />

Zone6WindACFan, !- Fan Name<br />

Zone6WindACDXCoil, !- DX Cooling Coil Name<br />

Air Conditioner:Window Zone6WindAC Continuous Fan Schedule, !- Supply<br />

Air Fan Operating Mode Schedule Name<br />

DrawThrough, !- Fan Placement<br />

0.001, !- Cooling Convergence Tolerance<br />

Coil:Cooling:DX:SingleSpeed; !- Cooling Coil Object Type<br />

ZoneHVAC:WindowAirConditioner,<br />

Zone7WindAC, !- Name<br />

CoolingCoilAvailSched, !- Availability Schedule Name<br />

0.6, !- Maximum Supply Air Flow Rate {m3/s}<br />

0.0, !- Maximum Outdoor Air Flow Rate {m3/s}<br />

Zone7WindACAirInletNode, !- Air Inlet Node Name<br />

Zone7WindACAirOutletNode,!- Air Outlet Node Name<br />

Zone7WindACOAInNode, !- Outdoor Air Node Name<br />

Zone7WindACExhNode, !- Air Relief Node Name<br />

Zone7WindACOAMixer, !- Outdoor Air Mixer Name<br />

Zone7WindACFan, !- Fan Name<br />

Zone7WindACDXCoil, !- DX Cooling Coil Name<br />

Air Conditioner:Window Zone7WindAC Continuous Fan Schedule, !- Supply<br />

Air Fan Operating Mode Schedule Name<br />

DrawThrough, !- Fan Placement<br />

0.001, !- Cooling Convergence Tolerance<br />

Coil:Cooling:DX:SingleSpeed; !- Cooling Coil Object Type<br />

ZoneHVAC:WindowAirConditioner,<br />

Zone8WindAC, !- Name<br />

CoolingCoilAvailSched, !- Availability Schedule Name<br />

0.6, !- Maximum Supply Air Flow Rate {m3/s}<br />

0.0, !- Maximum Outdoor Air Flow Rate {m3/s}<br />

Zone8WindACAirInletNode, !- Air Inlet Node Name<br />

Zone8WindACAirOutletNode,!- Air Outlet Node Name<br />

Zone8WindACOAInNode, !- Outdoor Air Node Name<br />

Zone8WindACExhNode, !- Air Relief Node Name<br />

Zone8WindACOAMixer, !- Outdoor Air Mixer Name<br />

Zone8WindACFan, !- Fan Name<br />

Zone8WindACDXCoil, !- DX Cooling Coil Name<br />

Air Conditioner:Window Zone8WindAC Continuous Fan Schedule, !- Supply<br />

Air Fan Operating Mode Schedule Name<br />

DrawThrough, !- Fan Placement<br />

0.001, !- Cooling Convergence Tolerance<br />

Coil:Cooling:DX:SingleSpeed; !- Cooling Coil Object Type<br />

ZoneHVAC:WindowAirConditioner,<br />

Zone9WindAC, !- Name<br />

CoolingCoilAvailSched, !- Availability Schedule Name<br />

0.6, !- Maximum Supply Air Flow Rate {m3/s}<br />

0.0, !- Maximum Outdoor Air Flow Rate {m3/s}<br />

Zone9WindACAirInletNode, !- Air Inlet Node Name<br />

Zone9WindACAirOutletNode,!- Air Outlet Node Name<br />

Zone9WindACOAInNode, !- Outdoor Air Node Name<br />

Zone8WindACExhNode, !- Air Relief Node Name<br />

Zone9WindACOAMixer, !- Outdoor Air Mixer Name<br />

Zone9WindACFan, !- Fan Name<br />

Zone9WindACDXCoil, !- DX Cooling Coil Name<br />

Air Conditioner:Window Zone9WindAC Continuous Fan Schedule, !- Supply<br />

Air Fan Operating Mode Schedule Name<br />

DrawThrough, !- Fan Placement<br />

0.001, !- Cooling Convergence Tolerance<br />

Coil:Cooling:DX:SingleSpeed; !- Cooling Coil Object Type<br />

ZoneHVAC:WindowAirConditioner,<br />

Zone10WindAC, !- Name<br />

CoolingCoilAvailSched, !- Availability Schedule Name<br />

0.6, !- Maximum Supply Air Flow Rate {m3/s}<br />

0.0, !- Maximum Outdoor Air Flow Rate {m3/s}<br />

Zone10WindACAirInletNode,!- Air Inlet Node Name<br />

Zone10WindACAirOutletNode, !- Air Outlet Node Name<br />

Zone10WindACOAInNode, !- Outdoor Air Node Name<br />

Zone10WindACExhNode, !- Air Relief Node Name<br />

Zone10WindACOAMixer, !- Outdoor Air Mixer Name<br />

Zone10WindACFan, !- Fan Name<br />

Zone10WindACDXCoil, !- DX Cooling Coil Name<br />

Air Conditioner:Window Zone10WindAC Continuous Fan Schedule, !-<br />

Supply Air Fan Operating Mode Schedule Name<br />

DrawThrough, !- Fan Placement<br />

0.001, !- Cooling Convergence Tolerance<br />

Coil:Cooling:DX:SingleSpeed; !- Cooling Coil Object Type<br />

ZoneHVAC:WindowAirConditioner,<br />

Zone11WindAC, !- Name<br />

CoolingCoilAvailSched, !- Availability Schedule Name<br />

0.6, !- Maximum Supply Air Flow Rate {m3/s}<br />

0.0, !- Maximum Outdoor Air Flow Rate {m3/s}<br />

Zone11WindACAirInletNode,!- Air Inlet Node Name<br />

Zone11WindACAirOutletNode, !- Air Outlet Node Name<br />

Zone11WindACOAInNode, !- Outdoor Air Node Name<br />

Zone11WindACExhNode, !- Air Relief Node Name<br />

Zone11WindACOAMixer, !- Outdoor Air Mixer Name<br />

Zone11WindACFan, !- Fan Name<br />

Zone11WindACDXCoil, !- DX Cooling Coil Name<br />

Air Conditioner:Window Zone11WindAC Continuous Fan Schedule, !-<br />

Supply Air Fan Operating Mode Schedule Name<br />

DrawThrough, !- Fan Placement<br />

0.001, !- Cooling Convergence Tolerance<br />

Coil:Cooling:DX:SingleSpeed; !- Cooling Coil Object Type<br />

ZoneHVAC:WindowAirConditioner,<br />

Zone12WindAC, !- Name<br />

CoolingCoilAvailSched, !- Availability Schedule Name<br />

0.6, !- Maximum Supply Air Flow Rate {m3/s}<br />

0.0, !- Maximum Outdoor Air Flow Rate {m3/s}<br />

Zone12WindACAirInletNode,!- Air Inlet Node Name<br />

Zone12WindACAirOutletNode, !- Air Outlet Node Name<br />

Zone12WindACOAInNode, !- Outdoor Air Node Name<br />

Zone12WindACExhNode, !- Air Relief Node Name<br />

Zone12WindACOAMixer, !- Outdoor Air Mixer Name<br />

Zone12WindACFan, !- Fan Name<br />

Zone12WindACDXCoil, !- DX Cooling Coil Name<br />

Air Conditioner:Window Zone12WindAC Continuous Fan Schedule, !-<br />

Supply Air Fan Operating Mode Schedule Name<br />

DrawThrough, !- Fan Placement<br />

0.001, !- Cooling Convergence Tolerance<br />

Coil:Cooling:DX:SingleSpeed; !- Cooling Coil Object Type<br />

ZoneHVAC:WindowAirConditioner,<br />

Zone13WindAC, !- Name<br />

CoolingCoilAvailSched, !- Availability Schedule Name<br />

0.6, !- Maximum Supply Air Flow Rate {m3/s}<br />

0.0, !- Maximum Outdoor Air Flow Rate {m3/s}<br />

Zone13WindACAirInletNode,!- Air Inlet Node Name<br />

Zone13WindACAirOutletNode, !- Air Outlet Node Name<br />

Zone13WindACOAInNode, !- Outdoor Air Node Name<br />

Zone13WindACExhNode, !- Air Relief Node Name<br />

Zone13WindACOAMixer, !- Outdoor Air Mixer Name<br />

Zone13WindACFan, !- Fan Name<br />

Zone13WindACDXCoil, !- DX Cooling Coil Name<br />

Air Conditioner:Window Zone13WindAC Continuous Fan Schedule, !-<br />

Supply Air Fan Operating Mode Schedule Name<br />

DrawThrough, !- Fan Placement<br />

0.001, !- Cooling Convergence Tolerance<br />

Coil:Cooling:DX:SingleSpeed; !- Cooling Coil Object Type<br />

ZoneHVAC:WindowAirConditioner,<br />

Zone14WindAC, !- Name<br />

CoolingCoilAvailSched, !- Availability Schedule Name<br />

0.6, !- Maximum Supply Air Flow Rate {m3/s}<br />

0.0, !- Maximum Outdoor Air Flow Rate {m3/s}<br />

Zone14WindACAirInletNode,!- Air Inlet Node Name<br />

Zone14WindACAirOutletNode, !- Air Outlet Node Name<br />

Zone14WindACOAInNode, !- Outdoor Air Node Name<br />

Zone14WindACExhNode, !- Air Relief Node Name<br />

Zone14WindACOAMixer, !- Outdoor Air Mixer Name<br />

Zone14WindACFan, !- Fan Name<br />

Zone14WindACDXCoil, !- DX Cooling Coil Name<br />

Air Conditioner:Window Zone14WindAC Continuous Fan Schedule, !-<br />

Supply Air Fan Operating Mode Schedule Name<br />

DrawThrough, !- Fan Placement<br />

0.001, !- Cooling Convergence Tolerance<br />

Coil:Cooling:DX:SingleSpeed; !- Cooling Coil Object Type


Appendix 2 155<br />

ZoneHVAC:WindowAirConditioner,<br />

Zone15WindAC, !- Name<br />

CoolingCoilAvailSched, !- Availability Schedule Name<br />

0.6, !- Maximum Supply Air Flow Rate {m3/s}<br />

0.0, !- Maximum Outdoor Air Flow Rate {m3/s}<br />

Zone15WindACAirInletNode,!- Air Inlet Node Name<br />

Zone15WindACAirOutletNode, !- Air Outlet Node Name<br />

Zone15WindACOAInNode, !- Outdoor Air Node Name<br />

Zone15WindACExhNode, !- Air Relief Node Name<br />

Zone15WindACOAMixer, !- Outdoor Air Mixer Name<br />

Zone15WindACFan, !- Fan Name<br />

Zone15WindACDXCoil, !- DX Cooling Coil Name<br />

Air Conditioner:Window Zone15WindAC Continuous Fan Schedule, !-<br />

Supply Air Fan Operating Mode Schedule Name<br />

DrawThrough, !- Fan Placement<br />

0.001, !- Cooling Convergence Tolerance<br />

Coil:Cooling:DX:SingleSpeed; !- Cooling Coil Object Type<br />

ZoneHVAC:WindowAirConditioner,<br />

Zone16WindAC, !- Name<br />

CoolingCoilAvailSched, !- Availability Schedule Name<br />

0.6, !- Maximum Supply Air Flow Rate {m3/s}<br />

0.0, !- Maximum Outdoor Air Flow Rate {m3/s}<br />

Zone16WindACAirInletNode,!- Air Inlet Node Name<br />

Zone16WindACAirOutletNode, !- Air Outlet Node Name<br />

Zone16WindACOAInNode, !- Outdoor Air Node Name<br />

Zone16WindACExhNode, !- Air Relief Node Name<br />

Zone16WindACOAMixer, !- Outdoor Air Mixer Name<br />

Zone16WindACFan, !- Fan Name<br />

Zone16WindACDXCoil, !- DX Cooling Coil Name<br />

Air Conditioner:Window Zone16WindAC Continuous Fan Schedule, !-<br />

Supply Air Fan Operating Mode Schedule Name<br />

DrawThrough, !- Fan Placement<br />

0.001, !- Cooling Convergence Tolerance<br />

Coil:Cooling:DX:SingleSpeed; !- Cooling Coil Object Type<br />

ZoneHVAC:WindowAirConditioner,<br />

Zone17WindAC, !- Name<br />

CoolingCoilAvailSched, !- Availability Schedule Name<br />

0.6, !- Maximum Supply Air Flow Rate {m3/s}<br />

0.0, !- Maximum Outdoor Air Flow Rate {m3/s}<br />

Zone17WindACAirInletNode,!- Air Inlet Node Name<br />

Zone17WindACAirOutletNode, !- Air Outlet Node Name<br />

Zone17WindACOAInNode, !- Outdoor Air Node Name<br />

Zone17WindACExhNode, !- Air Relief Node Name<br />

Zone17WindACOAMixer, !- Outdoor Air Mixer Name<br />

Zone17WindACFan, !- Fan Name<br />

Zone17WindACDXCoil, !- DX Cooling Coil Name<br />

Air Conditioner:Window Zone17WindAC Continuous Fan Schedule, !-<br />

Supply Air Fan Operating Mode Schedule Name<br />

DrawThrough, !- Fan Placement<br />

0.001, !- Cooling Convergence Tolerance<br />

Coil:Cooling:DX:SingleSpeed; !- Cooling Coil Object Type<br />

ZoneHVAC:WindowAirConditioner,<br />

Zone18WindAC, !- Name<br />

CoolingCoilAvailSched, !- Availability Schedule Name<br />

0.6, !- Maximum Supply Air Flow Rate {m3/s}<br />

0.0, !- Maximum Outdoor Air Flow Rate {m3/s}<br />

Zone18WindACAirInletNode,!- Air Inlet Node Name<br />

Zone18WindACAirOutletNode, !- Air Outlet Node Name<br />

Zone18WindACOAInNode, !- Outdoor Air Node Name<br />

Zone18WindACExhNode, !- Air Relief Node Name<br />

Zone18WindACOAMixer, !- Outdoor Air Mixer Name<br />

Zone18WindACFan, !- Fan Name<br />

Zone18WindACDXCoil, !- DX Cooling Coil Name<br />

Air Conditioner:Window Zone18WindAC Continuous Fan Schedule, !-<br />

Supply Air Fan Operating Mode Schedule Name<br />

DrawThrough, !- Fan Placement<br />

0.001, !- Cooling Convergence Tolerance<br />

Coil:Cooling:DX:SingleSpeed; !- Cooling Coil Object Type<br />

ZoneHVAC:WindowAirConditioner,<br />

Zone19WindAC, !- Name<br />

CoolingCoilAvailSched, !- Availability Schedule Name<br />

0.6, !- Maximum Supply Air Flow Rate {m3/s}<br />

0.0, !- Maximum Outdoor Air Flow Rate {m3/s}<br />

Zone19WindACAirInletNode,!- Air Inlet Node Name<br />

Zone19WindACAirOutletNode, !- Air Outlet Node Name<br />

Zone19WindACOAInNode, !- Outdoor Air Node Name<br />

Zone19WindACExhNode, !- Air Relief Node Name<br />

Zone19WindACOAMixer, !- Outdoor Air Mixer Name<br />

Zone19WindACFan, !- Fan Name<br />

Zone19WindACDXCoil, !- DX Cooling Coil Name<br />

Air Conditioner:Window Zone19WindAC Continuous Fan Schedule, !-<br />

Supply Air Fan Operating Mode Schedule Name<br />

DrawThrough, !- Fan Placement<br />

0.001, !- Cooling Convergence Tolerance<br />

Coil:Cooling:DX:SingleSpeed; !- Cooling Coil Object Type<br />

!- == ALL OBJECTS IN CLASS: ENERGY RECOVERY<br />

VENTILATOR:STAND ALONE ==<br />

ZoneHVAC:EnergyRecoveryVentilator,<br />

St<strong>and</strong> Alone ERV 1, !- Name<br />

FanAndCoilAvailSched, !- Availability Schedule Name<br />

OA Heat Recovery 1, !- Heat Exchanger Name<br />

0.016666, !- Supply Air Flow Rate {m3/s}<br />

0.016666, !- Exhaust Air Flow Rate {m3/s}<br />

St<strong>and</strong> Alone ERV Supply Fan, !- Supply Air Fan Name<br />

St<strong>and</strong> Alone ERV Exhaust Fan, !- Exhaust Air Fan Name<br />

ERV OA Controller 1; !- Controller Name<br />

ZoneHVAC:EnergyRecoveryVentilator,<br />

St<strong>and</strong> Alone ERV 2, !- Name<br />

FanAndCoilAvailSched, !- Availability Schedule Name<br />

OA Heat Recovery 2, !- Heat Exchanger Name<br />

0.016666, !- Supply Air Flow Rate {m3/s}<br />

0.016666, !- Exhaust Air Flow Rate {m3/s}<br />

St<strong>and</strong> Alone ERV Supply Fan 2, !- Supply Air Fan Name<br />

St<strong>and</strong> Alone ERV Exhaust Fan 2, !- Exhaust Air Fan Name<br />

ERV OA Controller 2; !- Controller Name<br />

ZoneHVAC:EnergyRecoveryVentilator,<br />

St<strong>and</strong> Alone ERV 3, !- Name<br />

FanAndCoilAvailSched, !- Availability Schedule Name<br />

OA Heat Recovery 3, !- Heat Exchanger Name<br />

0.016666, !- Supply Air Flow Rate {m3/s}<br />

0.016666, !- Exhaust Air Flow Rate {m3/s}<br />

St<strong>and</strong> Alone ERV Supply Fan 3, !- Supply Air Fan Name<br />

St<strong>and</strong> Alone ERV Exhaust Fan 3, !- Exhaust Air Fan Name<br />

ERV OA Controller 3; !- Controller Name<br />

ZoneHVAC:EnergyRecoveryVentilator,<br />

St<strong>and</strong> Alone ERV 4, !- Name<br />

FanAndCoilAvailSched, !- Availability Schedule Name<br />

OA Heat Recovery 4, !- Heat Exchanger Name<br />

0.016666, !- Supply Air Flow Rate {m3/s}<br />

0.016666, !- Exhaust Air Flow Rate {m3/s}<br />

St<strong>and</strong> Alone ERV Supply Fan 4, !- Supply Air Fan Name<br />

St<strong>and</strong> Alone ERV Exhaust Fan 4, !- Exhaust Air Fan Name<br />

ERV OA Controller 4; !- Controller Name<br />

ZoneHVAC:EnergyRecoveryVentilator,<br />

St<strong>and</strong> Alone ERV 5, !- Name<br />

FanAndCoilAvailSched, !- Availability Schedule Name<br />

OA Heat Recovery 5, !- Heat Exchanger Name<br />

0.016666, !- Supply Air Flow Rate {m3/s}<br />

0.016666, !- Exhaust Air Flow Rate {m3/s}<br />

St<strong>and</strong> Alone ERV Supply Fan 5, !- Supply Air Fan Name<br />

St<strong>and</strong> Alone ERV Exhaust Fan 5, !- Exhaust Air Fan Name<br />

ERV OA Controller 5; !- Controller Name<br />

ZoneHVAC:EnergyRecoveryVentilator,<br />

St<strong>and</strong> Alone ERV 6, !- Name<br />

FanAndCoilAvailSched, !- Availability Schedule Name<br />

OA Heat Recovery 6, !- Heat Exchanger Name<br />

0.016666, !- Supply Air Flow Rate {m3/s}<br />

0.016666, !- Exhaust Air Flow Rate {m3/s}<br />

St<strong>and</strong> Alone ERV Supply Fan 6, !- Supply Air Fan Name<br />

St<strong>and</strong> Alone ERV Exhaust Fan 6, !- Exhaust Air Fan Name<br />

ERV OA Controller 6; !- Controller Name<br />

ZoneHVAC:EnergyRecoveryVentilator,<br />

St<strong>and</strong> Alone ERV 7, !- Name<br />

FanAndCoilAvailSched, !- Availability Schedule Name


Appendix 2 156<br />

OA Heat Recovery 7, !- Heat Exchanger Name<br />

0.016666, !- Supply Air Flow Rate {m3/s}<br />

0.016666, !- Exhaust Air Flow Rate {m3/s}<br />

St<strong>and</strong> Alone ERV Supply Fan 7, !- Supply Air Fan Name<br />

St<strong>and</strong> Alone ERV Exhaust Fan 7, !- Exhaust Air Fan Name<br />

ERV OA Controller 7; !- Controller Name<br />

ZoneHVAC:EnergyRecoveryVentilator,<br />

St<strong>and</strong> Alone ERV 8, !- Name<br />

FanAndCoilAvailSched, !- Availability Schedule Name<br />

OA Heat Recovery 8, !- Heat Exchanger Name<br />

0.016666, !- Supply Air Flow Rate {m3/s}<br />

0.016666, !- Exhaust Air Flow Rate {m3/s}<br />

St<strong>and</strong> Alone ERV Supply Fan 8, !- Supply Air Fan Name<br />

St<strong>and</strong> Alone ERV Exhaust Fan 8, !- Exhaust Air Fan Name<br />

ERV OA Controller 8; !- Controller Name<br />

ZoneHVAC:EnergyRecoveryVentilator,<br />

St<strong>and</strong> Alone ERV 9, !- Name<br />

FanAndCoilAvailSched, !- Availability Schedule Name<br />

OA Heat Recovery 9, !- Heat Exchanger Name<br />

0.016666, !- Supply Air Flow Rate {m3/s}<br />

0.016666, !- Exhaust Air Flow Rate {m3/s}<br />

St<strong>and</strong> Alone ERV Supply Fan 9, !- Supply Air Fan Name<br />

St<strong>and</strong> Alone ERV Exhaust Fan 9, !- Exhaust Air Fan Name<br />

ERV OA Controller 9; !- Controller Name<br />

ZoneHVAC:EnergyRecoveryVentilator,<br />

St<strong>and</strong> Alone ERV 10, !- Name<br />

FanAndCoilAvailSched, !- Availability Schedule Name<br />

OA Heat Recovery 10, !- Heat Exchanger Name<br />

0.016666, !- Supply Air Flow Rate {m3/s}<br />

0.016666, !- Exhaust Air Flow Rate {m3/s}<br />

St<strong>and</strong> Alone ERV Supply Fan 10, !- Supply Air Fan Name<br />

St<strong>and</strong> Alone ERV Exhaust Fan 10, !- Exhaust Air Fan Name<br />

ERV OA Controller 10; !- Controller Name<br />

ZoneHVAC:EnergyRecoveryVentilator,<br />

St<strong>and</strong> Alone ERV 11, !- Name<br />

FanAndCoilAvailSched, !- Availability Schedule Name<br />

OA Heat Recovery 11, !- Heat Exchanger Name<br />

0.016666, !- Supply Air Flow Rate {m3/s}<br />

0.016666, !- Exhaust Air Flow Rate {m3/s}<br />

St<strong>and</strong> Alone ERV Supply Fan 11, !- Supply Air Fan Name<br />

St<strong>and</strong> Alone ERV Exhaust Fan 11, !- Exhaust Air Fan Name<br />

ERV OA Controller 11; !- Controller Name<br />

ZoneHVAC:EnergyRecoveryVentilator,<br />

St<strong>and</strong> Alone ERV 12, !- Name<br />

FanAndCoilAvailSched, !- Availability Schedule Name<br />

OA Heat Recovery 12, !- Heat Exchanger Name<br />

0.016666, !- Supply Air Flow Rate {m3/s}<br />

0.016666, !- Exhaust Air Flow Rate {m3/s}<br />

St<strong>and</strong> Alone ERV Supply Fan 12, !- Supply Air Fan Name<br />

St<strong>and</strong> Alone ERV Exhaust Fan 12, !- Exhaust Air Fan Name<br />

ERV OA Controller 12; !- Controller Name<br />

ZoneHVAC:EnergyRecoveryVentilator,<br />

St<strong>and</strong> Alone ERV 13, !- Name<br />

FanAndCoilAvailSched, !- Availability Schedule Name<br />

OA Heat Recovery 13, !- Heat Exchanger Name<br />

0.016666, !- Supply Air Flow Rate {m3/s}<br />

0.016666, !- Exhaust Air Flow Rate {m3/s}<br />

St<strong>and</strong> Alone ERV Supply Fan 13, !- Supply Air Fan Name<br />

St<strong>and</strong> Alone ERV Exhaust Fan 13, !- Exhaust Air Fan Name<br />

ERV OA Controller 13; !- Controller Name<br />

ZoneHVAC:EnergyRecoveryVentilator,<br />

St<strong>and</strong> Alone ERV 14, !- Name<br />

FanAndCoilAvailSched, !- Availability Schedule Name<br />

OA Heat Recovery 14, !- Heat Exchanger Name<br />

0.016666, !- Supply Air Flow Rate {m3/s}<br />

0.016666, !- Exhaust Air Flow Rate {m3/s}<br />

St<strong>and</strong> Alone ERV Supply Fan 14, !- Supply Air Fan Name<br />

St<strong>and</strong> Alone ERV Exhaust Fan 14, !- Exhaust Air Fan Name<br />

ERV OA Controller 14; !- Controller Name<br />

ZoneHVAC:EnergyRecoveryVentilator,<br />

St<strong>and</strong> Alone ERV 15, !- Name<br />

FanAndCoilAvailSched, !- Availability Schedule Name<br />

OA Heat Recovery 15, !- Heat Exchanger Name<br />

0.016666, !- Supply Air Flow Rate {m3/s}<br />

0.016666, !- Exhaust Air Flow Rate {m3/s}<br />

St<strong>and</strong> Alone ERV Supply Fan 15, !- Supply Air Fan Name<br />

St<strong>and</strong> Alone ERV Exhaust Fan 15, !- Exhaust Air Fan Name<br />

ERV OA Controller 15; !- Controller Name<br />

ZoneHVAC:EnergyRecoveryVentilator,<br />

St<strong>and</strong> Alone ERV 16, !- Name<br />

FanAndCoilAvailSched, !- Availability Schedule Name<br />

OA Heat Recovery 16, !- Heat Exchanger Name<br />

0.016666, !- Supply Air Flow Rate {m3/s}<br />

0.016666, !- Exhaust Air Flow Rate {m3/s}<br />

St<strong>and</strong> Alone ERV Supply Fan 16, !- Supply Air Fan Name<br />

St<strong>and</strong> Alone ERV Exhaust Fan 16, !- Exhaust Air Fan Name<br />

ERV OA Controller 16; !- Controller Name<br />

ZoneHVAC:EnergyRecoveryVentilator,<br />

St<strong>and</strong> Alone ERV 17, !- Name<br />

FanAndCoilAvailSched, !- Availability Schedule Name<br />

OA Heat Recovery 17, !- Heat Exchanger Name<br />

0.016666, !- Supply Air Flow Rate {m3/s}<br />

0.016666, !- Exhaust Air Flow Rate {m3/s}<br />

St<strong>and</strong> Alone ERV Supply Fan 17, !- Supply Air Fan Name<br />

St<strong>and</strong> Alone ERV Exhaust Fan 17, !- Exhaust Air Fan Name<br />

ERV OA Controller 17; !- Controller Name<br />

ZoneHVAC:EnergyRecoveryVentilator,<br />

St<strong>and</strong> Alone ERV 18, !- Name<br />

FanAndCoilAvailSched, !- Availability Schedule Name<br />

OA Heat Recovery 18, !- Heat Exchanger Name<br />

0.016666, !- Supply Air Flow Rate {m3/s}<br />

0.016666, !- Exhaust Air Flow Rate {m3/s}<br />

St<strong>and</strong> Alone ERV Supply Fan 18, !- Supply Air Fan Name<br />

St<strong>and</strong> Alone ERV Exhaust Fan 18, !- Exhaust Air Fan Name<br />

ERV OA Controller 18; !- Controller Name<br />

ZoneHVAC:EnergyRecoveryVentilator,<br />

St<strong>and</strong> Alone ERV 19, !- Name<br />

FanAndCoilAvailSched, !- Availability Schedule Name<br />

OA Heat Recovery 19, !- Heat Exchanger Name<br />

0.016666, !- Supply Air Flow Rate {m3/s}<br />

0.016666, !- Exhaust Air Flow Rate {m3/s}<br />

St<strong>and</strong> Alone ERV Supply Fan 19, !- Supply Air Fan Name<br />

St<strong>and</strong> Alone ERV Exhaust Fan 19, !- Exhaust Air Fan Name<br />

ERV OA Controller 19; !- Controller Name<br />

!- == ALL OBJECTS IN CLASS: BASEBOARD<br />

HEATER:WATER:CONVECTIVE ==<br />

ZoneHVAC:Baseboard:Convective:Water,<br />

Zone1Baseboard, !- Name<br />

Baseboard_Sch, !- Availability Schedule Name<br />

Zone1BBHWInletNode, !- Inlet Node Name<br />

Zone1BBHWOutletNode, !- Outlet Node Name<br />

400., !- U-Factor Times Area Value {W/K}<br />

0.0008, !- Maximum Water Flow Rate {m3/s}<br />

0.001; !- Convergence Tolerance<br />

ZoneHVAC:Baseboard:Convective:Water,<br />

Zone2Baseboard, !- Name<br />

Baseboard_Sch, !- Availability Schedule Name<br />

Zone2BBHWInletNode, !- Inlet Node Name<br />

Zone2BBHWOutletNode, !- Outlet Node Name<br />

400., !- U-Factor Times Area Value {W/K}<br />

0.0006, !- Maximum Water Flow Rate {m3/s}<br />

0.001; !- Convergence Tolerance<br />

ZoneHVAC:Baseboard:Convective:Water,<br />

Zone3Baseboard, !- Name<br />

Baseboard_Sch, !- Availability Schedule Name<br />

Zone3BBHWInletNode, !- Inlet Node Name<br />

Zone3BBHWOutletNode, !- Outlet Node Name<br />

400., !- U-Factor Times Area Value {W/K}<br />

0.0007, !- Maximum Water Flow Rate {m3/s}<br />

0.001; !- Convergence Tolerance


Appendix 2 157<br />

ZoneHVAC:Baseboard:Convective:Water,<br />

Zone4Baseboard, !- Name<br />

Baseboard_Sch, !- Availability Schedule Name<br />

Zone4BBHWInletNode, !- Inlet Node Name<br />

Zone4BBHWOutletNode, !- Outlet Node Name<br />

400., !- U-Factor Times Area Value {W/K}<br />

0.0007, !- Maximum Water Flow Rate {m3/s}<br />

0.001; !- Convergence Tolerance<br />

ZoneHVAC:Baseboard:Convective:Water,<br />

Zone5Baseboard, !- Name<br />

Baseboard_Sch, !- Availability Schedule Name<br />

Zone5BBHWInletNode, !- Inlet Node Name<br />

Zone5BBHWOutletNode, !- Outlet Node Name<br />

400., !- U-Factor Times Area Value {W/K}<br />

0.0008, !- Maximum Water Flow Rate {m3/s}<br />

0.001; !- Convergence Tolerance<br />

ZoneHVAC:Baseboard:Convective:Water,<br />

Zone6Baseboard, !- Name<br />

Baseboard_Sch, !- Availability Schedule Name<br />

Zone6BBHWInletNode, !- Inlet Node Name<br />

Zone6BBHWOutletNode, !- Outlet Node Name<br />

400., !- U-Factor Times Area Value {W/K}<br />

0.0006, !- Maximum Water Flow Rate {m3/s}<br />

0.001; !- Convergence Tolerance<br />

ZoneHVAC:Baseboard:Convective:Water,<br />

Zone7Baseboard, !- Name<br />

Baseboard_Sch, !- Availability Schedule Name<br />

Zone7BBHWInletNode, !- Inlet Node Name<br />

Zone7BBHWOutletNode, !- Outlet Node Name<br />

400., !- U-Factor Times Area Value {W/K}<br />

0.0007, !- Maximum Water Flow Rate {m3/s}<br />

0.001; !- Convergence Tolerance<br />

ZoneHVAC:Baseboard:Convective:Water,<br />

Zone8Baseboard, !- Name<br />

Baseboard_Sch, !- Availability Schedule Name<br />

Zone8BBHWInletNode, !- Inlet Node Name<br />

Zone8BBHWOutletNode, !- Outlet Node Name<br />

400., !- U-Factor Times Area Value {W/K}<br />

0.0007, !- Maximum Water Flow Rate {m3/s}<br />

0.001; !- Convergence Tolerance<br />

ZoneHVAC:Baseboard:Convective:Water,<br />

Zone9Baseboard, !- Name<br />

Baseboard_Sch, !- Availability Schedule Name<br />

Zone9BBHWInletNode, !- Inlet Node Name<br />

Zone9BBHWOutletNode, !- Outlet Node Name<br />

400., !- U-Factor Times Area Value {W/K}<br />

0.0008, !- Maximum Water Flow Rate {m3/s}<br />

0.001; !- Convergence Tolerance<br />

ZoneHVAC:Baseboard:Convective:Water,<br />

Zone10Baseboard, !- Name<br />

Baseboard_Sch, !- Availability Schedule Name<br />

Zone10BBHWInletNode, !- Inlet Node Name<br />

Zone10BBHWOutletNode, !- Outlet Node Name<br />

400., !- U-Factor Times Area Value {W/K}<br />

0.0006, !- Maximum Water Flow Rate {m3/s}<br />

0.001; !- Convergence Tolerance<br />

ZoneHVAC:Baseboard:Convective:Water,<br />

Zone11Baseboard, !- Name<br />

Baseboard_Sch, !- Availability Schedule Name<br />

Zone11BBHWInletNode, !- Inlet Node Name<br />

Zone11BBHWOutletNode, !- Outlet Node Name<br />

400., !- U-Factor Times Area Value {W/K}<br />

0.0007, !- Maximum Water Flow Rate {m3/s}<br />

0.001; !- Convergence Tolerance<br />

ZoneHVAC:Baseboard:Convective:Water,<br />

Zone12Baseboard, !- Name<br />

Baseboard_Sch, !- Availability Schedule Name<br />

Zone12BBHWInletNode, !- Inlet Node Name<br />

Zone12BBHWOutletNode, !- Outlet Node Name<br />

400., !- U-Factor Times Area Value {W/K}<br />

0.0007, !- Maximum Water Flow Rate {m3/s}<br />

0.001; !- Convergence Tolerance<br />

ZoneHVAC:Baseboard:Convective:Water,<br />

Zone13Baseboard, !- Name<br />

Baseboard_Sch, !- Availability Schedule Name<br />

Zone13BBHWInletNode, !- Inlet Node Name<br />

Zone13BBHWOutletNode, !- Outlet Node Name<br />

400., !- U-Factor Times Area Value {W/K}<br />

0.0008, !- Maximum Water Flow Rate {m3/s}<br />

0.001; !- Convergence Tolerance<br />

ZoneHVAC:Baseboard:Convective:Water,<br />

Zone14Baseboard, !- Name<br />

Baseboard_Sch, !- Availability Schedule Name<br />

Zone14BBHWInletNode, !- Inlet Node Name<br />

Zone14BBHWOutletNode, !- Outlet Node Name<br />

400., !- U-Factor Times Area Value {W/K}<br />

0.0006, !- Maximum Water Flow Rate {m3/s}<br />

0.001; !- Convergence Tolerance<br />

ZoneHVAC:Baseboard:Convective:Water,<br />

Zone15Baseboard, !- Name<br />

Baseboard_Sch, !- Availability Schedule Name<br />

Zone15BBHWInletNode, !- Inlet Node Name<br />

Zone15BBHWOutletNode, !- Outlet Node Name<br />

400., !- U-Factor Times Area Value {W/K}<br />

0.0007, !- Maximum Water Flow Rate {m3/s}<br />

0.001; !- Convergence Tolerance<br />

ZoneHVAC:Baseboard:Convective:Water,<br />

Zone16Baseboard, !- Name<br />

Baseboard_Sch, !- Availability Schedule Name<br />

Zone16BBHWInletNode, !- Inlet Node Name<br />

Zone16BBHWOutletNode, !- Outlet Node Name<br />

400., !- U-Factor Times Area Value {W/K}<br />

0.0007, !- Maximum Water Flow Rate {m3/s}<br />

0.001; !- Convergence Tolerance<br />

ZoneHVAC:Baseboard:Convective:Water,<br />

Zone17Baseboard, !- Name<br />

Baseboard_Sch, !- Availability Schedule Name<br />

Zone17BBHWInletNode, !- Inlet Node Name<br />

Zone17BBHWOutletNode, !- Outlet Node Name<br />

400., !- U-Factor Times Area Value {W/K}<br />

0.0008, !- Maximum Water Flow Rate {m3/s}<br />

0.001; !- Convergence Tolerance<br />

ZoneHVAC:Baseboard:Convective:Water,<br />

Zone18Baseboard, !- Name<br />

Baseboard_Sch, !- Availability Schedule Name<br />

Zone18BBHWInletNode, !- Inlet Node Name<br />

Zone18BBHWOutletNode, !- Outlet Node Name<br />

400., !- U-Factor Times Area Value {W/K}<br />

0.0007, !- Maximum Water Flow Rate {m3/s}<br />

0.001; !- Convergence Tolerance<br />

ZoneHVAC:Baseboard:Convective:Water,<br />

Zone19Baseboard, !- Name<br />

Baseboard_Sch, !- Availability Schedule Name<br />

Zone19BBHWInletNode, !- Inlet Node Name<br />

Zone19BBHWOutletNode, !- Outlet Node Name<br />

400., !- U-Factor Times Area Value {W/K}<br />

0.0007, !- Maximum Water Flow Rate {m3/s}<br />

0.001; !- Convergence Tolerance<br />

!- == ALL OBJECTS IN CLASS: ZONE CONTROL:THERMOSTATIC ==<br />

ZoneControl:Thermostat,<br />

Zone 1 Thermostat, !- Name<br />

OG1, !- Zone Name<br />

Zone Control Type Sched, !- Control Type Schedule Name<br />

ThermostatSetpoint:SingleHeating, !- Control 1 Object Type<br />

Heating Setpoint with SB,!- Control 1 Name<br />

ThermostatSetpoint:SingleCooling, !- Control 2 Object Type<br />

Cooling Setpoint with SB;!- Control 2 Name


Appendix 2 158<br />

ZoneControl:Thermostat,<br />

Zone 2 Thermostat, !- Name<br />

OG2, !- Zone Name<br />

Zone Control Type Sched, !- Control Type Schedule Name<br />

ThermostatSetpoint:SingleHeating, !- Control 1 Object Type<br />

Heating Setpoint with SB,!- Control 1 Name<br />

ThermostatSetpoint:SingleCooling, !- Control 2 Object Type<br />

Cooling Setpoint with SB;!- Control 2 Name<br />

ZoneControl:Thermostat,<br />

Zone 3 Thermostat, !- Name<br />

OG3, !- Zone Name<br />

Zone Control Type Sched, !- Control Type Schedule Name<br />

ThermostatSetpoint:SingleHeating, !- Control 1 Object Type<br />

Heating Setpoint with SB,!- Control 1 Name<br />

ThermostatSetpoint:SingleCooling, !- Control 2 Object Type<br />

Cooling Setpoint with SB;!- Control 2 Name<br />

ZoneControl:Thermostat,<br />

Zone 4 Thermostat, !- Name<br />

OG4, !- Zone Name<br />

Zone Control Type Sched, !- Control Type Schedule Name<br />

ThermostatSetpoint:SingleHeating, !- Control 1 Object Type<br />

Heating Setpoint with SB,!- Control 1 Name<br />

ThermostatSetpoint:SingleCooling, !- Control 2 Object Type<br />

Cooling Setpoint with SB;!- Control 2 Name<br />

ZoneControl:Thermostat,<br />

Zone 5 Thermostat, !- Name<br />

EG1, !- Zone Name<br />

Zone Control Type Sched, !- Control Type Schedule Name<br />

ThermostatSetpoint:SingleHeating, !- Control 1 Object Type<br />

Heating Setpoint with SB,!- Control 1 Name<br />

ThermostatSetpoint:SingleCooling, !- Control 2 Object Type<br />

Cooling Setpoint with SB;!- Control 2 Name<br />

ZoneControl:Thermostat,<br />

Zone 6 Thermostat, !- Name<br />

EG2, !- Zone Name<br />

Zone Control Type Sched, !- Control Type Schedule Name<br />

ThermostatSetpoint:SingleHeating, !- Control 1 Object Type<br />

Heating Setpoint with SB,!- Control 1 Name<br />

ThermostatSetpoint:SingleCooling, !- Control 2 Object Type<br />

Cooling Setpoint with SB;!- Control 2 Name<br />

ZoneControl:Thermostat,<br />

Zone 7 Thermostat, !- Name<br />

EG3, !- Zone Name<br />

Zone Control Type Sched, !- Control Type Schedule Name<br />

ThermostatSetpoint:SingleHeating, !- Control 1 Object Type<br />

Heating Setpoint with SB,!- Control 1 Name<br />

ThermostatSetpoint:SingleCooling, !- Control 2 Object Type<br />

Cooling Setpoint with SB;!- Control 2 Name<br />

ZoneControl:Thermostat,<br />

Zone 8 Thermostat, !- Name<br />

EG4, !- Zone Name<br />

Zone Control Type Sched, !- Control Type Schedule Name<br />

ThermostatSetpoint:SingleHeating, !- Control 1 Object Type<br />

Heating Setpoint with SB,!- Control 1 Name<br />

ThermostatSetpoint:SingleCooling, !- Control 2 Object Type<br />

Cooling Setpoint with SB;!- Control 2 Name<br />

ZoneControl:Thermostat,<br />

Zone 9 Thermostat, !- Name<br />

OG1-2, !- Zone Name<br />

Zone Control Type Sched, !- Control Type Schedule Name<br />

ThermostatSetpoint:SingleHeating, !- Control 1 Object Type<br />

Heating Setpoint with SB,!- Control 1 Name<br />

ThermostatSetpoint:SingleCooling, !- Control 2 Object Type<br />

Cooling Setpoint with SB;!- Control 2 Name<br />

ZoneControl:Thermostat,<br />

Zone 10 Thermostat, !- Name<br />

OG2-2, !- Zone Name<br />

Zone Control Type Sched, !- Control Type Schedule Name<br />

ThermostatSetpoint:SingleHeating, !- Control 1 Object Type<br />

Heating Setpoint with SB,!- Control 1 Name<br />

ThermostatSetpoint:SingleCooling, !- Control 2 Object Type<br />

Cooling Setpoint with SB;!- Control 2 Name<br />

ZoneControl:Thermostat,<br />

Zone 11 Thermostat, !- Name<br />

OG3-2, !- Zone Name<br />

Zone Control Type Sched, !- Control Type Schedule Name<br />

ThermostatSetpoint:SingleHeating, !- Control 1 Object Type<br />

Heating Setpoint with SB,!- Control 1 Name<br />

ThermostatSetpoint:SingleCooling, !- Control 2 Object Type<br />

Cooling Setpoint with SB;!- Control 2 Name<br />

ZoneControl:Thermostat,<br />

Zone 12 Thermostat, !- Name<br />

OG4-2, !- Zone Name<br />

Zone Control Type Sched, !- Control Type Schedule Name<br />

ThermostatSetpoint:SingleHeating, !- Control 1 Object Type<br />

Heating Setpoint with SB,!- Control 1 Name<br />

ThermostatSetpoint:SingleCooling, !- Control 2 Object Type<br />

Cooling Setpoint with SB;!- Control 2 Name<br />

ZoneControl:Thermostat,<br />

Zone 13 Thermostat, !- Name<br />

OG1-3, !- Zone Name<br />

Zone Control Type Sched, !- Control Type Schedule Name<br />

ThermostatSetpoint:SingleHeating, !- Control 1 Object Type<br />

Heating Setpoint with SB,!- Control 1 Name<br />

ThermostatSetpoint:SingleCooling, !- Control 2 Object Type<br />

Cooling Setpoint with SB;!- Control 2 Name<br />

ZoneControl:Thermostat,<br />

Zone 14 Thermostat, !- Name<br />

OG2-3, !- Zone Name<br />

Zone Control Type Sched, !- Control Type Schedule Name<br />

ThermostatSetpoint:SingleHeating, !- Control 1 Object Type<br />

Heating Setpoint with SB,!- Control 1 Name<br />

ThermostatSetpoint:SingleCooling, !- Control 2 Object Type<br />

Cooling Setpoint with SB;!- Control 2 Name<br />

ZoneControl:Thermostat,<br />

Zone 15 Thermostat, !- Name<br />

OG3-3, !- Zone Name<br />

Zone Control Type Sched, !- Control Type Schedule Name<br />

ThermostatSetpoint:SingleHeating, !- Control 1 Object Type<br />

Heating Setpoint with SB,!- Control 1 Name<br />

ThermostatSetpoint:SingleCooling, !- Control 2 Object Type<br />

Cooling Setpoint with SB;!- Control 2 Name<br />

ZoneControl:Thermostat,<br />

Zone 16 Thermostat, !- Name<br />

OG4-3, !- Zone Name<br />

Zone Control Type Sched, !- Control Type Schedule Name<br />

ThermostatSetpoint:SingleHeating, !- Control 1 Object Type<br />

Heating Setpoint with SB,!- Control 1 Name<br />

ThermostatSetpoint:SingleCooling, !- Control 2 Object Type<br />

Cooling Setpoint with SB;!- Control 2 Name<br />

ZoneControl:Thermostat,<br />

Zone 17 Thermostat, !- Name<br />

DG1, !- Zone Name<br />

Zone Control Type Sched, !- Control Type Schedule Name<br />

ThermostatSetpoint:SingleHeating, !- Control 1 Object Type<br />

Heating Setpoint with SB,!- Control 1 Name<br />

ThermostatSetpoint:SingleCooling, !- Control 2 Object Type<br />

Cooling Setpoint with SB;!- Control 2 Name<br />

ZoneControl:Thermostat,<br />

Zone 18 Thermostat, !- Name<br />

DG3, !- Zone Name<br />

Zone Control Type Sched, !- Control Type Schedule Name<br />

ThermostatSetpoint:SingleHeating, !- Control 1 Object Type<br />

Heating Setpoint with SB,!- Control 1 Name<br />

ThermostatSetpoint:SingleCooling, !- Control 2 Object Type<br />

Cooling Setpoint with SB;!- Control 2 Name<br />

ZoneControl:Thermostat,<br />

Zone 19 Thermostat, !- Name<br />

DG4, !- Zone Name


Appendix 2 159<br />

Zone Control Type Sched, !- Control Type Schedule Name<br />

ThermostatSetpoint:SingleHeating, !- Control 1 Object Type<br />

Heating Setpoint with SB,!- Control 1 Name<br />

ThermostatSetpoint:SingleCooling, !- Control 2 Object Type<br />

Cooling Setpoint with SB;!- Control 2 Name<br />

!- == ALL OBJECTS IN CLASS: SINGLE HEATING SETPOINT ==<br />

ThermostatSetpoint:SingleHeating,<br />

Heating Setpoint with SB,!- Name<br />

Heating Setpoints; !- Setpoint Temperature Schedule Name<br />

!- == ALL OBJECTS IN CLASS: SINGLE COOLING SETPOINT ==<br />

ThermostatSetpoint:SingleCooling,<br />

Cooling Setpoint with SB,!- Name<br />

Cooling Setpoints; !- Setpoint Temperature Schedule Name<br />

!- == ALL OBJECTS IN CLASS: PURCHASED:HOT WATER ==<br />

DistrictHeating,<br />

Purchased Heating, !- Name<br />

Purchased Heat Inlet Node, !- Hot Water Inlet Node Name<br />

Purchased Heat Outlet Node, !- Hot Water Outlet Node Name<br />

1000000; !- Nominal Capacity {W}<br />

!- == ALL OBJECTS IN CLASS: PUMP:VARIABLE SPEED ==<br />

Pump:VariableSpeed,<br />

HW Circ Pump, !- Name<br />

HW Supply Inlet Node, !- Inlet Node Name<br />

HW Pump Outlet Node, !- Outlet Node Name<br />

0.02, !- Rated Flow Rate {m3/s}<br />

60000, !- Rated Pump Head {Pa}<br />

2250, !- Rated Power Consumption {W}<br />

0.87, !- Motor Efficiency<br />

0.0, !- Fraction <strong>of</strong> Motor Inefficiencies to Fluid Stream<br />

0, !- Coefficient 1 <strong>of</strong> <strong>the</strong> Part Load Performance Curve<br />

1, !- Coefficient 2 <strong>of</strong> <strong>the</strong> Part Load Performance Curve<br />

0, !- Coefficient 3 <strong>of</strong> <strong>the</strong> Part Load Performance Curve<br />

0, !- Coefficient 4 <strong>of</strong> <strong>the</strong> Part Load Performance Curve<br />

0, !- Minimum Flow Rate {m3/s}<br />

Intermittent; !- Pump Control Type<br />

!- == ALL OBJECTS IN CLASS:<br />

COIL:DX:COOLINGBYPASSFACTOREMPIRICAL ==<br />

Coil:Cooling:DX:SingleSpeed,<br />

Zone1WindACDXCoil, !- Name<br />

CoolingCoilAvailSched, !- Availability Schedule Name<br />

10500, !- Rated Total Cooling Capacity {W}<br />

0.75, !- Rated Sensible Heat Ratio<br />

3.0, !- Rated COP<br />

0.6, !- Rated Air Flow Rate {m3/s}<br />

Zone1WindACFanOutletNode,!- Air Inlet Node Name<br />

Zone1WindACAirOutletNode,!- Air Outlet Node Name<br />

WindACCoolCapFT, !- Total Cooling Capacity Function <strong>of</strong> Temperature<br />

Curve Name<br />

WindACCoolCapFFF, !- Total Cooling Capacity Function <strong>of</strong> Flow Fraction<br />

Curve Name<br />

WindACEIRFT, !- Energy Input Ratio Function <strong>of</strong> Temperature Curve Name<br />

WindACEIRFFF, !- Energy Input Ratio Function <strong>of</strong> Flow Fraction Curve<br />

Name<br />

WindACPLFFPLR, !- Part Load Fraction Correlation Curve Name<br />

CyclingFanAndCompressor; !- Supply Air Fan Operating Mode<br />

Coil:Cooling:DX:SingleSpeed,<br />

Zone2WindACDXCoil, !- Name<br />

CoolingCoilAvailSched, !- Availability Schedule Name<br />

10500, !- Rated Total Cooling Capacity {W}<br />

0.75, !- Rated Sensible Heat Ratio<br />

3.0, !- Rated COP<br />

0.6, !- Rated Air Flow Rate {m3/s}<br />

Zone2WindACFanOutletNode,!- Air Inlet Node Name<br />

Zone2WindACAirOutletNode,!- Air Outlet Node Name<br />

WindACCoolCapFT, !- Total Cooling Capacity Function <strong>of</strong> Temperature<br />

Curve Name<br />

WindACCoolCapFFF, !- Total Cooling Capacity Function <strong>of</strong> Flow Fraction<br />

Curve Name<br />

WindACEIRFT, !- Energy Input Ratio Function <strong>of</strong> Temperature Curve Name<br />

WindACEIRFFF, !- Energy Input Ratio Function <strong>of</strong> Flow Fraction Curve<br />

Name<br />

WindACPLFFPLR, !- Part Load Fraction Correlation Curve Name<br />

ContinuousFanWithCyclingCompressor; !- Supply Air Fan Operating Mode<br />

Coil:Cooling:DX:SingleSpeed,<br />

Zone3WindACDXCoil, !- Name<br />

CoolingCoilAvailSched, !- Availability Schedule Name<br />

10500, !- Rated Total Cooling Capacity {W}<br />

0.75, !- Rated Sensible Heat Ratio<br />

3.0, !- Rated COP<br />

0.6, !- Rated Air Flow Rate {m3/s}<br />

Zone3WindACOAMixerOutletNode, !- Air Inlet Node Name<br />

Zone3WindACDXOutletNode, !- Air Outlet Node Name<br />

WindACCoolCapFT, !- Total Cooling Capacity Function <strong>of</strong> Temperature<br />

Curve Name<br />

WindACCoolCapFFF, !- Total Cooling Capacity Function <strong>of</strong> Flow Fraction<br />

Curve Name<br />

WindACEIRFT, !- Energy Input Ratio Function <strong>of</strong> Temperature Curve Name<br />

WindACEIRFFF, !- Energy Input Ratio Function <strong>of</strong> Flow Fraction Curve<br />

Name<br />

WindACPLFFPLR, !- Part Load Fraction Correlation Curve Name<br />

ContinuousFanWithCyclingCompressor; !- Supply Air Fan Operating Mode<br />

Coil:Cooling:DX:SingleSpeed,<br />

Zone4WindACDXCoil, !- Name<br />

CoolingCoilAvailSched, !- Availability Schedule Name<br />

10500, !- Rated Total Cooling Capacity {W}<br />

0.75, !- Rated Sensible Heat Ratio<br />

3.0, !- Rated COP<br />

0.6, !- Rated Air Flow Rate {m3/s}<br />

Zone4WindACOAMixerOutletNode, !- Air Inlet Node Name<br />

Zone4WindACDXOutletNode, !- Air Outlet Node Name<br />

WindACCoolCapFT, !- Total Cooling Capacity Function <strong>of</strong> Temperature<br />

Curve Name<br />

WindACCoolCapFFF, !- Total Cooling Capacity Function <strong>of</strong> Flow Fraction<br />

Curve Name<br />

WindACEIRFT, !- Energy Input Ratio Function <strong>of</strong> Temperature Curve Name<br />

WindACEIRFFF, !- Energy Input Ratio Function <strong>of</strong> Flow Fraction Curve<br />

Name<br />

WindACPLFFPLR, !- Part Load Fraction Correlation Curve Name<br />

ContinuousFanWithCyclingCompressor; !- Supply Air Fan Operating Mode<br />

Coil:Cooling:DX:SingleSpeed,<br />

Zone5WindACDXCoil, !- Name<br />

CoolingCoilAvailSched, !- Availability Schedule Name<br />

10500, !- Rated Total Cooling Capacity {W}<br />

0.75, !- Rated Sensible Heat Ratio<br />

3.0, !- Rated COP<br />

0.6, !- Rated Air Flow Rate {m3/s}<br />

Zone5WindACOAMixerOutletNode, !- Air Inlet Node Name<br />

Zone5WindACDXOutletNode, !- Air Outlet Node Name<br />

WindACCoolCapFT, !- Total Cooling Capacity Function <strong>of</strong> Temperature<br />

Curve Name<br />

WindACCoolCapFFF, !- Total Cooling Capacity Function <strong>of</strong> Flow Fraction<br />

Curve Name<br />

WindACEIRFT, !- Energy Input Ratio Function <strong>of</strong> Temperature Curve Name<br />

WindACEIRFFF, !- Energy Input Ratio Function <strong>of</strong> Flow Fraction Curve<br />

Name<br />

WindACPLFFPLR, !- Part Load Fraction Correlation Curve Name<br />

ContinuousFanWithCyclingCompressor; !- Supply Air Fan Operating Mode<br />

Coil:Cooling:DX:SingleSpeed,<br />

Zone6WindACDXCoil, !- Name<br />

CoolingCoilAvailSched, !- Availability Schedule Name<br />

10500, !- Rated Total Cooling Capacity {W}<br />

0.75, !- Rated Sensible Heat Ratio<br />

3.0, !- Rated COP<br />

0.6, !- Rated Air Flow Rate {m3/s}<br />

Zone6WindACOAMixerOutletNode, !- Air Inlet Node Name<br />

Zone6WindACDXOutletNode, !- Air Outlet Node Name<br />

WindACCoolCapFT, !- Total Cooling Capacity Function <strong>of</strong> Temperature<br />

Curve Name<br />

WindACCoolCapFFF, !- Total Cooling Capacity Function <strong>of</strong> Flow Fraction<br />

Curve Name


Appendix 2 160<br />

WindACEIRFT, !- Energy Input Ratio Function <strong>of</strong> Temperature Curve Name<br />

WindACEIRFFF, !- Energy Input Ratio Function <strong>of</strong> Flow Fraction Curve<br />

Name<br />

WindACPLFFPLR, !- Part Load Fraction Correlation Curve Name<br />

ContinuousFanWithCyclingCompressor; !- Supply Air Fan Operating Mode<br />

Coil:Cooling:DX:SingleSpeed,<br />

Zone7WindACDXCoil, !- Name<br />

CoolingCoilAvailSched, !- Availability Schedule Name<br />

10500, !- Rated Total Cooling Capacity {W}<br />

0.75, !- Rated Sensible Heat Ratio<br />

3.0, !- Rated COP<br />

0.6, !- Rated Air Flow Rate {m3/s}<br />

Zone7WindACOAMixerOutletNode, !- Air Inlet Node Name<br />

Zone7WindACDXOutletNode, !- Air Outlet Node Name<br />

WindACCoolCapFT, !- Total Cooling Capacity Function <strong>of</strong> Temperature<br />

Curve Name<br />

WindACCoolCapFFF, !- Total Cooling Capacity Function <strong>of</strong> Flow Fraction<br />

Curve Name<br />

WindACEIRFT, !- Energy Input Ratio Function <strong>of</strong> Temperature Curve Name<br />

WindACEIRFFF, !- Energy Input Ratio Function <strong>of</strong> Flow Fraction Curve<br />

Name<br />

WindACPLFFPLR, !- Part Load Fraction Correlation Curve Name<br />

ContinuousFanWithCyclingCompressor; !- Supply Air Fan Operating Mode<br />

Coil:Cooling:DX:SingleSpeed,<br />

Zone8WindACDXCoil, !- Name<br />

CoolingCoilAvailSched, !- Availability Schedule Name<br />

10500, !- Rated Total Cooling Capacity {W}<br />

0.75, !- Rated Sensible Heat Ratio<br />

3.0, !- Rated COP<br />

0.6, !- Rated Air Flow Rate {m3/s}<br />

Zone8WindACOAMixerOutletNode, !- Air Inlet Node Name<br />

Zone8WindACDXOutletNode, !- Air Outlet Node Name<br />

WindACCoolCapFT, !- Total Cooling Capacity Function <strong>of</strong> Temperature<br />

Curve Name<br />

WindACCoolCapFFF, !- Total Cooling Capacity Function <strong>of</strong> Flow Fraction<br />

Curve Name<br />

WindACEIRFT, !- Energy Input Ratio Function <strong>of</strong> Temperature Curve Name<br />

WindACEIRFFF, !- Energy Input Ratio Function <strong>of</strong> Flow Fraction Curve<br />

Name<br />

WindACPLFFPLR, !- Part Load Fraction Correlation Curve Name<br />

ContinuousFanWithCyclingCompressor; !- Supply Air Fan Operating Mode<br />

Coil:Cooling:DX:SingleSpeed,<br />

Zone9WindACDXCoil, !- Name<br />

CoolingCoilAvailSched, !- Availability Schedule Name<br />

10500, !- Rated Total Cooling Capacity {W}<br />

0.75, !- Rated Sensible Heat Ratio<br />

3.0, !- Rated COP<br />

0.6, !- Rated Air Flow Rate {m3/s}<br />

Zone9WindACOAMixerOutletNode, !- Air Inlet Node Name<br />

Zone9WindACDXOutletNode, !- Air Outlet Node Name<br />

WindACCoolCapFT, !- Total Cooling Capacity Function <strong>of</strong> Temperature<br />

Curve Name<br />

WindACCoolCapFFF, !- Total Cooling Capacity Function <strong>of</strong> Flow Fraction<br />

Curve Name<br />

WindACEIRFT, !- Energy Input Ratio Function <strong>of</strong> Temperature Curve Name<br />

WindACEIRFFF, !- Energy Input Ratio Function <strong>of</strong> Flow Fraction Curve<br />

Name<br />

WindACPLFFPLR, !- Part Load Fraction Correlation Curve Name<br />

ContinuousFanWithCyclingCompressor; !- Supply Air Fan Operating Mode<br />

Coil:Cooling:DX:SingleSpeed,<br />

Zone10WindACDXCoil, !- Name<br />

CoolingCoilAvailSched, !- Availability Schedule Name<br />

10500, !- Rated Total Cooling Capacity {W}<br />

0.75, !- Rated Sensible Heat Ratio<br />

3.0, !- Rated COP<br />

0.6, !- Rated Air Flow Rate {m3/s}<br />

Zone10WindACOAMixerOutletNode, !- Air Inlet Node Name<br />

Zone10WindACDXOutletNode,!- Air Outlet Node Name<br />

WindACCoolCapFT, !- Total Cooling Capacity Function <strong>of</strong> Temperature<br />

Curve Name<br />

WindACCoolCapFFF, !- Total Cooling Capacity Function <strong>of</strong> Flow Fraction<br />

Curve Name<br />

WindACEIRFT, !- Energy Input Ratio Function <strong>of</strong> Temperature Curve Name<br />

WindACEIRFFF, !- Energy Input Ratio Function <strong>of</strong> Flow Fraction Curve<br />

Name<br />

WindACPLFFPLR, !- Part Load Fraction Correlation Curve Name<br />

ContinuousFanWithCyclingCompressor; !- Supply Air Fan Operating Mode<br />

Coil:Cooling:DX:SingleSpeed,<br />

Zone11WindACDXCoil, !- Name<br />

CoolingCoilAvailSched, !- Availability Schedule Name<br />

10500, !- Rated Total Cooling Capacity {W}<br />

0.75, !- Rated Sensible Heat Ratio<br />

3.0, !- Rated COP<br />

0.6, !- Rated Air Flow Rate {m3/s}<br />

Zone11WindACOAMixerOutletNode, !- Air Inlet Node Name<br />

Zone11WindACDXOutletNode,!- Air Outlet Node Name<br />

WindACCoolCapFT, !- Total Cooling Capacity Function <strong>of</strong> Temperature<br />

Curve Name<br />

WindACCoolCapFFF, !- Total Cooling Capacity Function <strong>of</strong> Flow Fraction<br />

Curve Name<br />

WindACEIRFT, !- Energy Input Ratio Function <strong>of</strong> Temperature Curve Name<br />

WindACEIRFFF, !- Energy Input Ratio Function <strong>of</strong> Flow Fraction Curve<br />

Name<br />

WindACPLFFPLR, !- Part Load Fraction Correlation Curve Name<br />

ContinuousFanWithCyclingCompressor; !- Supply Air Fan Operating Mode<br />

Coil:Cooling:DX:SingleSpeed,<br />

Zone12WindACDXCoil, !- Name<br />

CoolingCoilAvailSched, !- Availability Schedule Name<br />

10500, !- Rated Total Cooling Capacity {W}<br />

0.75, !- Rated Sensible Heat Ratio<br />

3.0, !- Rated COP<br />

0.6, !- Rated Air Flow Rate {m3/s}<br />

Zone12WindACOAMixerOutletNode, !- Air Inlet Node Name<br />

Zone12WindACDXOutletNode,!- Air Outlet Node Name<br />

WindACCoolCapFT, !- Total Cooling Capacity Function <strong>of</strong> Temperature<br />

Curve Name<br />

WindACCoolCapFFF, !- Total Cooling Capacity Function <strong>of</strong> Flow Fraction<br />

Curve Name<br />

WindACEIRFT, !- Energy Input Ratio Function <strong>of</strong> Temperature Curve Name<br />

WindACEIRFFF, !- Energy Input Ratio Function <strong>of</strong> Flow Fraction Curve<br />

Name<br />

WindACPLFFPLR, !- Part Load Fraction Correlation Curve Name<br />

ContinuousFanWithCyclingCompressor; !- Supply Air Fan Operating Mode<br />

Coil:Cooling:DX:SingleSpeed,<br />

Zone13WindACDXCoil, !- Name<br />

CoolingCoilAvailSched, !- Availability Schedule Name<br />

10500, !- Rated Total Cooling Capacity {W}<br />

0.75, !- Rated Sensible Heat Ratio<br />

3.0, !- Rated COP<br />

0.6, !- Rated Air Flow Rate {m3/s}<br />

Zone13WindACOAMixerOutletNode, !- Air Inlet Node Name<br />

Zone13WindACDXOutletNode,!- Air Outlet Node Name<br />

WindACCoolCapFT, !- Total Cooling Capacity Function <strong>of</strong> Temperature<br />

Curve Name<br />

WindACCoolCapFFF, !- Total Cooling Capacity Function <strong>of</strong> Flow Fraction<br />

Curve Name<br />

WindACEIRFT, !- Energy Input Ratio Function <strong>of</strong> Temperature Curve Name<br />

WindACEIRFFF, !- Energy Input Ratio Function <strong>of</strong> Flow Fraction Curve<br />

Name<br />

WindACPLFFPLR, !- Part Load Fraction Correlation Curve Name<br />

ContinuousFanWithCyclingCompressor; !- Supply Air Fan Operating Mode<br />

Coil:Cooling:DX:SingleSpeed,<br />

Zone14WindACDXCoil, !- Name<br />

CoolingCoilAvailSched, !- Availability Schedule Name<br />

10500, !- Rated Total Cooling Capacity {W}<br />

0.75, !- Rated Sensible Heat Ratio<br />

3.0, !- Rated COP<br />

0.6, !- Rated Air Flow Rate {m3/s}<br />

Zone14WindACOAMixerOutletNode, !- Air Inlet Node Name<br />

Zone14WindACDXOutletNode,!- Air Outlet Node Name<br />

WindACCoolCapFT, !- Total Cooling Capacity Function <strong>of</strong> Temperature<br />

Curve Name<br />

WindACCoolCapFFF, !- Total Cooling Capacity Function <strong>of</strong> Flow Fraction<br />

Curve Name<br />

WindACEIRFT, !- Energy Input Ratio Function <strong>of</strong> Temperature Curve Name<br />

WindACEIRFFF, !- Energy Input Ratio Function <strong>of</strong> Flow Fraction Curve<br />

Name


Appendix 2 161<br />

WindACPLFFPLR, !- Part Load Fraction Correlation Curve Name<br />

ContinuousFanWithCyclingCompressor; !- Supply Air Fan Operating Mode<br />

Coil:Cooling:DX:SingleSpeed,<br />

Zone15WindACDXCoil, !- Name<br />

CoolingCoilAvailSched, !- Availability Schedule Name<br />

10500, !- Rated Total Cooling Capacity {W}<br />

0.75, !- Rated Sensible Heat Ratio<br />

3.0, !- Rated COP<br />

0.6, !- Rated Air Flow Rate {m3/s}<br />

Zone15WindACOAMixerOutletNode, !- Air Inlet Node Name<br />

Zone15WindACDXOutletNode,!- Air Outlet Node Name<br />

WindACCoolCapFT, !- Total Cooling Capacity Function <strong>of</strong> Temperature<br />

Curve Name<br />

WindACCoolCapFFF, !- Total Cooling Capacity Function <strong>of</strong> Flow Fraction<br />

Curve Name<br />

WindACEIRFT, !- Energy Input Ratio Function <strong>of</strong> Temperature Curve Name<br />

WindACEIRFFF, !- Energy Input Ratio Function <strong>of</strong> Flow Fraction Curve<br />

Name<br />

WindACPLFFPLR, !- Part Load Fraction Correlation Curve Name<br />

ContinuousFanWithCyclingCompressor; !- Supply Air Fan Operating Mode<br />

Coil:Cooling:DX:SingleSpeed,<br />

Zone16WindACDXCoil, !- Name<br />

CoolingCoilAvailSched, !- Availability Schedule Name<br />

10500, !- Rated Total Cooling Capacity {W}<br />

0.75, !- Rated Sensible Heat Ratio<br />

3.0, !- Rated COP<br />

0.6, !- Rated Air Flow Rate {m3/s}<br />

Zone16WindACOAMixerOutletNode, !- Air Inlet Node Name<br />

Zone16WindACDXOutletNode,!- Air Outlet Node Name<br />

WindACCoolCapFT, !- Total Cooling Capacity Function <strong>of</strong> Temperature<br />

Curve Name<br />

WindACCoolCapFFF, !- Total Cooling Capacity Function <strong>of</strong> Flow Fraction<br />

Curve Name<br />

WindACEIRFT, !- Energy Input Ratio Function <strong>of</strong> Temperature Curve Name<br />

WindACEIRFFF, !- Energy Input Ratio Function <strong>of</strong> Flow Fraction Curve<br />

Name<br />

WindACPLFFPLR, !- Part Load Fraction Correlation Curve Name<br />

ContinuousFanWithCyclingCompressor; !- Supply Air Fan Operating Mode<br />

Coil:Cooling:DX:SingleSpeed,<br />

Zone17WindACDXCoil, !- Name<br />

CoolingCoilAvailSched, !- Availability Schedule Name<br />

10500, !- Rated Total Cooling Capacity {W}<br />

0.75, !- Rated Sensible Heat Ratio<br />

3.0, !- Rated COP<br />

0.6, !- Rated Air Flow Rate {m3/s}<br />

Zone17WindACOAMixerOutletNode, !- Air Inlet Node Name<br />

Zone17WindACDXOutletNode,!- Air Outlet Node Name<br />

WindACCoolCapFT, !- Total Cooling Capacity Function <strong>of</strong> Temperature<br />

Curve Name<br />

WindACCoolCapFFF, !- Total Cooling Capacity Function <strong>of</strong> Flow Fraction<br />

Curve Name<br />

WindACEIRFT, !- Energy Input Ratio Function <strong>of</strong> Temperature Curve Name<br />

WindACEIRFFF, !- Energy Input Ratio Function <strong>of</strong> Flow Fraction Curve<br />

Name<br />

WindACPLFFPLR, !- Part Load Fraction Correlation Curve Name<br />

ContinuousFanWithCyclingCompressor; !- Supply Air Fan Operating Mode<br />

Coil:Cooling:DX:SingleSpeed,<br />

Zone18WindACDXCoil, !- Name<br />

CoolingCoilAvailSched, !- Availability Schedule Name<br />

10500, !- Rated Total Cooling Capacity {W}<br />

0.75, !- Rated Sensible Heat Ratio<br />

3.0, !- Rated COP<br />

0.6, !- Rated Air Flow Rate {m3/s}<br />

Zone18WindACOAMixerOutletNode, !- Air Inlet Node Name<br />

Zone18WindACDXOutletNode,!- Air Outlet Node Name<br />

WindACCoolCapFT, !- Total Cooling Capacity Function <strong>of</strong> Temperature<br />

Curve Name<br />

WindACCoolCapFFF, !- Total Cooling Capacity Function <strong>of</strong> Flow Fraction<br />

Curve Name<br />

WindACEIRFT, !- Energy Input Ratio Function <strong>of</strong> Temperature Curve Name<br />

WindACEIRFFF, !- Energy Input Ratio Function <strong>of</strong> Flow Fraction Curve<br />

Name<br />

WindACPLFFPLR, !- Part Load Fraction Correlation Curve Name<br />

ContinuousFanWithCyclingCompressor; !- Supply Air Fan Operating Mode<br />

Coil:Cooling:DX:SingleSpeed,<br />

Zone19WindACDXCoil, !- Name<br />

CoolingCoilAvailSched, !- Availability Schedule Name<br />

10500, !- Rated Total Cooling Capacity {W}<br />

0.75, !- Rated Sensible Heat Ratio<br />

3.0, !- Rated COP<br />

0.6, !- Rated Air Flow Rate {m3/s}<br />

Zone19WindACOAMixerOutletNode, !- Air Inlet Node Name<br />

Zone19WindACDXOutletNode,!- Air Outlet Node Name<br />

WindACCoolCapFT, !- Total Cooling Capacity Function <strong>of</strong> Temperature<br />

Curve Name<br />

WindACCoolCapFFF, !- Total Cooling Capacity Function <strong>of</strong> Flow Fraction<br />

Curve Name<br />

WindACEIRFT, !- Energy Input Ratio Function <strong>of</strong> Temperature Curve Name<br />

WindACEIRFFF, !- Energy Input Ratio Function <strong>of</strong> Flow Fraction Curve<br />

Name<br />

WindACPLFFPLR, !- Part Load Fraction Correlation Curve Name<br />

ContinuousFanWithCyclingCompressor; !- Supply Air Fan Operating Mode<br />

!- == ALL OBJECTS IN CLASS: FAN:SIMPLE:CONSTVOLUME ==<br />

Fan:ConstantVolume,<br />

Zone2WindACFan, !- Name<br />

FanAndCoilAvailSched, !- Availability Schedule Name<br />

0.5, !- Fan Efficiency<br />

75.0, !- Pressure Rise {Pa}<br />

0.6, !- Maximum Flow Rate {m3/s}<br />

0.9, !- Motor Efficiency<br />

1.0, !- Motor In Airstream Fraction<br />

Zone2WindACOAMixerOutletNode, !- Air Inlet Node Name<br />

Zone2WindACFanOutletNode;!- Air Outlet Node Name<br />

Fan:ConstantVolume,<br />

Zone3WindACFan, !- Name<br />

FanAndCoilAvailSched, !- Availability Schedule Name<br />

0.5, !- Fan Efficiency<br />

75.0, !- Pressure Rise {Pa}<br />

0.6, !- Maximum Flow Rate {m3/s}<br />

0.9, !- Motor Efficiency<br />

1.0, !- Motor In Airstream Fraction<br />

Zone3WindACDXOutletNode, !- Air Inlet Node Name<br />

Zone3WindACAirOutletNode;!- Air Outlet Node Name<br />

Fan:ConstantVolume,<br />

Zone4WindACFan, !- Name<br />

FanAndCoilAvailSched, !- Availability Schedule Name<br />

0.5, !- Fan Efficiency<br />

75.0, !- Pressure Rise {Pa}<br />

0.6, !- Maximum Flow Rate {m3/s}<br />

0.9, !- Motor Efficiency<br />

1.0, !- Motor In Airstream Fraction<br />

Zone4WindACDXOutletNode, !- Air Inlet Node Name<br />

Zone4WindACAirOutletNode;!- Air Outlet Node Name<br />

Fan:ConstantVolume,<br />

Zone5WindACFan, !- Name<br />

FanAndCoilAvailSched, !- Availability Schedule Name<br />

0.5, !- Fan Efficiency<br />

75.0, !- Pressure Rise {Pa}<br />

0.6, !- Maximum Flow Rate {m3/s}<br />

0.9, !- Motor Efficiency<br />

1.0, !- Motor In Airstream Fraction<br />

Zone5WindACDXOutletNode, !- Air Inlet Node Name<br />

Zone5WindACAirOutletNode;!- Air Outlet Node Name<br />

Fan:ConstantVolume,<br />

Zone6WindACFan, !- Name<br />

FanAndCoilAvailSched, !- Availability Schedule Name<br />

0.5, !- Fan Efficiency<br />

75.0, !- Pressure Rise {Pa}<br />

0.6, !- Maximum Flow Rate {m3/s}<br />

0.9, !- Motor Efficiency<br />

1.0, !- Motor In Airstream Fraction<br />

Zone6WindACDXOutletNode, !- Air Inlet Node Name<br />

Zone6WindACAirOutletNode;!- Air Outlet Node Name<br />

Fan:ConstantVolume,


Appendix 2 162<br />

Zone7WindACFan, !- Name<br />

FanAndCoilAvailSched, !- Availability Schedule Name<br />

0.5, !- Fan Efficiency<br />

75.0, !- Pressure Rise {Pa}<br />

0.6, !- Maximum Flow Rate {m3/s}<br />

0.9, !- Motor Efficiency<br />

1.0, !- Motor In Airstream Fraction<br />

Zone7WindACDXOutletNode, !- Air Inlet Node Name<br />

Zone7WindACAirOutletNode;!- Air Outlet Node Name<br />

Fan:ConstantVolume,<br />

Zone8WindACFan, !- Name<br />

FanAndCoilAvailSched, !- Availability Schedule Name<br />

0.5, !- Fan Efficiency<br />

75.0, !- Pressure Rise {Pa}<br />

0.6, !- Maximum Flow Rate {m3/s}<br />

0.9, !- Motor Efficiency<br />

1.0, !- Motor In Airstream Fraction<br />

Zone8WindACDXOutletNode, !- Air Inlet Node Name<br />

Zone8WindACAirOutletNode;!- Air Outlet Node Name<br />

Fan:ConstantVolume,<br />

Zone9WindACFan, !- Name<br />

FanAndCoilAvailSched, !- Availability Schedule Name<br />

0.5, !- Fan Efficiency<br />

75.0, !- Pressure Rise {Pa}<br />

0.6, !- Maximum Flow Rate {m3/s}<br />

0.9, !- Motor Efficiency<br />

1.0, !- Motor In Airstream Fraction<br />

Zone9WindACDXOutletNode, !- Air Inlet Node Name<br />

Zone9WindACAirOutletNode;!- Air Outlet Node Name<br />

Fan:ConstantVolume,<br />

Zone10WindACFan, !- Name<br />

FanAndCoilAvailSched, !- Availability Schedule Name<br />

0.5, !- Fan Efficiency<br />

75.0, !- Pressure Rise {Pa}<br />

0.6, !- Maximum Flow Rate {m3/s}<br />

0.9, !- Motor Efficiency<br />

1.0, !- Motor In Airstream Fraction<br />

Zone10WindACDXOutletNode,!- Air Inlet Node Name<br />

Zone10WindACAirOutletNode; !- Air Outlet Node Name<br />

Fan:ConstantVolume,<br />

Zone11WindACFan, !- Name<br />

FanAndCoilAvailSched, !- Availability Schedule Name<br />

0.5, !- Fan Efficiency<br />

75.0, !- Pressure Rise {Pa}<br />

0.6, !- Maximum Flow Rate {m3/s}<br />

0.9, !- Motor Efficiency<br />

1.0, !- Motor In Airstream Fraction<br />

Zone11WindACDXOutletNode,!- Air Inlet Node Name<br />

Zone11WindACAirOutletNode; !- Air Outlet Node Name<br />

Fan:ConstantVolume,<br />

Zone12WindACFan, !- Name<br />

FanAndCoilAvailSched, !- Availability Schedule Name<br />

0.5, !- Fan Efficiency<br />

75.0, !- Pressure Rise {Pa}<br />

0.6, !- Maximum Flow Rate {m3/s}<br />

0.9, !- Motor Efficiency<br />

1.0, !- Motor In Airstream Fraction<br />

Zone12WindACDXOutletNode,!- Air Inlet Node Name<br />

Zone12WindACAirOutletNode; !- Air Outlet Node Name<br />

Fan:ConstantVolume,<br />

Zone13WindACFan, !- Name<br />

FanAndCoilAvailSched, !- Availability Schedule Name<br />

0.5, !- Fan Efficiency<br />

75.0, !- Pressure Rise {Pa}<br />

0.6, !- Maximum Flow Rate {m3/s}<br />

0.9, !- Motor Efficiency<br />

1.0, !- Motor In Airstream Fraction<br />

Zone13WindACDXOutletNode,!- Air Inlet Node Name<br />

Zone13WindACAirOutletNode; !- Air Outlet Node Name<br />

Fan:ConstantVolume,<br />

Zone14WindACFan, !- Name<br />

FanAndCoilAvailSched, !- Availability Schedule Name<br />

0.5, !- Fan Efficiency<br />

75.0, !- Pressure Rise {Pa}<br />

0.6, !- Maximum Flow Rate {m3/s}<br />

0.9, !- Motor Efficiency<br />

1.0, !- Motor In Airstream Fraction<br />

Zone14WindACDXOutletNode,!- Air Inlet Node Name<br />

Zone14WindACAirOutletNode; !- Air Outlet Node Name<br />

Fan:ConstantVolume,<br />

Zone15WindACFan, !- Name<br />

FanAndCoilAvailSched, !- Availability Schedule Name<br />

0.5, !- Fan Efficiency<br />

75.0, !- Pressure Rise {Pa}<br />

0.6, !- Maximum Flow Rate {m3/s}<br />

0.9, !- Motor Efficiency<br />

1.0, !- Motor In Airstream Fraction<br />

Zone15WindACDXOutletNode,!- Air Inlet Node Name<br />

Zone15WindACAirOutletNode; !- Air Outlet Node Name<br />

Fan:ConstantVolume,<br />

Zone16WindACFan, !- Name<br />

FanAndCoilAvailSched, !- Availability Schedule Name<br />

0.5, !- Fan Efficiency<br />

75.0, !- Pressure Rise {Pa}<br />

0.6, !- Maximum Flow Rate {m3/s}<br />

0.9, !- Motor Efficiency<br />

1.0, !- Motor In Airstream Fraction<br />

Zone16WindACDXOutletNode,!- Air Inlet Node Name<br />

Zone16WindACAirOutletNode; !- Air Outlet Node Name<br />

Fan:ConstantVolume,<br />

Zone17WindACFan, !- Name<br />

FanAndCoilAvailSched, !- Availability Schedule Name<br />

0.5, !- Fan Efficiency<br />

75.0, !- Pressure Rise {Pa}<br />

0.6, !- Maximum Flow Rate {m3/s}<br />

0.9, !- Motor Efficiency<br />

1.0, !- Motor In Airstream Fraction<br />

Zone17WindACDXOutletNode,!- Air Inlet Node Name<br />

Zone17WindACAirOutletNode; !- Air Outlet Node Name<br />

Fan:ConstantVolume,<br />

Zone18WindACFan, !- Name<br />

FanAndCoilAvailSched, !- Availability Schedule Name<br />

0.5, !- Fan Efficiency<br />

75.0, !- Pressure Rise {Pa}<br />

0.6, !- Maximum Flow Rate {m3/s}<br />

0.9, !- Motor Efficiency<br />

1.0, !- Motor In Airstream Fraction<br />

Zone18WindACDXOutletNode,!- Air Inlet Node Name<br />

Zone18WindACAirOutletNode; !- Air Outlet Node Name<br />

Fan:ConstantVolume,<br />

Zone19WindACFan, !- Name<br />

FanAndCoilAvailSched, !- Availability Schedule Name<br />

0.5, !- Fan Efficiency<br />

75.0, !- Pressure Rise {Pa}<br />

0.6, !- Maximum Flow Rate {m3/s}<br />

0.9, !- Motor Efficiency<br />

1.0, !- Motor In Airstream Fraction<br />

Zone19WindACDXOutletNode,!- Air Inlet Node Name<br />

Zone19WindACAirOutletNode; !- Air Outlet Node Name<br />

!- == ALL OBJECTS IN CLASS: FAN:SIMPLE:ONOFF ==<br />

Fan:OnOff,<br />

Zone1WindACFan, !- Name<br />

FanAndCoilAvailSched, !- Availability Schedule Name<br />

0.5, !- Fan Efficiency<br />

75.0, !- Pressure Rise {Pa}<br />

0.6, !- Maximum Flow Rate {m3/s}<br />

0.9, !- Motor Efficiency<br />

1.0, !- Motor In Airstream Fraction<br />

Zone1WindACOAMixerOutletNode, !- Air Inlet Node Name<br />

Zone1WindACFanOutletNode;!- Air Outlet Node Name<br />

Fan:OnOff,


Appendix 2 163<br />

St<strong>and</strong> Alone ERV Supply Fan, !- Name<br />

FanAndCoilAvailSched, !- Availability Schedule Name<br />

0.5, !- Fan Efficiency<br />

75.0, !- Pressure Rise {Pa}<br />

0.03001, !- Maximum Flow Rate {m3/s}<br />

0.9, !- Motor Efficiency<br />

1.0, !- Motor In Airstream Fraction<br />

Heat Recovery Outlet Node, !- Air Inlet Node Name<br />

St<strong>and</strong> Alone ERV Supply Fan Outlet Node; !- Air Outlet Node Name<br />

Fan:OnOff,<br />

St<strong>and</strong> Alone ERV Exhaust Fan, !- Name<br />

FanAndCoilAvailSched, !- Availability Schedule Name<br />

0.5, !- Fan Efficiency<br />

75.0, !- Pressure Rise {Pa}<br />

0.03001, !- Maximum Flow Rate {m3/s}<br />

0.9, !- Motor Efficiency<br />

1.0, !- Motor In Airstream Fraction<br />

Heat Recovery Secondary Outlet Node, !- Air Inlet Node Name<br />

St<strong>and</strong> Alone ERV Exhaust Fan Outlet Node; !- Air Outlet Node Name<br />

Fan:OnOff,<br />

St<strong>and</strong> Alone ERV Supply Fan 2, !- Name<br />

FanAndCoilAvailSched, !- Availability Schedule Name<br />

0.5, !- Fan Efficiency<br />

75.0, !- Pressure Rise {Pa}<br />

0.03001, !- Maximum Flow Rate {m3/s}<br />

0.9, !- Motor Efficiency<br />

1.0, !- Motor In Airstream Fraction<br />

Heat Recovery Outlet Node 2, !- Air Inlet Node Name<br />

St<strong>and</strong> Alone ERV Supply Fan Outlet Node 2; !- Air Outlet Node Name<br />

Fan:OnOff,<br />

St<strong>and</strong> Alone ERV Exhaust Fan 2, !- Name<br />

FanAndCoilAvailSched, !- Availability Schedule Name<br />

0.5, !- Fan Efficiency<br />

75.0, !- Pressure Rise {Pa}<br />

0.03001, !- Maximum Flow Rate {m3/s}<br />

0.9, !- Motor Efficiency<br />

1.0, !- Motor In Airstream Fraction<br />

Heat Recovery Secondary Outlet Node 2, !- Air Inlet Node Name<br />

St<strong>and</strong> Alone ERV Exhaust Fan Outlet Node 2; !- Air Outlet Node Name<br />

Fan:OnOff,<br />

St<strong>and</strong> Alone ERV Supply Fan 3, !- Name<br />

FanAndCoilAvailSched, !- Availability Schedule Name<br />

0.5, !- Fan Efficiency<br />

75.0, !- Pressure Rise {Pa}<br />

0.03001, !- Maximum Flow Rate {m3/s}<br />

0.9, !- Motor Efficiency<br />

1.0, !- Motor In Airstream Fraction<br />

Heat Recovery Outlet Node 3, !- Air Inlet Node Name<br />

St<strong>and</strong> Alone ERV Supply Fan Outlet Node 3; !- Air Outlet Node Name<br />

Fan:OnOff,<br />

St<strong>and</strong> Alone ERV Exhaust Fan 3, !- Name<br />

FanAndCoilAvailSched, !- Availability Schedule Name<br />

0.5, !- Fan Efficiency<br />

75.0, !- Pressure Rise {Pa}<br />

0.03001, !- Maximum Flow Rate {m3/s}<br />

0.9, !- Motor Efficiency<br />

1.0, !- Motor In Airstream Fraction<br />

Heat Recovery Secondary Outlet Node 3, !- Air Inlet Node Name<br />

St<strong>and</strong> Alone ERV Exhaust Fan Outlet Node 3; !- Air Outlet Node Name<br />

Fan:OnOff,<br />

St<strong>and</strong> Alone ERV Supply Fan 4, !- Name<br />

FanAndCoilAvailSched, !- Availability Schedule Name<br />

0.5, !- Fan Efficiency<br />

75.0, !- Pressure Rise {Pa}<br />

0.03001, !- Maximum Flow Rate {m3/s}<br />

0.9, !- Motor Efficiency<br />

1.0, !- Motor In Airstream Fraction<br />

Heat Recovery Outlet Node 4, !- Air Inlet Node Name<br />

St<strong>and</strong> Alone ERV Supply Fan Outlet Node 4; !- Air Outlet Node Name<br />

Fan:OnOff,<br />

St<strong>and</strong> Alone ERV Exhaust Fan 4, !- Name<br />

FanAndCoilAvailSched, !- Availability Schedule Name<br />

0.5, !- Fan Efficiency<br />

75.0, !- Pressure Rise {Pa}<br />

0.03001, !- Maximum Flow Rate {m3/s}<br />

0.9, !- Motor Efficiency<br />

1.0, !- Motor In Airstream Fraction<br />

Heat Recovery Secondary Outlet Node 4, !- Air Inlet Node Name<br />

St<strong>and</strong> Alone ERV Exhaust Fan Outlet Node 4; !- Air Outlet Node Name<br />

Fan:OnOff,<br />

St<strong>and</strong> Alone ERV Supply Fan 5, !- Name<br />

FanAndCoilAvailSched, !- Availability Schedule Name<br />

0.5, !- Fan Efficiency<br />

75.0, !- Pressure Rise {Pa}<br />

0.03001, !- Maximum Flow Rate {m3/s}<br />

0.9, !- Motor Efficiency<br />

1.0, !- Motor In Airstream Fraction<br />

Heat Recovery Outlet Node 5, !- Air Inlet Node Name<br />

St<strong>and</strong> Alone ERV Supply Fan Outlet Node 5; !- Air Outlet Node Name<br />

Fan:OnOff,<br />

St<strong>and</strong> Alone ERV Exhaust Fan 5, !- Name<br />

FanAndCoilAvailSched, !- Availability Schedule Name<br />

0.5, !- Fan Efficiency<br />

75.0, !- Pressure Rise {Pa}<br />

0.03001, !- Maximum Flow Rate {m3/s}<br />

0.9, !- Motor Efficiency<br />

1.0, !- Motor In Airstream Fraction<br />

Heat Recovery Secondary Outlet Node 5, !- Air Inlet Node Name<br />

St<strong>and</strong> Alone ERV Exhaust Fan Outlet Node 5; !- Air Outlet Node Name<br />

Fan:OnOff,<br />

St<strong>and</strong> Alone ERV Supply Fan 6, !- Name<br />

FanAndCoilAvailSched, !- Availability Schedule Name<br />

0.5, !- Fan Efficiency<br />

75.0, !- Pressure Rise {Pa}<br />

0.03001, !- Maximum Flow Rate {m3/s}<br />

0.9, !- Motor Efficiency<br />

1.0, !- Motor In Airstream Fraction<br />

Heat Recovery Outlet Node 6, !- Air Inlet Node Name<br />

St<strong>and</strong> Alone ERV Supply Fan Outlet Node 6; !- Air Outlet Node Name<br />

Fan:OnOff,<br />

St<strong>and</strong> Alone ERV Exhaust Fan 6, !- Name<br />

FanAndCoilAvailSched, !- Availability Schedule Name<br />

0.5, !- Fan Efficiency<br />

75.0, !- Pressure Rise {Pa}<br />

0.03001, !- Maximum Flow Rate {m3/s}<br />

0.9, !- Motor Efficiency<br />

1.0, !- Motor In Airstream Fraction<br />

Heat Recovery Secondary Outlet Node 6, !- Air Inlet Node Name<br />

St<strong>and</strong> Alone ERV Exhaust Fan Outlet Node 6; !- Air Outlet Node Name<br />

Fan:OnOff,<br />

St<strong>and</strong> Alone ERV Supply Fan 7, !- Name<br />

FanAndCoilAvailSched, !- Availability Schedule Name<br />

0.5, !- Fan Efficiency<br />

75.0, !- Pressure Rise {Pa}<br />

0.03001, !- Maximum Flow Rate {m3/s}<br />

0.9, !- Motor Efficiency<br />

1.0, !- Motor In Airstream Fraction<br />

Heat Recovery Outlet Node 7, !- Air Inlet Node Name<br />

St<strong>and</strong> Alone ERV Supply Fan Outlet Node 7; !- Air Outlet Node Name<br />

Fan:OnOff,<br />

St<strong>and</strong> Alone ERV Exhaust Fan 7, !- Name<br />

FanAndCoilAvailSched, !- Availability Schedule Name<br />

0.5, !- Fan Efficiency<br />

75.0, !- Pressure Rise {Pa}<br />

0.03001, !- Maximum Flow Rate {m3/s}<br />

0.9, !- Motor Efficiency<br />

1.0, !- Motor In Airstream Fraction<br />

Heat Recovery Secondary Outlet Node 7, !- Air Inlet Node Name<br />

St<strong>and</strong> Alone ERV Exhaust Fan Outlet Node 7; !- Air Outlet Node Name<br />

Fan:OnOff,<br />

St<strong>and</strong> Alone ERV Supply Fan 8, !- Name<br />

FanAndCoilAvailSched, !- Availability Schedule Name


Appendix 2 164<br />

0.5, !- Fan Efficiency<br />

75.0, !- Pressure Rise {Pa}<br />

0.03001, !- Maximum Flow Rate {m3/s}<br />

0.9, !- Motor Efficiency<br />

1.0, !- Motor In Airstream Fraction<br />

Heat Recovery Outlet Node 8, !- Air Inlet Node Name<br />

St<strong>and</strong> Alone ERV Supply Fan Outlet Node 8; !- Air Outlet Node Name<br />

Fan:OnOff,<br />

St<strong>and</strong> Alone ERV Exhaust Fan 8, !- Name<br />

FanAndCoilAvailSched, !- Availability Schedule Name<br />

0.5, !- Fan Efficiency<br />

75.0, !- Pressure Rise {Pa}<br />

0.03001, !- Maximum Flow Rate {m3/s}<br />

0.9, !- Motor Efficiency<br />

1.0, !- Motor In Airstream Fraction<br />

Heat Recovery Secondary Outlet Node 8, !- Air Inlet Node Name<br />

St<strong>and</strong> Alone ERV Exhaust Fan Outlet Node 8; !- Air Outlet Node Name<br />

Fan:OnOff,<br />

St<strong>and</strong> Alone ERV Supply Fan 9, !- Name<br />

FanAndCoilAvailSched, !- Availability Schedule Name<br />

0.5, !- Fan Efficiency<br />

75.0, !- Pressure Rise {Pa}<br />

0.03001, !- Maximum Flow Rate {m3/s}<br />

0.9, !- Motor Efficiency<br />

1.0, !- Motor In Airstream Fraction<br />

Heat Recovery Outlet Node 9, !- Air Inlet Node Name<br />

St<strong>and</strong> Alone ERV Supply Fan Outlet Node 9; !- Air Outlet Node Name<br />

Fan:OnOff,<br />

St<strong>and</strong> Alone ERV Exhaust Fan 9, !- Name<br />

FanAndCoilAvailSched, !- Availability Schedule Name<br />

0.5, !- Fan Efficiency<br />

75.0, !- Pressure Rise {Pa}<br />

0.03001, !- Maximum Flow Rate {m3/s}<br />

0.9, !- Motor Efficiency<br />

1.0, !- Motor In Airstream Fraction<br />

Heat Recovery Secondary Outlet Node 9, !- Air Inlet Node Name<br />

St<strong>and</strong> Alone ERV Exhaust Fan Outlet Node 9; !- Air Outlet Node Name<br />

Fan:OnOff,<br />

St<strong>and</strong> Alone ERV Supply Fan 10, !- Name<br />

FanAndCoilAvailSched, !- Availability Schedule Name<br />

0.5, !- Fan Efficiency<br />

75.0, !- Pressure Rise {Pa}<br />

0.03001, !- Maximum Flow Rate {m3/s}<br />

0.9, !- Motor Efficiency<br />

1.0, !- Motor In Airstream Fraction<br />

Heat Recovery Outlet Node 10, !- Air Inlet Node Name<br />

St<strong>and</strong> Alone ERV Supply Fan Outlet Node 10; !- Air Outlet Node Name<br />

Fan:OnOff,<br />

St<strong>and</strong> Alone ERV Exhaust Fan 10, !- Name<br />

FanAndCoilAvailSched, !- Availability Schedule Name<br />

0.5, !- Fan Efficiency<br />

75.0, !- Pressure Rise {Pa}<br />

0.03001, !- Maximum Flow Rate {m3/s}<br />

0.9, !- Motor Efficiency<br />

1.0, !- Motor In Airstream Fraction<br />

Heat Recovery Secondary Outlet Node 10, !- Air Inlet Node Name<br />

St<strong>and</strong> Alone ERV Exhaust Fan Outlet Node 10; !- Air Outlet Node Name<br />

Fan:OnOff,<br />

St<strong>and</strong> Alone ERV Supply Fan 11, !- Name<br />

FanAndCoilAvailSched, !- Availability Schedule Name<br />

0.5, !- Fan Efficiency<br />

75.0, !- Pressure Rise {Pa}<br />

0.03001, !- Maximum Flow Rate {m3/s}<br />

0.9, !- Motor Efficiency<br />

1.0, !- Motor In Airstream Fraction<br />

Heat Recovery Outlet Node 11, !- Air Inlet Node Name<br />

St<strong>and</strong> Alone ERV Supply Fan Outlet Node 11; !- Air Outlet Node Name<br />

Fan:OnOff,<br />

St<strong>and</strong> Alone ERV Exhaust Fan 11, !- Name<br />

FanAndCoilAvailSched, !- Availability Schedule Name<br />

0.5, !- Fan Efficiency<br />

75.0, !- Pressure Rise {Pa}<br />

0.03001, !- Maximum Flow Rate {m3/s}<br />

0.9, !- Motor Efficiency<br />

1.0, !- Motor In Airstream Fraction<br />

Heat Recovery Secondary Outlet Node 11, !- Air Inlet Node Name<br />

St<strong>and</strong> Alone ERV Exhaust Fan Outlet Node 11; !- Air Outlet Node Name<br />

Fan:OnOff,<br />

St<strong>and</strong> Alone ERV Supply Fan 12, !- Name<br />

FanAndCoilAvailSched, !- Availability Schedule Name<br />

0.5, !- Fan Efficiency<br />

75.0, !- Pressure Rise {Pa}<br />

0.03001, !- Maximum Flow Rate {m3/s}<br />

0.9, !- Motor Efficiency<br />

1.0, !- Motor In Airstream Fraction<br />

Heat Recovery Outlet Node 12, !- Air Inlet Node Name<br />

St<strong>and</strong> Alone ERV Supply Fan Outlet Node 12; !- Air Outlet Node Name<br />

Fan:OnOff,<br />

St<strong>and</strong> Alone ERV Exhaust Fan 12, !- Name<br />

FanAndCoilAvailSched, !- Availability Schedule Name<br />

0.5, !- Fan Efficiency<br />

75.0, !- Pressure Rise {Pa}<br />

0.03001, !- Maximum Flow Rate {m3/s}<br />

0.9, !- Motor Efficiency<br />

1.0, !- Motor In Airstream Fraction<br />

Heat Recovery Secondary Outlet Node 12, !- Air Inlet Node Name<br />

St<strong>and</strong> Alone ERV Exhaust Fan Outlet Node 12; !- Air Outlet Node Name<br />

Fan:OnOff,<br />

St<strong>and</strong> Alone ERV Supply Fan 13, !- Name<br />

FanAndCoilAvailSched, !- Availability Schedule Name<br />

0.5, !- Fan Efficiency<br />

75.0, !- Pressure Rise {Pa}<br />

0.03001, !- Maximum Flow Rate {m3/s}<br />

0.9, !- Motor Efficiency<br />

1.0, !- Motor In Airstream Fraction<br />

Heat Recovery Outlet Node 13, !- Air Inlet Node Name<br />

St<strong>and</strong> Alone ERV Supply Fan Outlet Node 13; !- Air Outlet Node Name<br />

Fan:OnOff,<br />

St<strong>and</strong> Alone ERV Exhaust Fan 13, !- Name<br />

FanAndCoilAvailSched, !- Availability Schedule Name<br />

0.5, !- Fan Efficiency<br />

75.0, !- Pressure Rise {Pa}<br />

0.03001, !- Maximum Flow Rate {m3/s}<br />

0.9, !- Motor Efficiency<br />

1.0, !- Motor In Airstream Fraction<br />

Heat Recovery Secondary Outlet Node 13, !- Air Inlet Node Name<br />

St<strong>and</strong> Alone ERV Exhaust Fan Outlet Node 13; !- Air Outlet Node Name<br />

Fan:OnOff,<br />

St<strong>and</strong> Alone ERV Supply Fan 14, !- Name<br />

FanAndCoilAvailSched, !- Availability Schedule Name<br />

0.5, !- Fan Efficiency<br />

75.0, !- Pressure Rise {Pa}<br />

0.03001, !- Maximum Flow Rate {m3/s}<br />

0.9, !- Motor Efficiency<br />

1.0, !- Motor In Airstream Fraction<br />

Heat Recovery Outlet Node 14, !- Air Inlet Node Name<br />

St<strong>and</strong> Alone ERV Supply Fan Outlet Node 14; !- Air Outlet Node Name<br />

Fan:OnOff,<br />

St<strong>and</strong> Alone ERV Exhaust Fan 14, !- Name<br />

FanAndCoilAvailSched, !- Availability Schedule Name<br />

0.5, !- Fan Efficiency<br />

75.0, !- Pressure Rise {Pa}<br />

0.03001, !- Maximum Flow Rate {m3/s}<br />

0.9, !- Motor Efficiency<br />

1.0, !- Motor In Airstream Fraction<br />

Heat Recovery Secondary Outlet Node 14, !- Air Inlet Node Name<br />

St<strong>and</strong> Alone ERV Exhaust Fan Outlet Node 14; !- Air Outlet Node Name<br />

Fan:OnOff,<br />

St<strong>and</strong> Alone ERV Supply Fan 15, !- Name<br />

FanAndCoilAvailSched, !- Availability Schedule Name<br />

0.5, !- Fan Efficiency<br />

75.0, !- Pressure Rise {Pa}


Appendix 2 165<br />

0.03001, !- Maximum Flow Rate {m3/s}<br />

0.9, !- Motor Efficiency<br />

1.0, !- Motor In Airstream Fraction<br />

Heat Recovery Outlet Node 15, !- Air Inlet Node Name<br />

St<strong>and</strong> Alone ERV Supply Fan Outlet Node 15; !- Air Outlet Node Name<br />

Fan:OnOff,<br />

St<strong>and</strong> Alone ERV Exhaust Fan 15, !- Name<br />

FanAndCoilAvailSched, !- Availability Schedule Name<br />

0.5, !- Fan Efficiency<br />

75.0, !- Pressure Rise {Pa}<br />

0.03001, !- Maximum Flow Rate {m3/s}<br />

0.9, !- Motor Efficiency<br />

1.0, !- Motor In Airstream Fraction<br />

Heat Recovery Secondary Outlet Node 15, !- Air Inlet Node Name<br />

St<strong>and</strong> Alone ERV Exhaust Fan Outlet Node 15; !- Air Outlet Node Name<br />

Fan:OnOff,<br />

St<strong>and</strong> Alone ERV Supply Fan 16, !- Name<br />

FanAndCoilAvailSched, !- Availability Schedule Name<br />

0.5, !- Fan Efficiency<br />

75.0, !- Pressure Rise {Pa}<br />

0.03001, !- Maximum Flow Rate {m3/s}<br />

0.9, !- Motor Efficiency<br />

1.0, !- Motor In Airstream Fraction<br />

Heat Recovery Outlet Node 16, !- Air Inlet Node Name<br />

St<strong>and</strong> Alone ERV Supply Fan Outlet Node 16; !- Air Outlet Node Name<br />

Fan:OnOff,<br />

St<strong>and</strong> Alone ERV Exhaust Fan 16, !- Name<br />

FanAndCoilAvailSched, !- Availability Schedule Name<br />

0.5, !- Fan Efficiency<br />

75.0, !- Pressure Rise {Pa}<br />

0.03001, !- Maximum Flow Rate {m3/s}<br />

0.9, !- Motor Efficiency<br />

1.0, !- Motor In Airstream Fraction<br />

Heat Recovery Secondary Outlet Node 16, !- Air Inlet Node Name<br />

St<strong>and</strong> Alone ERV Exhaust Fan Outlet Node 16; !- Air Outlet Node Name<br />

Fan:OnOff,<br />

St<strong>and</strong> Alone ERV Supply Fan 17, !- Name<br />

FanAndCoilAvailSched, !- Availability Schedule Name<br />

0.5, !- Fan Efficiency<br />

75.0, !- Pressure Rise {Pa}<br />

0.03001, !- Maximum Flow Rate {m3/s}<br />

0.9, !- Motor Efficiency<br />

1.0, !- Motor In Airstream Fraction<br />

Heat Recovery Outlet Node 17, !- Air Inlet Node Name<br />

St<strong>and</strong> Alone ERV Supply Fan Outlet Node 17; !- Air Outlet Node Name<br />

Fan:OnOff,<br />

St<strong>and</strong> Alone ERV Exhaust Fan 17, !- Name<br />

FanAndCoilAvailSched, !- Availability Schedule Name<br />

0.5, !- Fan Efficiency<br />

75.0, !- Pressure Rise {Pa}<br />

0.03001, !- Maximum Flow Rate {m3/s}<br />

0.9, !- Motor Efficiency<br />

1.0, !- Motor In Airstream Fraction<br />

Heat Recovery Secondary Outlet Node 17, !- Air Inlet Node Name<br />

St<strong>and</strong> Alone ERV Exhaust Fan Outlet Node 17; !- Air Outlet Node Name<br />

Fan:OnOff,<br />

St<strong>and</strong> Alone ERV Supply Fan 18, !- Name<br />

FanAndCoilAvailSched, !- Availability Schedule Name<br />

0.5, !- Fan Efficiency<br />

75.0, !- Pressure Rise {Pa}<br />

0.03001, !- Maximum Flow Rate {m3/s}<br />

0.9, !- Motor Efficiency<br />

1.0, !- Motor In Airstream Fraction<br />

Heat Recovery Outlet Node 18, !- Air Inlet Node Name<br />

St<strong>and</strong> Alone ERV Supply Fan Outlet Node 18; !- Air Outlet Node Name<br />

Fan:OnOff,<br />

St<strong>and</strong> Alone ERV Exhaust Fan 18, !- Name<br />

FanAndCoilAvailSched, !- Availability Schedule Name<br />

0.5, !- Fan Efficiency<br />

75.0, !- Pressure Rise {Pa}<br />

0.03001, !- Maximum Flow Rate {m3/s}<br />

0.9, !- Motor Efficiency<br />

1.0, !- Motor In Airstream Fraction<br />

Heat Recovery Secondary Outlet Node 18, !- Air Inlet Node Name<br />

St<strong>and</strong> Alone ERV Exhaust Fan Outlet Node 18; !- Air Outlet Node Name<br />

Fan:OnOff,<br />

St<strong>and</strong> Alone ERV Supply Fan 19, !- Name<br />

FanAndCoilAvailSched, !- Availability Schedule Name<br />

0.5, !- Fan Efficiency<br />

75.0, !- Pressure Rise {Pa}<br />

0.03001, !- Maximum Flow Rate {m3/s}<br />

0.9, !- Motor Efficiency<br />

1.0, !- Motor In Airstream Fraction<br />

Heat Recovery Outlet Node 19, !- Air Inlet Node Name<br />

St<strong>and</strong> Alone ERV Supply Fan Outlet Node 19; !- Air Outlet Node Name<br />

Fan:OnOff,<br />

St<strong>and</strong> Alone ERV Exhaust Fan 19, !- Name<br />

FanAndCoilAvailSched, !- Availability Schedule Name<br />

0.5, !- Fan Efficiency<br />

75.0, !- Pressure Rise {Pa}<br />

0.03001, !- Maximum Flow Rate {m3/s}<br />

0.9, !- Motor Efficiency<br />

1.0, !- Motor In Airstream Fraction<br />

Heat Recovery Secondary Outlet Node 19, !- Air Inlet Node Name<br />

St<strong>and</strong> Alone ERV Exhaust Fan Outlet Node 19; !- Air Outlet Node Name<br />

!- == ALL OBJECTS IN CLASS: HEAT EXCHANGER:AIR TO<br />

AIR:GENERIC ==<br />

HeatExchanger:AirToAir:SensibleAndLatent,<br />

OA Heat Recovery 1, !- Name<br />

FanAndCoilAvailSched, !- Availability Schedule Name<br />

0.03001, !- Nominal Supply Air Flow Rate {m3/s}<br />

0.76, !- Sensible Effectiveness at 100% Heating Air Flow {dimensionless}<br />

0.0068, !- Latent Effectiveness at 100% Heating Air Flow {dimensionless}<br />

0.81, !- Sensible Effectiveness at 75% Heating Air Flow {dimensionless}<br />

0.0073, !- Latent Effectiveness at 75% Heating Air Flow {dimensionless}<br />

0.76, !- Sensible Effectiveness at 100% Cooling Air Flow {dimensionless}<br />

0.0068, !- Latent Effectiveness at 100% Cooling Air Flow {dimensionless}<br />

0.81, !- Sensible Effectiveness at 75% Cooling Air Flow {dimensionless}<br />

0.0073, !- Latent Effectiveness at 75% Cooling Air Flow {dimensionless}<br />

ERV Outside Air Inlet Node, !- Supply Air Inlet Node Name<br />

Heat Recovery Outlet Node, !- Supply Air Outlet Node Name<br />

Zone 1 Exhaust Node, !- Exhaust Air Inlet Node Name<br />

Heat Recovery Secondary Outlet Node, !- Exhaust Air Outlet Node Name<br />

50.0, !- Nominal Electric Power {W}<br />

Yes, !- Supply Air Outlet Temperature Control<br />

Rotary, !- Heat Exchanger Type<br />

MinimumExhaustTemperature, !- Frost Control Type<br />

1.7; !- Threshold Temperature {C}<br />

HeatExchanger:AirToAir:SensibleAndLatent,<br />

OA Heat Recovery 2, !- Name<br />

FanAndCoilAvailSched, !- Availability Schedule Name<br />

0.03001, !- Nominal Supply Air Flow Rate {m3/s}<br />

0.76, !- Sensible Effectiveness at 100% Heating Air Flow {dimensionless}<br />

0.0068, !- Latent Effectiveness at 100% Heating Air Flow {dimensionless}<br />

0.81, !- Sensible Effectiveness at 75% Heating Air Flow {dimensionless}<br />

0.0073, !- Latent Effectiveness at 75% Heating Air Flow {dimensionless}<br />

0.76, !- Sensible Effectiveness at 100% Cooling Air Flow {dimensionless}<br />

0.0068, !- Latent Effectiveness at 100% Cooling Air Flow {dimensionless}<br />

0.81, !- Sensible Effectiveness at 75% Cooling Air Flow {dimensionless}<br />

0.0073, !- Latent Effectiveness at 75% Cooling Air Flow {dimensionless}<br />

ERV Outside Air Inlet Node 2, !- Supply Air Inlet Node Name<br />

Heat Recovery Outlet Node 2, !- Supply Air Outlet Node Name<br />

Zone 2 Exhaust Node, !- Exhaust Air Inlet Node Name<br />

Heat Recovery Secondary Outlet Node 2, !- Exhaust Air Outlet Node Name<br />

50.0, !- Nominal Electric Power {W}<br />

Yes, !- Supply Air Outlet Temperature Control<br />

Rotary, !- Heat Exchanger Type<br />

MinimumExhaustTemperature, !- Frost Control Type<br />

1.7; !- Threshold Temperature {C}<br />

HeatExchanger:AirToAir:SensibleAndLatent,<br />

OA Heat Recovery 3, !- Name<br />

FanAndCoilAvailSched, !- Availability Schedule Name<br />

0.03001, !- Nominal Supply Air Flow Rate {m3/s}


Appendix 2 166<br />

0.76, !- Sensible Effectiveness at 100% Heating Air Flow {dimensionless}<br />

0.0068, !- Latent Effectiveness at 100% Heating Air Flow {dimensionless}<br />

0.81, !- Sensible Effectiveness at 75% Heating Air Flow {dimensionless}<br />

0.0073, !- Latent Effectiveness at 75% Heating Air Flow {dimensionless}<br />

0.76, !- Sensible Effectiveness at 100% Cooling Air Flow {dimensionless}<br />

0.0068, !- Latent Effectiveness at 100% Cooling Air Flow {dimensionless}<br />

0.81, !- Sensible Effectiveness at 75% Cooling Air Flow {dimensionless}<br />

0.0073, !- Latent Effectiveness at 75% Cooling Air Flow {dimensionless}<br />

ERV Outside Air Inlet Node 3, !- Supply Air Inlet Node Name<br />

Heat Recovery Outlet Node 3, !- Supply Air Outlet Node Name<br />

Zone 3 Exhaust Node, !- Exhaust Air Inlet Node Name<br />

Heat Recovery Secondary Outlet Node 3, !- Exhaust Air Outlet Node Name<br />

50.0, !- Nominal Electric Power {W}<br />

Yes, !- Supply Air Outlet Temperature Control<br />

Rotary, !- Heat Exchanger Type<br />

MinimumExhaustTemperature, !- Frost Control Type<br />

1.7; !- Threshold Temperature {C}<br />

HeatExchanger:AirToAir:SensibleAndLatent,<br />

OA Heat Recovery 4, !- Name<br />

FanAndCoilAvailSched, !- Availability Schedule Name<br />

0.03001, !- Nominal Supply Air Flow Rate {m3/s}<br />

0.76, !- Sensible Effectiveness at 100% Heating Air Flow {dimensionless}<br />

0.0068, !- Latent Effectiveness at 100% Heating Air Flow {dimensionless}<br />

0.81, !- Sensible Effectiveness at 75% Heating Air Flow {dimensionless}<br />

0.0073, !- Latent Effectiveness at 75% Heating Air Flow {dimensionless}<br />

0.76, !- Sensible Effectiveness at 100% Cooling Air Flow {dimensionless}<br />

0.0068, !- Latent Effectiveness at 100% Cooling Air Flow {dimensionless}<br />

0.81, !- Sensible Effectiveness at 75% Cooling Air Flow {dimensionless}<br />

0.0073, !- Latent Effectiveness at 75% Cooling Air Flow {dimensionless}<br />

ERV Outside Air Inlet Node 4, !- Supply Air Inlet Node Name<br />

Heat Recovery Outlet Node 4, !- Supply Air Outlet Node Name<br />

Zone 4 Exhaust Node, !- Exhaust Air Inlet Node Name<br />

Heat Recovery Secondary Outlet Node 4, !- Exhaust Air Outlet Node Name<br />

50.0, !- Nominal Electric Power {W}<br />

Yes, !- Supply Air Outlet Temperature Control<br />

Rotary, !- Heat Exchanger Type<br />

MinimumExhaustTemperature, !- Frost Control Type<br />

1.7; !- Threshold Temperature {C}<br />

HeatExchanger:AirToAir:SensibleAndLatent,<br />

OA Heat Recovery 5, !- Name<br />

FanAndCoilAvailSched, !- Availability Schedule Name<br />

0.03001, !- Nominal Supply Air Flow Rate {m3/s}<br />

0.76, !- Sensible Effectiveness at 100% Heating Air Flow {dimensionless}<br />

0.0068, !- Latent Effectiveness at 100% Heating Air Flow {dimensionless}<br />

0.81, !- Sensible Effectiveness at 75% Heating Air Flow {dimensionless}<br />

0.0073, !- Latent Effectiveness at 75% Heating Air Flow {dimensionless}<br />

0.76, !- Sensible Effectiveness at 100% Cooling Air Flow {dimensionless}<br />

0.0068, !- Latent Effectiveness at 100% Cooling Air Flow {dimensionless}<br />

0.81, !- Sensible Effectiveness at 75% Cooling Air Flow {dimensionless}<br />

0.0073, !- Latent Effectiveness at 75% Cooling Air Flow {dimensionless}<br />

ERV Outside Air Inlet Node 5, !- Supply Air Inlet Node Name<br />

Heat Recovery Outlet Node 5, !- Supply Air Outlet Node Name<br />

Zone 5 Exhaust Node, !- Exhaust Air Inlet Node Name<br />

Heat Recovery Secondary Outlet Node 5, !- Exhaust Air Outlet Node Name<br />

50.0, !- Nominal Electric Power {W}<br />

Yes, !- Supply Air Outlet Temperature Control<br />

Rotary, !- Heat Exchanger Type<br />

MinimumExhaustTemperature, !- Frost Control Type<br />

1.7; !- Threshold Temperature {C}<br />

HeatExchanger:AirToAir:SensibleAndLatent,<br />

OA Heat Recovery 6, !- Name<br />

FanAndCoilAvailSched, !- Availability Schedule Name<br />

0.03001, !- Nominal Supply Air Flow Rate {m3/s}<br />

0.76, !- Sensible Effectiveness at 100% Heating Air Flow {dimensionless}<br />

0.0068, !- Latent Effectiveness at 100% Heating Air Flow {dimensionless}<br />

0.81, !- Sensible Effectiveness at 75% Heating Air Flow {dimensionless}<br />

0.0073, !- Latent Effectiveness at 75% Heating Air Flow {dimensionless}<br />

0.76, !- Sensible Effectiveness at 100% Cooling Air Flow {dimensionless}<br />

0.0068, !- Latent Effectiveness at 100% Cooling Air Flow {dimensionless}<br />

0.81, !- Sensible Effectiveness at 75% Cooling Air Flow {dimensionless}<br />

0.0073, !- Latent Effectiveness at 75% Cooling Air Flow {dimensionless}<br />

ERV Outside Air Inlet Node 6, !- Supply Air Inlet Node Name<br />

Heat Recovery Outlet Node 6, !- Supply Air Outlet Node Name<br />

Zone 6 Exhaust Node, !- Exhaust Air Inlet Node Name<br />

Heat Recovery Secondary Outlet Node 6, !- Exhaust Air Outlet Node Name<br />

50.0, !- Nominal Electric Power {W}<br />

Yes, !- Supply Air Outlet Temperature Control<br />

Rotary, !- Heat Exchanger Type<br />

MinimumExhaustTemperature, !- Frost Control Type<br />

1.7; !- Threshold Temperature {C}<br />

HeatExchanger:AirToAir:SensibleAndLatent,<br />

OA Heat Recovery 7, !- Name<br />

FanAndCoilAvailSched, !- Availability Schedule Name<br />

0.03001, !- Nominal Supply Air Flow Rate {m3/s}<br />

0.76, !- Sensible Effectiveness at 100% Heating Air Flow {dimensionless}<br />

0.0068, !- Latent Effectiveness at 100% Heating Air Flow {dimensionless}<br />

0.81, !- Sensible Effectiveness at 75% Heating Air Flow {dimensionless}<br />

0.0073, !- Latent Effectiveness at 75% Heating Air Flow {dimensionless}<br />

0.76, !- Sensible Effectiveness at 100% Cooling Air Flow {dimensionless}<br />

0.0068, !- Latent Effectiveness at 100% Cooling Air Flow {dimensionless}<br />

0.81, !- Sensible Effectiveness at 75% Cooling Air Flow {dimensionless}<br />

0.0073, !- Latent Effectiveness at 75% Cooling Air Flow {dimensionless}<br />

ERV Outside Air Inlet Node 7, !- Supply Air Inlet Node Name<br />

Heat Recovery Outlet Node 7, !- Supply Air Outlet Node Name<br />

Zone 7 Exhaust Node, !- Exhaust Air Inlet Node Name<br />

Heat Recovery Secondary Outlet Node 7, !- Exhaust Air Outlet Node Name<br />

50.0, !- Nominal Electric Power {W}<br />

Yes, !- Supply Air Outlet Temperature Control<br />

Rotary, !- Heat Exchanger Type<br />

MinimumExhaustTemperature, !- Frost Control Type<br />

1.7; !- Threshold Temperature {C}<br />

HeatExchanger:AirToAir:SensibleAndLatent,<br />

OA Heat Recovery 8, !- Name<br />

FanAndCoilAvailSched, !- Availability Schedule Name<br />

0.03001, !- Nominal Supply Air Flow Rate {m3/s}<br />

0.76, !- Sensible Effectiveness at 100% Heating Air Flow {dimensionless}<br />

0.0068, !- Latent Effectiveness at 100% Heating Air Flow {dimensionless}<br />

0.81, !- Sensible Effectiveness at 75% Heating Air Flow {dimensionless}<br />

0.0073, !- Latent Effectiveness at 75% Heating Air Flow {dimensionless}<br />

0.76, !- Sensible Effectiveness at 100% Cooling Air Flow {dimensionless}<br />

0.0068, !- Latent Effectiveness at 100% Cooling Air Flow {dimensionless}<br />

0.81, !- Sensible Effectiveness at 75% Cooling Air Flow {dimensionless}<br />

0.0073, !- Latent Effectiveness at 75% Cooling Air Flow {dimensionless}<br />

ERV Outside Air Inlet Node 8, !- Supply Air Inlet Node Name<br />

Heat Recovery Outlet Node 8, !- Supply Air Outlet Node Name<br />

Zone 8 Exhaust Node, !- Exhaust Air Inlet Node Name<br />

Heat Recovery Secondary Outlet Node 8, !- Exhaust Air Outlet Node Name<br />

50.0, !- Nominal Electric Power {W}<br />

Yes, !- Supply Air Outlet Temperature Control<br />

Rotary, !- Heat Exchanger Type<br />

MinimumExhaustTemperature, !- Frost Control Type<br />

1.7; !- Threshold Temperature {C}<br />

HeatExchanger:AirToAir:SensibleAndLatent,<br />

OA Heat Recovery 9, !- Name<br />

FanAndCoilAvailSched, !- Availability Schedule Name<br />

0.03001, !- Nominal Supply Air Flow Rate {m3/s}<br />

0.76, !- Sensible Effectiveness at 100% Heating Air Flow {dimensionless}<br />

0.0068, !- Latent Effectiveness at 100% Heating Air Flow {dimensionless}<br />

0.81, !- Sensible Effectiveness at 75% Heating Air Flow {dimensionless}<br />

0.0073, !- Latent Effectiveness at 75% Heating Air Flow {dimensionless}<br />

0.76, !- Sensible Effectiveness at 100% Cooling Air Flow {dimensionless}<br />

0.0068, !- Latent Effectiveness at 100% Cooling Air Flow {dimensionless}<br />

0.81, !- Sensible Effectiveness at 75% Cooling Air Flow {dimensionless}<br />

0.0073, !- Latent Effectiveness at 75% Cooling Air Flow {dimensionless}<br />

ERV Outside Air Inlet Node 9, !- Supply Air Inlet Node Name<br />

Heat Recovery Outlet Node 9, !- Supply Air Outlet Node Name<br />

Zone 9 Exhaust Node, !- Exhaust Air Inlet Node Name<br />

Heat Recovery Secondary Outlet Node 9, !- Exhaust Air Outlet Node Name<br />

50.0, !- Nominal Electric Power {W}<br />

Yes, !- Supply Air Outlet Temperature Control<br />

Rotary, !- Heat Exchanger Type<br />

MinimumExhaustTemperature, !- Frost Control Type<br />

1.7; !- Threshold Temperature {C}<br />

HeatExchanger:AirToAir:SensibleAndLatent,<br />

OA Heat Recovery 10, !- Name<br />

FanAndCoilAvailSched, !- Availability Schedule Name<br />

0.03001, !- Nominal Supply Air Flow Rate {m3/s}<br />

0.76, !- Sensible Effectiveness at 100% Heating Air Flow {dimensionless}<br />

0.0068, !- Latent Effectiveness at 100% Heating Air Flow {dimensionless}


Appendix 2 167<br />

0.81, !- Sensible Effectiveness at 75% Heating Air Flow {dimensionless}<br />

0.0073, !- Latent Effectiveness at 75% Heating Air Flow {dimensionless}<br />

0.76, !- Sensible Effectiveness at 100% Cooling Air Flow {dimensionless}<br />

0.0068, !- Latent Effectiveness at 100% Cooling Air Flow {dimensionless}<br />

0.81, !- Sensible Effectiveness at 75% Cooling Air Flow {dimensionless}<br />

0.0073, !- Latent Effectiveness at 75% Cooling Air Flow {dimensionless}<br />

ERV Outside Air Inlet Node 10, !- Supply Air Inlet Node Name<br />

Heat Recovery Outlet Node 10, !- Supply Air Outlet Node Name<br />

Zone 10 Exhaust Node, !- Exhaust Air Inlet Node Name<br />

Heat Recovery Secondary Outlet Node 10, !- Exhaust Air Outlet Node Name<br />

50.0, !- Nominal Electric Power {W}<br />

Yes, !- Supply Air Outlet Temperature Control<br />

Rotary, !- Heat Exchanger Type<br />

MinimumExhaustTemperature, !- Frost Control Type<br />

1.7; !- Threshold Temperature {C}<br />

HeatExchanger:AirToAir:SensibleAndLatent,<br />

OA Heat Recovery 11, !- Name<br />

FanAndCoilAvailSched, !- Availability Schedule Name<br />

0.03001, !- Nominal Supply Air Flow Rate {m3/s}<br />

0.76, !- Sensible Effectiveness at 100% Heating Air Flow {dimensionless}<br />

0.0068, !- Latent Effectiveness at 100% Heating Air Flow {dimensionless}<br />

0.81, !- Sensible Effectiveness at 75% Heating Air Flow {dimensionless}<br />

0.0073, !- Latent Effectiveness at 75% Heating Air Flow {dimensionless}<br />

0.76, !- Sensible Effectiveness at 100% Cooling Air Flow {dimensionless}<br />

0.0068, !- Latent Effectiveness at 100% Cooling Air Flow {dimensionless}<br />

0.81, !- Sensible Effectiveness at 75% Cooling Air Flow {dimensionless}<br />

0.0073, !- Latent Effectiveness at 75% Cooling Air Flow {dimensionless}<br />

ERV Outside Air Inlet Node 11, !- Supply Air Inlet Node Name<br />

Heat Recovery Outlet Node 11, !- Supply Air Outlet Node Name<br />

Zone 11 Exhaust Node, !- Exhaust Air Inlet Node Name<br />

Heat Recovery Secondary Outlet Node 11, !- Exhaust Air Outlet Node Name<br />

50.0, !- Nominal Electric Power {W}<br />

Yes, !- Supply Air Outlet Temperature Control<br />

Rotary, !- Heat Exchanger Type<br />

MinimumExhaustTemperature, !- Frost Control Type<br />

1.7; !- Threshold Temperature {C}<br />

HeatExchanger:AirToAir:SensibleAndLatent,<br />

OA Heat Recovery 12, !- Name<br />

FanAndCoilAvailSched, !- Availability Schedule Name<br />

0.03001, !- Nominal Supply Air Flow Rate {m3/s}<br />

0.76, !- Sensible Effectiveness at 100% Heating Air Flow {dimensionless}<br />

0.0068, !- Latent Effectiveness at 100% Heating Air Flow {dimensionless}<br />

0.81, !- Sensible Effectiveness at 75% Heating Air Flow {dimensionless}<br />

0.0073, !- Latent Effectiveness at 75% Heating Air Flow {dimensionless}<br />

0.76, !- Sensible Effectiveness at 100% Cooling Air Flow {dimensionless}<br />

0.0068, !- Latent Effectiveness at 100% Cooling Air Flow {dimensionless}<br />

0.81, !- Sensible Effectiveness at 75% Cooling Air Flow {dimensionless}<br />

0.0073, !- Latent Effectiveness at 75% Cooling Air Flow {dimensionless}<br />

ERV Outside Air Inlet Node 12, !- Supply Air Inlet Node Name<br />

Heat Recovery Outlet Node 12, !- Supply Air Outlet Node Name<br />

Zone 12 Exhaust Node, !- Exhaust Air Inlet Node Name<br />

Heat Recovery Secondary Outlet Node 12, !- Exhaust Air Outlet Node Name<br />

50.0, !- Nominal Electric Power {W}<br />

Yes, !- Supply Air Outlet Temperature Control<br />

Rotary, !- Heat Exchanger Type<br />

MinimumExhaustTemperature, !- Frost Control Type<br />

1.7; !- Threshold Temperature {C}<br />

HeatExchanger:AirToAir:SensibleAndLatent,<br />

OA Heat Recovery 13, !- Name<br />

FanAndCoilAvailSched, !- Availability Schedule Name<br />

0.03001, !- Nominal Supply Air Flow Rate {m3/s}<br />

0.76, !- Sensible Effectiveness at 100% Heating Air Flow {dimensionless}<br />

0.0068, !- Latent Effectiveness at 100% Heating Air Flow {dimensionless}<br />

0.81, !- Sensible Effectiveness at 75% Heating Air Flow {dimensionless}<br />

0.0073, !- Latent Effectiveness at 75% Heating Air Flow {dimensionless}<br />

0.76, !- Sensible Effectiveness at 100% Cooling Air Flow {dimensionless}<br />

0.0068, !- Latent Effectiveness at 100% Cooling Air Flow {dimensionless}<br />

0.81, !- Sensible Effectiveness at 75% Cooling Air Flow {dimensionless}<br />

0.0073, !- Latent Effectiveness at 75% Cooling Air Flow {dimensionless}<br />

ERV Outside Air Inlet Node 13, !- Supply Air Inlet Node Name<br />

Heat Recovery Outlet Node 13, !- Supply Air Outlet Node Name<br />

Zone 13 Exhaust Node, !- Exhaust Air Inlet Node Name<br />

Heat Recovery Secondary Outlet Node 13, !- Exhaust Air Outlet Node Name<br />

50.0, !- Nominal Electric Power {W}<br />

Yes, !- Supply Air Outlet Temperature Control<br />

Rotary, !- Heat Exchanger Type<br />

MinimumExhaustTemperature, !- Frost Control Type<br />

1.7; !- Threshold Temperature {C}<br />

HeatExchanger:AirToAir:SensibleAndLatent,<br />

OA Heat Recovery 14, !- Name<br />

FanAndCoilAvailSched, !- Availability Schedule Name<br />

0.03001, !- Nominal Supply Air Flow Rate {m3/s}<br />

0.76, !- Sensible Effectiveness at 100% Heating Air Flow {dimensionless}<br />

0.0068, !- Latent Effectiveness at 100% Heating Air Flow {dimensionless}<br />

0.81, !- Sensible Effectiveness at 75% Heating Air Flow {dimensionless}<br />

0.0073, !- Latent Effectiveness at 75% Heating Air Flow {dimensionless}<br />

0.76, !- Sensible Effectiveness at 100% Cooling Air Flow {dimensionless}<br />

0.0068, !- Latent Effectiveness at 100% Cooling Air Flow {dimensionless}<br />

0.81, !- Sensible Effectiveness at 75% Cooling Air Flow {dimensionless}<br />

0.0073, !- Latent Effectiveness at 75% Cooling Air Flow {dimensionless}<br />

ERV Outside Air Inlet Node 14, !- Supply Air Inlet Node Name<br />

Heat Recovery Outlet Node 14, !- Supply Air Outlet Node Name<br />

Zone 14 Exhaust Node, !- Exhaust Air Inlet Node Name<br />

Heat Recovery Secondary Outlet Node 14, !- Exhaust Air Outlet Node Name<br />

50.0, !- Nominal Electric Power {W}<br />

Yes, !- Supply Air Outlet Temperature Control<br />

Rotary, !- Heat Exchanger Type<br />

MinimumExhaustTemperature, !- Frost Control Type<br />

1.7; !- Threshold Temperature {C}<br />

HeatExchanger:AirToAir:SensibleAndLatent,<br />

OA Heat Recovery 15, !- Name<br />

FanAndCoilAvailSched, !- Availability Schedule Name<br />

0.03001, !- Nominal Supply Air Flow Rate {m3/s}<br />

0.76, !- Sensible Effectiveness at 100% Heating Air Flow {dimensionless}<br />

0.0068, !- Latent Effectiveness at 100% Heating Air Flow {dimensionless}<br />

0.81, !- Sensible Effectiveness at 75% Heating Air Flow {dimensionless}<br />

0.0073, !- Latent Effectiveness at 75% Heating Air Flow {dimensionless}<br />

0.76, !- Sensible Effectiveness at 100% Cooling Air Flow {dimensionless}<br />

0.0068, !- Latent Effectiveness at 100% Cooling Air Flow {dimensionless}<br />

0.81, !- Sensible Effectiveness at 75% Cooling Air Flow {dimensionless}<br />

0.0073, !- Latent Effectiveness at 75% Cooling Air Flow {dimensionless}<br />

ERV Outside Air Inlet Node 15, !- Supply Air Inlet Node Name<br />

Heat Recovery Outlet Node 15, !- Supply Air Outlet Node Name<br />

Zone 15 Exhaust Node, !- Exhaust Air Inlet Node Name<br />

Heat Recovery Secondary Outlet Node 15, !- Exhaust Air Outlet Node Name<br />

50.0, !- Nominal Electric Power {W}<br />

Yes, !- Supply Air Outlet Temperature Control<br />

Rotary, !- Heat Exchanger Type<br />

MinimumExhaustTemperature, !- Frost Control Type<br />

1.7; !- Threshold Temperature {C}<br />

HeatExchanger:AirToAir:SensibleAndLatent,<br />

OA Heat Recovery 16, !- Name<br />

FanAndCoilAvailSched, !- Availability Schedule Name<br />

0.03001, !- Nominal Supply Air Flow Rate {m3/s}<br />

0.76, !- Sensible Effectiveness at 100% Heating Air Flow {dimensionless}<br />

0.0068, !- Latent Effectiveness at 100% Heating Air Flow {dimensionless}<br />

0.81, !- Sensible Effectiveness at 75% Heating Air Flow {dimensionless}<br />

0.0073, !- Latent Effectiveness at 75% Heating Air Flow {dimensionless}<br />

0.76, !- Sensible Effectiveness at 100% Cooling Air Flow {dimensionless}<br />

0.0068, !- Latent Effectiveness at 100% Cooling Air Flow {dimensionless}<br />

0.81, !- Sensible Effectiveness at 75% Cooling Air Flow {dimensionless}<br />

0.0073, !- Latent Effectiveness at 75% Cooling Air Flow {dimensionless}<br />

ERV Outside Air Inlet Node 16, !- Supply Air Inlet Node Name<br />

Heat Recovery Outlet Node 16, !- Supply Air Outlet Node Name<br />

Zone 16 Exhaust Node, !- Exhaust Air Inlet Node Name<br />

Heat Recovery Secondary Outlet Node 16, !- Exhaust Air Outlet Node Name<br />

50.0, !- Nominal Electric Power {W}<br />

Yes, !- Supply Air Outlet Temperature Control<br />

Rotary, !- Heat Exchanger Type<br />

MinimumExhaustTemperature, !- Frost Control Type<br />

1.7; !- Threshold Temperature {C}<br />

HeatExchanger:AirToAir:SensibleAndLatent,<br />

OA Heat Recovery 17, !- Name<br />

FanAndCoilAvailSched, !- Availability Schedule Name<br />

0.03001, !- Nominal Supply Air Flow Rate {m3/s}<br />

0.76, !- Sensible Effectiveness at 100% Heating Air Flow {dimensionless}<br />

0.0068, !- Latent Effectiveness at 100% Heating Air Flow {dimensionless}<br />

0.81, !- Sensible Effectiveness at 75% Heating Air Flow {dimensionless}<br />

0.0073, !- Latent Effectiveness at 75% Heating Air Flow {dimensionless}


Appendix 2 168<br />

0.76, !- Sensible Effectiveness at 100% Cooling Air Flow {dimensionless}<br />

0.0068, !- Latent Effectiveness at 100% Cooling Air Flow {dimensionless}<br />

0.81, !- Sensible Effectiveness at 75% Cooling Air Flow {dimensionless}<br />

0.0073, !- Latent Effectiveness at 75% Cooling Air Flow {dimensionless}<br />

ERV Outside Air Inlet Node 17, !- Supply Air Inlet Node Name<br />

Heat Recovery Outlet Node 17, !- Supply Air Outlet Node Name<br />

Zone 17 Exhaust Node, !- Exhaust Air Inlet Node Name<br />

Heat Recovery Secondary Outlet Node 17, !- Exhaust Air Outlet Node Name<br />

50.0, !- Nominal Electric Power {W}<br />

Yes, !- Supply Air Outlet Temperature Control<br />

Rotary, !- Heat Exchanger Type<br />

MinimumExhaustTemperature, !- Frost Control Type<br />

1.7; !- Threshold Temperature {C}<br />

HeatExchanger:AirToAir:SensibleAndLatent,<br />

OA Heat Recovery 18, !- Name<br />

FanAndCoilAvailSched, !- Availability Schedule Name<br />

0.03001, !- Nominal Supply Air Flow Rate {m3/s}<br />

0.76, !- Sensible Effectiveness at 100% Heating Air Flow {dimensionless}<br />

0.0068, !- Latent Effectiveness at 100% Heating Air Flow {dimensionless}<br />

0.81, !- Sensible Effectiveness at 75% Heating Air Flow {dimensionless}<br />

0.0073, !- Latent Effectiveness at 75% Heating Air Flow {dimensionless}<br />

0.76, !- Sensible Effectiveness at 100% Cooling Air Flow {dimensionless}<br />

0.0068, !- Latent Effectiveness at 100% Cooling Air Flow {dimensionless}<br />

0.81, !- Sensible Effectiveness at 75% Cooling Air Flow {dimensionless}<br />

0.0073, !- Latent Effectiveness at 75% Cooling Air Flow {dimensionless}<br />

ERV Outside Air Inlet Node 18, !- Supply Air Inlet Node Name<br />

Heat Recovery Outlet Node 18, !- Supply Air Outlet Node Name<br />

Zone 18 Exhaust Node, !- Exhaust Air Inlet Node Name<br />

Heat Recovery Secondary Outlet Node 18, !- Exhaust Air Outlet Node Name<br />

50.0, !- Nominal Electric Power {W}<br />

Yes, !- Supply Air Outlet Temperature Control<br />

Rotary, !- Heat Exchanger Type<br />

MinimumExhaustTemperature, !- Frost Control Type<br />

1.7; !- Threshold Temperature {C}<br />

HeatExchanger:AirToAir:SensibleAndLatent,<br />

OA Heat Recovery 19, !- Name<br />

FanAndCoilAvailSched, !- Availability Schedule Name<br />

0.03001, !- Nominal Supply Air Flow Rate {m3/s}<br />

0.76, !- Sensible Effectiveness at 100% Heating Air Flow {dimensionless}<br />

0.0068, !- Latent Effectiveness at 100% Heating Air Flow {dimensionless}<br />

0.81, !- Sensible Effectiveness at 75% Heating Air Flow {dimensionless}<br />

0.0073, !- Latent Effectiveness at 75% Heating Air Flow {dimensionless}<br />

0.76, !- Sensible Effectiveness at 100% Cooling Air Flow {dimensionless}<br />

0.0068, !- Latent Effectiveness at 100% Cooling Air Flow {dimensionless}<br />

0.81, !- Sensible Effectiveness at 75% Cooling Air Flow {dimensionless}<br />

0.0073, !- Latent Effectiveness at 75% Cooling Air Flow {dimensionless}<br />

ERV Outside Air Inlet Node 19, !- Supply Air Inlet Node Name<br />

Heat Recovery Outlet Node 19, !- Supply Air Outlet Node Name<br />

Zone 19 Exhaust Node, !- Exhaust Air Inlet Node Name<br />

Heat Recovery Secondary Outlet Node 19, !- Exhaust Air Outlet Node Name<br />

50.0, !- Nominal Electric Power {W}<br />

Yes, !- Supply Air Outlet Temperature Control<br />

Rotary, !- Heat Exchanger Type<br />

MinimumExhaustTemperature, !- Frost Control Type<br />

1.7; !- Threshold Temperature {C}<br />

!- == ALL OBJECTS IN CLASS: REPORT VARIABLE ==<br />

Output:Variable,<br />

*, !- Key Value<br />

Outdoor Dry Bulb, !- Variable Name<br />

Hourly; !- Reporting Frequency<br />

Output:Variable,<br />

*, !- Key Value<br />

Zone/Sys Sensible Cooling Rate, !- Variable Name<br />

Hourly; !- Reporting Frequency<br />

Output:Variable,<br />

*, !- Key Value<br />

Zone/Sys Sensible Heating Rate, !- Variable Name<br />

Hourly; !- Reporting Frequency<br />

Output:Variable,<br />

*, !- Key Value<br />

Zone Operative Temperature, !- Variable Name<br />

Hourly; !- Reporting Frequency<br />

Output:Variable,<br />

*, !- Key Value<br />

Zone/Sys Air Temperature,!- Variable Name<br />

Hourly; !- Reporting Frequency<br />

Output:Variable,<br />

*, !- Key Value<br />

Zone Window Heat Gain Energy, !- Variable Name<br />

Hourly; !- Reporting Frequency<br />

Output:Variable,<br />

*, !- Key Value<br />

Zone Window Heat Loss Energy, !- Variable Name<br />

Hourly; !- Reporting Frequency<br />

Output:Variable,<br />

*, !- Key Value<br />

Baseboard Heating Rate, !- Variable Name<br />

Hourly; !- Reporting Frequency<br />

Output:Variable,<br />

*, !- Key Value<br />

Heat Exchanger Total Heating Energy, !- Variable Name<br />

Hourly; !- Reporting Frequency<br />

Output:Variable,<br />

*, !- Key Value<br />

Heat Exchanger Total Cooling Energy, !- Variable Name<br />

Hourly; !- Reporting Frequency<br />

Output:Variable,<br />

*, !- Key Value<br />

Heat Recovery Sensible Effectiveness, !- Variable Name<br />

Hourly; !- Reporting Frequency<br />

Output:Variable,<br />

*, !- Key Value<br />

Heat Recovery Latent Effectiveness, !- Variable Name<br />

Hourly; !- Reporting Frequency<br />

Output:Variable,<br />

*, !- Key Value<br />

Zone Window Heat Gain Energy, !- Variable Name<br />

Hourly; !- Reporting Frequency<br />

Output:Variable,<br />

*, !- Key Value<br />

Zone Window Heat Loss Energy, !- Variable Name<br />

Hourly; !- Reporting Frequency<br />

Output:Variable,<br />

*, !- Key Value<br />

FangerPMV, !- Variable Name<br />

Hourly; !- Reporting Frequency<br />

!- == ALL OBJECTS IN CLASS: REPORT METER ==<br />

Output:Meter,<br />

EnergyTransfer:Building, !- Name<br />

Monthly; !- Reporting Frequency<br />

Output:Meter,<br />

Heating:EnergyTransfer, !- Name<br />

Monthly; !- Reporting Frequency<br />

Output:Meter,<br />

Cooling:EnergyTransfer, !- Name<br />

Monthly; !- Reporting Frequency<br />

Output:Meter,<br />

HeatRecoveryForHeating:EnergyTransfer, !- Name<br />

Monthly; !- Reporting Frequency<br />

Output:Meter,<br />

HeatRecoveryForCooling:EnergyTransfer, !- Name<br />

Monthly; !- Reporting Frequency


Appendix 2 169<br />

!- == ALL OBJECTS IN CLASS: REPORT METERFILEONLY ==<br />

Output:Meter:MeterFileOnly,<br />

Electricity:Building, !- Name<br />

Monthly; !- Reporting Frequency<br />

Output:Meter:MeterFileOnly,<br />

Heating:EnergyTransfer, !- Name<br />

Monthly; !- Reporting Frequency<br />

Output:Meter:MeterFileOnly,<br />

Cooling:EnergyTransfer, !- Name<br />

Monthly; !- Reporting Frequency<br />

Output:Meter:MeterFileOnly,<br />

EnergyTransfer:Building, !- Name<br />

Monthly; !- Reporting Frequency<br />

!- == ALL OBJECTS IN CLASS: REPORT CUMULATIVE METER ==<br />

Output:Meter:Cumulative,<br />

EnergyTransfer:Building, !- Name<br />

Daily; !- Reporting Frequency<br />

Output:Meter:Cumulative,<br />

Heating:EnergyTransfer, !- Name<br />

Daily; !- Reporting Frequency<br />

Output:Meter:Cumulative,<br />

Cooling:EnergyTransfer, !- Name<br />

Daily; !- Reporting Frequency<br />

Output:Meter:Cumulative,<br />

Electricity:Plant, !- Name<br />

Daily; !- Reporting Frequency<br />

!- == ALL OBJECTS IN CLASS: REPORT ==<br />

Output:Reports,<br />

VariableDictionary; !- Type <strong>of</strong> Report<br />

!- == ALL OBJECTS IN CLASS: REPORT:TABLE:STYLE ==<br />

OutputControl:Table:Style,<br />

TabAndHTML, !- Column Separator<br />

JtoKWH; !- Unit Conversion<br />

!- == ALL OBJECTS IN CLASS: REPORT:TABLE:PREDEFINED ==<br />

Output:Table:SummaryReports,<br />

AnnualBuildingUtilityPerformanceSummary, !- Report 1 Name<br />

InputVerification<strong>and</strong>ResultsSummary, !- Report 2 Name<br />

HVACSizingSummary, !- Report 3 Name<br />

EnvelopeSummary; !- Report 4 Name<br />

!- == ALL OBJECTS IN CLASS: REPORT:TABLE:MONTHLY ==<br />

Output:Table:Monthly,<br />

Zone Heating <strong>and</strong> Cooling Summary, !- Name<br />

2, !- Digits After Decimal<br />

Zone/Sys Sensible Heating Energy, !- Variable or Meter 1 Name<br />

SumOrAverage, !- Aggregation Type for Variable or Meter 1<br />

Zone/Sys Sensible Heating Rate, !- Variable or Meter 2 Name<br />

SumOrAverage, !- Aggregation Type for Variable or Meter 2<br />

Zone/Sys Sensible Cooling Energy, !- Variable or Meter 3 Name<br />

SumOrAverage, !- Aggregation Type for Variable or Meter 3<br />

Zone/Sys Sensible Cooling Rate, !- Variable or Meter 4 Name<br />

SumOrAverage; !- Aggregation Type for Variable or Meter 4<br />

Output:Table:Monthly,<br />

Zone Window Energy Summary, !- Name<br />

, !- Digits After Decimal<br />

Zone Window Heat Gain Energy, !- Variable or Meter 1 Name<br />

SumOrAverage, !- Aggregation Type for Variable or Meter 1<br />

Zone Window Heat Gain, !- Variable or Meter 2 Name<br />

SumOrAverage, !- Aggregation Type for Variable or Meter 2<br />

Zone Window Heat Loss Energy, !- Variable or Meter 3 Name<br />

SumOrAverage, !- Aggregation Type for Variable or Meter 3<br />

Zone Window Heat Loss, !- Variable or Meter 4 Name<br />

SumOrAverage; !- Aggregation Type for Variable or Meter 4<br />

Output:Table:Monthly,<br />

Average Outdoor Conditions, !- Name<br />

2, !- Digits After Decimal<br />

Outdoor Dry Bulb, !- Variable or Meter 1 Name<br />

SumOrAverage, !- Aggregation Type for Variable or Meter 1<br />

Outdoor Relative Humidity, !- Variable or Meter 2 Name<br />

SumOrAverage; !- Aggregation Type for Variable or Meter 2<br />

Output:Table:Monthly,<br />

Mechanical Ventilation Loads, !- Name<br />

, !- Digits After Decimal<br />

Zone Mechanical Ventilation Air Change Rate, !- Variable or Meter 1 Name<br />

SumOrAverage, !- Aggregation Type for Variable or Meter 1<br />

Zone Mechanical Ventilation Volume Flow Rate, !- Variable or Meter 2 Name<br />

SumOrAverage, !- Aggregation Type for Variable or Meter 2<br />

Zone Mechanical Ventilation Total Volume <strong>of</strong> Outside Air, !- Variable or<br />

Meter 3 Name<br />

SumOrAverage; !- Aggregation Type for Variable or Meter 3<br />

Output:Table:Monthly,<br />

ENERGY TRANSFER, !- Name<br />

2, !- Digits After Decimal<br />

EnergyTransfer:Building, !- Variable or Meter 1 Name<br />

SumOrAverage, !- Aggregation Type for Variable or Meter 1<br />

EnergyTransfer:Facility, !- Variable or Meter 2 Name<br />

SumOrAverage, !- Aggregation Type for Variable or Meter 2<br />

Heating:EnergyTransfer, !- Variable or Meter 3 Name<br />

SumOrAverage, !- Aggregation Type for Variable or Meter 3<br />

Cooling:EnergyTransfer, !- Variable or Meter 4 Name<br />

SumOrAverage; !- Aggregation Type for Variable or Meter 4<br />

Output:Table:Monthly,<br />

HEAT EXCHANGER ENERGY, !- Name<br />

2, !- Digits After Decimal<br />

Heat Exchanger Total Heating Energy, !- Variable or Meter 1 Name<br />

SumOrAverage, !- Aggregation Type for Variable or Meter 1<br />

Heat Exchanger Total Cooling Energy, !- Variable or Meter 2 Name<br />

SumOrAverage; !- Aggregation Type for Variable or Meter 2


170

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!