12.07.2015 Views

Optical Properties of Solids LM Herz Trinity Term 2012 ...

Optical Properties of Solids LM Herz Trinity Term 2012 ...

Optical Properties of Solids LM Herz Trinity Term 2012 ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Interaction <strong>of</strong> Electromagnetic Radiation with MatterreflectedlightincidentlightAbsorptiontransmittedlightScattered light(phonons, impurities...)LuminescenceMEDIUM<strong>LM</strong> <strong>Herz</strong> - <strong>Optical</strong> <strong>Properties</strong> <strong>of</strong> <strong>Solids</strong>TT<strong>2012</strong> 2


I Absorption and ReflectionMacroscopic ElectromagnetismMaxwell’sequations:(no net free charges)(non-magnetic)(ohmic conduction)Linear OpticsIn a linear, non-conducting medium:Solution:where:complex!Define complex refractive index:refractionabsorption<strong>LM</strong> <strong>Herz</strong> - <strong>Optical</strong> <strong>Properties</strong> <strong>of</strong> <strong>Solids</strong>TT<strong>2012</strong> 3


AbsorptionIntensity decay <strong>of</strong> wave:(Beer’s law)Define absorption coefficient:At normal incidence:ReflectionReflectivity R for a material’s surfacecontains information on its absorption!Relationship between components <strong>of</strong> ñ and ε randif(weak absorption):<strong>LM</strong> <strong>Herz</strong> - <strong>Optical</strong> <strong>Properties</strong> <strong>of</strong> <strong>Solids</strong>TT<strong>2012</strong> 4


The classical dipole oscillator modelInside a material the electric field <strong>of</strong> an EM wave mayinteract with:• bound electrons (e.g. interband transitions)• ions (lattice interactions)• free electrons (plasma oscillations)Equation <strong>of</strong> motion for a bound electron in 1D:wherestationary solutions:Displacement <strong>of</strong> charge causes polarisation:(N: oscillator density)background<strong>LM</strong> <strong>Herz</strong> - <strong>Optical</strong> <strong>Properties</strong> <strong>of</strong> <strong>Solids</strong>TT<strong>2012</strong> 5


Real and imaginary part <strong>of</strong> ε rCan now calculateand<strong>Optical</strong> constants for a classical dipole oscillator<strong>LM</strong> <strong>Herz</strong> - <strong>Optical</strong> <strong>Properties</strong> <strong>of</strong> <strong>Solids</strong>TT<strong>2012</strong> 6


Local field correctionsIn a dense medium:• atoms experience “local field” composed <strong>of</strong> externalfield E and polarization from surrounding dipoles• treat interacting dipole as being at centre <strong>of</strong> spheresurrounded by a polarized dielectricClausius-Mossotti relationship:electricsusceptibilityper atomProblems with the classical oscillator model• no information on selection rulesneed quantum mechanics• interband transitions should depend on the density <strong>of</strong>states g(E)• One possible modification: “oscillator strength”(from QM)write:line shape <strong>of</strong> transition(from classical oscillator model)<strong>LM</strong> <strong>Herz</strong> - <strong>Optical</strong> <strong>Properties</strong> <strong>of</strong> <strong>Solids</strong>TT<strong>2012</strong> 7


<strong>LM</strong> <strong>Herz</strong> - <strong>Optical</strong> <strong>Properties</strong> <strong>of</strong> <strong>Solids</strong>TT<strong>2012</strong> 8


II Interband optical transitionsconduction bandfivalence bandTreat interband transitions through timedependentperturbation theory - Fermi’sgolden rule gives transition probability:joint density<strong>of</strong> stateswith matrix element:wheredipole momentE-field <strong>of</strong> incident waveBlochwavefunctionsMatrix element for interband transitions:absorptiondeduce conditions for dipole allowed(direct) transitions.emissionConsider:(1) wavevector conservation(2) Parity selection rule(3) dependence on photon energy<strong>LM</strong> <strong>Herz</strong> - <strong>Optical</strong> <strong>Properties</strong> <strong>of</strong> <strong>Solids</strong>TT<strong>2012</strong> 9


Conditions for direct interband transitions(1) wavevector conservationonly iforabsorptionemissionEtypically:“vertical”transitionsE gk(2) parity selection ruleodd parityonly if and have different parity!In a typical 4-valent system (e.g. group IV or III-V compound):pisolatedatomsp3-hybridp-antibondings-antibondingin crystalconduction bandsp-bondingE gvalence bands-bondingexpect to see strong absorption for these materials<strong>LM</strong> <strong>Herz</strong> - <strong>Optical</strong> <strong>Properties</strong> <strong>of</strong> <strong>Solids</strong>TT<strong>2012</strong> 10


(3) Dependence <strong>of</strong> transition probability on photon energyFinal state is an electron-hole pairwherereduced effective massIf M if is independent <strong>of</strong> the photon energy hω, the jointdensity <strong>of</strong> states contains the dependence <strong>of</strong> the transitionprobability on hω. For this case:Absorption coefficient(for direct transitions):Examples for direct semiconductorsa) InSb at 5K b) GaAs at 300Kdatadeviations frome.g. due tophonon absorption or non-parabolicity <strong>of</strong> the bands.<strong>LM</strong> <strong>Herz</strong> - <strong>Optical</strong> <strong>Properties</strong> <strong>of</strong> <strong>Solids</strong>TT<strong>2012</strong> 11


Indirect interband transitions• Indirect gap: valence band maximum and conduction bandminimum lie at different wavevectors,• direct transitions across the indirect gap forbidden, butphonon-assisted transitions may be possible.(i) wavevector conservation:Ewith phonon wavevectorq phononE gk(ii) probability for indirect transitions:• perturbation causing indirect transitions is second orderoptical absorption much weaker than for directtransitions!• find absorption coefficientphonon absorptionor emission<strong>LM</strong> <strong>Herz</strong> - <strong>Optical</strong> <strong>Properties</strong> <strong>of</strong> <strong>Solids</strong>TT<strong>2012</strong> 12


Example for an indirect semiconductor: SiBand structure:mostlyindirect directtransitions transitionsE E1g E 2E 1E gE 2Absorption spectrum:<strong>LM</strong> <strong>Herz</strong> - <strong>Optical</strong> <strong>Properties</strong> <strong>of</strong> <strong>Solids</strong>TT<strong>2012</strong> 13


<strong>LM</strong> <strong>Herz</strong> - <strong>Optical</strong> <strong>Properties</strong> <strong>of</strong> <strong>Solids</strong>TT<strong>2012</strong> 14


III ExcitonsAbsorption coefficient <strong>of</strong> CuO 2 at 77K:Series <strong>of</strong> absorption peaksjust below the energy gapCoulomb interactionbetween electron and holegives rise to “excitonic”states (bound electron-holepairs)Wannier-Mott Excitonseh• weakly bound (free) excitons• binding energy ~ 10meV• common in inorganicsemiconductors (e.g. GaAs,CdS, CuO 2 ...)• particle moving in a medium<strong>of</strong> effective dielectricconstant ε rFrenkel Excitonseh• strongly (tightly) bound excitons• binding energy ~ 0.1 – 1eV• typically found in insulators andmolecular crystals (e.g. rare gascrystals, alkali halides, aromaticmolecular crystals)• particle <strong>of</strong>ten localized on justone atomic/molecular site<strong>LM</strong> <strong>Herz</strong> - <strong>Optical</strong> <strong>Properties</strong> <strong>of</strong> <strong>Solids</strong>TT<strong>2012</strong> 15


Weakly bound (Wannier) ExcitonsSeparate exciton motion into centre-<strong>of</strong>-mass and relative motion:CM motion: exciton momentum:whereexciton mass:kinetic energy:Relative motion:Binding energy:where(Rydberg)reduced massExciton radius:wherea 0 = 0.529Å (Bohr radius)E-k diagram for the weakly bound exciton(a) uncorrelated electron-hole pair(one-electron picture)E(b) exciton (one-particle picture)Ewavevector conservation:;kwavevector conservation:...R Xn=2En=1gktransitions where light lineintercepts with“vertical transitions”forcontinuum onset at band edge<strong>LM</strong> <strong>Herz</strong> - <strong>Optical</strong> <strong>Properties</strong> <strong>of</strong> <strong>Solids</strong>TT<strong>2012</strong> 16


Exciton-PolaritonphotonEIIIexcitonk• Absorption occurs at point wherephoton dispersion intersects excitondispersion curve.• exciton-photon interaction leads tocoupled EM and polarization wave(polariton) travelling in the mediumaltered dispersion curve(2 branches)• But: if exciton damping (phononscattering...) is larger than excitonphotoninteraction we can treatphotons and excitons separately.Examples for weakly bound excitons: GaAs• sub-gap excitonic absorptionfeatures• exciton dissociation throughcollisions with LO phononsbecomes more likely athigher T → exciton lifetimeshortened and transition linebroadened• Coulomb interactionsincrease the absorption bothabove and below the gap<strong>LM</strong> <strong>Herz</strong> - <strong>Optical</strong> <strong>Properties</strong> <strong>of</strong> <strong>Solids</strong>TT<strong>2012</strong> 17


Examples for weakly bound excitons: GaAsAt low temperature (here: 1.2K) and in ultra pure material, thesmall line width allows observation <strong>of</strong> higher excitonic transitions:n=1n=2n=3here:E gTightly bound (Frenkel) excitons• radius <strong>of</strong> weakly-bound excitons:model <strong>of</strong> bound e-h pair in dielectric mediumbreaks down when a n is <strong>of</strong> the order <strong>of</strong> interatomicdistances (Å)have tightly bound excitons for small ε r , large μ• tightly-bound electron-hole pair, typically located onsame unit (atom or molecule) <strong>of</strong> the crystal (but thewhole exciton may transfer through the crystal)• large binding energies (0.1 – 1eV) → excitons persist atroom temperature.<strong>LM</strong> <strong>Herz</strong> - <strong>Optical</strong> <strong>Properties</strong> <strong>of</strong> <strong>Solids</strong>TT<strong>2012</strong> 18


Transition energies for tightly bound excitons• transition energies <strong>of</strong>ten correspond to those found in theisolated atom or molecule that the crystal is composed <strong>of</strong>• theoretical calculations may be based e.g. on tightbindingor quantum-chemical methods• <strong>of</strong>ten need to include effects <strong>of</strong> strong coupling betweenexcitons and the crystal lattice (polaronic contributions)Examples for tightly bound excitons: rare gas crystalsabsorption spectrum <strong>of</strong> crystalline Kr at 20K:E 1 =10.2eVE g =11.7eVE b =1.5eVNote: the loweststrong absorptionin isolated Kr is at9.99eVclose to lowestexcitonic transitionE 1 in crystal<strong>LM</strong> <strong>Herz</strong> - <strong>Optical</strong> <strong>Properties</strong> <strong>of</strong> <strong>Solids</strong>TT<strong>2012</strong> 19


<strong>LM</strong> <strong>Herz</strong> - <strong>Optical</strong> <strong>Properties</strong> <strong>of</strong> <strong>Solids</strong>TT<strong>2012</strong> 20


VI Low-dimensional systemsde Broglie wavelength for anelectron at room temperature:If we can make structured semiconductors on these lengthscales we may be able to observe quantum effects!Possible using e.g. molecular beam epitaxy (MBE) ormetal-organic chemical vapour deposition (MOCVD)E(k=0)growth direction zAl x Ga 1-x As (barrier)GaAs (well)Al x Ga 1-x As (barrier)GaAs substratedconfinedholesvalencebandE g(AlGaAs)E g(GaAs)E g(AlGaAs)conductionbandconfinedelectronsEffect <strong>of</strong> confinement on the DOSConfinement in a particular direction results in discrete energy states, butfree movement in other directions gives rise to continuum.→ Joint density <strong>of</strong> states g(hω) (for direct CB-VB transitions):3D (bulk) 2D (Q well) 1D (Q wire) 0D (Q dot)<strong>LM</strong> <strong>Herz</strong> - <strong>Optical</strong> <strong>Properties</strong> <strong>of</strong> <strong>Solids</strong>TT<strong>2012</strong> 21


Quantum well with infinite potential barriersSchrödinger’s eqn inside the well:outside the well:wavefunction along z:with wavevectorconfinement energy:Bandstructure modifications from confinementbulk GaAs(Γ-valley)EelectronsJ=1/2GaAs QWEE 2,eE 1,ekJz =3/2heavyholes J z =1/2lightholesholesJ=3/2E 1,lhE 1,hhbandstructure for 2D motion isaltered (quantum confinementleads to valence band mixing)<strong>LM</strong> <strong>Herz</strong> - <strong>Optical</strong> <strong>Properties</strong> <strong>of</strong> <strong>Solids</strong>TT<strong>2012</strong> 22


<strong>Optical</strong> transitions in a quantum wellas before, matrix element:wavefunctions now:valence/conduction bandBloch functionhole/electronwavefunction along z(i) changes slowly over a unit cell (compared to u c , u v )(ii) unless (k-conservation)dipole transition criteria (as before)electron-hole spatial overlap in wellSelection rules for optical transitions in a QW(i) wavevector conservation:(ii) parity selection rule: and must differ in parity(iii)asbeforeneed sufficient spatial overlap between electron and hole wavefunctionsalong the z-direction. For an infinite quantum well:unlessN.B.: expect some deviation in finite quantum wells!(iv) unless and have equal parity<strong>LM</strong> <strong>Herz</strong> - <strong>Optical</strong> <strong>Properties</strong> <strong>of</strong> <strong>Solids</strong>TT<strong>2012</strong> 23


(v) energy conservation:hh1 – e1lh1 – e1hh2 – e2e2e1E ghh1hh2 lh1photonenergyand forbandgap <strong>of</strong>wellmaterialconfinementenergy <strong>of</strong>electron/holekineticenergy inplane <strong>of</strong> QW(at the band edge):alloweddipoletransitionsExample: absorption <strong>of</strong> a GaAs/AlAs QWAbsorption <strong>of</strong> GaAs/AlAs MQW (d=76Å) at 4K:hh1-e1(X)lh1-e1(X)e1-hh3(X)hh2-e2(X)lh2-e2(X)hh3-e3(X)e3-hh1(X)hh2-e2 (continuum)lh1-e1 (continuum)lh2-e2 (continuum)hh1-e1 (continuum)below each onset <strong>of</strong>absorption: excitonicfeatures (X)above onset: flatabsorption, since 2Djoint density <strong>of</strong> statesindependent <strong>of</strong> hωdeviation from Δn=0,in particular at high E<strong>LM</strong> <strong>Herz</strong> - <strong>Optical</strong> <strong>Properties</strong> <strong>of</strong> <strong>Solids</strong>TT<strong>2012</strong> 24


Influence <strong>of</strong> confinement on the excitonbulk GaAshhlhn=1T=300Kn=2GaAs MQWConfinement bringselectron and hole closertogether.enhanced excitonbinding energyincreased oscillatorstrength<strong>LM</strong> <strong>Herz</strong> - <strong>Optical</strong> <strong>Properties</strong> <strong>of</strong> <strong>Solids</strong>TT<strong>2012</strong> 25


<strong>LM</strong> <strong>Herz</strong> - <strong>Optical</strong> <strong>Properties</strong> <strong>of</strong> <strong>Solids</strong>TT<strong>2012</strong> 26


V <strong>Optical</strong> response <strong>of</strong> a free electron gasClassic Lorentz dipole oscillator model (again):solutions are as before, but with(no retaining force!)dielectric constant:with plasma frequencyand background dielectric constantreal and imaginary part <strong>of</strong> the dielectric constant:AC conductivity <strong>of</strong> a free electron gasCan re-write equation <strong>of</strong> motion as:electron with momentum p is accelerated by field but loosesmomentum at rateobtain electron velocity:and usingAC conductivitywhere(DC conductivity)andoptical measurements <strong>of</strong> ε r equivalent to those <strong>of</strong> AC conductivity!<strong>LM</strong> <strong>Herz</strong> - <strong>Optical</strong> <strong>Properties</strong> <strong>of</strong> <strong>Solids</strong>TT<strong>2012</strong> 27


Low-frequency regimeAt low frequency <strong>of</strong> the EM wave, or :and one may approximate:Skin depth (distance from surface at which incident power hasfallen to 1/e):For Cu at 300K: σ 0 =6.5×10 7 Ω -1 m -1δ = 8.8mm @ ν = 50Hzδ = 6.2μm @ ν = 100MHzHigh-frequency regimeIn a typical metal: N ≈ 10 28 –10 29 m -3 , σ 0 ≈ 10 7 Ω -1 m -1Drude model predicts: γ≈10 14 s -1At optical frequencies: (weak damping)and(i)(ii)largely imaginarywave mostly reflectedlargely realwave partly transmitted,weak absorption ( )<strong>LM</strong> <strong>Herz</strong> - <strong>Optical</strong> <strong>Properties</strong> <strong>of</strong> <strong>Solids</strong>TT<strong>2012</strong> 28


Reflectivity in the high-frequency regimedopedsemiconductors:large backgrounddielectic constant( ) fromhigher-energyinterband transitionsmost metals:(if no strongoptical transitions athigher photonenergy)Example: Reflection from Alkali metalsMetalN(10 28 m -3 )ω p /2π(10 15 Hz)λ p(nm)λ UV(nm)Li4.701.95154205Na2.651.46205210K1.401.06282315Rb1.150.96312360Cs0.910.86350440measured at low T calculated from measured UVtransmission cut-<strong>of</strong>f• high reflectivity up to UV wavelengths• good agreement between measurement and Drude-Lorentz model<strong>LM</strong> <strong>Herz</strong> - <strong>Optical</strong> <strong>Properties</strong> <strong>of</strong> <strong>Solids</strong>TT<strong>2012</strong> 29


Example: Reflection from transition metalsMetalN(10 28 m -3 )ω p /2π(10 15 Hz)λ p(nm)Cu8.472.61115Ag5.862.17138Au5.902.18138measured at low Tcalculated fromThese transition metals should be fully reflective up to deep UVBut we know: Gold appears yellow, Copper redReflection <strong>of</strong> light from Au, Cu and Al:D-L model forω p =9eV (Au)AuCuD-L model forω p =15.8eV (Al)AlDrude-Lorentz model doesnot account fully foroptical absorption <strong>of</strong>transition metals(especially in the visible)need to considerbandstructure(damping has weakeffect at thesefrequencies)<strong>LM</strong> <strong>Herz</strong> - <strong>Optical</strong> <strong>Properties</strong> <strong>of</strong> <strong>Solids</strong>TT<strong>2012</strong> 30


Example: Reflection from CopperElectronic configuration <strong>of</strong> Cu: [Ar] 3d 10 4s 1Transitions (in visible range <strong>of</strong> spectrum) between relativelydispersionless bands <strong>of</strong> tightly bound 3d electrons and half-filledband <strong>of</strong> 4s-electrons:E f3dbandsstrong interband absorption for → copper appears red !Example: Reflection from doped semiconductorsFree-carrier reflectivity <strong>of</strong> InSb:forwhereCan determine effective mass <strong>of</strong> majority carriersfrom free carrier absorption<strong>LM</strong> <strong>Herz</strong> - <strong>Optical</strong> <strong>Properties</strong> <strong>of</strong> <strong>Solids</strong>TT<strong>2012</strong> 31


Example: Free-carrier absorption in semiconductorsFor free carriers in the weak absorption regime ( ):predict:But experiments on n-type samples show:whereDeviations arise from:• intraband transitions involving phonon scattering• in p-type semiconductors: intervalence band absorption• absorption by donors bound to shallow donors or acceptorsExample: Impurity absorption in semiconductorsIn doped semiconductors the electron (hole) and the ionizedimpurity are attracted by Coulomb interaction hydrogenic systemAbsorption <strong>of</strong> Phospor-doped silicon at 4.2K:conduction bandn=2n=n=1valence bandObserve Lyman series for transitions from 1s level <strong>of</strong>Phosphor to p levels, whose degeneracy is lifted as aresult <strong>of</strong> the anisotropic effective mass <strong>of</strong> the CB in Si<strong>LM</strong> <strong>Herz</strong> - <strong>Optical</strong> <strong>Properties</strong> <strong>of</strong> <strong>Solids</strong>TT<strong>2012</strong> 32


PlasmonsAt the plasma edge ( ):What happens at this frequency?• Polarization induced by the EM wave:where• WavevectorP is equal and opposite to incident fieldAt the Plasma edge a uniform E-field in the materialshifts the collective electron w.r.t the ionic lattice!Plasma oscillations for ε r =0:applied EM waveresulting chargedistribution+ + + + +- - - - -induced macroscopicpolarization+ + + + ++ + + + +- - - - -+ + + + +- - - - -- - - - -• For a (transverse) wavevector , the resulting chargedistribution corresponds to a longitudinal oscillation <strong>of</strong>the electron gas with frequency ω p !• The quantum <strong>of</strong> such collective longitudinal plasmaoscillations is termed a plasmon.<strong>LM</strong> <strong>Herz</strong> - <strong>Optical</strong> <strong>Properties</strong> <strong>of</strong> <strong>Solids</strong>TT<strong>2012</strong> 33


Example: Plasmons in n-type GaAsLight scattered from n-type GaAs at 300K:plasmonemissionplasmonabsorptionEnergy conservation:from data:Expectfrom:<strong>LM</strong> <strong>Herz</strong> - <strong>Optical</strong> <strong>Properties</strong> <strong>of</strong> <strong>Solids</strong>TT<strong>2012</strong> 34


VI <strong>Optical</strong> studies <strong>of</strong> phononsDispersion relation for a diatomic linear chain:transverse optical (TO) phonon:0lightdispersionopticalbranches(1LO + 2TO)acousticbranches(1LA + 2TA)transverse acoustic (TA) phonon:EM radiation is a transverse wave with wavevectorand can thus interact directly only with TO modes in polarcrystals near the centre <strong>of</strong> the Brillouin zone.Harmonic oscillator model for the ionic crystal latticeDiatomic linear chain under the influence <strong>of</strong> an external electric field:Equations <strong>of</strong> motion:x -x +wherefrequency <strong>of</strong> TO mode near centre <strong>of</strong> Brillouinzone (with effective spring constant C)reduced massrelative displacement <strong>of</strong> positive and negative ions<strong>LM</strong> <strong>Herz</strong> - <strong>Optical</strong> <strong>Properties</strong> <strong>of</strong> <strong>Solids</strong>TT<strong>2012</strong> 35


Add damping term to account for finite phonon lifetime:Displacement <strong>of</strong> ions induces polarization P = NQxDielectric constant (as before):Rewrite this result in terms <strong>of</strong> the static ( ) and the high-frequency( ) limits <strong>of</strong> the dielectric constant:Lattice response in the low-damping limitLong phonon lifetimes:Consider Gauss’s law. In the absence <strong>of</strong> free charge:orwave must betransverse ( )longitudinal wavepossible ( )<strong>LM</strong> <strong>Herz</strong> - <strong>Optical</strong> <strong>Properties</strong> <strong>of</strong> <strong>Solids</strong>TT<strong>2012</strong> 36


What happens at ε r =0 ?Again: Wavevector <strong>of</strong> EM wave in medium:+ + + + +- - - - -+ + + + +- - - - -+ + + + +- - - - -→ all ions <strong>of</strong> same chargeshift by the same amountthroughout the medium→ result can be seen as atransverse wave ( )with k ≈ 0 or as alongitudinal wave ( )in orthogonal direction.The Lyddane-Sachs-Teller relationshipAt ε r =0 the induced polarization corresponds to alongitudinal wave, i.e. ε r (ω LO )=0Lyddane-Sachs-TellerrelationshipAnd fromfollows:→ In polar crystals the LO phonon frequency is always higherthan the TO phonon frequency→ In non-polar crystals, and the LO and TO phononmodes are degenerate (at the Brillouin zone centre)<strong>LM</strong> <strong>Herz</strong> - <strong>Optical</strong> <strong>Properties</strong> <strong>of</strong> <strong>Solids</strong>TT<strong>2012</strong> 37


Dielectric constant and Reflectivity for undamped lattice“Reststrahlen” band(R=1)Influence <strong>of</strong> dampingLattice Reflectivity:For finite phonon lifetime(γ≠0) at resonance:→ Reststrahlen band nolonger fully reflective→ general broadening <strong>of</strong>features<strong>LM</strong> <strong>Herz</strong> - <strong>Optical</strong> <strong>Properties</strong> <strong>of</strong> <strong>Solids</strong>TT<strong>2012</strong> 38


Measurements <strong>of</strong> IR reflectivityFourier transform infrared spectroscopy (FTIR):• measure interference patternI(d) as a function <strong>of</strong> mirrordisplacement d• I(d) gives Fourier transform<strong>of</strong> sample transmission T(ν)multiplied with systemresponse S(ν):detectorsampleIR sourceM2dM1Example: reflection spectra for zinc-blende-type latticesmeasured at 4.2Kmeasured at RT<strong>LM</strong> <strong>Herz</strong> - <strong>Optical</strong> <strong>Properties</strong> <strong>of</strong> <strong>Solids</strong>TT<strong>2012</strong> 39


Phonon-PolaritonsExamine more closely the dispersion relations for phonons and theEM wave near the Brillouin zone centre:If no coupling occurred:• But: coupling between TOphonon and EM wave leads tomodified dispersion• resulting wave is mixedmode with characteristics <strong>of</strong>TO polarization and EM wave• LO phonon dispersion remainsunchanged as it does not coupleto the EM wavePhonon-Polariton dispersion:upper polaritonbranch→ two branches for ω(k)Reststrahlen band(perfect reflection,no mode can propagate)lower polaritonbranch<strong>LM</strong> <strong>Herz</strong> - <strong>Optical</strong> <strong>Properties</strong> <strong>of</strong> <strong>Solids</strong>TT<strong>2012</strong> 40


Inelastic Light Scattering• Scattering <strong>of</strong> light may be caused by fluctuations <strong>of</strong> thedielectric susceptibility χ <strong>of</strong> a medium• time-dependent variation <strong>of</strong> χ may be caused by elementaryexcitations, e.g. phonons or plasmons• scattering from optical phonons is called Raman scatteringand that from acoustic phonons Brillouin scattering• if u(r,t) is the displacement (<strong>of</strong> charge) associated with theexcitation, the susceptibility can be expressed in terms <strong>of</strong> aTaylor series:Polarization in the medium:letlight wave with frequency ωlattice wave with frequency ω qwhereunscattered polarization waveAnti-Stokes scatteringStokes scattering<strong>LM</strong> <strong>Herz</strong> - <strong>Optical</strong> <strong>Properties</strong> <strong>of</strong> <strong>Solids</strong>TT<strong>2012</strong> 41


Energy & momentum conservation for inelastic scatteringScattering process:energy conservation:ω in , k inω out , k outω q , qwave vector conservation:Anti-Stokes scattering requires absorption <strong>of</strong> a phonon andtherefore sufficiently high temperature. In general the ratio <strong>of</strong>Anti-Stokes to Stokes scattering intensities is given by:Maximum momentum transfer in backscattering geometry, where:Inelastic light scattering probes phonons with small wave vectorRaman spectroscopy: Experimental detailsRequire detection <strong>of</strong> optical phonons within typical frequencyrange 1cm -1 < ω p < 3000cm -1→ need excitation source (laser) with sufficiently narrowbandwidth→ need detection system with high dispersion and abilityto suppress elastically scattered lightTypical set-up:S4detectorM5filterpolarizerLaseranalyzerG2M3G1S2,3M4M2doublegratingspectrometersampleS1M1<strong>LM</strong> <strong>Herz</strong> - <strong>Optical</strong> <strong>Properties</strong> <strong>of</strong> <strong>Solids</strong>TT<strong>2012</strong> 42


Raman spectra for zinc-blende-type semiconductorsBrillouin scattering: Experimental detailsRequire detection <strong>of</strong> acoustic phonons near the centre <strong>of</strong> theBrillouin zone where ω q =v ac q → need to be able to measure shifts<strong>of</strong> only a few cm -1 !Set-up based on a MultipassInterferometer:Brillouin spectrum for Si(100):<strong>LM</strong> <strong>Herz</strong> - <strong>Optical</strong> <strong>Properties</strong> <strong>of</strong> <strong>Solids</strong>TT<strong>2012</strong> 43


Phonon lifetimesExperimental evidence for finite phonon lifetimes fromi. Reflectivity measurements: R


VII Optics <strong>of</strong> anisotropic mediaA medium is anisotropic if its macroscopic optical propertiesdepend on directionExamples:anisotropicisotropicgas, liquid,amorphoussolidpolycrystalline crystalline liquid crystalε r and χ in an anisotropic mediumPolarizability now depends on direction in which E-field is applied→ relative electric permittivity ε r and susceptibility χ now tensors:or→ D and E no longer necessarily point into the same direction!But can always find coordinate system for which <strong>of</strong>f-diagonalelements vanish, in which case:In the directions <strong>of</strong> these principal crystal axes E and D are parallel.<strong>LM</strong> <strong>Herz</strong> - <strong>Optical</strong> <strong>Properties</strong> <strong>of</strong> <strong>Solids</strong>TT<strong>2012</strong> 45


Propagation <strong>of</strong> plane waves in an isotropic mediumAmpere’s and Faraday’s law for plane waves:whereis the wavevector in free space.Choosing a coordinate system along the crystal’s principal axesyields:homogeneous matrix equation, requireSolving the matrix equation () yields:This provides a dispersion relationshipCan obtain the refractive index from the ratio <strong>of</strong> phasevelocities in vacuo and inside medium:<strong>LM</strong> <strong>Herz</strong> - <strong>Optical</strong> <strong>Properties</strong> <strong>of</strong> <strong>Solids</strong>TT<strong>2012</strong> 46


Propagation <strong>of</strong> plane waves in uniaxial crystalsIn uniaxial crystals (optic axis along z): ,Two solutions:(i) Sphere:for ordinary ray(polarized ⊥ to k-z plane)(ii) ellipsoid <strong>of</strong> revolutionk 3k-directionn o k 0n(θ)kn o k 00θn o k 0n e k 0k2for extraordinary ray(polarized in k-z plane)Ordinary vs extraordinary rays in uniaxial crystalsk 3θn o k 0n o k 0k 3θSSHE,Dkk 2EDn o k 0n e k 0 k 2Hk(a) ordinary ray:E, D polarized ⊥ to planecontaining k and the optic axis;Refractive index:(b) extraordinary ray:E, D polarized in planecontaining k and the optic axis<strong>LM</strong> <strong>Herz</strong> - <strong>Optical</strong> <strong>Properties</strong> <strong>of</strong> <strong>Solids</strong>TT<strong>2012</strong> 47


Comments on wave propagation in uniaxial crystals1) Faraday’s & Ampere’s law for plane waves in dielectrics:D is normal to both k and HH is normal to both k and EN.B.: this does not imply E ⊥ k!2) All fields are <strong>of</strong> the formwavefronts are ⊥ to k.3) The phase velocity v is in the direction <strong>of</strong> k with4) As usual, the group velocity isv g is normal to the k-surface!5) The pointing vector is normal to E and HCan show: for small Δk Snormal to k-surface6) From (5) and (1) follows that E is parallel to the k-surface.k 0e-rayϕαRefraction at the surface <strong>of</strong> a uniaxial crystalβkcrystalairopticaxisphase matching condition:N.B.: Snell’s law holds for the directions <strong>of</strong>k in the media, but this is not necessarilythe direction <strong>of</strong> ray propagation!Example: Double refraction at normal incidence:<strong>LM</strong> <strong>Herz</strong> - <strong>Optical</strong> <strong>Properties</strong> <strong>of</strong> <strong>Solids</strong>TT<strong>2012</strong> 48


Linear optics:VIII Non-linear OpticsPolarization depends linearly on the electric field:Electrons experience harmonic retaining potentialrefractive index n, absorption coefficient α, reflectivityR independent <strong>of</strong> incident EM wave’s intensityBut:If E-fields become comparable to those binding electrons in theatom, anharmonic (non-linear) effects become significant.For an H-atom:need EM wave intensityPossible with tightly focused laser beams!The non-linear susceptibility tensorFor a medium in whichwe may in general write:linearnon-linear partnow power-dependent!In an anisotropic medium, non-linear response will depend ondirections <strong>of</strong> E-fields wrt the crystal:Second-order non-linear polarization components:Third-order non-linear polarization components:<strong>LM</strong> <strong>Herz</strong> - <strong>Optical</strong> <strong>Properties</strong> <strong>of</strong> <strong>Solids</strong>TT<strong>2012</strong> 49


Non-linear medium response to sinusoidal driving fieldlow appliedfield amplitude:high appliedfield amplitude:If and the applied field , then:second-order nonlinearity: rectification and frequency doublingthird-order nonlinearity: frequency triplingSecond-order nonlinearities (NL)Treatment <strong>of</strong> non-resonant 2 nd order NL within oscillator model:Assume anharmonic potential:Equation <strong>of</strong> motion:Use trial solution:Assume→Obtaindisplacementamplitudes:<strong>LM</strong> <strong>Herz</strong> - <strong>Optical</strong> <strong>Properties</strong> <strong>of</strong> <strong>Solids</strong>TT<strong>2012</strong> 50


Calculating the induced polarization:linear susceptibility, as beforesecond-order non-linear susceptibilityCan re-write the second-order non-linear susceptibility as:→ materials with large linear susceptibilty also have alarge non-linear susceptibility→ in a centrosymmetric medium, U(x) = U(-x)and therefore C 3 = 0 and χ (2) =0second-order nonlinearities only occur inmedia that lack inversion symmetry!(This may also be shown directly from the definition<strong>of</strong> P(2) - see question sheet.)<strong>LM</strong> <strong>Herz</strong> - <strong>Optical</strong> <strong>Properties</strong> <strong>of</strong> <strong>Solids</strong>TT<strong>2012</strong> 51


The second-order non-linear coefficient tensor d ij27 components in χ (2) ijkBut some <strong>of</strong> these components must be the same(e.g. χ (2) xyz E y E z = χ (2) xzy E z E y , so χ (2) xyz = χ (2) xzy becauseordering <strong>of</strong> fields is arbitrary)Second-order response can be described by the simplertensor d ij , i.e.In many cases crystal symmetry requires that most <strong>of</strong> thecomponents <strong>of</strong> d ij vanish.2 nd order NL: Frequency (three-wave) mixingPresume two waves are travelling in the medium, withThe induced polarization is:sum-frequencygenerationdifference-frequencygenerationFeynman diagrams for second-order nonlinear frequency mixing:ω 1ω 2ω 1 + ω 2ω 1- ω 2ω 1 - ω 2<strong>LM</strong> <strong>Herz</strong> - <strong>Optical</strong> <strong>Properties</strong> <strong>of</strong> <strong>Solids</strong>TT<strong>2012</strong> 52


2 nd order NL: Frequency doublingConsider the generation <strong>of</strong> second harmonics in more detail:Maxwell’sequations:Wave equation:Consider propagation <strong>of</strong> second-harmonic wave in z-direction:Let this wave be generated from two fundamental waves:Obtain specific wave equation:Assume that the variation <strong>of</strong> the complex field amplitude is small(slowly varying envelope approximation):Obtain DE for increase <strong>of</strong> the second harmonic along the direction<strong>of</strong> propagation:whereis the phase mismatch betweenfundamental and second harmonic wave<strong>LM</strong> <strong>Herz</strong> - <strong>Optical</strong> <strong>Properties</strong> <strong>of</strong> <strong>Solids</strong>TT<strong>2012</strong> 53


2 nd order NL: Phase matching conditionsE(ω)E(ω)E(2ω)0 LFor efficient frequency conversion, weneed the fundamental wave and the higherharmonic to be in phase throughout thecrystal, i.e. whereThe second-harmonic field at length L for arbitraryis:For constant fundamental wave amplitudes (thin crystal) thesecond harmonic intensity is then given by:Second-harmonic intensity after propagation through crystal <strong>of</strong>length L without phase matchingFirst intensity minimum at:But: dispersion in media meansthat in general:Example: Sapphire→ need too thin a crystal toachieve efficient 2 ndharmonics generation<strong>LM</strong> <strong>Herz</strong> - <strong>Optical</strong> <strong>Properties</strong> <strong>of</strong> <strong>Solids</strong>TT<strong>2012</strong> 54


2 nd order NL: Phase matching in a uniaxial crystalIn general, in the birefringent medium, but since therefractive index now depends on the direction <strong>of</strong> propagation andwave polarization wrt the optic axis, for some geometries we mayhave→ phase matching!n o2ωn oωθn eωphase-matchingdirectionn e2ωHere, phase matching occurs for the fundamental travelling asextraordinary (polarization in plane) and the 2 nd harmonic asordinary (polarization ⊥ to plane) withThird-order nonlinearitiesThird-order effects become important in centrosymmetric (e.g.isotropic media) whereFor three waves with frequencies the third-ordernonlinear polarization isgenerates a wave with(a) four-wave mixingω2ω 1ω 3ω 1 + ω 2 + ω 3(c) <strong>Optical</strong> Kerr effectωω-ωω(b) frequency triplingω ωω-ωω Sω S3ωe.g.:(d) stimulated Raman scattering<strong>LM</strong> <strong>Herz</strong> - <strong>Optical</strong> <strong>Properties</strong> <strong>of</strong> <strong>Solids</strong>TT<strong>2012</strong> 55


3 rd order NL: The optical Kerr effect<strong>Optical</strong> Kerr effect:andno phase mismatchIn an isotropic medium (χ (2) =0):Refractive index:wherelight intensityRefractive index varies with light intensity!Example: Kerr lensing<strong>Optical</strong> Kerr effect:at high intensity ILaser beam with spatially varyingpr<strong>of</strong>ile (e.g. Gaussian beam)experiences in the medium a higherrefractive index at the centre <strong>of</strong> thebeam than the outside → mediumacts as a lens!n(x)Propagation <strong>of</strong> an intense gaussian beam through a Kerr medium:x<strong>LM</strong> <strong>Herz</strong> - <strong>Optical</strong> <strong>Properties</strong> <strong>of</strong> <strong>Solids</strong>TT<strong>2012</strong> 56


3 rd order NL: Resonant nonlinearitieshνConsider medium with optical transition atresonance with incident wave <strong>of</strong> Intensity Ifind that absorption decreases as higherstate become more populated:Absorption coefficientforfor(weak absorption)Can view saturable absorption as a third-order optical nonlinearity!<strong>LM</strong> <strong>Herz</strong> - <strong>Optical</strong> <strong>Properties</strong> <strong>of</strong> <strong>Solids</strong>TT<strong>2012</strong> 57

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!