13.07.2015 Views

Effect of Tower Area Change on the Potential of Solar Tower

Effect of Tower Area Change on the Potential of Solar Tower

Effect of Tower Area Change on the Potential of Solar Tower

SHOW MORE
SHOW LESS
  • No tags were found...

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

The 2 nd Joint Internati<strong>on</strong>al C<strong>on</strong>ference <strong>on</strong> “Sustainable Energy and Envir<strong>on</strong>ment (SEE 2006)”B-029 (O) 21-23 November 2006, Bangkok, Thailand<str<strong>on</strong>g>Effect</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Tower</str<strong>on</strong>g> <str<strong>on</strong>g>Area</str<strong>on</strong>g> <str<strong>on</strong>g>Change</str<strong>on</strong>g> <strong>on</strong> <strong>the</strong> <strong>Potential</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>Solar</strong> <str<strong>on</strong>g>Tower</str<strong>on</strong>g>Atit Ko<strong>on</strong>srisuk and Tawit Chitsombo<strong>on</strong> *School <str<strong>on</strong>g>of</str<strong>on</strong>g> Mechanical Engineering, Institute <str<strong>on</strong>g>of</str<strong>on</strong>g> Engineering, Suranaree University <str<strong>on</strong>g>of</str<strong>on</strong>g> Technology, Nakh<strong>on</strong> Ratchasima, ThailandAbstract: <strong>Solar</strong> tower is a solar power plant for electricity generati<strong>on</strong> by means <str<strong>on</strong>g>of</str<strong>on</strong>g> air flow induced through a tall tower. Guided by a<strong>the</strong>oretical predicti<strong>on</strong>, this paper uses CFD technology to investigate <strong>the</strong> changes in flow kinetic energy caused by <strong>the</strong> variati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g>tower flow area with height. It was found that <strong>the</strong> tower area change affects <strong>the</strong> efficiency and mass flow rate through <strong>the</strong> plant. Thedivergent tower top leads to augmentati<strong>on</strong>s in kinetic energy at <strong>the</strong> tower base significantly.Keywords: <strong>Solar</strong> <str<strong>on</strong>g>Tower</str<strong>on</strong>g>, <strong>Solar</strong> Chimney, Divergent Top <strong>Solar</strong> <str<strong>on</strong>g>Tower</str<strong>on</strong>g>, C<strong>on</strong>vergent Top <strong>Solar</strong> <str<strong>on</strong>g>Tower</str<strong>on</strong>g>, Efficiency Enhancement1. INTRODUCTION<strong>Solar</strong> tower, originally known as solar chimney, is a solar power plant proposed to generate electricity in large scale bytransforming solar energy into mechanical energy. In o<strong>the</strong>r words, it is an artificial wind generator, albeit a hot <strong>on</strong>e. The schematic <str<strong>on</strong>g>of</str<strong>on</strong>g>a typical solar tower power plant is sketched in Fig. 1 wherein solar radiati<strong>on</strong> strikes <strong>the</strong> transparent ro<str<strong>on</strong>g>of</str<strong>on</strong>g> surface, heating <strong>the</strong> airunderneath as a result <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> greenhouse effect. Due to buoyancy effect, <strong>the</strong> heated air flows up <strong>the</strong> tower and induces a c<strong>on</strong>tinuousflow from <strong>the</strong> perimeter towards <strong>the</strong> middle <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> ro<str<strong>on</strong>g>of</str<strong>on</strong>g> where <strong>the</strong> tower is located. Shaft energy can be extracted from <strong>the</strong> <strong>the</strong>rmaland kinetic energy <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> flowing air to turn an electrical generator [1].Fig. 1 Schematic layout <str<strong>on</strong>g>of</str<strong>on</strong>g> straight solar tower power plantResearch works <strong>on</strong> solar tower started around 1970s, after <strong>the</strong> c<strong>on</strong>structi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a prototype in Manzanares, Spain. The 50 kWprototype produced electricity for seven years, proving that this kind <str<strong>on</strong>g>of</str<strong>on</strong>g> solar power plant works, although efficiency was ra<strong>the</strong>r low[1]. Numerous analytical investigati<strong>on</strong>s to predict <strong>the</strong> flow in solar tower had been proposed [2, 3, 1, 4, 5, 6]. There are comm<strong>on</strong>features <str<strong>on</strong>g>of</str<strong>on</strong>g> all <strong>the</strong>se investigati<strong>on</strong>s in that <strong>the</strong>y developed ma<strong>the</strong>matical models from <strong>the</strong> fundamental equati<strong>on</strong>s in fluid mechanics. Indoing this <strong>the</strong> temperature rise due to solar heat gain had been assumed to be reas<strong>on</strong>able values, using engineering intuiti<strong>on</strong>. Flows in<strong>the</strong> ro<str<strong>on</strong>g>of</str<strong>on</strong>g> and <strong>the</strong> tower were studied individually without a mechanism to let <strong>the</strong>m interact. Ref. [7] proposed an analytical model witha built-in mechanism through which flows in various parts <str<strong>on</strong>g>of</str<strong>on</strong>g> a solar tower can naturally interact. Moreover, <strong>the</strong>rmo-mechanicalcoupling was naturally represented without having to assume an arbitrary temperature rise in <strong>the</strong> system. The results predicted werecompared quite accurately with numerical soluti<strong>on</strong>s from Computati<strong>on</strong>al Fluid Dynamics (CFD).The effects <str<strong>on</strong>g>of</str<strong>on</strong>g> various geometrical parameters <strong>on</strong> <strong>the</strong> plant performance were examined by several researchers. Ref. [6] employeda <strong>on</strong>e-dimensi<strong>on</strong>al compressible flow model for <strong>the</strong> calculati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> <strong>the</strong>rmodynamic variables as functi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> tower height, wallfricti<strong>on</strong>, additi<strong>on</strong>al losses, internal drag and tower area change. For a given tower height, an increase in area ratio leads toaugmentati<strong>on</strong>s in static pressure in <strong>the</strong> tower. In [4] it was found that efficiency could be increased by tapering <strong>the</strong> top end <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong>tower. But in [8] it was found to <strong>the</strong> c<strong>on</strong>trary that as <strong>the</strong> tower top is made c<strong>on</strong>vergent efficiency does not increase but stays relativelyc<strong>on</strong>stant.The present study investigates <strong>the</strong> influence <str<strong>on</strong>g>of</str<strong>on</strong>g> tower cross-secti<strong>on</strong>al area changes <strong>on</strong> <strong>the</strong> potential <str<strong>on</strong>g>of</str<strong>on</strong>g> a solar tower power plant.The commercial CFD code “CFX” has been proven to be a reliable tool to simulate <strong>the</strong> flow in solar tower [9]. To determine <strong>the</strong>effects <str<strong>on</strong>g>of</str<strong>on</strong>g> tower pr<str<strong>on</strong>g>of</str<strong>on</strong>g>ile, <strong>the</strong> solar tower models with several tower inlet and outlet area ratios were specified and solved by CFX.While [6] and [4] employed <strong>on</strong>e dimensi<strong>on</strong>al approach, and [8] used <strong>the</strong> quasi <strong>on</strong>e dimensi<strong>on</strong>al model, <strong>the</strong> axis-symmetry model isused in this study.Corresp<strong>on</strong>ding author: tab<strong>on</strong>@sut.ac.th1


The 2 nd Joint Internati<strong>on</strong>al C<strong>on</strong>ference <strong>on</strong> “Sustainable Energy and Envir<strong>on</strong>ment (SEE 2006)”B-029 (O) 21-23 November 2006, Bangkok, Thailand2. METHODOLOGYA <strong>the</strong>oretical predicti<strong>on</strong> will be examined first in order to guide <strong>the</strong> present work. The work <str<strong>on</strong>g>of</str<strong>on</strong>g> [8] proposed a ma<strong>the</strong>matical modelfor <strong>the</strong> flow in a solar tower; <strong>the</strong> results obtained compared very well with CFD results; hence, it will be used as a starting point <str<strong>on</strong>g>of</str<strong>on</strong>g>this work. The equati<strong>on</strong>s was proposed as,1mv &2213323∫ ∫ ∫ [ ] =⎥⎥⎤3dA 2A1Q&dAr2ρ1A1gh dA 2 −2−2ρ1ghQ&+++ ρ1A4 −3233∫1 A A⎡⎢2ρ 1 − 2ρ1A1dAr. (1)⎢A v1CpT1A γRT1AC pT3⎣111⎦1Numerical subscripts appear in <strong>the</strong> equati<strong>on</strong> above and equati<strong>on</strong>s from here <strong>on</strong>ward are c<strong>on</strong>sistent with positi<strong>on</strong>s as depicted inFig. 1. Since <strong>the</strong> work aim is to evaluate <strong>the</strong> potential, <strong>on</strong>ly a system without a turbine will be analyzed first to reduce <strong>the</strong> complexityand <strong>the</strong> added uncertainty that come with <strong>the</strong> turbine. Therefore, positi<strong>on</strong>s 2 and 3 are <strong>the</strong> same positi<strong>on</strong> and will be referred to by <strong>the</strong>subscript 3.It is clear from [4, 6, 8] that <strong>the</strong> important geometrical parameters <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> tower are seen to be <strong>the</strong> tower height, h , <strong>the</strong> tower inletarea, A 3 , and <strong>the</strong> tower outlet area, A 4 . To determine <strong>the</strong> shape effect <str<strong>on</strong>g>of</str<strong>on</strong>g> tower, <strong>the</strong> height and inlet area <str<strong>on</strong>g>of</str<strong>on</strong>g> tower are fixed, and <strong>the</strong>outlet area is varied. Hence <strong>the</strong> study will be focused <strong>on</strong> c<strong>on</strong>vergent-top and divergent-top tower as illustrated in Fig. 2.(a)(b)Fig. 2 Schematic layout <str<strong>on</strong>g>of</str<strong>on</strong>g> (a) c<strong>on</strong>vergent-top solar tower; (b) divergent-top solar towerIt can be computed from Eq. (1) that, for a given ambient c<strong>on</strong>diti<strong>on</strong>, and fixed A 1 and A 3 , as A 4 increases, <strong>the</strong> m& v 1 2 increasescorresp<strong>on</strong>dingly. Guided by this ma<strong>the</strong>matical model, it appears that <strong>the</strong> kinetic energy might increase in proporti<strong>on</strong> to <strong>the</strong> square <str<strong>on</strong>g>of</str<strong>on</strong>g>A<strong>the</strong> tower area ratio ( 4 A) and this is <strong>the</strong> main objective <str<strong>on</strong>g>of</str<strong>on</strong>g> this study. The values <str<strong>on</strong>g>of</str<strong>on</strong>g> 4 that were used in this study are asA3A3listed in Table 1.Numerical calculati<strong>on</strong>s have been performed using CFX. For this purpose, CFX solves <strong>the</strong> c<strong>on</strong>servati<strong>on</strong> equati<strong>on</strong>s for mass,momentums, and energy using a finite volume method. Adaptive unstructured tetrahedral meshes were used in <strong>the</strong> present study. Theplants studied were modeled as an axis-symmetric model where <strong>the</strong> centerline <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> tower is <strong>the</strong> axis <str<strong>on</strong>g>of</str<strong>on</strong>g> symmetry. To simulate axissymmetry,a 5 degree secti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> plant is cut out from <strong>the</strong> entire periphery as shown in Fig. 3.2Fig. 3 Unstructured mesh used for <strong>the</strong> 5 degree axis-symmetric computati<strong>on</strong>al domainProper boundary c<strong>on</strong>diti<strong>on</strong>s are needed for a successful computati<strong>on</strong>al work. At <strong>the</strong> ro<str<strong>on</strong>g>of</str<strong>on</strong>g> inlet, <strong>the</strong> total pressure and temperatureare specified; whereas at <strong>the</strong> tower exit <strong>the</strong> ‘outlet’ c<strong>on</strong>diti<strong>on</strong> with zero static pressure is prescribed. The symmetry boundaryc<strong>on</strong>diti<strong>on</strong>s are applied at <strong>the</strong> two sides <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> sector while <strong>the</strong> adiabatic free-slip c<strong>on</strong>diti<strong>on</strong>s are prescribed to <strong>the</strong> remainingboundaries, c<strong>on</strong>sistent with <strong>the</strong> fricti<strong>on</strong>less flow assumpti<strong>on</strong>. All test cases were computed until residuals <str<strong>on</strong>g>of</str<strong>on</strong>g> all equati<strong>on</strong>s reached<strong>the</strong>ir respective minima. Moreover, global c<strong>on</strong>servati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> mass were rechecked to fur<strong>the</strong>r ascertain c<strong>on</strong>vergence <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> test cases.2


The 2 nd Joint Internati<strong>on</strong>al C<strong>on</strong>ference <strong>on</strong> “Sustainable Energy and Envir<strong>on</strong>ment (SEE 2006)”B-029 (O) 21-23 November 2006, Bangkok, ThailandTable 1 Ratio <str<strong>on</strong>g>of</str<strong>on</strong>g> tower output area to tower input area (AR) and dimensi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> plant modelsCase AR <str<strong>on</strong>g>Tower</str<strong>on</strong>g> height(m)Ro<str<strong>on</strong>g>of</str<strong>on</strong>g> height(m)Ro<str<strong>on</strong>g>of</str<strong>on</strong>g> radius(m)<str<strong>on</strong>g>Tower</str<strong>on</strong>g> inletradius (m)<str<strong>on</strong>g>Tower</str<strong>on</strong>g> outletradius (m)Prototype 1 100 2 100 4 4Model 1 0.5 100 2 100 4 2.83Model 2 0.75 100 2 100 4 3.46Model 3 2 100 2 100 4 5.66Model 4 4 100 2 100 4 8Model 5 9 100 2 100 4 12Model 6 16 100 2 100 4 163. RESULTS AND DISCUSSIONFigs. 4, 6-8 show <strong>the</strong> distributi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> computed flow properties for different tower area ratio (AR). The abscissa <str<strong>on</strong>g>of</str<strong>on</strong>g> all plots is <strong>the</strong>scaled flow path, equaling zero at ro<str<strong>on</strong>g>of</str<strong>on</strong>g> inlet, <strong>on</strong>e at tower top and 0.5 at tower base. As can be seen in Fig. 4 at any AR, <strong>the</strong> velocityincreases as it approaches <strong>the</strong> tower base. In <strong>the</strong> tower porti<strong>on</strong>, <strong>the</strong> velocity distributi<strong>on</strong> depends <strong>on</strong> AR. For models with AR smallerthan <strong>on</strong>e, <strong>the</strong> velocity keeps <strong>on</strong> increasing and attains <strong>the</strong> maximum value at tower outlet. On <strong>the</strong> o<strong>the</strong>r hand, for models with ARlarger than <strong>on</strong>e, <strong>the</strong> flow achieves its maximum velocity right after entering <strong>the</strong> tower, and <strong>the</strong>n decreases c<strong>on</strong>tinuously afterward.Fig. 4 <str<strong>on</strong>g>Effect</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> tower area ratio <strong>on</strong> <strong>the</strong> velocity pr<str<strong>on</strong>g>of</str<strong>on</strong>g>iles for insolati<strong>on</strong> = 800 W/m 2Fig. 5 <str<strong>on</strong>g>Effect</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> tower area ratio <strong>on</strong> <strong>the</strong> mass flow rate for insolati<strong>on</strong> = 800 W/m 2The effect <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> tower area ratio <strong>on</strong> <strong>the</strong> mass flow rate is presented in Fig. 5. The mass flow ratio depicted in Fig. 5 is defined as<strong>the</strong> ratio <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> mass flow rate to <strong>the</strong> mass flow rate <str<strong>on</strong>g>of</str<strong>on</strong>g> prototype. The results show that <strong>the</strong> mass flow rate rises and falls with AR. Inrelati<strong>on</strong> to <strong>the</strong> c<strong>on</strong>stant-area tower, c<strong>on</strong>vergent-top tower reduces mass flow rate and divergent-top tower increases mass flow rate.The temperature, shown in Fig. 6, increases al<strong>on</strong>g <strong>the</strong> flow path in <strong>the</strong> ro<str<strong>on</strong>g>of</str<strong>on</strong>g> regi<strong>on</strong> and remain relatively c<strong>on</strong>stant al<strong>on</strong>g <strong>the</strong> tower.3


The 2 nd Joint Internati<strong>on</strong>al C<strong>on</strong>ference <strong>on</strong> “Sustainable Energy and Envir<strong>on</strong>ment (SEE 2006)”B-029 (O) 21-23 November 2006, Bangkok, ThailandAbrupt dip and rise <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> temperature at <strong>the</strong> tower base is <strong>the</strong> resp<strong>on</strong>se to <strong>the</strong> abrupt velocity change, in accordance with <strong>the</strong>c<strong>on</strong>servati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> energy principle. The noted feature is that <strong>the</strong> temperature levels in each AR case are widely different, being lower inhigher AR cases; this is c<strong>on</strong>sistent with <strong>the</strong> differences in mass flow rates <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> various cases as presented in Fig. 5, since a highermass flow rate should give a lower temperature rise for an equal amount <str<strong>on</strong>g>of</str<strong>on</strong>g> energy input.Fig. 6 <str<strong>on</strong>g>Effect</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> tower area ratio <strong>on</strong> <strong>the</strong> temperature pr<str<strong>on</strong>g>of</str<strong>on</strong>g>iles for insolati<strong>on</strong> = 800 W/m 2In Fig. 7, <strong>the</strong> gauge pressure distributi<strong>on</strong>s are seen to be nominally c<strong>on</strong>stant under <strong>the</strong> ro<str<strong>on</strong>g>of</str<strong>on</strong>g> before falling gradually in <strong>the</strong> towerporti<strong>on</strong> to meet <strong>the</strong> hydrostatic pressure value at <strong>the</strong> tower top. For <strong>the</strong> plants with AR greater than <strong>on</strong>e, <strong>the</strong>re are swift dips at <strong>the</strong>tower base; <strong>the</strong> severities <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> dips are proporti<strong>on</strong>al to AR. The dips are direct resp<strong>on</strong>ses to <strong>the</strong> temperature dips because <strong>the</strong> densityis relatively unchanged in a low Mach number flow. Note that <strong>the</strong> ordinate is <strong>the</strong> gauge pressure which was scaled such that pressureat <strong>the</strong> tower top is always zero.Fig. 7 <str<strong>on</strong>g>Effect</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> tower area ratio <strong>on</strong> <strong>the</strong> pressure pr<str<strong>on</strong>g>of</str<strong>on</strong>g>iles for insolati<strong>on</strong> = 800 W/m 2Fig. 8 shows <strong>the</strong> variati<strong>on</strong> in dimensi<strong>on</strong>less power, defined as <strong>the</strong> kinetic power divided by <strong>the</strong> kinetic energy <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> prototype attower base. It is evident that high AR leads to augmentati<strong>on</strong> in power at <strong>the</strong> tower base. This suggests <strong>the</strong> potential <str<strong>on</strong>g>of</str<strong>on</strong>g> harnessingmore turbine power from <strong>the</strong> high AR system.4


The 2 nd Joint Internati<strong>on</strong>al C<strong>on</strong>ference <strong>on</strong> “Sustainable Energy and Envir<strong>on</strong>ment (SEE 2006)”B-029 (O) 21-23 November 2006, Bangkok, Thailand(a)(b)Fig. 8 <str<strong>on</strong>g>Effect</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> tower area ratio <strong>on</strong> <strong>the</strong> flow power (scaled by <strong>the</strong> maximum flow power <str<strong>on</strong>g>of</str<strong>on</strong>g> prototype) for insolati<strong>on</strong> = 800 W/m 2 :(a) from ro<str<strong>on</strong>g>of</str<strong>on</strong>g> inlet to tower outlet; (b) enlarge view <str<strong>on</strong>g>of</str<strong>on</strong>g> (a) around tower outletTable 2 presents <strong>the</strong> kinetic energy at <strong>the</strong> tower base for each model scaled by <strong>the</strong> prototype kinetic energy at <strong>the</strong> same locati<strong>on</strong>;<strong>the</strong> square <str<strong>on</strong>g>of</str<strong>on</strong>g> tower area ratio (AR2) <str<strong>on</strong>g>of</str<strong>on</strong>g> each model is also shown. It is observed that <strong>the</strong> power increases in proporti<strong>on</strong> to AR2 whenAR ranges between 0.5 to 4 and it increases at a lower rate <strong>the</strong>reafter. This quadratic trend is suggested by Eq. (1) as menti<strong>on</strong>edearlier. However, <strong>the</strong> statement that Eq. (1) suggests a quadratic relati<strong>on</strong> is <strong>on</strong>ly <strong>on</strong> an approximate basis since <strong>the</strong> equati<strong>on</strong> is implicitand n<strong>on</strong>-linear.Fur<strong>the</strong>r inspecti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Table 2 shows that <strong>the</strong> flow kinetic energy and efficiency increase as AR increases. Efficiency in this case isdefined as <strong>the</strong> kinetic energy at tower base divided by <strong>the</strong> total insolati<strong>on</strong>. This definiti<strong>on</strong> is unfair to <strong>the</strong> c<strong>on</strong>vergent top case becauseits potential is at <strong>the</strong> top, not at <strong>the</strong> base. However, Fig. 8 (b) reveals that <strong>the</strong> kinetic energy at <strong>the</strong> top <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> c<strong>on</strong>vergent towerremains <strong>the</strong> same as <strong>the</strong> c<strong>on</strong>stant area case. So, its potential remains unchanged in relati<strong>on</strong> to <strong>the</strong> c<strong>on</strong>stant area case. This resultcoincides with that <str<strong>on</strong>g>of</str<strong>on</strong>g> [8] and c<strong>on</strong>tradicts to that <str<strong>on</strong>g>of</str<strong>on</strong>g> [4].Table 2 Kinetic power at <strong>the</strong> tower base scaled by prototype power, <strong>the</strong> square <str<strong>on</strong>g>of</str<strong>on</strong>g> tower area ratio (AR2) and <strong>the</strong> efficiency at towerentrance, η = 0.5mv QA && 2 3Case AR Power AR2 EfficiencyPrototype 1 1 1 0.0030Model 1 0.5 0.24 0.25 0.0007Model 2 0.75 0.57 0.56 0.0017Model 3 2 3.84 4 0.0114Model 4 4 13.92 16 0.0414Model 5 9 50.26 81 0.1495Model 6 16 94.29 256 0.2520As shown in Table 2 <strong>the</strong> efficiency in c<strong>on</strong>verting insolati<strong>on</strong> into kinetic energy is ra<strong>the</strong>r low, due mainly to <strong>the</strong> ‘shortness’ <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong>tower height. But <strong>the</strong> increase for <strong>the</strong> AR=16 case over that <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> prototype is quite large, at 94 folds. It would seem that <strong>the</strong>re is anupper bound <strong>on</strong> AR that can boost up <strong>the</strong> kinetic energy. Too high AR would eventually lead to boundary layer separati<strong>on</strong>. Fricti<strong>on</strong>that comes with high velocity would also reduce <strong>the</strong> benefit.4. CONCLUSIONA solar tower system with varying tower flow area has been studied and its performance has been evaluated. The results show thatdivergent tower helps increase mass flow rate and kinetic energy over that <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> c<strong>on</strong>stant area tower. The tower area ratio <str<strong>on</strong>g>of</str<strong>on</strong>g> 16 canproduce kinetic energy as much as 94 times that <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> c<strong>on</strong>stant area tower. For <strong>the</strong> c<strong>on</strong>vergent tower, <strong>the</strong> velocity at <strong>the</strong> tower topincreases but <strong>the</strong> mass flow rate decreases in a manner such that <strong>the</strong> kinetic power at <strong>the</strong> top remains <strong>the</strong> same as <strong>the</strong> c<strong>on</strong>stant areacase. For <strong>the</strong> divergent case, maximum kinetic energy occurs at <strong>the</strong> tower base and this suggests <strong>the</strong> potential to extract more turbinepower than <strong>the</strong> c<strong>on</strong>stant area tower.5. ACKNOWLEDGMENTSThis research is sp<strong>on</strong>sored by <strong>the</strong> Royal Golden Jubilee (RGJ) Ph.D. Program <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> Thailand Research Fund (TRF).A flow area, m 26. NOMENCLATUREr5


The 2 nd Joint Internati<strong>on</strong>al C<strong>on</strong>ference <strong>on</strong> “Sustainable Energy and Envir<strong>on</strong>ment (SEE 2006)”B-029 (O) 21-23 November 2006, Bangkok, ThailandA r ro<str<strong>on</strong>g>of</str<strong>on</strong>g> area, m 2C specific heat at c<strong>on</strong>stant pressure, J/(kg.K)pg gravitati<strong>on</strong>al accelerati<strong>on</strong>, m/s 2h tower height, mm& mass flow rate, kg/sQ & solar heat flux, W/m 2R gas c<strong>on</strong>stant, J/kg KT absolute temperature, Kv flow velocity, m/sGreek symbolsγ specific heats ratioρ density <str<strong>on</strong>g>of</str<strong>on</strong>g> working fluid, kg/m 3Subscripts1 positi<strong>on</strong> at ro<str<strong>on</strong>g>of</str<strong>on</strong>g> inlet (Figure 1)2 positi<strong>on</strong> at tower inlet (Figure 1)3 positi<strong>on</strong> at turbine exit (Figure 1)r ro<str<strong>on</strong>g>of</str<strong>on</strong>g>7. REFERENCES[1] Schlaich, J. (1995) The <strong>Solar</strong> Chimney: Electricity from <strong>the</strong> Sun, Editi<strong>on</strong> Axel Menges, Stuttgart, Germany.[2] Haaf, W., Friedrich, K., Mayr, G. and Schlaich, J. (1983) <strong>Solar</strong> chimneys: part I: principle and c<strong>on</strong>structi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> pilot plant inManzanares, Internati<strong>on</strong>al Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>Solar</strong> Energy, 2,(1), pp 3-20.[3] Yan, M.-Q., Sherif, S.A., Kridli, G.T., Lee, S.S. and Padki, M.M. (1991) Thermo-fluid analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> solar chimneys. Ind. Applic.Fluid Mech, ASME FED-2, pp.125-130.[4] Padki, M.M. and Sherif, S.A. (1999) On a simple analytical model for solar chimneys, Internati<strong>on</strong>al Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Energy Research,23, pp. 289-294.[5] Gann<strong>on</strong>, A.J. and V<strong>on</strong> Backström, T.W. (2000) <strong>Solar</strong> chimney cycle analysis with system loss and solar collector performance,ASME Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>Solar</strong> Energy Engineering, 122, (3), pp 133-137.[6] V<strong>on</strong> Backström, T.W. and Gann<strong>on</strong>, A.J. (2000) Compressible flow through solar power plant chimneys. ASME Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>Solar</strong>Energy Engineering, 122, (3), pp 138-145.[7] Chitsombo<strong>on</strong>, T. (2001) A validated analytical model for flow in solar chimney. Internati<strong>on</strong>al Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Renewable EnergyEngineering, 3, (2), pp. 339-346.[8] Chitsombo<strong>on</strong>, T. (1999) The effect <str<strong>on</strong>g>of</str<strong>on</strong>g> chimney-top c<strong>on</strong>vergence <strong>on</strong> efficiency <str<strong>on</strong>g>of</str<strong>on</strong>g> a solar chimney. Proceeding <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> 13 thNati<strong>on</strong>al Mechanical Engineering C<strong>on</strong>ference.[9] Ko<strong>on</strong>srisuk, A. and Chitsombo<strong>on</strong>, T. (2004) Dynamic similarity in model testing <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> flow in solar chimney. Proceeding <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong>15 th Internati<strong>on</strong>al Symposium <strong>on</strong> Transport Phenomena.6

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!