13.07.2015 Views

Radioactive Ion Beam (RIB) Facility at VECC : - Saha Institute of ...

Radioactive Ion Beam (RIB) Facility at VECC : - Saha Institute of ...

Radioactive Ion Beam (RIB) Facility at VECC : - Saha Institute of ...

SHOW MORE
SHOW LESS
  • No tags were found...

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Radioactive</strong> <strong>Ion</strong> <strong>Beam</strong>s : <strong>Ion</strong>s <strong>of</strong> β-unstable nucleiUnknown territoryEnormous increase in the no. <strong>of</strong> available projectiles


Physics Motiv<strong>at</strong>ionM<strong>at</strong>erial ScienceAdvantages <strong>of</strong> EMISSION CHANNELING technique :Req. implant<strong>at</strong>ion dose <strong>of</strong> radioactive <strong>at</strong>oms is significantly lower than th<strong>at</strong><strong>of</strong> ion channeling experiment.‣Radi<strong>at</strong>ion damage during channeling analysis negligible.‣Sensitivity <strong>of</strong> EC >> higher than ion channeling tech. (1E13 & 1E18 /cc)


Physics Motiv<strong>at</strong>ion • M<strong>at</strong>erial ScienceAdvantage <strong>of</strong> using <strong>RIB</strong> as a Mössbauer dopant are :‣Chemical incomp<strong>at</strong>ibility <strong>of</strong> Mössbauer <strong>at</strong>om is not an issue any more :possible to find a suitable comp<strong>at</strong>ible parent isotope which decays to theMössbauer <strong>at</strong>om.‣Site selective doping which depends on the parent isotopeFor example, 119 Sn – good Mössbauer dopant for group III-V compoundsemiconductors :119In 119 Sn (occupies group V l<strong>at</strong>tice sites)119Sb 119 Sn (occupies group III l<strong>at</strong>tice sites)


Physics Motiv<strong>at</strong>ionMedical researchRadioisotope Therapy : A radionuclide is delivered to <strong>at</strong>umor site using a biologically active molecule whichdecays via β - or α.Using <strong>RIB</strong> one can produce such nuclide with high specificactivity as it will be carrier free or no-carrier-added form(suitable target+projectile & clean separ<strong>at</strong>ion) + availability<strong>of</strong> new radioisotopes.PET (Positron Emission Tomography) – medical imaging <strong>of</strong>tumors, mapping <strong>of</strong> human brain and heart function. Most <strong>of</strong>the PET isotopes are short lived for clinical use & research.Using <strong>RIB</strong> it is possible to produce longer lived PETisotopes ( 72 As : T 1/2 ~ 26 hours) which are carrier free i.e.high sp. Activity.


Physics Motiv<strong>at</strong>ion• Nuclear PhysicsStudy <strong>of</strong> nuclei away from line <strong>of</strong> β-stability• Neutron Halo ( 6,11 Li, 14 Be, 17 B, …..)• β-delayed particle emission ( 21 Mg, 16 C, 22 Al, 26 P, …)• Nuclr. Deform<strong>at</strong>ion & magicity ( )• Nuclear AstrophysicsZr 100 Sr80,40 38• The nuclear processes responsible for nucleosynthesis• When & where these processes took place• Chracteristics (temper<strong>at</strong>ure, density, composition ..) <strong>of</strong>the nucleosynthesis sites


Primordial NucleosynthesisThe Universe was cre<strong>at</strong>ed about 15 billion years back by gradual expansionfrom a st<strong>at</strong>e <strong>of</strong> extremely high density (ρ~10 95 g/cc) & temper<strong>at</strong>ure (T~ 10 32 K) Big Bang Theory.Nucleosynthesis could start ~ 3 minutes after the Big Bang when Deutorium(B.E. 2.23 MeV) stable against photo-dissoci<strong>at</strong>ion <strong>at</strong> T ~ 10 9 K.Nucleosynthesis could continue for a very shorttime after the big-bang because :• All neutrons were used up for production <strong>of</strong> 4 He• No stable nuclei for A=5 and A=8• Baryon density too low for 3 body reactions• Temp. reduced due to expansion to sustainfurther nuclear reaction1H2H3He4He6Li7LiMass Fraction0.75(2.5±1.5)x10-5(4.2±2.8)x10-50.23±0.023004600+ 300 −12× 10− 150+ 4600 −12× 10− 2300


Nucleosynthesis in StarsExpandingCosmologicalgas from BigBangDensityFluctu<strong>at</strong>ionDenser zone willgravit<strong>at</strong>ionally <strong>at</strong>tractm<strong>at</strong>erial from outside grows in densityWithin galaxy smaller clouds collapsedto form stars & other objectsGalaxiesFormed(t > 500 million Yrs)Gravit<strong>at</strong>ionalCollapse <strong>of</strong> StarCore Temp. <strong>of</strong>Star increases1H fuses to 4 Hereleasing energyRadi<strong>at</strong>ion pressurebalancesgravit<strong>at</strong>ionalcollapseHydrogen burning : Source <strong>of</strong> energy <strong>of</strong> Main Sequence Stars like Sun –continues for tens <strong>of</strong> millions <strong>of</strong> years


Nucleosynthesis in StarsElements are cre<strong>at</strong>ed in severalstages where the products <strong>of</strong> onestage become the fuel for energygener<strong>at</strong>ion in the next stage.M < 8M⊕After He burning stage, star willthrow <strong>of</strong>f its envelop as aplanetary nebula & become awhite dwarf.M> 8M⊕Main sequence Goes through allburning stages Red Giant Core <strong>of</strong> mostly Fe gravit<strong>at</strong>ionalcollapse to super-density Supernova explosion Blows <strong>of</strong>fouter envelopremnant asneutron star / black holeHydrost<strong>at</strong>ic burning stagesH burningHe burningC burningNe burningO burningSi burning4p ⇒ 4 He+2e + +2ν +26.7 MeVα+α ⇒ 8 Be8Be+α ⇒ 12 C+γ+7.2 MeV12C+ 12 C ⇒ 23 Na+p+2.23 MeV⇒ 20 Ne+α+4.6MeV12C(p,γ) 13 N(e + ν) 13 C(α,n) 16 O20Ne+γ ⇒ 16 O+α20Ne+α ⇒ 24 Mg+γ16O+ 16 O ⇒ 31 P+p⇒ 28 Si+α⇒ 31 S+n28Si+α ⇒ 32 S+α…+α ⇒ 56 Fe28Si+γ ⇒ α+Mg


Nucleosynthesis in StarsCNO CycleZ14 O15 OZ15 O13 N 14 N15 N13 N 14 N15 N12 C(p,α)12 C13 C(p,α)NNHOT CNOCOLD CNOA form <strong>of</strong> Hydrogen burning chain reaction takes place in non-first gener<strong>at</strong>ionstars where C is available to start with.


Nucleosynthesis <strong>of</strong>elements beyond Fer - Process• Rapid successive n-capture (n,g) W/O intermedi<strong>at</strong>e a and b - decay• Follows p<strong>at</strong>h closer to n-drip line• Near magic nos. nutron BE is small – b - decay occurs – p<strong>at</strong>h moves towardsstability line• Produces n-rich nuclei between A=56 to 270 – beyond which fission sets in


Nucleosynthesis <strong>of</strong>elements beyond Fes - Process• Slow n-capture : slow w.r.t. b - decay process• Series <strong>of</strong> (n.g) processes and b - decays (sometimes b + and EC)• Follows p<strong>at</strong>h closer to the stability line• Produces n-rich nuclei between A=56 to 209 (Bi) – beyond which there are manyshort lived nuclei & slow process cannot compete.• Red giants – being a good source <strong>of</strong> neutrons from 13 C(a,n) 16 O, 17 O(a,n) 20 Ne,21Ne(a,n) 24 Mg … reactions– possible site for such processes.


Nucleosynthesis in Starsrp - Process• Rapid p-capture process : fast w.r.t. b + decay process• Follows p<strong>at</strong>h closer to the proton drip line• Produces p-rich nuclei up to A ~ 100 – beyond which Coulomb repulsion preventssuccessive p-capture.


Nuclear Astrophysics• Reactions involving stable nuclei drive the evolutionary stage <strong>of</strong> mainsequence stars• Reactions involving unstable nuclei domin<strong>at</strong>e the outcome <strong>of</strong> explosiveeventsMajor Challenges• Number <strong>of</strong> target <strong>at</strong>oms/cm 2 is small as reactions have to be studied <strong>at</strong> avery low energy, thin targets have to be used• Expected cross section is small near or below the Coulomb barrier• Intensity <strong>of</strong> <strong>RIB</strong>s is generally less compared to stable beams• Often the <strong>RIB</strong>s are not pure (mixed beam) & have large energy spread• Background due to the decay <strong>of</strong> <strong>RIB</strong>


Nuclear AstrophysicsMajor Detection Techniques Needed• Highly segmented high efficiency gamma ray detector array• Large solid angle and good angular resolution silicon detector array• Mass separ<strong>at</strong>or with high beam rejection efficiency• Gas cell targets & targets <strong>of</strong> long lived radioactive nucleiGRETA (Gamma Ray Energy Tracking Array) - LBLSolid angle coverage : 0.45 0.8Detection Efficieny : 1050 %Position resolution : 20mm 2mmDRAGON (Detector <strong>of</strong> Recoils And Gammas Of Nuclear reactions)Angular acceptance ≤ ±20 mradEnergy acceptance ≤ ±4%Separ<strong>at</strong>ion is 1 in 10 15


1.<strong>Radioactive</strong> <strong>Ion</strong> <strong>Beam</strong>s will play an important role inall fields <strong>of</strong> acceler<strong>at</strong>or based research for the nextfew decades2.Nuclear astrophysics is a fascin<strong>at</strong>ing field <strong>of</strong>research <strong>of</strong> tracing back the evolution <strong>of</strong> theUniverse. It requires inform<strong>at</strong>ion <strong>of</strong> differentreactions using both stable and radioactive beams.3.But --- it requires stretching the limits <strong>of</strong> presentacceler<strong>at</strong>or and detection technologies.How to produce <strong>RIB</strong>?


Scheme <strong>of</strong> the <strong>RIB</strong> facility <strong>at</strong> <strong>VECC</strong>e-Linac50 MeV, 100 kWK=130 Cyclotron (p,a ; E=20, 60 MeV)Thick Target<strong>Ion</strong> SourceTwo <strong>Ion</strong> Source (Surface <strong>Ion</strong>is<strong>at</strong>ion - ECR),He-jet Two Stage Skimmer ECRIsotope Separ<strong>at</strong>or / LEBTnewnew1.0 keV/u86 keV/uRFQREBUNCHER35 MHz, 4-Rod Structure35 MHz, λ/4-Reson<strong>at</strong>orLINAC35 MHz IH LINAC CAVITIES : # 1 , 2 & 3450 keV/uCh. Stripper q/A = 1/16 → 1/8LINAC70 MHz IH LINAC CAVITIES : # 4, 5 & 61.3 MeV/u4-5 MeV/u(10 5 -10 9 pps)


<strong>VECC</strong> <strong>RIB</strong>facility layout1.5 keV/u460 keV/uDec 200898 keV/uReadyExisting facility180 keV/uReady29 keV/uBeingorderedReadyReadyUnderconstruction


RF inj. lineECRFC1D1FC2SolRFQQ1, Q2FC3D2FC4


Thick target development :Selection <strong>of</strong> suitable target m<strong>at</strong>erialThermoCalc, Chemsage, HSC(D<strong>at</strong>a based thermo-chemistry & thermodynamic codes)High dissoci<strong>at</strong>ion temper<strong>at</strong>ure and low vapour pressure Optimis<strong>at</strong>ion <strong>of</strong> the target geometryAnalysis <strong>of</strong> time dependent diffusion r<strong>at</strong>e solving Fick’s second equ<strong>at</strong>ionfor different symmetries like planner, cylindrical and sphericalOptimising target thicknessHe<strong>at</strong> deposition in the target iscalcul<strong>at</strong>ed using TRIM – he<strong>at</strong> depositionwithin the target sharply increases nearthe Bragg peak window.dE/dx (MeV/mm)3002502001501005060 MeV α on Al 2O 300 10 20 30 40Target Thickness (mm)


Thick target development : a → Al 2 O 3 ( T=2072° C) Temper<strong>at</strong>ure distribution(ANSYS)E/I : 60 MeV / 1 mA0.75 cm f x 2cm LongThe critical temper<strong>at</strong>ure isdetermined from critical vapourpressure Maximise surface to volumer<strong>at</strong>io <strong>of</strong> the target i.e. porous /fiber like target m<strong>at</strong>rix


Thick target R&D : first few targetsCarbon* , Al 2 O 3 , ZnO, HfO 2 , BN, LiF, MgO, CaCl 2 , ThC 2 , UC 2 , ZrO 2SEM <strong>of</strong> Al 2 O 3 & HfO 2SEM <strong>of</strong> RVCFSEM <strong>of</strong> RVCF + Al 2 O 3*RVCF : Reticul<strong>at</strong>ed Vitreous Carbon Fiber


R&D Initi<strong>at</strong>ive on ion source :• Aim High On-line Efficiency for high charge St<strong>at</strong>es (q/A> 1/14)• Apparent Choice ECR ion sourceProblems‣ Poor vacuum (target evapor<strong>at</strong>ion) high q !!!‣ Neutron damage <strong>of</strong> permanent magnetsPossible solutionTwo ion source philosophyPrincipleTwo I.S. in cascade – EBPIS & ECR in our caseFirst I.S. provides q=1 + even in poor vacuumTransported to ECR <strong>at</strong> a distance to get high q(Better vacuum and acceptable n-flux)


R&D Initi<strong>at</strong>ive on ion source :Integr<strong>at</strong>ed Target-ion source1 + <strong>RIB</strong> ECR ion-source n + <strong>RIB</strong>Einzel LensFaradayCupDeceler<strong>at</strong>orµ−waveLCW1 + Plasma n+1 + <strong>Ion</strong>-SourceGuard ringSupportgasTuningelectrodeECR <strong>Ion</strong>-SourceDeceler<strong>at</strong>e 1 + ions ~20 eV to ensure s<strong>of</strong>t landing within ECRISChallengesOptimised focussing to prevent beam lossvECRIS : <strong>at</strong> safe distance ~ 10 -6 mbar vacuum inside plasma chamberv ECR permanent magnets protected from high radi<strong>at</strong>ion near target


R&D Initi<strong>at</strong>ive on ion source :Integr<strong>at</strong>ed Thick-Target Electron <strong>Beam</strong> Plasma <strong>Ion</strong>-SourceTargetEBPISPrimarybeam1+ RI beam


R&D Initi<strong>at</strong>ive on ion source :PrimarybeamThick targetsHe<strong>at</strong> shield<strong>Radioactive</strong><strong>at</strong>omsCurrentleadTowardsEBPISTarget holder


R&D Initi<strong>at</strong>ive on ion source :FrequencyKlystron / Sol. PowerB ECRB Z (Inj) / B Z (Ext) / B r(r=R)Mirror R<strong>at</strong>io (Inj/Ext)6.4 GHz3 / 60 kW0.23 T0.95 / 0.7 /0.7 T5.9 / 4.375


Typical Oxygen spectrum from ECR ion-sourceO 3+ 69 mARF= 254 WV ext= 10 kVV EL= 8.6 kV9.6x10 -7 mbarN 3+ 9.2mAN 2+ 11.5mAO 4+ 42 mAO 2+ 54 mAH 2O 1+O 5+ 6 mA


12 C 4+56 Fe 12+ /N 3+ H2O 1+ 12 C 3+O 3+56Fe 10+ 12 C 2+56Fe 9+ 56 Fe 8+ /N 2+56Fe 6+56 Fe 7+ / O 2+56Fe 5+ 12 C 1+13C 1+ N 1+ / 56 Fe 4+O 1+1086420First Iron spectrumD<strong>at</strong>e:05/09/07RF Power=300WVext=10 kVVezel=11.3 kVDipole Current (arb. units)Ferrocene C 5H 5FeC 5H 5<strong>Beam</strong> Current (eµA)


Design & Development <strong>of</strong> LEBT section between on-line ECRIS & RFQK=130 Cyclotron (p,a ; E=20, 60 MeV)Thick Target1.0 keV/u<strong>Ion</strong> SourceLEBT SectionTwo <strong>Ion</strong> Source (Surface <strong>Ion</strong>is<strong>at</strong>ion - ECR),He-jet Two Stage Skimmer ECRRFQ<strong>RIB</strong>86 keV/u37.6 MHz, 4-Rod StructureDesign Aims :• Initial separ<strong>at</strong>ion <strong>of</strong> the <strong>RIB</strong> <strong>of</strong> interest having optimum q from the rest.• Transverse m<strong>at</strong>ching <strong>of</strong> the selected <strong>RIB</strong> to the acceptance <strong>of</strong> the RFQ.Challenges :• Maximum transmission & RP even with high emittance beam from IS (ECR).• Minimum floor space & number <strong>of</strong> optical elements.


ECRISLow Energy <strong>Beam</strong> Transport sectionFocalPlaneM<strong>at</strong>chingsectionSolenoid length 0.25 mSolenoid Radius 0.65 mMax. Field 0.65 TRFQVirtualSourcepointErect Ellipsee = 120 π mm mrad(± 1.2 cm / ± 10 mrad)Bending Angle 90°Bending Radius 0.5 mMax. Field 0.25 TEntry / Exit angle 27.141° / 27.107°


Dispersive PlaneOptics for the analysing section <strong>of</strong> the LEBT design30X’ [mr]X [mm]-20 20Dipole-30Non-dispersive PlaneConfigur<strong>at</strong>ionAcceptanceDrift-Dipole-Drift120 π-mm-mr. (FullTransmission)System Length2.855 m1.07 mDipole30 Φ1 mDispersionMass R. PowerMagnific<strong>at</strong>ion1.98 m (for 100%rigidity change)43 (3 rd order)-0.95


Optics for the LEBT sectionDispersive Plane125X’ [mr]X [mm]-6 6Transmission 98.8 %Non-dispersive Plane85 Φ30 ΦSolenoid-125125Y’ [mr]Y [mm]-6 61 m1.07 m Dipole1.48 mSolenoid.525 m-125


Design <strong>of</strong> Radio Frequency Quadrupole (RFQ)Design Aim : Acceler<strong>at</strong>ion <strong>of</strong> <strong>RIB</strong>s (q/A≥1/16) from 1 keV/u to about 90keV/uRFQ : Single RF structure capable <strong>of</strong> bunching, focussing and acceler<strong>at</strong>inglow energy ( ~ keV) ionsHowever Designing Machining and aligning


Vane machiningVane pr<strong>of</strong>ile from PARMTEQ⇓Co-ordin<strong>at</strong>es <strong>of</strong> Surface⇓3D modelling <strong>of</strong> pr<strong>of</strong>ile⇓Optimum tool p<strong>at</strong>h gener<strong>at</strong>ion⇓Machining <strong>of</strong> vane⇓Check co-ordin<strong>at</strong>es (CMM)&surface finish (Talysurf)Requirement∆/r 0≤0.5% for goodtransmission : ∆∼30µmSkin Depth d~11 mmRt ≤ 2.2 mmsample vaneSample vane~20 mm~2mm39


RADIOFREQUENCY QUADRUPOLE (RFQ) : 1 st in IndiaRFQ during install<strong>at</strong>ion


Experimental Results:Test <strong>Beam</strong>: Ar 4+Calcul<strong>at</strong>ed magneticstrength (kG)(29.06 keV/u)Q1: -1.528Q2: 1.065Q1 : -1.07Q2: 0.7D2 : 2.058Experimental magneticstrength (kG)Q1: -1.53Q2: 1.057Q1: -1.058Q2: 0.82D2: 2.058TransmissionEfficiency* %*with electronsuppression~81%FC3/FC2~80%FC4/FC241


<strong>Beam</strong>s available from the <strong>RIB</strong> facility♦ Oxygen : up to 120 keV (after ECR); 464 keV (after RFQ)♦ Nitrogen : up to 100 keV (after ECR); 406 keV (after RFQ)♦ Argon : up to 160 keV (after ECR); 1.16 MeV (after RFQ)♦ Iron : up to 220 keV (after ECR); 1.6 MeV (after RFQ)♦ Also H, Helium, O2, Carbon, …Typical measured currents: O 3+ ~ 70 µA; O 4+ 40 µA; O 5+ ~ 6µA;Ar 4+ ~ 4 µA; He 1+ ~ 100 µA; Fe 6+ ~ 7 µA; Fe 10+ ~ 1 µAoptimiz<strong>at</strong>ion <strong>of</strong> ECR continuing


f_measured = 37.6 MHzQ_measured = 48003.4m RFQ duringinstall<strong>at</strong>ion


Design <strong>of</strong> LINAC cavitiesK=130CyclotronThick Target1.0 keV/u86 keV/u460 keV/u<strong>Ion</strong> SourceIsotope Separ<strong>at</strong>orRFQLINACDesign Parameters‣q/A ≥ 1/14‣e n≥ 0.5 p-mm-mr‣ T in= 86 keV/u<strong>Beam</strong> Dynamics :Design goalsMaximising TransmissionEnergy tunabilityGood beam quality (DE, Dt)RF Analysis : Getting the desired frequency Optimis<strong>at</strong>ion for best shunt impedance Surface current density <strong>at</strong> the junction <strong>of</strong>two components should not be high


IH - LINAC :RidgeStemExcit<strong>at</strong>ion mode :TE111 or HDriftTubeL RL EL EL I L I CavityMagnetic FluxElectric fluxRF Current


VECLIN Snap shotε x/y= 0.5 π mm mrad & ε z= 10 π-deg-% A=16Inter-tank space 75 cmQuads L=21+14+21 cm / Aperture rad 2.85 cm / Gradient 30 T/m


IH - LINAC : The design details6. Engineering Analysis ANSYSStructural deflection under various loads :(a) Atmospheric pressure (b) Self weight (c) Thermal flux due to RFAxialdeflection <strong>of</strong>flangeRadialdeflection <strong>of</strong>cavity


IH - LINAC : The design details Structural DeflectionThe effects have been tried to minimise using :(a) Proper thickness <strong>of</strong> the cavity m<strong>at</strong>erials :Mild Steel – 25 mm (cavity) & 35 mm (End covers)(b) Circular stiffeners on end covers : Two Nos.(c) Cooling108.785596.676384.6670VerticalDeflection (mm)72.560.448.3578486393Axial Deflection(mm)36.230124.220812.11160.024


IH - LINAC : The design details Temper<strong>at</strong>ure DistributionY54.32XZ52.1851.0150.0349.2647.8847.5245.7345.7743.5944.0341.4442.2839.2940.5437.14Z38.79Y34.99 X37.0535.3042.842.241.540.940.339.639.038.437.837.1Temper<strong>at</strong>ure [°C]46.145.144.143.142.141.040.039.038.036.9


LINAC-1 : Important ParametersFrequencyMHz37.6q/AT in T out 98.785 183.56keV/u≥ 1/14β in β out %1.456 1.985Acceler<strong>at</strong>ing gapsDrift tube I/D & O/DDrift tube gapCell legthPeak D.T. voltageMax. FieldTransit FactorSync. PhaseCavity LengthAccln. GradientShunt ImpedanceQ-ValuePower#mmmmmmkVDegreeMMV/m per qMΩ/mkW925 & 69.529.258.4 78.8101.24 kV1.4 x E Kilp<strong>at</strong>rick0.789 0.843-240.61822.10234213765~ 15


Linac -1duringtestingstemoctagonalcavity37.4654.55 84.7 92.8ridgedrifttubesWell separ<strong>at</strong>ed modes !CAVITY :• 25 mm thk. SS304L• cladded with 5 mm thk. Cu• Diameter ~ 1.7m ; Length ~ 0.6 m1.7mf calc= 37.695 MHzQ Meas=8073 ~ 59%37.750 MHz


LINAC-2 : Important ParametersFrequencyMHz37.6q/AT in T out 183.56 286.8keV/u≥ 1/14β in β out %1.985 2.481Acceler<strong>at</strong>ing gapsDrift tube I/D & O/DDrift tube gapCell legthPeak D.T. voltageMax. FieldTransit FactorSync. PhaseCavity Length (Inner)Accln. GradientShunt ImpedanceQ-Value (Calc.)Power (Calc.)#mmmmmmkVDegreeMMV/m per qMΩ/mkW1025 & 6039.879.6 98.4107.5 kV1.3 x E Kilp<strong>at</strong>rick0.8045 0.8506-250.8711.7943218856~ 10


First few beams I<strong>RIB</strong>==10IPri−6<strong>RIB</strong> T1/2 Production Target11C13N17F18F19Ne35Ar38K90Kr93Rb⋅Nt⋅ σ ⋅20 min10 min1 min110 min17 sec1.7 sec7.6 min32 sec6 secηrelease⋅ηIS11B(p,n)13C(p,n)14N(α,n)16O(α,n)19F(p,n)35Cl(p,n)⋅ηsepar<strong>at</strong>ion35Cl(α,n)U/Th(α,f)-do-BNGraphiteBNHfO 2,Al 2O 3LiFCaCl 2CaCl 2UC/ThO-do-⋅ηtransport( ) ( 23) ( −3−24) 9⋅ 6⋅10⋅ 50⋅10⋅10⋅ 0.1⋅0.05⋅0.6⋅0.5 ≈ 10 pps−191.6⋅101mA 1g/cm 2 50 mb0.15%Expected average yield <strong>at</strong> experimental st<strong>at</strong>ion ~ 10 6 -10 829


Future Plans


LINAC : Wh<strong>at</strong> Next ???LINAC-1 : 98.785 183.56 keV/u• Install<strong>at</strong>ion <strong>at</strong> <strong>VECC</strong> have started : To be completed by 15 th Oct, 2007• Install<strong>at</strong>ion in beam line : April 2008LINAC-2 : 183.6 286.8 keV/u• PO placed• Delivery schedule : Mar 2008• Install<strong>at</strong>ion in beam line : Sep 2008LINAC-3 : 286.8 450 keV/u• Advanced stage <strong>of</strong> design• Likely completion d<strong>at</strong>e : Dec 2008LINAC-4 to LINAC-8 : (To be completed by 2012)• Frequency 75.2 MHz• 450 keV/u to 1.3 MeV/u• Physics design stage


e-linace- γUraniumISOL type <strong>RIB</strong> facility<strong>RIB</strong>50 MeV,100 kWT<strong>at</strong>argetUC 2targetγ- induced fission (photo-fission); GDR peak <strong>at</strong> ~13.5 MeVaverage photo-fission cross-section = 160 mbExpected yield <strong>of</strong> some very neutron-rich exotic nuclei <strong>at</strong> target78Ni : 2 x 10 9 pps; 132 Sn : 2 x 10 11 pps91Kr: 1 x 10 12 pps; 94 Kr: 3 x 10 10 pps58


Recent public<strong>at</strong>ion from <strong>RIB</strong> project group(in intern<strong>at</strong>ional peer review journals)1. Phys. Lett. (in press), 2007. Experiments2. Nucl. Instrum. & Meth. B261(2007)1018. <strong>RIB</strong> facility st<strong>at</strong>us3. Rev Sci Instrum. Vol78 (2007) 043303. RFQ results4. J <strong>of</strong> Phys. Condensed M<strong>at</strong>ter 19, (2007) 236210. Experiments5. Ceramics Intern<strong>at</strong>ional, (in press). Target6. Nucl. Instrum. & Meth. VolA560 (2006)182. Linac design7. Nucl. Instrum. & Meth. VolA562 (2006)41. <strong>Beam</strong>-line8. Nucl. Instrum. & Meth. VolA539 (2005)54. Target9. Nucl. Instrum. & Meth. VolA547 (2005)270. Charge breeder design10. J. <strong>of</strong> M<strong>at</strong>. Sc. 40 (2005) 5265. Experiments11. Nucl. Instrum. & Meth. VolA535 (2004)599. RFQ design12. Physica C, Vol416, (2004) 25. Experiments13. Nanotechnology 15 (2004) 1792. Target14. Nucl. Instrum. & Meth. VolA447 (2000)345. Charge breeder design59


Thank You!60


VEC CyclotronElectron-LINACTarget – <strong>Ion</strong> – SourceM<strong>at</strong>erial Sciencewith stable & RI<strong>Beam</strong>sIsotope Separ<strong>at</strong>orRFQ (98 keV/u)Spectroscopy <strong>of</strong>r-process, n-richexotic nucleiLINACs1.3 MeV/uNuclearAstrophysicsexperimental st<strong>at</strong>ionSc<strong>at</strong>teringchamberElastic & In-elasticsc<strong>at</strong>tering studieswith RI beams61


238U photo-fission fragmentsmass distributionfission yield per electron for 238Uas a function <strong>of</strong> electron energy62


IH - LINAC : The design details <strong>Beam</strong> QualityBetter Intensity (95% transmission) Better <strong>Beam</strong> Quality4820∆E(%)321642ε_z(p . Deg . MeV/u)*1E-3ε z∆f∆T DE15105δφ_max(Deg)000 100 200 300 400 500Length [cm]00 100 200 300 400 500Length [cm]Better Intensity (95% transmission) Better time structure (66% transmission)εz-rms : increased by 2.5 times No change∆E : No change 2.8 1.9% (2*rms energy width)63Df : 4.06°2.23° 4.06°1.34°(2*rms phase width)


IH - LINAC : The design details Possible set <strong>of</strong> energy tunesKnobs : RF voltage & phaseEnergy (keV/u)263 – 397.5158.2 – 263100 – 158.2Tank-1Design DesignDesign KnobsKnobsCaptures >90% <strong>of</strong> beamTank-2OffTyp. Energy widths ~ ± 0.5-1%Typ. time widths ~ ± 1 nSTank-3KnobsBuncherBuncher2*∆Φ_rms2*(∆T/T)_rms∆φ [Deg]∆T/T [%]φ-φ s [Deg]Voltage & Phase settings3025201510503.02.52.01.51.00.50.0400-40-80Energy Tunability-120100 150 200 250 300 64 350 400<strong>Beam</strong> Energy [keV/u]Tank-3Tank-2Tank-1

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!