13.07.2015 Views

Counterexamples to Calabi conjectures on minimal hypersurfaces ...

Counterexamples to Calabi conjectures on minimal hypersurfaces ...

Counterexamples to Calabi conjectures on minimal hypersurfaces ...

SHOW MORE
SHOW LESS
  • No tags were found...

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

3 The proofsLet ϕ: M m → N n be an isometric immersi<strong>on</strong> between Riemannian manifolds. Givena functi<strong>on</strong> g ∈ C ∞ (N) we set f = g ◦ ϕ ∈ C ∞ (M). Sincefor every vec<str<strong>on</strong>g>to</str<strong>on</strong>g>r field X ∈ TM, we obtain〈grad M f, X〉 = 〈grad N g, X〉grad N g = grad M f + (grad N g) ⊥according <str<strong>on</strong>g>to</str<strong>on</strong>g> the decompositi<strong>on</strong> TN = TM ⊕T ⊥ M. An easy computati<strong>on</strong> using theGauss formula gives the well-known relati<strong>on</strong> (see e.g. [8])Hess M f(X, Y ) = Hess N g(X, Y ) + 〈grad N g, α(X, Y )〉 (3)for all vec<str<strong>on</strong>g>to</str<strong>on</strong>g>r fields X, Y ∈ TM, where α stands for the sec<strong>on</strong>d fundamental form ofϕ. In particular, taking traces with respect <str<strong>on</strong>g>to</str<strong>on</strong>g> an orth<strong>on</strong>ormal frame {e 1 , . . .,e m }in TM yieldsm∑∆ M f = Hess N g(e i , e i ) + 〈grad N g, H〉. → (4)where → H= ∑ mi=1 α(e i, e i ).i=1The first main ingredient of our proofs is the Hessian comparis<strong>on</strong> theorem.Theorem 3.1 Let M m be a Riemannian manifold and x 0 , x 1 ∈ M be such that thereis a minimizing unit speed geodesic γ joining x 0 and x 1 and let ρ(x) = dist(x 0 , x)be the distance functi<strong>on</strong> <str<strong>on</strong>g>to</str<strong>on</strong>g> x 0 . Let K γ ≤ b be the radial secti<strong>on</strong>al curvatures of Mal<strong>on</strong>g γ. If b > 0 assume ρ(x 1 ) < π/2 √ b. Then, we have Hess ρ(x)(γ ′ , γ ′ ) = 0 andwhere X ∈ T x M is perpendicular <str<strong>on</strong>g>to</str<strong>on</strong>g> γ ′ (ρ(x)).Hess ρ(x)(X, X) ≥ C b (ρ(x))‖X‖ 2 (5)The sec<strong>on</strong>d main ingredient is the versi<strong>on</strong> proved by Pigola-Rigoli-Setti [14,Theorem 1.9] of the Omori-Yau maximum principle.Theorem 3.2 Let M m be a Riemannian manifold and assume that there exists an<strong>on</strong>-negative C 2 -functi<strong>on</strong> ψ satisfying the following requirements:ψ(x) → +∞as x → ∞∃ A > 0 such that |gradψ| ≤ A √ ψ off a compact set√∃ B > 0 such that ∆ψ ≤ B ψG( √ ψ) off a compact set4

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!