02.12.2012 Views

Structure of molybdenum oxide supported on silica SBA-15 studied ...

Structure of molybdenum oxide supported on silica SBA-15 studied ...

Structure of molybdenum oxide supported on silica SBA-15 studied ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<str<strong>on</strong>g>Structure</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>molybdenum</str<strong>on</strong>g> <str<strong>on</strong>g>oxide</str<strong>on</strong>g> <str<strong>on</strong>g>supported</str<strong>on</strong>g> <strong>on</strong> <strong>silica</strong> <strong>SBA</strong>-<strong>15</strong> <strong>studied</strong> by Raman, UV–Vis and X-ray absorpti<strong>on</strong> spectroscopy<br />

J. P. Thielemann et al.,<br />

Appl. Catal. A: General 399 (2011) 28-24<br />

Normalized Normalized absorpti<strong>on</strong> absorpti<strong>on</strong><br />

FT(�(k)*k3 FT(�(k)*k ) 3 )<br />

3.0<br />

2.0<br />

1.0<br />

0.5<br />

0.4<br />

0.3<br />

0.2<br />

0.1<br />

20 20.1<br />

Phot<strong>on</strong> energy / keV<br />

0 1 2 3 4 5 6<br />

R / Å<br />

Fig. 7: Mo K edge XANES spectra (top) and Mo K edge<br />

FT(�(k)∙k 3 ) (bottom) <str<strong>on</strong>g>of</str<strong>on</strong>g> (a) dehydrated MoxOy/<strong>SBA</strong>-<strong>15</strong> (5.5 wt%<br />

Mo; 0.6 Mo/nm 2 ) together with reference <str<strong>on</strong>g>oxide</str<strong>on</strong>g>s (b) Na2MoO4, (c)<br />

α-MoO3, (d) Na2Mo2O7. The spectra are <str<strong>on</strong>g>of</str<strong>on</strong>g>fset for clarity.<br />

The Mo K XANES and FT(�(k)∙k 3 ) <str<strong>on</strong>g>of</str<strong>on</strong>g> dehydrated<br />

Mo xO y/<strong>SBA</strong>-<strong>15</strong> are compared to those <str<strong>on</strong>g>of</str<strong>on</strong>g> selected reference<br />

<str<strong>on</strong>g>oxide</str<strong>on</strong>g>s in Fig. 7, respectively. The Fourier transformed<br />

XAFS �(k)∙k 3 are not phase shift corrected. Thus, the dis-<br />

tances in the FT(�(k)∙k 3 ) are shifted by ~0.4 Å to lower<br />

values compared to the crystallographic distances. The<br />

XANES spectrum <str<strong>on</strong>g>of</str<strong>on</strong>g> hydrated Mo xO y/<strong>SBA</strong>-<strong>15</strong> is similar to<br />

that <str<strong>on</strong>g>of</str<strong>on</strong>g> MoO 3 as has been reported earlier [<strong>15</strong>]. The<br />

XANES <str<strong>on</strong>g>of</str<strong>on</strong>g> dehydrated Mo xO y/<strong>SBA</strong>-<strong>15</strong> exhibited an increased<br />

pre-edge peak similar to the XANES spectra <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

references Na 2MoO 4 or Na 2Mo 2O 7 (see Fig. 7, top). Compared<br />

to those references, which c<strong>on</strong>tain tetrahedral MoO 4<br />

building blocks, the XANES spectrum <str<strong>on</strong>g>of</str<strong>on</strong>g> dehydrated<br />

Mo xO y/<strong>SBA</strong>-<strong>15</strong> indicates a c<strong>on</strong>tributi<strong>on</strong> from tetrahedrally<br />

coordinated Mo centres in the Mo <str<strong>on</strong>g>oxide</str<strong>on</strong>g> species <str<strong>on</strong>g>supported</str<strong>on</strong>g><br />

<strong>on</strong> <strong>SBA</strong>-<strong>15</strong>. The FT(�(k)∙k 3 ) <str<strong>on</strong>g>of</str<strong>on</strong>g> dehydrated Mo xO y/<strong>SBA</strong>-<strong>15</strong><br />

shows a pr<strong>on</strong>ounced splitting <str<strong>on</strong>g>of</str<strong>on</strong>g> the first Mo-O shell and<br />

significant amplitude at higher Mo-Mo shells (see Fig. 7,<br />

bottom). C<strong>on</strong>versely, the FT(�(k)∙k 3 ) <str<strong>on</strong>g>of</str<strong>on</strong>g> Na 2MoO 4 which<br />

c<strong>on</strong>tains merely MoO 4 building units shows a single Mo-O<br />

peak and hardly any signal at Mo-Mo distances. Appar-<br />

ently, the characteristic FT(�(k)∙k 3 ) <str<strong>on</strong>g>of</str<strong>on</strong>g> dehydrated<br />

a<br />

b<br />

c<br />

d<br />

a<br />

b<br />

c<br />

d<br />

Preprint <str<strong>on</strong>g>of</str<strong>on</strong>g> the Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Inorganic Chemistry, Fritz-Haber-Institute <str<strong>on</strong>g>of</str<strong>on</strong>g> the MPG (for pers<strong>on</strong>al use <strong>on</strong>ly) (www.fhi-berlin.mpg.de/ac)<br />

Normalized Normalized absorpti<strong>on</strong> absorpti<strong>on</strong><br />

1.0<br />

0.5<br />

20 20.1 20.2<br />

Phot<strong>on</strong> energy / keV<br />

Na 2 MoO 4<br />

MoO 3<br />

Fig. 8: Refinement <str<strong>on</strong>g>of</str<strong>on</strong>g> sum (dotted) <str<strong>on</strong>g>of</str<strong>on</strong>g> XANES spectra <str<strong>on</strong>g>of</str<strong>on</strong>g> references<br />

MoO3 and Na2MoO4 (dashed) to Mo K edge XANES spectrum<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> dehydrated MoxOy/<strong>SBA</strong>-<strong>15</strong> with 5.5 wt% Mo-loading; 0.6<br />

Mo/nm 2 (solid).<br />

Mo xO y/<strong>SBA</strong>-<strong>15</strong> originates from a mixture <str<strong>on</strong>g>of</str<strong>on</strong>g> polymeric<br />

Mo xO y species and MoO 4 tetrahedr<strong>on</strong>s.<br />

Assuming a Mo <str<strong>on</strong>g>oxide</str<strong>on</strong>g> phase mixture present <strong>on</strong> the<br />

<strong>SBA</strong>-<strong>15</strong> support, a XANES simulati<strong>on</strong> using XANES spectra<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> appropriate references was attempted. Figure 8 shows<br />

the result <str<strong>on</strong>g>of</str<strong>on</strong>g> a refinement <str<strong>on</strong>g>of</str<strong>on</strong>g> the sum <str<strong>on</strong>g>of</str<strong>on</strong>g> the XANES spectra<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> MoO 3 and Na 2MoO 4 to that <str<strong>on</strong>g>of</str<strong>on</strong>g> dehydrated MoO x-<strong>SBA</strong>-<br />

<strong>15</strong>. A very good agreement in the pre-edge regi<strong>on</strong> can be<br />

seen, whereas the nearly featureless post-edge regi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

dehydrated Mo xO y/<strong>SBA</strong>-<strong>15</strong> is not matched as good. Not<br />

surprisingly, the l<strong>on</strong>g-range ordered references are less<br />

suited to simulate the XANES <str<strong>on</strong>g>of</str<strong>on</strong>g> the disordered and dispersed<br />

dehydrated Mo <str<strong>on</strong>g>oxide</str<strong>on</strong>g> species <str<strong>on</strong>g>supported</str<strong>on</strong>g> <strong>on</strong> <strong>SBA</strong>-<strong>15</strong>.<br />

Nevertheless, using the pre-edge peak height suffices to<br />

quantify the c<strong>on</strong>tributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> tetrahedral MoO 4 units and<br />

distorted MoO 6 units. The analysis resulted in a ratio <str<strong>on</strong>g>of</str<strong>on</strong>g> 3 :<br />

1 for MoO 4 : MoO 6 units.<br />

FT(�(k)*k3 FT(�(k)*k ) 3 )<br />

0.05<br />

0.0<br />

-0.05<br />

Mo-O<br />

Mo-Mo<br />

0 1 2 3 4 5 6<br />

R / Å<br />

Fig. 9: Experimental and theoretical (dotted) Mo K edge<br />

FT(�(k)*k 3 ) <str<strong>on</strong>g>of</str<strong>on</strong>g> dehydrated MoxOy/<strong>SBA</strong>-<strong>15</strong> with 5.5 wt% Moloading;<br />

0.6 Mo/nm 2 . Mo-O and Mo-Mo distances are indicated.<br />

7

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!