13.07.2015 Views

The dual nature of homologous recombination in plants

The dual nature of homologous recombination in plants

The dual nature of homologous recombination in plants

SHOW MORE
SHOW LESS
  • No tags were found...

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Review TRENDS <strong>in</strong> Genetics Vol.21 No.3 March 2005<strong>The</strong> <strong>dual</strong> <strong>nature</strong> <strong>of</strong> <strong>homologous</strong><strong>recomb<strong>in</strong>ation</strong> <strong>in</strong> <strong>plants</strong>David Schuermann, Jean Mol<strong>in</strong>ier*, Olivier Fritsch and Barbara HohnFriedrich Miescher Institute, Maulbeerstrasse 66, CH-4058 Basel, SwitzerlandHomologous <strong>recomb<strong>in</strong>ation</strong> creates covalent l<strong>in</strong>kagesbetween DNA <strong>in</strong> regions <strong>of</strong> highly similar or identicalsequence. Recent results from several laboratories,many <strong>of</strong> them based on forward and reverse genetics<strong>in</strong> Arabidopsis, give <strong>in</strong>sights <strong>in</strong>to the mechanisms <strong>of</strong> theenzymatic mach<strong>in</strong>ery and the <strong>in</strong>volvement <strong>of</strong> chromat<strong>in</strong><strong>in</strong> somatic and meiotic DNA <strong>recomb<strong>in</strong>ation</strong>. Also,signal<strong>in</strong>g pathways and <strong>in</strong>terconnections betweenrepair pathways are be<strong>in</strong>g discovered. In addition,recent work shows that biotic and abiotic <strong>in</strong>fluencesfrom the environment can dramatically affect plantgenomes. <strong>The</strong> result<strong>in</strong>g changes <strong>in</strong> the DNA sequence,exerted at the level <strong>of</strong> somatic or meiotic tissue, mightcontribute to evolution.F<strong>in</strong>ally, many specific mutation screens can be used toidentify genes <strong>of</strong> <strong>in</strong>terest, <strong>in</strong>clud<strong>in</strong>g screens for radiationsensitivity and for altered levels <strong>of</strong> HR (see below).In this review, we will concentrate on newer f<strong>in</strong>d<strong>in</strong>gs <strong>in</strong>HR <strong>in</strong> meiotic and <strong>in</strong> somatic tissue. A section is devoted to<strong>in</strong>fluences <strong>of</strong> the environment on the regulation <strong>of</strong> the HRfrequency, with special reference to the possible effects <strong>of</strong>pathogens on the stability <strong>of</strong> the plant genome. Becausenot all aspects <strong>of</strong> HR can be covered <strong>in</strong> this short article,we refer the <strong>in</strong>terested reader to a previous review onHR <strong>in</strong> <strong>plants</strong> [2], to general reviews on mechanisms <strong>of</strong>HR [3,4], to a general description <strong>of</strong> the uses <strong>of</strong>Arabidopsis as a DNA repair model [5] and to accounts<strong>of</strong> gene target<strong>in</strong>g [6,7] (Box 1).IntroductionHomologous <strong>recomb<strong>in</strong>ation</strong> (HR) is one <strong>of</strong> the fundamentalprocesses <strong>of</strong> life. It has a <strong>dual</strong> function through its activitiesboth <strong>in</strong> meiosis and <strong>in</strong> somatic cells. It creates new l<strong>in</strong>kages<strong>in</strong> the genetic material <strong>in</strong> meiosis and <strong>in</strong> many organismsit is even required for fertility. Indeed, HR substantiallycontributes to evolution. HR is also important for repair<strong>in</strong>gdamaged DNA <strong>in</strong> somatic tissue. At the same time HRbetween repeated genes must be tightly controlled to avoidunwanted gene rearrangements.<strong>The</strong>re are several important reasons for study<strong>in</strong>g HRand other repair processes <strong>in</strong> <strong>plants</strong>: one <strong>of</strong> them is the factthat unlike <strong>in</strong> animal systems, functional depletion <strong>of</strong>several repair genes is not lethal, thus enabl<strong>in</strong>g the study<strong>of</strong> their replacement activities (see below). Another lies <strong>in</strong>the fact that the germl<strong>in</strong>e is created late <strong>in</strong> development.<strong>The</strong>refore, genomic changes <strong>in</strong> somatic tissue have acerta<strong>in</strong> probability <strong>of</strong> be<strong>in</strong>g transmitted to the next generation.This special aspect <strong>of</strong> plant development enablesnatural selection to act on new genetic traits <strong>in</strong> somatic oreven <strong>in</strong> gametophytic tissue.<strong>The</strong> recent development <strong>of</strong> genetic and genomic toolsfor Arabidopsis thaliana is one <strong>of</strong> the reasons whyanalysis <strong>of</strong> HR and other repair processes <strong>in</strong> this planthas ga<strong>in</strong>ed an enormous boost. <strong>The</strong> completion <strong>of</strong>Arabidopsis genome sequenc<strong>in</strong>g <strong>in</strong> 2000 [1] is the basisfor gene discovery and through the use <strong>of</strong> T-DNA andtransposon <strong>in</strong>sertions, multiple publicly available geneknockout libraries <strong>of</strong> this plant have been produced.Correspond<strong>in</strong>g author: Hohn, B. (barbara.hohn@fmi.ch).* Present address: CNRS UMR6547, BIOMOVE, 24 Avenue des Landais, F-63177Aubière, France.Available onl<strong>in</strong>e 19 January 2005Meiotic <strong>recomb<strong>in</strong>ation</strong>HR ma<strong>in</strong>ta<strong>in</strong>s the <strong>in</strong>tegrity <strong>of</strong> the genome <strong>in</strong> somatic cells;conversely, <strong>in</strong> meiotic cells it creates genetic variability byreciprocal crossovers and DNA exchanges. This results <strong>in</strong>Box 1. Homologous <strong>recomb<strong>in</strong>ation</strong> and plant breed<strong>in</strong>gGenetic improvement <strong>of</strong> crop <strong>plants</strong>, executed for many thousands<strong>of</strong> years, depends on HR. <strong>The</strong> classical breed<strong>in</strong>g procedure <strong>in</strong>volvescross<strong>in</strong>g <strong>of</strong> chosen parental l<strong>in</strong>es and subsequently select<strong>in</strong>g the<strong>of</strong>fspr<strong>in</strong>g for the desired trait. An understand<strong>in</strong>g <strong>of</strong> the mechanism <strong>of</strong>HR and its control might help to achieve this more quickly. One couldimag<strong>in</strong>e that the use <strong>of</strong> hyper-<strong>recomb<strong>in</strong>ation</strong> mutants like thosedescribed <strong>in</strong> Table 2 and mutants directly affect<strong>in</strong>g meiotic <strong>recomb<strong>in</strong>ation</strong>could <strong>in</strong>crease the frequency <strong>of</strong> mHR. This could beexploited <strong>in</strong> breed<strong>in</strong>g programs, because the time needed forcross<strong>in</strong>g and backcross<strong>in</strong>g would be considerably reduced.Resistance to stresses, such as plant pathogens, drought andsal<strong>in</strong>ity, frequently has to be <strong>in</strong>troduced <strong>in</strong>to <strong>in</strong>bred l<strong>in</strong>es. Apart fromclassical breed<strong>in</strong>g, which is limited to the same or closely relatedspecies at best, transgenesis-aided breed<strong>in</strong>g could be the option forthe future <strong>in</strong> many cases. Already this is common practice for the<strong>in</strong>troduction <strong>of</strong> genes from more distantly related organisms. <strong>The</strong>ability to produce targeted changes <strong>in</strong> plant genes would have atremendous impact on fundamental research and on molecularbreed<strong>in</strong>g. However, the frequency <strong>of</strong> one targeted event per 10 4 –10 6transformants is too low to be rout<strong>in</strong>ely used [62,63] (discussed <strong>in</strong>Refs [6,7,64]). Stimulation <strong>of</strong> HR <strong>in</strong> the cells used <strong>in</strong> transgenesisprotocols might <strong>in</strong>crease the chance <strong>of</strong> obta<strong>in</strong><strong>in</strong>g targeted <strong>in</strong>tegrationevents. Stimulation <strong>of</strong> HR might be achieved by us<strong>in</strong>gradiation or chemical agents or genetically by employ<strong>in</strong>g mutants,as discussed above. <strong>The</strong> only reported attempt to <strong>in</strong>crease thetarget<strong>in</strong>g frequency us<strong>in</strong>g the bacterial recomb<strong>in</strong>ase RecA has failed[65]. <strong>The</strong> use <strong>of</strong> two counter-selectable markers flank<strong>in</strong>g thetarget<strong>in</strong>g gene is a valuable approach because it yielded cleantargeted events only [62]. <strong>The</strong> comb<strong>in</strong>ation <strong>of</strong> this approach withgenetic upregulation <strong>of</strong> HR <strong>in</strong> the required tissue could lead toimproved gene replacement frequencies.www.sciencedirect.com 0168-9525/$ - see front matter Q 2005 Elsevier Ltd. All rights reserved. doi:10.1016/j.tig.2005.01.002


174Review TRENDS <strong>in</strong> Genetics Vol.21 No.3 March 2005Table 1. Homologous <strong>recomb<strong>in</strong>ation</strong> genes <strong>in</strong> Arabidopsis, yeast and mammals aArabidopsis Refs Proposed function b Budd<strong>in</strong>g yeast MammalsATM [29] Double-strand break (DSB) signal<strong>in</strong>g, cell-cycleTel1ATMcheckpo<strong>in</strong>tATR [72] DSB signal<strong>in</strong>g, cell-cycle checkpo<strong>in</strong>t Mec1 ATRBRCA2 c [22] Strand <strong>in</strong>vasion – BRCA2BRU [35] Chromat<strong>in</strong> state, silenc<strong>in</strong>g ? ?Centr<strong>in</strong>2 [46] Nucleotide excision repair (NER) ? Centr<strong>in</strong>2DMC1 [20] Meiotic <strong>in</strong>terstrand <strong>in</strong>vasion Dmc1 DMC1? DSB repair? – DNA-PKERCC1 [73] NER Rad10 ERCC1INO80 [47] DSB repair, <strong>homologous</strong> <strong>recomb<strong>in</strong>ation</strong> (HR) Ino80 INO80MIM [34,74] DNA repair and <strong>recomb<strong>in</strong>ation</strong> Smc6? SMC6?MLH1 [26] Promotion <strong>of</strong> crossovers <strong>in</strong> meiosis Mlh1 MLH1MRE11 [17] DSB end process<strong>in</strong>g Mre11 MRE11MSH4 [27] Promotion and stabilization <strong>of</strong> meiotic HR Msh4 MSH4? DNA damage signal<strong>in</strong>g? – p53? DSB end process<strong>in</strong>g? Xrs2 NBS1RAD1 [75–78] NER, non<strong>homologous</strong> overhang end removal Rad1 XPFRAD9 [39] Cell-cycle checkpo<strong>in</strong>t Rad9 RAD9RAD17 [39] Cell-cycle checkpo<strong>in</strong>t Rad17 RAD17RAD25 (also known as [79] NER Rad25 XPBXPB1)RAD50 [18,19] DSB end process<strong>in</strong>g Rad50 RAD50RAD51 [21] Strand <strong>in</strong>vasion Rad51 RAD51RAD51C [23] Holliday junction (HJ) resolution? – RAD51C? HR? Rad52 RAD52RAD54L? HR, perhaps through chromat<strong>in</strong> events? Rad54 RAD54SNM1 [44] Interstrand crossl<strong>in</strong>k repair, <strong>recomb<strong>in</strong>ation</strong> Snm1? SNM1?SPO11-1 [14,16] Induction <strong>of</strong> meiotic DSB Spo11 SPO11SPO11-2 [14,15] ? – –SPO11-3 [15] ? – –XRCC3 [22] HJ resolution? Rad57 XRCC3a <strong>The</strong> ma<strong>in</strong> factors <strong>in</strong>volved <strong>in</strong> or potentially affect<strong>in</strong>g somatic and meiotic HR are listed <strong>in</strong> alphabetical order with their function. Known homologs <strong>in</strong> budd<strong>in</strong>g yeast andmammals are shown. Yeast or mammalian genes for which no obvious homologs exist <strong>in</strong> Arabidopsis are highlighted <strong>in</strong> bold.b Refers to function <strong>in</strong> Arabidopsis.c Two homologs <strong>in</strong> Arabidopsis.the archaebacterial topoisomerase VI complex, which<strong>in</strong>duces transient DSBs to disentangle DNA. In contrastto most other organisms, Arabidopsis possesses threeparalogs <strong>of</strong> Spo11 and a homolog <strong>of</strong> the topoisomerase VIBsubunit (TOP6B) [14,15] (Table 1). In an Arabidopsismutant <strong>of</strong> the SPO11-1 gene the formation <strong>of</strong> chiasmataand bivalents was severely reduced, and synapsis couldnot be observed [14,16]. Meiotic division proceeded <strong>in</strong> thespo11-1 background, result<strong>in</strong>g <strong>in</strong> ‘polyads’ <strong>of</strong> random DNAcontent <strong>in</strong>stead <strong>of</strong> the typical tetrads. It rema<strong>in</strong>s to beelucidated whether production <strong>of</strong> resi<strong>dual</strong> DSBs and thereduced formation <strong>of</strong> chiasmata are due to alternativepathways or a result <strong>of</strong> the function <strong>of</strong> the two otherSPO11 paralogs. However, both <strong>of</strong> them but not SPO11-1were shown to <strong>in</strong>teract with the homologs <strong>of</strong> the B subunit,suggest<strong>in</strong>g a eukaryotic topoisomerase-like function [15].<strong>The</strong> budd<strong>in</strong>g yeast Mre11–Rad50–Nbs1 complex isassumed to participate <strong>in</strong> the Spo11-dependent <strong>in</strong>duction<strong>of</strong> DSBs and <strong>in</strong> the process<strong>in</strong>g <strong>of</strong> the ends generat<strong>in</strong>g3 0 -protrud<strong>in</strong>g s<strong>in</strong>gle stranded DNA (ssDNA). Mutants<strong>of</strong> the Arabidopsis orthologs <strong>of</strong> Mre11 [17] and Rad50[18,19] were isolated and analyzed for their meioticphenotypes. Both mutants exhibited chromosomal fragmentationand failure <strong>of</strong> synapsis, support<strong>in</strong>g a rolefor the Arabidopsis MRE11–RAD50 complex <strong>in</strong> earlysteps <strong>of</strong> meiotic HR, presumably <strong>in</strong> process<strong>in</strong>g the DNAends. In contrast to the situation <strong>in</strong> budd<strong>in</strong>g yeast, theArabidopsis prote<strong>in</strong> complex is not required for <strong>in</strong>duction<strong>of</strong> the SPO11-mediated DSBs, because the chromosomefragmentation and the complete sterility <strong>of</strong> mre11 could bepartially suppressed <strong>in</strong> a spo11-1 background [17].In the subsequent step <strong>of</strong> yeast mHR, Rad51 (the homolog<strong>of</strong> the bacterial RecA recomb<strong>in</strong>ase) and its meiotic paralogDmc1 assemble on the ssDNA to form a nucleoprote<strong>in</strong>complex. This complex searches for <strong>homologous</strong> sequencesand f<strong>in</strong>ally triggers strand <strong>in</strong>vasion to form a jo<strong>in</strong>tmolecule between parental chromosomes, a prerequisitefor synapsis. Consistent with this, Arabidopsis mutants <strong>in</strong>the DMC1 [20] and RAD51 [21] genes were severelyaffected <strong>in</strong> mHR. <strong>The</strong>ir chromosomes clearly failed tosynapse and to form bivalents, but unlike <strong>in</strong> yeast,chromosome fragmentation caused by persist<strong>in</strong>g meioticDSBs was observed only <strong>in</strong> rad51 mutants. This suggestsa function <strong>of</strong> DMC1 <strong>in</strong> the selective <strong>in</strong>vasion <strong>of</strong> the<strong>homologous</strong> chromosome rather than <strong>in</strong> the repair <strong>of</strong>the SPO11-<strong>in</strong>duced DSBs. <strong>The</strong>se could be repaired byRAD51-mediated HR between sister chromatids or by analternative pathway. Interest<strong>in</strong>gly, a DMC1 homolog couldnot be identified <strong>in</strong> Drosophila melanogaster nor <strong>in</strong>Caenorhabditis elegans, <strong>in</strong> both <strong>of</strong> which the synaptonemalcomplex is formed <strong>in</strong>dependently <strong>of</strong> SPO11-<strong>in</strong>ducedDSBs [11]. Recently, the function <strong>of</strong> the two Arabidopsisrecomb<strong>in</strong>ases RAD51 and DMC1 was suggested to bedependent on their genetic and molecular <strong>in</strong>teraction withthe two paralogs <strong>of</strong> BRCA2. <strong>The</strong> absence <strong>of</strong> synapsis andthe chromosome fragmentation phenotype <strong>in</strong> RNAi-brca2<strong>plants</strong> was rem<strong>in</strong>iscent <strong>of</strong> that <strong>of</strong> the double-mutantdmc1/RNAi-rad51 [22], and the BRCA2 paralogswww.sciencedirect.com


Review TRENDS <strong>in</strong> Genetics Vol.21 No.3 March 2005 175<strong>in</strong>teracted with both DMC1 and RAD51 <strong>in</strong> a yeast-twohybridanalysis. With the same technique <strong>in</strong>teractionswith<strong>in</strong> the RAD51 paralogs RAD51 and XRCC3, andbetween XRCC3 and RAD51C were detected [23]. Inagreement with these f<strong>in</strong>d<strong>in</strong>gs, xrcc3 mutant <strong>plants</strong>revealed severe meiotic defects and a sterility phenotype[24]. In contrast to the previously described mutants,synapsis <strong>in</strong> xrcc3 appeared to be unaffected and bivalentswere formed normally. As meiosis proceeded chromosomebridges and fragmentation were observed suggest<strong>in</strong>g adist<strong>in</strong>ct role <strong>of</strong> XRCC3 <strong>in</strong> a later phase <strong>of</strong> mHR; mostprobably, branch migration and resolution <strong>of</strong> Hollidayjunctions (HJ) are dependent on both XRCC3 andRAD51C [25].Some eukaryotic homologs <strong>of</strong> the bacterial mismatchrepair prote<strong>in</strong>s MutS and MutL are thought to promotethe crossover, branch migration and the resolution <strong>of</strong> theHJs <strong>in</strong> mHR. An Arabidopsis mlh1 mutant was describedthat lacked an obvious meiotic or somatic phenotype [26],although the <strong>nature</strong> <strong>of</strong> this allele did not permit a f<strong>in</strong>alconclusion. A mutation <strong>in</strong> the Arabidopsis MSH4 gene ledto a reduction <strong>of</strong> chiasmata number and to delayed and<strong>in</strong>complete synapsis result<strong>in</strong>g <strong>in</strong> univalents [27]. Thissupports a role <strong>of</strong> MSH4 <strong>in</strong> mHR, whereby it probablyacts <strong>in</strong> a heterodimeric complex with MSH5 as a slid<strong>in</strong>gclamp, keep<strong>in</strong>g together the <strong>homologous</strong> chromosomesengaged <strong>in</strong> HJs, as was recently proposed for the humanMSH4–MSH5 complex [28].An <strong>in</strong>terest<strong>in</strong>g aspect <strong>of</strong> plant meiosis is the lack <strong>of</strong> acheckpo<strong>in</strong>t, which controls the progression <strong>of</strong> meiosis,provok<strong>in</strong>g meiotic arrest <strong>in</strong> yeast and apoptosis <strong>in</strong>animals. All <strong>of</strong> the mutants described above proceedthrough meiosis despite conta<strong>in</strong><strong>in</strong>g aberrant chromosomefigures, enabl<strong>in</strong>g more extensive studies on meioticchromosome dynamics. Nevertheless, the Arabidopsishomolog <strong>of</strong> Ataxia Telangiectasia-Mutated (ATM), whichsignals from DSB to checkpo<strong>in</strong>t and repair pathways <strong>in</strong>other eukaryotes, was shown to be <strong>in</strong>volved <strong>in</strong> somaticDNA damage response and clearly has a function <strong>in</strong>meiotic <strong>recomb<strong>in</strong>ation</strong>; mutants <strong>in</strong> this gene reveal achromosome fragmentation phenotype similar to that <strong>of</strong>the xrcc3 mutant [29]. This suggests that ArabidopsisATM controls mHR at SPO11 <strong>in</strong>duced DSBs, but not the<strong>in</strong>tegrity <strong>of</strong> meiotic chromosomes.It is to be expected that more genes act<strong>in</strong>g <strong>in</strong> mHR willbe identified with time and that careful analyses <strong>of</strong>multiple mutations will decipher plant meiosis. For<strong>in</strong>stance, some <strong>of</strong> the mutants isolated <strong>in</strong> a screen forX-ray sensitivity had also changed levels <strong>of</strong> meiotic<strong>recomb<strong>in</strong>ation</strong> [30,31], but the genes responsible for thisphenotype have not been isolated yet (Table 2).Somatic <strong>recomb<strong>in</strong>ation</strong>DSBs are among the most dangerous forms <strong>of</strong> DNAdamage; a s<strong>in</strong>gle unrepaired DSB <strong>in</strong> yeast, even <strong>in</strong> adispensable gene, can result <strong>in</strong> cell death [32]. DSBs arecaused by both cell-external and <strong>in</strong>ternal factors: ioniz<strong>in</strong>gradiation is an example <strong>of</strong> an external factor, DNAreplication across a nick is an <strong>in</strong>ternal factor, whereasreactive oxygen species can accumulate <strong>in</strong> plant cells as aconsequence <strong>of</strong> pathogen attack and/or <strong>of</strong> <strong>in</strong>tr<strong>in</strong>sicmetabolic activities. Numbers are not available for <strong>plants</strong>,but it has been estimated that 5–10% <strong>of</strong> first passageprimary fibroblasts from mice or humans have a chromosomebreak (discussed <strong>in</strong> Ref. [33]). In <strong>plants</strong> andvertebrates most <strong>of</strong> these breaks are repaired by non<strong>homologous</strong>-endjo<strong>in</strong><strong>in</strong>g (NHEJ), an error-prone process.HR enables repair <strong>in</strong> a precise fashion. However, HR <strong>in</strong>somatic tissue is not only active <strong>in</strong> repair, but also <strong>in</strong>chang<strong>in</strong>g the copy number <strong>of</strong> genes, as is already evident<strong>in</strong> <strong>recomb<strong>in</strong>ation</strong> products orig<strong>in</strong>at<strong>in</strong>g from HR <strong>in</strong> transgenicmarker genes (see Figure I <strong>in</strong> Box 2). Repair willhave to be fast and efficient, whereas changes <strong>in</strong> copynumber will have to be modulated <strong>in</strong> a subtle way. <strong>The</strong>repair <strong>of</strong> DNA damage <strong>in</strong> somatic cells has to be understood<strong>in</strong> terms <strong>of</strong> the repair pathways <strong>in</strong>volved and <strong>in</strong>terms <strong>of</strong> modulation <strong>of</strong> these pathways as <strong>in</strong>fluenced bydevelopment and the environment.Box 2. Marker genes for assays <strong>of</strong> <strong>homologous</strong> <strong>recomb<strong>in</strong>ation</strong>Mapped phenotypic markers (such as color markers <strong>in</strong> maize kernelsor the classic pea markers used by Mendel) or molecular markers areusually employed for the analysis <strong>of</strong> mHR frequencies <strong>in</strong> <strong>plants</strong>,<strong>recomb<strong>in</strong>ation</strong> be<strong>in</strong>g assayed <strong>in</strong> the recomb<strong>in</strong>ant progeny. To enablethe measurement and visualization <strong>of</strong> somatic and meiotic HR eventsup to the resolution <strong>of</strong> a s<strong>in</strong>gle cell, special substrates were developed.<strong>The</strong> basis <strong>of</strong> the technique is the <strong>in</strong>sertion <strong>in</strong>to the plant genome(us<strong>in</strong>g Agrobacterium tumefaciens) <strong>of</strong> transgenes permitt<strong>in</strong>g selectableor screenable detection <strong>of</strong> HR events. Markers based on selection(for <strong>in</strong>stance <strong>in</strong>volv<strong>in</strong>g the creation by <strong>recomb<strong>in</strong>ation</strong> <strong>of</strong> antibioticresistance) are more difficult to use and require cell culture <strong>of</strong> planttissue (reviewed <strong>in</strong> Ref. [2]). <strong>The</strong> most valuable constructs enable theanalysis <strong>of</strong> HR at the plant level us<strong>in</strong>g a visible reporter. Such a systemwas recently developed, consist<strong>in</strong>g <strong>of</strong> an endogenous cluster <strong>of</strong>Ribulose-Bisphosphate-Carboxylase small subunit (RBCS) genes,one <strong>of</strong> which is fused to a promoterless Luciferase reporter gene(Figure Ia). Recomb<strong>in</strong>ation between the RBCS repeats enables theluciferase gene to switch from an <strong>in</strong>active state to an active screenablestate. This locus-specific <strong>in</strong>tegrated <strong>recomb<strong>in</strong>ation</strong> substrate can revealmeiotic <strong>in</strong>tergenic unequal cross<strong>in</strong>g-over between sister chromatids[66,67]. Moreover, somatic <strong>recomb<strong>in</strong>ation</strong> events, occurr<strong>in</strong>g <strong>in</strong> lateflower or very early embryo development, can also be identified.<strong>The</strong> analysis <strong>of</strong> HR <strong>in</strong> somatic plant tissue was previously restrictedto the use <strong>of</strong> ill-characterized natural systems [68,69]. <strong>The</strong> use <strong>of</strong> newmarker genes has revolutionized the research field with<strong>in</strong> the past15 years. Currently used reporter-based constructs consist <strong>of</strong> tandemrepeats <strong>of</strong> a disrupted b-glucuronidase (GUS) oraLuciferase (LUC)gene (Figure Ib–d; schemes shown for GUS). Different orientations,relative to each other, <strong>of</strong> the disrupted genes enable the scor<strong>in</strong>g <strong>of</strong><strong>in</strong>tramolecular (Figure Ib,c) or <strong>in</strong>termolecular HR events (Figure Id). Inthe second case a chromosomal homolog or a sister chromatid servesas <strong>recomb<strong>in</strong>ation</strong> partner [2,70]. <strong>The</strong>reby, different types <strong>of</strong> <strong>recomb<strong>in</strong>ation</strong>processes could lead to a functional reporter gene: pop-out,unequal reciprocal exchange and gene conversion [70], which is –shown <strong>in</strong> Figure Id – possibly the most frequent [71]. <strong>The</strong> structure <strong>of</strong>the <strong>recomb<strong>in</strong>ation</strong> substrate trap could not be designed to enable adist<strong>in</strong>ction between <strong>in</strong>terchromatid or <strong>in</strong>terchromosomal <strong>recomb<strong>in</strong>ation</strong>.Only the use <strong>of</strong> molecular markers flank<strong>in</strong>g the repeats <strong>of</strong> thedisrupted marker gene would permit this. It should be noted that <strong>in</strong><strong>plants</strong> conta<strong>in</strong><strong>in</strong>g the <strong>in</strong>tramolecular constructs (Figure Ib,c) HR canalso occur between sister chromatids and <strong>homologous</strong> chromosomesalthough at a lower frequency than expected for <strong>in</strong>tramolecular<strong>recomb<strong>in</strong>ation</strong>.www.sciencedirect.com


176Review TRENDS <strong>in</strong> Genetics Vol.21 No.3 March 2005(a)RBCS1 T PRBCS2 T PRBCS3 TL U CL U CRBCS1TPRBCS2TPRBCS3TL U CRBCS3/1L U CLUC+(b)Direct repeats(c)Indirect repeatsPHG U′ U′ SG U′PHU′SG U′G U′U′ S U′ SGU SGUS+U′U′G U SGUS+(d)U′ SHPG U′(e)U′ SG U′U′ SG U′U′ S G U SGUS+U′ SG U′G U′TRENDS <strong>in</strong> GeneticsFigure I. Reporter-based <strong>homologous</strong> <strong>recomb<strong>in</strong>ation</strong> substrates. (a) A synthetic RBCSB gene cluster conta<strong>in</strong><strong>in</strong>g a promoter-less firefly Luciferase gene [67]. Unequalcrossover events between sister chromatids that conta<strong>in</strong> the RBCSB cluster enables the expression <strong>of</strong> the Luciferase gene, which can be scored by live-imag<strong>in</strong>g us<strong>in</strong>g asensitive CCD camera. RBCS1, RBCS2 and RBCS3 are repeats <strong>of</strong> Ribulose-Bisphosphate-Carboxylase small subunit gene; P and T <strong>in</strong>dicate the endogenous promoter andterm<strong>in</strong>ator for gene expression. (b,c) Intrachromosomal HR reporter constructs with direct and <strong>in</strong>direct repeats. <strong>The</strong> constructs consist <strong>of</strong> two <strong>in</strong>active fragments(GU’, U’S) <strong>of</strong> a b-glucuronidase (GUS) gene shar<strong>in</strong>g an identical stretch <strong>of</strong> 618 bp (U’). Intramolecular HR events between the repeats restore a functional gene (GUSC)with different molecular products: the direct repeats (GU’-U’S) give rise to deletion <strong>of</strong> the sequence between the two repeats, result<strong>in</strong>g <strong>in</strong> a probably short-livednonreplicative circular molecule. HR between <strong>in</strong>direct repeats (U’G-U’S) results <strong>in</strong> <strong>in</strong>version and conservation <strong>of</strong> the sequence separat<strong>in</strong>g the repeats. Black trianglesrepresent the borders <strong>of</strong> the T-DNA; P <strong>in</strong>dicates the CaMV viral promoter driv<strong>in</strong>g GUS expression; H is the hygromyc<strong>in</strong> resistance gene. (d) Reporter construct used tovisualize <strong>in</strong>termolecular HR events. <strong>The</strong> major pathway that gives rise to the restoration <strong>of</strong> the GUS gene has been found to be gene conversion (depicted), but unequalreciprocal <strong>recomb<strong>in</strong>ation</strong> between sister chromatids or allelic chromosomes and ‘pop-out’ events were also reported [70,71]. (e) In planta detection <strong>of</strong> <strong>recomb<strong>in</strong>ation</strong> events <strong>in</strong>reporter <strong>plants</strong> harbor<strong>in</strong>g a stably <strong>in</strong>tegrated HR construct, as <strong>in</strong> (b). Histochemical GUS sta<strong>in</strong><strong>in</strong>g <strong>of</strong> reporter <strong>plants</strong> visualizes cells <strong>in</strong> which the GUS gene was restored by HR.www.sciencedirect.com


Review TRENDS <strong>in</strong> Genetics Vol.21 No.3 March 2005 177Table 2. Plant mutants with altered somatic <strong>homologous</strong> <strong>recomb<strong>in</strong>ation</strong> frequency a,bMutant c Gene (AGI Pathway Assay Repair and <strong>recomb<strong>in</strong>ation</strong> phenotype Refsaccess number)Genetic screens for genotoxic stress sensitivityxrs4 ND ND X-ray sensitivity, genetic screen X-ray, MMS and MMC sensitivity; [30,31]decreased somatic HR and <strong>in</strong>creasedmHRxrs9 ND ND X-ray sensitivity, genetic screen X-ray and MMS sensitivity; decreased [30,31]somatic HR and mHRxrs11 ND ND X-ray sensitivity, genetic screen X-ray and MMC sensitivity; defective <strong>in</strong> [30,31]X-ray-mediated somatic HR <strong>in</strong>ductionHyrec d ND HR Spontaneous g-ray resistant, <strong>in</strong>creased <strong>in</strong>terhomologs[37]HR, <strong>in</strong>trachromosomal HRunchangedMim At5 g61460 Chromat<strong>in</strong> MMS sensitivity, genetic screen MMS, UV-C, MMC and X-ray sensitivity; [34,74]decreased somatic HRBru At3 g18730 ND MMS sensitivity, genetic screen MMS, MMC, UV-C and bleomyc<strong>in</strong> [35]sensitivity; <strong>in</strong>creased somatic HR, TGSreleaseGenetic screens for altered HR phenotypes us<strong>in</strong>g chromosomal HR substratesCentr<strong>in</strong>2 At4 g37010 NER Increased HR genetic screen UV-C sensitivity; <strong>in</strong>creased somatic HR, [46]defective <strong>in</strong> repair <strong>of</strong> UV-damaged DNA<strong>in</strong>o80 At3 g57300 HR Altered HR genetic screen Decreased somatic HR [47]Reverse genetics and functional genomicsrad50 At2 g31970 NHEJ Homology to known prote<strong>in</strong> MMS sensitivity; sterility, telomeric [18,38,40]defect, <strong>in</strong>creased somatic HRrad17 At5 g66130 Cell-cyclecheckpo<strong>in</strong>tHomology to known prote<strong>in</strong> Bleomyc<strong>in</strong> and MMC sensitivity;<strong>in</strong>creased somatic HR, rapid DSB repairdefect[39]rad9 At3 g05480 Cell-cyclecheckpo<strong>in</strong>tHomology to known prote<strong>in</strong>Bleomyc<strong>in</strong> and MMC sensitivity;<strong>in</strong>creased somatic HR, rapid DSB repairdefectercc1 At3 g05210 NER Homology to known prote<strong>in</strong> UV-C sensitivity; ECR with non<strong>homologous</strong>overhangs reduced, decreasedchromosomal HRsnm1 At3 g26680 HR? Functional genomics Bleomyc<strong>in</strong> and H 2 O 2 sensitivity;impaired <strong>in</strong>duction <strong>of</strong> HR by H 2 O 2 andflagell<strong>in</strong> but not bleomyc<strong>in</strong>, MMC andMMSMutants previously isolated for other functionrad1 (uvh1,xpf)At5 g41150 NER Known UV-C-sensitive mutant UV-B, UV-C, g-ray and cisplat<strong>in</strong> sensitivity;ECR with non<strong>homologous</strong> overhangsreduced, impaired HR <strong>in</strong>ductionby bleomyc<strong>in</strong>uvr2 (phr1) At1 g12370 Photorepair Known UV-B-sensitive mutant UV-B sensitivity; defective <strong>in</strong> CPDsphotorepair, slightly <strong>in</strong>creased somaticHRcim3 ND Plant defense Uncharacterized defense mutant Constitutively activated systemicacquired resistance, <strong>in</strong>creased somaticHRvtc1 (soz1) At2 g39770 Vitam<strong>in</strong> C Known UV-B-sensitive mutant UV-B and H 2 O 2 sensitivity; ascorbicaciddeficient, <strong>in</strong>creased somatic HRTt4 (chs) At5 g13930 Flavonoid Known UV-B-sensitive mutant UV-B sensitivity; chalcone synthasedeficient, <strong>in</strong>creased somatic HRTt5 (chi) At3 g55120 Flavonoid Known UV-B-sensitive mutant UV-B sensitivity; chalcone isomerasedeficient, <strong>in</strong>creased somatic HR[39][73][44][75–78,80][41,53,81][43][82,83], (G. Ries,PhD thesis,Basel University,1999)[82,84], (G. Ries,PhD thesis,Basel University,1999)[82,84], (G. Ries,PhD thesis,Basel University,1999)a Abbreviations: CPDs, cyclobutane pyrimid<strong>in</strong>e dimers; ECR, extrachromosomal HR; HR, <strong>homologous</strong> <strong>recomb<strong>in</strong>ation</strong>; mHR, meiotic HR; MMC, mitomyc<strong>in</strong> C; MMS,methylmethane sulfonate; ND, not determ<strong>in</strong>ed; NER, nucleotide excision repair; NHEJ, non<strong>homologous</strong> end-jo<strong>in</strong><strong>in</strong>g; TGS, transcriptional gene silenc<strong>in</strong>g.b With<strong>in</strong> the past few years, the use <strong>of</strong> various strategies proved to be successful and complementary <strong>in</strong> identify<strong>in</strong>g a large number <strong>of</strong> mutants <strong>in</strong>volved <strong>in</strong> somatic HR <strong>in</strong><strong>plants</strong>. Such mutants are listed <strong>in</strong> the top part <strong>of</strong> the table with the expected impaired pathway and a summary <strong>of</strong> their phenotypes. <strong>The</strong>se <strong>in</strong>clude: (i) mutants orig<strong>in</strong>at<strong>in</strong>gfrom <strong>in</strong>direct genetic screens (i.e. by search<strong>in</strong>g for mutations result<strong>in</strong>g <strong>in</strong> altered sensitivity to genotoxic stress and by subsequently test<strong>in</strong>g their effect on HR); (ii) mutantsobta<strong>in</strong>ed through direct genetic screen<strong>in</strong>g <strong>of</strong> mutagenized Arabidopsis l<strong>in</strong>es carry<strong>in</strong>g a chromosomal HR reporter construct; (iii) mutants orig<strong>in</strong>at<strong>in</strong>g from reverse geneticapproaches (i.e. test<strong>in</strong>g publicly available Arabidopsis mutants <strong>in</strong> genes <strong>homologous</strong> to <strong>recomb<strong>in</strong>ation</strong> or repair genes known from other organisms) or genes <strong>in</strong>ferred fromfunctional genomics studies; and (iv) some additional previously characterized mutants are listed <strong>in</strong> the lower part <strong>of</strong> the table. <strong>The</strong>se were identified for other phenotypesand only subsequently shown to affect HR.c Alternative names are <strong>in</strong>dicated <strong>in</strong> parenthesis.d Hyrec is <strong>in</strong> Nicotiana tabacum; all other mutants are <strong>in</strong> Arabidopsis thaliana.www.sciencedirect.com


178Review TRENDS <strong>in</strong> Genetics Vol.21 No.3 March 2005DSBChromat<strong>in</strong> eventsBRU ?INO80 ?MIM ?RAD50MRE11?ATMATRKU70KU80NHEJSignal<strong>in</strong>gPathwaydeterm<strong>in</strong>ation(ii) Strand <strong>in</strong>vasionRAD51 ?(i) 5′- 3′ resectionRAD54L ?DSB repair modelSDSA modelInterconnectionwith other repairSNM1 pathways(vii) First strand <strong>in</strong>vasionand synthesisCentr<strong>in</strong>RAD17RAD9(iii) New DNA synthesisBranch migration(viii) Second strand <strong>in</strong>vasionand synthesis(iv) Holliday junctionresolutionRAD1ERCC1(ix) New strands anneal<strong>in</strong>gand synthesis(x) Gene conversion withunaffected template(v) No cross<strong>in</strong>g-over(vi) Cross<strong>in</strong>g-over <strong>of</strong>flank<strong>in</strong>g markersTRENDS <strong>in</strong> GeneticsFigure 2. <strong>The</strong> DSB and synthesis-dependent strand-anneal<strong>in</strong>g (SDSA) repair models <strong>of</strong> HR <strong>in</strong> <strong>plants</strong>. (i–vi) DSB repair model for HR. (i) Initially the DSB is resected <strong>in</strong> 5 0 -to-3 0direction, produc<strong>in</strong>g 3 0 s<strong>in</strong>gle-stranded DNA ends. (ii) <strong>The</strong> 3 0 ends <strong>in</strong>vade a <strong>homologous</strong> DNA duplex form<strong>in</strong>g a DNA crossover, or Holliday junction (HJ), and provid<strong>in</strong>gprimers to <strong>in</strong>itiate new DNA synthesis. (iii) <strong>The</strong> region <strong>of</strong> heteroduplex is extended through branch migration <strong>of</strong> the HJ away from the <strong>in</strong>itial crossover site. (iv) HJs areresolved by cleavage <strong>of</strong> either the crossed (green arrows) or the non-crossed (black arrows) strands <strong>of</strong> the junction. Resolution <strong>in</strong> the same orientation does not affect theflank<strong>in</strong>g markers (v), whereas a mixed resolution <strong>of</strong> the two HJs does (vi). (vii–x) <strong>The</strong> SDSA model for HR. (vii) One <strong>of</strong> the 3 0 s<strong>in</strong>gle-stranded tails <strong>in</strong>vades the <strong>homologous</strong>duplex, prim<strong>in</strong>g DNA synthesis. (viii) <strong>The</strong> other 3 0 s<strong>in</strong>gle-stranded tail can also subsequently <strong>in</strong>vade the <strong>homologous</strong> duplex and prime synthesis. After displacement from thedonor duplex (ix) the nascent strand pairs with the other 3 0 s<strong>in</strong>gle-stranded tail and DNA synthesis and ligation complete repair (x). Factors known to be <strong>in</strong>volved <strong>in</strong> HR <strong>in</strong><strong>plants</strong>, most <strong>of</strong> which are discussed <strong>in</strong> the ma<strong>in</strong> text, are depicted.Recently, the comb<strong>in</strong>ation <strong>of</strong> various approaches toisolate mutants <strong>in</strong> somatic HR has led to a dramatic<strong>in</strong>crease <strong>in</strong> our knowledge about plant HR, its pathways,its components and its regulation (Table 2 and Figure 2).Plant mutants screened for sensitivity to UV, methylmethanesulfonate (MMS) and X-rays were tested forHR; publicly available random <strong>in</strong>sertional mutants <strong>in</strong>genes known from other organisms to be <strong>in</strong>volved <strong>in</strong> HRand <strong>in</strong> genes <strong>in</strong>ferred from functional genomic approacheswere analyzed. F<strong>in</strong>ally, direct screens for altered levels<strong>of</strong> HR <strong>in</strong> populations <strong>of</strong> mutagenized <strong>recomb<strong>in</strong>ation</strong>tester-l<strong>in</strong>es were conducted. All approaches yielded HRmutants, and proved to be complementary (Table 2).Strik<strong>in</strong>gly, genetic screen approaches yielded many novelgenes or genes not expected to be <strong>in</strong>volved <strong>in</strong> theregulation <strong>of</strong> HR.Some <strong>of</strong> the X-ray-sensitive mutants were found to bechanged at the level <strong>of</strong> somatic <strong>recomb<strong>in</strong>ation</strong>, some atthe level <strong>of</strong> mHR and some at both levels (xrs mutants <strong>in</strong>Table 2). <strong>The</strong> screens for MMS sensitivity yielded the twomutants mim [34] and bru [35]. <strong>The</strong> MIM gene encodes aprote<strong>in</strong> closely related to the structural ma<strong>in</strong>tenance <strong>of</strong>chromosomes (SMC) family <strong>of</strong> prote<strong>in</strong>s, which have acentral role <strong>in</strong> chromosome organization and dynamics <strong>in</strong>budd<strong>in</strong>g yeast. <strong>The</strong> yeast MIM homolog, Smc6, hasrecently been implicated <strong>in</strong> <strong>in</strong>terchromosomal and sisterchromatid<strong>recomb<strong>in</strong>ation</strong> [36]. In the bru mutant, <strong>in</strong>which the stability <strong>of</strong> heterochromat<strong>in</strong> is affected, levels <strong>of</strong>somatic HR are <strong>in</strong>creased. It is therefore entirely possiblethat the elevated HR levels <strong>in</strong> bru <strong>plants</strong> reflect an<strong>in</strong>creased sensitivity to DNA-damag<strong>in</strong>g agents or animproved accessibility to the sites <strong>of</strong> damage for repairfactors rather than a direct <strong>in</strong>volvement <strong>in</strong> the repairmach<strong>in</strong>ery. It is <strong>of</strong> <strong>in</strong>terest to mention the only describedhyper-recomb<strong>in</strong>ogenic mutant isolated <strong>in</strong> a non-Arabidopsisspecies: a tobacco mutant obta<strong>in</strong>ed <strong>in</strong> a transposonwww.sciencedirect.com


Review TRENDS <strong>in</strong> Genetics Vol.21 No.3 March 2005 179mutagenesis approach exhibited a 1000-fold <strong>in</strong>creasedfrequency <strong>of</strong> mitotic <strong>recomb<strong>in</strong>ation</strong> between <strong>homologous</strong>chromosomes, as measured by the endogenous ‘sulfur’system, while leav<strong>in</strong>g <strong>in</strong>trachromosomal HR unaffected.Unfortunately, the mutation could not be characterized [37].In the first reverse genetic approach mentioned above,that is, search<strong>in</strong>g for and characteriz<strong>in</strong>g publicly available<strong>in</strong>sertional mutants <strong>in</strong> specific genes, Arabidopsismutants <strong>in</strong> the genes RAD50, RAD9 and RAD17 couldbe obta<strong>in</strong>ed that exhibited <strong>in</strong>creased levels <strong>of</strong> HR, l<strong>in</strong>kedwith defects <strong>in</strong> DSB repair and hypersensitivity togenotoxic stress [38,39]. RAD9 and RAD17 were shownto be <strong>in</strong>volved <strong>in</strong> the cell-cycle checkpo<strong>in</strong>t <strong>in</strong> both yeastand Arabidopsis and might po<strong>in</strong>t to a connection betweenDNA damage signal<strong>in</strong>g and HR regulation (Figure 2). InArabidopsis both rad50 mutants, which are hypersensitiveto DNA damage and hyper-recomb<strong>in</strong>ogenic <strong>in</strong> somatictissue, and rad51 mutant <strong>plants</strong> [21] grow normally butare sterile. This is <strong>in</strong> sharp contrast to the situation <strong>in</strong>mouse where mutations <strong>in</strong> both genes abolish cell viability(as discussed <strong>in</strong> Refs [21,40]). Mammalian cells obviouslyrequire the activity <strong>of</strong> both genes for cell cycle progression.<strong>The</strong> <strong>in</strong>fluence <strong>of</strong> the rad50, rad9 and rad17 mutationson the level <strong>of</strong> HR seems to be <strong>in</strong>direct, which could po<strong>in</strong>tto a regulated balance between repair activities andaltered availability <strong>of</strong> damaged sites to repair mach<strong>in</strong>eries.A similar explanation could hold for <strong>plants</strong> mutated<strong>in</strong> the photolyase gene [41], impaired <strong>in</strong> scaveng<strong>in</strong>g <strong>of</strong>reactive oxygen species [42] and <strong>in</strong> <strong>plants</strong> upregulated forpathogen defense [43]: there, <strong>in</strong>creased HR could be due to<strong>in</strong>creased levels <strong>of</strong> DNA damage.<strong>The</strong> snm1 mutant was obta<strong>in</strong>ed by search<strong>in</strong>g for<strong>in</strong>sertional mutants <strong>in</strong> genes <strong>in</strong>ferred from functionalgenomic studies to be differentially regulated by genotoxicstress. It is defective <strong>in</strong> the <strong>in</strong>duction <strong>of</strong> somatic HR byspecific oxidative stress (Table 2) and could unravel theexistence <strong>in</strong> <strong>plants</strong> <strong>of</strong> a specific <strong>recomb<strong>in</strong>ation</strong>al repairpathway for oxidatively <strong>in</strong>duced DNA damage [44,45].<strong>The</strong> approaches to identify<strong>in</strong>g plant genes <strong>in</strong>volved <strong>in</strong>HR by knock<strong>in</strong>g out candidate genes will <strong>of</strong> course notyield new and unsuspected genes; only a screen directlytest<strong>in</strong>g for HR will permit this. In two different screensemploy<strong>in</strong>g the <strong>recomb<strong>in</strong>ation</strong> substrate l<strong>in</strong>es shown <strong>in</strong>Figure Ic and Id <strong>in</strong> Box 2, a multitude <strong>of</strong> mutants changed<strong>in</strong> HR levels were identified and isolated (O. Fritsch et al.,unpublished). Also, <strong>in</strong> one <strong>of</strong> these mutants the reason forthe strongly <strong>in</strong>duced frequency <strong>of</strong> HR seems to be <strong>in</strong>direct:a T-DNA-mediated knockout <strong>of</strong> the Centr<strong>in</strong>2 gene, encod<strong>in</strong>ga prote<strong>in</strong> <strong>in</strong>volved <strong>in</strong> recognition <strong>of</strong> DNA damage thatcan be repaired by the nucleotide excision repair (NER)pathway, led to a UV-C-sensitive, hyper-recomb<strong>in</strong>ogenicmutant. This po<strong>in</strong>ts to a novel connection between anearly step <strong>of</strong> NER and HR [46]. Another mutant, with areduced level <strong>of</strong> HR, was mutated <strong>in</strong> a gene cod<strong>in</strong>g forINO80, a member <strong>of</strong> the SWI–SNF ATPase family [47].<strong>The</strong> efficiency <strong>of</strong> NHEJ seemed unaffected <strong>in</strong> the mutant.In vitro <strong>in</strong>teraction <strong>of</strong> this prote<strong>in</strong> with nucleosomessuggested that INO80 acts through modification <strong>of</strong>chromat<strong>in</strong> structure, possibly at the site <strong>of</strong> DNA repair.Interest<strong>in</strong>gly, the yeast Ino80 prote<strong>in</strong>, as part <strong>of</strong> theINO80 complex, has recently been shown to be recruited towww.sciencedirect.comDSBs, <strong>in</strong> a manner dependent on phosphorylated histoneH2A [48]. Further studies are necessary to f<strong>in</strong>d out if theArabidopsis INO80 – or the potential complex thatconta<strong>in</strong>s it – is also recruited to sites <strong>of</strong> DNA damage,and if such recruitment leads to the specific engagement <strong>of</strong>the HR mach<strong>in</strong>ery.<strong>The</strong> <strong>in</strong>fluence <strong>of</strong> the environment on somatic HR<strong>The</strong> <strong>in</strong> planta assays described (Box 2) enable thequantitative assessment <strong>of</strong> HR events, thus permitt<strong>in</strong>gthe analysis <strong>of</strong> the <strong>in</strong>fluence <strong>of</strong> abiotic and biotic agents onHR. <strong>The</strong> effects <strong>of</strong> gamma radiation, UV radiation, heavymetals and pathogens on the physiological behavior <strong>of</strong><strong>plants</strong> have been amply described. However, the impact<strong>of</strong> these environmental factors on HR <strong>in</strong> genomes <strong>of</strong> theaffected <strong>plants</strong>, discussed <strong>in</strong> more general terms byMcCl<strong>in</strong>tock [49], has not been thoroughly studied untilrecently. Exposure <strong>of</strong> <strong>plants</strong> to gamma radiation – eitherresult<strong>in</strong>g from accidents <strong>in</strong> atomic power stations or <strong>in</strong> anexperimental setup – was expected to lead to higher levels<strong>of</strong> DSBs. Indeed, the use <strong>of</strong> <strong>plants</strong> carry<strong>in</strong>g <strong>recomb<strong>in</strong>ation</strong>reporter constructs yielded HR frequencies that directlyreflected the level <strong>of</strong> radioactive contam<strong>in</strong>ation [50].Especially <strong>in</strong>terest<strong>in</strong>g was the fact that even low levels<strong>of</strong> gamma radiation could be recorded with surpris<strong>in</strong>gaccuracy, open<strong>in</strong>g the possibility for environmental biomonitor<strong>in</strong>gregimes [51]. Other analyses <strong>of</strong> abiotic <strong>in</strong>fluenceson HR <strong>in</strong> Arabidopsis have <strong>in</strong>cluded tests with UV-B[52], heavy metals [53], X-rays, heat shock and UV-C(reviewed <strong>in</strong> Ref. [2]). <strong>The</strong> mechanisms by which themeasured <strong>in</strong>creases <strong>in</strong> rates <strong>of</strong> HR are established are notknown, but direct <strong>in</strong>duction <strong>of</strong> DSBs, the activity <strong>of</strong>reactive oxygen species and the upregulation <strong>of</strong> DNArepair activities are likely to contribute.<strong>The</strong> <strong>in</strong>fluence <strong>of</strong> biotic factors such as pathogens on<strong>plants</strong> has been studied from various aspects, but only afew studies focus on the possible effects <strong>of</strong> pathogens onthe genomes <strong>of</strong> <strong>plants</strong>. Elevated mutation rates <strong>in</strong> maizefollow<strong>in</strong>g virus <strong>in</strong>fection have been reported, but moleculardata are lack<strong>in</strong>g [54]. Inoculation <strong>of</strong> Arabidopsis l<strong>in</strong>esconta<strong>in</strong><strong>in</strong>g an HR reporter gene with Peronospora parasiticaled to stimulation <strong>of</strong> somatic HR. <strong>The</strong> same effectwas observed when pathogen defense mechanisms werechemically or genetically activated <strong>in</strong> the absence <strong>of</strong> apathogen [43]. Infection <strong>of</strong> tobacco <strong>plants</strong> carry<strong>in</strong>g<strong>recomb<strong>in</strong>ation</strong> markers with tobacco mosaic virus (TMV)yielded <strong>in</strong>creased <strong>recomb<strong>in</strong>ation</strong> rates not only <strong>in</strong> <strong>in</strong>oculatedleaves but also <strong>in</strong> non<strong>in</strong>oculated leaves [55].Treatment <strong>of</strong> <strong>plants</strong> with UV-B or with TMV led to an<strong>in</strong>creased rate <strong>of</strong> HR-mediated genetically fixed restoration<strong>of</strong> the functional reporter gene (Box 2) <strong>in</strong> the<strong>of</strong>fspr<strong>in</strong>g [52,55]: the number <strong>of</strong> seedl<strong>in</strong>gs that werecompletely b-glucuronidase- or luciferase-positive wasgreater <strong>in</strong> the <strong>of</strong>fspr<strong>in</strong>g <strong>of</strong> treated <strong>plants</strong> than <strong>in</strong> those <strong>of</strong>untreated <strong>plants</strong>. It is unclear, however, whether these<strong>in</strong>duced events were due to somatic HR events late <strong>in</strong>plant development, that is, before or after meiosis, or dueto enhanced rates <strong>of</strong> mHR.An <strong>in</strong>crease <strong>in</strong> either somatic or meiotic HR couldfacilitate evolutionary adaptation <strong>of</strong> plant populationsto stressful environments. Possible substrates for


180Review TRENDS <strong>in</strong> Genetics Vol.21 No.3 March 2005<strong>recomb<strong>in</strong>ation</strong> events <strong>in</strong> <strong>plants</strong> are the numerous diseaseresistance genes spread <strong>in</strong> clusters throughout thegenome [56]. New resistance genes can be created bysequence exchange between genes <strong>in</strong> the same or differentclusters, as was reported for the maize Rp1 complex[57,58] and the tomato Cf-4 and Cf-9 loci ([59] and Refsthere<strong>in</strong>). Infection <strong>of</strong> <strong>plants</strong> with pathogens can thereforelead to an <strong>in</strong>creased frequency <strong>of</strong> rearrangements betweenresistance genes and thereby possibly to an adaptiveadvantage <strong>in</strong> pathogen defense. It can thus be proposedthat abiotic and biotic environmental <strong>in</strong>fluences affect thegenotypes <strong>of</strong> <strong>plants</strong> on two levels: (i) the level <strong>of</strong> mutation(so far shown for HR and po<strong>in</strong>t mutation [60]) enabl<strong>in</strong>g alarge genetic diversity <strong>in</strong> the population; and (ii) the level<strong>of</strong> selection <strong>in</strong> the <strong>of</strong>fspr<strong>in</strong>g.Conclud<strong>in</strong>g remarksRecent forward and reverse genetics <strong>of</strong> Arabidopsis andother <strong>plants</strong> has permitted the isolation <strong>of</strong> numerousgenes <strong>in</strong>volved <strong>in</strong> meiotic and somatic HR. Some <strong>of</strong> thesewere expected to have a role <strong>in</strong> HR based on the roles <strong>of</strong><strong>homologous</strong> genes <strong>in</strong> other organisms, but <strong>in</strong> other casestheir role <strong>in</strong> <strong>plants</strong> deviates <strong>in</strong> some aspect from that <strong>of</strong>their homologs <strong>in</strong> animals and yeast. It is predicted thatmany more functions will be unraveled <strong>in</strong> the not toodistant future.Specific questions for researchers <strong>in</strong>clude: (i) are therefunctional homologs <strong>of</strong> RAD52 and other repair prote<strong>in</strong>s <strong>in</strong><strong>plants</strong> (Table 1); (ii) which other prote<strong>in</strong>s are directly<strong>in</strong>volved <strong>in</strong> the mechanics <strong>of</strong> meiotic and somatic HR <strong>in</strong><strong>plants</strong> and; (iii) how does HR work on the level <strong>of</strong>chromat<strong>in</strong>? Examples for the contribution <strong>of</strong> chromat<strong>in</strong><strong>in</strong> HR have been cited (MIM, INO80 and perhaps BRU),and additional prote<strong>in</strong>s act<strong>in</strong>g on chromat<strong>in</strong> at the stage <strong>of</strong>formation <strong>of</strong> SPO11-dependent DSBs can be expected for<strong>plants</strong>, as has been shown for C. elegans [61]. F<strong>in</strong>ally, howis somatic HR regulated, or more specifically, how aredifferent repair activities orchestrated?Another crucial aspect for <strong>plants</strong> is the <strong>in</strong>fluence <strong>of</strong> theenvironment on the plant genome: ‘illustrations from<strong>nature</strong>.support the conclusion that stress, and thegenome’s reaction to it, may underlie many formations <strong>of</strong>new species’ [49]. We will have to analyze how this stressis perceived, how signals are sent through cells andorganisms, and how and with what specificity changes are<strong>in</strong>troduced <strong>in</strong>to the genomes. Are these changes geneticallystable, are they epigenetic <strong>in</strong> <strong>nature</strong> or are thereepigenetic <strong>in</strong>termediates?AcknowledgementsWe thank the members <strong>of</strong> our group for stimulat<strong>in</strong>g discussions and theNovartis Research Foundation for f<strong>in</strong>ancial support. J.M. was funded bythe EU project PLANTREC N8 QLG2-CT-2001–01397.References1 Arabidopsis-Genome-Initiative. (2000) Analysis <strong>of</strong> the genomesequence <strong>of</strong> the flower<strong>in</strong>g plant Arabidopsis thaliana. Nature 408,796–8152 Puchta, H. and Hohn, B. (1996) From centiMorgans to base pairs:<strong>homologous</strong> <strong>recomb<strong>in</strong>ation</strong> <strong>in</strong> <strong>plants</strong>. Trends Plant Sci. 1, 340–3483 Paques, F. and Haber, J.E. (1999) Multiple pathways <strong>of</strong> <strong>recomb<strong>in</strong>ation</strong><strong>in</strong>duced by double-strand breaks <strong>in</strong> Saccharomyces cerevisiae. Microbiol.Mol. Biol. Rev. 63, 349–4044 West, S.C. (2003) Molecular views <strong>of</strong> <strong>recomb<strong>in</strong>ation</strong> prote<strong>in</strong>s and theircontrol. Nat. Rev. Mol. Cell Biol. 4, 435–4455 Hays, J.B. (2002) Arabidopsis thaliana, a versatile model system forstudy <strong>of</strong> eukaryotic genome-ma<strong>in</strong>tenance functions. DNA Repair(Amst.) 1, 579–6006 Reiss, B. (2003) Homologous <strong>recomb<strong>in</strong>ation</strong> and gene target<strong>in</strong>g <strong>in</strong>plant cells. Int. Rev. Cytol. 228, 85–1397 Britt, A.B. and May, G.D. (2003) Re-eng<strong>in</strong>eer<strong>in</strong>g plant gene target<strong>in</strong>g.Trends Plant Sci. 8, 90–958 Petronczki, M. et al. (2003) Un ménage à quatre: the molecular biology<strong>of</strong> chromosome segregation <strong>in</strong> meiosis. Cell 112, 423–4409 Zickler, D. and Kleckner, N. (1999) Meiotic chromosomes: <strong>in</strong>tegrat<strong>in</strong>gstructure and function. Annu. Rev. Genet. 33, 603–75410 Shaw, P. and Moore, G. (1998) Meiosis: vive la différence! Curr. Op<strong>in</strong>.Plant Biol. 1, 458–46211 Villeneuve, A.M. and Hillers, K.J. (2001) Whence meiosis? Cell 106,647–65012 Caryl, A.P. et al. (2003) Dissect<strong>in</strong>g plant meiosis us<strong>in</strong>g Arabidopsisthaliana mutants. J. Exp. Bot. 54, 25–3813 Bhatt, A.M. et al. (2001) Plant meiosis: the means to 1N. Trends PlantSci. 6, 114–12114 Hartung, F. and Puchta, H. (2000) Molecular characterisation <strong>of</strong> twoparalogous SPO11 homologues <strong>in</strong> Arabidopsis thaliana. Nucleic AcidsRes. 28, 1548–155415 Hartung, F. and Puchta, H. (2001) Molecular characterization <strong>of</strong>homologues <strong>of</strong> both subunits A (SPO11) and B <strong>of</strong> the archaebacterialtopoisomerase 6 <strong>in</strong> <strong>plants</strong>. Gene 271, 81–8616 Grelon, M. et al. (2001) AtSPO11-1 is necessary for efficient meiotic<strong>recomb<strong>in</strong>ation</strong> <strong>in</strong> <strong>plants</strong>. EMBO J. 20, 589–60017 Puiz<strong>in</strong>a, J. et al. (2004) Mre11 deficiency <strong>in</strong> Arabidopsis is associatedwith chromosomal <strong>in</strong>stability <strong>in</strong> somatic cells and Spo11-dependentgenome fragmentation dur<strong>in</strong>g meiosis. Plant Cell 16, 1968–197818 Gallego, M.E. et al. (2001) Disruption <strong>of</strong> the Arabidopsis RAD50 geneleads to plant sterility and MMS sensitivity. Plant J. 25, 31–4119 Bleuyard, J.Y. et al. (2004) Meiotic defects <strong>in</strong> the Arabidopsis rad50mutant po<strong>in</strong>t to conservation <strong>of</strong> the MRX complex function <strong>in</strong> earlystages <strong>of</strong> meiotic <strong>recomb<strong>in</strong>ation</strong>. Chromosoma 113, 197–20320 Couteau, F. et al. (1999) Random chromosome segregation withoutmeiotic arrest <strong>in</strong> both male and female meiocytes <strong>of</strong> a dmc1 mutant <strong>of</strong>Arabidopsis. Plant Cell 11, 1623–163421 Li, W. et al. (2004) <strong>The</strong> Arabidopsis AtRAD51 gene is dispensable forvegetative development but required for meiosis. Proc. Natl. Acad.Sci. U. S. A. 101, 10596–1060122 Siaud, N. et al. (2004) Brca2 is <strong>in</strong>volved <strong>in</strong> meiosis <strong>in</strong> Arabidopsisthaliana as suggested by its <strong>in</strong>teraction with Dmc1. EMBO J. 23,1392–140123 Osakabe, K. et al. (2002) Molecular clon<strong>in</strong>g and characterization<strong>of</strong> RAD51-like genes from Arabidopsis thaliana. Plant Mol. Biol.50, 71–8124 Bleuyard, J.Y. and White, C.I. (2004) <strong>The</strong> Arabidopsis homologue <strong>of</strong>Xrcc3 plays an essential role <strong>in</strong> meiosis. EMBO J. 23, 439–44925 Liu, Y. et al. (2004) RAD51C is required for Holliday junctionprocess<strong>in</strong>g <strong>in</strong> mammalian cells. Science 303, 243–24626 Jean, M. et al. (1999) Isolation and characterization <strong>of</strong> AtMLH1,a MutL homologue from Arabidopsis thaliana. Mol. Gen. Genet. 262,633–64227 Higg<strong>in</strong>s, J.D. et al. (2004) <strong>The</strong> Arabidopsis MutS homolog AtMSH4functions at an early step <strong>in</strong> <strong>recomb<strong>in</strong>ation</strong>: evidence for two classes <strong>of</strong><strong>recomb<strong>in</strong>ation</strong> <strong>in</strong> Arabidopsis. Genes Dev. 18, 2557–257028 Snowden, T. et al. (2004) hMSH4-hMSH5 recognizes Hollidayjunctions and forms a meiosis-specific slid<strong>in</strong>g clamp that embraces<strong>homologous</strong> chromosomes. Mol. Cell 15, 437–45129 Garcia, V. et al. (2003) AtATM is essential for meiosis and the somaticresponse to DNA damage <strong>in</strong> <strong>plants</strong>. Plant Cell 15, 119–13230 Masson, J.E. et al. (1997) Mutants <strong>of</strong> Arabidopsis thaliana hypersensitiveto DNA-damag<strong>in</strong>g treatments. Genetics 146, 401–40731 Masson, J.E. and Paszkowski, J. (1997) Arabidopsis thaliana mutantsaltered <strong>in</strong> <strong>homologous</strong> <strong>recomb<strong>in</strong>ation</strong>. Proc. Natl. Acad. Sci. U. S. A.94, 11731–11735www.sciencedirect.com


Review TRENDS <strong>in</strong> Genetics Vol.21 No.3 March 2005 18132 Bennett, C.B. et al. (1993) Lethality <strong>in</strong>duced by a s<strong>in</strong>gle site-specificdouble-strand break <strong>in</strong> a dispensable yeast plasmid. Proc. Natl. Acad.Sci. U. S. A. 90, 5613–561733 Lieber, M.R. et al. (2003) Mechanism and regulation <strong>of</strong> human non<strong>homologous</strong>DNA end-jo<strong>in</strong><strong>in</strong>g. Nat. Rev. Mol. Cell Biol. 4, 712–72034 Mengiste, T. et al. (1999) An SMC-like prote<strong>in</strong> is required for efficient<strong>homologous</strong> <strong>recomb<strong>in</strong>ation</strong> <strong>in</strong> Arabidopsis. EMBO J. 18, 4505–451235 Takeda, S. et al. (2004) BRU1, a novel l<strong>in</strong>k between responses to DNAdamage and epigenetic gene silenc<strong>in</strong>g <strong>in</strong> Arabidopsis. Genes Dev. 18,782–79336 Onoda, F. et al. (2004) SMC6 is required for MMS-<strong>in</strong>duced <strong>in</strong>terchromosomaland sister chromatid <strong>recomb<strong>in</strong>ation</strong>s <strong>in</strong> Saccharomycescerevisiae. DNA Repair (Amst.) 3, 429–43937 Gorbunova, V. et al. (2000) A new hyperrecomb<strong>in</strong>ogenic mutant <strong>of</strong>Nicotiana tabacum. Plant J. 24, 601–61138 Gherbi, H. et al. (2001) Homologous <strong>recomb<strong>in</strong>ation</strong> <strong>in</strong> planta isstimulated <strong>in</strong> the absence <strong>of</strong> Rad50. EMBO Rep. 2, 287–29139 Heitzeberg, F. et al. (2004) <strong>The</strong> Rad17 homologue <strong>of</strong> Arabidopsis is<strong>in</strong>volved <strong>in</strong> the regulation <strong>of</strong> DNA damage repair and <strong>homologous</strong><strong>recomb<strong>in</strong>ation</strong>. Plant J. 38, 954–96840 Gallego, M.E. and White, C.I. (2001) RAD50 function is essential fortelomere ma<strong>in</strong>tenance <strong>in</strong> Arabidopsis. Proc. Natl. Acad. Sci. U. S. A.98, 1711–171641 Ries, G. et al. (2000) UV-damage-mediated <strong>in</strong>duction <strong>of</strong> <strong>homologous</strong><strong>recomb<strong>in</strong>ation</strong> <strong>in</strong> Arabidopsis is dependent on photosyntheticallyactive radiation. Proc. Natl. Acad. Sci. U. S. A. 97, 13425–1342942 Filkowski, J. et al. (2004) Systemic plant signal triggers genome<strong>in</strong>stability. Plant J. 38, 1–1143 Lucht, J.M. et al. (2002) Pathogen stress <strong>in</strong>creases somatic <strong>recomb<strong>in</strong>ation</strong>frequency <strong>in</strong> Arabidopsis. Nat. Genet. 30, 311–31444 Mol<strong>in</strong>ier, J. et al. (2004) SNM-dependent <strong>recomb<strong>in</strong>ation</strong>al repair <strong>of</strong>oxidatively <strong>in</strong>duced DNA damage <strong>in</strong> Arabidopsis thaliana. EMBORep. 5, 994–99945 Mol<strong>in</strong>ier, J. et al. Dynamic response <strong>of</strong> plant genome to ultravioletradiation and other genotoxic stresses. Mutat. Res. (<strong>in</strong> press)46 Mol<strong>in</strong>ier, J. et al. (2004) CENTRIN2 modulates <strong>homologous</strong> <strong>recomb<strong>in</strong>ation</strong>and nucleotide excision repair <strong>in</strong> Arabidopsis. Plant Cell 16,1633–164347 Fritsch, O. et al. (2004) <strong>The</strong> INO80 prote<strong>in</strong> controls <strong>homologous</strong><strong>recomb<strong>in</strong>ation</strong> <strong>in</strong> Arabidopsis thaliana. Mol. Cell 16, 479–48548 van Attikum, H. et al. (2004) Recruitment <strong>of</strong> the INO80 complex byH2A phosphorylation l<strong>in</strong>ks ATP-dependent chromat<strong>in</strong> remodell<strong>in</strong>gwith DNA double-strand break repair. Cell 119, 777–78849 McCl<strong>in</strong>tock, B. (1984) <strong>The</strong> significance <strong>of</strong> responses <strong>of</strong> the genome tochallenge. Science 226, 792–80150 Kovalchuk, I. et al. (1998) Transgenic <strong>plants</strong> are sensitive bio<strong>in</strong>dicators<strong>of</strong> nuclear pollution caused by the Chernobyl accident. Nat.Biotechnol. 16, 1054–105951 Kovalchuk, O. et al. (1999) Radiation hazard caused by the Chernobylaccident <strong>in</strong> <strong>in</strong>habited areas <strong>of</strong> Ukra<strong>in</strong>e can be monitored by transgenic<strong>plants</strong>. Mutat. Res. 446, 49–5552 Ries, G. et al. (2000) Elevated UV-B radiation reduces genome stability<strong>in</strong> <strong>plants</strong>. Nature 406, 98–10153 Kovalchuk, O. et al. (2001) A sensitive transgenic plant system todetect toxic <strong>in</strong>organic compounds <strong>in</strong> the environment. Nat. Biotechnol.19, 568–57254 Brakke, M.K. (1984) Mutations, the aberrant ratio phenomenon, andvirus <strong>in</strong>fection <strong>of</strong> maize. Annu. Rev. Phytopathol. 22, 77–9455 Kovalchuk, I. et al. (2003) Pathogen-<strong>in</strong>duced systemic plant signaltriggers DNA rearrangements. Nature 423, 760–76256 Leister, D. (2004) Tandem and segmental gene duplication and<strong>recomb<strong>in</strong>ation</strong> <strong>in</strong> the evolution <strong>of</strong> plant disease resistance gene.Trends Genet. 20, 116–12257 Ramakrishna, W. et al. (2002) Structural analysis <strong>of</strong> the maize rp1complex reveals numerous sites and unexpected mechanisms <strong>of</strong> localrearrangement. Plant Cell 14, 3213–322358 Richter, T.E. et al. (1995) New rust resistance specificities associatedwith <strong>recomb<strong>in</strong>ation</strong> <strong>in</strong> the Rp1 complex <strong>in</strong> maize. Genetics 141, 373–38159 Wulff, B.B. et al. (2004) Genetic variation at the tomato Cf-4/Cf-9 locus<strong>in</strong>duced by EMS mutagenesis and <strong>in</strong>tralocus <strong>recomb<strong>in</strong>ation</strong>. Genetics167, 459–47060 Kovalchuk, I. et al. (2000) Genome-wide variation <strong>of</strong> the somaticmutation frequency <strong>in</strong> transgenic <strong>plants</strong>. EMBO J. 19, 4431–443861 Reddy, K.C. and Villeneuve, A.M. (2004) C. elegans HIM-17 l<strong>in</strong>kschromat<strong>in</strong> modification and competence for <strong>in</strong>itiation <strong>of</strong> meiotic<strong>recomb<strong>in</strong>ation</strong>. Cell 118, 439–45262 Terada, R. et al. (2002) Efficient gene target<strong>in</strong>g by <strong>homologous</strong><strong>recomb<strong>in</strong>ation</strong> <strong>in</strong> rice. Nat. Biotechnol. 20, 1030–103463 Han<strong>in</strong>, M. et al. (2001) Gene target<strong>in</strong>g <strong>in</strong> Arabidopsis. Plant J. 28,671–67764 Iida, S. and Terada, R. (2004) A tale <strong>of</strong> two <strong>in</strong>tegrations, transgene andT-DNA: gene target<strong>in</strong>g by <strong>homologous</strong> <strong>recomb<strong>in</strong>ation</strong> <strong>in</strong> rice. Curr.Op<strong>in</strong>. Biotechnol. 15, 132–13865 Reiss, B. et al. (2000) RecA stimulates sister chromatid exchange andthe fidelity <strong>of</strong> double-strand break repair, but not gene target<strong>in</strong>g, <strong>in</strong><strong>plants</strong> transformed by Agrobacterium. Proc. Natl. Acad. Sci. U. S. A.97, 3358–336366 Jelesko, J.G. et al. (2004) Meiotic <strong>recomb<strong>in</strong>ation</strong> between paralogousRBCSB genes on sister chromatids <strong>of</strong> Arabidopsis thaliana. Genetics166, 947–95767 Jelesko, J.G. et al. (1999) Rare germ<strong>in</strong>al unequal cross<strong>in</strong>g-over lead<strong>in</strong>gto recomb<strong>in</strong>ant gene formation and gene duplication <strong>in</strong> Arabidopsisthaliana. Proc. Natl. Acad. Sci. U. S. A. 96, 10302–1030768 Christianson, M.L. (1975) Mitotic cross<strong>in</strong>g-over as an importantmechanism <strong>of</strong> floral sector<strong>in</strong>g <strong>in</strong> Tradescantia. Mutat. Res. 28, 389–39569 Burk, L.G. and Menser, H.A. (1964) A dom<strong>in</strong>ant aurea mutation <strong>in</strong>tobacco. Tob. Sci. 8, 101–10470 Mol<strong>in</strong>ier, J. et al. (2004) Interchromatid and <strong>in</strong>terhomolog <strong>recomb<strong>in</strong>ation</strong><strong>in</strong> Arabidopsis thaliana. Plant Cell 16, 342–35271 Haubold, B. et al. (2002) Recomb<strong>in</strong>ation and gene conversion <strong>in</strong> a 170-kbgenomic region <strong>of</strong> Arabidopsis thaliana. Genetics 161, 1269–127872 Culligan, K. et al. (2004) ATR regulates a G2-phase cell-cyclecheckpo<strong>in</strong>t <strong>in</strong> Arabidopsis thaliana. Plant Cell 16, 1091–110473 Dubest, S. et al. (2004) Roles <strong>of</strong> the AtErcc1 prote<strong>in</strong> <strong>in</strong> <strong>recomb<strong>in</strong>ation</strong>.Plant J. 39, 334–34274 Han<strong>in</strong>, M. et al. (2000) Elevated levels <strong>of</strong> <strong>in</strong>trachromosomal<strong>homologous</strong> <strong>recomb<strong>in</strong>ation</strong> <strong>in</strong> Arabidopsis overexpress<strong>in</strong>g the MIMgene. Plant J. 24, 183–18975 Liu, Z. et al. (2000) Repair <strong>of</strong> UV damage <strong>in</strong> <strong>plants</strong> by nucleotideexcision repair: Arabidopsis UVH1 DNA repair gene is a homolog <strong>of</strong>Saccharomyces cerevisiae Rad1. Plant J. 21, 519–52876 Gallego, F. et al. (2000) AtRAD1, a plant homologue <strong>of</strong> human andyeast nucleotide excision repair endonucleases, is <strong>in</strong>volved <strong>in</strong> darkrepair <strong>of</strong> UV damages and <strong>recomb<strong>in</strong>ation</strong>. Plant J. 21, 507–51877 Dubest, S. et al. (2002) Role <strong>of</strong> the AtRad1p endonuclease <strong>in</strong><strong>homologous</strong> <strong>recomb<strong>in</strong>ation</strong> <strong>in</strong> <strong>plants</strong>. EMBO Rep. 3, 1049–105478 Fidantsef, A.L. et al. (2000) <strong>The</strong> Arabidopsis UVH1 gene is a homolog<strong>of</strong> the yeast repair endonuclease RAD1. Plant Physiol. 124, 579–58679 Costa, R.M. et al. (2001) <strong>The</strong> participation <strong>of</strong> AtXPB1, the XPB/RAD25homologue gene from Arabidopsis thaliana, <strong>in</strong> DNA repair and plantdevelopment. Plant J. 28, 385–39580 Harlow, G.R. et al. (1994) Isolation <strong>of</strong> uvh1, an Arabidopsis mutanthypersensitive to ultraviolet light and ioniz<strong>in</strong>g radiation. Plant Cell 6,227–23581 Landry, L.G. et al. (1997) An Arabidopsis photolyase mutant ishypersensitive to ultraviolet-B radiation. Proc. Natl. Acad. Sci.U. S. A. 94, 328–33282 Filkowski, J. et al. (2004) Genome stability <strong>of</strong> vtc1, tt4, and tt5Arabidopsis thaliana mutants impaired <strong>in</strong> protection aga<strong>in</strong>st oxidativestress. Plant J. 38, 60–6983 Conkl<strong>in</strong>, P.L. et al. (1996) Environmental stress sensitivity <strong>of</strong> anascorbic acid-deficient Arabidopsis mutant. Proc. Natl. Acad. Sci.U. S. A. 93, 9970–997484 Li, J. et al. (1993) Arabidopsis flavonoid mutants are hypersensitive toUV-B irradiation. Plant Cell 5, 171–179www.sciencedirect.com

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!