13.07.2015 Views

1996 LRFD Supplements - unprotected PDF - American Wood Council

1996 LRFD Supplements - unprotected PDF - American Wood Council

1996 LRFD Supplements - unprotected PDF - American Wood Council

SHOW MORE
SHOW LESS
  • No tags were found...

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

SUPPLEMENTStructural Lumber<strong>LRFD</strong>LOAD AND RESISTANCE FACTOR DESIGNMANUAL FOR ENGINEEREDWOOD CONSTRUCTIONCanadian <strong>Wood</strong> <strong>Council</strong>Southern Forest Products AssociationSouthern Pine Inspection BureauWest Coast Lumber Inspection BureauWestern <strong>Wood</strong> Products Association


SUPPLEMENTStructural Lumber<strong>LRFD</strong>LOAD AND RESISTANCE FACTOR DESIGNMANUAL FOR ENGINEEREDWOOD CONSTRUCTIONCopyright © <strong>1996</strong> by Canadian <strong>Wood</strong> <strong>Council</strong>, Southern Forest Products Association, Southern PineInspection Bureau, West Coast Lumber Inspection Bureau, and Western <strong>Wood</strong> Products Association.


PrefaceThis supplement contains adjustment factors, dimensions,factored resistances, reference strengths and otherproperties required to design structural lumber in the <strong>LRFD</strong>format. In this format, the term resistance is used to referto member capacities (i.e., moment resistance, compressionresistance, etc.). This is distinct from the term strengthwhich refers to limit state material properties — conceptuallya “factored allowable stress.”The member resistance values tabulated in this supplementare to be used in conjunction with the designmethodologies provided in AF&PA/ASCE 16-95, Standardfor Load and Resistance Factor Design (<strong>LRFD</strong>) forEngineered <strong>Wood</strong> Construction.The reference strengths were derived according toASTM D5457-93, Standard Specification for Computingthe Reference Resistance of <strong>Wood</strong>-Based Materials andStructural Connections for Load and Resistance FactorDesign.The tabulated reference strength values are to be usedwithin the reference end-use conditions defined therein.When the end-use conditions fall outside the range of thereference conditions, the reference values shall be adjustedby the product of applicable adjustment factors as definedin AF&PA/ASCE 16-95 and also provided in this supplement.For unusual end-use conditions, the designer shouldconsult additional literature for possible further adjustments.The development and future maintenance of thissupplement is a cooperative effort between AF&PA andthe lumber industry. The lumber organizations involvedin the development and review are as follows:Canadian <strong>Wood</strong> <strong>Council</strong>Southern Forest Products AssociationSouthern Pine Inspection BureauWest Coast Lumber Inspection BureauWestern <strong>Wood</strong> Products AssociationEvery effort has been made to ensure the accuracy ofthe information presented. Member selection tables areprovided for materials widely used in wood construction.The purpose of this supplement is to provide convenientreference and design aids to design professionals.Many individuals have contributed to the developmentof this first edition, including Linda Brown, SPIB; KevinCheung, WWPA; Don DeVisser, WCLIB; Dave Gromala,Gromala & Associates, Eric Jones and Jean-FrancoisHoude, CWC, and Cathy Marx, SFPA.Suggestions for improvement of this supplement arewelcomed and will be considered for future editions. Allsuggestions and comments should be directed to AF&PAor one of the organizations listed above.


<strong>LRFD</strong> STRUCTURAL LUMBER SUPPLEMENT11DESIGNERFLOWCHART1.1 Flowchart 2


2 DESIGNER FLOWCHART1.1 FlowchartStructural LumberSupplementYesAre you aFirst-Time User?Please read Chapter 2before proceeding. For specificmember design information,see the manual.NoYou may use the SelectionYesTables in Chapter 5.Meets theSelection Table(Section 5.2)Criteria?NoSelect a trial design.(Obtain trial section fromthe Selection Tables.)Determine ApplicableAdjustment Factors.(Chapter 4)Adjusted Strength =Adjustment Factors x ReferenceStrength. (Reference Strengths aretabulated in Chapter 3.)Member Resistance =Section Property xAdjusted Strength.Choose another section.NoFactored Resistance ≥Factored Load Effect?NoChoose another section.YesEnd


<strong>LRFD</strong> STRUCTURAL LUMBER SUPPLEMENT3INTRODUCTIONTO STRUCTURALLUMBER22.1 Product Information 42.2 Common Uses 42.3 Availability 4


4 INTRODUCTION TO STRUCTURAL LUMBER2.1 Product InformationStructural lumber products are well-known throughoutthe construction industry. The economic advantagesof lumber often dictate its choice as a preferred buildingmaterial.Lumber is available in a wide range of species, grades,sizes, and moisture contents. Structural lumber productsare typically specified by either the stress (strength) levelrequired, or by the species, grade and size required.This supplement provides information for designingstructural lumber products that meet or exceed the designcriteria for a given application.2.2 Common UsesStructural lumber and timbers have been a primaryconstruction material throughout the world for many centuries.They are the most widely used framing materialfor housing in North America.In addition to use in housing, structural lumber findsbroad use in commercial and industrial construction. Itshigh strength, universal availability, and cost saving attributesmake it a viable option in most low- and mid-riseconstruction projects.Structural lumber is used as beams, columns, headers,joists, rafters, studs and plates in conventional construction.In addition to its use in lumber form, structurallumber is used to manufacture glued-laminated beams,trusses, and I-joists.2.3 AvailabilityStructural lumber is a widely available constructionmaterial in the U.S. However, to efficiently specify structurallumber for individual construction projects, the customershould be aware of the species, grades, and sizesavailable locally. The best source of this information isyour local lumber supplier.


<strong>LRFD</strong> STRUCTURAL LUMBER SUPPLEMENT5REFERENCESTRENGTHS33.1 General 63.2 Tables of Reference Strengths 6Table 3.1 Reference Strengths for Mechanically GradedDimension Lumber .................................................. 7Table 3.2 Reference Strengths for Visually GradedDimension Lumber .................................................. 9Table 3.3 Reference Strengths for Visually GradedTimbers (5" x 5" and Larger) .............................. 18Table 3.4 Reference Bearing Design Strengths for SawnLumber ................................................................... 26Table 3.5 Reference Strengths for Visually GradedDecking ................................................................... 27


6 REFERENCE STRENGTHS3.1 GeneralThe tables in this chapter provide <strong>LRFD</strong> referencestrengths for design of structural lumber members. Thesestrengths are used when manual calculation of memberstrength is required, and shall be used in conjunction withthe adjustment factors specified in Chapter 4.The tables follow the same format as the allowablestress design National Design Specification ® for <strong>Wood</strong>Construction (NDS ® , 1991).3.2 Tables of Reference StrengthsThe tables of reference strengths are similar to thetables in the 1991 NDS Supplement, with referencestrengths being factored per ASTM D5457-93 and valuesexpressed in ksi (kips per square inch). Table 3.1 (mechanicallygraded lumber) corresponds to NDS table 4C.Table 3.2 (visually graded dimension lumber) correspondsto NDS Tables 4A and 4B. Table 3.3 (visually gradedtimbers) corresponds to NDS Table 4D. Table 3.4 (bearingdesign values) corresponds to NDS Table 2A. Table3.5 (decking design values) corresponds to NDS Table4E.Note that the adjustment factors to be used with thesetables are identical for all tables with the exception of theapplication of the size factor (see footnotes to Table 4.3).


GUIDELINE<strong>LRFD</strong>TOSTRUCTURAL<strong>LRFD</strong> FOR STRUCTURALLUMBER SUPPLEMENTCOMPOSITE LUMBER 7Table 3.1Reference Strengths for Mechanically Graded Dimension LumberDesign values in kips per square inch (ksi) 1Tension Compression ModulusBending parallel parallel of GradingSize to grain to grain Elasticity RulesGrade Classification E 05 E AgencyF b F t F c (5th pct) (mean)MACHINE STRESS RATED (MSR) LUMBER900f-1.0E 2.29 0.95 2.52 840 1000 WCLIB, WWPA1200f-1.2E 3.05 1.62 3.36 1010 1200 NLGA, SPIB, WCLIB, WWPA1350f-1.3E 3.43 2.03 3.84 1100 1300 NLGA, SPIB, WCLIB, WWPA1400f-1.2E 3.56 2.16 3.84 1010 1200 NLGA, SPIB1450f-1.3E 3.68 2.16 3.90 1100 1300 NLGA, WCLIB, WWPA1500f-1.3E 3.81 2.43 3.96 1100 1300 SPIB1500f-1.4E 3.81 2.43 3.96 1180 1400 NLGA, SPIB, WCLIB, WWPA1600f-1.4E 4.06 2.57 4.02 1180 1400 NLGA, SPIB1650f-1.3E 4.19 2.75 4.08 1100 1300 NLGA1650f-1.4E 4.19 2.75 4.08 1180 1400 SPIB1650f-1.5E 4.19 2.75 4.08 1270 1500 NLGA, SPIB, WCLIB, WWPA1800f-1.5E 4.57 3.51 4.20 1270 1500 NLGA, SPIB1800f-1.6E 4.57 3.17 4.20 1350 1600 NLGA, SPIB, WCLIB, WWPA1950f-1.5E 2" & less 4.95 3.71 4.32 1270 1500 SPIB1950f-1.7E 4.95 3.71 4.32 1430 1700 NLGA, SPIB, WWPA2000f-1.6E 5.08 3.51 4.38 1350 1600 NLGA, SPIB2100f-1.8E in thickness 5.33 4.25 4.50 1520 1800 NLGA, SPIB, WCLIB, WWPA2250f-1.6E 5.72 4.73 4.62 1350 1600 SPIB2250f-1.7E 5.72 4.73 4.62 1430 1700 NLGA, SPIB2250f-1.8E 5.72 4.73 4.62 1520 1800 NLGA2250f-1.9E 2" & wider 5.72 4.73 4.62 1600 1900 NLGA, SPIB, WWPA2400f-1.7E 6.10 5.20 4.74 1430 1700 SPIB2400f-1.8E 6.10 5.20 4.74 1520 1800 NLGA, SPIB2400f-2.0E 6.10 5.20 4.74 1690 2000 NLGA, SPIB, WCLIB, WWPA2550f-2.1E 6.48 5.54 4.86 1770 2100 NLGA, SPIB, WWPA2700f-2.2E 6.86 5.81 5.04 1860 2200 NLGA, SPIB, WCLIB, WWPA2850f-2.3E 7.24 6.21 5.16 1940 2300 NLGA, SPIB, WWPA3000f-2.4E 7.62 6.48 5.28 2020 2400 NLGA, SPIB3150f-2.5E 8.00 6.75 5.40 2110 2500 SPIB3300f-2.6E 8.38 7.16 5.58 2190 2600 SPIB3REFERENCE STRENGTHS900f-1.2E 2" & less 2.29 0.95 2.52 1010 2600 WCLIB1200f-1.5E in thickness 3.05 1.62 3.36 1270 2600 WCLIB1500f-1.8E 3.81 2.43 3.96 1520 2600 WCLIB1800f-2.1E 6" & wider 4.57 3.17 4.20 1770 2600 WCLIBNote 1. Design values for shear and for compression perpendicular to grain for mechanically graded lumber are species dependentand shall be obtained from Table 3.2 of this supplement, except:The compression perpendicular to grain design value for SPF MSR lumber with a grade E value of 2000 ksi and higheris 1.28 ksi.


8 REFERENCE STRENGTHSTable 3.1Reference Strengths for Mechanically Graded Dimension LumberDesign values in kips per square inch (ksi) 1Tension Compression ModulusBending parallel parallel of GradingSize to grain to grain Elasticity RulesGrade Classification E 05 E AgencyF b F t F c (5th pct) (mean)MACHINE EVALUATED (MEL) LUMBERM-6 2.79 1.62 3.12 780 1000M-7 3.05 1.76 3.36 850 1100M-8 3.30 1.89 3.60 1010 1300M-9 3.56 2.16 3.84 1090 1400M-10 3.56 2.16 3.84 930 1200M-11 3.94 2.30 4.02 1160 1500M-12 4.06 2.30 4.02 1240 1600M-13 4.06 2.57 4.02 1090 1400M-14 4.57 2.70 4.20 1320 1700M-15 4.57 2.97 4.20 1160 1500M-16 4.57 3.51 4.20 1160 1500M-17 4.95 3.51 4.92 1320 1700M-18 5.08 3.24 4.38 1400 1800 NLGA 2 , SPIBM-19 2" & less 5.08 3.51 4.38 1240 1600M-20 5.08 4.32 5.04 1470 1900M-21 in thickness 5.84 3.78 4.68 1470 1900M-22 5.97 4.05 4.68 1320 1700M-23 2" & wider 6.10 5.13 4.74 1400 1800M-24 6.86 4.86 5.04 1470 1900M-25 6.99 5.40 5.04 1710 2200M-26 7.11 4.86 5.16 1550 2000M-27 7.62 5.40 5.76 1630 2100M-28 5.59 4.32 4.56 1320 1200Note:1. Design values for shear and for compression perpendicular to grain for mechanically graded lumber are species dependentand shall be obtained from Table 3.2 of this supplement, except:The compression perpendicular to grain design value for SPF MEL lumber with a grade E value of 2000 ksi and higheris 1.28 ksi.2. All grades except M-6, M-7, M-8, M-9, M-16, M-17, M-20, M-27 and M-28 are provided for in the NLGA Rules.


GUIDELINE<strong>LRFD</strong>TOSTRUCTURAL<strong>LRFD</strong> FOR STRUCTURALLUMBER SUPPLEMENTCOMPOSITE LUMBER 9Table 3.2Reference Strengths for Visually Graded Dimension LumberDesign values in kips per square inch (ksi) 1Tension Shear Compression Compression ModulusBending parallel parallel perpendicular parallel of GradingSpecies and Size to grain to grain to grain to grain Elasticity Rulescommercial grade Classification E 05 E AgencyF b F t F v F c β F c (5th pct) (mean)ASPENSelect Structural 2.22 1.35 0.17 0.55 1.74 670 1100No. 1 2"-4" thick 1.59 1.01 0.17 0.55 1.44 670 1100 NELMANo. 2 1.52 0.95 0.17 0.55 1.08 610 1000 NLSBNo. 3 2" & wider 0.89 0.54 0.17 0.55 0.66 550 900 WWPAStud 1.21 0.74 0.17 0.55 0.72 550 900Construction 2"-4" thick 1.78 1.08 0.17 0.55 1.50 550 900Standard 0.95 0.61 0.17 0.55 1.14 550 900Utility 2"-4" wide 0.44 0.27 0.17 0.55 0.72 490 800BEECH-BIRCH-HICKORYSelect Structural 3.68 2.30 0.29 1.49 2.88 1030 1700No. 1 2"-4" thick 2.67 1.62 0.29 1.49 2.28 970 1600No. 2 2.54 1.62 0.29 1.49 1.80 910 1500No. 3 2" & wider 1.46 0.95 0.29 1.49 1.02 790 1300 NELMAStud 1.97 1.22 0.29 1.49 1.14 790 1300Construction 2"-4" thick 2.92 1.82 0.29 1.49 2.40 850 1400Standard 1.65 1.01 0.29 1.49 1.86 790 1300Utility 2"-4" wide 0.76 0.47 0.29 1.49 1.20 730 1200COTTONWOODSelect Structural 2.22 1.42 0.19 0.67 1.86 730 1200No. 1 2"-4" thick 1.59 1.01 0.19 0.67 1.50 730 1200No. 2 1.59 0.95 0.19 0.67 1.14 670 1100No. 3 2" & wider 0.89 0.54 0.19 0.67 0.66 610 1000 NSLBStud 1.21 0.74 0.19 0.67 0.72 610 1000Construction 2"-4" thick 1.78 1.08 0.19 0.67 1.56 610 1000Standard 1.02 0.61 0.19 0.67 1.20 550 900Utility 2"-4" wide 0.44 0.27 0.19 0.67 0.78 550 900DOUGLAS FIR-LARCHSelect Structural 2"-4" thick 3.68 2.70 0.27 1.30 4.08 1150 1900No. 1 & Btr 2.92 2.09 0.27 1.30 3.60 1090 1800No. 1 2" & wider 2.54 1.82 0.27 1.30 3.48 1030 1700No. 2 2.22 1.55 0.27 1.30 3.12 970 1600 WCLIBNo. 3 1.27 0.88 0.27 1.30 1.80 850 1400 WWPAStud 1.71 1.22 0.27 1.30 1.98 850 1400Construction 2"-4" thick 2.54 1.76 0.27 1.30 3.84 910 1500Standard 1.40 1.01 0.27 1.30 3.24 850 1400Utility 2"-4" wide 0.70 0.47 0.27 1.30 2.10 790 13003REFERENCE STRENGTHS


10 REFERENCE STRENGTHSTable 3.2Reference Strengths for Visually Graded Dimension LumberDesign values in kips per square inch (ksi) 1Tension Shear Compression Compression ModulusBending parallel parallel perpendicular parallel of GradingSpecies and Size to grain to grain to grain to grain Elasticity Rulescommercial grade Classification E 05 E AgencyF b F t F v F c β F c (5th pct) (mean)DOUGLAS FIR-LARCH (NORTH)Select Structural 2"-4" thick 3.30 2.16 0.27 1.30 4.56 1150 1900No. 1/No. 2 2.10 1.35 0.27 1.30 3.24 970 1600No. 3 2" & wider 1.21 0.81 0.27 1.30 1.86 850 1400Stud 1.65 1.01 0.27 1.30 2.04 850 1400 NLGAConstruction 2"-4" thick 2.41 1.55 0.27 1.30 4.20 910 1500Standard 1.33 0.88 0.27 1.30 3.36 850 1400Utility 2"-4" wide 0.64 0.41 0.27 1.30 2.22 790 1300DOUGLAS FIR-SOUTHSelect Structural 3.30 2.36 0.26 1.08 3.72 850 1400No. 1 2"-4" thick 2.29 1.62 0.26 1.08 3.36 790 1300No. 2 2.10 1.42 0.26 1.08 3.12 730 1200No. 3 2" & wider 1.21 0.81 0.26 1.08 1.80 670 1100 WWPAStud 1.65 1.15 0.26 1.08 1.98 670 1100Construction 2"-4" thick 2.35 1.62 0.26 1.08 3.72 730 1200Standard 1.33 0.95 0.26 1.08 3.12 670 1100Utility 2"-4" wide 0.64 0.41 0.26 1.08 2.10 610 1000EASTERN HEMLOCK-TAMARACKSelect Structural 3.18 1.55 0.24 1.15 2.88 730 1200No. 1 2"-4" thick 1.97 0.95 0.24 1.15 2.40 670 1100No. 2 1.46 0.74 0.24 1.15 1.98 670 1100No. 3 2" & wider 0.89 0.41 0.24 1.15 1.14 550 900 NELMAStud 1.14 0.54 0.24 1.15 1.26 550 900 NSLBConstruction 2"-4" thick 1.71 0.81 0.24 1.15 2.52 610 1000Standard 0.95 0.47 0.24 1.15 2.04 550 900Utility 2"-4" wide 0.44 0.20 0.24 1.15 1.32 490 800EASTERN SOFTWOODSSelect Structural 3.18 1.55 0.20 0.70 2.88 730 1200No. 1 2"-4" thick 1.97 0.95 0.20 0.70 2.40 670 1100No. 2 1.46 0.74 0.20 0.70 1.98 670 1100No. 3 2" & wider 0.89 0.41 0.20 0.70 1.14 550 900 NELMAStud 1.14 0.54 0.20 0.70 1.26 550 900 NSLBConstruction 2"-4" thick 1.71 0.81 0.20 0.70 2.52 610 1000Standard 0.95 0.47 0.20 0.70 2.04 550 900Utility 2"-4" wide 0.44 0.20 0.20 0.70 1.32 490 800


GUIDELINE<strong>LRFD</strong>TOSTRUCTURAL<strong>LRFD</strong> FOR STRUCTURALLUMBER SUPPLEMENTCOMPOSITE LUMBER1111Table 3.2Reference Strengths for Visually Graded Dimension LumberDesign values in kips per square inch (ksi) 1Tension Shear Compression Compression ModulusBending parallel parallel perpendicular parallel of GradingSpecies and Size to grain to grain to grain to grain Elasticity Rulescommercial grade Classification E 05 E AgencyF b F t F v F c β F c (5th pct) (mean)EASTERN WHITE PINESelect Structural 3.18 1.55 0.20 0.73 2.88 730 1200No. 1 2"-4" thick 1.97 0.95 0.20 0.73 2.40 670 1100No. 2 1.46 0.74 0.20 0.73 1.98 670 1100No. 3 2" & wider 0.89 0.41 0.20 0.73 1.14 550 900 NELMAStud 1.14 0.54 0.20 0.73 1.26 550 900 NSLBConstruction 2"-4" thick 1.71 0.81 0.20 0.73 2.52 610 1000Standard 0.95 0.47 0.20 0.73 2.04 550 900Utility 2"-4" wide 0.44 0.20 0.20 0.73 1.32 490 800HEM-FIRSelect Structural 3.56 2.43 0.22 0.84 3.60 970 1600No. 1 & Btr 2"-4" thick 2.67 1.89 0.22 0.84 3.24 910 1500No. 1 2.41 1.62 0.22 0.84 3.12 910 1500No. 2 2" & wider 2.16 1.35 0.22 0.84 3.00 790 1300No. 3 1.27 0.81 0.22 0.84 1.74 730 1200 WCLIBStud 1.71 1.08 0.22 0.84 1.92 730 1200 WWPAConstruction 2"-4" thick 2.48 1.55 0.22 0.84 3.60 790 1300Standard 1.40 0.88 0.22 0.84 3.12 730 1200Utility 2"-4" wide 0.64 0.41 0.22 0.84 2.04 670 1100HEM-FIR (NORTH)Select Structural 2"-4" thick 3.30 2.09 0.22 0.77 3.96 1030 1700No. 1/No. 2 2.54 1.49 0.22 0.77 3.48 970 1600No. 3 2" & wider 1.46 0.88 0.22 0.77 2.04 850 1400 NLGAStud 1.97 1.15 0.22 0.77 2.22 850 1400Construction 2"-4" thick 2.92 1.69 0.22 0.77 4.20 910 1500Standard 1.59 0.95 0.22 0.77 3.60 850 1400Utility 2"-4" wide 0.76 0.47 0.22 0.77 2.34 790 1300MIXED MAPLESelect Structural 2.54 1.62 0.29 1.29 2.10 790 1300No. 1 2"-4" thick 1.84 1.15 0.29 1.29 1.68 730 1200No. 2 1.78 1.15 0.29 1.29 1.32 670 1100No. 3 2" & wider 1.02 0.68 0.29 1.29 0.78 610 1000 NELMAStud 1.40 0.88 0.29 1.29 0.84 610 1000Construction 2"-4" thick 2.03 1.28 0.29 1.29 1.74 670 1100Standard 1.14 0.74 0.29 1.29 1.38 610 1000Utility 2"-4" wide 0.57 0.34 0.29 1.29 0.90 550 9003REFERENCE STRENGTHS


12 REFERENCE STRENGTHSTable 3.2Reference Strengths for Visually Graded Dimension LumberDesign values in kips per square inch (ksi) 1Tension Shear Compression Compression ModulusBending parallel parallel perpendicular parallel of GradingSpecies and Size to grain to grain to grain to grain Elasticity Rulescommercial grade Classification E 05 E AgencyF b F t F v F c β F c (5th pct) (mean)MIXED OAKSelect Structural 2.92 1.82 0.24 1.66 2.40 670 1100No. 1 2"-4" thick 2.10 1.35 0.24 1.66 1.98 610 1000No. 2 2.03 1.28 0.24 1.66 1.50 550 900No. 3 2" & wider 1.21 0.74 0.24 1.66 0.90 490 800 NELMAStud 1.59 1.01 0.24 1.66 0.96 490 800Construction 2"-4" thick 2.35 1.49 0.24 1.66 2.04 550 900Standard 1.33 0.81 0.24 1.66 1.56 490 800Utility 2"-4" wide 0.64 0.41 0.24 1.66 1.02 490 800NORTHERN RED OAKSelect Structural 3.56 2.16 0.32 1.84 2.76 850 1400No. 1 2"-4" thick 2.54 1.55 0.32 1.84 2.22 850 1400No. 2 2.48 1.55 0.32 1.84 1.74 790 1300No. 3 2" & wider 1.40 0.88 0.32 1.84 1.02 730 1200 NELMAStud 1.91 1.22 0.32 1.84 1.08 730 1200Construction 2"-4" thick 2.79 1.76 0.32 1.84 2.34 730 1200Standard 1.59 0.95 0.32 1.84 1.80 670 1100Utility 2"-4" wide 0.76 0.47 0.32 1.84 1.20 610 1000NORTHERN SPECIESSelect Structural 2"-4" thick 2.41 1.22 0.19 0.73 2.64 670 1100No. 1/No. 2 1.46 0.74 0.19 0.73 1.98 670 1100No. 3 2" & wider 0.89 0.41 0.19 0.73 1.14 610 1000 NLGAStud 1.14 0.54 0.19 0.73 1.26 610 1000Construction 2"-4" thick 1.71 0.81 0.19 0.73 2.52 610 1000Standard 0.95 0.47 0.19 0.73 2.04 550 900Utility 2"-4" wide 0.44 0.20 0.19 0.73 1.32 550 900NORTHERN WHITE CEDARSelect Structural 1.97 1.22 0.17 0.77 1.80 490 800No. 1 2"-4" thick 1.46 0.88 0.17 0.77 1.44 420 700No. 2 1.40 0.88 0.17 0.77 1.14 420 700No. 3 2" & wider 0.83 0.47 0.17 0.77 0.66 360 600 NELMAStud 1.08 0.68 0.17 0.77 0.72 360 600Construction 2"-4" thick 1.59 1.01 0.17 0.77 1.50 420 700Standard 0.89 0.54 0.17 0.77 1.14 360 600Utility 2"-4" wide 0.44 0.27 0.17 0.77 0.78 360 600


GUIDELINE<strong>LRFD</strong>TOSTRUCTURAL<strong>LRFD</strong> FOR STRUCTURALLUMBER SUPPLEMENTCOMPOSITE LUMBER1313Table 3.2Reference Strengths for Visually Graded Dimension LumberDesign values in kips per square inch (ksi) 1Tension Shear Compression Compression ModulusBending parallel parallel perpendicular parallel of GradingSpecies and Size to grain to grain to grain to grain Elasticity Rulescommercial grade Classification E 05 E AgencyF b F t F v F c β F c (5th pct) (mean)RED MAPLESelect Structural 3.30 2.03 0.30 1.28 2.64 1030 1700No. 1 2"-4" thick 2.35 1.49 0.30 1.28 2.16 970 1600No. 2 2.29 1.42 0.30 1.28 1.68 910 1500No. 3 2" & wider 1.33 0.81 0.30 1.28 0.96 790 1300 NELMAStud 1.78 1.15 0.30 1.28 1.08 790 1300Construction 2"-4" thick 2.67 1.62 0.30 1.28 2.22 850 1400Standard 1.46 0.88 0.30 1.28 1.74 790 1300Utility 2"-4" wide 0.70 0.41 0.30 1.28 1.14 730 1200RED OAKSelect Structural 2.92 1.82 0.24 1.71 2.40 850 1400No. 1 2"-4" thick 2.10 1.35 0.24 1.71 1.98 790 1300No. 2 2.03 1.28 0.24 1.71 1.50 730 1200No. 3 2" & wider 1.21 0.74 0.24 1.71 0.90 670 1100 NELMAStud 1.59 1.01 0.24 1.71 0.96 670 1100Construction 2"-4" thick 2.35 1.49 0.24 1.71 2.04 730 1200Standard 1.33 0.81 0.24 1.71 1.56 670 1100Utility 2"-4" wide 0.64 0.41 0.24 1.71 1.02 610 1000REDWOODClear Structural 4.45 2.70 0.42 1.35 4.44 850 1400Select Structural 2-4" thick 3.43 2.16 0.23 1.35 3.60 850 1400Sel. Struct., open grain 2.79 1.69 0.23 0.88 2.64 670 1100No. 1 2" & wider 2.48 1.55 0.23 1.35 2.88 790 1300No. 1, open grain 1.97 1.22 0.23 0.88 2.16 670 1100No. 2 2.35 1.42 0.23 1.35 2.28 730 1200No. 2, open grain 1.84 1.15 0.23 0.88 1.68 610 1000No. 3 1.33 0.81 0.23 1.35 1.32 670 1100No. 3, open grain 1.08 0.68 0.23 0.88 0.96 550 900 RISStud 1.46 0.88 0.23 0.88 1.08 550 900Construction 2"-4" thick 2.10 1.28 0.23 0.88 2.22 550 900Standard 1.14 0.74 0.23 0.88 1.74 550 900Utility 2"-4" wide 0.57 0.34 0.23 0.88 1.14 490 800MIXED SOUTHERN PINE 2Select Structural 5.21 3.24 0.29 1.18 4.32 970 1600No. 1 2"-4" thick 3.68 2.36 0.29 1.18 3.96 910 1500No. 2 2"-4"wide 3.30 2.09 0.26 1.18 3.96 850 1400No. 3/Stud 1.91 1.22 0.26 1.18 2.28 730 1200 SPIBConstruction 2"-4" thick 2.54 1.62 0.29 1.18 4.08 790 1300Standard 1.40 0.88 0.26 1.18 3.48 730 1200Utility 4" wide 0.70 0.41 0.26 1.18 2.28 670 11003REFERENCE STRENGTHS


14 REFERENCE STRENGTHSTable 3.2Reference Strengths for Visually Graded Dimension LumberDesign values in kips per square inch (ksi) 1Tension Shear Compression Compression ModulusBending parallel parallel perpendicular parallel of GradingSpecies and Size to grain to grain to grain to grain Elasticity Rulescommercial grade Classification E 05 E AgencyF b F t F v F c β F c (5th pct) (mean)MIXED SOUTHERN PINE 2Select Structural 4.70 2.97 0.26 1.18 4.08 970 1600No. 1 2"-4" thick 3.30 2.03 0.26 1.18 3.72 910 1500 SPIBNo. 2 5"-6" wide 2.92 1.82 0.26 1.18 3.72 850 1400No. 3/Stud 1.71 1.08 0.26 1.18 2.10 730 1200MIXED SOUTHERN PINE 2Select Structural 4.45 2.70 0.26 1.18 3.84 970 1600No. 1 2"-4" thick 3.05 1.89 0.26 1.18 3.48 910 1500 SPIBNo. 2 8" wide 2.67 1.69 0.26 1.18 3.48 850 1400No. 3/Stud 1.59 1.01 0.26 1.18 2.04 730 1200MIXED SOUTHERN PINE 2Select Structural 3.81 2.36 0.26 1.18 3.84 970 1600No. 1 2"-4" thick 2.67 1.62 0.26 1.18 3.48 910 1500 SPIBNo. 2 10" wide 2.35 1.49 0.26 1.18 3.48 850 1400No. 3/Stud 1.33 0.88 0.26 1.18 1.98 730 1200MIXED SOUTHERN PINE 2Select Structural 3.56 2.23 0.26 1.18 3.72 970 1600No. 1 2"-4" thick 2.48 1.55 0.26 1.18 3.36 910 1500 SPIBNo. 2 12" wide 2.22 1.42 0.26 1.18 3.36 850 1400No. 3/Stud 1.27 0.81 0.26 1.18 1.92 730 1200SOUTHERN PINE 2Dense Sel. Struct. 7.75 4.46 0.29 1.37 5.40 1150 1900Select Structural 7.24 4.32 0.29 1.18 5.04 1090 1800Non-Dense Sel. Struct. 6.73 3.65 0.29 1.00 4.68 1030 1700No. 1 Dense 5.08 2.97 0.29 1.37 4.80 1090 1800No. 1 2"-4" thick 4.70 2.84 0.29 1.18 4.44 1030 1700No. 1 Non-Dense 4.32 2.43 0.29 1.00 4.08 970 1600No. 2 Dense 2"-4" wide 4.32 2.36 0.26 1.37 4.44 1030 1700No. 2 3.81 2.23 0.26 1.18 3.96 970 1600No. 2 Non-Dense 3.43 2.09 0.26 1.00 3.84 850 1400No. 3/Stud 2.16 1.28 0.26 1.18 2.34 850 1400 SPIBConstruction 2"-4" thick 2.79 1.69 0.29 1.18 4.32 910 1500Standard 1.59 0.95 0.26 1.18 3.60 790 1300Utility 4" wide 0.76 0.47 0.26 1.18 2.34 790 1300SOUTHERN PINE 2Dense Sel. Struct. 6.86 4.05 0.26 1.37 5.16 1150 1900Select Structural 6.48 3.78 0.26 1.18 4.80 1090 1800Non-Dense Sel. Struct. 5.97 3.24 0.26 1.00 4.44 1030 1700No. 1 Dense 4.45 2.57 0.26 1.37 4.56 1090 1800No. 1 2"-4" thick 4.19 2.43 0.26 1.18 4.20 1030 1700No. 1 Non-Dense 3.81 2.16 0.26 1.00 3.84 970 1600 SPIBNo. 2 Dense 5"-6" wide 3.68 2.09 0.26 1.37 4.20 1030 1700No. 2 3.18 1.96 0.26 1.18 3.84 970 1600No. 2 Non-Dense 2.92 1.82 0.26 1.00 3.60 850 1400No. 3/Stud 1.91 1.15 0.26 1.18 2.22 850 1400


GUIDELINE<strong>LRFD</strong>TOSTRUCTURAL<strong>LRFD</strong> FOR STRUCTURALLUMBER SUPPLEMENTCOMPOSITE LUMBER1515Table 3.2Reference Strengths for Visually Graded Dimension LumberDesign values in kips per square inch (ksi) 1Tension Shear Compression Compression ModulusBending parallel parallel perpendicular parallel of GradingSpecies and Size to grain to grain to grain to grain Elasticity Rulescommercial grade Classification E 05 E AgencyF b F t F v F c β F c (5th pct) (mean)SOUTHERN PINE 2Dense Sel. Struct. 6.22 3.65 0.26 1.37 4.92 1150 1900Select Structural 5.84 3.51 0.26 1.18 4.56 1090 1800Non-Dense Sel. Struct. 5.33 2.97 0.26 1.00 4.20 1030 1700No. 1 Dense 4.19 2.36 0.26 1.37 4.32 1090 1800No. 1 2"-4" thick 3.81 2.23 0.26 1.18 3.96 1030 1700 SPIBNo. 1 Non-Dense 3.43 1.96 0.26 1.00 3.72 970 1600No. 2 Dense 8" wide 3.56 1.82 0.26 1.37 4.08 1030 1700No. 2 3.05 1.76 0.26 1.18 3.72 970 1600No. 2 Non-Dense 2.79 1.62 0.26 1.00 3.48 850 1400No. 3/Stud 1.78 1.08 0.26 1.18 2.10 850 1400SOUTHERN PINE 2Dense Sel. Struct. 5.46 3.24 0.26 1.37 4.80 1150 1900Select Structural 5.21 2.97 0.26 1.18 4.44 1090 1800Non-Dense Sel. Struct. 4.70 2.57 0.26 1.00 4.20 1030 1700No. 1 Dense 3.68 2.09 0.26 1.37 4.20 1090 1800No. 1 2"-4" thick 3.30 1.96 0.26 1.18 3.84 1030 1700 SPIBNo. 1 Non-Dense 3.05 1.76 0.26 1.00 3.60 970 1600No. 2 Dense 10" wide 3.05 1.69 0.26 1.37 3.96 1030 1700No. 2 2.67 1.55 0.26 1.18 3.60 970 1600No. 2 Non-Dense 2.41 1.49 0.26 1.00 3.36 850 1400No. 3/Stud 1.52 0.88 0.26 1.18 2.04 850 14003REFERENCE STRENGTHS


16 REFERENCE STRENGTHSTable 3.2Reference Strengths for Visually Graded Dimension LumberDesign values in kips per square inch (ksi) 1Tension Shear Compression Compression ModulusBending parallel parallel perpendicular parallel of GradingSpecies and Size to grain to grain to grain to grain Elasticity Rulescommercial grade Classification E 05 E AgencyF b F t F v F c β F c (5th pct) (mean)SOUTHERN PINE 2Dense Sel. Struct. 5.21 2.97 0.26 1.37 4.68 1150 1900Select Structural 4.83 2.84 0.26 1.18 4.32 1090 1800Non-Dense Sel. Struct. 4.45 2.43 0.26 1.00 4.08 1030 1700No. 1 Dense 3.43 1.96 0.26 1.37 4.08 1090 1800No. 1 2"-4" thick 3.18 1.82 0.26 1.18 3.84 1030 1700No. 1 Non-Dense 2.92 1.62 0.26 1.00 3.60 970 1600 SPIBNo. 2 Dense 12" wide 2.92 1.55 0.26 1.37 3.84 1030 1700No. 2 2.48 1.49 0.26 1.18 3.48 970 1600No. 2 Non-Dense 2.29 1.42 0.26 1.00 3.24 850 1400No. 3/Stud 1.46 0.88 0.26 1.18 1.98 850 1400SOUTHERN PINE 2Dense Struct. 86 2"-4" thick 6.60 4.73 0.45 1.37 4.80 1090 1800Dense Struct. 72 5.59 3.92 0.37 1.37 3.96 1090 1800 SPIBDense Struct. 65 2" & wider 5.08 3.51 0.33 1.37 3.60 1090 1800SOUTHERN PINE 2(wet use)Dense Struct. 86 2-1/2"-4" thick 5.33 3.78 0.42 0.92 3.12 970 1600Dense Struct. 72 4.45 3.24 0.35 0.92 2.64 970 1600 SPIBDense Struct. 65 2-1/2" & wider 4.06 2.84 0.32 0.92 2.40 970 1600SPRUCE-PINE-FIRSel. Struct. 2"-4" thick 3.18 1.82 0.20 0.88 3.36 910 1500No. 1/No. 2 2.22 1.15 0.20 0.88 2.64 850 1400No. 3 2" & wider 1.27 0.68 0.20 0.88 1.50 730 1200 NLGAStud 1.71 0.88 0.20 0.88 1.62 730 1200Construction 2"-4" thick 2.48 1.28 0.20 0.88 3.24 790 1300Standard 1.40 0.74 0.20 0.88 2.64 730 1200Utility 2"-4" wide 0.64 0.34 0.20 0.88 1.74 670 1100SPRUCE-PINE-FIR (SOUTH)Select Structural 3.30 1.55 0.20 0.70 2.88 790 1300No. 1 2"-4" thick 2.16 1.08 0.20 0.70 2.52 730 1200No. 2 1.91 0.88 0.20 0.70 2.34 670 1100 NELMANo. 3 2" & wider 1.08 0.54 0.20 0.70 1.32 610 1000 NSLBStud 1.46 0.68 0.20 0.70 1.44 610 1000 WCLIBConstruction 2"-4" thick 2.16 1.01 0.20 0.70 2.88 610 1000 WWPAStandard 1.21 0.61 0.20 0.70 2.40 550 900Utility 2"-4" wide 0.57 0.27 0.20 0.70 1.56 550 900


GUIDELINE<strong>LRFD</strong>TOSTRUCTURAL<strong>LRFD</strong> FOR STRUCTURALLUMBER SUPPLEMENTCOMPOSITE LUMBER1717Table 3.2Reference Strengths for Visually Graded Dimension LumberDesign values in kips per square inch (ksi) 1Tension Shear Compression Compression ModulusBending parallel parallel perpendicular parallel of GradingSpecies and Size to grain to grain to grain to grain Elasticity Rulescommercial grade Classification E 05 E AgencyF b F t F v F c β F c (5th pct) (mean)WESTERN CEDARSSelect Structural 2.54 1.62 0.22 0.88 2.40 670 1100No. 1 2"-4" thick 1.84 1.15 0.22 0.88 1.98 610 1000No. 2 1.78 1.15 0.22 0.88 1.56 610 1000No. 3 2" & wider 1.02 0.68 0.22 0.88 0.90 550 900 WCLIBStud 1.40 0.88 0.22 0.88 0.96 550 900 WWPAConstruction 2"-4" thick 2.03 1.28 0.22 0.88 2.04 550 900Standard 1.14 0.74 0.22 0.88 1.56 490 800Utility 2"-4" wide 0.57 0.34 0.22 0.88 1.02 490 800WESTERN WOODSSelect Structural 2.22 1.08 0.20 0.70 2.52 730 1200No. 1 2"-4" thick 1.65 0.81 0.20 0.70 2.22 670 1100No. 2 1.65 0.74 0.20 0.70 2.10 610 1000No. 3 2" & wider 0.95 0.47 0.20 0.70 1.20 550 900 WCLIBStud 1.27 0.61 0.20 0.70 1.32 550 900 WWPAConstruction 2"-4" thick 1.84 0.88 0.20 0.70 2.52 610 1000Standard 1.02 0.47 0.20 0.70 2.16 550 900Utility 2"-4" wide 0.51 0.20 0.20 0.70 1.44 490 800WHITE OAKSelect Structural 3.05 1.89 0.32 1.66 2.64 670 1100No. 1 2"-4" thick 2.22 1.35 0.32 1.66 2.16 610 1000No. 2 2.16 1.35 0.32 1.66 1.68 550 900No. 3 2" & wider 1.21 0.74 0.32 1.66 0.96 490 800 NELMAStud 1.65 1.01 0.32 1.66 1.08 490 800Construction 2"-4" thick 2.41 1.49 0.32 1.66 2.22 550 900Standard 1.33 0.88 0.32 1.66 1.74 490 800Utility 2"-4" wide 0.64 0.41 0.32 1.66 1.14 490 800YELLOW POPLARSelect Structural 2.54 1.55 0.22 0.87 2.16 910 1500No. 1 2"-4" thick 1.84 1.15 0.22 0.87 1.74 850 1400No. 2 1.78 1.08 0.22 0.87 1.38 790 1300No. 3 2" & wider 1.02 0.61 0.22 0.87 0.78 730 1200 NSLBStud 1.40 0.88 0.22 0.87 0.84 730 1200Construction 2"-4" thick 2.03 1.28 0.22 0.87 1.80 790 1300Standard 1.14 0.68 0.22 0.87 1.38 670 1100Utility 2"-4" wide 0.51 0.34 0.22 0.87 0.90 670 11003REFERENCE STRENGTHSNotes:1. Design values for all grades are based on a 12" nominal depth with the exception of Stud Grade (6" nominal depth), andConstruction, Standard and Utility Grades (4" nominal depth). See Section 4.2 of this Supplement.2. Size adjustment factors have already been incorporated in the tabulated design values for most thicknesses ofSouthern Pine and Mixed Southern Pine dimension lumber. See Section 4.2 of this Supplement.


18 REFERENCE STRENGTHSTable 3.3Reference Strengths for Visually Graded Timbers (5" x 5" and Larger)Design values in kips per square inch (ksi)Tension Shear Compression Compression ModulusBending parallel parallel perpendicular parallel of GradingSpecies and Size to grain to grain to grain to grain Elasticity Rulescommercial grade Classification E 05 E AgencyF b F t F v F c β F c (5th pct) (mean)BALSAM FIRSelect Structural Beams and 3.43 2.43 0.19 0.63 2.28 850 1400No. 1 Stringers 2.79 2.03 0.19 0.63 1.92 850 1400 NELMANo. 2 1.84 0.95 0.19 0.63 1.20 670 1100 NLSBSelect Structural Posts and 3.18 2.23 0.19 0.63 2.40 850 1400No. 1 Timbers 2.54 1.82 0.19 0.63 2.10 850 1400No. 2 1.46 1.01 0.19 0.63 0.96 670 1100BEECH-BIRCH-HICKORYSelect Structural Beams and 4.19 2.63 0.26 1.49 2.34 910 1500No. 1 Stringers 3.56 1.89 0.26 1.49 1.98 910 1500 NELMANo. 2 2.29 1.22 0.26 1.49 1.26 730 1200Select Structural Posts and 3.94 2.84 0.26 1.49 2.52 910 1500No. 1 Timbers 3.18 2.30 0.26 1.49 2.16 910 1500No. 2 1.84 1.28 0.26 1.49 1.02 730 1200COAST SITKA SPRUCESelect Structural Beams and 2.92 1.82 0.17 0.95 1.86 910 1500No. 1 Stringers 2.41 1.28 0.17 0.95 1.56 910 1500No. 2 1.59 0.88 0.17 0.95 1.02 730 1200 NLGASelect Structural Posts and 2.79 1.96 0.17 0.95 1.98 910 1500No. 1 Timbers 2.22 1.55 0.17 0.95 1.74 910 1500No. 2 1.33 0.95 0.17 0.95 1.20 730 1200DOUGLAS FIR-LARCHDense Sel. Struct. 4.83 2.97 0.24 1.52 3.12 1030 1700Select Structural Beams and 4.06 2.57 0.24 1.30 2.64 970 1600Dense No. 1 Stringers 3.94 2.09 0.24 1.52 2.64 1030 1700No. 1 3.43 1.82 0.24 1.30 2.22 970 1600No. 2 2.22 1.15 0.24 1.30 1.44 790 1300 WCLIBDense Sel. Struct. 4.45 3.11 0.24 1.52 3.24 1030 1700Select Structural Posts and 3.81 2.70 0.24 1.30 2.76 970 1600Dense No. 1 Timbers 3.56 2.57 0.24 1.52 2.88 1030 1700No. 1 3.05 2.23 0.24 1.30 2.40 970 1600No. 2 1.91 1.28 0.24 1.30 1.68 790 1300Dense Sel. Struct. 4.70 2.97 0.24 1.52 3.12 1030 1700Select Structural Beams and 4.06 2.57 0.24 1.30 2.64 970 1600Dense No. 1 Stringers 3.94 2.09 0.24 1.52 2.64 1030 1700 WWPANo. 1 3.43 1.82 0.24 1.30 2.22 970 1600Dense No. 2 2.54 1.35 0.24 1.52 1.68 850 1400No. 2 2.22 1.15 0.24 1.30 1.44 790 1300


GUIDELINE<strong>LRFD</strong>TOSTRUCTURAL<strong>LRFD</strong> FOR STRUCTURALLUMBER SUPPLEMENTCOMPOSITE LUMBER 1919Table 3.3Reference Strengths for Visually Graded Timbers (5" x 5" and Larger)Design values in kips per square inch (ksi)Tension Shear Compression Compression ModulusBending parallel parallel perpendicular parallel of GradingSpecies and Size to grain to grain to grain to grain Elasticity Rulescommercial grade Classification E 05 E AgencyF b F t F v F c β F c (5th pct) (mean)DOUGLAS FIR-LARCHDense Sel. Struct. 4.45 3.11 0.24 1.52 3.24 1030 1700Select Structural Posts and 3.81 2.70 0.24 1.30 2.76 970 1600Dense No. 1 Timbers 3.56 2.57 0.24 1.52 2.88 1030 1700 WWPANo. 1 3.05 2.23 0.24 1.30 2.40 970 1600Dense No. 2 2.03 1.49 0.24 1.52 1.32 850 1400No. 2 1.78 1.28 0.24 1.30 1.14 790 1300DOUGLAS FIR-LARCH (NORTH)Select Structural Beams and 4.06 2.57 0.24 1.30 2.64 970 1600No. 1 Stringers 3.30 1.82 0.24 1.30 2.22 970 1600No. 2 2.22 1.15 0.24 1.30 1.44 790 1300 NLGASelect Structural Posts and 3.81 2.70 0.24 1.30 2.76 970 1600No. 1 Timbers 3.05 2.23 0.24 1.30 2.40 970 1600No. 2 1.84 1.28 0.24 1.30 1.68 790 1300DOUGLAS FIR-SOUTHSelect Structural Beams and 3.94 2.43 0.24 1.08 2.40 730 1200No. 1 Stringers 3.30 1.69 0.24 1.08 2.04 730 1200No. 2 2.10 1.15 0.24 1.08 1.26 610 1000 WWPASelect Structural Posts and 3.56 2.57 0.24 1.08 2.52 730 1200No. 1 Timbers 2.92 2.09 0.24 1.08 2.22 730 1200No. 2 1.65 1.08 0.24 1.08 1.02 610 1000EASTERN HEMLOCKSelect Structural Beams and 3.43 2.50 0.23 1.14 2.28 730 1200No. 1 Stringers 2.92 2.09 0.23 1.14 1.92 730 1200 NELMANo. 2 1.91 1.01 0.23 1.14 1.32 550 900 NSLBSelect Structural Posts and 3.18 2.30 0.23 1.14 2.40 730 1200No. 1 Timbers 2.67 1.89 0.23 1.14 2.10 730 1200No. 2 1.52 1.08 0.23 1.14 0.96 550 900EASTERN HEMLOCK-TAMARACKSelect Structural Beams and 3.56 2.50 0.23 1.15 2.28 730 1200No. 1 Stringers 2.92 2.09 0.23 1.15 1.92 730 1200 NELMANo. 2 1.91 1.01 0.23 1.15 1.20 550 900 NSLBSelect Structural Posts and 3.30 2.36 0.23 1.15 2.40 730 1200No. 1 Timbers 2.67 1.89 0.23 1.15 2.10 730 1200No. 2 1.52 1.08 0.23 1.15 0.96 550 9003REFERENCE STRENGTHS


20 REFERENCE STRENGTHSTable 3.3Reference Strengths for Visually Graded Timbers (5" x 5" and Larger)Design values in kips per square inch (ksi)Tension Shear Compression Compression ModulusBending parallel parallel perpendicular parallel of GradingSpecies and Size to grain to grain to grain to grain Elasticity Rulescommercial grade Classification E 05 E AgencyF b F t F v F c β F c (5th pct) (mean)EASTERN HEMLOCK-TAMARACK (N)Select Structural Beams and 3.68 2.30 0.24 1.15 2.28 790 1300No. 1 Stringers 3.05 1.62 0.24 1.15 1.92 790 1300 NELMANo. 2 1.97 1.08 0.24 1.15 1.20 670 1100 NSLBSelect Structural Posts and 3.43 2.43 0.24 1.15 2.40 790 1300No. 1 Timbers 2.79 1.96 0.24 1.15 2.10 790 1300No. 2 1.65 1.15 0.24 1.15 1.44 670 1100EASTERN SPRUCESelect Structural Beams and 2.67 1.96 0.19 0.81 1.80 850 1400No. 1 Stringers 2.29 1.62 0.19 0.81 1.50 850 1400No. 2 1.46 0.74 0.19 0.81 0.90 610 1000 NELMASelect Structural Posts and 2.54 1.82 0.19 0.81 1.86 850 1400 NSLBNo. 1 Timbers 2.03 1.49 0.19 0.81 1.62 850 1400No. 2 1.14 0.81 0.19 0.81 0.72 610 1000EASTERN WHITE PINESelect Structural Beams and 2.67 1.89 0.19 0.73 1.62 670 1100No. 1 Stringers 2.22 1.62 0.19 0.73 1.38 670 1100No. 2 1.46 0.74 0.19 0.73 0.96 550 900 NELMASelect Structural Posts and 2.48 1.76 0.19 0.73 1.74 670 1100 NSLBNo. 1 Timbers 2.03 1.42 0.19 0.73 1.50 670 1100No. 2 1.14 0.81 0.19 0.73 0.78 550 900HEM-FIRSelect Structural Beams and 3.30 2.03 0.20 0.84 2.22 790 1300No. 1 Stringers 2.67 1.42 0.20 0.84 1.80 790 1300No. 2 1.71 0.95 0.20 0.84 1.20 670 1100 WCLIBSelect Structural Posts and 3.05 2.16 0.20 0.84 2.34 790 1300No. 1 Timbers 2.48 1.76 0.20 0.84 2.04 790 1300No. 2 1.46 1.01 0.20 0.84 1.38 670 1100Select Structural Beams and 3.18 1.96 0.20 0.84 2.22 790 1300No. 1 Stringers 2.67 1.42 0.20 0.84 1.86 790 1300No. 2 1.71 0.88 0.20 0.84 1.14 670 1100 WWPASelect Structural Posts and 3.05 2.16 0.20 0.84 2.34 790 1300No. 1 Timbers 2.41 1.76 0.20 0.84 2.04 790 1300No. 2 1.33 0.95 0.20 0.84 0.90 670 1100HEM-FIR (NORTH)Select Structural Beams and 3.18 1.96 0.20 0.77 2.16 790 1300No. 1 Stringers 2.54 1.35 0.20 0.77 1.80 790 1300No. 2 1.71 0.88 0.20 0.77 1.14 670 1100 NLGASelect Structural Posts and 2.92 2.09 0.20 0.77 2.28 790 1300No. 1 Timbers 2.35 1.69 0.20 0.77 2.04 790 1300No. 2 1.40 1.01 0.20 0.77 1.38 670 1100


GUIDELINE<strong>LRFD</strong>TOSTRUCTURAL<strong>LRFD</strong> FOR STRUCTURALLUMBER SUPPLEMENTCOMPOSITE LUMBER 21 21Table 3.3Reference Strengths for Visually Graded Timbers (5" x 5" and Larger)Design values in kips per square inch (ksi)Tension Shear Compression Compression ModulusBending parallel parallel perpendicular parallel of GradingSpecies and Size to grain to grain to grain to grain Elasticity Rulescommercial grade Classification E 05 E AgencyF b F t F v F c β F c (5th pct) (mean)MIXED MAPLESelect Structural Beams and 2.92 1.89 0.26 1.29 1.74 670 1100No. 1 Stringers 2.48 1.35 0.26 1.29 1.44 670 1100No. 2 1.59 0.88 0.26 1.29 0.90 550 900 NELMASelect Structural Posts and 2.79 1.96 0.26 1.29 1.80 670 1100No. 1 Timbers 2.22 1.62 0.26 1.29 1.56 670 1100No. 2 1.27 0.95 0.26 1.29 0.72 550 900MIXED OAKSelect Structural Beams and 3.43 2.16 0.23 1.66 1.98 610 1000No. 1 Stringers 2.92 1.49 0.23 1.66 1.68 610 1000No. 2 1.84 1.01 0.23 1.66 1.08 490 800 NELMASelect Structural Posts and 3.18 2.30 0.23 1.66 2.10 610 1000No. 1 Timbers 2.54 1.82 0.23 1.66 1.86 610 1000No. 2 1.46 1.08 0.23 1.66 0.84 490 800MIXED SOUTHERN PINE(wet use)Select Structural 5" x 5" 3.81 2.70 0.32 0.78 2.16 790 1300No. 1 and 3.43 2.43 0.32 0.78 1.92 790 1300 SPIBNo. 2 Larger 2.16 1.49 0.27 0.78 1.26 610 1000MOUNTAIN HEMLOCKSelect Structural Beams and 3.43 2.09 0.24 1.19 2.10 670 1100No. 1 Stringers 2.79 1.49 0.24 1.19 1.74 670 1100No. 2 1.84 1.01 0.24 1.19 1.14 550 900 WCLIBSelect Structural Posts and 3.18 2.23 0.24 1.19 2.22 670 1100No. 1 Timbers 2.54 1.82 0.24 1.19 1.92 670 1100No. 2 1.59 1.08 0.24 1.19 1.32 550 900NORTHERN PINESelect Structural Beams and 3.18 2.30 0.19 0.90 2.04 790 1300No. 1 Stringers 2.67 1.89 0.19 0.90 1.74 790 1300No. 2 1.71 0.95 0.19 0.90 1.08 610 1000 NELMASelect Structural Posts and 2.92 2.16 0.19 0.90 2.16 790 1300 NSLBNo. 1 Timbers 2.41 1.76 0.19 0.90 1.92 790 1300No. 2 1.40 1.01 0.19 0.90 0.90 610 1000NORTHERN RED OAKSelect Structural Beams and 4.06 2.57 0.30 1.84 2.28 790 1300No. 1 Stringers 3.43 1.82 0.30 1.84 1.92 790 1300No. 2 2.22 1.15 0.30 1.84 1.20 610 1000 NELMASelect Structural Posts and 3.81 2.70 0.30 1.84 2.40 790 1300No. 1 Timbers 3.05 2.16 0.30 1.84 2.10 790 1300No. 2 1.78 1.28 0.30 1.84 0.96 610 10003REFERENCE STRENGTHS


22 REFERENCE STRENGTHSTable 3.3Reference Strengths for Visually Graded Timbers (5" x 5" and Larger)Design values in kips per square inch (ksi)Tension Shear Compression Compression ModulusBending parallel parallel perpendicular parallel of GradingSpecies and Size to grain to grain to grain to grain Elasticity Rulescommercial grade Classification E 05 E AgencyF b F t F v F c β F c (5th pct) (mean)NORTHERN WHITE CEDARSelect Structural Beams and 2.29 1.62 0.17 0.77 1.44 420 700No. 1 Stringers 1.91 1.35 0.17 0.77 1.20 420 700No. 2 1.27 0.68 0.17 0.77 0.78 360 600 NELMASelect Structural Posts and 2.16 1.55 0.17 0.77 1.56 420 700No. 1 Timbers 1.71 1.22 0.17 0.77 1.32 420 700No. 2 1.02 0.68 0.17 0.77 0.60 360 600PONDEROSA PINESelect Structural Beams and 2.79 1.96 0.19 1.11 1.80 670 1100No. 1 Stringers 2.35 1.35 0.19 1.11 1.50 670 1100No. 2 1.52 0.81 0.19 1.11 0.96 550 900 NLGASelect Structural Posts and 2.54 1.82 0.19 1.11 1.92 670 1100No. 1 Timbers 2.10 1.49 0.19 1.11 1.68 670 1100No. 2 1.21 0.88 0.19 1.11 0.78 550 900RED MAPLESelect Structural Beams and 3.81 2.36 0.29 1.28 2.16 910 1500No. 1 Stringers 3.18 1.69 0.29 1.28 1.80 910 1500No. 2 2.03 1.08 0.29 1.28 1.14 730 1200 NELMASelect Structural Posts and 3.56 2.50 0.29 1.28 2.28 910 1500No. 1 Timbers 2.92 2.03 0.29 1.28 1.98 910 1500No. 2 1.65 1.15 0.29 1.28 0.90 730 1200RED OAKSelect Structural Beams and 3.43 2.16 0.23 1.71 1.98 730 1200No. 1 Stringers 2.92 1.49 0.23 1.71 1.68 730 1200No. 2 1.84 1.01 0.23 1.71 1.08 610 1000 NELMASelect Structural Posts and 3.18 2.30 0.23 1.71 2.10 730 1200No. 1 Timbers 2.54 1.82 0.23 1.71 1.86 730 1200No. 2 1.46 1.08 0.23 1.71 0.84 610 1000RED PINESelect Structural Beams and 2.67 1.69 0.19 0.92 1.74 670 1100No. 1 Stringers 2.22 1.22 0.19 0.92 1.44 670 1100No. 2 1.46 0.81 0.19 0.92 0.90 550 900 NLGASelect Structural Posts and 2.54 1.82 0.19 0.92 1.86 670 1100No. 1 Timbers 2.03 1.49 0.19 0.92 1.62 670 1100No. 2 1.21 0.88 0.19 0.92 1.14 550 900REDWOODClear Heart Structural Beams andor Clear Structural Stringers 4.70 3.38 0.39 1.35 3.96 790 1300Select Structural 3.56 2.57 0.27 1.35 2.88 790 1300 RISNo. 1 Posts and 3.05 2.16 0.27 1.35 2.52 790 1300No. 2 Timbers 2.48 1.76 0.27 1.35 2.16 670 1100


GUIDELINE<strong>LRFD</strong>TOSTRUCTURAL<strong>LRFD</strong> FOR STRUCTURALLUMBER SUPPLEMENTCOMPOSITE LUMBER 23 23Table 3.3Reference Strengths for Visually Graded Timbers (5" x 5" and Larger)Design values in kips per square inch (ksi)Tension Shear Compression Compression ModulusBending parallel parallel perpendicular parallel of GradingSpecies and Size to grain to grain to grain to grain Elasticity Rulescommercial grade Classification E 05 E AgencyF b F t F v F c β F c (5th pct) (mean)SITKA SPRUCESelect Structural Beams and 3.05 1.82 0.20 0.90 1.98 790 1300No. 1 Stringers 2.54 1.35 0.20 0.90 1.62 790 1300No. 2 1.65 0.88 0.20 0.90 1.08 610 1000 WCLIBSelect Structural Posts and 2.92 2.03 0.20 0.90 2.10 790 1300No. 1 Timbers 2.35 1.62 0.20 0.90 1.80 790 1300No. 2 1.40 0.95 0.20 0.90 1.26 610 1000SOUTHERN PINE(Wet Use)Dense Sel. Structural 4.45 3.24 0.32 0.92 2.64 970 1600Select Structural 3.81 2.70 0.32 0.78 2.28 910 1500No. 1 Dense 3.94 2.84 0.32 0.92 2.34 970 1600No. 1 3.43 2.43 0.32 0.78 1.98 910 1500No. 2 Dense 5" x 5" 2.48 1.76 0.29 0.92 1.50 790 1300 SPIBNo. 2 & 2.16 1.49 0.29 0.78 1.26 730 1200Dense Struct. 86 Larger 5.33 3.78 0.42 0.92 3.12 970 1600Dense Struct. 72 4.45 3.24 0.35 0.92 2.64 970 1600Dense Struct. 65 4.06 2.84 0.32 0.92 2.40 970 1600SPRUCE-PINE-FIRSelect Structural Beams and 2.79 1.76 0.19 0.88 1.86 790 1300No. 1 Stringers 2.29 1.22 0.19 0.88 1.50 790 1300No. 2 1.52 0.81 0.19 0.88 1.02 610 1000 NLGASelect Structural Posts and 2.67 1.89 0.19 0.88 1.92 790 1300No. 1 Timbers 2.16 1.49 0.19 0.88 1.68 790 1300No. 2 1.27 0.88 0.19 0.88 1.20 610 1000SPRUCE-PINE-FIR (SOUTH)Select Structural Beams and 2.67 1.69 0.19 0.70 1.62 730 1200No. 1 Stringers 2.29 1.22 0.19 0.70 1.38 730 1200 NELMANo. 2 1.46 0.81 0.19 0.70 0.84 610 1000 NSLBSelect Structural Posts and 2.54 1.82 0.19 0.70 1.68 730 1200 WWPANo. 1 Timbers 2.03 1.49 0.19 0.70 1.50 730 1200No. 2 0.89 0.61 0.19 0.70 0.54 610 10003REFERENCE STRENGTHS


24 REFERENCE STRENGTHSTable 3.3Reference Strengths for Visually Graded Timbers (5" x 5" and Larger)Design values in kips per square inch (ksi)Tension Shear Compression Compression ModulusBending parallel parallel perpendicular parallel of GradingSpecies and Size to grain to grain to grain to grain Elasticity Rulescommercial grade Classification E 05 E AgencyF b F t F v F c β F c (5th pct) (mean)WESTERN CEDARSSelect Structural Beams and 2.92 1.82 0.20 0.88 2.10 610 1000No. 1 Stringers 2.48 1.28 0.20 0.88 1.74 610 1000No. 2 1.59 0.88 0.20 0.88 1.14 490 800 WCLIBSelect Structural Posts and 2.79 1.96 0.20 0.88 2.22 610 1000No. 1 Timbers 2.22 1.62 0.20 0.88 1.92 610 1000No. 2 1.40 0.95 0.20 0.88 1.32 490 800Select Structural Beams and 2.92 1.89 0.20 0.88 2.10 610 1000No. 1 Stringers 2.48 1.28 0.20 0.88 1.74 610 1000No. 2 1.59 0.88 0.20 0.88 1.14 490 800 WWPASelect Structural Posts and 2.79 1.96 0.20 0.88 2.22 610 1000No. 1 Timbers 2.22 1.62 0.20 0.88 1.92 610 1000No. 2 1.27 0.95 0.20 0.88 0.90 490 800WESTERN CEDARS (NORTH)Select Structural Beams and 2.92 1.82 0.19 0.88 2.04 610 1000No. 1 Stringers 2.35 1.28 0.19 0.88 1.68 610 1000No. 2 1.59 0.81 0.19 0.88 1.08 490 800 NLGASelect Structural Posts and 2.67 1.89 0.19 0.88 2.16 610 1000No. 1 Timbers 2.22 1.55 0.19 0.88 1.92 610 1000No. 2 1.27 0.95 0.19 0.88 1.32 490 800WESTERN HEMLOCKSelect Structural Beams and 3.56 2.23 0.24 0.85 2.40 850 1400No. 1 Stringers 2.92 1.55 0.24 0.85 2.04 850 1400No. 2 1.91 1.01 0.24 0.85 1.32 670 1100 WCLIBSelect Structural Posts and 3.30 2.36 0.24 0.85 2.64 850 1400No. 1 Timbers 2.67 1.89 0.24 0.85 2.28 850 1400No. 2 1.65 1.15 0.24 0.85 1.56 670 1100WESTERN HEMLOCK (NORTH)Select Structural Beams and 3.56 2.23 0.20 0.85 2.40 850 1400No. 1 Stringers 2.92 1.55 0.20 0.85 2.04 850 1400No. 2 1.91 1.01 0.20 0.85 1.32 670 1100 NLGASelect Structural Posts and 3.30 2.36 0.20 0.85 2.64 850 1400No. 1 Timbers 2.67 1.89 0.20 0.85 2.28 850 1400No. 2 1.65 1.15 0.20 0.85 1.56 670 1100WESTERN WHITE PINESelect Structural Beams and 2.67 1.62 0.17 0.78 1.86 790 1300No. 1 Stringers 2.16 1.15 0.17 0.78 1.50 790 1300No. 2 1.40 0.74 0.17 0.78 0.96 610 1000 NLGASelect Structural Posts and 2.48 1.76 0.17 0.78 1.92 790 1300No. 1 Timbers 1.97 1.42 0.17 0.78 1.68 790 1300No. 2 1.14 0.81 0.17 0.78 1.20 610 1000


GUIDELINE<strong>LRFD</strong>TOSTRUCTURAL<strong>LRFD</strong> FOR STRUCTURALLUMBER SUPPLEMENTCOMPOSITE LUMBER 2525Table 3.3Reference Strengths for Visually Graded Timbers (5" x 5" and Larger)Design values in kips per square inch (ksi)Tension Shear Compression Compression ModulusBending parallel parallel perpendicular parallel of GradingSpecies and Size to grain to grain to grain to grain Elasticity Rulescommercial grade Classification E 05 E AgencyF b F t F v F c β F c (5th pct) (mean)WESTERN WOODSSelect Structural Beams and 2.67 1.69 0.19 0.70 1.62 670 1100No. 1 Stringers 2.29 1.22 0.19 0.70 1.38 670 1100No. 2 1.46 0.81 0.19 0.70 0.84 550 900 WWPASelect Structural Posts and 2.54 1.82 0.19 0.70 1.68 670 1100No. 1 Timbers 2.03 1.49 0.19 0.70 1.50 670 1100No. 2 0.89 0.61 0.19 0.70 0.54 550 900WHITE OAKSelect Structural Beams and 3.56 2.23 0.30 1.66 2.16 610 1000No. 1 Stringers 3.05 1.55 0.30 1.66 1.86 610 1000No. 2 1.91 1.01 0.30 1.66 1.14 490 800 NELMASelect Structural Posts and 3.30 2.36 0.30 1.66 2.28 610 1000No. 1 Timbers 2.67 1.89 0.30 1.66 1.98 610 1000No. 2 1.52 1.08 0.30 1.66 0.96 490 8003REFERENCE STRENGTHS


26 REFERENCE STRENGTHSTable 3.4Reference Bearing Design Strengths for Sawn LumberDry Service ConditionsSpecies Wet Service 5" x 5" 2" to 4"Combination Conditions 1 & Larger thickFg (ksi) Fg (ksi) Fg (ksi)ASPEN 1.78 -- 2.66BALSAM FIR 2.14 2.35 3.19BEECH-BIRCH-HICKORY 2.83 3.12 4.25COAST SITKA SPRUCE 2.28 2.50 3.41COAST SPECIES 2.28 -- 3.41COTTONWOOD 1.82 -- 2.76DOUGLAS FIR-LARCH (DENSE) 3.77 4.15 5.66DOUGLAS FIR-LARCH 3.24 3.55 4.85DOUGLAS FIR-LARCH (NORTH) 3.22 3.55 4.85DOUGLAS FIR-SOUTH 2.93 3.22 4.37EASTERN HEMLOCK 2.74 3.02 --EASTERN HEMLOCK-TAMARACK 2.76 3.05 4.15EASTERN HEMLOCK-TAMARACK (NORTH) 2.78 3.07 4.18EASTERN SOFTWOODS 2.14 -- 3.22EASTERN SPRUCE 2.33 2.57 3.50EASTERN WHITE PINE 2.16 2.38 3.26EASTERN WHITE PINE (NORTH) 2.30 -- 3.46HEM-FIR 2.66 2.93 4.01HEM-FIR (NORTH) 2.78 3.07 4.20MIXED MAPLE 2.09 2.30 3.14MIXED OAK 2.42 2.66 3.65MIXED SOUTHERN PINE 3.05 3.34 4.56MOUNTAIN HEMLOCK 2.57 2.81 --NORTHERN PINE 2.50 2.76 3.77NORTHERN RED OAK 2.76 3.05 4.15NORTHERN SPECIES 2.11 -- 3.17NORTHERN WHITE CEDAR 1.78 1.94 2.66PONDEROSA PINE 2.52 2.78 3.79RED MAPLE 2.64 2.90 3.96RED OAK 2.42 2.66 3.65RED PINE 2.11 2.33 3.17REDWOOD (CLOSE GRAIN) 3.74 4.13 5.62REDWOOD (OPEN GRAIN) 2.76 3.05 4.15SITKA SPRUCE 2.38 2.62 3.55SOUTHERN PINE (DENSE) 3.70 4.06 5.54SOUTNERN PINE 3.17 3.48 4.73SPRUCE-PINE-FIR 2.26 2.50 3.38SPRUCE-PINE-FIR (SOUTH) 1.94 2.16 2.93WESTERN CEDARS 2.54 2.81 3.82WESTERN CEDARS (NORTH) 2.50 2.74 3.74WESTERN HEMLOCK 2.98 3.26 4.46WESTERN HEMLOCK (NORTH) 2.98 3.26 4.46WESTERN WHITE PINE 2.23 2.47 3.36WESTERN WOODS 1.94 2.16 2.93WHITE OAK 2.64 2.90 3.96YELLOW POPLAR 2.14 -- 3.22Note 1. Wet service factor (C M ) has been already been applied.Note 1. Wet service factor (C M ) has already been applied.


GUIDELINE<strong>LRFD</strong>TOSTRUCTURAL<strong>LRFD</strong> FOR STRUCTURALLUMBER SUPPLEMENTCOMPOSITE LUMBER2727Table 3.5Reference Strengths for Visually Graded DeckingDesign values in kips per square inch (ksi) 1Compression ModulusBending perpendicular of GradingSpecies and Size Single Repetitive to grain Elasticity Rulescommercial grade Classification Member Member E AgencyF b C r F b F c β (mean)BALSAM FIRSelect 2"-4" thick -- 4.19 -- 1500 NELMACommercial 4"-12" wide -- 3.56 -- 1300COAST SITKA SPRUCESelect 2"-4" thick 3.18 3.65 0.95 1700 NLGACommercial 6" & wider 2.67 3.07 0.95 1500COAST SPECIESSelect 2"-4" thick 3.18 3.65 0.77 1500 NLGACommercial 6" & wider 2.67 3.07 0.77 1400DOUGLAS FIR-LARCHSelect Dex 2"-4" thick 4.45 5.11 1.30 1800 WCLIBCommercial Dex 6"-8" wide 3.68 4.24 1.30 1700Selected 2"-4" thick 4.45 5.11 1.30 1800 WWPACommercial 4"-12" wide 3.68 4.24 1.30 1700DOUGLAS FIR-LARCH (NORTH)Select 2"-4" thick 4.45 5.11 1.30 1800 NLGACommercial 6" & wider 3.68 4.24 1.30 1700DOUGLAS FIR-SOUTHSelected 2"-4" thick 4.45 5.11 1.08 1400 WWPACommercial 4"-12" wide 3.56 4.09 1.08 1300EASTERN HEMLOCK-TAMARACKSelect 2"-4" thick -- 4.32 -- 1300 NELMACommercial 4"-12" wide -- 3.68 -- 1100EASTERN HEMLOCK-TAMARACK (NORTH)Select 2"-4" thick 3.81 4.38 1.15 1300 NLGACommercial 6" & wider 3.18 3.65 1.15 1100EASTERN SPRUCESelect 2"-4" thick -- 3.30 -- 1500 NELMACommercial 4"-12" wide -- 2.79 -- 1400EASTERN WHITE PINESelect 2"-4" thick -- 3.30 -- 1200 NELMACommercial 4"-12" wide -- 2.79 -- 1100EASTERN WHITE PINE (NORTH)Select 2"-4" thick 2.29 2.63 0.73 1200 NLGACommercial 6" & wider 1.97 2.26 0.73 1100HEM-FIRSelect Dex 2"-4" thick 3.56 4.09 0.84 1500 WCLIBCommercial Dex 6"-8" wide 2.92 3.36 0.84 1400Selected 2"-4" thick 3.56 4.09 0.84 1500 WWPACommercial 4"-12" wide 2.92 3.36 0.84 1400HEM-FIR (NORTH)Select 2"-4" thick 3.43 3.94 0.77 1500 NLGACommercial 6" & wider 2.79 3.21 0.77 14003REFERENCE STRENGTHS


28 REFERENCE STRENGTHSTable 3.5Reference Strengths for Visually Graded DeckingDesign values in kips per square inch (ksi) 1Compression ModulusBending perpendicular of GradingSpecies and Size Single Repetitive to grain Elasticity Rulescommercial grade Classification Member Member E AgencyF b C r F b F c β (mean)NORTHERN PINESelect 2"-4" thick -- 3.94 -- 1400 NELMACommercial 4"-12" wide -- 3.30 -- 1300NORTHERN SPECIESSelect 2"-4" thick 2.29 2.63 0.73 1100 NLGACommercial 6" & wider 1.97 2.26 0.73 1000NORTHERN WHITE CEDARSelect 2"-4" thick -- 2.79 -- 800 NELMACommercial 4"-12" wide -- 2.41 -- 700PONDEROSA PINESelect 2"-4" thick 3.05 3.51 1.11 1300 NLGACommercial 6" & wider 2.54 2.92 1.11 1100RED PINESelect 2"-4" thick 2.92 3.36 0.92 1300 NLGACommercial 6" & wider 2.48 2.85 0.92 1200REDWOODSelect, close grain 2"-4" thick 4.70 5.40 -- 1400 RISSelect 6" & wider 3.68 4.24 -- 1100Commercial 3.05 3.51 -- 1000Deck Heart and 2" thick; 4" wide 1.02 1.17 0.87 900Deck Common 2" thick, 6" wide 1.78 2.04 0.87 900SITKA SPRUCESelect 2"-4" thick 3.30 3.80 0.90 1500 WCLIBCommercial 4"-12" wide 2.79 3.21 0.90 1300SOUTHERN PINEDense Standard 2"-4" thick 5.08 5.84 1.37 1800Dense Select 2" & wider 4.19 4.82 1.37 1600 SPIBSelect 3.56 4.09 1.18 1600Dense Commercial 4.19 4.82 1.37 1600Commercial 3.56 4.09 1.18 1600SOUTHERN PINEwet useDense Standard 2-1/2"-4" thick 4.06 4.67 0.92 1600Dense Select 2" & wider 3.43 3.94 0.92 1400Select 2.92 3.36 0.78 1400 SPIBDense Commercial 3.43 3.94 0.92 1400Commercial 2.92 3.36 0.78 1400


GUIDELINE<strong>LRFD</strong>TOSTRUCTURAL<strong>LRFD</strong> FOR STRUCTURALLUMBER SUPPLEMENTCOMPOSITE LUMBER 29 29Table 3.5Reference Strengths for Visually Graded DeckingDesign values in kips per square inch (ksi) 1Compression ModulusBending perpendicular of GradingSpecies and Size Single Repetitive to grain Elasticity Rulescommercial grade Classification Member Member E AgencyF b C r F b F c β (mean)SPRUCE-PINE-FIRSelect 2"-4" thick 3.05 3.51 0.88 1500 NLGACommercial 6" & wider 2.54 2.92 0.88 1300SPRUCE-PINE-FIR (SOUTH)Selected 2"-4" thick 2.92 3.36 0.70 1400 NELMACommercial 4"-12" wide 2.41 2.77 0.70 1200 WWPAWESTERN CEDARSSelect Dex 2"-4" thick 3.18 3.65 0.88 1100 WCLIBCommercial Dex 6" -8" wide 2.67 3.07 0.88 1000Selected 2"-4" thick 3.18 3.65 0.88 1100 WWPACommercial 4"-12" wide 2.67 3.07 0.88 1000WESTERN CEDARS (NORTH)Select 2"-4" thick 3.05 3.51 0.88 1100 NLGACommercial 6" & wider 2.67 3.07 0.88 1000WESTERN HEMLOCKSelect 2"-4" thick 3.81 4.38 0.85 1600 WCLIBCommercial 6" -8" wide 3.30 3.80 0.85 1400WESTERN HEMLOCK (NORTH)Select, close grain 2"-4" thick 3.81 4.38 0.85 1600 NLGASelect 6" & wider 3.30 3.80 0.85 1400WESTERN WHITE PINESelect 2"-4" thick 2.79 3.21 0.78 1400 NLGACommercial 6" & wider 2.35 2.70 0.78 1300WESTERN WOODSSelected 2"-4" thick 2.92 3.36 0.70 1200 WWPACommercial 6" & wider 2.41 2.77 0.70 11003REFERENCE STRENGTHS1 Bending values are tabulated for a 4" member thickness. Multiply the bending value by the flat use factor (Table 4.5) for2" and 3" thick decking.


30REFERENCE STRENGTHS


<strong>LRFD</strong> STRUCTURAL LUMBER SUPPLEMENT31DESIGNADJUSTMENTFACTORS44.1 General 324.2 Use of Adjustment Factors 32Table 4.1 Wet Service Factor, C M ................................................................. 34Table 4.2 Temperature Factor, C t ................................................................. 34Table 4.3 Size Factor, C F ........................................................................................ 35Table 4.4 Shear Stress Factor, C H ................................................................ 36Table 4.5 Flat Use Factor, C fu ........................................................................... 36


32 DESIGN ADJUSTMENT FACTORS4.1 GeneralTwo alternative approaches may be used to generatemember design resistance. With the calculation method,reference strengths are multiplied by adjustment factorsand section properties to obtain member resistances. Withthe tabulation method, values which are fully factoredand adjusted for a given set of conditions are presented inthe tables.The member selection tables in Chapter 5 include precalculated<strong>LRFD</strong> factored resistance values for referenceconditions of use. For special design cases, an alternativeapproach permits the use of reference strength values(from Chapter 3), modified appropriately by the adjustmentfactors included in this chapter.The adjustment factors provided in this chapter arefor applications outside the reference end-use conditionsor for member configuration effects (i.e., flat use). Whenone or more of the specific end-use or member configurationconditions fall outside the range of the reference conditionsdefined in AF&PA/ASCE 16-95 Section 2.6, theseadjustment factors shall be used to modify the referencestrengths. Adjustment factors for the effects of moisture,temperature, size, shear stress and flat use are provided inthis supplement.4.2 Use of Adjustment FactorsTensionThe unfactored resistances for tension members canbe computed by the following equation:T′ = F′AwheretT′ is the adjusted tension resistance (unfactored), F t ′is the adjusted tension strength and A is the cross sectionalarea.The adjusted tension strength is computed by multiplyingthe reference strength by a series of adjustmentfactors.The reference values for F t are tabulated in Chapter 3of this supplement for all species and grades listed in the1991 NDS.andFtN = F(C t MCC t ptCrtC F)C M is 1.0C t is 1.0C pt is 1.0for 19% MC and less, or as shown in Table4.1 otherwiseunless temperatures exceed 100°F for extendedperiods of time, or as shown in Table4.2 otherwisefor members that are untreated orpreservatively treated in accordance with approvedstandardsC rt is 1.0for members that are not fire-retardanttreated. For fire-retardant treated members,the value of C rt shall be established by thesupplier of the treated products or treatmentchemicalsC F is as shown in Table 4.3CompressionThe unfactored resistances for compression memberscan be computed by the following equation:whereP′ = F cN AP′ is the adjusted compression resistance (unfactored),F c ′ is the adjusted compression strength and A is the crosssectional area.The adjusted compression strength is computed bymultiplying the reference strength by a series of adjustmentfactors.The reference values for F c are tabulated in Chapter 3of this supplement for all species and grades listed in the1991 NDS.andFcN = Fc(CMCtCptCrtCFC P)C M is 1.0for 19% MC and less, or as shown in Table4.1 otherwise


<strong>LRFD</strong> STRUCTURAL LUMBER SUPPLEMENT33C t is 1.0C pt is 1.0C rt is 1.0unless temperatures exceed 100°F for extendedperiods of time, or as shown in Table4.2 otherwisefor members that are untreated orpreservatively treated in accordance with approvedstandardsfor members that are not fire-retardant treated.For fire-retardant treated members, the valueof C rt shall be established by the supplier ofthe treated products or treatment chemicalsC F is as shown in Table 4.3C P is 1.0for fully supported or “zero length” columns,or as given in AF&PA/ASCE 16-95 Section4.3 otherwiseBending (Moment and Shear)The unfactored resistances for bending members canbe computed by the following equations:For moment:M′ = Fb N SFor shear:V ′ = F vN I bQwhereM′ and V′ are the adjusted moment resistance(unfactored) and adjusted shear resistance (unfactored),F b ′ and F v ′ are the adjusted bending strength and adjustedshear strength, S is the section modulus, I is the momentof inertia, b is the member width and Q is the staticalmoment.The adjusted bending and shear strengths are computedby multiplying the reference strengths by a seriesof adjustment factors.The reference values for F b and F v are tabulated inChapter 3 of this supplement for all species and gradeslisted in the 1991 NDS.F N = F ( C C C C C C C C C )b b M t pt rt L F fu r fC M is 1.0C t is 1.0C pt is 1.0C rt is 1.0C r is 1.15for 19% MC and less, or as shown in Table4.1 otherwiseunless temperatures exceed 100°F for extendedperiods of time, or as shown in Table4.2 otherwisefor members that are untreated or arepreservatively treated in accordance with approvedstandardsfor members that are not fire-retardant treated.For fire-retardant treated members, the valueof C rt shall be established by the supplier ofthe treated products or treatment chemicalsfor members used in a repetitive assembly asdefined in AF&PA/ASCE 16-95 Section 5.3,or 1.00 otherwiseC F is as shown in Table 4.3C L is 1.0C f is 1.0C H is 1.0C fu is 1.0for fully supported beams, or as given inAF&PA/ASCE 16-95 Section 5.2 otherwisefor rectangular members loaded along a principalaxis, or as given in AF&PA/ASCE 16-95Section 5.1 otherwisefor members with maximum splits or shakes,or as shown in Table 4.4 otherwisefor members loaded edgewise, or as shownin Table 4.5 for members loaded flatwiseCombined Axial & FlexuralThe resistances for members under combined axialand flexural loading are based upon the equations inAF&PA/ASCE 16-95 Chapter 6. Users are directed tothat section and to the discussion of tension, compressionand bending above.BearingThe required bearing areas of members are computedbased upon the following equations:4DESIGN ADJUSTMENT FACTORSandF N = F ( C C C )vv M t HFor end bearing:whereP N=F N Ag g g


34 DESIGN ADJUSTMENT FACTORSandFgN = Fg(CtCptC rt)C t is 1.0C pt is 1.0C rt is 1.0For side bearing:whereP⊥N=F ⊥NAcunless temperatures exceed 100°F for extendedperiods of time, or as shown in Table4.2 otherwisefor members that are untreated orpreservatively treated in accordance with approvedstandardsfor members that are not fire-retardant treated.For fire-retardant treated members, the valueof C rt shall be established by the supplier ofthe treated products or treatment chemicalsgF N = F (C CC C C )c⊥c⊥M t pt rt bandC M is 1.0C t is 1.0C pt is 1.0C rt is 1.0C b is 1.0for 19% MC and less, or as shown in Table4.1 otherwiseunless temperatures exceed 100°F for extendedperiods of time, or as shown in Table4.2 otherwisefor members that are untreated orpreservatively treated in accordance with approvedstandardsfor members that are not fire-retardant treated.For fire-retardant treated members, the valueof C rt shall be established by the supplier ofthe treated products or treatment chemicalsfor all members, with an increase permittedat the ends of beams as given in AF&PA/ASCE 16-95 Section 4.5.Table 4.1Wet Service Factor, C MNominalThickness F b # 2.92 1 ksi F b > 2.92 1 ksi F t F c # 1.80 1 ksi F c > 1.80 1 ksi F v F cz E, E 054 in. or less 1.00 0.85 1.00 1.00 0.80 0.97 0.67 0.90over 4 in. 1.00 1.00 1.00 0.91 0.91 1.00 0.67 1.001Size adjusted reference strengths.Table 4.2Temperature Factor, C tEnd-Use Sustained Temperature, °FProperty Moisture Condition 100 < T # 125 125 < T # 150E, E 05 Dry 0.9 0.9Wet 0.9 0.9Other Properties Dry 0.8 0.7and Connections Wet 0.7 0.5Note: No adjustment is needed unless temperatures exceed 100°F for extended periods of time. The adjustments are not required in applications where diurnaltemperatures may exceed 100°F from time to time.


<strong>LRFD</strong> STRUCTURAL LUMBER SUPPLEMENT35Table 4.3 Size Factor, C F1,2,3F bNominal ThicknessGrades Width 2" & 3" 4" F tF c4" & less 1.5 1.5 1.5 1.15Sel. Struct., 5" 1.4 1.4 1.4 1.1No. 1 & Btr., 6" 1.3 1.3 1.3 1.1No. 1, No. 2, 8" 1.2 1.3 1.2 1.054No. 3 10" 1.1 1.2 1.1 1.012" 1.0 1.1 1.0 1.0$14" 0.9 1.0 0.9 0.94" & less 1.1 1.1 1.1 1.05Stud 5" & 6" 1.0 1.0 1.0 1.08" & wider Use No. 3 grade base values and size factorsConst. Stand. 4" & less 1.0 1.0 1.0 1.04" 1.0 1.0 1.0 1.0Utility2" & 3" 0.4 --- 0.4 0.6DESIGN ADJUSTMENT FACTORS1For Southern Pine and Mixed Southern Pine dimension lumber (reference strengths in Table 3.2), the value of C F is 1.0 for all properties and all sizes 12" in widthand less, except for material 4" in thickness and 8" and wider, where C F is 1.1 for F b .2For mechanically graded dimension lumber (both MSR and MEL, reference strengths in Table 3.1), the value of C F is 1.0 for all properties and all sizes.3For members with reference strength values listed in Table 3.3, C F for F b is computed as (12/d) 1/9 $ 1.0, where d is the depth of the member. C F for other propertiesis 1.0".


36 DESIGN ADJUSTMENT FACTORSTable 4.4Shear Stress Factor, C HLength of split on wideface of 2" (nominal)thick lumberC HLength of split on wideface of 3" (nominal) andthicker lumberC HSize of shake 1 in2" (nominal) andthicker lumberC Hno split 2.00 no split 2.00 no shake 2.001/2 x wide face 1.67 1/2 x narrow face 1.67 1/6 x narrow face 1.673/4 x wide face 1.50 3/4 x narrow face 1.50 1/4 x narrow face 1.501 x wide face 1.33 1 x narrow face 1.33 1/3 x narrow face 1.33$ 1-1/2 x wide face 1.00 $ 1-1/2 x narrow face 1.00 $ 1/2 x narrow face 1.001Shake is measured at the end between lines enclosing the shake and perpendicular to the loaded face.Table 4.5Flat Use Factor, C fuWidthThickness2" and 3" 4"2" & 3" 1.00 ---4" 1.10 1.005" 1.10 1.056" 1.15 1.058" 1.15 1.0510" & wider 1.20 1.10Decking 1.10 (2"); 1.04 (3") 1.00


<strong>LRFD</strong> STRUCTURAL LUMBER SUPPLEMENT37MEMBERSELECTIONTABLES55.1 General 385.2 Selection Table Checklists 385.3 Selection Tables 39Table 5.1 Tension Member Selection Tables, StructuralLumber ................................................................... 40Table 5.2 Stud Wall Selection Table, StructuralLumber ................................................................... 41Table 5.3 Column Selection Tables, Timbers ....................... 42Table 5.4 Bending Member (Joist) Selection Tables,Structural Lumber ................................................ 45Table 5.5 Bending Member (Beam) Selection Tables,Timbers ................................................................... 46Table 5.6 Combined Loading Stud Wall Selection Tables,Structural Lumber ................................................ 48


38 MEMBER SELECTION TABLES5.1 GeneralMember selection tables provide factored resistancevalues that include all factors needed for many commondesigns. Before using the selection tables, please refer tothe checklists to be certain that the tabulated values areappropriate for your application.The tables in this chapter provide factored referenceresistance values for structural lumber and timber. Factoredmoment resistance, λφ b M′, factored shear resistance,λφ v V′,and bending stiffness, EI, are provided for strongaxis bending. Factored tension resistance, λφ t T′ and factoredcompression resistance, λφ c P′ are also tabulated.Note that AF&PA/ASCE 16-95 uses E 05 as the modulusof elasticity value for several stability-related equations.In this supplement, E 05 values are tabulated basedon assumptions similar to those used in allowable stressdesign (i.e., normal distributions and coefficients of variationof 0.25, 0.15 and 0.11 for visually graded, MEL andMSR lumber, respectively).5.2 Selection Table ChecklistsChecklist for all member types:The selection tables provide values for factored resistance for common species, grades and sizes of members.The tabulated values apply to members that satisfy the following conditions:√ “dry” service conditions (C M = 1.0)√ “normal” temperature range (C t = 1.0)√ untreated material (C pt = 1.0; C rt = 1.0)√ time effect factor based on “live” (L or L r ) or “snow” (S) combination (λ = 0.80)In addition, the beam and joist selection tables require the following check:√ fully laterally supported (C L = 1.0)The column selection tables require the following check:√ end conditions pin-pinIf the answer to any of these questions is NO, the selection tables should NOT be used directly. Forthese cases the designer should refer to the flowchart (Chapter 1) and follow the procedures for manualcalculation of structural lumber strength.


GUIDELINE<strong>LRFD</strong>TOSTRUCTURAL<strong>LRFD</strong> FOR STRUCTURALLUMBER SUPPLEMENTCOMPOSITE LUMBER 3939For manual calculation, two approaches are possible:1) review the design equations in the chapter and modifythe tabulated values as necessary; or 2) compute factoredresistance directly from the reference strength values andadjustment factors.To compute the factored resistance for a specific condition,apply the design equations directly. Referencestrength values and design adjustment factors are providedin Chapters 3 and 4 of this supplement, respectively.5.3 Selection TablesThe selection tables are provided in the same order asthe information in the previous sections, which followsthe same order as in the AF&PA/ASCE 16-95 standard:Table 5.1 = tension membersTable 5.2 = studs (axial compression load only)Table 5.3 = compression members (columns)Table 5.4 = joistsTable 5.5 = beamsTable 5.6 = studs (combined axial compression& bending)Refer to the selection table checklist to see whetheryour design condition meets the assumptions built intothe tabulated values. Note that the tabulated values arefully factored (i.e., include both the time effect factor, λ,and the resistance factor, φ) for the assumed design conditions.Thus, the factored force or moment on the membercan be used directly to select a member that meets thedesign requirement.Examples of the development of the selection tablevalues are shown in the Appendix.5MEMBER SELECTION TABLES


42 MEMBER SELECTION TABLESTable 5.3Column Selection Tables, Timbers6-inch nominal thickness (5.5 inch dry dressed size), λ = 0.80, φ c= 0.90.Factored Column Resistance (kips)Select Structural No. 1 No. 26" width 8" width 6" width 8" width 6" width 8" widthColumn (=5.5") (=7.5") (=5.5") (=7.5") (=5.5") (=7.5")Species Length (ft) 6≅ c P' 6≅ c P'x 6≅ c P'y 6≅ c P' 6≅ c P'x 6≅ c P'y 6≅ c P' 6≅ c P'x 6≅ c P'y2 59.4 81.5 81.0 51.7 70.9 70.6 24.7 33.8 33.74 57.0 79.9 77.8 50.0 69.7 68.2 24.2 33.4 33.06 52.1 76.8 71.0 46.4 67.4 63.3 23.4 32.9 31.9Douglas Fir- 8 43.8 71.6 59.7 40.3 63.7 54.9 21.9 32.0 29.9Larch 1 10 34.1 63.9 46.5 32.5 58.1 44.3 19.7 30.6 26.912 26.0 54.4 35.4 25.2 50.8 34.4 17.0 28.8 23.214 20.0 44.9 27.3 19.6 42.8 26.8 14.2 26.5 19.316 15.7 36.7 21.4 15.5 35.6 21.2 11.6 23.7 15.92 50.4 69.1 68.7 44.0 60.3 60.0 19.5 26.7 26.64 48.2 67.6 65.8 42.4 59.2 57.8 19.2 26.4 26.16 43.8 64.9 59.7 39.2 57.2 53.4 18.5 26.0 25.38 36.5 60.3 49.7 33.7 53.8 45.9 17.5 25.3 23.9Hem-Fir 1 10 28.1 53.4 38.4 26.9 48.8 36.6 15.9 24.4 21.712 21.3 45.1 29.1 20.7 42.3 28.3 13.9 23.1 19.014 16.4 37.0 22.3 16.1 35.4 21.9 11.7 21.4 16.016 12.8 30.1 17.5 12.7 29.3 17.3 9.7 19.3 13.22 49.2 67.4 67.0 42.7 58.5 58.3 27.3 37.3 37.24 47.5 66.2 64.7 41.5 57.7 56.6 26.6 36.9 36.36 44.0 64.0 60.0 39.0 56.1 53.2 25.4 36.1 34.7Southern 8 38.1 60.4 51.9 34.7 53.5 47.3 23.4 34.8 31.9Pine 10 30.6 55.0 41.7 28.8 49.5 39.3 20.5 33.0 27.912 23.7 47.9 32.4 22.9 44.3 31.2 17.0 30.5 23.214 18.4 40.4 25.2 18.0 38.2 24.6 13.8 27.3 18.816 14.6 33.5 19.9 14.4 32.2 19.6 11.1 23.8 15.22 41.4 56.7 56.5 36.3 49.7 49.5 25.9 35.5 35.44 40.0 55.8 54.6 35.2 49.0 48.1 25.3 35.0 34.46 37.2 54.0 50.8 33.2 47.6 45.2 23.9 34.2 32.6Spruce- 8 32.4 51.1 44.2 29.6 45.5 40.4 21.6 32.8 29.5Pine-Fir 10 26.2 46.7 35.8 24.7 42.3 33.7 18.4 30.7 25.112 20.5 40.9 27.9 19.7 37.9 26.9 14.9 27.8 20.314 15.9 34.7 21.7 15.6 32.8 21.3 11.9 24.4 16.216 12.6 28.9 17.2 12.4 27.8 17.0 9.5 20.9 13.0Note:1. The reference compression parallel to grain strength value for the WWPA's No.2 grade is different from that for theWCLIB's No.2 grade. The tabulated values for No.2 grade are based on the lower reference strength value of WWPAand WCLIB.


GUIDELINE<strong>LRFD</strong>TOSTRUCTURAL<strong>LRFD</strong> FOR STRUCTURALLUMBER SUPPLEMENTCOMPOSITE LUMBER4343Table 5.3Column Selection Tables, Timbers8-inch nominal thickness (7.5 inch dry dressed size), λ = 0.80, φ c= 0.90.Factored Column Resistance (kips)Select Structural No. 1 No. 28" width 10" width 8" width 10" width 8" width 10" widthColumn (=7.5") (=9.5") (=7.5") (=9.5") (=7.5") (=9.5")Species Length (ft) 6≅ c P' 6≅ c P'x 6≅ c P'y 6≅ c P' 6≅ c P'x 6≅ c P'y 6≅ c P' 6≅ c P'x 6≅ c P'y2 111.1 141.1 140.7 96.7 122.7 122.5 46.0 58.4 58.34 108.9 139.4 137.9 95.0 121.5 120.4 45.6 58.0 57.76 104.7 136.3 132.6 91.9 119.2 116.5 44.8 57.4 56.7Douglas Fir- 8 97.7 131.5 123.7 86.9 115.6 110.0 43.6 56.5 55.2Larch 1 10 87.2 124.3 110.4 79.2 110.4 100.3 41.8 55.3 52.912 74.2 114.3 94.0 69.2 103.2 87.7 39.3 53.6 49.814 61.2 102.0 77.5 58.4 94.0 74.0 36.1 51.4 45.716 50.1 88.6 63.4 48.5 83.4 61.5 32.3 48.6 40.92 94.2 119.6 119.3 82.2 104.3 104.1 36.3 46.1 46.04 92.2 118.1 116.8 80.7 103.2 102.2 36.0 45.8 45.66 88.5 115.4 112.1 77.9 101.1 98.7 35.4 45.4 44.98 82.2 111.1 104.1 73.4 98.0 92.9 34.6 44.8 43.8Hem-Fir 1 10 72.9 104.6 92.3 66.5 93.3 84.2 33.3 43.8 42.112 61.5 95.8 77.9 57.7 86.8 73.0 31.5 42.6 39.914 50.4 84.9 63.9 48.3 78.6 61.2 29.2 41.0 36.916 41.1 73.3 52.1 39.9 69.2 50.6 26.4 39.0 33.42 91.8 116.6 116.3 79.8 101.3 101.1 50.8 64.5 64.44 90.3 115.4 114.3 78.6 100.4 99.6 50.3 64.0 63.76 87.3 113.2 110.6 76.4 98.7 96.8 49.2 63.2 62.3Southern 8 82.4 109.8 104.3 72.9 96.2 92.3 47.5 62.0 60.2Pine 10 75.0 104.7 95.0 67.6 92.6 85.6 45.0 60.3 57.012 65.4 97.8 82.8 60.4 87.6 76.4 41.5 57.9 52.614 55.1 88.8 69.7 52.1 81.0 65.9 37.2 54.8 47.116 45.7 78.7 57.8 43.9 73.2 55.7 32.5 51.0 41.12 77.4 98.2 98.0 67.7 85.9 85.8 48.4 61.4 61.34 76.1 97.2 96.3 66.8 85.2 84.6 47.8 60.9 60.56 73.6 95.4 93.3 64.9 83.8 82.3 46.6 60.0 59.0Spruce- 8 69.7 92.6 88.2 62.0 81.8 78.5 44.7 58.7 56.6Pine-Fir 10 63.7 88.6 80.7 57.6 78.8 73.0 41.8 56.7 53.012 55.8 82.9 70.7 51.7 74.6 65.4 38.0 54.1 48.114 47.3 75.7 59.9 44.7 69.2 56.7 33.3 50.6 42.216 39.3 67.3 49.8 37.9 62.7 48.0 28.5 46.3 36.15MEMBER SELECTION TABLESNote:1. The reference compression parallel to grain strength value for the WWPA's No.2 grade is different from that for theWCLIB's No.2 grade. The tabulated values for No.2 grade are based on the lower reference strength value of WWPAand WCLIB.


44 MEMBER SELECTION TABLESTable 5.3Column Selection Tables, Timbers10-inch nominal thickness (9.5 inch dry dressed size), λ = 0.80, φ c= 0.90.Factored Column Resistance (kips)Select Structural No. 1 No. 210" width 12" width 10" width 12" width 10" width 12" widthColumn (=9.5") (=11.5") (=9.5") (=11.5") (=9.5") (=11.5")Species Length (ft) 6≅ c P' 6≅ c P'x 6≅ c P'y 6≅ c P' 6≅ c P'x 6≅ c P'y 6≅ c P' 6≅ c P'x 6≅ c P'y2 178.7 216.5 216.3 155.4 188.4 188.2 73.9 89.6 89.54 176.5 214.8 213.7 153.8 187.1 186.2 73.5 89.2 89.06 172.7 211.8 209.0 151.0 184.8 182.8 72.7 88.6 88.1Douglas Fir- 8 166.5 207.1 201.6 146.5 181.3 177.3 71.6 87.7 86.7Larch 1 10 157.4 200.4 190.6 139.9 176.4 169.3 70.0 86.5 84.812 144.8 191.1 175.3 130.7 169.7 158.3 67.9 84.9 82.214 129.2 179.0 156.4 119.0 161.0 144.1 65.1 82.8 78.816 112.3 164.1 135.9 105.6 150.0 127.8 61.5 80.2 74.52 151.5 183.6 183.3 132.1 160.1 159.9 58.4 70.7 70.74 149.6 182.0 181.1 130.7 158.9 158.2 58.1 70.4 70.36 146.1 179.3 176.9 128.1 156.9 155.1 57.5 70.0 69.68 140.7 175.2 170.3 124.1 153.8 150.2 56.7 69.3 68.6Hem-Fir 1 10 132.5 169.2 160.4 118.2 149.4 143.1 55.5 68.5 67.212 121.3 160.9 146.8 110.0 143.4 133.1 54.0 67.3 65.414 107.5 150.1 130.1 99.5 135.5 120.4 52.0 65.8 62.916 92.9 136.9 112.4 87.7 125.7 106.2 49.4 64.0 59.82 147.7 178.9 178.7 128.3 155.4 155.3 81.7 99.0 98.94 146.1 177.7 176.9 127.1 154.5 153.9 81.1 98.5 98.26 143.4 175.5 173.5 125.1 152.9 151.4 80.1 97.7 97.0Southern 8 139.0 172.2 168.3 121.9 150.4 147.6 78.6 96.5 95.1Pine 10 132.7 167.4 160.6 117.3 147.0 142.0 76.4 94.8 92.512 123.8 161.0 149.9 110.9 142.3 134.3 73.4 92.6 88.814 112.5 152.5 136.2 102.6 136.2 124.2 69.5 89.7 84.116 99.6 141.9 120.6 92.7 128.5 112.2 64.6 86.1 78.22 124.4 150.7 150.5 108.9 131.9 131.8 77.8 94.2 94.14 123.1 149.7 149.0 107.9 131.1 130.6 77.1 93.7 93.46 120.9 147.9 146.3 106.2 129.8 128.6 76.0 92.8 92.0Spruce- 8 117.3 145.2 142.0 103.6 127.7 125.4 74.3 91.5 90.0Pine-Fir 10 112.2 141.3 135.8 99.8 124.9 120.8 71.9 89.6 87.012 105.0 136.1 127.2 94.6 121.0 114.5 68.5 87.2 82.914 95.8 129.3 116.0 87.7 116.0 106.2 64.1 83.9 77.616 85.2 120.6 103.2 79.5 109.6 96.2 58.6 79.8 71.0Note:1. The reference compression parallel to grain strength value for the WWPA's No.2 grade is different from that for theWCLIB's No.2 grade. The tabulated values for No.2 grade are based on the lower reference strength value of WWPAand WCLIB.


GUIDELINE<strong>LRFD</strong>TOSTRUCTURAL<strong>LRFD</strong> FOR STRUCTURALLUMBER SUPPLEMENTCOMPOSITE LUMBER 4545Table 5.4Bending Member (Joist) Selection Tables, Structural Lumber2-inch nominal thickness (1.5 inch dry dressed size), λ = 0.80, φ b= 0.85, φ v= 0.75.Select Structural No. 2Size (b x d) 6≅ b M' 6≅ b C r M' 6≅ v V' EI 6≅ b M' 6≅ b C r M' 6≅ v V' EINominal Actual (Single) (rep) 1000 (rep) 1000Species (in) (in) kip-in kip-in kips kip-in 2 kip-in kip-in kips kip-in 22 x 4 1.5 x 3.5 11.5 13.2 0.57 10.2 6.9 8.0 0.57 8.62 x 6 1.5 x 5.5 24.6 28.3 0.89 39.5 14.8 17.1 0.89 33.3Douglas Fir-Larch 2 x 8 1.5 x 7.25 39.5 45.4 1.17 90.5 23.8 27.4 1.17 76.22 x 10 1.5 x 9.25 58.9 67.7 1.50 188.0 35.5 40.8 1.50 158.32 x 12 1.5 x 11.25 79.2 91.1 1.82 338.2 47.8 54.9 1.82 284.82 x 4 1.5 x 3.5 11.1 12.8 0.46 8.6 6.7 7.8 0.46 7.02 x 6 1.5 x 5.5 23.8 27.4 0.73 33.3 14.4 16.6 0.73 27.0Hem-Fir 2 x 8 1.5 x 7.25 38.2 43.9 0.96 76.2 23.2 26.6 0.96 61.92 x 10 1.5 x 9.25 57.0 65.5 1.22 158.3 34.6 39.7 1.22 128.62 x 12 1.5 x 11.25 76.6 88.1 1.49 284.8 46.5 53.4 1.49 231.42 x 4 1.5 x 3.5 15.1 17.3 0.61 9.6 7.9 9.1 0.55 8.62 x 6 1.5 x 5.5 33.3 38.3 0.86 37.4 16.4 18.8 0.86 33.3Southern Pine 2 x 8 1.5 x 7.25 52.2 60.0 1.13 85.7 27.3 31.3 1.13 76.22 x 10 1.5 x 9.25 75.8 87.2 1.44 178.1 38.8 44.7 1.44 158.32 x 12 1.5 x 11.25 103.9 119.5 1.76 320.4 53.4 61.4 1.76 284.82 x 4 1.5 x 3.5 9.9 11.4 0.42 8.0 6.9 8.0 0.42 7.52 x 6 1.5 x 5.5 21.3 24.4 0.66 31.2 14.8 17.1 0.66 29.1Spruce-Pine-Fir 2 x 8 1.5 x 7.25 34.1 39.2 0.87 71.5 23.8 27.4 0.87 66.72 x 10 1.5 x 9.25 50.9 58.5 1.11 148.4 35.5 40.8 1.11 138.52 x 12 1.5 x 11.25 68.4 78.7 1.35 267.0 47.8 54.9 1.35 249.2Table 5.4Bending Member (Joist) Selection Tables, Structural Lumber4-inch nominal thickness (3.5 inch dry dressed size), λ = 0.80, φ b= 0.85, φ v= 0.75.5MEMBER SELECTION TABLESSelect Structural No. 2Size (b x d) 6≅ b M' 6≅ b C r M' 6≅ v V' EI 6≅ b M' 6≅ b C r M' 6≅ v V' EINominal Actual (Single) (rep) 1000 (rep) 1000Species (in) (in) kip-in kip-in kips kip-in 2 kip-in kip-in kips kip-in 24 x 4 3.5 x 3.5 26.8 30.8 1.32 23.8 16.2 18.6 1.32 20.04 x 6 3.5 x 5.5 57.4 66.0 2.08 92.2 34.6 39.8 2.08 77.6Douglas Fir-Larch 4 x 8 3.5 x 7.25 99.7 114.7 2.74 211.2 60.2 69.2 2.74 177.84 x 10 3.5 x 9.25 149.9 172.4 3.50 438.6 90.4 104.0 3.50 369.34 x 12 3.5 x 11.25 203.2 233.7 4.25 789.0 122.6 141.0 4.25 664.54 x 4 3.5 x 3.5 25.9 29.8 1.08 20.0 15.7 18.1 1.08 16.34 x 6 3.5 x 5.5 55.5 63.9 1.69 77.6 33.7 38.7 1.69 63.1Hem-Fir 4 x 8 3.5 x 7.25 96.5 111.0 2.23 177.8 58.5 67.3 2.23 144.54 x 10 3.5 x 9.25 145.0 166.7 2.85 369.3 88.0 101.2 2.85 300.14 x 12 3.5 x 11.25 196.6 226.1 3.47 664.5 119.3 137.2 3.47 539.94 x 4 3.5 x 3.5 35.2 40.5 1.42 22.5 18.5 21.3 1.27 20.04 x 6 3.5 x 5.5 77.8 89.4 2.00 87.3 38.2 43.9 2.00 77.6Southern Pine 4 x 8 3.5 x 7.25 133.9 154.0 2.64 200.1 70.0 80.4 2.64 177.84 x 10 3.5 x 9.25 194.5 223.7 3.37 415.5 99.7 114.6 3.37 369.34 x 12 3.5 x 11.25 266.7 306.7 4.10 747.5 137.0 157.5 4.10 664.54 x 4 3.5 x 3.5 23.2 26.7 0.98 18.8 16.2 18.6 0.98 17.54 x 6 3.5 x 5.5 49.6 57.0 1.54 72.8 34.6 39.8 1.54 67.9Spruce-Pine-Fir 4 x 8 3.5 x 7.25 86.2 99.1 2.03 166.7 60.2 69.2 2.03 155.64 x 10 3.5 x 9.25 129.5 148.9 2.59 346.3 90.4 104.0 2.59 323.24 x 12 3.5 x 11.25 175.6 202.0 3.15 622.9 122.6 141.0 3.15 581.4


46 MEMBER SELECTION TABLESTable 5.5Bending Member (Beam) Selection Tables, Timbers6-inch nominal thickness (5.5 inch dry dressed size), λ = 0.80, φ b= 0.85, φ v= 0.75.Select Structural No. 2Size (b x d) 6≅ b M' 6≅ v V' EI 6≅ b M' 6≅ v V' EINominal Actual million millionSpecies (in) (in) kip-in kips kip-in 2 kip-in kips kip-in 26 x 6 5.5 x 5.5 71.8 2.90 0.12 33.6 2.90 0.106 x 8 5.5 x 7.5 133.6 3.96 0.31 62.4 3.96 0.25Douglas Fir-Larch 6 x 10 5.5 x 9.5 228.4 5.02 0.63 124.9 5.02 0.516 x 12 5.5 x 11.5 334.7 6.07 1.12 183.0 6.07 0.916 x 14 5.5 x 13.5 455.2 7.13 1.80 248.9 7.13 1.476 x 16 5.5 x 15.5 591.0 8.18 2.73 323.1 8.18 2.226 x 6 5.5 x 5.5 57.5 2.42 0.10 25.1 2.42 0.086 x 8 5.5 x 7.5 106.9 3.30 0.25 46.6 3.30 0.21Hem-Fir 6 x 10 5.5 x 9.5 178.9 4.18 0.51 96.2 4.18 0.436 x 12 5.5 x 11.5 262.1 5.06 0.91 141.0 5.06 0.776 x 14 5.5 x 13.5 356.6 5.94 1.47 191.7 5.94 1.246 x 16 5.5 x 15.5 462.9 6.82 2.22 248.9 6.82 1.886 x 6 5.5 x 5.5 71.8 3.87 0.11 40.7 3.51 0.09Southern Pine 6 x 8 5.5 x 7.5 133.6 5.28 0.29 75.7 4.79 0.236 x 10 5.5 x 9.5 214.3 6.69 0.59 121.5 6.06 0.476 x 6 5.5 x 5.5 50.3 2.30 0.10 23.9 2.30 0.08Spruce-Pine-Fir 6 x 8 5.5 x 7.5 93.6 3.14 0.25 44.5 3.14 0.196 x 10 5.5 x 9.5 157.0 3.97 0.51 85.5 3.97 0.39Note: 1. The reference bending strength values for the WWPA's Douglas Fir-Larch and Hem-Fir No.2 Posts and Timbers, andHem-Fir Select Structural Beams and Stringers grades are different from the corresponding WCLIB grades. The tabulatedvalues for these species and grade combinations are based on the lower reference strength values of WWPA and WCLIB.Table 5.5Bending Member (Beam) Selection Tables, Timbers8-inch nominal thickness (7.5 inch dry dressed size), λ = 0.80, φ b= 0.85, φ v= 0.75.Select Structural No. 2Size (b x d) 6≅ b M' 6≅ v V' EI 6≅ b M' 6≅ v V' EINominal Actual million millionSpecies (in) (in) kip-in kips kip-in 2 kip-in kips kip-in 28 x 8 7.5 x 7.5 182.2 5.40 0.42 85.1 5.40 0.348 x 10 7.5 x 9.5 292.3 6.84 0.86 136.5 6.84 0.70Douglas Fir-Larch 8 x 12 7.5 x 11.5 456.4 8.28 1.52 249.6 8.28 1.248 x 14 7.5 x 13.5 620.8 9.72 2.46 339.4 9.72 2.008 x 16 7.5 x 15.5 805.9 11.16 3.72 440.6 11.16 3.038 x 8 7.5 x 7.5 145.8 4.50 0.34 63.6 4.50 0.298 x 10 7.5 x 9.5 234.0 5.70 0.70 102.0 5.70 0.59Hem-Fir 8 x 12 7.5 x 11.5 357.5 6.90 1.24 192.2 6.90 1.058 x 14 7.5 x 13.5 486.2 8.10 2.00 261.5 8.10 1.698 x 16 7.5 x 15.5 631.2 9.30 3.03 339.4 9.30 2.56Southern Pine 8 x 8 7.5 x 7.5 182.2 7.20 0.40 103.3 6.53 0.328 x 10 7.5 x 9.5 292.3 9.12 0.80 165.7 8.27 0.64Spruce-Pine-Fir 8 x 8 7.5 x 7.5 127.7 4.28 0.34 60.7 4.28 0.268 x 10 7.5 x 9.5 204.8 5.42 0.70 97.4 5.42 0.54Note: 1. The reference bending strength values for the WWPA's Douglas Fir-Larch and Hem-Fir No.2 Posts and Timbers, andHem-Fir Select Structural Beams and Stringers grades are different from the corresponding WCLIB grades. The tabulatedvalues for these species and grade combinations are based on the lower reference strength values of WWPA and WCLIB.


GUIDELINE<strong>LRFD</strong>TOSTRUCTURAL<strong>LRFD</strong> FOR STRUCTURALLUMBER SUPPLEMENTCOMPOSITE LUMBER4747Table 5.5Bending Member (Beam) Selection Tables, Timbers10-inch nominal thickness (9.5 inch dry dressed size), λ = 0.80, φ b= 0.85, φ v= 0.75.Select Structural No. 2Size (b x d) 6≅ b M' 6≅ v V' EI 6≅ b M' 6≅ v V' EINominal Actual million millionSpecies (in) (in) kip-in kips kip-in 2 kip-in kips kip-in 210 x 10 9.5 x 9.5 370.2 8.66 1.09 173.0 8.66 0.8810 x 12 9.5 x 11.5 542.5 10.49 1.93 253.5 10.49 1.57Douglas Fir-Larch 10 x 14 9.5 x 13.5 786.3 12.31 3.12 430.0 12.31 2.5310 x 16 9.5 x 15.5 1020.8 14.14 4.72 558.1 14.14 3.8310 x 18 9.5 x 13.5 1283.7 15.96 6.79 701.9 15.96 5.5210 x 20 9.5 x 15.5 1574.9 17.78 9.39 861.1 17.78 7.6310 x 10 9.5 x 9.5 296.4 7.22 0.88 129.2 7.22 0.7510 x 12 9.5 x 11.5 434.3 8.74 1.57 189.4 8.74 1.32Hem-Fir 10 x 14 9.5 x 13.5 615.9 10.26 2.53 331.2 10.26 2.1410 x 16 9.5 x 15.5 799.5 11.78 3.83 429.9 11.78 3.2410 x 18 9.5 x 13.5 1005.5 13.30 5.52 540.7 13.30 4.6710 x 20 9.5 x 15.5 1233.5 14.82 7.63 663.3 14.82 6.4610 x 10 9.5 x 9.5 370.2 11.55 1.02 209.9 10.47 0.81Southern Pine 10 x 12 9.5 x 11.5 542.5 13.98 1.81 307.6 12.67 1.4410 x 14 9.5 x 13.5 737.9 16.42 2.92 418.3 14.88 2.3410 x 10 9.5 x 9.5 259.4 6.86 0.88 123.4 6.86 0.68Spruce-Pine-Fir 10 x 12 9.5 x 11.5 380.2 8.30 1.57 180.8 8.30 1.2010 x 14 9.5 x 13.5 540.3 9.75 2.53 294.4 9.75 1.95Note: 1. The reference bending strength values for the WWPA's Douglas Fir-Larch and Hem-Fir No.2 Posts and Timbers, andHem-Fir Select Structural Beams and Stringers grades are different from the corresponding WCLIB grades. The tabulatedvalues for these species and grade combinations are based on the lower reference strength values of WWPA and WCLIB.Table 5.5Bending Member (Beam) Selection Tables, Timbers5MEMBER SELECTION TABLESNominal Dimensions > 10 inch (actual = nominal - 1/2”), λ = 0.80, φ b= 0.85, φ v= 0.75.Select Structural No. 2Size (b x d) 6≅ b M' 6≅ v V' EI 6≅ b M' 6≅ v V' EINominal Actual million millionSpecies (in) (in) kip-in kips kip-in 2 kip-in kips kip-in 212 x 12 11.5 x 11.5 656.7 12.70 2.33 306.8 12.70 1.8914 x 14 13.5 x 13.5 1048.6 17.50 4.43 489.9 17.50 3.60Douglas Fir-Larch 16 x 16 15.5 x 15.5 1562.9 23.06 7.70 730.2 23.06 6.2518 x 18 17.5 x 17.5 2219.2 29.40 12.51 1036.8 29.40 10.1620 x 20 19.5 x 19.5 3033.6 36.50 19.28 1417.3 36.50 15.6612 x 12 11.5 x 11.5 525.7 10.58 1.89 229.2 10.58 1.6014 x 14 13.5 x 13.5 839.4 14.58 3.60 366.0 14.58 3.04Hem-Fir 16 x 16 15.5 x 15.5 1251.1 19.22 6.25 545.6 19.22 5.2918 x 18 17.5 x 17.5 1776.5 24.50 10.16 774.7 24.50 8.6020 x 20 19.5 x 19.5 2428.5 30.42 15.66 1059.0 30.42 13.25Southern Pine 12 x 12 11.5 x 11.5 656.7 16.93 2.19 372.3 15.34 1.7514 x 14 13.5 x 13.5 1048.6 23.33 4.15 594.5 21.14 3.32Spruce-Pine-Fir 12 x 12 11.5 x 11.5 460.2 10.05 1.89 218.9 10.05 1.4614 x 14 13.5 x 13.5 734.8 13.85 3.60 349.5 13.85 2.77Note: 1. The reference bending strength values for the WWPA's Douglas Fir-Larch and Hem-Fir No.2 Posts and Timbersgrades are different from the corresponding WCLIB grades. The tabulated values are based on the lower reference strengthvalues of WWPA and WCLIB.


48 MEMBER SELECTION TABLESTable 5.6Combined Loading Stud Wall Selection Tables, Structural LumberCombined bending and axial loading, 2-inch nominal thickness (1.5 inch dry dressed size), λ = 0.80, φ b= 0.85,φ c= 0.90AXIAL COMPRESSION LOAD RATIO: P u / 6≅ c P' = 0.20Maximum Factored Moment, M u (kip-in)Select Structural No. 1 No. 2 StudStud 4" width 6" width 4" width 6" width 4" width 6" width 4" width 6" widthSpecies Length (ft) (=3.5") (=5.5") (=3.5") (=5.5") (=3.5") (=5.5") (=3.5") (=5.5")Douglas Fir-Larch 4 11.2 25.7 7.8 17.8 6.8 15.6 4.0 9.46 10.7 24.3 7.4 16.9 6.5 14.8 3.7 9.08 10.5 23.3 7.2 16.1 6.3 14.1 3.6 8.710 10.4 22.7 7.2 15.7 6.3 13.8 3.6 8.4Hem-Fir 4 10.8 24.8 7.4 16.9 6.6 15.0 3.9 9.36 10.3 23.4 7.0 16.0 6.2 14.2 3.7 9.08 10.1 22.5 6.9 15.3 6.1 13.6 3.6 8.610 10.1 22.0 6.8 14.9 6.1 13.3 3.6 8.3Southern Pine 4 14.6 34.6 9.5 22.5 7.8 17.1 4.5 10.46 13.9 32.6 9.1 21.2 7.4 16.2 4.3 10.08 13.7 31.3 8.9 20.3 7.2 15.5 4.1 9.610 13.6 30.7 8.9 19.9 7.2 15.1 4.1 9.3Spruce-Pine-Fir 4 9.7 22.2 6.9 15.6 6.9 15.6 4.0 9.46 9.2 21.0 6.5 14.8 6.5 14.8 3.7 9.18 9.0 20.1 6.3 14.2 6.3 14.2 3.6 8.710 9.0 19.6 6.3 13.8 6.3 13.8 3.6 8.4Table 5.6Combined Loading Stud Wall Selection Tables, Structural LumberCombined bending and axial loading, 2-inch nominal thickness (1.5 inch dry dressed size), λ = 0.80, φ b= 0.85,φ c= 0.90AXIAL COMPRESSION LOAD RATIO: P u / 6≅ c P' = 0.40Maximum Factored Moment, M u (kip-in)Select Structural No. 1 No. 2 StudStud 4" width 6" width 4" width 6" width 4" width 6" width 4" width 6" widthSpecies Length (ft) (=3.5") (=5.5") (=3.5") (=5.5") (=3.5") (=5.5") (=3.5") (=5.5")Douglas Fir-Larch 4 8.6 21.2 6.0 14.7 5.3 12.9 3.2 7.96 7.6 18.8 5.2 13.1 4.6 11.5 2.7 7.38 7.2 17.0 5.0 11.8 4.4 10.4 2.5 6.610 7.1 16.0 4.9 11.1 4.3 9.8 2.5 6.1Hem-Fir 4 8.2 20.4 5.6 13.9 5.0 12.4 3.1 7.96 7.3 18.0 5.0 12.4 4.4 10.9 2.7 7.28 7.0 16.3 4.7 11.2 4.2 9.9 2.5 6.510 6.9 15.5 4.7 10.5 4.2 9.4 2.5 6.0Southern Pine 4 11.0 28.3 7.2 18.5 5.9 14.1 3.6 8.86 9.8 24.9 6.4 16.3 5.2 12.5 3.1 8.08 9.4 22.6 6.1 14.8 5.0 11.3 2.9 7.310 9.3 21.5 6.0 14.0 4.9 10.7 2.8 6.7Spruce-Pine-Fir 4 7.3 18.3 5.3 13.0 5.3 13.0 3.2 8.06 6.5 16.1 4.6 11.6 4.6 11.6 2.8 7.48 6.2 14.6 4.4 10.5 4.4 10.5 2.6 6.710 6.1 13.8 4.3 9.8 4.3 9.8 2.5 6.2


GUIDELINE<strong>LRFD</strong>TOSTRUCTURAL<strong>LRFD</strong> FOR STRUCTURALLUMBER SUPPLEMENTCOMPOSITE LUMBER4949Table 5.6Combined Loading Stud Wall Selection Tables, Structural LumberCombined bending and axial loading, 2-inch nominal thickness (1.5 inch dry dressed size), λ = 0.80, φ b= 0.85,φ c= 0.90AXIAL COMPRESSION LOAD RATIO: P u / 6≅ c P' = 0.60Maximum Factored Moment, M u (kip-in)Select Structural No. 1 No. 2 StudStud 4" width 6" width 4" width 6" width 4" width 6" width 4" width 6" widthSpecies Length (ft) (=3.5") (=5.5") (=3.5") (=5.5") (=3.5") (=5.5") (=3.5") (=5.5")Douglas Fir-Larch 4 5.6 21.2 3.9 10.6 3.5 9.3 2.2 5.86 4.4 18.8 3.1 8.7 2.7 7.7 1.7 5.18 4.0 17.0 2.8 7.2 2.5 6.4 1.5 4.410 3.9 16.0 2.7 6.5 2.4 5.7 1.4 3.8Hem-Fir 4 5.3 20.4 3.7 10.0 3.2 8.8 2.1 5.86 4.2 18.0 2.9 8.2 2.5 7.1 1.6 5.08 3.9 16.3 2.7 6.8 2.4 6.0 1.4 4.210 3.7 15.5 2.6 6.1 2.3 5.4 1.4 3.6Southern Pine 4 7.0 28.3 4.6 13.2 3.8 10.1 2.5 6.46 5.6 24.9 3.7 10.7 3.0 8.2 1.9 5.68 5.2 22.6 3.4 9.0 2.8 6.9 1.7 4.710 5.1 21.5 3.3 8.1 2.7 6.2 1.6 4.1Spruce-Pine-Fir 4 4.7 18.3 3.5 9.4 3.5 9.4 2.2 5.96 3.8 16.1 2.7 7.8 2.7 7.8 1.7 5.28 3.5 14.6 2.5 6.5 2.5 6.5 1.5 4.410 3.3 13.8 2.4 5.8 2.4 5.8 1.4 3.8Table 5.6 Combined Loading Stud Wall Selection Tables, Structural LumberCombined bending and axial loading, 2-inch nominal thickness (1.5 inch dry dressed size), λ = 0.80, φ b= 0.85,φ c= 0.905MEMBER SELECTION TABLESAXIAL COMPRESSION LOAD RATIO: P u / 6≅ c P' = 0.80Maximum Factored Moment, M u (kip-in)Select Structural No. 1 No. 2 StudStud 4" width 6" width 4" width 6" width 4" width 6" width 4" width 6" widthSpecies Length (ft) (=3.5") (=5.5") (=3.5") (=5.5") (=3.5") (=5.5") (=3.5") (=5.5")Douglas Fir-Larch 4 2.6 8.0 1.8 5.6 1.6 4.9 1.1 3.26 1.7 5.9 1.2 4.2 1.1 3.8 0.7 2.68 1.4 4.4 1.0 3.1 0.9 2.8 0.6 2.110 1.3 3.6 0.9 2.5 0.8 2.2 0.5 1.6Hem-Fir 4 2.4 7.7 1.7 5.3 1.5 4.6 1.0 3.16 1.6 5.6 1.1 4.0 1.0 3.4 0.7 2.58 1.4 4.1 0.9 2.9 0.8 2.5 0.5 1.910 1.3 3.4 0.9 2.4 0.8 2.0 0.5 1.5Southern Pine 4 3.2 10.5 2.1 6.9 1.8 5.3 1.2 3.56 2.1 7.6 1.4 5.1 1.2 3.9 0.8 2.88 1.8 5.6 1.2 3.7 1.0 2.9 0.6 2.210 1.7 4.6 1.1 3.1 0.9 2.4 0.6 1.7Spruce-Pine-Fir 4 2.2 6.8 1.7 5.0 1.7 5.0 1.1 3.26 1.5 5.0 1.1 3.8 1.1 3.8 0.7 2.78 1.2 3.7 0.9 2.8 0.9 2.8 0.6 2.110 1.1 3.0 0.8 2.3 0.8 2.3 0.5 1.7


50MEMBER SELECTION TABLES


<strong>LRFD</strong> STRUCTURAL LUMBER SUPPLEMENT51OTHERCONSIDERATIONS6.1 General 526.2 Dimensional Changes 526


52 OTHER CONSIDERATIONS6.1 GeneralWith proper detailing and protection, structural lumbercan perform well in a variety of environments. Onekey to proper detailing is planning for the natural shrinkageand swelling of wood members as they are subjectedto various drying and wetting cycles. While moisturechanges have the largest impact on lumber dimensions,some designs must also check the effects of temperatureon dimensions as well.The tables in this chapter are extracted from moreprecise scientific and research reports on these topics.These coefficients are conservative (yielding more shrink-age and expansion than one might expect for most species).This level of information should be adequate forcommon structural applications. Equations are providedat the end of this chapter for those designers who requiremore precise calculations.In addition to designing to accommodate dimensionalchanges and detailing for durability, another significantissue in the planning of wood structures is that of fire performance.Several facets of this issue are discussed inthis chapter.6.2 Dimensional ChangesApproximate Moisture and Thermal Dimensional ChangesDescriptionDimensional change due to moisture content change 1Dimensional change due to temperature change 2Radial or Tangential Direction1% change in dimension per 4% change in MC. 20 x 10 -6 in/in per degree Ft1Corresponding longitudinal direction shrinkage/expansion is about 0.1 to 0.2 percent.2Corresponding longitudinal direction coefficient is about one-tenth as large as radial and tangential.Equations for Computing Moistureand Thermal Shrinkage/ExpansionDue to Moisture ChangesFor more precise computation of dimensional changesdue to changes in moisture, the change in radial (R), tangential(T) and volumetric (V) dimensions due to changesin moisture content can be computed as:whereandwhereX = X ( ∆MC ) eoX 0ME= initial dimension or volumeX = new dimension or volume∆MC = moisture content change (%)e ME∆MC = M −M o= coefficient of moisture expansion: linear(in/in/%MC), or volumetric (in 3 /in 3 /%MC)M o= initial moisture content % (M o≤FSP)M = new moisture content % (M≤FSP)FSP = fiber saturation pointValues for e ME and FSP are tabulated in many woodmaterials textbooks and other handbooks.Due to Temperature ChangesFor more precise computation of dimensional changesdue to changes in temperature, the shrinkage/expansionof solid wood including lumber and timber can be computedas:whereX = X ( ∆T) eoTEX 0= reference dimension at T 0X = computed dimension at TT 0e TE= reference temperature (°F)T = temperature at which the new dimension iscomputed (°F)= coefficient of thermal expansion (in/in/°F)


GUIDELINE<strong>LRFD</strong>TOSTRUCTURAL<strong>LRFD</strong> FOR STRUCTURALLUMBER SUPPLEMENTCOMPOSITE LUMBER5353andwhere∆T = T −T o-60°F ≤ T o≤ 130°FThe coefficient of thermal expansion of oven dry woodparallel to grain ranges from about 1.7x10 -6 to 2.5x10 -6per °F.The linear expansion coefficients across the grain (radialand tangential) are proportional to wood density.These coefficients are about five to ten times greater thanthe parallel-to-the-grain coefficients and are given as:Radial:-6[ ] ( / ° )eTE= 18(SG)+ 5.5 10 in in/FTangential:-6[ ] ( ° )eTE= 18(SG) +10.2 10 in / in/FwhereSG is the tabulated specific gravity for the species.6OTHER CONSIDERATIONS


54OTHER CONSIDERATIONS


<strong>LRFD</strong> STRUCTURAL LUMBER SUPPLEMENT55SPAN TABLES7.1 Explanation of Tables 567.2 Use of the Span Tables 56Table 7.1 Floor Joist 40/10 - L/360 ....................................... 57Table 7.2 Floor Joist 30/10 - L/360 ....................................... 58Table 7.3 Ceiling Joist 10/5 - L/240 ....................................... 59Table 7.4 Ceiling Joist 20/10 - L/240 ..................................... 60Table 7.5 Rafters 20/15 - L/240 ............................................. 61Table 7.6 Rafters 30/15 - L/240 ............................................. 62Table 7.7 Rafters 40/15 - L/240 ............................................. 63Table 7.8 Rafters 20/10 - L/240 ............................................. 64Table 7.9 Rafters 20/10 - L/180 ............................................. 657


56 SPAN TABLES7.1 Explanation of TablesThe tables in this chapter provide joist and rafter spansfor design criteria listed on top of each table. These designcriteria are live load, dead load, factored total load,live load deflection limit, time effect factor (8) and bendingresistance factor (N). Span tables are provided for thefollowing commonly used load and deflection criteria:Applications Live Dead Deflection TableLoad Load Limit No.(psf) (psf)floor joists 40 10 span/360 7.130 10 span/360 7.2ceiling joists 10 5 span/240 7.320 10 span/240 7.4roof rafters 20 15 span/240 7.530 15 span/240 7.640 15 span/240 7.720 10 span/240 7.820 10 span/180 7.9The applications and associated load and deflectioncriteria listed above are common encounters in designs ofresidential wood structures. The use of the tables are notlimited to the applications listed.These span tables for joists and rafters are calculatedon the basis of a series of modulus of elasticity (MOE)and adjusted bending strengths (F b ′). The range of valueson the tables provides allowable spans for all species andgrades of nominal 2-inch framing lumber customarily usedin construction. These span tables assume installation ofat least three joists or rafters that are spaced not more than24" on center. The calculated spans assume fully supportedmembers, properly sheathed and nailed on the topedge of the joist or rafter.Lumber Design ValuesUse of these span tables requires reference to the applicablereference strengths for the various species andgrades of lumber. These reference strengths are found inTables 3.1 and 3.2 of this supplement.Span MeasurementTabulated spans are the distance from face to face ofsupports. For sloping rafters, the span is measured alongthe horizontal projection.7.2 Use of the Span TablesSpans for floor and ceiling joists are calculated on thebasis of the modulus of elasticity (MOE) with the requiredadjusted bending strength (F b ′) listed below each span.Spans for rafters are calculated on the basis of adjustedbending strength (F b ′) with the required modulus of elasticity(MOE) listed below each span. Values determinedfrom the span tables should be compared to values fromTables 3.1 or 3.2 modified appropriately by the adjusmentfactors. Species and grades with adjusted strength andmodulus of elasticity values greater than or equal to thoseshown in the span tables are appropriate.


GUIDELINE<strong>LRFD</strong>TOSTRUCTURAL<strong>LRFD</strong> FOR STRUCTURALLUMBER SUPPLEMENTCOMPOSITE LUMBER5757Table 7.1 Floor Joist 40/10 - L/360Modulus of Elasticity (ksi x 1000)MOE 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0 2.1Size Spacing Maximum Span (ft) Based on MOE for Live Load Deflection(in) (in)12 8.51 8.85 9.17 9.46 9.74 10.00 10.25 10.49 10.72 10.94 11.15 11.35 11.55 11.742x6 16 7.73 8.04 8.33 8.60 8.85 9.09 9.32 9.53 9.74 9.94 10.13 10.32 10.49 10.6719.2 7.28 7.57 7.84 8.09 8.33 8.55 8.77 8.97 9.17 9.35 9.53 9.71 9.87 10.0424 6.75 7.02 7.28 7.51 7.73 7.94 8.14 8.33 8.51 8.68 8.85 9.01 9.17 9.3212 11.22 11.67 12.08 12.47 12.84 13.19 13.52 13.83 14.13 14.42 14.70 14.97 15.22 15.472x8 16 10.19 10.60 10.98 11.33 11.67 11.98 12.28 12.57 12.84 13.10 13.35 13.60 13.83 14.0619.2 9.59 9.97 10.33 10.66 10.98 11.28 11.56 11.83 12.08 12.33 12.57 12.80 13.02 13.2324 8.90 9.26 9.59 9.90 10.19 10.47 10.73 10.98 11.22 11.45 11.67 11.88 12.08 12.2812 14.31 14.88 15.42 15.91 16.38 16.83 17.25 17.65 18.03 18.40 18.75 19.09 19.42 19.742x10 16 13.00 13.52 14.01 14.46 14.88 15.29 15.67 16.03 16.38 16.72 17.04 17.35 17.65 17.9419.2 12.24 12.73 13.18 13.61 14.01 14.39 14.75 15.09 15.42 15.73 16.03 16.33 16.61 16.8824 11.36 11.81 12.24 12.63 13.00 13.35 13.69 14.01 14.31 14.60 14.88 15.16 15.42 15.6712 17.41 18.10 18.75 19.36 19.92 20.46 20.98 21.46 21.93 22.38 22.81 23.22 23.62 24.012x12 16 15.81 16.45 17.04 17.59 18.10 18.59 19.06 19.50 19.92 20.33 20.72 21.10 21.46 21.8219.2 14.88 15.48 16.03 16.55 17.04 17.50 17.93 18.35 18.75 19.13 19.50 19.86 20.20 20.5324 13.82 14.37 14.88 15.36 15.81 16.24 16.65 17.04 17.41 17.76 18.10 18.43 18.75 19.06Required Fb' (ksi) to achieve this span2.2 2.3 2.411.92 12.10 12.2710.83 10.99 11.1510.19 10.35 10.499.46 9.60 9.7415.72 15.95 16.1814.28 14.49 14.7013.44 13.64 13.8312.47 12.66 12.8420.05 20.35 20.6418.22 18.49 18.7517.14 17.40 17.6515.91 16.15 16.3824.39 24.75 25.1022.16 22.49 22.8120.85 21.16 21.4619.36 19.64 19.923.15 3.25 3.343.47 3.57 3.683.69 3.80 3.913.97 4.09 4.21Live Load (LL) in psf = 40 Based on MOEDead Load (DL) in psf = 10Factored Total Load in psf = 76LL Deflection Limit (Span divided by) = 360λ = 0.80φ = 0.8512 1.61 1.74 1.86 1.98 2.10 2.22 2.33 2.44 2.55 2.65 2.76 2.86 2.96 3.0516 1.77 1.91 2.05 2.18 2.32 2.44 2.57 2.69 2.80 2.92 3.03 3.15 3.25 3.3619.2 1.88 2.03 2.18 2.32 2.46 2.60 2.73 2.85 2.98 3.10 3.22 3.34 3.46 3.5724 2.02 2.19 2.35 2.50 2.65 2.80 2.94 3.08 3.21 3.34 3.47 3.60 3.73 3.85Copyright, <strong>1996</strong> by Western <strong>Wood</strong> Products Association, West Coast Lumber Inspection Bureau, Southern Pine Inspection Bureau,Southern Forest Products Association, Canadian <strong>Wood</strong> <strong>Council</strong> and <strong>American</strong> Forest & Paper Association7SPAN TABLES


58 SPAN TABLESTable 7.2 Floor Joist 30/10 - L/360Live Load (LL) in psf = 30 Based on MOEDead Load (DL) in psf = 10Factored Total Load in psf = 60LL Deflection Limit (Span divided by) = 360Modulus of Elasticity (ksi x 1000)MOE 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0 2.1Size Spacing Maximum Span (ft) Based on MOE for Live Load Deflection(in) (in)12 9.37 9.74 10.09 10.41 10.72 11.01 11.29 11.55 11.80 12.04 12.27 12.50 12.71 12.922x6 16 8.51 8.85 9.17 9.46 9.74 10.00 10.25 10.49 10.72 10.94 11.15 11.35 11.55 11.7419.2 8.01 8.33 8.63 8.90 9.17 9.41 9.65 9.87 10.09 10.30 10.49 10.68 10.87 11.0524 7.43 7.73 8.01 8.27 8.51 8.74 8.96 9.17 9.37 9.56 9.74 9.92 10.09 10.2512 12.35 12.84 13.30 13.73 14.13 14.51 14.88 15.22 15.56 15.87 16.18 16.47 16.76 17.032x8 16 11.22 11.67 12.08 12.47 12.84 13.19 13.52 13.83 14.13 14.42 14.70 14.97 15.22 15.4719.2 10.56 10.98 11.37 11.74 12.08 12.41 12.72 13.02 13.30 13.57 13.83 14.08 14.33 14.5624 9.80 10.19 10.56 10.90 11.22 11.52 11.81 12.08 12.35 12.60 12.84 13.07 13.30 13.5212 15.75 16.38 16.97 17.52 18.03 18.52 18.98 19.42 19.85 20.25 20.64 21.02 21.38 21.732x10 16 14.31 14.88 15.42 15.91 16.38 16.83 17.25 17.65 18.03 18.40 18.75 19.09 19.42 19.7419.2 13.47 14.01 14.51 14.98 15.42 15.83 16.23 16.61 16.97 17.31 17.65 17.97 18.28 18.5824 12.50 13.00 13.47 13.90 14.31 14.70 15.07 15.42 15.75 16.07 16.38 16.68 16.97 17.2512 19.16 19.92 20.64 21.30 21.93 22.52 23.09 23.62 24.14 24.63 25.10 25.56 26.00 26.432x12 16 17.41 18.10 18.75 19.36 19.92 20.46 20.98 21.46 21.93 22.38 22.81 23.22 23.62 24.0119.2 16.38 17.04 17.64 18.21 18.75 19.26 19.74 20.20 20.64 21.06 21.46 21.85 22.23 22.6024 15.21 15.81 16.38 16.91 17.41 17.88 18.32 18.75 19.16 19.55 19.92 20.29 20.64 20.98Required Fb' (ksi) to achieve this span12 1.54 1.66 1.78 1.90 2.01 2.12 2.23 2.33 2.44 2.54 2.64 2.73 2.83 2.9216 1.69 1.83 1.96 2.09 2.21 2.34 2.45 2.57 2.68 2.79 2.90 3.01 3.11 3.2219.2 1.80 1.94 2.08 2.22 2.35 2.48 2.61 2.73 2.85 2.97 3.08 3.20 3.31 3.4224 1.93 2.09 2.24 2.39 2.53 2.67 2.81 2.94 3.07 3.20 3.32 3.44 3.56 3.68Copyright, <strong>1996</strong> by Western <strong>Wood</strong> Products Association, West Coast Lumber Inspection Bureau, Southern Pine Inspection Bureau,Southern Forest Products Association, Canadian <strong>Wood</strong> <strong>Council</strong> and <strong>American</strong> Forest & Paper Associationλ = 0.80φ = 0.852.2 2.3 2.413.12 13.32 13.5111.92 12.10 12.2711.22 11.39 11.5510.41 10.57 10.7217.30 17.56 17.8115.72 15.95 16.1814.79 15.01 15.2213.73 13.93 14.1322.07 22.40 22.7220.05 20.35 20.6418.87 19.15 19.4217.52 17.78 18.0326.84 27.24 27.6324.39 24.75 25.1022.95 23.29 23.6221.30 21.62 21.933.01 3.10 3.193.32 3.42 3.513.52 3.63 3.743.80 3.91 4.02


GUIDELINE<strong>LRFD</strong>TOSTRUCTURAL<strong>LRFD</strong> FOR STRUCTURALLUMBER SUPPLEMENTCOMPOSITE LUMBER 5959Table 7.3 Ceiling Joist 10/5 - L/240Modulus of Elasticity (ksi x 1000)MOE 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0 2.1Size Spacing Maximum Span (ft) Based on MOE for Live Load Deflection(in) (in)12 9.84 10.23 10.60 10.94 11.26 11.57 11.86 12.13 12.40 12.65 12.89 13.13 13.35 13.572x4 16 8.94 9.30 9.63 9.94 10.23 10.51 10.77 11.02 11.26 11.49 11.72 11.93 12.13 12.3319.2 8.41 8.75 9.06 9.36 9.63 9.89 10.14 10.37 10.60 10.82 11.02 11.22 11.42 11.6124 7.81 8.12 8.41 8.68 8.94 9.18 9.41 9.63 9.84 10.04 10.23 10.42 10.60 10.7712 15.46 16.08 16.66 17.19 17.70 18.18 18.63 19.07 19.48 19.88 20.26 20.63 20.99 21.332x6 16 14.05 14.61 15.13 15.62 16.08 16.52 16.93 17.32 17.70 18.06 18.41 18.74 19.07 19.3819.2 13.22 13.75 14.24 14.70 15.13 15.54 15.93 16.30 16.66 17.00 17.32 17.64 17.94 18.2424 12.27 12.76 13.22 13.65 14.05 14.43 14.79 15.13 15.46 15.78 16.08 16.37 16.66 16.9312 20.38 21.20 21.96 22.67 23.33 23.96 24.56 25.13 25.68 26.21 26.71 27.19 27.66 28.122x8 16 18.52 19.26 19.95 20.59 21.20 21.77 22.32 22.84 23.33 23.81 24.27 24.71 25.13 25.5519.2 17.43 18.13 18.77 19.38 19.95 20.49 21.00 21.49 21.96 22.41 22.84 23.25 23.65 24.0424 16.18 16.83 17.43 17.99 18.52 19.02 19.50 19.95 20.38 20.80 21.20 21.58 21.96 22.3212 26.01 27.05 28.01 28.92 29.77 30.57 31.34 32.07 32.77 33.43 34.08 34.70 35.30 35.872x10 16 23.63 24.57 25.45 26.27 27.05 27.78 28.47 29.14 29.77 30.38 30.96 31.52 32.07 32.5919.2 22.23 23.13 23.95 24.72 25.45 26.14 26.79 27.42 28.01 28.59 29.14 29.67 30.18 30.6724 20.64 21.47 22.23 22.95 23.63 24.27 24.87 25.45 26.01 26.54 27.05 27.54 28.01 28.47Required Fb' (ksi) to achieve this span2.2 2.3 2.413.79 13.99 14.1912.53 12.71 12.8911.79 11.96 12.1310.94 11.11 11.2621.66 21.99 22.3019.68 19.98 20.2618.52 18.80 19.0717.19 17.45 17.7028.56 28.98 29.4025.95 26.33 26.7124.42 24.78 25.1322.67 23.00 23.3336.43 36.98 37.5133.10 33.60 34.0831.15 31.62 32.0728.92 29.35 29.773.01 3.10 3.193.31 3.41 3.513.52 3.63 3.733.79 3.91 4.02Live Load (LL) in psf = 10 Based on MOEDead Load (DL) in psf = 5Factored Total Load in psf = 22LL Deflection Limit (Span divided by) = 240λ = 0.80φ = 0.8512 1.53 1.66 1.78 1.90 2.01 2.12 2.23 2.33 2.44 2.54 2.63 2.73 2.83 2.9216 1.69 1.83 1.96 2.09 2.21 2.33 2.45 2.57 2.68 2.79 2.90 3.01 3.11 3.2119.2 1.79 1.94 2.08 2.22 2.35 2.48 2.61 2.73 2.85 2.97 3.08 3.19 3.31 3.4124 1.93 2.09 2.24 2.39 2.53 2.67 2.81 2.94 3.07 3.20 3.32 3.44 3.56 3.687SPAN TABLES


60 SPAN TABLESTable 7.4 Ceiling Joist 20/10 - L/240Live Load (LL) in psf = 20 Based on MOEDead Load (DL) in psf = 10Factored Total Load in psf = 44LL Deflection Limit (Span divided by) = 240Modulus of Elasticity (ksi x 1000)MOE 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0 2.1Size Spacing Maximum Span (ft) Based on MOE for Live Load Deflection(in) (in)12 7.81 8.12 8.41 8.68 8.94 9.18 9.41 9.63 9.84 10.04 10.23 10.42 10.60 10.772x4 16 7.10 7.38 7.64 7.89 8.12 8.34 8.55 8.75 8.94 9.12 9.30 9.47 9.63 9.7919.2 6.68 6.94 7.19 7.43 7.64 7.85 8.05 8.23 8.41 8.58 8.75 8.91 9.06 9.2124 6.20 6.45 6.68 6.89 7.10 7.29 7.47 7.64 7.81 7.97 8.12 8.27 8.41 8.5512 12.27 12.76 13.22 13.65 14.05 14.43 14.79 15.13 15.46 15.78 16.08 16.37 16.66 16.932x6 16 11.15 11.60 12.01 12.40 12.76 13.11 13.44 13.75 14.05 14.34 14.61 14.88 15.13 15.3819.2 10.49 10.91 11.30 11.67 12.01 12.34 12.65 12.94 13.22 13.49 13.75 14.00 14.24 14.4724 9.74 10.13 10.49 10.83 11.15 11.45 11.74 12.01 12.27 12.52 12.76 13.00 13.22 13.4412 16.18 16.83 17.43 17.99 18.52 19.02 19.50 19.95 20.38 20.80 21.20 21.58 21.96 22.322x8 16 14.70 15.29 15.83 16.34 16.83 17.28 17.71 18.13 18.52 18.90 19.26 19.61 19.95 20.2819.2 13.83 14.39 14.90 15.38 15.83 16.26 16.67 17.06 17.43 17.78 18.13 18.45 18.77 19.0824 12.84 13.35 13.83 14.28 14.70 15.10 15.47 15.83 16.18 16.51 16.83 17.13 17.43 17.7112 20.64 21.47 22.23 22.95 23.63 24.27 24.87 25.45 26.01 26.54 27.05 27.54 28.01 28.472x10 16 18.75 19.50 20.20 20.85 21.47 22.05 22.60 23.13 23.63 24.11 24.57 25.02 25.45 25.8719.2 17.65 18.35 19.01 19.62 20.20 20.75 21.27 21.76 22.23 22.69 23.13 23.55 23.95 24.3424 16.38 17.04 17.65 18.22 18.75 19.26 19.74 20.20 20.64 21.06 21.47 21.86 22.23 22.60Required Fb' (ksi) to achieve this span12 1.93 2.09 2.24 2.39 2.53 2.67 2.81 2.94 3.07 3.20 3.32 3.44 3.56 3.6816 2.13 2.30 2.47 2.63 2.79 2.94 3.09 3.24 3.38 3.52 3.65 3.79 3.92 4.0519.2 2.26 2.45 2.62 2.80 2.96 3.13 3.28 3.44 3.59 3.74 3.88 4.02 4.16 4.3024 2.44 2.63 2.83 3.01 3.19 3.37 3.54 3.70 3.87 4.03 4.18 4.34 4.49 4.63λ = 0.80φ = 0.852.2 2.3 2.410.94 11.11 11.269.94 10.09 10.239.36 9.49 9.638.68 8.81 8.9417.19 17.45 17.7015.62 15.86 16.0814.70 14.92 15.1313.65 13.85 14.0522.67 23.00 23.3320.59 20.90 21.2019.38 19.67 19.9517.99 18.26 18.5228.92 29.35 29.7726.27 26.67 27.0524.72 25.09 25.4522.95 23.30 23.633.79 3.91 4.024.18 4.30 4.434.44 4.57 4.704.78 4.92 5.07


GUIDELINE<strong>LRFD</strong>TOSTRUCTURAL<strong>LRFD</strong> FOR STRUCTURALLUMBER SUPPLEMENTCOMPOSITE LUMBER 6161Table 7.5 Rafters 20/15 - L/240λ = 0.80φ = 0.85Live Load (LL) in psf = 20 Based on F b 'Dead Load (DL) in psf = 15Factored Total Load in psf = 50LL Deflection Limit (Span divided by) = 240Adjusted Bending Strength Value (ksi)2.00 2.25 2.50 2.75 3.00 3.25 3.50 3.75 4.00 4.25 4.50 4.75 5.00 5.25 5.50 5.75 6.00F b ' (ksi) 0.75 1.00 1.25 1.50 1.75Maximum Span (ft) Based on F b '10.3 11.6 12.9 14.1 15.4 16.7 18.0 19.3 20.6 21.9 23.1 24.4 25.7 27.0 28.3 29.6 30.911.71 12.42 13.09 13.73 14.34 14.93 15.49 16.04 16.56 17.07 17.57 18.05 18.52 18.97 19.42 19.86 20.2810.14 10.76 11.34 11.89 12.42 12.93 13.42 13.89 14.34 14.78 15.21 15.63 16.04 16.43 16.82 17.20 17.579.26 9.82 10.35 10.86 11.34 11.80 12.25 12.68 13.09 13.50 13.89 14.27 14.64 15.00 15.35 15.70 16.048.28 8.78 9.26 9.71 10.14 10.56 10.95 11.34 11.71 12.07 12.42 12.76 13.09 13.42 13.73 14.04 14.34Size Spacing(in) (in)λφ M (kip-in) 3.9 5.1 6.4 7.7 9.012 7.17 8.28 9.26 10.14 10.952x6 16 6.21 7.17 8.02 8.78 9.4919.2 5.67 6.55 7.32 8.02 8.6624 5.07 5.86 6.55 7.17 7.7517.9 20.1 22.3 24.6 26.8 29.0 31.3 33.5 35.7 38.0 40.2 42.4 44.7 46.9 49.1 51.4 53.615.44 16.37 17.26 18.10 18.91 19.68 20.42 21.14 21.83 22.50 23.15 23.79 24.41 25.01 25.60 26.17 26.7413.37 14.18 14.95 15.68 16.37 17.04 17.68 18.31 18.91 19.49 20.05 20.60 21.14 21.66 22.17 22.67 23.1512.20 12.94 13.64 14.31 14.95 15.56 16.14 16.71 17.26 17.79 18.31 18.81 19.30 19.77 20.24 20.69 21.1410.92 11.58 12.20 12.80 13.37 13.91 14.44 14.95 15.44 15.91 16.37 16.82 17.26 17.68 18.10 18.51 18.91λφ M (kip-in) 6.7 8.9 11.2 13.4 15.612 9.45 10.92 12.20 13.37 14.442x8 16 8.19 9.45 10.57 11.58 12.5019.2 7.47 8.63 9.65 10.57 11.4224 6.68 7.72 8.63 9.45 10.2129.1 32.7 36.4 40.0 43.6 47.3 50.9 54.5 58.2 61.8 65.5 69.1 72.7 76.4 80.0 83.6 87.319.69 20.89 22.02 23.09 24.12 25.11 26.05 26.97 27.85 28.71 29.54 30.35 31.14 31.91 32.66 33.39 34.1117.06 18.09 19.07 20.00 20.89 21.74 22.56 23.36 24.12 24.86 25.58 26.29 26.97 27.63 28.28 28.92 29.5415.57 16.51 17.41 18.26 19.07 19.85 20.60 21.32 22.02 22.70 23.36 24.00 24.62 25.23 25.82 26.40 26.9713.93 14.77 15.57 16.33 17.06 17.75 18.42 19.07 19.69 20.30 20.89 21.46 22.02 22.56 23.09 23.61 24.12λφ M (kip-in) 10.9 14.5 18.2 21.8 25.512 12.06 13.93 15.57 17.06 18.422x10 16 10.44 12.06 13.48 14.77 15.9519.2 9.53 11.01 12.31 13.48 14.5624 8.53 9.85 11.01 12.06 13.0343.0 48.4 53.8 59.2 64.5 69.9 75.3 80.7 86.1 91.4 96.8 102.2 107.6 113.0 118.3 123.7 129.123.95 25.41 26.78 28.09 29.34 30.53 31.69 32.80 33.87 34.92 35.93 36.91 37.87 38.81 39.72 40.61 41.4920.74 22.00 23.19 24.32 25.41 26.44 27.44 28.40 29.34 30.24 31.12 31.97 32.80 33.61 34.40 35.17 35.9318.94 20.09 21.17 22.21 23.19 24.14 25.05 25.93 26.78 27.60 28.40 29.18 29.94 30.68 31.40 32.11 32.8016.94 17.96 18.94 19.86 20.74 21.59 22.41 23.19 23.95 24.69 25.41 26.10 26.78 27.44 28.09 28.72 29.34λφ M (kip-in) 16.1 21.5 26.9 32.3 37.712 14.67 16.94 18.94 20.74 22.412x12 16 12.70 14.67 16.40 17.96 19.4019.2 11.60 13.39 14.97 16.40 17.7124 10.37 11.98 13.39 14.67 15.84Required MOE (ksi x 1000) for Live Load Deflection to achieve this span0.69 0.83 0.97 1.12 1.28 1.44 1.61 1.78 1.97 2.15 2.35 2.54 2.75 2.96 3.17 3.39 3.610.60 0.72 0.84 0.97 1.11 1.25 1.39 1.55 1.70 1.86 2.03 2.20 2.38 2.56 2.74 2.93 3.130.55 0.66 0.77 0.89 1.01 1.14 1.27 1.41 1.55 1.70 1.85 2.01 2.17 2.34 2.51 2.68 2.850.49 0.59 0.69 0.79 0.90 1.02 1.14 1.26 1.39 1.52 1.66 1.80 1.94 2.09 2.24 2.40 2.5512 0.16 0.25 0.34 0.45 0.5716 0.14 0.21 0.30 0.39 0.4919.2 0.13 0.19 0.27 0.36 0.4524 0.11 0.17 0.24 0.32 0.407SPAN TABLES


62 SPAN TABLESTable 7.6 Rafters 30/15 - L/240Live Load (LL) in psf = 30 Based on F b 'Dead Load (DL) in psf = 15Factored Total Load in psf = 66LL Deflection Limit (Span divided by) = 240λ = 0.80φ = 0.85F b ' (ksi) 0.75 1.00 1.25 1.50 1.75Adjusted Bending Strength Value (ksi)2.00 2.25 2.50 2.75 3.00 3.25 3.50 3.75 4.00 4.25 4.50 4.75 5.00 5.25 5.50 5.75 6.00Size Spacing(in) (in)λφ M (kip-in) 3.9 5.1 6.4 7.7 9.012 6.24 7.21 8.06 8.83 9.532x6 16 5.41 6.24 6.98 7.64 8.2619.2 4.93 5.70 6.37 6.98 7.5424 4.41 5.10 5.70 6.24 6.74Maximum Span (ft) Based on F b '10.3 11.6 12.9 14.1 15.4 16.7 18.0 19.3 20.6 21.9 23.1 24.4 25.7 27.0 28.3 29.6 30.910.19 10.81 11.40 11.95 12.48 12.99 13.48 13.96 14.41 14.86 15.29 15.71 16.12 16.51 16.90 17.28 17.658.83 9.36 9.87 10.35 10.81 11.25 11.68 12.09 12.48 12.87 13.24 13.60 13.96 14.30 14.64 14.97 15.298.06 8.55 9.01 9.45 9.87 10.27 10.66 11.03 11.40 11.75 12.09 12.42 12.74 13.06 13.36 13.66 13.967.21 7.64 8.06 8.45 8.83 9.19 9.53 9.87 10.19 10.51 10.81 11.11 11.40 11.68 11.95 12.22 12.48λφ M (kip-in) 6.7 8.9 11.2 13.4 15.612 8.23 9.50 10.62 11.64 12.572x8 16 7.13 8.23 9.20 10.08 10.8819.2 6.50 7.51 8.40 9.20 9.9424 5.82 6.72 7.51 8.23 8.8917.9 20.1 22.3 24.6 26.8 29.0 31.3 33.5 35.7 38.0 40.2 42.4 44.7 46.9 49.1 51.4 53.613.44 14.25 15.02 15.75 16.46 17.13 17.77 18.40 19.00 19.59 20.15 20.71 21.24 21.77 22.28 22.78 23.2711.64 12.34 13.01 13.64 14.25 14.83 15.39 15.93 16.46 16.96 17.45 17.93 18.40 18.85 19.30 19.73 20.1510.62 11.27 11.88 12.46 13.01 13.54 14.05 14.54 15.02 15.48 15.93 16.37 16.79 17.21 17.61 18.01 18.409.50 10.08 10.62 11.14 11.64 12.11 12.57 13.01 13.44 13.85 14.25 14.64 15.02 15.39 15.75 16.11 16.46λφ M (kip-in) 10.9 14.5 18.2 21.8 25.512 10.50 12.12 13.55 14.85 16.032x10 16 9.09 10.50 11.74 12.86 13.8919.2 8.30 9.58 10.71 11.74 12.6824 7.42 8.57 9.58 10.50 11.3429.1 32.7 36.4 40.0 43.6 47.3 50.9 54.5 58.2 61.8 65.5 69.1 72.7 76.4 80.0 83.6 87.317.14 18.18 19.17 20.10 20.99 21.85 22.68 23.47 24.24 24.99 25.71 26.42 27.10 27.77 28.43 29.07 29.6914.85 15.75 16.60 17.41 18.18 18.92 19.64 20.33 20.99 21.64 22.27 22.88 23.47 24.05 24.62 25.17 25.7113.55 14.37 15.15 15.89 16.60 17.28 17.93 18.56 19.17 19.76 20.33 20.89 21.43 21.96 22.47 22.98 23.4712.12 12.86 13.55 14.21 14.85 15.45 16.03 16.60 17.14 17.67 18.18 18.68 19.17 19.64 20.10 20.55 20.99λφ M (kip-in) 16.1 21.5 26.9 32.3 37.712 12.77 14.74 16.48 18.06 19.502x12 16 11.06 12.77 14.27 15.64 16.8919.2 10.09 11.65 13.03 14.27 15.4224 9.03 10.42 11.65 12.77 13.7943.0 48.4 53.8 59.2 64.5 69.9 75.3 80.7 86.1 91.4 96.8 102.2 107.6 113.0 118.3 123.7 129.120.85 22.11 23.31 24.45 25.53 26.58 27.58 28.55 29.48 30.39 31.27 32.13 32.96 33.78 34.57 35.35 36.1118.06 19.15 20.19 21.17 22.11 23.02 23.88 24.72 25.53 26.32 27.08 27.83 28.55 29.25 29.94 30.61 31.2716.48 17.48 18.43 19.33 20.19 21.01 21.80 22.57 23.31 24.03 24.72 25.40 26.06 26.70 27.33 27.95 28.5514.74 15.64 16.48 17.29 18.06 18.79 19.50 20.19 20.85 21.49 22.11 22.72 23.31 23.88 24.45 25.00 25.53Required MOE (ksi x 1000) for Live Load Deflection to achieve this span12 0.16 0.24 0.34 0.45 0.5616 0.14 0.21 0.29 0.39 0.4919.2 0.12 0.19 0.27 0.35 0.4424 0.11 0.17 0.24 0.32 0.400.69 0.82 0.96 1.11 1.26 1.42 1.59 1.76 1.94 2.13 2.32 2.52 2.72 2.92 3.13 3.35 3.570.60 0.71 0.83 0.96 1.09 1.23 1.38 1.53 1.68 1.84 2.01 2.18 2.35 2.53 2.71 2.90 3.090.54 0.65 0.76 0.88 1.00 1.13 1.26 1.40 1.54 1.68 1.83 1.99 2.15 2.31 2.48 2.65 2.820.49 0.58 0.68 0.78 0.89 1.01 1.13 1.25 1.37 1.51 1.64 1.78 1.92 2.07 2.22 2.37 2.53


GUIDELINE<strong>LRFD</strong>TOSTRUCTURAL<strong>LRFD</strong> FOR STRUCTURALLUMBER SUPPLEMENTCOMPOSITE LUMBER 6363Table 7.7 Rafters 40/15 - L/240Live Load (LL) in psf = 40 Based on F b 'Dead Load (DL) in psf = 15Factored Total Load in psf = 82LL Deflection Limit (Span divided by) = 240 λ = 0.80φ = 0.85Adjusted Bending Strength Value (ksi)2.00 2.25 2.50 2.75 3.00 3.25 3.50 3.75 4.00 4.25 4.50 4.75 5.00 5.25 5.50 5.75 6.00F b ' (ksi) 0.75 1.00 1.25 1.50 1.75Maximum Span (ft) Based on F b '10.3 11.6 12.9 14.1 15.4 16.7 18.0 19.3 20.6 21.9 23.1 24.4 25.7 27.0 28.3 29.6 30.99.14 9.70 10.22 10.72 11.20 11.66 12.10 12.52 12.93 13.33 13.72 14.09 14.46 14.82 15.16 15.50 15.847.92 8.40 8.85 9.29 9.70 10.10 10.48 10.84 11.20 11.54 11.88 12.20 12.52 12.83 13.13 13.43 13.727.23 7.67 8.08 8.48 8.85 9.22 9.56 9.90 10.22 10.54 10.84 11.14 11.43 11.71 11.99 12.26 12.526.47 6.86 7.23 7.58 7.92 8.24 8.55 8.85 9.14 9.43 9.70 9.96 10.22 10.43 10.43 10.43 10.43Size Spacing(in) (in)λφ M (kip-in) 3.9 5.1 6.4 7.7 9.012 5.60 6.47 7.23 7.92 8.552x6 16 4.85 5.60 6.26 6.86 7.4119.2 4.43 5.11 5.72 6.26 6.7624 3.96 4.57 5.11 5.60 6.0517.9 20.1 22.3 24.6 26.8 29.0 31.3 33.5 35.7 38.0 40.2 42.4 44.7 46.9 49.1 51.4 53.612.05 12.79 13.48 14.13 14.76 15.37 15.95 16.51 17.05 17.57 18.08 18.58 19.06 19.53 19.99 20.44 20.8810.44 11.07 11.67 12.24 12.79 13.31 13.81 14.29 14.76 15.22 15.66 16.09 16.51 16.91 17.31 17.70 18.089.53 10.11 10.65 11.17 11.67 12.15 12.61 13.05 13.48 13.89 14.29 14.69 15.07 15.44 15.80 16.16 16.518.52 9.04 9.53 9.99 10.44 10.87 11.28 11.67 12.05 12.42 12.79 13.14 13.48 13.75 13.75 13.75 13.75λφ M (kip-in) 6.7 8.9 11.2 13.4 15.612 7.38 8.52 9.53 10.44 11.282x8 16 6.39 7.38 8.25 9.04 9.7619.2 5.84 6.74 7.53 8.25 8.9124 5.22 6.03 6.74 7.38 7.9729.1 32.7 36.4 40.0 43.6 47.3 50.9 54.5 58.2 61.8 65.5 69.1 72.7 76.4 80.0 83.6 87.315.38 16.31 17.19 18.03 18.84 19.60 20.34 21.06 21.75 22.42 23.07 23.70 24.32 24.92 25.50 26.08 26.6413.32 14.13 14.89 15.62 16.31 16.98 17.62 18.24 18.84 19.42 19.98 20.53 21.06 21.58 22.09 22.58 23.0712.16 12.90 13.59 14.26 14.89 15.50 16.08 16.65 17.19 17.72 18.24 18.74 19.22 19.70 20.16 20.62 21.0610.87 11.53 12.16 12.75 13.32 13.86 14.39 14.89 15.38 15.85 16.31 16.76 17.19 17.54 17.54 17.54 17.54λφ M (kip-in) 10.9 14.5 18.2 21.8 25.512 9.42 10.87 12.16 13.32 14.392x10 16 8.16 9.42 10.53 11.53 12.4619.2 7.45 8.60 9.61 10.53 11.3724 6.66 7.69 8.60 9.42 10.1743.0 48.4 53.8 59.2 64.5 69.9 75.3 80.7 86.1 91.4 96.8 102.2 107.6 113.0 118.3 123.7 129.118.70 19.84 20.91 21.93 22.91 23.84 24.74 25.61 26.45 27.27 28.06 28.83 29.57 30.30 31.02 31.71 32.4016.20 17.18 18.11 18.99 19.84 20.65 21.43 22.18 22.91 23.61 24.30 24.96 25.61 26.24 26.86 27.47 28.0614.79 15.68 16.53 17.34 18.11 18.85 19.56 20.25 20.91 21.56 22.18 22.79 23.38 23.96 24.52 25.07 25.6113.23 14.03 14.79 15.51 16.20 16.86 17.50 18.11 18.70 19.28 19.84 20.38 20.91 21.34 21.34 21.34 21.34λφ M (kip-in) 16.1 21.5 26.9 32.3 37.712 11.45 13.23 14.79 16.20 17.502x12 16 9.92 11.45 12.81 14.03 15.1519.2 9.06 10.46 11.69 12.81 13.8324 8.10 9.35 10.46 11.45 12.37Required MOE (ksi x 1000) for Live Load Deflection to achieve this span0.66 0.79 0.92 1.07 1.22 1.37 1.53 1.70 1.87 2.05 2.23 2.42 2.62 2.81 3.02 3.23 3.440.57 0.68 0.80 0.92 1.05 1.19 1.33 1.47 1.62 1.78 1.93 2.10 2.27 2.44 2.61 2.79 2.980.52 0.62 0.73 0.84 0.96 1.08 1.21 1.34 1.48 1.62 1.77 1.91 2.07 2.23 2.39 2.55 2.720.47 0.56 0.65 0.75 0.86 0.97 1.08 1.20 1.32 1.45 1.58 1.71 1.85 1.99 2.13 2.28 2.4312 0.15 0.23 0.33 0.43 0.5416 0.13 0.20 0.28 0.37 0.4719.2 0.12 0.18 0.26 0.34 0.4324 0.11 0.17 0.23 0.30 0.387SPAN TABLES


64 SPAN TABLESTable 7.8 Rafters 20/10 - L/240Live Load (LL) in psf = 20 Based on F b 'Dead Load (DL) in psf = 10Factored Total Load in psf = 44LL Deflection Limit (Span divided by) = 240λ = 0.80φ = 0.85F b ' (ksi) 0.75 1.00 1.25 1.50 1.75Adjusted Bending Strength Value (ksi)2.00 2.25 2.50 2.75 3.00 3.25 3.50 3.75 4.00 4.25 4.50 4.75 5.00 5.25 5.50 5.75 6.00Size Spacing(in) (in)λφ M (kip-in) 3.9 5.1 6.4 7.7 9.012 7.64 8.83 9.87 10.81 11.682x6 16 6.62 7.64 8.55 9.36 10.1119.2 6.04 6.98 7.80 8.55 9.2324 5.41 6.24 6.98 7.64 8.26Maximum Span (ft) Based on F b '10.3 11.6 12.9 14.1 15.4 16.7 18.0 19.3 20.6 21.9 23.1 24.4 25.7 27.0 28.3 29.6 30.912.48 13.24 13.96 14.64 15.29 15.91 16.51 17.09 17.65 18.20 18.72 19.24 19.74 20.23 20.70 21.17 21.6210.81 11.47 12.09 12.68 13.24 13.78 14.30 14.80 15.29 15.76 16.22 16.66 17.09 17.52 17.93 18.33 18.729.87 10.47 11.03 11.57 12.09 12.58 13.06 13.51 13.96 14.39 14.80 15.21 15.60 15.99 16.37 16.73 17.098.83 9.36 9.87 10.35 10.81 11.25 11.68 12.09 12.48 12.87 13.24 13.60 13.96 14.30 14.64 14.97 15.29λφ M (kip-in) 6.7 8.9 11.2 13.4 15.612 10.08 11.64 13.01 14.25 15.392x8 16 8.73 10.08 11.27 12.34 13.3319.2 7.97 9.20 10.28 11.27 12.1724 7.13 8.23 9.20 10.08 10.8817.9 20.1 22.3 24.6 26.8 29.0 31.3 33.5 35.7 38.0 40.2 42.4 44.7 46.9 49.1 51.4 53.616.46 17.45 18.40 19.30 20.15 20.98 21.77 22.53 23.27 23.99 24.68 25.36 26.02 26.66 27.29 27.90 28.5014.25 15.12 15.93 16.71 17.45 18.17 18.85 19.51 20.15 20.77 21.38 21.96 22.53 23.09 23.63 24.16 24.6813.01 13.80 14.54 15.25 15.93 16.58 17.21 17.81 18.40 18.96 19.51 20.05 20.57 21.08 21.57 22.06 22.5311.64 12.34 13.01 13.64 14.25 14.83 15.39 15.93 16.46 16.96 17.45 17.93 18.40 18.85 19.30 19.73 20.15λφ M (kip-in) 10.9 14.5 18.2 21.8 25.512 12.86 14.85 16.60 18.18 19.642x10 16 11.13 12.86 14.37 15.75 17.0119.2 10.16 11.74 13.12 14.37 15.5324 9.09 10.50 11.74 12.86 13.8929.1 32.7 36.4 40.0 43.6 47.3 50.9 54.5 58.2 61.8 65.5 69.1 72.7 76.4 80.0 83.6 87.320.99 22.27 23.47 24.62 25.71 26.76 27.77 28.75 29.69 30.60 31.49 32.35 33.20 34.02 34.82 35.60 36.3618.18 19.28 20.33 21.32 22.27 23.18 24.05 24.90 25.71 26.50 27.27 28.02 28.75 29.46 30.15 30.83 31.4916.60 17.60 18.56 19.46 20.33 21.16 21.96 22.73 23.47 24.20 24.90 25.58 26.24 26.89 27.52 28.14 28.7514.85 15.75 16.60 17.41 18.18 18.92 19.64 20.33 20.99 21.64 22.27 22.88 23.47 24.05 24.62 25.17 25.71λφ M (kip-in) 16.1 21.5 26.9 32.3 37.712 15.64 18.06 20.19 22.11 23.882x12 16 13.54 15.64 17.48 19.15 20.6819.2 12.36 14.27 15.96 17.48 18.8824 11.06 12.77 14.27 15.64 16.8943.0 48.4 53.8 59.2 64.5 69.9 75.3 80.7 86.1 91.4 96.8 102.2 107.6 113.0 118.3 123.7 129.125.53 27.08 28.55 29.94 31.27 32.55 33.78 34.96 36.11 37.22 38.30 39.35 40.37 41.37 42.34 43.30 44.2322.11 23.45 24.72 25.93 27.08 28.19 29.25 30.28 31.27 32.24 33.17 34.08 34.96 35.83 36.67 37.49 38.3020.19 21.41 22.57 23.67 24.72 25.73 26.70 27.64 28.55 29.43 30.28 31.11 31.92 32.71 33.48 34.23 34.9618.06 19.15 20.19 21.17 22.11 23.02 23.88 24.72 25.53 26.32 27.08 27.83 28.55 29.25 29.94 30.61 31.27Required MOE (ksi x 1000) for Live Load Deflection to achieve this span12 0.19 0.30 0.42 0.55 0.6916 0.17 0.26 0.36 0.47 0.6019.2 0.15 0.24 0.33 0.43 0.5424 0.14 0.21 0.29 0.39 0.490.84 1.00 1.18 1.36 1.55 1.74 1.95 2.16 2.38 2.61 2.84 3.08 3.33 3.58 3.84 4.10 4.370.73 0.87 1.02 1.18 1.34 1.51 1.69 1.87 2.06 2.26 2.46 2.67 2.88 3.10 3.32 3.55 3.790.67 0.79 0.93 1.07 1.22 1.38 1.54 1.71 1.88 2.06 2.25 2.44 2.63 2.83 3.04 3.24 3.460.60 0.71 0.83 0.96 1.09 1.23 1.38 1.53 1.68 1.84 2.01 2.18 2.35 2.53 2.71 2.90 3.09


GUIDELINE<strong>LRFD</strong>TOSTRUCTURAL<strong>LRFD</strong> FOR STRUCTURALLUMBER SUPPLEMENTCOMPOSITE LUMBER6565Table 7.9 Rafters 20/10 - L/180λ = 0.80φ = 0.85Live Load (LL) in psf = 20 Based on F b 'Dead Load (DL) in psf = 10Factored Total Load in psf = 44LL Deflection Limit (Span divided by) = 180Adjusted Bending Strength Value (ksi)2.00 2.25 2.50 2.75 3.00 3.25 3.50 3.75 4.00 4.25 4.50 4.75 5.00 5.25 5.50 5.75 6.00F b ' (ksi) 0.75 1.00 1.25 1.50 1.75Maximum Span (ft) Based on F b '10.3 11.6 12.9 14.1 15.4 16.7 18.0 19.3 20.6 21.9 23.1 24.4 25.7 27.0 28.3 29.6 30.912.48 13.24 13.96 14.64 15.29 15.91 16.51 17.09 17.65 18.20 18.72 19.24 19.74 20.23 20.70 21.17 21.6210.81 11.47 12.09 12.68 13.24 13.78 14.30 14.80 15.29 15.76 16.22 16.66 17.09 17.52 17.93 18.33 18.729.87 10.47 11.03 11.57 12.09 12.58 13.06 13.51 13.96 14.39 14.80 15.21 15.60 15.99 16.37 16.73 17.098.83 9.36 9.87 10.35 10.81 11.25 11.68 12.09 12.48 12.87 13.24 13.60 13.96 14.30 14.64 14.97 15.29Size Spacing(in) (in)λφ M (kip-in) 3.9 5.1 6.4 7.7 9.012 7.64 8.83 9.87 10.81 11.682x6 16 6.62 7.64 8.55 9.36 10.1119.2 6.04 6.98 7.80 8.55 9.2324 5.41 6.24 6.98 7.64 8.2617.9 20.1 22.3 24.6 26.8 29.0 31.3 33.5 35.7 38.0 40.2 42.4 44.7 46.9 49.1 51.4 53.616.46 17.45 18.40 19.30 20.15 20.98 21.77 22.53 23.27 23.99 24.68 25.36 26.02 26.66 27.29 27.90 28.5014.25 15.12 15.93 16.71 17.45 18.17 18.85 19.51 20.15 20.77 21.38 21.96 22.53 23.09 23.63 24.16 24.6813.01 13.80 14.54 15.25 15.93 16.58 17.21 17.81 18.40 18.96 19.51 20.05 20.57 21.08 21.57 22.06 22.5311.64 12.34 13.01 13.64 14.25 14.83 15.39 15.93 16.46 16.96 17.45 17.93 18.40 18.85 19.30 19.73 20.15λφ M (kip-in) 6.7 8.9 11.2 13.4 15.612 10.08 11.64 13.01 14.25 15.392x8 16 8.73 10.08 11.27 12.34 13.3319.2 7.97 9.20 10.28 11.27 12.1724 7.13 8.23 9.20 10.08 10.8829.1 32.7 36.4 40.0 43.6 47.3 50.9 54.5 58.2 61.8 65.5 69.1 72.7 76.4 80.0 83.6 87.320.99 22.27 23.47 24.62 25.71 26.76 27.77 28.75 29.69 30.60 31.49 32.35 33.20 34.02 34.82 35.60 36.3618.18 19.28 20.33 21.32 22.27 23.18 24.05 24.90 25.71 26.50 27.27 28.02 28.75 29.46 30.15 30.83 31.4916.60 17.60 18.56 19.46 20.33 21.16 21.96 22.73 23.47 24.20 24.90 25.58 26.24 26.89 27.52 28.14 28.7514.85 15.75 16.60 17.41 18.18 18.92 19.64 20.33 20.99 21.64 22.27 22.88 23.47 24.05 24.62 25.17 25.71λφ M (kip-in) 10.9 14.5 18.2 21.8 25.512 12.86 14.85 16.60 18.18 19.642x10 16 11.13 12.86 14.37 15.75 17.0119.2 10.16 11.74 13.12 14.37 15.5324 9.09 10.50 11.74 12.86 13.8943.0 48.4 53.8 59.2 64.5 69.9 75.3 80.7 86.1 91.4 96.8 102.2 107.6 113.0 118.3 123.7 129.125.53 27.08 28.55 29.94 31.27 32.55 33.78 34.96 36.11 37.22 38.30 39.35 40.37 41.37 42.34 43.30 44.2322.11 23.45 24.72 25.93 27.08 28.19 29.25 30.28 31.27 32.24 33.17 34.08 34.96 35.83 36.67 37.49 38.3020.19 21.41 22.57 23.67 24.72 25.73 26.70 27.64 28.55 29.43 30.28 31.11 31.92 32.71 33.48 34.23 34.9618.06 19.15 20.19 21.17 22.11 23.02 23.88 24.72 25.53 26.32 27.08 27.83 28.55 29.25 29.94 30.61 31.27λφ M (kip-in) 16.1 21.5 26.9 32.3 37.712 15.64 18.06 20.19 22.11 23.882x12 16 13.54 15.64 17.48 19.15 20.6819.2 12.36 14.27 15.96 17.48 18.8824 11.06 12.77 14.27 15.64 16.89Required MOE (ksi x 1000) for Live Load Deflection to achieve this span0.63 0.75 0.88 1.02 1.16 1.31 1.46 1.62 1.79 1.96 2.13 2.31 2.50 2.69 2.88 3.08 3.280.55 0.65 0.76 0.88 1.00 1.13 1.27 1.40 1.55 1.69 1.85 2.00 2.16 2.33 2.49 2.67 2.840.50 0.60 0.70 0.80 0.92 1.03 1.16 1.28 1.41 1.55 1.68 1.83 1.97 2.12 2.28 2.43 2.590.45 0.53 0.62 0.72 0.82 0.92 1.03 1.15 1.26 1.38 1.51 1.63 1.76 1.90 2.04 2.18 2.3212 0.14 0.22 0.31 0.41 0.5216 0.13 0.19 0.27 0.36 0.4519.2 0.11 0.18 0.25 0.32 0.4124 0.10 0.16 0.22 0.29 0.377SPAN TABLES


66SPAN TABLES


<strong>LRFD</strong> STRUCTURAL LUMBER SUPPLEMENT67SECTIONPROPERTIES8.1 Cross-Section Properties 68Table 8.1 Section Properties of Standard Dressed SawnLumber Sizes .......................................................... 698


68 SECTION PROPERTIES8.1 Cross-Section PropertiesNominal and minimum dressed sizes are provided inTable 8.1 for boards, dimension lumber and timbers. Thetable provides the corresponding section properties aboutthe primary (X-X) and secondary (Y-Y) axes for these products.


GUIDELINE<strong>LRFD</strong>TOSTRUCTURAL<strong>LRFD</strong> FOR STRUCTURALLUMBER SUPPLEMENTCOMPOSITE LUMBER6969Table 8.1Section Properties of Standard Dressed Sawn Lumber SizesNominal Sizein InchesSurfaced Sizein InchesAreaA = bh X-X Axis Y-Y Axisb h b h A (in2) Ix (in. 4 ) S x (in. 3 ) I y (in. 4 ) S y (in. 3 )2 x 2 1.5 x 1.5 2.25 0.42 0.56 0.42 0.562 x 3 1.5 x 2.5 3.75 1.95 1.56 0.70 0.942 x 42 x 52 x 62 x 82 x 102 x 122 x 141.5 x 3.51.5 x 4.51.5 x 5.51.5 x 7.251.5 x 9.251.5 x 11.251.5 x 13.255.256.758.2510.8813.8816.8819.885.3611.3920.8047.6398.93177.98290.783.065.067.5613.1421.3931.4643.890.981.271.552.042.603.163.731.311.692.062.723.474.224.973 x 33 x 43 x 53 x 63 x 83 x 103 x 123 x 143 x 164 x 44 x 54 x 64 x 84 x 104 x 124 x 144 x 166 x 66 x 86 x 106 x 126 x 146 x 166 x 186 x 208 x 88 x 108 x 128 x 148 x 168 x 188 x 208 x 228 x 2410 x 1010 x 1210 x 1410 x 1610 x 1810 x 2010 x 2212 x 1212 x 1412 x 1612 x 1812 x 2012 x 2212 x 242.5 x 2.52.5 x 3.52.5 x 4.52.5 x 5.52.5 x 7.252.5 x 9.252.5 x 11.252.5 x 13.252.5 x 15.253.5 x 3.53.5 x 4.53.5 x 5.53.5 x 7.253.5 x 9.253.5 x 11.253.5 x 13.253.5 x 15.255.5 x 5.55.5 x 7.55.5 x 9.55.5 x 11.55.5 x 13.55.5 x 15.55.5 x 17.55.5 x 19.57.5 x 7.57.5 x 9.57.5 x 11.57.5 x 13.57.5 x 15.57.5 x 17.57.5 x 19.57.5 x 21.57.5 x 23.59.5 x 9.59.5 x 11.59.5 x 13.59.5 x 15.59.5 x 17.59.5 x 19.59.5 x 21.511.5 x 11.511.5 x 13.511.5 x 15.511.5 x 17.511.5 x 19.511.5 x 21.511.5 x 23.56.258.7511.2513.7518.1323.1328.1333.1338.1312.2515.7519.2525.3832.3839.3846.3853.3830.2541.2552.2563.2574.2585.2596.25107.2556.2571.2586.25101.25116.25131.25146.25161.25176.2590.25109.25128.25147.25166.25185.25204.25132.25155.25178.25201.25224.25247.25270.253.268.9318.9834.6679.39164.89296.63484.63738.8712.5126.5848.53111.15230.84415.28678.481034.4276.26193.36392.96697.071127.671706.782456.383398.48263.67535.86950.551537.732327.423349.614634.306211.488111.17678.761204.031947.802948.074242.845870.117867.881457.512357.863568.715136.077105.929524.2812437.132.605.108.4412.6021.9035.6552.7373.1596.907.1511.8117.6530.6649.9173.83102.41135.6627.7351.5682.73121.23167.06220.23280.73348.5670.31112.81165.31227.81300.31382.81475.31577.81690.31142.90209.40288.56380.40484.90602.06731.90253.48349.31460.48586.98728.81885.981058.483.264.565.867.169.4412.0414.6517.2519.8612.5116.0819.6525.0933.0540.2047.3454.4976.26103.98131.71159.44187.17214.90242.63270.36263.67333.98404.30474.61544.92615.23685.55755.86826.17678.76821.65964.551107.441250.341393.231536.131457.511710.981964.462217.942471.422724.902978.382.603.654.695.737.559.6411.7213.8015.897.159.1911.2314.8018.8922.9727.0531.1427.7337.8147.9057.9868.0678.1588.2398.3170.3189.06107.81126.56145.31164.06182.81201.56220.31142.90172.98203.06233.15263.23293.31323.40253.48297.56341.65385.73429.81473.90517.988SECTION PROPERTIES


70CROSS-SECTION PROPERTIES


<strong>LRFD</strong> STRUCTURAL LUMBER SUPPLEMENT71APPENDIXExample of Selection Table Development 72Tension Selection Tables 72Stud Wall Selection Tables/ColumnSelection Tables 72Joist Selection Tables 73Beam Selection Tables 74Combined Loading Stud WallSelection Tables 75 A


72 APPENDIXAppendix: Example of Selection Table DevelopmentTension Selection TablesThe general design equation for tension members(AF&PA/ASCE 16-95, Eq. 3.1-1) is:Tuwhere≤ λφ T′tT uExample 1:= tension force due to factored loadsλ = time effect factorφ t= tension resistance factor, 0.80T′ = adjusted tension resistanceSpecies: Hem-FirApplication — tension memberSize: 2 x 6 (1.5 in. by 5.5 in.)Grade: 1650f-1.5E MSRF t′: 2.75 ksiA n: 8.25 in 2 (net area)Tension Resistanceλφ T′ = λφ FA ′t t t n= (0.80) ( 080 . ) (2.75) (8.25)= 14.5 kipsStud Wall Selection Tables/Column Selection TablesThe general design equation (AF&PA/ASCE 16-95, Eq.4.1-1) is:Puwhere≤ λφ P′P uc= compressive force due to factored loadsλ = time effect factorφ c= compression resistance factor, 0.90P′ = adjusted compression resistanceAxial ResistanceP′ = C A F N=C P Np c p 0whereandCαPpce1 cc c= + α ⎛ 1+α ⎞ α− ⎜ ⎟ −2c ⎝ 2c ⎠ cφsPe=λφ Pc0 N22E0E0A=π 5NI=π 5N2( Kl)K l 2⎛ ⎞⎜ ⎟⎝ r ⎠A = gross areaC p2= column stability factorF c′ = adjusted parallel-to-grain compression strengthE 05′ = adjusted modulus of elasticity at the fifthpercentileP e= critical (Euler) buckling resistance about theaxis being consideredP 0′ = adjusted member axial parallel-to-grainresistance of a zero length column (i.e., the limitobtained as length approaches zero)c = 0.8 for solid sawn membersφ c= resistance factor for compression = 0.90φ s= resistance factor for stability = 0.85Example 2: Application — wall stud laterally supportedin the weak direction and axially loaded (prismatic column).Species: Southern PineSize: 2 x 4 (1.5 in by 3.5 in) by 8'Grade: Stud (dry)F c′: 2.34 ksiE 05′ : 850 ksiA: 5.25 in 2I: 5.36 in 42EPe=π NI052( Kl)2=π (850)5.36= 488 . kips( 96)2


GUIDELINE<strong>LRFD</strong>TOSTRUCTURAL<strong>LRFD</strong> FOR STRUCTURALLUMBER SUPPLEMENTCOMPOSITE LUMBER7373αcφsPe=λφ PNc0( 085 . )( 488 . )= = 0.4690. 80 ( 0. 90) 12.29λφ c P x N ==( 0.80 ) ( 0.90 ) ( 0.712 ) ( 41.25 ) ( 2.40)50.8kipsFactored column resistance — y-axisCp1cc c= + α ⎛ 1+α ⎞ α− ⎜ ⎟ −2c ⎝ 2c ⎠ c1 .= + 0 469−16 .= 0.4112⎛ 1+0.469 ⎞ 0.469⎜ ⎟ −⎝ 16 . ⎠ 080 .2Pey2π E NI=y052( Kl)2.=π (970)103 98= 48.01kips( 144)2λ φ cP ′ = ( 0.80 ) ( 0.90 ) ( 0.411 ) ( 5.25 ) ( 2.34)= 364 . kipsExample 3: Application — Simple column.Species: Douglas Fir-LarchSize: 6 x 8 (5.5 in. by 7.5 in.) by 12 ft.Grade: No. 1 (dry)αCcypyφsPey=λφ PNc0( 085 . )( 4801 . )= = 0.5730. 80 ( 0. 90) 99.001cycy= + α ⎛ 1+α ⎞ α− ⎜ ⎟ −2c ⎝ 2c ⎠ c2cyF cN: 2.40 ksiE 05N: 970 ksiA: 41.25 in 2I x: 193.36 in 4I y: 103.98 in 4Factored column resistance — x-axisPex2E=π NI x052( Kl)2( ) .=π 970 193 36= 89. 27 kips( 144)21= + 1573 .−16 .= 0.483⎛ 1+1573 . ⎞ 1573 .⎜ ⎟ −⎝ 16 . ⎠ 080 .λφ c P yN = ( 0. 80)( 0. 90)( 0. 483)( 4125 . )( 2.40)= 34. 4 kipsJoist Selection Tables2The general design equation for flexural bending(AF&PA/ASCE 16-95, Eq. 5.1-1) is:AAppendixαCcxpxφsPex=λφ PNc0( 085 . )(8927 . )= = 1065 .0. 80 ( 0. 90) 99.001cxcx= + α ⎛ 1+α ⎞ α− ⎜ ⎟ −2c ⎝ 2c ⎠ c1 .= + 1065−16 .= 0.71222cx⎛ 1+1065 . ⎞ 1065 .⎜ ⎟ −⎝ 16 . ⎠ 080 .Muwhere≤ λ φ M′M ub= moment due to factored loadsλ = time effect factorφ b= bending resistance factor, 0.85M′ = adjusted moment resistanceThe general design equation for flexural shear(AF&PA/ASCE 16-95, Eq. 5.1-2) is:Vuwhere≤ λ φ V′v


74 APPENDIXV u= shear force due to factored loads8 = time effect factorN v= shear resistance factor, 0.75V′ = adjusted shear resistanceExample 4: Application — floor joistSpecies: Douglas Fir-LarchSize: 2 x 6 (1.5 in. by 5.5 in.)Grade: No. 2C F: 1.3 (size factor)F b′: 2.22 ksiF v′: 0.27 ksiE: 1600 ksiThe general design equation for flexural bending(AF&PA/ASCE 16-95, Eq. 5.1-1) is:Muwhere≤ λ φ M′M ub= moment due to factored loads8 = time effect factorN b= bending resistance factor, 0.85M′ = adjusted moment resistanceThe general design equation for flexural shear(AF&PA/ASCE 16-95, Eq. 5.1-2) is:Vu≤ λ φ V′vA: 8.25 in 2S: 7.56 in 3I: 20.80 in 4Moment resistancewhereV u= shear force due to factored loads8 = time effect factorN v= shear resistance factor, 0.75V′ = adjusted shear resistanceλ φ M′ = λ φ FNSCb b b f=( 0. 80)( 0. 85)( 2. 22)( 7. 56)( 13 . )= 14. 8 kip -inchShear resistance⎛ 2⎞λ φ V′ = λv φ Fv vNA⎜ ⎟⎝ 3 ⎠==( 080 . )( 075 . )( 027 . )( 825 . )089 .kipsFlexural rigidity( )( )⎛ 2 ⎞⎜ ⎟⎝ 3 ⎠E I= 1600 20. 80 = 33. 3 × 10 3 kip - inches2Beam Selection Tables(Reference strengths for beams are selected from Table3.3. Values provided in Table 3.3 are adjusted further bysize factors according to footnote 3 of Table 4.3. Thisand the repetitive use factor represent the computationaldistinction encountered in beam and joist design.)Example 5: Application — BeamSpecies: Douglas-fir LarchSize: 6 x 12 (5.5 in. by 11.5 in.)Grade: No. 2F b′: 2.22 ksiF v′: 0.24 ksiE: 1300 ksiA: 63.25 in 2S: 121.23 in 3I: 697.07 in 4Moment resistanceλ φ M′ = λ φ FNSb b b=( 0. 80)( 0. 85)( 2. 22)( 12123 . )= 183. 0 kip - inchShear resistance⎛ 2 ⎞λ φ V′ = λv φ Fv vNA⎜⎟⎝ 3 ⎠=( 080 . )( 075 . )( 024 . )( 6325 . )= 607 . kips⎛ 2⎞⎜ ⎟⎝ 3 ⎠


GUIDELINE<strong>LRFD</strong>TOSTRUCTURAL<strong>LRFD</strong> FOR STRUCTURALLUMBER SUPPLEMENTCOMPOSITE LUMBER7575Flexural rigidity( )( )EI = 1300 697 . 07 = 0.91 × 10 6 kip−inches2⎛ P ⎞u⎜⎝ λ φ P ′⎟⎠c2+Mλ φ⎛⎜⎜1mxbM x′⎜ Pu⎜ 1-⎝ φcPex⎞⎟⎟⎟⎟⎠≤1.0Combined Loading Stud WallSelection TablesGeneral design equation (AF&PA/ASCE 16-95, Eq.6.3-1) is:whereuc2⎛ P ⎞ M Mmy⎜ ⎟ + + ≤⎝ λφ P ′ ⎠ λφ ′ λφ M ′1.0mxbMx8 = time effect factorbyN c= compression resistance factor, 0.90P u= factored compressive forceP′ = adjusted compression resistanceWhich can be rewritten as:⎛2M⎛ P ⎞ ⎞mx ⎜uP1- ⎟ ⎛ ⎞u=1-λ φbMx′ ⎜ ⎜⎝ λ φcP ′⎟⎠ ⎟ ⎜φ cP⎟⎝⎠⎝ ex ⎠Define the axial compression load ratio as a constant, k:k =Therefore:Mmxλ φ M′bxPuλ φ P ′=c2( )⎛1- k 1- k λ φ P c′ ⎞⎜⎝ φ P⎟⎠cexM mx= factored moment for strong axisM my= factored moment for weak axisN b= bending resistance factor, 0.85M x′ = adjusted moment resistance for strong axisM y′ = adjusted moment resistance for weak axisExample 6: Application — stud wall braced in weak directionSpecies: Spruce-Pine-FirSize: 2 x 6 (1.5 in. by 5.5 in.) by 4 ft.Grade: Stud (dry)F b: 1.71 ksiFor this example, assume an axial compression loadratio, k, of 0.20. The factored column resistance term,8N c PN, can be found in Table 5.2. For this example, thisterm is 9.3 kips. The critical (Euler) buckling resistanceis calculated as follows:Pe =2π E ′ I052( Kl)2( )( 48)π 730 20.80= = 65.04 kipsTherefore:2AAppendixF c: 1.62 ksiE 05: 730 ksiA: 8.25 in 2S: 7.56 in 3I: 20.80 in 4- No appreciable structural sidesway- No applied load in the weak direction- C m = 1.0- Studs are braced in the weak directionThe above assumptions reduce the general designequation to:M⎛mx2= ( 1−0.2 )1−λφbMx′⎜⎝= 0930 .0293 . ( . )( 090 . )( 6504 . )Considering the moment resistance:λφ M′=λφ F C C Sb b b F r=And finally:M⎞⎟⎠( 080 . )( 085 . )( 171 . )( 10 . )( 115 . )( 756 . )= 10.1 kip −in( 0930 . ) λφ M( 0930 . )( 1001 . )= ′mx b x== 939 . kip −in


76APPENDIX


SUPPLEMENTStructural GluedLaminated Timber<strong>LRFD</strong>LOAD AND RESISTANCE FACTOR DESIGNMANUAL FOR ENGINEEREDWOOD CONSTRUCTION


SUPPLEMENTStructural GluedLaminated Timber<strong>LRFD</strong>LOAD AND RESISTANCE FACTOR DESIGNMANUAL FOR ENGINEEREDWOOD CONSTRUCTIONCopyright © <strong>1996</strong>APA – The Engineered <strong>Wood</strong> Association


PrefaceThis supplement contains adjustment factors, dimensions,factored resistance, reference strengths and otherproperties required to design structural glued laminatedtimber in the <strong>LRFD</strong> format. In this format, the term “resistance”is used to refer to member capacities (i.e.,moment resistance, compression resistance, etc.). This isdistinct from the term “strength” which refers to limit statematerial properties — conceptually a “factored allowablestress.”The member resistance values tabulated in thissupplement are to be used in conjunction with thedesign methodologies provided in AF&PA/ASCE 16-95, Standardfor Load and Resistance Factor Design (<strong>LRFD</strong>) forEngineered <strong>Wood</strong> Construction.The reference strengths were derived according to theprinciples of ASTM D5457-93, Standard Specification forComputing the Reference Resistance of <strong>Wood</strong>-based Materialsand Structural Connections for Load andResistance Factor Design.The tabulated reference strength values are to be usedwithin the reference end-use conditions defined therein.When the end-use conditions fall outside the range of thereference conditions, the reference values shall be adjustedby the product of applicable adjustment factors as definedin AF&PA/ASCE 16-95 and also provided in this supplement.For unusual end-use conditions, the designer shouldconsult additional literature for possible further adjustments.APA/EWS


TABLE OF CONTENTSChapter/Title PageChapter/TitlePage4.10 Flat Use Factor, C fu1. Designer Flowchart ...................................................1 5. Capacity Selection Tables .............371.1 Flowchart5.1 General5.2 Factored Reference Bending Resistance,2. Introduction to Structuralλφ b M, and Shear Resistance, λφ v VGlued Laminated Timber ............................ 35.3 Reference Bending Stiffness, EI and2.1 Products DescriptionE 05 I2.2 Common Uses5.4 Factored Reference Tension Parallel2.3 Availabilityto Grain Resistance, λφ t T5.5 Factored Reference Compression3. Reference Strength andStiffness ..................................................................................................7Parallel to Grain Resistance, λφ c P3.1 General6. Other Considerations ...................................613.2 Reference Strength and Modulus of6.1 GeneralElasticity6.2 Specific Gravity3.3 Reference Strength Due to6.3 Moisture ExpansionStraight-Tapered Cuts on the6.4 Thermal ExpansionCompression Face6.5 Fire Considerations3.4 Reference Radial Tensile Strength7. Load and Span Tables ..................................674. Design Adjustment Factors ............ 217.1 General4.1 General7.2 Load-Span Tables for Selected4.2 Wet Service Factor, C MBending Members4.34.4Temperature Factor, C tPreservative Treatment Factor, C pt8. Design Examples ........................................................ 774.5 Fire Retardant Treatment Factor, C rt8.1 General4.64.7Beam Stability Factor, C LColumn Stability Factor, C P9. Section Properties ...............................................794.8 Volume Factor, C V9.1 Cross-Sectional Properties4.9 Curvature Factor, C cLIST OF TABLES2.1 Economical Spans for Glued Laminated TimberFraming systems ...............................................................................................53.1 Reference Strength and Modulus ofElasticity for Glued Laminated TimberUsed Primarily in Bending ..................................................................93.2 Reference Strength and Modulus ofElasticity for Glued Laminated TimberUsed Primarily in Axial Loading ............................................ 143.3 Reference Strength and Modulus ofElasticity for Glued Laminated Timberwith Tapered Cuts on Compression Face ...................... 183.4 Reference Radial Tensile Strength, F rt .............................. 194.1 Wet Service Factor for Glued LaminatedTimber, C M ........................................................................................................... 224.2 Temperature Factor for Glued LaminatedTimber Exposed To Sustained ElevatedTemperature, C t .............................................................................................. 224.3 Preservative Treatment Effect on GluedLaminated Timber ...................................................................................... 234.4 Loading Condition Coefficients, K L .................................... 24(Cont.)APA/EWS


LIST OF TABLES (Cont.)4.5 Exponents for Volume Factor Equation .......................... 244.6 Flat Use Factor, C fu .................................................................................... 254.7 Volume Factor for Bending about X-X AxisWestern Species Glued Laminated Timber ................. 264.8 Volume Factor for Bending about X-X AxisSouthern Pine Glued Laminated Timber ....................... 325.1 Factored Reference Resistance (λ = 0.80, φ b =0.85, φ v = 0.75) for Bending about X-X AxisWestern Species Glued Laminated Timber ................. 395.2 Factored Reference Resistance (λ = 0.80, φ b =0.85, φ v = 0.75) for Bending about X-X AxisSouthern Pine Glued Laminated Timber ....................... 455.3 Reference Stiffness for Bending about X-X AxisWestern Species Glued Laminated Timber ................. 505.4 Reference Stiffness for Bending about X-X AxisSouthern Pine Glued Laminated Timber ....................... 566.1 Average Specific Gravity and Weight Factor ........... 626.2 Coefficient of Moisture Expansion, e ME , andFiber Saturation Point, FSP, for Solid <strong>Wood</strong>s ......... 636.3 Coefficient of Thermal Expansion, e TE , forSolid <strong>Wood</strong>s ....................................................................................................... 646.4 Minimum Depths at Which Selected Beam SizesCan Be Adopted for One-Hour Fire Ratings ............ 657.1 Design Loads for Simple Span Douglas Fir-Larch Glued Laminated Timber Beams ........................ 687.2 Design Loads for Simple Span Southern PineGlued Laminated Timber Beams ............................................. 729.1 Section Properties Western Species GluedLaminated Timber ...................................................................................... 819.2 Section Properties Southern Pine GluedLaminated Timber ...................................................................................... 87APA/EWS


<strong>LRFD</strong> STRUCTURAL GLUED LAMINATED TIMBER SUPPLEMENT11DESIGNERFLOWCHART1.1 Flowchart 2APA/EWS


2 DESIGNER FLOWCHART1.1 FlowchartStructural Glued Laminated TimberSupplementNoEnd-UseConditionsConsistent WithReferenceConditions (a) ?YesSelect a Trial Size (b)NoLoad-SpanCriteria Satisfied ?(Section 7)YesDetermine Factored ReferenceResistances and UnfactoredStiffness (Section 5)Use Load-Span Tables(Section 7)NoFactored ReferenceResistances >Factored Load Effects ?NoYesNoUnfactored Stiffness >Unfactored Load Effects ?NoYesAccept The Size(a)See Section 4.(b)Tables 3.1 and 3.2 provide reference strengths and MOE for various layup combinations. Thisinformation could be used in conjunction with Tables 5.1 through 5.4 to determine the trial size.APA/EWS


<strong>LRFD</strong> STRUCTURAL GLUED LAMINATED TIMBER SUPPLEMENT3INTRODUCTIONTO STRUCTURALGLUEDLAMINATEDTIMBER22.1 Products Description 42.2 Common Uses 42.3 Availability 5Table 2.1 Economical Spans for Glued Laminated TimberFraming Systems ..................................................... 5APA/EWS


4 INTRODUCTION TO STRUCTURAL GLUED LAMINATED TIMBER2.1 Products DescriptionStructural glued laminated timber (glulam) is a structuralmember glued up from suitably selected and preparedpieces of wood either in a straight or curved form with thegrain of all pieces essentially parallel to the longitudinalaxis of the member. The reference strengths and resistancesgiven in this Supplement are applicable only toglued laminated timber members produced in accordancewith <strong>American</strong> National Standard for <strong>Wood</strong> Products —Structural Glued Laminated Timber, ANSI/AITC A190.1.Glued laminated timber members are produced inlaminating plants by gluing together dry lumber, normallyof 2-in. or 1-in. nominal thickness, under controlled conditionsof temperature and pressure. Members with a widevariety of sizes, profiles, and lengths can be producedhaving superior characteristics of strength, serviceability,and appearance. Glued laminated timber beams are manufacturedwith the strongest laminations on the bottom andtop of the beam, where greatest tension and compressionstresses occur.Glued laminated timber members are manufacturedfrom several softwood species, primarily Douglas Fir-Larch and Southern Pine, but also lesser amounts ofHem-Fir, Spruce-Pine-Fir, Western <strong>Wood</strong>s, Alaska Cedar,and California Redwood are used. In addition, severalhardwood species, including Red Oak, Red Maple, andYellow Poplar, are also used. Standard glued laminatedtimber sizes are given in Section 9 of this Supplement.Any lengths, up to the maximum length permitted by transportationand handling restrictions, is available.A glued laminated timber member can be manufacturedusing a single or multiple grade of lumber, dependingon the intended use. In addition, a mixed-species gluedlaminated timber member is also possible. When themember is intended to be primarily loaded either axiallyor in bending with the loads acting parallel to the widefaces of the laminations, a single grade combination isrecommended. On the other hand, a multiple grade combinationprovides better cost-effectiveness when themember is primarily loaded in bending due to loads appliedperpendicular to the wide faces of the laminations.On a multiple grade combination, a glued laminatedtimber member can be produced as either balanced orunbalanced combination, depending on the arrangementof the laminations at the geometrical locations of the member.A balanced combination is symmetrical about themid-depth, so both faces have the same reference bendingstrength. An unbalanced combination are asymmetricaland normally, when used as a beam, the face with a lowerreference bending strength is stamped as TOP. The balancedcombination is intended for use in continuous orcantilevered over supports to provide equal capacity inboth positive and negative bending, whereas the unbalancedcombination is primarily for use in simple spanapplications.Glued laminated timber members are typically producedin three appearance classifications, Premium,Architectural, and Industrial, though Industrial Special isalso available. Premium and Architectural beams arehigher appearance classifications and are surfaced for asmooth, beautiful finish. Industrial appearance beams arenormally used in concealed applications or in constructionwhere appearance is not important. Industrial Specialappearance beams are typically used for headers. Designvalues for the glued laminated timber member are independentof the appearance classifications.2.2 Common UsesGlued laminated timber members can be appliedas primary or secondary load-carrying components instructures. Table 2.1 lists economical spans for selectedtimber framing systems using glued laminatedtimber members in buildings. Other common uses ofglued laminated timber members are for transportationstructures, highway bridges, marine structures, noisebarriers, and dome structures. Table 2.1 may be used forpreliminary design purposes to determine the economicalspan ranges for the selected framing systems. However,all systems require a more extensive analysis for finaldesign.APA/EWS


<strong>LRFD</strong>GUIDELINESTRUCTURALTO <strong>LRFD</strong>GLUEDFOR STRUCTURALLAMINATED TIMBERCOMPOSITESUPPLEMENTLUMBER 5Table 2.1Economical Spans for Glued Laminated Timber Framing Systems2.3 AvailabilityType of Framing SystemEconomical Spans (ft)ROOFSimple Span BeamsStraight or slightly cambered 10 - 100Tapered, double tapered-pitched, or curved 25 - 100Cantilevered Beams up to 90Continuous Beams 10 - 32Girders 40 - 80Three-Hinged ArchesGothic 40 - 90Tudor 20 - 120A-Frame 20 - 100Three-centered, Parabolic, or Radial 40 - 250Two-Hinged ArchesRadial or Parabolic 50 - 200Trusses (Heavy)Flat or parallel chord 50 - 150Triangular or pitched 50 - 90Bowstring (continuous chord) 50 - 200Carrying 40 - 60Trusses (Light)Flat or parallel chord 20 - 50Triangular or pitched 20 - 75Tie arches 50 - 200Dome structures 200 - 500+FLOORSimple Span Beams 6 - 40Continuous Beams 25 - 402INTRODUCTION TO STRUCTURAL GLUED LAMINATED TIMBERGlued laminated timber members are available in bothcustom and stock sizes. Custom beams are manufacturedto the specifications of a specific job, while stock beamsare made in common dimensions and cut to length whenthe beam is ordered. Although glued laminated timbermembers can be custom fabricated to provide a nearly infinitevariety of forms and arrangements, the best economyis generally realized by using standard-size members in arepetitious arrangement. When in doubt, the designer isadvised to check with the glued laminated timber suppliersor manufacturers concerning the availability of theglued laminated timber members prior to design. The followingassociations are available for technical assistance:APA - The Engineered <strong>Wood</strong> AssociationEngineered <strong>Wood</strong> Systems7011 South 19th StreetTacoma, WA 98466Phone: (206) 565-6600Fax: (206) 565-7265<strong>American</strong> Institute of Timber Construction7012 South Revere Parkway, Suite 140Englewood, CO 80112Phone: (303) 792-9559Fax: (303) 792-0669APA/EWS


6INTRODUCTION TO STRUCTURAL GLUED LAMINATED TIMBERAPA/EWS


<strong>LRFD</strong> STRUCTURAL GLUED LAMINATED TIMBER SUPPLEMENT7REFERENCESTRENGTH ANDSTIFFNESS33.1 General 83.2 Reference Strength and Modulus ofElasticity 83.3 Reference Strength Due toStraight-Tapered End Cuts on theCompression Face 83.4 Reference Radial Tensile Strength 8Table 3.1 Reference Strength and Modulus ofElasticity for Glued Laminated TimberUsed Primarily in Bending ..................................... 9Table 3.2 Reference Strength and Modulus ofElasticity for Glued Laminated TimberUsed Primarily in Axial Loading ......................... 14Table 3.3 Reference Strength and Modulus ofElasticity for Glued Laminated Timberwith Tapered Cuts on Compression Face ............ 18Table 3.4 Reference Radial Tensile Strength, F rt ................ 19APA/EWS


8 REFERENCE STRENGTH AND STIFFNESS3.1 GeneralThe reference strength and mean modulus of elasticityof glued laminated timber are greatly affected by thenonhomogeneous layup of members composed of variousgrades of lumber as well as the direction of bending. As aresult, different reference strength and modulus of elas-ticity values are assigned for glued laminated timber usedprimarily in bending, Table 3.1, and primarily in axial loading,Table 3.2. The reference strength values shall be usedin conjunction with the dimensions provided in Tables 9.1(Western Species) and 9.2 (Southern Pine) of Section 9.3.2 Reference Strength and Modulus of ElasticityReference strength values are given in Table 3.1 forbending about the X-X axis. Although permitted, axialloading or bending about the Y-Y axis is not efficient inusing the glued laminated timber combinations given inTable 3.1. Therefore, the designer should select gluedlaminated timber from Table 3.2. Similarly, glued laminatedtimber combinations in Table 3.2 are inefficientlyutilized if the primary use is bending about the X-X axis.The values for reference strength and stiffness inTables 3.1 and 3.2 are based on use under reference enduse conditions. See Chapter 2 of AF&PA/ASCE 16-95,Standard for Load and Resistance Factor Design (<strong>LRFD</strong>)for Engineered <strong>Wood</strong> Construction, for details. When usedunder other conditions, see Section 4 of this Supplementfor adjustment factors. The reference flexural strengthsare based on members loaded as simple beams. Whenglued laminated timber is used in continuous or cantileveredbeams, the designer should make sure that gluedlaminated timber combinations which contain tensionlamination on both faces (balanced combinations) are used.See Chapter 5 of AF&PA/ASCE 16-95 for further information.3.3 Reference Strength due to Straight-Tapered EndCuts on the Compression FaceStraight-tapered end cuts on the top at the end of beamsare sometimes used to improve drainage, to provide extrahead for downspouts and scuppers, to faciliate dischargeof water, and to reduce the height of the wall. Table 3.3provides reference strengths and mean modulus of elasticityvalues for glued laminated timber withstraight-tapered end cuts on the compression face. Thereference strength values are provided for bending, F b ,and compression perpendicular to grain, F c⊥ , and replacethe reference strength values provided in Table 3.1 whentapered end cut members are used.3.4 Reference Radial Tensile StrengthTable 3.4 provides reference radial tensile strength,F rt , for glued laminated timber. Because of uncertaintiesin determining radial tension strength and the time effect,the reference radial tension strength for all species, exceptsouthern pine and hardwoods, is reduced for allloading conditions except for wind and earthquake loads.This reduction is applied in addition to the use of the timeeffect factor, λ. The resistance factor, φ, for radial tensionis the same as that for shear, φ = 0.75.APA/EWS


<strong>LRFD</strong> STRUCTURAL GLUED LAMINATED TIMBER SUPPLEMENT9Table 3.1 Reference Strength and Modulus of Elasticity for Glued Laminated Timber Used Primarily inBending (a,b)Bending about X-X Axis Bending about Y-Y Axis Axially LoadedLoaded Perpendicular to Wide Faces of Laminations Loaded Parallel to Wide Faces of LaminationsModulus ofElasticityModulus ofElasticityShear Parallel to Grain(Horizontal)Modulus ofElasticityFifth%-ileCompr.ParalleltoGrain MeanTensionParallelto GrainFifth%-ile(multiplelamswithoutedge glue) r MeanShearParallelto Grain(Horiz.)Extreme Compr.Bending p GrainFiber in ⊥ toFifth%-ileShearParallelto Grain(Horiz.) MeanExtreme Fiber inBending Compr. ⊥ to GrainTension e,s Tension fCompr.Zone ZoneStressed Stressed Tension Compr.in in Face FaceSpecies-CombinationCoreOuter/Symbol cLams d TensionFbx Fbx Fc⊥x Fc⊥x Fvx Ex E05x Fby Fc⊥y Fvy Fvy Ey E05y Ft Fc E E05ksi ksi ksi ksi ksi ksi ksi ksi ksi ksi ksi ksi ksi ksi ksi ksi ksi1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19Visually Graded Western SpeciesThe following combinations are NOT BALANCED and are intended primarily for simple-span applications.16F-V1 DF/WW 4.07 2.03 1.17 g,h 1.17 g,h 0.405 p,t 1300 u 1100 2.41 0.53 0.375 p,t 0.185 p,t 1100 u 1000 u 1.82 2.34 1100 u 1000 u16F-V2 HF/HF 4.07 2.03 1.04 i 0.78 i 0.445 1400 1200 3.18 0.78 0.390 0.200 1300 1100 2.36 3.12 1300 110016F-V3 DF/DF 4.07 2.03 1.17 g,h 1.17 0.545 1500 1300 3.68 1.17 0.475 0.245 1500 1300 2.57 3.72 1500 1300The following combination is NOT BALANCED and is intended for straight or slightly cambered members for dry use and industrial appearance j .16F-V4 DF/WW 4.07 2.03 1.35 1.17 g 0.260 k,p,t 1500 u 1300 2.29 0.53 0.375 p,t 0.185 p,t 1300 u 1100 u 1.76 1.44 1300 u 1100 uThe following combinations are BALANCED and are intended for members continuous or cantilevered over supports and provide equal capacity in both positive and negative bending.16F-V6 DF/DF 4.07 4.07 1.17 g,h 1.17 g 0.545 1500 1300 3.68 1.17 0.475 0.245 1400 1200 2.57 3.72 1500 130016F-V7 HF/HF 4.07 4.07 0.78 i 0.78 i 0.445 1400 1200 3.05 0.78 0.390 0.200 1300 1100 2.30 3.24 1300 1100The following combinations are NOT BALANCED and are intended primarily for simple-span applications.20F-V1 DF/WW 5.08 2.54 1.35 1.17 g 0.405 p,t 1400 u 1200 u 2.54 0.53 0.375 p,t 0.185 p,t 1200 u 1100 u 2.03 2.40 1200 u 1100 u20F-V2 HF/HF 5.08 2.54 1.04 i 0.78 i 0.445 1500 1300 3.05 0.78 0.390 0.200 1400 1200 2.57 3.24 1400 120020F-V3 DF/DF 5.08 2.54 1.35 1.17 g 0.545 1600 1400 3.68 1.17 0.475 0.245 1500 1300 2.70 3.72 1500 130020F-V10 DF/HF 5.08 2.54 1.35 1.17 0.445 1500 1300 3.30 0.78 0.390 0.200 1400 1200 2.57 3.72 1400 120020F-V12 AC/AC 5.08 2.54 1.17 1.17 0.545 1500 1300 3.05 0.98 0.475 0.230 1400 1200 2.43 3.60 1400 1200The following combinations are BALANCED and are intended for members continuous or cantilevered over supports and provide equal capacity in both positive and negative bending.20F-V7 DF/DF 5.08 5.08 1.35 1.35 0.545 1600 1400 3.68 1.17 0.475 0.245 1600 1400 2.70 3.84 1600 140020F-V8 DF/DF 5.08 5.08 1.23 g,h 1.23 g,h 0.545 1700 1500 3.68 1.17 0.475 0.245 1600 1400 2.70 3.84 1600 140020F-V9 HF/HF 5.08 5.08 1.04 i 1.04 i 0.445 1500 1300 3.56 0.78 0.390 0.200 1400 1200 2.63 3.36 1400 1200The following combinations are NOT BALANCED and are intended primarily for simple-span applications.22F-V1 DF/WW 5.59 2.80 1.35 1.17 g 0.405 p,t 1600 u 1400 u 2.67 0.53 0.375 p,t 0.185 p,t 1300 u 1100 u 2.30 2.64 1300 u 1100 u22F-V3 DF/DF 5.59 2.80 1.35 1.17 i 0.545 1700 1500 3.68 1.17 0.475 0.245 1600 1400 2.84 3.60 1600 140022F-V10 DF/DFS 5.59 2.80 1.35 1.17 g 0.545 1600 1400 4.07 1.04 0.475 0.245 1300 1100 2.70 3.36 1300 1100The following combination is BALANCED and is intended for members continuous or cantilevered over supports and provide equal capacity in both positive and negative bending.22F-V8 DF/DF 5.59 5.59 1.23 g.h 1.23 g,h 0.545 1700 1500 3.68 1.17 0.475 0.245 1600 1400 2.84 3.96 1600 1400The following combinations are NOT BALANCED and are intended primarily for simple-span applications.24F-V1 DF/WW 6.10 3.05 1.35 1.35 0.405 p,t 1700 u 1500 u 3.18 0.53 0.390 p,t 0.200 p,t 1400 u 1200 u 2.57 3.12 1400 u 1200 u24F-V2 HF/HF 6.10 3.05 1.04 i 1.04 i 0.445 1500 1300 3.18 0.78 0.390 0.200 1400 1200 2.57 3.12 1400 120024F-V4 DF/DF 6.10 3.05 1.35 1.35 0.545 1800 1600 3.81 1.17 0.475 0.245 1600 1400 2.97 3.96 1600 140024F-V5 DF/HF 6.10 3.05 1.35 1.35 0.445 1700 1500 3.43 0.78 0.405 0.200 1500 1300 2.97 3.48 1500 130024F-V11 DF/DFS 6.10 3.05 1.35 g 1.17 0.545 1700 1500 4.07 1.04 0.475 0.245 1400 1200 3.11 4.08 1400 1200The following combinations are BALANCED and are intended for members continuous or cantilevered over supports and provide equal capacity in both positive and negative bending.24F-V8 DF/DF 6.10 6.10 1.35 1.35 0.545 1800 1600 3.68 1.17 0.475 0.245 1600 1400 2.97 3.96 1600 140024F-V10 DF/HF 6.10 6.10 1.35 1.35 0.445 1800 1600 3.56 0.78 0.405 0.200 1600 1400 3.11 3.84 1600 1400Wet Service Factor b 0.8 0.8 0.53 0.53 0.875 0.833 0.833 0.8 0.53 0.875 0.875 0.833 0.833 0.8 0.73 0.833 0.8333REFERENCE STRENGTH AND STIFFNESSAPA/EWS


10REFERENCE STRENGTH AND STIFFNESSTable 3.1 Reference Strength and Modulus of Elasticity for Glued Laminated Timber Used Primarily inBending (a,b) (Cont.)Species-CombinationCoreOuter/Symbol cLams d TensionBending about X-X Axis Bending about Y-Y Axis Axially LoadedLoaded Perpendicular to Wide Faces of Laminations Loaded Parallel to Wide Faces of LaminationsExtreme Fiber inBending Compr. ⊥ to GrainTension e,s Tension fCompr.Zone ZoneStressed Stressed Tension Compr.in in Face FaceShearParallelto Grain(Horiz.) MeanModulus ofElasticityFifth%-ileExtreme Compr.Bending p GrainFiber in ⊥ toShear Parallel to Grain(Horizontal)ShearParallelto Grain(Horiz.)(multiplelamswithoutedge glue) r MeanModulus ofElasticityFifth%-ileTensionParallelto GrainCompr.ParalleltoGrain MeanModulus ofElasticityFifth%-ileFbx Fbx Fc⊥x Fc⊥x Fvx Ex E05x Fby Fc⊥y Fvy Fvy Ey E05y Ft Fc E E05ksi ksi ksi ksi ksi ksi ksi ksi ksi ksi ksi ksi ksi ksi ksi ksi ksi1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19E-Rated Western SpeciesThe following combinations are NOT BALANCED and are intended primarily for simple-span applications.16F-E1 WW/WW 4.07 2.03 0.53 l 0.53 l 0.405 p,t 1300 u 1100 u 2.67 0.53 0.360 p.t 0.185 p,t 1200 u 1100 u 1.96 2.22 1200 u 1100 u16F-E2 n HF/HF 4.07 2.03 1.04 m 1.04 m 0.445 1400 1200 3.18 0.78 0.390 0.200 1300 1100 2.23 2.88 1300 110016F-E3 DF/DF 4.07 2.03 1.35 1.35 0.545 1600 1400 3.68 1.17 0.475 0.245 1500 1300 2.63 3.84 1500 1300The following combinations are BALANCED and are intended for members continuous or cantilevered over supports and provide equal capacity in both positive and negative bending.16F-E6 DF/DF 4.07 4.07 1.35 1.35 0.545 1600 1400 3.81 1.17 0.475 0.245 1500 1300 2.70 3.84 1500 130016F-E7 HF/HF 4.07 4.07 1.04 m 1.04 m 0.445 1400 1200 3.18 0.78 0.390 0.200 1300 1100 2.30 2.76 1300 1100The following combinations are NOT BALANCED and are intended primarily for simple-span applications.20F-E1 WW/WW 5.08 2.54 0.53 l 0.53 l 0.405 p,t 1600 u 1400 u 2.80 0.53 0.360 p,t 0.185 p,t 1300 u 1100 u 2.16 2.52 1300 u 1100 u20F-E2 n HF/HF 5.08 2.54 1.04 m 1.04 m 0.445 1600 1400 3.56 0.78 0.390 0.200 1400 1200 2.52 3.72 1400 120020F-E3 DF/DF 5.08 2.54 1.35 1.35 0.545 1700 1500 3.94 1.17 0.475 0.245 1600 1400 2.84 3.96 1600 1400The following combinations are BALANCED and are intended for members continuous or cantilevered over supports and provide equal capacity in both positive and negative bending.20F-E6 DF/DF 5.08 5.08 1.35 1.35 0.545 1700 1500 4.07 1.17 0.475 0.245 1600 1400 3.11 3.96 1600 140020F-E7 n HF/HF 5.08 5.08 1.04 m 1.04 m 0.445 1600 1400 3.81 0.78 0.390 0.200 1400 1200 2.84 3.72 1400 1200The following combinations are NOT BALANCED and are intended primarily for simple-span applications.24F-E1 DF/DF 6.10 3.05 1.35 1.35 0.545 1800 1600 3.94 1.17 0.475 0.245 1600 1400 2.97 3.84 1600 140024F-E2 n HF/HF 6.10 3.05 1.04 m 1.04 m 0.445 1700 1500 3.30 0.78 0.390 0.200 1500 1300 2.30 3.36 1500 130024F-E3 DF/HF 6.10 3.05 1.35 1.04 m 0.445 1800 1600 3.81 0.78 0.390 0.200 1500 1300 2.84 3.72 1500 130024F-E4 DF/DF 6.10 3.05 1.35 1.35 0.545 1800 1600 4.19 1.17 0.475 0.245 1700 1500 2.97 4.08 1700 150024F-E5 DF/DF 6.10 3.05 1.35 1.35 0.545 1800 1600 4.19 1.17 0.475 0.245 1600 1400 2.97 3.72 1600 140024F-E6 n HF/WW 6.10 3.05 1.04 m 1.04 m 0.405 p,t 1800 u 1600 u 2.80 0.53 0.375 p,t 0.185 p,t 1400 u 1200 u 2.03 3.00 1400 u 1200 u24F-E14 DF/DF 6.10 3.05 1.35 1.35 0.545 1800 1600 3.68 1.17 0.475 0.245 1600 1400 2.57 3.84 1600 140024F-E15 HF/HF 6.10 3.05 1.04 1.04 0.445 1800 1600 3.30 0.78 0.390 0.200 1500 1300 2.57 2.88 1500 1300The following combinations are BALANCED and are intended for members continuous or cantilevered over supports and provide equal capacity in both positive and negative bending.24F-E10 DF/DF 6.10 6.10 1.35 1.35 0.545 1900 1700 4.70 1.17 0.475 0.245 1700 1500 3.51 4.20 1700 150024F- HF/HF 6.10 6.10 1.04 m 1.04 m 0.445 1800 1600 4.07 0.78 0.390 0.200 1500 1300 3.11 3.72 1500 1300E11 n24F-E13 DF/DF 6.10 6.10 1.35 1.35 0.545 1800 1600 4.96 1.17 0.475 0.245 1700 1500 3.38 4.08 1700 150024F-E17 HF/WW 6.10 6.10 1.04 m 1.04 m 0.405 p,t 1800 u 1600 u 2.80 0.53 0.375 p,t 0.185 p,t 1400 u 1200 u 2.03 3.00 1400 u 1200 u24F-E18 DF/DF 6.10 6.10 1.35 1.35 0.545 1800 1600 3.68 1.17 0.475 0.245 1600 1400 2.57 3.84 1600 140024F-E20 CSP/CSP 6.10 6.10 1.17 1.17 0.460 1600 1400 2.92 0.73 0.390 0.175 1500 1300 2.30 4.32 1500 1300Wet Service Factor b 0.8 0.8 0.53 0.53 0.875 0.833 0.833 0.8 0.53 0.875 0.875 0.833 0.833 0.8 0.73 0.833 0.833APA/EWS


<strong>LRFD</strong> STRUCTURAL GLUED LAMINATED TIMBER SUPPLEMENT11Table 3.1 Reference Strength and Modulus of Elasticity for Glued Laminated Timber Used Primarily inBending (a,b) (Cont.)Bending about X-X Axis Bending about Y-Y Axis Axially LoadedLoaded Perpendicular to Wide Faces of Laminations Loaded Parallel to Wide Faces of LaminationsModulus ofElasticityModulus ofElasticityShear Parallel to Grain(Horizontal)Modulus ofElasticityFifth%-ileCompr.ParalleltoGrain MeanTensionParallelto GrainFifth%-ile(multiplelamswithoutedge glue) r MeanShearParallelto Grain(Horiz.)Extreme Compr.Bending p GrainFiber in ⊥ toFifth%-ileShearParallelto Grain(Horiz.) MeanExtreme Fiber inBending Compr. ⊥ to GrainTension e,s Tension fCompr.Zone ZoneStressed Stressed Tension Compr.in in Face FaceSpecies-CombinationCoreOuter/Symbol cLams d TensionFbx Fbx Fc⊥x Fc⊥x Fvx Ex E05x Fby Fc⊥y Fvy Fvy Ey E05y Ft Fc E E05ksi ksi ksi ksi ksi ksi ksi ksi ksi ksi ksi ksi ksi ksi ksi ksi ksi1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19Visually Graded Southern PineThe following combinations are NOT BALANCED and are intended primarily for simple-span applications.16F-V2 SP/SP 4.07 2.03 1.17 g,h 1.17 g 0.575 1400 1200 4.07 1.17 0.505 0.260 1400 1200 2.70 3.72 1400 120016F-V3 SP/SP 4.07 2.03 1.35 1.35 0.575 1400 1200 3.68 1.17 0.505 0.260 1300 1100 2.63 3.48 1300 1100The following combination is BALANCED and is intended for members continuous or cantilevered over supports and provide equal capacity in both positive and negative bending.16F-V5 SP/SP 4.07 4.07 1.17 g,h 1.17 g,h 0.575 1400 1200 4.07 1.17 0.505 0.260 1400 1200 2.70 3.72 1400 1200The following combinations are NOT BALANCED and are intended primarily for simple-span applications.20F-V2 SP/SP 5.08 2.54 1.35 1.17 g 0.575 1600 1400 3.68 1.17 0.505 0.260 1400 1200 2.84 3.72 1400 120020F-V3 SP/SP 5.08 2.54 1.17 g,h 1.17 g 0.575 1400 1200 4.07 1.17 0.505 0.260 1400 1200 2.70 3.60 1400 1200The following combination is NOT BALANCED and is intended for straight or slightly cambered members for dry use and industrial appearance j .20F-V4 SP/SP 5.08 2.54 1.35 1.17 g 0.260 o 1500 1300 2.80 0.98 0.430 0.215 1300 1100 1.96 2.28 1300 1100The following combination is BALANCED and is intended for members continuous or cantilevered over supports and provide equal capacity in both positive and negative bending.20F-V5 SP/SP 5.08 5.08 1.35 1.35 0.575 1600 1400 3.68 1.17 0.505 0.260 1400 1200 2.84 3.72 1400 1200The following combinations are NOT BALANCED and are intended primarily for simple-span applications.22F-V1 SP/SP 5.59 2.80 1.35 1.35 0.575 1600 1400 4.07 1.17 0.505 0.260 1500 1300 2.84 3.96 1500 130022F-V2 SP/SP 5.59 2.80 1.17 g,h 1.17 g 0.575 1400 1200 4.07 1.17 0.505 0.260 1400 1200 2.70 3.60 1400 120022F-V3 SP/SP 5.59 2.80 1.35 1.17 g 0.575 1600 1400 3.81 1.17 0.505 0.260 1400 1200 2.84 3.60 1400 1200The following combination is NOT BALANCED and is intended for straight or slightly cambered members for dry use and industrial appearance.22F-V4 SP/SP 5.59 2.80 1.35 1.17 g 0.260 o 1600 1400 3.18 0.98 0.445 0.230 1400 1200 2.23 2.40 1400 1200The following combination is BALANCED and is intended for members continuous or cantilevered over supports and provide equal capacity in both positive and negative bending.22F-V5 SP/SP 5.59 5.59 1.35 1.35 0.575 1600 1400 4.07 1.17 0.505 0.260 1500 1300 2.84 3.84 1500 1300The following combinations are NOT BALANCED and are intended primarily for simple-span applications.24F-V1 SP/SP 6.10 3.05 1.35 1.17 g 0.575 1700 1500 3.81 1.17 0.505 0.260 1500 1300 2.97 3.24 1500 130024F-V3 SP/SP 6.10 3.05 1.35 1.35 0.575 1800 1600 4.07 1.17 0.505 0.260 1600 1400 3.11 4.08 1600 1400The following combination is NOT BALANCED and is intended for straight or slightly cambered members for dry use and industrial appearance j .24F-V4 SP/SP 6.10 3.05 1.35 1.17 g 0.260 o 1700 1500 3.18 0.98 0.445 0.230 1400 1200 2.30 2.52 1400 1200The following combination is BALANCED and is intended for members continuous or cantilevered over supports and provide equal capacity in both positive and negative bending.24F-V5 SP/SP 6.10 6.10 1.35 1.35 0.575 1700 1500 4.07 1.17 0.505 0.260 1500 1300 3.11 4.08 1500 1300The following combinations are NOT BALANCED and are intended primarily for simple-span applications.26F-V1 SP/SP 6.61 3.30 1.35 1.35 0.575 1800 1600 4.83 1.17 0.505 0.260 1600 1400 3.11 3.84 1600 140026F-V2 SP/SP 6.61 3.30 1.35 1.35 0.575 1900 1700 5.59 1.35 0.505 0.260 1800 1600 3.24 3.96 1800 160026F-V3 SP/SP 6.61 3.30 1.35 1.35 0.575 1900 1700 5.34 1.17 0.505 0.260 1800 1600 3.11 3.84 1800 1600The following combination is BALANCED and is intended for members continuous or cantilevered over supports and provide equal capacity in both positive and negative bending.26F-V4 SP/SP 6.61 6.61 1.35 1.35 0.575 1900 1700 5.34 1.17 0.505 0.260 1800 1600 3.11 3.84 1800 1600Wet Service Factor b 0.8 0.8 0.53 0.53 0.875 0.833 0.833 0.8 0.53 0.875 0.875 0.833 0.833 0.8 0.73 0.833 0.8333REFERENCE STRENGTH AND STIFFNESSAPA/EWS


12REFERENCE STRENGTH AND STIFFNESSTable 3.1 Reference Strength and Modulus of Elasticity for Glued Laminated Timber Used Primarily inBending (a,b) (Cont.)Species-CombinationCoreOuter/Symbol cLams d TensionBending about X-X Axis Bending about Y-Y Axis Axially LoadedLoaded Perpendicular to Wide Faces of Laminations Loaded Parallel to Wide Faces of LaminationsExtreme Fiber inBending Compr. ⊥ to GrainTension e,s Tension fCompr.Zone ZoneStressed Stressed Tension Compr.in in Face FaceShearParallelto Grain(Horiz.) MeanModulus ofElasticityFifth%-ileExtreme Compr.Bending p GrainFiber in ⊥ toShear Parallel to Grain(Horizontal)ShearParallelto Grain(Horiz.)(multiplelamswithoutedge glue) r MeanModulus ofElasticityFifth%-ileTensionParallelto GrainCompr.ParalleltoGrain MeanModulus ofElasticityFifth%-ileFbx Fbx Fc⊥x Fc⊥x Fvx Ex E05x Fby Fc⊥y Fvy Fvy Ey E05y Ft Fc E E05ksi ksi ksi ksi ksi ksi ksi ksi ksi ksi ksi ksi ksi ksi ksi ksi ksi1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19E-Rated Southern PineThe following combinations is NOT BALANCED and is intended primarily for simple-span applications.16F-E1 SP/SP 4.07 2.03 1.35 1.35 0.575 1600 1400 3.94 1.17 0.505 0.260 1500 1300 2.84 3.84 1500 1300The following combination is BALANCED and is intended for members continuous or cantilevered over supports and provide equal capacity in both positive and negative bending.16F-E3 SP/SP 4.07 4.07 1.35 1.35 0.575 1600 1400 4.32 1.17 0.505 0.260 1500 1300 2.97 3.96 1500 1300The following combinations is NOT BALANCED and is intended primarily for simple-span applications.20F-E1 SP/SP 5.08 2.54 1.35 1.35 0.575 1700 1500 4.07 1.17 0.505 0.260 1500 1300 2.84 3.84 1500 1300The following combination is BALANCED and is intended for members continuous or cantilevered over supports and provide equal capacity in both positive and negative bending.20F-E3 SP/SP 5.08 5.08 1.35 1.35 0.575 1700 1500 4.57 1.17 0.505 0.260 1500 1300 3.11 4.08 1500 1300The following combinations is NOT BALANCED and is intended primarily for simple-span applications.22F-E1 SP/SP 5.59 2.80 1.35 1.35 0.575 1700 1500 4.07 1.17 0.505 0.260 1500 1300 2.84 3.96 1500 1300The following combination is BALANCED and is intended for members continuous or cantilevered over supports and provide equal capacity in both positive and negative bending.22F-E3 SP/SP 5.59 5.59 1.35 1.35 0.575 1700 1500 4.45 1.17 0.505 0.260 1500 1300 3.11 3.96 1500 1300The following combinations are NOT BALANCED and are intended primarily for simple-span applications.24F-E1 SP/SP 6.10 3.05 1.35 1.35 0.575 1800 1600 4.07 1.17 0.505 0.260 1600 1400 2.97 4.20 1600 140024F-E2 SP/SP 6.10 3.05 1.35 1.35 0.575 1900 1700 4.32 1.17 0.505 0.260 1600 1400 3.11 4.08 1600 1400The following combination is BALANCED and is intended for members continuous or cantilevered over supports and provide equal capacity in both positive and negative bending.24F-E4 SP/SP 6.10 6.10 1.35 1.35 0.575 1800 1600 5.08 1.17 0.505 0.260 1600 1400 3.38 4.20 1600 1400The following combinations is NOT BALANCED and is intended primarily for simple-span applications.28F-E1 SP/SP 7.12 3.56 1.35 1.35 0.575 2000 1800 4.07 1.17 0.505 0.260 1700 1500 3.51 4.44 1700 1500The following combination is BALANCED and is intended for members continuous or cantilevered over supports and provide equal capacity in both positive and negative bending.28F-E2 SP/SP 7.12 7.12 1.35 1.35 0.575 2000 1800 4.07 1.17 0.505 0.260 1700 1500 3.51 4.44 1700 1500The following combination is NOT BALANCED, is only for nominal widths, 6 in. or less, and is intended primarily for simple-span applications.30F-E1 SP/SP 7.62 3.81 1.35 1.35 0.575 2000 1800 4.45 1.17 0.505 0.260 1700 1500 3.38 4.20 1700 1500The following combination is BALANCED, is only for nominal widths, 6 in. or less, and is intended primarily for simple-span applications.30F-E2 SP/SP 7.62 7.62 1.35 1.35 0.575 2000 1800 4.45 1.17 0.505 0.260 1700 1500 3.38 4.20 1700 1500Wet Service Factor b 0.8 0.8 0.53 0.53 0.875 0.833 0.833 0.8 0.53 0.875 0.875 0.833 0.833 0.8 0.73 0.833 0.833APA/EWS


<strong>LRFD</strong> STRUCTURAL GLUED LAMINATED TIMBER SUPPLEMENT13Table 3.1 Footnotes(This table is converted from AITC 117-93, courtesy of the <strong>American</strong> Institute of Timber Construction.)(n)E-rated Douglas Fir-Larch 200 ksi higher in modulus of elasticitymay be substituted for the specified E-rated Hem-Fir.or Southern Pine for Southern Pine combinations. These denselaminations must be backed by a medium grain lamination of thesame species.(o)Where specified, this value may be increased to 0.405 ksi either byprohibiting coarse grain material or by prohibiting wane on bothsides of the member; to 0.475 ksi by prohibiting both coarse grainmaterial and wane on one side of the member or to 0.575 ksi byprohibiting both coarse grain material and wane on both sides ofthe member.(h)For bending members greater than 15 in. in depth, the design valuefor compression stress perpendicular to grain is 1.35 ksi on thetension face.(a)The combinations in this table are applicable to members consistingof 4 or more laminations and are intended primarily for membersstressed in bending due to loads applied perpendicular to the widefaces of the laminations. Design values are tabulated, however, forloading both perpendicular and parallel to the wide faces of thelaminations. For combinations and design values applicable tomembers loaded primarily axially or parallel to the wide faces ofthe laminations, see Table 3.2. For members of 2 or 3 laminations,see Table 3.2.(p)Footnote (e) to Table 3.2 also applies.(i)Where specified, this value may be increased by providing at leasttwo 2 in. nominal thickness Douglas Fir-Larch laminations in thebearing area. The compression perpendicular to grain design valuesfor Douglas Fir-Larch are 1.17 ksi for medium grain and 1.35ksi for dense.(b)The tabulated design values are for dry conditions of use. To obtainwet-use design values, multiply the tabulated values by the factorsshown at the end of the table.(q)Where Douglas Fir South is used in place of all of the SoftwoodSpecies (WW) laminations required in western species combinations16F-V1, 16F-V4, 20F-V1, 22F-V1, 24F-V1, 16F-E1, 20F-E1,and 24F-E6 the design value for shear parallel to grain (horizontal)is the same as for combinations using all Douglas Fir-Larch. (F vx =0.545 ksi and F vy = 0.475 ksi.)(j)These combinations are for dry conditions of use only because theymay contain wane. They are recommended for industrial appearancegrade and for straight or slightly cambered members only. Ifwane is omitted these restrictions do not apply.(c)The combination symbols relate to a specific combination of gradesand species in AITC 117-Manufacturing that will provide the designvalues shown for the combination. The first two numbers inthe combination symbol correspond to the design value in bendingshown in Column 3. The letter in the combination symbol (either a“V” or an “E”) indicates whether the combination is made fromvisually graded (V) or E-rated (E) lumber in the outer zones.(r)These values for shear parallel to grain (horizontal), F vy , apply tomembers manufactured using multiple piece laminations withunbonded edge joints. For members manufactured using singlepiece laminations or using multiple piece laminations with bondededge joints the F vy values in column 12 apply. For members with 5,7 or 9 laminations, the values in column 13 shall be reduced by20%. Unbonded edge joints occurring in adjacent laminations shallbe at least 1-1/2 inches apart.(k)Where specified, this value may be increased to 0.405 ksi for SoftwoodSpecies (WW) and to 0.445 ksi for Hem-Fir by prohibitingwane on both sides of the member; or to 0.330 psi for SoftwoodSpecies (WW) and to 0.375 ksi for Hem-Fir by prohibiting waneon one side of the member.(l)The compression perpendicular to grain design value of 0.53 ksi isbased on the lowest strength species of the Softwood Species (WW)group. If at lease one two 2 in. nominal thickness lamination of E-rated Hem-Fir with the same E value, or E-rated Douglas Fir-Larch200 ksi higher in modulus of elasticity (E) than that specified isused in the bearing area on the face of the member subjected to thecompression perpendicular to grain stress. F c⊥ may be increased to0.78 ksi. If at lease two 2 in. nominal thickness laminations of E-rated Hem-Fir with the same E value, or E-rated Douglas Fir-Larch200 ksi higher in modulus of elasticity than that specified are usedin the bearing area on the face of the member subjected to the compressionperpendicular to grain stress, F c⊥ may be increase to 1.04ksi.(d)The symbols used for species are DF = Douglas Fir-Larch, DFS =Douglas Fir South, HF = Hem-Fir, WW = Softwood Species, ES =Eastern Spruce, AC = Alaska Cedar, CSP = Canadian Spruce-Pine,and SP = Southern Pine. (N3 refers to No. 3 structural joists andplanks or structural light framing grade.) Softwood Species (WW)and Eastern Spruce are included in the general category of Westernspecies although Eastern Spruce and some Softwood Species areproduced in other areas.(s)The design valued in bending about the X-X axis (F bx ) in this columnfor bending members hall be multiplied by 0.75 when themember greater than 15 in. in depth is manufactured without therequired special tension lamination(s) and 0.85 for members up to15 in. in depth.(e)The tabulated design values in bending are based on members 5-1/8 in. wide by 12 in. deep by 21 ft long uniformly loaded and usedfor a simple span. For larger members, these values must be multipliedby a volume factor, C v .(t)The following species may be used for Softwood Species (WW)provided the design values in shear parallel to grain (horizontal) inColumn 7 (F vx ) and in Column 12 (F vy ) are reduced by 0.03 ksi andthe design values in shear parallel to grain (horizontal) in Column13 (F vy ) are reduced by 0.015 ksi: Coast Sitka Spruce, Coast Species,Eastern White Pine (North) and Western White Pine.(f)Design values in this column are for extreme fiber stress in bendingwhen the member is loaded such that the compression zone laminationsare subjected to tensile stresses. The values in this columnmay be increased 0.51 ksi where end joint spacing restrictions areapplied to the compression zone when stressed in tension.(u)The following may be used for Softwood Species (WW) providedthe design values in modulus of elasticity (E x and E y ) in Columns8, 14, and 18 are reduced by 100 ksi and the 5th percentile values(E 05x and E 05y ) be accordingly reduced based on the provisions givenin ASCE 16-95: Western Cedars, Western Cedars (North), White<strong>Wood</strong>s (Western <strong>Wood</strong>s) and California Redwood - open grain.(m)Where specified, this value may be increased to 1.35 ksi by providingin the bearing area at lease one 2 in. nominal thicknesslamination of Douglas Fir-Larch for Western species combinations,or one 2 in. nominal thickness lamination of Southern Pine forSouthern Pine combinations having a modulus of elasticity (E) value200 ksi higher than the E value specified.(g)Where specified, this value may be increased to 1.35 ksi by providingin the bearing area at least one dense 2 in. nominal thicknesslamination of Douglas Fir-Larch for Western species combinations,3REFERENCE STRENGTH AND STIFFNESSAPA/EWS


14REFERENCE STRENGTH AND STIFFNESSTable 3.2 Reference Strength and Modulus of Elasticity for Glued Laminated Timber Used Primarily inAxial Loading (a,b)CombinationSymbol Species c Grade d MeanModulus TensionofElasticityFifth%-ileCompr.⊥ toGrainParallelto Grain2 orMoreLamsAxially Loaded Bending about Y-Y Axis Bending about X-X AxisLoaded Parallel to Wide Faces of Laminations Loaded Perpendicular toWide Faces of LaminationsCompr. Parallelto Grain Extreme Fiber in Bending e Shear Parallel to Grain (Horizontal)4 orMoreLams2 or 3Lams4 orMoreLams 3 Lams 2 Lams4 or More Lams 4 orlams) l Lams(multiple piece More3Lams2LamsExtreme Fiber in2 Lamsto 15 in.Shear Para.Bending g to Grain fDeep h 4 orMore 2 or MoreLams i,o LamsE E05 Fc⊥Ft Fc Fc Fby Fby Fby Fvy Fvy Fvy Fvy Fbx Fbx Fvxksi ksi ksi ksi ksi ksi ksi ksi ksi ksi ksi ksi ksi ksi ksi ksi1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19Visually Graded Western Species1 DF L3 1500 1300 1.17 j 2.43 3.72 2.88 3.68 3.18 2.54 0.245 0.475 0.460 0.420 3.18 3.81 0.5452 DF L2 1700 1500 1.17 j 3.38 4.56 3.84 4.57 4.07 3.30 0.245 0.475 0.460 0.420 4.32 5.08 0.5453 DF L2D 1800 1600 1.35 3.92 5.52 4.44 5.34 4.70 3.94 0.245 0.475 0.460 0.420 5.08 5.84 0.5454 DF L1CL 1900 1700 1.23 j 3.78 5.04 4.56 5.59 5.08 4.19 0.245 0.475 0.460 0.420 4.83 5.59 0.5455 DF L1 2000 1800 1.35 4.32 5.76 5.04 6.10 5.34 4.57 0.245 0.475 0.460 0.420 5.59 6.10 0.54514 HF L3 1300 1100 0.78 j 2.16 2.64 2.34 3.05 2.67 2.16 0.200 0.390 0.375 0.330 2.80 3.30 0.44515 HF L2 1400 1200 0.78 j 2.84 3.24 3.12 3.81 3.43 2.80 0.200 0.390 0.375 0.330 3.68 4.32 0.44516 HF L1 1600 1400 0.78 j 3.24 3.60 3.48 4.45 3.94 3.30 0.200 0.390 0.375 0.330 4.07 4.83 0.44517 HF L1D 1700 1500 1.04 3.78 4.20 4.08 5.08 4.70 3.94 0.200 0.390 0.375 0.330 4.83 5.59 0.44522 WW L3 1000 900 0.53 m 1.42 2.04 1.62 2.03 n 1.78 1.40 0.175 0.345 0.330 0.300 1.84 2.16 0.40569 AC L3 1300 1100 0.98 1.89 2.76 2.76 2.54 2.22 1.78 0.230 0.475 0.460 0.405 2.54 2.92 0.54570 AC L2 1400 1200 0.98 2.70 3.48 3.72 3.18 2.80 2.35 0.230 0.475 0.460 0.405 3.43 3.94 0.54571 AC L1D 1700 1500 1.17 3.38 4.56 4.92 4.19 3.81 3.18 0.230 0.475 0.460 0.405 4.32 5.08 0.54572 AC L1S 1700 1500 1.17 3.38 4.56 4.92 4.19 3.81 3.18 0.230 0.475 0.460 0.405 4.32 5.08 0.545E-Rated Western Species27 DF 1.9E-2 1800 1600 1.35 2.43 4.20 2.88 3.68 3.18 2.54 0.245 0.475 0.460 0.420 3.18 3.81 0.54528 DF 2.1E-2 2000 1800 1.35 2.97 4.80 3.36 3.68 3.18 2.54 0.245 0.475 0.460 0.420 3.81 4.45 0.54529 DF 2.3E-2 2200 1900 1.35 3.38 5.52 3.72 4.19 3.56 2.92 0.245 0.475 0.460 0.420 4.32 5.08 0.54530 DF 1.9E-6 1800 1600 1.35 4.19 5.04 4.08 6.10 6.10 5.34 0.245 0.475 0.460 0.420 4.57 5.34 0.54531 DF 2.1E-6 2000 1800 1.35 4.86 5.76 4.56 6.10 6.10 6.10 0.245 0.475 0.460 0.420 5.34 6.10 0.54532 DF 2.3E-6 2200 1900 1.35 4.86 5.76 5.04 6.10 6.10 6.10 0.245 0.475 0.460 0.420 5.84 6.10 0.54562 DF 2.2E-2 2100 1800 1.35 3.11 5.28 3.60 3.94 3.43 2.80 0.245 0.475 0.460 0.420 4.07 4.83 0.54563 DF 2.2E-6 2100 1800 1.35 4.86 5.76 4.80 6.10 6.10 6.10 0.245 0.475 0.460 0.420 5.59 6.10 0.54533 HF 1.6E-2 1500 1300 1.04 2.16 2.52 2.28 3.05 2.67 2.16 0.200 0.390 0.375 0.330 2.80 3.30 0.44534 HF 1.9E-2 1800 1500 1.04 2.43 3.12 2.88 3.68 3.18 2.54 0.200 0.390 0.375 0.330 3.18 3.81 0.44535 HF 2.1E-2 2000 1800 1.04 2.97 3.72 3.36 3.68 3.18 2.54 0.200 0.390 0.375 0.330 3.81 4.45 0.44536 HF 1.6E-4 1500 1300 1.04 3.24 3.48 3.12 5.34 4.83 4.32 0.200 0.390 0.375 0.330 3.56 4.19 0.44537 HF 1.9E-6 1800 1600 1.04 4.19 4.68 4.08 6.10 6.10 5.34 0.200 0.390 0.375 0.330 4.57 5.34 0.44538 HF 2.1E-6 2000 1800 1.04 4.86 5.76 4.56 6.10 6.10 6.10 0.200 0.390 0.375 0.330 5.34 6.10 0.44539 WW 1.6E-2 1500 1300 0.53 2.16 2.88 2.28 3.05 2.67 2.16 0.175 0.345 0.330 0.300 2.80 3.30 0.40540 WW 1.9E-2 1800 1600 0.53 2.43 3.60 2.88 3.68 3.18 2.54 0.175 0.345 0.330 0.300 3.18 3.81 0.40541 WW 2.1E-2 2000 1800 0.53 2.97 4.20 3.36 3.68 3.18 2.54 0.175 0.345 0.330 0.300 3.81 4.45 0.40542 WW 1.6E-4 1500 1300 0.53 3.24 3.72 3.12 5.34 4.83 4.32 0.175 0.345 0.330 0.300 3.56 4.19 0.40543 WW 1.9E-6 1800 1600 0.53 4.19 4.68 4.08 6.10 6.10 5.34 0.175 0.345 0.330 0.300 4.57 5.34 0.40544 WW 2.1E-6 2000 1800 0.53 4.86 5.28 4.56 6.10 6.10 6.10 0.175 0.345 0.330 0.300 5.34 6.10 0.405Wet Service Factor b 0.833 0.833 0.53 0.8 0.73 0.73 0.8 0.8 0.8 0.875 0.875 0.875 0.875 0.8 0.8 0.875APA/EWS


<strong>LRFD</strong> STRUCTURAL GLUED LAMINATED TIMBER SUPPLEMENT15Table 3.2 Reference Strength and Modulus of Elasticity for Glued Laminated Timber Used Primarily inAxial Loading (a,b) (Cont.)Axially Loaded Bending about Y-Y Axis Bending about X-X AxisLoaded Parallel to Wide Faces of Laminations Loaded Perpendicular toWide Faces of LaminationsModulus TensionExtreme Fiber inShear Para.Bending g to Grain fCompr. Parallelto Grain Extreme Fiber in Bending e Shear Parallel to Grain (Horizontal)Parallelto GrainofElasticityMore 2 or MoreLams i,o Lams2 Lamsto 15 in.2Lams3Lams4 or More Lams 4 orlams) l Lams(multiple piece More4 orMoreLams 3 Lams 2 Lams2 or 3Lams4 orMoreLams2 orMoreLamsCompr.⊥ toGrainFifth%-ileCombinationSymbol Species c Grade d MeanE E05 Fc⊥ Ft Fc Fc Fby Fby Fby Fvy Fvy Fvy Fvy Fbx Fbx FvxDeep h 4 orksi ksi ksi ksi ksi ksi ksi ksi ksi ksi ksi ksi ksi ksi ksi ksi1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19Visually Graded Southern Pine47 SP N2M k 1400 1200 1.17 j 3.24 4.56 2.76 4.45 3.94 3.30 0.260 0.505 0.475 0.430 3.56 4.07 0.57548 SP N2D k 1700 1500 1.35 3.78 5.28 3.24 5.08 4.57 3.81 0.260 0.505 0.475 0.430 4.07 4.83 0.57549 SP N1M k 1700 1500 1.17 j 3.65 5.04 3.48 4.96 4.45 3.81 0.260 0.505 0.475 0.430 4.57 5.34 0.57550 SP N1D k 1900 1700 1.35 4.19 5.52 4.08 5.84 5.34 4.45 0.260 0.505 0.475 0.430 5.34 6.10 0.575E-Rated Southern Pine53 SP 1.9E-2 1800 1600 1.35 2.43 4.56 2.88 3.68 3.18 2.54 0.260 0.505 0.475 0.430 3.18 3.81 0.57554 SP 2.1E-2 2000 1800 1.35 2.97 5.52 3.36 3.68 3.18 2.54 0.260 0.505 0.475 0.430 3.81 4.45 0.57555 SP 2.3E-2 2200 1900 1.35 3.38 5.76 3.72 4.19 3.56 2.92 0.260 0.505 0.475 0.430 4.32 5.08 0.57556 SP 1.9E-6 1800 1600 1.35 4.19 4.44 4.08 6.10 6.10 5.34 0.260 0.505 0.475 0.430 4.57 5.34 0.57557 SP 2.1E-6 2000 1800 1.35 4.86 5.76 4.56 6.10 6.10 6.10 0.260 0.505 0.475 0.430 5.34 6.10 0.57558 SP 2.3E-6 2200 1900 1.35 4.86 5.76 5.04 6.10 6.10 6.10 0.260 0.505 0.475 0.430 5.84 6.10 0.575Wet Service Factor b 0.833 0.833 0.53 0.8 0.73 0.73 0.8 0.8 0.8 0.875 0.875 0.875 0.875 0.8 0.8 0.8753REFERENCE STRENGTH AND STIFFNESSAPA/EWS


16REFERENCE STRENGTH AND STIFFNESSTable 3.2 Footnotes(This table is converted from AITC 117-93, courtesy of the <strong>American</strong> Institute of Timber Construction.)(a)The combinations in this table are intended primarily for membersloaded either axially or in bending with the loads actingparallel to the wide faces of the laminations. Design values forbending due to loading applied perpendicular to the wide facesof the laminations are also included, however, the combinationsin Table 3.1 are usually better suited for this condition of loading.The design values for bending about the X-X axis (F bx )shown in Column 17 are for members from 2 laminations to 15in. deep without tension laminations. Design values approximately15% higher for members with 4 or more laminations areshown in Column 18. These higher design values, however, requirespecial tension laminations which may not be readilyavailable.· N3M is No. 3 structural joists and planks, or structural light framinggrade or No. 3 boards all with a medium grain rate of growth.· N3C is No. 3 structural joists and planks, or structural light framinggrade or No. 3 boards all with a coarse grain rate of growth.E-Rated Grades — All Species (Except Eastern Spruce)· 2.3E-6 has 1/6 edge characteristic with 2.3E.· 2.2E-6 has 1/6 edge characteristic with 2.2E.· 2.1E-6 has 1/6 edge characteristic with 2.1E.· 1.9E-6 has 1/6 edge characteristic with 1.9E.· 1.6E-4 has 1/4 edge characteristic with 1.6E.· 2.3E-2, 2.2E-2, 2.1E-2, 1.9E-2, 1.6E-2 are E rated grades with edgecharacteristics occupying up to 1/2 of cross section.(b)The tabulated design values are for dry conditions of use. Toobtain wet-use design values, multiple the tabulated values bythe factors shown at the end of the table.Softwood species and eastern Spruce are included in the general categoryof Western Species although Eastern Spruce and some SoftwoodSpecies are produced in other areas.(c)The symbols used for species are DF = Douglas Fir-Larch, DFS =Douglas Fir South, HF = Hem-Fir, WW = Softwood Species, ES= Eastern Spruce, AC = Alaska Cedar, and SP = Southern Pine.(d)Grade designations are as follows:Visually Graded Western species· L1 is L1 laminating grade (dense for Douglas Fir-Larch and DouglasFir South).· L1D is L1 dense laminating grade for Hem-Fir and Alaska Cedar.· L1CL is L1 close grain laminating grade.· L1S is a special grade of Alaska Cedar· L2D is L2 laminating grade (dense).· L2 is L2 laminating grade (medium grain).· L3 is L3 laminating grade (medium grain for Douglas Fir-Larch,Douglas Fir South and Hem-Fir(e)The values of F by were calculated based on members 12 in. in depth(bending about Y-Y axis). When the depth is less than 12 in., thevalues of F by can be increased by multiplying by the following flatuse factor, C fu , for glued laminated timber:WesternSpeciesDepth, in. MultiplyingSouthern Pine Factor10-3/4 10-1/2 1.018-3/4 8-1/2 1.046-3/4 6-3/4 1.075-1/8 5 or 5-1/8 1.103-1/8 3 or 3-1/8 1.16(f)The design values in shear parallel to grain (horizontal) containedin this table are based on members without wane.Visually Graded Southern Pine· SSD is dense select structural, structural joists and planks, orstructural light framing grade (dense).· SSM is select structural, structural joists and planks, or structurallight framing grade (medium grain).· N1D is No. 1 dense select structural, structural joists and planks,or structural light framing grade or No. 1 boards graded as dense.· N1M is No. 1 structural, structural joists and planks, or structurallight framing grade or No. 1 boards all with a medium grainrate of growth.· N2D is No. 2 dense structural joists and planks, or structurallight framing grade or No. 2 boards graded as dense.· N2M is No. 2 structural joists and planks, or structural light framinggrade or No. 2 boards all with a medium grain rate of growth.(g)The tabulated design values in bending about the X-X axis in thistable are applicable to members 12 in. deep, 5-1/8 in. wide, 21 ftlong, uniformly loaded and used for a simple span. For membersgreater than 12 in. in depth, the requirements of 4.4.2 apply.(h)The design values are for members of from 2 laminations to 15 in.in depth without tension laminations.(i)The design values are for members of 4 or more laminations indepth and require special tension laminations. When these valuesare used in design and the member is specified by combinationsymbol, the designer should also specify the required design valuein bending.(j)When tension laminations are used to obtain the design value forF bx shown in Column 17, the compression perpendicular to grinvalue, F c^, for the tension face may be increased to 1.35 ksi forDouglas Fir-Larch, Douglas Fir South and Southern Pine, and to1.04 ksi for Hem-Fir because the tension laminations are requiredto be dense.(k)Combinations 47, 48, 49 and 50 have more restrictive slope ofgrain requirements than the basic slope of grain of the grades oflumber used in order to obtain higher tension parallel to grain valuesand design values in bending when loaded perpendicular to thewide faces of the laminations. The slopes of grain used to calculatethe design values in Table 3.2 were: Combination 47, 1:14; Combination48, 1:14; Combination 49, 1:16; and Combination 50,1:14. When design stresses are lower than the design values shown,or when a less restrictive slope of grain provides the same designvalue, a less restrictive slope of grain may be used. The followingtable gives the design values of these combinations for various slopesof grain: Values of F bx in Column 5 are for members of 2 laminationsto 15 in. depth without tension laminations and values inColumn 6 are for members of 4 or more laminations with tensionlaminations.SlopeofCom.SymbolFtksiGrain 2 ormorelamsFcksi2 or3lamsFcksi4 ormorelams1 2 3 4 5 6 7 8 947 3.24 2.76 4.56 3.56 4.07 3.30 3.94 4.4548 3.78 3.24 5.28 4.07 4.83 3.81 4.57 5.081:12 49 3.51 3.48 4.56 4.45 5.34 3.81 4.45 4.9650 4.19 4.08 5.28 5.34 6.10 4.45 5.34 5.8447 3.11 2.76 4.08 3.56 4.07 3.30 3.94 4.4548 3.65 3.24 4.80 4.07 4.83 3.81 4.57 5.081:10 49 3.11 3.48 4.08 3.94 4.70 3.81 4.45 4.7050 3.65 4.08 4.80 4.57 5.34 4.45 5.34 5.3447 2.97 2.76 3.60 3.43 4.07 3.30 3.94 4.0748 3.11 3.24 4.20 4.07 4.70 3.81 4.57 4.701:8 49 -- -- -- -- -- -- -- --50 -- -- -- -- -- -- -- --Fbxksi2lamsto15 in.Fbxksi4 ormorelamsFbyksi2lamsFbyksi3lamsFbyksi4 ormorelams(l)These values for shear parallel to grain (horizontal), F vy , apply tomembers manufactured using multiple piece laminations withunbonded edge joints. For members manufactured using singlepiece laminations or using multiple piece laminations with bondededge joints the F vy values in columns 14, 15 and 16 apply. Formembers with 5, 7 or 9 laminations, the values in column 13 shallbe reduced by 20%. Unbonded edge joints occurring in adjacentlaminations shall be at least 1-1/2 inches apart.(Continued on next page)APA/EWS


<strong>LRFD</strong> STRUCTURAL GLUED LAMINATED TIMBER SUPPLEMENT17Table 3.2 Footnotes (Cont.)(This table is converted from AITC 117-93, courtesy of the <strong>American</strong> Institute of Timber Construction.)(o)When special tension laminations are not used, the design values inbending about the X-X axis (F bx ) shall be multiplied by 0.75 forbending members over 15 in. deep. For bending members 15 in.and less in depth, use the design values in Column 17.(n)The following may be used for Softwood Species (WW) providedthe design values in shear parallel to grain (horizontal) in Column13 (F vy ) are reduced by 0.015 ksi and the design values in shearparallel to grain (horizontal) in Columns 14, 15 and 16 (F vy ) and inColumn 19 (F vx ) are reduced by 0.03 ksi: Coast Sitka Spruce, CoastSpecies, Western White Pine and Eastern White Pine.(m)The following may be used for Softwood Species (WW) providedthe modulus of elasticity (E) is reduced by 100 ksi and the 5thpercentile values (E 05 ) be accordingly reduced based on the provisionsgiven in ASCE 16-95: Western Cedars, Western Cedars(North), White <strong>Wood</strong>s (Western <strong>Wood</strong>s) and California Redwood -open grain.3REFERENCE STRENGTH AND STIFFNESSAPA/EWS


18 REFERENCE STRENGTH AND STIFFNESSTable 3.3Reference Strength and Modulus of Elasticity for Glued LaminatedTimber with Tapered Cuts on Compression FaceComb. Ref. Strength, ksi E (a) x , ksi Comb. Ref. Strength, ksi E (a) x , ksiSymbol(a)F bx F c⊥x Mean 5 th %-ile Symbol(a)F bx F c⊥x Mean 5 th %-ileVisually Graded Western SpeciesE-Rated Western Softwoods16F-V1 3.43 0.53 1300 1100 24F-E11 5.08 0.78 1600 140016F-V2 4.07 0.78 1300 1100 24F-E13 5.84 1.17 1700 150016F-V3 4.07 1.17 1500 1300 24F-E14 5.84 1.17 1800 160016F-V4 2.16 0.53 1300 1100 24F-E15 4.57 0.78 1500 130016F-V6 4.07 1.17 1500 1300 24F-E17 3.56 0.53 1300 110016F-V7 4.07 0.78 1300 1100 24F-E18 5.34 1.17 1700 150020F-V1 3.56 0.53 1300 1100 24F-E20 4.57 0.73 1500 130020F-V2 4.83 0.78 1500 1300 Visually Graded Southern Pine20F-V3 5.08 1.17 1600 1400 16F-V2 3.81 1.17 1400 120020F-V7 5.08 1.17 1600 1400 16F-V3 3.94 1.17 1400 120020F-V8 5.08 1.17 1600 1400 16F-V5 3.81 1.17 1400 120020F-V9 4.83 0.78 1500 1300 20F-V2 4.07 1.17 1500 130020F-V10 4.96 0.78 1500 1300 20F-V3 5.08 1.17 1400 120020F-V12 4.70 0.98 1500 1300 20F-V4 2.92 0.98 1400 120022F-V1 3.56 0.53 1300 1100 20F-V5 3.94 1.17 1500 130022F-V3 5.59 1.17 1700 1500 22F-V1 5.34 1.17 1500 130022F-V8 5.59 1.17 1700 1500 22F-V2 5.34 1.17 1400 120022F-V10 4.83 1.04 1500 1300 22F-V3 4.07 1.17 1500 130024F-V1 3.68 0.53 1300 1100 22F-V4 3.05 0.98 1500 130024F-V2 4.83 0.78 1500 1300 22F-V5 5.34 1.17 1500 130024F-V4 5.59 1.17 1700 1500 24F-V1 4.19 1.17 1600 140024F-V5 5.34 0.78 1600 1400 24F-V3 5.84 1.17 1600 140024F-V8 5.59 1.17 1700 1500 24F-V4 3.05 0.98 1500 130024F-V10 5.08 0.78 1600 1400 24F-V5 5.84 1.17 1600 140024F-V11 5.34 1.04 1500 1300 26F-V1 5.84 1.17 1600 1400E-Rated Western Species 26F-V2 6.10 1.35 1800 160016F-E1 3.56 0.53 1300 1100 26F-V3 6.10 1.17 1800 160016F-E2 3.81 0.78 1300 1100 26F-V4 6.10 1.17 1800 160016F-E3 2.16 1.17 1600 1400 E-Rated Southern Pine16F-E6 3.81 1.17 1600 1400 16F-E1 4.07 1.17 1600 140016F-E7 3.81 0.78 1300 1100 16F-E3 4.07 1.17 1600 140020F-E1 3.56 0.53 1300 1100 20F-E1 5.08 1.17 1600 140020F-E2 4.83 0.78 1500 1300 20F-E3 5.08 1.17 1600 140020F-E3 5.08 1.17 1600 1400 22F-E1 5.59 1.17 1700 150020F-E6 5.08 1.17 1600 1400 22F-E3 5.34 1.17 1600 140020F-E7 4.70 0.78 1500 1300 24F-E1 5.59 1.17 1700 150024F-E1 5.84 1.17 1800 1600 24F-E2 6.10 1.17 1700 150024F-E2 5.08 0.78 1600 1400 24F-E4 5.59 1.17 1700 150024F-E3 5.08 0.78 1600 1400 28F-E1 6.61 1.17 1800 160024F-E4 5.84 1.17 1700 1500 28F-E2 6.61 1.17 1800 160024F-E5 5.84 1.17 1800 1600 30F-E1 6.61 1.17 1800 160024F-E6 3.68 0.53 1300 1100 30F-E2 6.61 1.17 1800 160024F-E10 5.84 1.17 1800 1600(a)Values are applicable to members that have up to one-half the depth on the compression side removed by taper cutting. Values are for dry conditions of use and12 in. or less in depth.APA/EWS


<strong>LRFD</strong>GUIDELINE STRUCTURALTO <strong>LRFD</strong> GLUEDFOR STRUCTURAL LAMINATED TIMBERCOMPOSITE SUPPLEMENTLUMBER 1919Table 3.4 Reference Radial Tensile Strength, F rtSpecies Wind and Earthquake, ksi Other Loadings, ksiAlaska Cedar 0.181 0.043California Redwood 0.121 0.121Canadian Spruce Pine 0.153 0.043Douglas Fir-Larch 0.158 0.043Douglas Fir-South 0.158 0.043Eastern Spruce 0.138 0.043Hem-Fir 0.150 0.043Softwood Species 0.135 0.043Southern Pine 0.193 0.1933REFERENCE STRENGTH AND STIFFNESSAPA/EWS


20REFERENCE STRENGTH AND STIFFNESSAPA/EWS


<strong>LRFD</strong> STRUCTURAL GLUED LAMINATED TIMBER SUPPLEMENT21DESIGNADJUSTMENTFACTORS44.1 General 224.2 Wet Service Factor, C M 224.3 Temperature Factor, C t 224.4 Preservative Treatment Factor, C pt 224.5 Fire Retardant Treatment Factor, C rt 234.6 Beam Stability Factor, C L 234.7 Column Stability Factor, C P 234.8 Volume Factor, C V 234.9 Curvature Factor, C c 244.10 Flat Use Factor, C fu 25Table 4.1 Wet Service Factor for Glued Laminated Timber, C M ........... 22Table 4.2 Temperature Factor for Glued Laminated TimberExposed To Sustained Elevated Temperature, C t ................... 22Table 4.3 Preservative Treatment Effect on Glued Laminated Timber .. 23Table 4.4 Loading Condition Coefficients, K L ......................................... 24Table 4.5 Exponents for Volume Factor Equation ................................... 24Table 4.6 Flat Use Factor, C fu ..................................................................... 25Table 4.7 Volume Factor for Bending about X-X Axis WesternSpecies Glued Laminated Timber ............................................. 26Table 4.8 Volume Factor for Bending about X-X Axis SouthernPine Glued Laminated Timber .................................................. 32APA/EWS


22 DESIGN ADJUSTMENT FACTORS4.1 GeneralThe adjustment factors provided in this section arefor non-reference end use conditions and material modificationeffects. These factors shall be used to modify thereference strength, F, or the factored reference resistance,φR, as well as the reference elastic modulus, E, or thereference stiffnesses, EI (or E 05 I), and EA when one ormore of the specific end use or material modification conditionsfall outside the limits of the reference conditionsdefined in Chapter 2.5 of AF&PA/ASCE 16-95.4.2 Wet Service Factor, C MThe reference strength, F, and factored reference resistance,φR, values provided in this Supplement areapplicable to dry use conditions of glued laminated timber(maximum equilibrium moisture content of 16%) andits connections. When glued laminated timber membersare exposed to wet service conditions, the adjustment factorsprovided in Table 4.1 shall be applied.Table 4.1Wet Service Factor for Glued Laminated Timber, C MM V T P P ⊥P g EI, E 05 I, EA0.80 0.875 0.80 0.73 0.53 0.57 0.8334.3 Temperature Factor, C tEnd use conditions other than those defined in Section2.5(b) of AF&PA/ASCE 16-95 require the use of thetemperature factor, C t . This factor is applied for a sustainedelevated temperature ranging from 100 to 150°F.When the equilibrium moisture content of a glued laminatedtimber member exceeds the reference conditionlimitation during sustained elevated temperature exposure,both the temperature and wet service (moisture) factorsshall be applied. When the equilibrium moisture contentof a glued laminated timber falls within the limits of thereference conditions during sustained exposure to elevatedtemperatures, only the temperature factor shall be applied.The temperature factor is given in Table 4.2.Table 4.2Temperature Factor for Glued Laminated Timber Exposed ToSustained Elevated Temperature, C tResistance End Use Condition Permanent Temperature °F100


<strong>LRFD</strong> STRUCTURAL GLUED LAMINATED TIMBER SUPPLEMENT23Most preservative chemicals used today do not significantlyalter the strength properties of structural woodproducts. However, the method of pre-conditioning andpost-conditioning, as well as the treatment method itself,may significantly weaken the wood. For some preservativetreatment methods with strict manufacturing control,as listed in Table 4.3, the effect on strength degradationcan be eliminated (C pt = 1.0).Table 4.3Preservative Treatment Effect on Glued Laminated TimberNo adjustment to R is required when glued laminated timber is preservative-treatedusing the following <strong>American</strong> <strong>Wood</strong> Preservers' Association Standards (C pt = 1.0)DesignationTitleC1-88 All Timber Products - Preservative Treatment by Pressure ProcessesC14-89 <strong>Wood</strong> For Highway Construction - Preservative Treatment byPressure ProcessesC15-88 <strong>Wood</strong> for Commercial - Residential Construction - PreservativeTreatment by Pressure ProcessesC28-93 Standard for Preservative Treatment of Structural Glued LaminatedMembers and Laminations Before Gluing of Southern Pine, PacificCoast Douglas-fir, Hem Fir, and Western Hemlock by PressureProcesses4.5 Fire Retardant Treatment Factor, C rtThe adjustment factor for fire retardant treatmentsshall be applied to the reference resistance of wood productstreated with pressure impregnated fire-retardants.However, the glued laminated timber industry has no recommendationon the use of fire-retardant treatments withglued laminated timber and therefore, AF&PA/ASCE 16-95 does not provide specific adjustment factors forfire-retardants used in conjunction with glued laminatedtimber.4DESIGN ADJUSTMENT FACTORS4.6 Beam Stability Factor, C LThe reference bending strength of glued laminated timbershall be adjusted by the beam stability factor, C L . Referto Section 5.2 of AF&PA/ASCE 16-95 for the determinationof an appropriate beam stability factor, which is notaccumulative with the volume factor, C v , given in Section4.7 of this Supplement.4.7 Column Stability Factor, C PThe reference value for compression parallel to grainof glued laminated timber is affected by the dimensionsand modulus of elasticity. Refer to Section 4.3 of AF&PA/ASCE 16-95 for the determination of an appropriate columnstability factor4.8 Volume Factor, C VThe reference bending strength of glued laminated timberis affected by geometry and size. Generally, largersizes have a correspondingly lower reference bendingstrength than smaller members. To account for this behavior,a volume factor, C V , which is the product of loadingcondition coefficient, K L , width, C gb , depth, C gd , and length,C gl , factors shall be applied. C V shall not exceed 1.0 andis computed as follows:C V= KCL gbCgdCgl ≤10. [4.1]APA/EWS


24 DESIGN ADJUSTMENT FACTORSwhere:K L= loading condition coefficient shown in Table 4.4,d 1d 2= 12 inches,= depth of bending member being checked inbC = ⎛ b p dd q rgb⎝ ⎜ ⎞⎟ = ⎛⎠ ⎝ ⎜ ⎞⎟ = ⎛⎠ ⎝ ⎜ ⎞11R1; Cgd; Cgl⎟R ⎠222R 1R 2inches,= 21 feet,= length of bending member being checkedb 1b 2= 5-1/8 inches,= width of bending member being checked ininches. For multiple piece width layups, b 2=width of widest piece in the layup. Thus, b 2£10.75 in.,between points of zero moment in feet, andp, q, r = as defined in Table 4.5.Table 4.4Loading Condition Coefficients, K LSimple Span BeamK LConcentrated load at midspan 1.09Uniformly distributed load 1.00Two equal concentrated loads at 1/3 points of span 0.96Continuous or Cantilever BeamK LAll loading conditions 1.00Table 4.5 provides the exponent values and referencedimensions for use with reference bending strength or referencebending resistance. Separate exponent values aregiven for Western species and for Southern Pine. No volumeadjustment is required for properties other thanreference bending strength or reference bending resistance.Tables 4.7 and 4.8 gives C V values for Western speciesand Southern Pine glued laminated timbers, respectively,assuming the loading condition coefficient is equal to 1.0.Table 4.5Exponents for Volume Factor EquationExponentExponentSymbol Western Species Southern Pinep 0.10 0.05q 0.10 0.05r 0.10 0.054.9 Curvature Factor, C cThe curvature factor, C c , is used to adjust the referencebending strengths and resistances of curved gluedlaminated timber members only. It takes into account thedifference in extreme outer fiber stress between a curvedmember and a straight prismatic member, as well as anyresidual stresses that may remain in a lamination that hasbeen bent to the stated curvature. However, the curvaturefactor, C c , shall not be applied to reference bendingstrengths or resistances in the straight portion of a member,regardless of curvature in other portions. Also, thisfactor is not applicable to cambered glued laminated timbermembers or in the design of pitched and tapered curvedglued laminated timber members. The curvature factor,C c , shall be calculated in accordance with the followingequation:Cc =where:1−2000t 2( ) [4.2]Rt = thickness of lamination in inches,R = radius of curvature of inside face of laminationin inches,APA/EWS


<strong>LRFD</strong> STRUCTURAL GLUED LAMINATED TIMBER SUPPLEMENT25t/R ≤ 1/100 for hardwoods and Southern Pine, andt/R ≤ 1/125 for other species.4.10 Flat Use Factor, C fuThe reference bending strength or resistance of gluedlaminated timber shall be adjusted by the flat use factor,C fu , when loaded in bending parallel to wide faces of thelaminations (the y-y axis). The reference bending strengthsin the parallel to wide faces of the laminations, F by , asgiven in Tables 3.1 and 3.2 of this Supplement, are basedon members with laminations 12 in. wide. For membersTable 4.6Flat Use Factor (a) , C fu(a)with laminations less than 12 in. wide, the tabulated F byvalues shall be adjusted by a flat use factor, C fu , as listedin Table 4.6. When the width of the laminations is greaterthan 12 in., as may occur in members with multiple-piecelaminations, C fu shall be obtained by use of the equationgiven in footnote (a) of Table 4.6.Member Dimensions Parallel to Wide Faces of LaminationsC fu10-3/4 or 10-1/2 1.018-3/4 or 8-1/2 1.046-3/4 1.075-1/8 or 5 1.103-1/8 or 3 1.162-1/2 1.19Values for C fu are rounded values from the equation (12/d) 1/9 where d is the dimension of the widefaces of the laminations.4DESIGN ADJUSTMENT FACTORSAPA/EWS


26 DESIGN ADJUSTMENT FACTORSTable 4.7Volume Factor (a) for Bending about X-X Axis Western Species GluedLaminated TimberDepthC V when Span (ft) isd (in.) 8 12 16 20 24 28 32 36 40 44 482-1/2 in. Width6 1.000 1.000 -- -- -- -- -- -- -- -- --7-1/2 1.000 1.000 1.000 -- -- -- -- -- -- -- --9 1.000 1.000 1.000 1.000 -- -- -- -- -- -- --10-1/2 1.000 1.000 1.000 1.000 1.000 -- -- -- -- -- --12 1.000 1.000 1.000 1.000 1.000 1.000 -- -- -- -- --13-1/2 1.000 1.000 1.000 1.000 1.000 1.000 1.000 -- -- -- --15 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.996 -- -- --16-1/2 1.000 1.000 1.000 1.000 1.000 1.000 0.998 0.986 0.976 -- --18 1.000 1.000 1.000 1.000 1.000 1.000 0.989 0.978 0.967 0.958 --19-1/2 1.000 1.000 1.000 1.000 1.000 0.994 0.981 0.970 0.960 0.951 0.94221 1.000 1.000 1.000 1.000 1.000 0.987 0.974 0.963 0.953 0.944 0.9353 in. Width6 1.000 1.000 -- -- -- -- -- -- -- -- --7-1/2 1.000 1.000 1.000 -- -- -- -- -- -- -- --9 1.000 1.000 1.000 1.000 -- -- -- -- -- -- --10-1/2 1.000 1.000 1.000 1.000 1.000 -- -- -- -- -- --12 1.000 1.000 1.000 1.000 1.000 1.000 -- -- -- -- --13-1/2 1.000 1.000 1.000 1.000 1.000 1.000 1.000 -- -- -- --15 1.000 1.000 1.000 1.000 1.000 1.000 0.989 0.978 -- -- --16-1/2 1.000 1.000 1.000 1.000 1.000 0.993 0.980 0.968 0.958 -- --18 1.000 1.000 1.000 1.000 1.000 0.984 0.971 0.960 0.950 0.941 --19-1/2 1.000 1.000 1.000 1.000 0.992 0.977 0.964 0.952 0.942 0.933 0.92521 1.000 1.000 1.000 1.000 0.984 0.969 0.956 0.945 0.935 0.926 0.91822-1/2 1.000 1.000 1.000 0.996 0.978 0.963 0.950 0.939 0.929 0.920 0.91224 1.000 1.000 1.000 0.989 0.971 0.956 0.944 0.933 0.923 0.914 0.9063-1/8 in. Width6 1.000 1.000 -- -- -- -- -- -- -- -- --7-1/2 1.000 1.000 1.000 -- -- -- -- -- -- -- --9 1.000 1.000 1.000 1.000 -- -- -- -- -- -- --10-1/2 1.000 1.000 1.000 1.000 1.000 -- -- -- -- -- --12 1.000 1.000 1.000 1.000 1.000 1.000 -- -- -- -- --13-1/2 1.000 1.000 1.000 1.000 1.000 1.000 0.996 -- -- -- --15 1.000 1.000 1.000 1.000 1.000 0.998 0.985 0.974 -- -- --16-1/2 1.000 1.000 1.000 1.000 1.000 0.989 0.976 0.964 0.954 -- --18 1.000 1.000 1.000 1.000 0.996 0.980 0.967 0.956 0.946 0.937 --19-1/2 1.000 1.000 1.000 1.000 0.988 0.973 0.960 0.948 0.938 0.930 0.92221 1.000 1.000 1.000 0.998 0.980 0.965 0.953 0.941 0.932 0.923 0.91522-1/2 1.000 1.000 1.000 0.992 0.974 0.959 0.946 0.935 0.925 0.916 0.90824 1.000 1.000 1.000 0.985 0.967 0.953 0.940 0.929 0.919 0.910 0.903(a)Applicable when loading condition coefficient, K L = 1.0. For other loading conditions, see Table 4.4.APA/EWS


<strong>LRFD</strong> STRUCTURAL GLUED LAMINATED TIMBER SUPPLEMENT27Table 4.7Volume Factor (a) for Bending about X-X Axis Western Species GluedLaminated Timber (Cont.)DepthC V when Span (ft) isd (in.) 8 12 16 20 24 28 32 36 40 44 485 in. Width6 1.000 1.000 -- -- -- -- -- -- -- -- --7-1/2 1.000 1.000 1.000 -- -- -- -- -- -- -- --9 1.000 1.000 1.000 1.000 -- -- -- -- -- -- --10-1/2 1.000 1.000 1.000 1.000 1.000 -- -- -- -- -- --12 1.000 1.000 1.000 1.000 0.989 0.974 -- -- -- -- --13-1/2 1.000 1.000 1.000 0.996 0.978 0.963 0.950 -- -- -- --15 1.000 1.000 1.000 0.985 0.967 0.953 0.940 0.929 -- -- --16-1/2 1.000 1.000 0.998 0.976 0.958 0.944 0.931 0.920 0.910 -- --18 1.000 1.000 0.989 0.967 0.950 0.935 0.923 0.912 0.903 0.894 --19-1/2 1.000 1.000 0.981 0.960 0.942 0.928 0.916 0.905 0.895 0.887 0.87921 1.000 1.000 0.974 0.953 0.935 0.921 0.909 0.898 0.889 0.880 0.87322-1/2 1.000 0.996 0.967 0.946 0.929 0.915 0.903 0.892 0.883 0.874 0.86724 1.000 0.989 0.961 0.940 0.923 0.909 0.897 0.886 0.877 0.869 0.86125-1/2 1.000 0.983 0.955 0.934 0.917 0.903 0.891 0.881 0.872 0.863 0.85627 1.000 0.978 0.950 0.929 0.912 0.898 0.886 0.876 0.867 0.858 0.85128-1/2 1.000 0.972 0.945 0.924 0.907 0.893 0.881 0.871 0.862 0.854 0.84630 1.000 0.967 0.940 0.919 0.903 0.889 0.877 0.867 0.858 0.849 0.84231-1/2 1.000 0.963 0.935 0.915 0.898 0.884 0.873 0.862 0.853 0.845 0.83833 0.998 0.958 0.931 0.910 0.894 0.880 0.869 0.858 0.849 0.841 0.83434-1/2 0.993 0.954 0.927 0.906 0.890 0.876 0.865 0.855 0.846 0.838 0.83036 0.989 0.950 0.923 0.903 0.886 0.873 0.861 0.851 0.842 0.834 0.8275-1/8 in. Width6 1.000 1.000 -- -- -- -- -- -- -- -- --7-1/2 1.000 1.000 1.000 -- -- -- -- -- -- -- --9 1.000 1.000 1.000 1.000 -- -- -- -- -- -- --10-1/2 1.000 1.000 1.000 1.000 1.000 -- -- -- -- -- --12 1.000 1.000 1.000 1.000 0.987 0.972 -- -- -- -- --13-1/2 1.000 1.000 1.000 0.993 0.975 0.960 0.948 -- -- -- --15 1.000 1.000 1.000 0.983 0.965 0.950 0.938 0.927 -- -- --16-1/2 1.000 1.000 0.995 0.973 0.956 0.941 0.929 0.918 0.908 -- --18 1.000 1.000 0.987 0.965 0.948 0.933 0.921 0.910 0.900 0.892 --19-1/2 1.000 1.000 0.979 0.957 0.940 0.926 0.913 0.903 0.893 0.885 0.87721 1.000 1.000 0.972 0.950 0.933 0.919 0.907 0.896 0.887 0.878 0.87122-1/2 1.000 0.993 0.965 0.944 0.927 0.912 0.900 0.890 0.880 0.872 0.86524 1.000 0.987 0.959 0.938 0.921 0.907 0.895 0.884 0.875 0.867 0.85925-1/2 1.000 0.981 0.953 0.932 0.915 0.901 0.889 0.879 0.870 0.861 0.85427 1.000 0.975 0.948 0.927 0.910 0.896 0.884 0.874 0.865 0.856 0.84928-1/2 1.000 0.970 0.942 0.922 0.905 0.891 0.879 0.869 0.860 0.852 0.84430 1.000 0.965 0.938 0.917 0.900 0.887 0.875 0.865 0.856 0.847 0.84031-1/2 1.000 0.960 0.933 0.912 0.896 0.882 0.871 0.860 0.851 0.843 0.83633 0.995 0.956 0.929 0.908 0.892 0.878 0.867 0.856 0.847 0.839 0.83234-1/2 0.991 0.952 0.925 0.904 0.888 0.874 0.863 0.853 0.844 0.836 0.82836 0.987 0.948 0.921 0.900 0.884 0.871 0.859 0.849 0.840 0.832 0.8254DESIGN ADJUSTMENT FACTORS(a)Applicable when loading condition coefficient, K L = 1.0. For other loading conditions, see Table 4.4.APA/EWS


28 DESIGN ADJUSTMENT FACTORSTable 4.7Volume Factor (a) for Bending about X-X Axis Western Species GluedLaminated Timber (Cont.)DepthC V when Span (ft) isd (in.) 10 14 18 22 26 30 34 38 42 46 506-3/4 in. Width7-1/2 1.000 1.000 1.000 -- -- -- -- -- -- -- --9 1.000 1.000 1.000 0.997 -- -- -- -- -- -- --10-1/2 1.000 1.000 1.000 0.981 0.965 -- -- -- -- -- --12 1.000 1.000 0.988 0.968 0.952 0.939 -- -- -- -- --13-1/2 1.000 1.000 0.976 0.957 0.941 0.928 -- -- -- -- --15 1.000 0.991 0.966 0.947 0.931 0.918 0.907 -- -- -- --16-1/2 1.000 0.981 0.957 0.938 0.922 0.909 0.898 0.888 -- -- --18 1.000 0.973 0.949 0.930 0.914 0.901 0.890 0.880 0.872 -- --19-1/2 0.998 0.965 0.941 0.922 0.907 0.894 0.883 0.873 0.865 0.857 --21 0.991 0.958 0.934 0.916 0.900 0.888 0.877 0.867 0.858 0.851 0.84322-1/2 0.984 0.951 0.928 0.909 0.894 0.882 0.871 0.861 0.852 0.845 0.83824 0.978 0.945 0.922 0.903 0.889 0.876 0.865 0.855 0.847 0.839 0.83225-1/2 0.972 0.940 0.916 0.898 0.883 0.871 0.860 0.850 0.842 0.834 0.82727 0.966 0.934 0.911 0.893 0.878 0.866 0.855 0.845 0.837 0.829 0.82328-1/2 0.961 0.929 0.906 0.888 0.873 0.861 0.850 0.841 0.832 0.825 0.81830 0.956 0.924 0.901 0.884 0.869 0.857 0.846 0.837 0.828 0.821 0.81431-1/2 0.951 0.920 0.897 0.879 0.865 0.852 0.842 0.832 0.824 0.817 0.81033 0.947 0.916 0.893 0.875 0.861 0.848 0.838 0.829 0.820 0.813 0.80634-1/2 0.943 0.912 0.889 0.871 0.857 0.845 0.834 0.825 0.817 0.809 0.80336 0.939 0.908 0.885 0.868 0.853 0.841 0.831 0.821 0.813 0.806 0.79937-1/2 0.935 0.904 0.882 0.864 0.850 0.838 0.827 0.818 0.810 0.803 0.79639 0.931 0.900 0.878 0.861 0.846 0.834 0.824 0.815 0.807 0.799 0.79340-1/2 0.928 0.897 0.875 0.857 0.843 0.831 0.821 0.812 0.804 0.796 0.79042 0.924 0.894 0.872 0.854 0.840 0.828 0.818 0.809 0.801 0.794 0.78743-1/2 0.921 0.891 0.869 0.851 0.837 0.825 0.815 0.806 0.798 0.791 0.78445 0.918 0.888 0.866 0.848 0.834 0.823 0.812 0.803 0.795 0.788 0.78246-1/2 0.915 0.885 0.863 0.846 0.832 0.820 0.810 0.801 0.793 0.786 0.77948 0.912 0.882 0.860 0.843 0.829 0.817 0.807 0.798 0.790 0.783 0.77749-1/2 0.909 0.879 0.857 0.840 0.826 0.815 0.805 0.796 0.788 0.781 0.77451 0.907 0.877 0.855 0.838 0.824 0.812 0.802 0.793 0.785 0.778 0.77252-1/2 0.904 0.874 0.852 0.835 0.822 0.810 0.800 0.791 0.783 0.776 0.77054 0.901 0.872 0.850 0.833 0.819 0.808 0.798 0.789 0.781 0.774 0.76755-1/2 0.899 0.869 0.848 0.831 0.817 0.805 0.795 0.787 0.779 0.772 0.76557 0.897 0.867 0.845 0.829 0.815 0.803 0.793 0.785 0.777 0.770 0.76358-1/2 0.894 0.865 0.843 0.826 0.813 0.801 0.791 0.783 0.775 0.768 0.76160 0.892 0.862 0.841 0.824 0.811 0.799 0.789 0.781 0.773 0.766 0.759(a)Applicable when loading condition coefficient, K L = 1.0. For other loading conditions, see Table 4.4.APA/EWS


<strong>LRFD</strong> STRUCTURAL GLUED LAMINATED TIMBER SUPPLEMENT29Table 4.7Volume Factor (a) for Bending about X-X Axis Western Species GluedLaminated Timber (Cont.)DepthC V when Span (ft) isd (in.) 10 14 18 22 26 30 34 38 42 46 508-3/4 in. Width9 1.000 1.000 0.991 0.971 -- -- -- -- -- -- --10-1/2 1.000 1.000 0.976 0.956 0.940 -- -- -- -- -- --12 1.000 0.987 0.963 0.944 0.928 0.915 -- -- -- -- --13-1/2 1.000 0.976 0.951 0.932 0.917 0.904 -- -- -- -- --15 0.998 0.965 0.941 0.923 0.907 0.895 0.883 -- -- -- --16-1/2 0.989 0.956 0.932 0.914 0.899 0.886 0.875 0.865 -- -- --18 0.980 0.948 0.924 0.906 0.891 0.878 0.867 0.858 0.849 -- --19-1/2 0.973 0.940 0.917 0.899 0.884 0.871 0.861 0.851 0.843 0.835 --21 0.965 0.933 0.910 0.892 0.877 0.865 0.854 0.845 0.836 0.829 0.82222-1/2 0.959 0.927 0.904 0.886 0.871 0.859 0.848 0.839 0.831 0.823 0.81624 0.953 0.921 0.898 0.880 0.866 0.853 0.843 0.834 0.825 0.818 0.81125-1/2 0.947 0.915 0.893 0.875 0.861 0.848 0.838 0.828 0.820 0.813 0.80627 0.941 0.910 0.888 0.870 0.856 0.843 0.833 0.824 0.816 0.808 0.80128-1/2 0.936 0.905 0.883 0.865 0.851 0.839 0.828 0.819 0.811 0.804 0.79730 0.932 0.901 0.878 0.861 0.847 0.835 0.824 0.815 0.807 0.800 0.79331-1/2 0.927 0.896 0.874 0.857 0.843 0.831 0.820 0.811 0.803 0.796 0.78933 0.923 0.892 0.870 0.853 0.839 0.827 0.816 0.807 0.799 0.792 0.78634-1/2 0.919 0.888 0.866 0.849 0.835 0.823 0.813 0.804 0.796 0.789 0.78236 0.915 0.884 0.862 0.845 0.831 0.820 0.809 0.800 0.792 0.785 0.77937-1/2 0.911 0.881 0.859 0.842 0.828 0.816 0.806 0.797 0.789 0.782 0.77639 0.907 0.877 0.856 0.839 0.825 0.813 0.803 0.794 0.786 0.779 0.77340-1/2 0.904 0.874 0.852 0.835 0.822 0.810 0.800 0.791 0.783 0.776 0.77042 0.901 0.871 0.849 0.832 0.819 0.807 0.797 0.788 0.780 0.773 0.76743-1/2 0.898 0.868 0.846 0.830 0.816 0.804 0.794 0.785 0.778 0.771 0.76445 0.895 0.865 0.843 0.827 0.813 0.801 0.791 0.783 0.775 0.768 0.76246-1/2 0.892 0.862 0.841 0.824 0.810 0.799 0.789 0.780 0.772 0.765 0.75948 0.889 0.859 0.838 0.821 0.808 0.796 0.786 0.778 0.770 0.763 0.75749-1/2 0.886 0.857 0.835 0.819 0.805 0.794 0.784 0.775 0.768 0.761 0.75451 0.883 0.854 0.833 0.816 0.803 0.791 0.782 0.773 0.765 0.758 0.75252-1/2 0.881 0.852 0.831 0.814 0.801 0.789 0.779 0.771 0.763 0.756 0.75054 0.878 0.849 0.828 0.812 0.798 0.787 0.777 0.769 0.761 0.754 0.74855-1/2 0.876 0.847 0.826 0.810 0.796 0.785 0.775 0.766 0.759 0.752 0.74657 0.874 0.845 0.824 0.807 0.794 0.783 0.773 0.764 0.757 0.750 0.74458-1/2 0.871 0.843 0.822 0.805 0.792 0.781 0.771 0.762 0.755 0.748 0.74260 0.869 0.840 0.820 0.803 0.790 0.779 0.769 0.761 0.753 0.746 0.7404DESIGN ADJUSTMENT FACTORS(a)Applicable when loading condition coefficient, K L = 1.0. For other loading conditions, see Table 4.4.APA/EWS


30 DESIGN ADJUSTMENT FACTORSTable 4.7Volume Factor (a) for Bending about X-X Axis Western Species GluedLaminated Timber (Cont.)DepthC V when Span (ft) isd (in.) 12 16 20 24 28 32 36 40 44 48 5210-3/4 in. Width12 0.982 0.954 0.933 0.916 0.902 -- -- -- -- -- --13-1/2 0.971 0.943 0.922 0.906 0.892 0.880 -- -- -- -- --15 0.960 0.933 0.913 0.896 0.882 0.871 0.860 -- -- -- --16-1/2 0.951 0.924 0.904 0.888 0.874 0.862 0.852 0.843 -- -- --18 0.943 0.916 0.896 0.880 0.866 0.855 0.845 0.836 0.828 -- --19-1/2 0.936 0.909 0.889 0.873 0.860 0.848 0.838 0.829 0.822 0.814 --21 0.929 0.902 0.882 0.866 0.853 0.842 0.832 0.823 0.815 0.808 0.80222-1/2 0.922 0.896 0.876 0.860 0.847 0.836 0.826 0.818 0.810 0.803 0.79624 0.916 0.890 0.871 0.855 0.842 0.831 0.821 0.812 0.805 0.798 0.79125-1/2 0.911 0.885 0.865 0.850 0.837 0.826 0.816 0.807 0.800 0.793 0.78727 0.906 0.880 0.860 0.845 0.832 0.821 0.811 0.803 0.795 0.788 0.78228-1/2 0.901 0.875 0.856 0.840 0.828 0.817 0.807 0.799 0.791 0.784 0.77830 0.896 0.871 0.851 0.836 0.823 0.812 0.803 0.794 0.787 0.780 0.77431-1/2 0.892 0.866 0.847 0.832 0.819 0.808 0.799 0.791 0.783 0.776 0.77033 0.888 0.862 0.843 0.828 0.815 0.805 0.795 0.787 0.779 0.773 0.76734-1/2 0.884 0.859 0.840 0.824 0.812 0.801 0.792 0.783 0.776 0.769 0.76336 0.880 0.855 0.836 0.821 0.808 0.798 0.788 0.780 0.773 0.766 0.76037-1/2 0.876 0.851 0.833 0.818 0.805 0.794 0.785 0.777 0.770 0.763 0.75739 0.873 0.848 0.829 0.814 0.802 0.791 0.782 0.774 0.767 0.760 0.75440-1/2 0.870 0.845 0.826 0.811 0.799 0.788 0.779 0.771 0.764 0.757 0.75142 0.866 0.842 0.823 0.808 0.796 0.785 0.776 0.768 0.761 0.754 0.74843-1/2 0.863 0.839 0.820 0.806 0.793 0.783 0.774 0.765 0.758 0.752 0.74645 0.860 0.836 0.818 0.803 0.791 0.780 0.771 0.763 0.756 0.749 0.74346-1/2 0.858 0.833 0.815 0.800 0.788 0.778 0.768 0.760 0.753 0.747 0.74148 0.855 0.831 0.812 0.798 0.785 0.775 0.766 0.758 0.751 0.744 0.73849-1/2 0.852 0.828 0.810 0.795 0.783 0.773 0.764 0.756 0.748 0.742 0.73651 0.850 0.826 0.807 0.793 0.781 0.770 0.761 0.753 0.746 0.740 0.73452-1/2 0.847 0.823 0.805 0.791 0.778 0.768 0.759 0.751 0.744 0.738 0.73254 0.845 0.821 0.803 0.788 0.776 0.766 0.757 0.749 0.742 0.736 0.73055-1/2 0.843 0.819 0.801 0.786 0.774 0.764 0.755 0.747 0.740 0.734 0.72857 0.840 0.817 0.799 0.784 0.772 0.762 0.753 0.745 0.738 0.732 0.72658-1/2 0.838 0.814 0.796 0.782 0.770 0.760 0.751 0.743 0.736 0.730 0.72460 0.836 0.812 0.794 0.780 0.768 0.758 0.749 0.741 0.734 0.728 0.722(a)Applicable when loading condition coefficient, K L = 1.0. For other loading conditions, see Table 4.4.APA/EWS


<strong>LRFD</strong> STRUCTURAL GLUED LAMINATED TIMBER SUPPLEMENT31Table 4.7Volume Factor (a) for Bending about X-X Axis Western Species GluedLaminated Timber (Cont.)DepthC V when Span (ft) isd (in.) 12 16 20 24 28 32 36 40 44 48 5212-1/4 in. Width13-1/2 0.958 0.931 0.910 0.894 0.880 0.868 -- -- -- -- --15 0.948 0.921 0.901 0.884 0.871 0.859 0.849 -- -- -- --16-1/2 0.939 0.912 0.892 0.876 0.863 0.851 0.841 0.832 -- -- --18 0.931 0.904 0.884 0.868 0.855 0.844 0.834 0.825 0.817 -- --19-1/2 0.923 0.897 0.877 0.862 0.848 0.837 0.827 0.819 0.811 0.804 --21 0.917 0.891 0.871 0.855 0.842 0.831 0.821 0.813 0.805 0.798 0.79222-1/2 0.910 0.884 0.865 0.849 0.836 0.825 0.816 0.807 0.799 0.792 0.78624 0.904 0.879 0.859 0.844 0.831 0.820 0.810 0.802 0.794 0.787 0.78125-1/2 0.899 0.873 0.854 0.839 0.826 0.815 0.805 0.797 0.789 0.783 0.77627 0.894 0.868 0.849 0.834 0.821 0.810 0.801 0.792 0.785 0.778 0.77228-1/2 0.889 0.864 0.845 0.829 0.817 0.806 0.796 0.788 0.781 0.774 0.76830 0.884 0.859 0.840 0.825 0.813 0.802 0.792 0.784 0.777 0.770 0.76431-1/2 0.880 0.855 0.836 0.821 0.809 0.798 0.789 0.780 0.773 0.766 0.76033 0.876 0.851 0.832 0.817 0.805 0.794 0.785 0.777 0.769 0.763 0.75734-1/2 0.872 0.847 0.829 0.814 0.801 0.791 0.781 0.773 0.766 0.759 0.75336 0.868 0.844 0.825 0.810 0.798 0.787 0.778 0.770 0.763 0.756 0.75037-1/2 0.865 0.840 0.822 0.807 0.795 0.784 0.775 0.767 0.760 0.753 0.74739 0.862 0.837 0.819 0.804 0.792 0.781 0.772 0.764 0.757 0.750 0.74440-1/2 0.858 0.834 0.816 0.801 0.789 0.778 0.769 0.761 0.754 0.747 0.74142 0.855 0.831 0.813 0.798 0.786 0.775 0.766 0.758 0.751 0.744 0.73943-1/2 0.852 0.828 0.810 0.795 0.783 0.773 0.764 0.756 0.748 0.742 0.73645 0.849 0.825 0.807 0.792 0.780 0.770 0.761 0.753 0.746 0.739 0.73346-1/2 0.847 0.823 0.804 0.790 0.778 0.767 0.758 0.750 0.743 0.737 0.73148 0.844 0.820 0.802 0.787 0.775 0.765 0.756 0.748 0.741 0.735 0.72949-1/2 0.841 0.817 0.799 0.785 0.773 0.763 0.754 0.746 0.739 0.732 0.72651 0.839 0.815 0.797 0.783 0.771 0.760 0.751 0.744 0.737 0.730 0.72452-1/2 0.836 0.813 0.795 0.780 0.768 0.758 0.749 0.741 0.734 0.728 0.72254 0.834 0.810 0.792 0.778 0.766 0.756 0.747 0.739 0.732 0.726 0.72055-1/2 0.832 0.808 0.790 0.776 0.764 0.754 0.745 0.737 0.730 0.724 0.71857 0.829 0.806 0.788 0.774 0.762 0.752 0.743 0.735 0.728 0.722 0.71658-1/2 0.827 0.804 0.786 0.772 0.760 0.750 0.741 0.733 0.726 0.720 0.71460 0.825 0.802 0.784 0.770 0.758 0.748 0.739 0.732 0.725 0.718 0.7134DESIGN ADJUSTMENT FACTORS(a)Applicable when loading condition coefficient, K L = 1.0. For other loading conditions, see Table 4.4.APA/EWS


32 DESIGN ADJUSTMENT FACTORSTable 4.8Volume Factor (a) for Bending about X-X Axis Southern Pine GluedLaminated TimberDepthC V when Span (ft) isd (in.) 8 12 16 20 24 28 32 36 40 44 482-1/2 in. Width5-1/2 1.000 1.000 -- -- -- -- -- -- -- -- --6-7/8 1.000 1.000 1.000 -- -- -- -- -- -- -- --8-1/4 1.000 1.000 1.000 1.000 -- -- -- -- -- -- --9-5/8 1.000 1.000 1.000 1.000 1.000 -- -- -- -- -- --11 1.000 1.000 1.000 1.000 1.000 -- -- -- -- -- --12-3/8 1.000 1.000 1.000 1.000 1.000 1.000 -- -- -- -- --13-3/4 1.000 1.000 1.000 1.000 1.000 1.000 1.000 -- -- -- --15-1/8 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.997 -- -- --16-1/2 1.000 1.000 1.000 1.000 1.000 1.000 0.999 0.993 0.988 -- --17-7/8 1.000 1.000 1.000 1.000 1.000 1.000 0.995 0.989 0.984 0.979 --19-1/4 1.000 1.000 1.000 1.000 1.000 0.998 0.991 0.985 0.980 0.976 0.97120-5/8 1.000 1.000 1.000 1.000 1.000 0.994 0.988 0.982 0.977 0.972 0.96822 1.000 1.000 1.000 1.000 0.999 0.991 0.985 0.979 0.974 0.969 0.96523-3/8 1.000 1.000 1.000 1.000 0.996 0.988 0.982 0.976 0.971 0.966 0.9623 in. Width5-1/2 1.000 1.000 -- -- -- -- -- -- -- -- --6-7/8 1.000 1.000 1.000 -- -- -- -- -- -- -- --8-1/4 1.000 1.000 1.000 1.000 -- -- -- -- -- -- --9-5/8 1.000 1.000 1.000 1.000 1.000 -- -- -- -- -- --11 1.000 1.000 1.000 1.000 1.000 -- -- -- -- -- --12-3/8 1.000 1.000 1.000 1.000 1.000 1.000 -- -- -- -- --13-3/4 1.000 1.000 1.000 1.000 1.000 1.000 0.999 -- -- -- --15-1/8 1.000 1.000 1.000 1.000 1.000 1.000 0.994 0.988 -- -- --16-1/2 1.000 1.000 1.000 1.000 1.000 0.996 0.990 0.984 0.979 -- --17-7/8 1.000 1.000 1.000 1.000 1.000 0.992 0.986 0.980 0.975 0.970 --19-1/4 1.000 1.000 1.000 1.000 0.996 0.989 0.982 0.976 0.971 0.967 0.96320-5/8 1.000 1.000 1.000 1.000 0.993 0.985 0.979 0.973 0.968 0.963 0.95922 1.000 1.000 1.000 0.999 0.990 0.982 0.976 0.970 0.965 0.960 0.95623-3/8 1.000 1.000 1.000 0.996 0.987 0.979 0.973 0.967 0.962 0.957 0.9533-1/8 in. Width5-1/2 1.000 1.000 -- -- -- -- -- -- -- -- --6-7/8 1.000 1.000 1.000 -- -- -- -- -- -- -- --8-1/4 1.000 1.000 1.000 1.000 -- -- -- -- -- -- --9-5/8 1.000 1.000 1.000 1.000 1.000 -- -- -- -- -- --11 1.000 1.000 1.000 1.000 1.000 -- -- -- -- -- --12-3/8 1.000 1.000 1.000 1.000 1.000 1.000 -- -- -- -- --13-3/4 1.000 1.000 1.000 1.000 1.000 1.000 0.997 -- -- -- --15-1/8 1.000 1.000 1.000 1.000 1.000 0.999 0.992 0.986 -- -- --16-1/2 1.000 1.000 1.000 1.000 1.000 0.994 0.988 0.982 0.977 -- --17-7/8 1.000 1.000 1.000 1.000 0.998 0.990 0.984 0.978 0.973 0.968 --19-1/4 1.000 1.000 1.000 1.000 0.994 0.987 0.980 0.974 0.969 0.965 0.96120-5/8 1.000 1.000 1.000 1.000 0.991 0.983 0.977 0.971 0.966 0.961 0.95722 1.000 1.000 1.000 0.997 0.988 0.980 0.974 0.968 0.963 0.958 0.95423-3/8 1.000 1.000 1.000 0.994 0.985 0.977 0.971 0.965 0.960 0.955 0.951(a)Applicable when loading condition coefficient, K L = 1.0. For other loading conditions, see Table 4.4.APA/EWS


<strong>LRFD</strong> STRUCTURAL GLUED LAMINATED TIMBER SUPPLEMENT33Table 4.8Volume Factor (a) for Bending about X-X Axis Southern Pine GluedLaminated Timber (Cont.)DepthC V when Span (ft) isd (in.) 8 12 16 20 24 28 32 36 40 44 485 in. Width6-7/8 1.000 1.000 1.000 -- -- -- -- -- -- -- --8-1/4 1.000 1.000 1.000 1.000 -- -- -- -- -- -- --9-5/8 1.000 1.000 1.000 1.000 1.000 -- -- -- -- -- --11 1.000 1.000 1.000 1.000 0.999 -- -- -- -- -- --12-3/8 1.000 1.000 1.000 1.000 0.993 0.985 -- -- -- -- --13-3/4 1.000 1.000 1.000 0.997 0.988 0.980 0.974 -- -- -- --15-1/8 1.000 1.000 1.000 0.992 0.983 0.976 0.969 0.963 -- -- --16-1/2 1.000 1.000 0.999 0.988 0.979 0.971 0.965 0.959 0.954 -- --17-7/8 1.000 1.000 0.995 0.984 0.975 0.967 0.961 0.955 0.950 0.946 --19-1/4 1.000 1.000 0.991 0.980 0.971 0.964 0.957 0.952 0.947 0.942 0.93820-5/8 1.000 1.000 0.988 0.977 0.968 0.961 0.954 0.949 0.944 0.939 0.93522 1.000 0.999 0.985 0.974 0.965 0.957 0.951 0.946 0.941 0.936 0.93223-3/8 1.000 0.996 0.982 0.971 0.962 0.955 0.948 0.943 0.938 0.933 0.92924-3/4 1.000 0.993 0.979 0.968 0.959 0.952 0.946 0.940 0.935 0.931 0.92726-1/8 1.000 0.990 0.976 0.965 0.957 0.949 0.943 0.937 0.933 0.928 0.92427-1/2 1.000 0.988 0.974 0.963 0.954 0.947 0.941 0.935 0.930 0.926 0.92228-7/8 1.000 0.985 0.971 0.961 0.952 0.945 0.938 0.933 0.928 0.923 0.91930-1/4 1.000 0.983 0.969 0.958 0.950 0.942 0.936 0.931 0.926 0.921 0.91731-5/8 1.000 0.981 0.967 0.956 0.948 0.940 0.934 0.929 0.924 0.919 0.91533 0.999 0.979 0.965 0.954 0.946 0.938 0.932 0.927 0.922 0.917 0.91334-3/8 0.997 0.977 0.963 0.952 0.944 0.936 0.930 0.925 0.920 0.915 0.91135-3/4 0.995 0.975 0.961 0.950 0.942 0.935 0.928 0.923 0.918 0.914 0.9105-1/8 in. Width6-7/8 1.000 1.000 1.000 -- -- -- -- -- -- -- --8-1/4 1.000 1.000 1.000 1.000 -- -- -- -- -- -- --9-5/8 1.000 1.000 1.000 1.000 1.000 -- -- -- -- -- --11 1.000 1.000 1.000 1.000 0.998 -- -- -- -- -- --12-3/8 1.000 1.000 1.000 1.000 0.992 0.984 -- -- -- -- --13-3/4 1.000 1.000 1.000 0.996 0.987 0.979 0.973 -- -- -- --15-1/8 1.000 1.000 1.000 0.991 0.982 0.974 0.968 0.962 -- -- --16-1/2 1.000 1.000 0.998 0.987 0.978 0.970 0.964 0.958 0.953 -- --17-7/8 1.000 1.000 0.994 0.983 0.974 0.966 0.960 0.954 0.949 0.945 --19-1/4 1.000 1.000 0.990 0.979 0.970 0.963 0.956 0.951 0.946 0.941 0.93720-5/8 1.000 1.000 0.987 0.976 0.967 0.959 0.953 0.947 0.942 0.938 0.93422 1.000 0.998 0.983 0.973 0.964 0.956 0.950 0.944 0.939 0.935 0.93123-3/8 1.000 0.995 0.980 0.970 0.961 0.953 0.947 0.941 0.937 0.932 0.92824-3/4 1.000 0.992 0.978 0.967 0.958 0.951 0.944 0.939 0.934 0.929 0.92526-1/8 1.000 0.989 0.975 0.964 0.955 0.948 0.942 0.936 0.931 0.927 0.92327-1/2 1.000 0.987 0.973 0.962 0.953 0.946 0.939 0.934 0.929 0.925 0.92128-7/8 1.000 0.984 0.970 0.959 0.951 0.943 0.937 0.932 0.927 0.922 0.91830-1/4 1.000 0.982 0.968 0.957 0.948 0.941 0.935 0.929 0.925 0.920 0.91631-5/8 1.000 0.980 0.966 0.955 0.946 0.939 0.933 0.927 0.922 0.918 0.91433 0.998 0.978 0.964 0.953 0.944 0.937 0.931 0.925 0.921 0.916 0.91234-3/8 0.996 0.976 0.962 0.951 0.942 0.935 0.929 0.924 0.919 0.914 0.91035-3/4 0.994 0.974 0.960 0.949 0.941 0.933 0.927 0.922 0.917 0.913 0.9094DESIGN ADJUSTMENT FACTORS(a)Applicable when loading condition coefficient, K L = 1.0. For other loading conditions, see Table 4.4.APA/EWS


34 DESIGN ADJUSTMENT FACTORSTable 4.8Volume Factor (a) for Bending about X-X Axis Southern Pine GluedLaminated Timber (Cont.)DepthC V when Span (ft) isd (in.) 10 14 18 22 26 30 34 38 42 46 506-3/4 in. Width6-7/8 1.000 1.000 -- -- -- -- -- -- -- -- --8-1/4 1.000 1.000 1.000 -- -- -- -- -- -- -- --9-5/8 1.000 1.000 1.000 0.995 -- -- -- -- -- -- --11 1.000 1.000 0.998 0.988 0.980 -- -- -- -- -- --12-3/8 1.000 1.000 0.992 0.983 0.974 0.967 -- -- -- -- --13-3/4 1.000 1.000 0.987 0.977 0.969 0.962 0.956 -- -- -- --15-1/8 1.000 0.995 0.983 0.973 0.965 0.958 0.952 -- -- -- --16-1/2 1.000 0.991 0.978 0.968 0.960 0.954 0.948 0.942 -- -- --17-7/8 1.000 0.987 0.974 0.965 0.957 0.950 0.944 0.939 0.934 -- --19-1/4 1.000 0.983 0.971 0.961 0.953 0.946 0.940 0.935 0.930 0.926 --20-5/8 0.996 0.980 0.967 0.958 0.950 0.943 0.937 0.932 0.927 0.923 0.91922 0.993 0.976 0.964 0.955 0.947 0.940 0.934 0.929 0.924 0.920 0.91623-3/8 0.990 0.974 0.961 0.952 0.944 0.937 0.931 0.926 0.921 0.917 0.91324-3/4 0.987 0.971 0.959 0.949 0.941 0.934 0.929 0.923 0.919 0.915 0.91126-1/8 0.985 0.968 0.956 0.946 0.939 0.932 0.926 0.921 0.916 0.912 0.90827-1/2 0.982 0.966 0.954 0.944 0.936 0.930 0.924 0.919 0.914 0.910 0.90628-7/8 0.980 0.963 0.951 0.942 0.934 0.927 0.921 0.916 0.912 0.908 0.90430-1/4 0.977 0.961 0.949 0.940 0.932 0.925 0.919 0.914 0.910 0.906 0.90231-5/8 0.975 0.959 0.947 0.937 0.930 0.923 0.917 0.912 0.908 0.904 0.90033 0.973 0.957 0.945 0.935 0.928 0.921 0.915 0.910 0.906 0.902 0.89834-3/8 0.971 0.955 0.943 0.934 0.926 0.919 0.913 0.908 0.904 0.900 0.89635-3/4 0.969 0.953 0.941 0.932 0.924 0.917 0.912 0.907 0.902 0.898 0.89437-1/8 0.967 0.951 0.939 0.930 0.922 0.916 0.910 0.905 0.900 0.896 0.89338-1/2 0.966 0.950 0.938 0.928 0.921 0.914 0.908 0.903 0.899 0.895 0.89139-7/8 0.964 0.948 0.936 0.927 0.919 0.912 0.907 0.902 0.897 0.893 0.88941-1/4 0.962 0.946 0.934 0.925 0.917 0.911 0.905 0.900 0.896 0.892 0.88842-5/8 0.961 0.945 0.933 0.924 0.916 0.909 0.904 0.899 0.894 0.890 0.88644 0.959 0.943 0.931 0.922 0.914 0.908 0.902 0.897 0.893 0.889 0.88545-3/8 0.958 0.942 0.930 0.921 0.913 0.907 0.901 0.896 0.891 0.887 0.88446-3/4 0.956 0.940 0.929 0.919 0.912 0.905 0.900 0.895 0.890 0.886 0.88248-1/8 0.955 0.939 0.927 0.918 0.910 0.904 0.898 0.893 0.889 0.885 0.88149-1/2 0.954 0.938 0.926 0.917 0.909 0.903 0.897 0.892 0.888 0.884 0.88050-7/8 0.952 0.936 0.925 0.915 0.908 0.901 0.896 0.891 0.886 0.882 0.87952-1/4 0.951 0.935 0.923 0.914 0.907 0.900 0.895 0.890 0.885 0.881 0.87753-5/8 0.950 0.934 0.922 0.913 0.905 0.899 0.893 0.888 0.884 0.880 0.87655 0.949 0.933 0.921 0.912 0.904 0.898 0.892 0.887 0.883 0.879 0.87556-3/8 0.947 0.932 0.920 0.911 0.903 0.897 0.891 0.886 0.882 0.878 0.87457-3/4 0.946 0.930 0.919 0.910 0.902 0.896 0.890 0.885 0.881 0.877 0.87359-1/8 0.945 0.929 0.918 0.909 0.901 0.895 0.889 0.884 0.880 0.876 0.87260-1/2 0.944 0.928 0.917 0.908 0.900 0.894 0.888 0.883 0.879 0.875 0.871(a)Applicable when loading condition coefficient, K L = 1.0. For other loading conditions, see Table 4.4.APA/EWS


<strong>LRFD</strong> STRUCTURAL GLUED LAMINATED TIMBER SUPPLEMENT35Table 4.8Volume Factor (a) for Bending about X-X Axis Southern Pine GluedLaminated Timber (Cont.)DepthC V when Span (ft) isd (in.) 10 14 18 22 26 30 34 38 42 46 508-1/2 in. Width9-5/8 1.000 1.000 0.993 0.984 -- -- -- -- -- -- --11 1.000 0.999 0.987 0.977 0.969 -- -- -- -- -- --12-3/8 1.000 0.993 0.981 0.971 0.963 0.956 -- -- -- -- --13-3/4 1.000 0.988 0.976 0.966 0.958 0.951 0.945 -- -- -- --15-1/8 1.000 0.984 0.971 0.962 0.954 0.947 0.941 -- -- -- --16-1/2 0.996 0.979 0.967 0.957 0.949 0.943 0.937 0.932 -- -- --17-7/8 0.992 0.975 0.963 0.954 0.946 0.939 0.933 0.928 0.923 -- --19-1/4 0.988 0.972 0.960 0.950 0.942 0.935 0.930 0.924 0.920 0.916 --20-5/8 0.985 0.968 0.956 0.947 0.939 0.932 0.926 0.921 0.917 0.912 0.90922 0.982 0.965 0.953 0.944 0.936 0.929 0.923 0.918 0.914 0.910 0.90623-3/8 0.979 0.962 0.950 0.941 0.933 0.926 0.921 0.915 0.911 0.907 0.90324-3/4 0.976 0.960 0.948 0.938 0.930 0.924 0.918 0.913 0.908 0.904 0.90026-1/8 0.973 0.957 0.945 0.936 0.928 0.921 0.915 0.910 0.906 0.902 0.89827-1/2 0.971 0.955 0.943 0.933 0.925 0.919 0.913 0.908 0.904 0.899 0.89628-7/8 0.968 0.952 0.940 0.931 0.923 0.917 0.911 0.906 0.901 0.897 0.89430-1/4 0.966 0.950 0.938 0.929 0.921 0.915 0.909 0.904 0.899 0.895 0.89131-5/8 0.964 0.948 0.936 0.927 0.919 0.912 0.907 0.902 0.897 0.893 0.88933 0.962 0.946 0.934 0.925 0.917 0.911 0.905 0.900 0.895 0.891 0.88834-3/8 0.960 0.944 0.932 0.923 0.915 0.909 0.903 0.898 0.894 0.889 0.88635-3/4 0.958 0.942 0.930 0.921 0.913 0.907 0.901 0.896 0.892 0.888 0.88437-1/8 0.956 0.940 0.929 0.919 0.912 0.905 0.900 0.895 0.890 0.886 0.88238-1/2 0.955 0.939 0.927 0.918 0.910 0.904 0.898 0.893 0.888 0.884 0.88139-7/8 0.953 0.937 0.925 0.916 0.908 0.902 0.896 0.891 0.887 0.883 0.87941-1/4 0.951 0.935 0.924 0.915 0.907 0.900 0.895 0.890 0.885 0.881 0.87842-5/8 0.950 0.934 0.922 0.913 0.905 0.899 0.893 0.888 0.884 0.880 0.87644 0.948 0.932 0.921 0.912 0.904 0.898 0.892 0.887 0.883 0.879 0.87545-3/8 0.947 0.931 0.919 0.910 0.903 0.896 0.891 0.886 0.881 0.877 0.87446-3/4 0.945 0.930 0.918 0.909 0.901 0.895 0.889 0.884 0.880 0.876 0.87248-1/8 0.944 0.928 0.917 0.907 0.900 0.894 0.888 0.883 0.879 0.875 0.87149-1/2 0.943 0.927 0.915 0.906 0.899 0.892 0.887 0.882 0.877 0.873 0.87050-7/8 0.941 0.926 0.914 0.905 0.897 0.891 0.885 0.881 0.876 0.872 0.86952-1/4 0.940 0.924 0.913 0.904 0.896 0.890 0.884 0.879 0.875 0.871 0.86753-5/8 0.939 0.923 0.912 0.903 0.895 0.889 0.883 0.878 0.874 0.870 0.86655 0.938 0.922 0.911 0.901 0.894 0.888 0.882 0.877 0.873 0.869 0.86556-3/8 0.937 0.921 0.909 0.900 0.893 0.886 0.881 0.876 0.872 0.868 0.86457-3/4 0.935 0.920 0.908 0.899 0.892 0.885 0.880 0.875 0.871 0.867 0.86359-1/8 0.934 0.919 0.907 0.898 0.891 0.884 0.879 0.874 0.870 0.866 0.86260-1/2 0.933 0.918 0.906 0.897 0.890 0.883 0.878 0.873 0.869 0.865 0.8614DESIGN ADJUSTMENT FACTORS(a)Applicable when loading condition coefficient, K L = 1.0. For other loading conditions, see Table 4.4.APA/EWS


36 DESIGN ADJUSTMENT FACTORSTable 4.8Volume Factor (a) for Bending about X-X Axis Southern Pine GluedLaminated Timber (Cont.)DepthC V when Span (ft) isd (in.) 12 16 20 24 28 32 36 40 44 48 5210-1/2 in. Width11 0.996 0.982 0.971 0.963 -- -- -- -- -- -- --12-3/8 0.991 0.976 0.966 0.957 0.950 -- -- -- -- -- --13-3/4 0.985 0.971 0.961 0.952 0.945 0.938 -- -- -- -- --15-1/8 0.981 0.967 0.956 0.947 0.940 0.934 0.928 -- -- -- --16-1/2 0.976 0.963 0.952 0.943 0.936 0.930 0.924 0.919 -- -- --17-7/8 0.973 0.959 0.948 0.939 0.932 0.926 0.921 0.916 0.911 -- --19-1/4 0.969 0.955 0.945 0.936 0.929 0.923 0.917 0.912 0.908 0.904 --20-5/8 0.966 0.952 0.941 0.933 0.926 0.919 0.914 0.909 0.905 0.901 --22 0.963 0.949 0.938 0.930 0.923 0.916 0.911 0.906 0.902 0.898 0.89423-3/8 0.960 0.946 0.935 0.927 0.920 0.914 0.908 0.904 0.899 0.895 0.89224-3/4 0.957 0.943 0.933 0.924 0.917 0.911 0.906 0.901 0.897 0.893 0.88926-1/8 0.954 0.941 0.930 0.922 0.915 0.909 0.903 0.899 0.894 0.890 0.88727-1/2 0.952 0.938 0.928 0.919 0.912 0.906 0.901 0.896 0.892 0.888 0.88528-7/8 0.950 0.936 0.926 0.917 0.910 0.904 0.899 0.894 0.890 0.886 0.88230-1/4 0.947 0.934 0.923 0.915 0.908 0.902 0.897 0.892 0.888 0.884 0.88031-5/8 0.945 0.932 0.921 0.913 0.906 0.900 0.895 0.890 0.886 0.882 0.87833 0.943 0.930 0.919 0.911 0.904 0.898 0.893 0.888 0.884 0.880 0.87734-3/8 0.941 0.928 0.918 0.909 0.902 0.896 0.891 0.886 0.882 0.878 0.87535-3/4 0.939 0.926 0.916 0.907 0.900 0.894 0.889 0.885 0.880 0.877 0.87337-1/8 0.938 0.924 0.914 0.906 0.899 0.893 0.888 0.883 0.879 0.875 0.87138-1/2 0.936 0.923 0.912 0.904 0.897 0.891 0.886 0.881 0.877 0.873 0.87039-7/8 0.934 0.921 0.911 0.903 0.896 0.890 0.884 0.880 0.876 0.872 0.86841-1/4 0.933 0.919 0.909 0.901 0.894 0.888 0.883 0.878 0.874 0.870 0.86742-5/8 0.931 0.918 0.908 0.900 0.893 0.887 0.881 0.877 0.873 0.869 0.86544 0.930 0.916 0.906 0.898 0.891 0.885 0.880 0.875 0.871 0.867 0.86445-3/8 0.928 0.915 0.905 0.897 0.890 0.884 0.879 0.874 0.870 0.866 0.86346-3/4 0.927 0.914 0.904 0.895 0.888 0.883 0.877 0.873 0.869 0.865 0.86148-1/8 0.926 0.912 0.902 0.894 0.887 0.881 0.876 0.872 0.867 0.864 0.86049-1/2 0.924 0.911 0.901 0.893 0.886 0.880 0.875 0.870 0.866 0.862 0.85950-7/8 0.923 0.910 0.900 0.892 0.885 0.879 0.874 0.869 0.865 0.861 0.85852-1/4 0.922 0.909 0.899 0.890 0.884 0.878 0.873 0.868 0.864 0.860 0.85753-5/8 0.921 0.907 0.897 0.889 0.882 0.877 0.871 0.867 0.863 0.859 0.85655 0.919 0.906 0.896 0.888 0.881 0.875 0.870 0.866 0.862 0.858 0.85456-3/8 0.918 0.905 0.895 0.887 0.880 0.874 0.869 0.865 0.861 0.857 0.85357-3/4 0.917 0.904 0.894 0.886 0.879 0.873 0.868 0.864 0.859 0.856 0.85259-1/8 0.916 0.903 0.893 0.885 0.878 0.872 0.867 0.863 0.858 0.855 0.85160-1/2 0.915 0.902 0.892 0.884 0.877 0.871 0.866 0.862 0.858 0.854 0.850(a)Applicable when loading condition coefficient, K L = 1.0. For other loading conditions, see Table 4.4.APA/EWS


<strong>LRFD</strong> STRUCTURAL GLUED LAMINATED TIMBER SUPPLEMENT37CAPACITYSELECTIONTABLES55.1 General 385.2 Factored Reference Bending Resistance,λφ b M, and Shear Resistance, λφ v V 385.3 Reference Bending Stiffness, EI andE 05 I 385.4 Factored Reference Tension Parallelto Grain Resistance, λφ t T 385.5 Factored Reference CompressionParallel to Grain Resistance, λφ c P 38Table 5.1 Factored Reference Resistance (λ = 0.80, φ b =0.85, φ v = 0.75) for Bending about X-X AxisWestern Species Glued Laminated Timber.......... 39Table 5.2 Factored Reference Resistance (λ = 0.80, φ b =0.85, φ v = 0.75) for Bending about X-X AxisSouthern Pine Glued Laminated Timber ........... 45Table 5.3 Reference Stiffness for Bending about X-X AxisWestern Species Glued Laminated Timber.......... 50Table 5.4 Reference Stiffness for Bending about X-X AxisSouthern Pine Glued Laminated Timber ........... 56APA/EWS


38 CAPACITY SELECTION TABLES5.1 GeneralFactored reference resistance and stiffness values areprovided in this section. The resistance factor, φ, is basedon the value specified in AF&PA/ASCE 16-95 for all referenceresistances listed in this section. The time effectfactor, λ, of 0.80 is used. For λ other than 0.80, the tabulatedresistances should be divided by 0.80 and thenmultiplied by the appropriate λ.5.2 Factored Reference Bending Resistance, λφ b M, andShear Resistance, λφ v VFactored reference bending resistance, λφ b M, and factoredreference shear resistance, λφ v V, are given for variousreference strength levels in Table 5.1 for Western speciesglued laminated timber and Table 5.2 for Southern Pineglued laminated timber. These factored reference resistancesshall be further multiplied by applicable designadjustment factors given in Section 6 of this Supplement.Note that the tabulated values for factored reference bendingresistance, λφ b M, have NOT been adjusted for volumefactor (see Section 4.8 of this Supplement) as thelength of the glued laminated timber member is not specifiedin the tables.The factored reference bending resistances in Tables5.1 and 5.2 are based on fully laterally supported members.When members are not laterally supported, seeChapter 5 of AF&PA/ASCE 16-95, for design details.5.3 Reference Bending Stiffness, EI and E 05 ITables 5.3 (Western species) and 5.4 (Southern Pine)provide the reference bending stiffness for various gluedlaminated timber sizes at different E levels. The tabulatedvalues are applicable to either mean-based referencebending stiffness, EI, or fifth-percentile-based bucklingstiffness, E 05 I. The mean-based values shall be used fordeflection computations. The fifth-percentile-based valuesshall be used for strength computations such as columnbuckling.5.4 Factored Reference Tension Parallel to GrainResistance, λφ t TFactored reference tension parallel to grain resistance,λφ t T, can be calculated by multiplying the reference tensilestrength parallel to grain (given in Tables 3.1 and 3.2)by the cross-sectional area (given in Tables 9.1 and 9.2),an appropriate time effect factor, and resistance factor (φ t= 0.80). This factored reference resistance shall be furthermultiplied by applicable design adjustment factorsgiven in Section 4 of this Supplement.5.5 Factored Reference Compression Parallel to GrainResistance, λφ c PFactored reference resistance for compressionparallel-to-grain, λφ c P, (crushing) can be calculated bymultiplying the reference compression strength parallelto grain (given in Tables 3.1 and 3.2) by the cross-sectionalarea (given in Tables 9.1 and 9.2), an appropriate timeeffect factor, and resistance factor (φ c = 0.90). This factoredreference resistance shall be further multiplied byapplicable design adjustment factors, especially the columnstability factor when appropriate, given in Section 4of this Supplement.APA/EWS


<strong>LRFD</strong>GUIDELINESTRUCTURALTO <strong>LRFD</strong>GLUEDFOR STRUCTURALLAMINATED TIMBERCOMPOSITESUPPLEMENTLUMBER 3939Table 5.1Factored Reference Resistance (a) (λ = 0.80, φ b = 0.85, φ v = 0.75) forBending about X-X Axis Western Species Glued Laminated TimberDepth λφ b M (kip-in.) when F bx (ksi) is λφ v V (kips) when F vx (ksi) isd (in.) 6.10 (24F) 5.59 (22F) 5.08 (20F) 4.07 (16F) 0.545 0.460 0.445 0.4052-1/2 in. Width6 62.22 57.02 51.82 41.51 3.270 2.760 2.670 2.4307-1/2 97.22 89.09 80.96 64.87 4.088 3.450 3.338 3.0389 140.0 128.3 116.6 93.41 4.905 4.140 4.005 3.64510-1/2 190.5 174.6 158.7 127.1 5.723 4.830 4.673 4.25312 248.9 228.1 207.3 166.1 6.540 5.520 5.340 4.86013-1/2 315.0 288.7 262.3 210.2 7.358 6.210 6.008 5.46815 388.9 356.4 323.9 259.5 8.175 6.900 6.675 6.07516-1/2 470.5 431.2 391.9 313.9 8.993 7.590 7.343 6.68318 560.0 513.2 466.3 373.6 9.810 8.280 8.010 7.29019-1/2 657.2 602.3 547.3 438.5 10.63 8.970 8.678 7.89821 762.2 698.5 634.7 508.5 11.45 9.660 9.345 8.5053 in. Width6 74.66 68.42 62.18 49.82 3.924 3.312 3.204 2.9167-1/2 116.7 106.9 97.16 77.84 4.905 4.140 4.005 3.6459 168.0 153.9 139.9 112.1 5.886 4.968 4.806 4.37410-1/2 228.7 209.5 190.4 152.6 6.867 5.796 5.607 5.10312 298.7 273.7 248.7 199.3 7.848 6.624 6.408 5.83213-1/2 378.0 346.4 314.8 252.2 8.829 7.452 7.209 6.56115 466.7 427.6 388.6 311.4 9.810 8.280 8.010 7.29016-1/2 564.6 517.4 470.2 376.7 10.79 9.108 8.811 8.01918 672.0 615.8 559.6 448.4 11.77 9.936 9.612 8.74819-1/2 788.6 722.7 656.8 526.2 12.75 10.76 10.41 9.47721 914.6 838.2 761.7 610.3 13.73 11.59 11.21 10.2122-1/2 1050 962.2 874.4 700.5 14.72 12.42 12.02 10.9424 1195 1095 994.9 797.1 15.70 13.25 12.82 11.663-1/8 in. Width6 77.78 71.27 64.77 51.89 4.088 3.450 3.338 3.0387-1/2 121.5 111.4 101.2 81.08 5.109 4.313 4.172 3.7979 175.0 160.4 145.7 116.8 6.131 5.175 5.006 4.55610-1/2 238.2 218.3 198.4 158.9 7.153 6.038 5.841 5.31612 311.1 285.1 259.1 207.6 8.175 6.900 6.675 6.07513-1/2 393.7 360.8 327.9 262.7 9.197 7.763 7.509 6.83415 486.1 445.5 404.8 324.3 10.22 8.625 8.344 7.59416-1/2 588.2 539.0 489.8 392.4 11.24 9.488 9.178 8.35318 700.0 641.5 582.9 467.0 12.26 10.35 10.01 9.11319-1/2 821.5 752.8 684.1 548.1 13.28 11.21 10.85 9.87221 952.7 873.1 793.4 635.7 14.31 12.08 11.68 10.6322-1/2 1094 1002 910.8 729.7 15.33 12.94 12.52 11.3924 1244 1140 1036 830.3 16.35 13.80 13.35 12.155CAPACITY SELECTION TABLES(a)Applicable when loading condition coefficient, K L = 1.0. For other loading conditions, see Table 4.4.APA/EWS


40 CAPACITY SELECTION TABLESTable 5.1Factored Reference Resistance (a) (λ = 0.80, φ b = 0.85, φ v = 0.75) forBending about X-X Axis Western Species Glued Laminated Timber(Cont.)Depth λφ b M (kip-in.) when F bx (ksi) is λφ v V (kips) when F vx (ksi) isd (in.) 6.10 (24F) 5.59 (22F) 5.08 (20F) 4.07 (16F) 0.545 0.460 0.445 0.4055 in. Width6 124.4 114.0 103.6 83.03 6.540 5.520 5.340 4.8607-1/2 194.4 178.2 161.9 129.7 8.175 6.900 6.675 6.0759 280.0 256.6 233.2 186.8 9.810 8.280 8.010 7.29010-1/2 381.1 349.2 317.4 254.3 11.45 9.660 9.345 8.50512 497.8 456.1 414.5 332.1 13.08 11.04 10.68 9.72013-1/2 630.0 577.3 524.6 420.3 14.72 12.42 12.02 10.9415 777.8 712.7 647.7 518.9 16.35 13.80 13.35 12.1516-1/2 941.1 862.4 783.7 627.9 17.99 15.18 14.69 13.3718 1120 1026 932.7 747.3 19.62 16.56 16.02 14.5819-1/2 1314 1205 1095 877.0 21.26 17.94 17.36 15.8021 1524 1397 1269 1017 22.89 19.32 18.69 17.0122-1/2 1750 1604 1457 1168 24.53 20.70 20.03 18.2324 1991 1825 1658 1328 26.16 22.08 21.36 19.4425-1/2 2248 2060 1872 1500 27.80 23.46 22.70 20.6627 2520 2309 2099 1681 29.43 24.84 24.03 21.8728-1/2 2808 2573 2338 1873 31.07 26.22 25.37 23.0930 3111 2851 2591 2076 32.70 27.60 26.70 24.3031-1/2 3430 3143 2856 2288 34.34 28.98 28.04 25.5233 3764 3450 3135 2512 35.97 30.36 29.37 26.7334-1/2 4114 3770 3426 2745 37.61 31.74 30.71 27.9536 4480 4105 3731 2989 39.24 33.12 32.04 29.165-1/8 in. Width6 127.6 116.9 106.2 85.10 6.704 5.658 5.474 4.9827-1/2 199.3 182.6 166.0 133.0 8.379 7.073 6.842 6.2279 287.0 263.0 239.0 191.5 10.06 8.487 8.210 7.47210-1/2 390.6 358.0 325.3 260.6 11.73 9.902 9.579 8.71812 510.2 467.5 424.9 340.4 13.41 11.32 10.95 9.96313-1/2 645.7 591.7 537.8 430.8 15.08 12.73 12.32 11.2115 797.2 730.5 663.9 531.9 16.76 14.15 13.68 12.4516-1/2 964.6 884.0 803.3 643.6 18.43 15.56 15.05 13.7018 1148 1052 956.0 765.9 20.11 16.97 16.42 14.9419-1/2 1347 1235 1122 898.9 21.79 18.39 17.79 16.1921 1562 1432 1301 1043 23.46 19.80 19.16 17.4422-1/2 1794 1644 1494 1197 25.14 21.22 20.53 18.6824 2041 1870 1700 1362 26.81 22.63 21.89 19.9325-1/2 2304 2111 1919 1537 28.49 24.05 23.26 21.1727 2583 2367 2151 1723 30.17 25.46 24.63 22.4228-1/2 2878 2637 2397 1920 31.84 26.88 26.00 23.6630 3189 2922 2656 2128 33.52 28.29 27.37 24.9131-1/2 3516 3222 2928 2346 35.19 29.70 28.74 26.1533 3858 3536 3213 2574 36.87 31.12 30.10 27.4034-1/2 4217 3865 3512 2814 38.55 32.53 31.47 28.6436 4592 4208 3824 3064 40.22 33.95 32.84 29.89(a)Applicable when loading condition coefficient, K L = 1.0. For other loading conditions, see Table 4.4.APA/EWS


<strong>LRFD</strong>GUIDELINESTRUCTURALTO <strong>LRFD</strong>GLUEDFOR STRUCTURALLAMINATED TIMBERCOMPOSITESUPPLEMENTLUMBER 4141Table 5.1Factored Reference Resistance (a) (λ = 0.80, φ b = 0.85, φ v = 0.75) forBending about X-X Axis Western Species Glued Laminated Timber(Cont.)Depth λφ b M (kip-in.) when F bx (ksi) is λφ v V (kips) when F vx (ksi) isd (in.) 6.10 (24F) 5.59 (22F) 5.08 (20F) 4.07 (16F) 0.545 0.460 0.445 0.4056-3/4 in. Width7-1/2 262.5 240.5 218.6 175.1 11.04 9.315 9.011 8.2019 378.0 346.4 314.8 252.2 13.24 11.18 10.81 9.84210-1/2 514.5 471.5 428.5 343.3 15.45 13.04 12.62 11.4812 672.0 615.8 559.6 448.4 17.66 14.90 14.42 13.1213-1/2 850.5 779.4 708.3 567.4 19.87 16.77 16.22 14.7615 1050 962.2 874.4 700.5 22.07 18.63 18.02 16.4016-1/2 1270 1164 1058 847.7 24.28 20.49 19.82 18.0418 1512 1386 1259 1009 26.49 22.36 21.63 19.6819-1/2 1774 1626 1478 1184 28.69 24.22 23.43 21.3221 2058 1886 1714 1373 30.90 26.08 25.23 22.9622-1/2 2362 2165 1967 1576 33.11 27.95 27.03 24.6024 2688 2463 2238 1793 35.32 29.81 28.84 26.2425-1/2 3034 2781 2527 2025 37.52 31.67 30.64 27.8827 3402 3117 2833 2270 39.73 33.53 32.44 29.5228-1/2 3790 3473 3157 2529 41.94 35.40 34.24 31.1630 4200 3849 3498 2802 44.15 37.26 36.05 32.8131-1/2 4630 4243 3856 3089 46.35 39.12 37.85 34.4533 5082 4657 4232 3391 48.56 40.99 39.65 36.0934-1/2 5554 5090 4626 3706 50.77 42.85 41.45 37.7336 6048 5542 5037 4035 52.97 44.71 43.25 39.3737-1/2 6562 6014 5465 4378 55.18 46.58 45.06 41.0139 7098 6504 5911 4736 57.39 48.44 46.86 42.6540-1/2 7654 7014 6374 5107 59.60 50.30 48.66 44.2942 8232 7543 6855 5492 61.80 52.16 50.46 45.9343-1/2 8830 8092 7354 5892 64.01 54.03 52.27 47.5745 9450 8660 7870 6305 66.22 55.89 54.07 49.2146-1/2 10090 9247 8403 6732 68.42 57.75 55.87 50.8548 10750 9853 8954 7174 70.63 59.62 57.67 52.4949-1/2 11430 10480 9522 7629 72.84 61.48 59.47 54.1351 12140 11120 10110 8098 75.05 63.34 61.28 55.7752-1/2 12860 11790 10710 8582 77.25 65.21 63.08 57.4154 13610 12470 11330 9079 79.46 67.07 64.88 59.0555-1/2 14370 13170 11970 9591 81.67 68.93 66.68 60.6957 15160 13890 12630 10120 83.88 70.79 68.49 62.3358-1/2 15970 14630 13300 10660 86.08 72.66 70.29 63.9760 16800 15390 13990 11210 88.29 74.52 72.09 65.615CAPACITY SELECTION TABLES(a)Applicable when loading condition coefficient, K L = 1.0. For other loading conditions, see Table 4.4.APA/EWS


42 CAPACITY SELECTION TABLESTable 5.1Factored Reference Resistance (a) (λ = 0.80, φ b = 0.85, φ v = 0.75) forBending about X-X Axis Western Species Glued Laminated Timber(Cont.)Depth λφ b M (kip-in.) when F bx (ksi) is λφ v V (kips) when F vx (ksi) isd (in.) 6.10 (24F) 5.59 (22F) 5.08 (20F) 4.07 (16F) 0.545 0.460 0.445 0.4058-3/4 in. Width9 490.0 449.0 408.1 326.9 17.17 14.49 14.02 12.7610-1/2 666.9 611.2 555.4 445.0 20.03 16.91 16.35 14.8812 871.1 798.3 725.4 581.2 22.89 19.32 18.69 17.0113-1/2 1102 1010 918.1 735.6 25.75 21.74 21.03 19.1415 1361 1247 1133 908.1 28.61 24.15 23.36 21.2616-1/2 1647 1509 1372 1099 31.47 26.57 25.70 23.3918 1960 1796 1632 1308 34.34 28.98 28.04 25.5219-1/2 2300 2108 1916 1535 37.20 31.40 30.37 27.6421 2668 2445 2222 1780 40.06 33.81 32.71 29.7722-1/2 3062 2806 2550 2043 42.92 36.23 35.04 31.8924 3484 3193 2902 2325 45.78 38.64 37.38 34.0225-1/2 3933 3605 3276 2624 48.64 41.06 39.72 36.1527 4410 4041 3672 2942 51.50 43.47 42.05 38.2728-1/2 4913 4503 4092 3278 54.36 45.89 44.39 40.4030 5444 4989 4534 3632 57.23 48.30 46.73 42.5331-1/2 6002 5500 4999 4005 60.09 50.72 49.06 44.6533 6588 6037 5486 4395 62.95 53.13 51.40 46.7834-1/2 7200 6598 5996 4804 65.81 55.55 53.73 48.9036 7840 7184 6529 5231 68.67 57.96 56.07 51.0337-1/2 8507 7795 7084 5676 71.53 60.38 58.41 53.1639 9201 8432 7662 6139 74.39 62.79 60.74 55.2840-1/2 9922 9093 8263 6620 77.25 65.21 63.08 57.4142 10670 9779 8886 7120 80.12 67.62 65.42 59.5443-1/2 11450 10490 9533 7637 82.98 70.04 67.75 61.6645 12250 11230 10200 8173 85.84 72.45 70.09 63.7946-1/2 13080 11990 10890 8727 88.70 74.87 72.42 65.9148 13940 12770 11610 9299 91.56 77.28 74.76 68.0449-1/2 14820 13580 12340 9889 94.42 79.70 77.10 70.1751 15730 14420 13100 10500 97.28 82.11 79.43 72.2952-1/2 16670 15280 13890 11120 100.1 84.53 81.77 74.4254 17640 16160 14690 11770 103.0 86.94 84.11 76.5555-1/2 18630 17080 15520 12430 105.9 89.36 86.44 78.6757 19650 18010 16370 13110 108.7 91.77 88.78 80.8058-1/2 20700 18970 17240 13810 111.6 94.19 91.11 82.9260 21780 <strong>1996</strong>0 18140 14530 114.5 96.60 93.45 85.05(a)Applicable when loading condition coefficient, K L = 1.0. For other loading conditions, see Table 4.4.APA/EWS


<strong>LRFD</strong>GUIDELINESTRUCTURALTO <strong>LRFD</strong>GLUEDFOR STRUCTURALLAMINATED TIMBERCOMPOSITESUPPLEMENTLUMBER 4343Table 5.1Factored Reference Resistance (a) (λ = 0.80, φ b = 0.85, φ v = 0.75) forBending about X-X Axis Western Species Glued Laminated Timber(Cont.)Depth λφ b M (kip-in.) when F bx (ksi) is λφ v V (kips) when F vx (ksi) isd (in.) 6.10 (24F) 5.59 (22F) 5.08 (20F) 4.07 (16F) 0.545 0.460 0.445 0.40510-3/4 in. Width12 1070 980.7 891.2 714.0 28.12 23.74 22.96 20.9013-1/2 1354 1241 1128 903.7 31.64 26.70 25.83 23.5115 1672 1532 1393 1116 35.15 29.67 28.70 26.1216-1/2 2023 1854 1685 1350 38.67 32.64 31.57 28.7318 2408 2207 2005 1607 42.18 35.60 34.44 31.3519-1/2 2826 2590 2353 1886 45.70 38.57 37.31 33.9621 3277 3003 2729 2187 49.21 41.54 40.18 36.5722-1/2 3762 3448 3133 2510 52.73 44.51 43.05 39.1824 4281 3923 3565 2856 56.24 47.47 45.92 41.8025-1/2 4833 4429 4024 3224 59.76 50.44 48.79 44.4127 5418 4965 4512 3615 63.27 53.41 51.66 47.0228-1/2 6037 5532 5027 4028 66.79 56.37 54.53 49.6330 6689 6129 5570 4463 70.31 59.34 57.41 52.2531-1/2 7374 6758 6141 4920 73.82 62.31 60.28 54.8633 8093 7417 6740 5400 77.34 65.27 63.15 57.4734-1/2 8846 8106 7367 5902 80.85 68.24 66.02 60.0836 9632 8826 8021 6426 84.37 71.21 68.89 62.6937-1/2 10450 9577 8703 6973 87.88 74.18 71.76 65.3139 11300 10360 9414 7542 91.40 77.14 74.63 67.9240-1/2 12190 11170 10150 8133 94.91 80.11 77.50 70.5342 13110 12010 10920 8747 98.43 83.08 80.37 73.1443-1/2 14060 12890 11710 9383 101.9 86.04 83.24 75.7645 15050 13790 12530 10040 105.5 89.01 86.11 78.3746-1/2 16070 14730 13380 10720 109.0 91.98 88.98 80.9848 17120 15690 14260 11420 112.5 94.94 91.85 83.5949-1/2 18210 16690 15160 12150 116.0 97.91 94.72 86.2051 19330 17710 16100 12900 119.5 100.9 97.59 88.8252-1/2 20480 18770 17060 13670 123.0 103.8 100.5 91.4354 21670 19860 18050 14460 126.5 106.8 103.3 94.0455-1/2 22890 20980 19060 15270 130.1 109.8 106.2 96.6557 24150 22130 20110 16110 133.6 112.7 109.1 99.2758-1/2 25430 23310 21180 16970 137.1 115.7 111.9 101.960 26750 24520 22280 17850 140.6 118.7 114.8 104.55CAPACITY SELECTION TABLES(a)Applicable when loading condition coefficient, K L = 1.0. For other loading conditions, see Table 4.4.APA/EWS


44 CAPACITY SELECTION TABLESTable 5.1Factored Reference Resistance (a) (λ = 0.80, φ b = 0.85, φ v = 0.75) forBending about X-X Axis Western Species Glued Laminated Timber(Cont.)Depth λφ b M (kip-in.) when F bx (ksi) is λφ v V (kips) when F vx (ksi) isd (in.) 6.10 (24F) 5.59 (22F) 5.08 (20F) 4.07 (16F) 0.545 0.460 0.445 0.40512-1/4 in. Width13-1/2 1543 1414 1285 1030 36.05 30.43 29.44 26.7915 1905 1746 1587 1271 40.06 33.81 32.71 29.7716-1/2 2306 2113 1920 1538 44.06 37.19 35.98 32.7418 2744 2514 2285 1831 48.07 40.57 39.25 35.7219-1/2 3220 2951 2682 2149 52.07 43.95 42.52 38.7021 3735 3423 3110 2492 56.08 47.33 45.79 41.6722-1/2 4287 3929 3570 2861 60.09 50.72 49.06 44.6524 4878 4470 4062 3255 64.09 54.10 52.33 47.6325-1/2 5507 5046 4586 3674 68.10 57.48 55.60 50.6027 6174 5658 5141 4119 72.10 60.86 58.87 53.5828-1/2 6879 6304 5729 4590 76.11 64.24 62.14 56.5630 7622 6985 6347 5085 80.12 67.62 65.42 59.5431-1/2 8403 7701 6998 5607 84.12 71.00 68.69 62.5133 9223 8451 7680 6153 88.13 74.38 71.96 65.4934-1/2 10080 9237 8395 6726 92.13 77.76 75.23 68.4736 10980 10060 9140 7323 96.14 81.14 78.50 71.4437-1/2 11910 10910 9918 7946 100.1 84.53 81.77 74.4239 12880 11800 10730 8594 104.1 87.91 85.04 77.4040-1/2 13890 12730 11570 9268 108.2 91.29 88.31 80.3742 14940 13690 12440 9968 112.2 94.67 91.58 83.3543-1/2 16030 14690 13350 10690 116.2 98.05 94.85 86.3345 17150 15720 14280 11440 120.2 101.4 98.12 89.3046-1/2 18310 16780 15250 12220 124.2 104.8 101.4 92.2848 19510 17880 16250 13020 128.2 108.2 104.7 95.2649-1/2 20750 19020 17280 13850 132.2 111.6 107.9 98.2351 22030 20190 18340 14700 136.2 115.0 111.2 101.252-1/2 23340 21390 19440 15570 140.2 118.3 114.5 104.254 24700 22630 20570 16480 144.2 121.7 117.7 107.255-1/2 26090 23910 21720 17410 148.2 125.1 121.0 110.157 27520 25210 22910 18360 152.2 128.5 124.3 113.158-1/2 28980 26560 24140 19340 156.2 131.9 127.6 116.160 30490 27940 25390 20340 160.2 135.2 130.8 119.1(a)Applicable when loading condition coefficient, K L = 1.0. For other loading conditions, see Table 4.4.APA/EWS


<strong>LRFD</strong>GUIDELINESTRUCTURALTO <strong>LRFD</strong>GLUEDFOR STRUCTURALLAMINATED TIMBERCOMPOSITESUPPLEMENTLUMBER 4545Table 5.2Factored Reference Resistance (a) (λ = 0.80, φ b = 0.85, φ v = 0.75) forBending about X-X Axis Southern Pine Glued Laminated TimberDepth λφ b M (kip-in.) when F bx (ksi) is λφ v V (kips) when F vx (ksi) isd (in.) 7.12 (28F) 6.61 (26F) 6.10 (24F) 5.59 (22F) 5.08 (20F) 4.07 (16F) 0.575 0.2602-1/2 in. Width5-1/2 61.02 56.65 52.28 47.91 43.54 34.88 3.163 1.4306-7/8 95.35 88.52 81.69 74.86 68.03 54.51 3.953 1.7888-1/4 137.3 127.5 117.6 107.8 97.96 78.49 4.744 2.1459-5/8 186.9 173.5 160.1 146.7 133.3 106.8 5.534 2.50311 244.1 226.6 209.1 191.6 174.2 139.5 6.325 2.86012-3/8 308.9 286.8 264.7 242.5 220.4 176.6 7.116 3.21813-3/4 381.4 354.1 326.8 299.4 272.1 218.0 7.906 3.57515-1/8 461.5 428.4 395.4 362.3 329.3 263.8 8.697 3.93316-1/2 549.2 509.9 470.5 431.2 391.9 313.9 9.488 4.29017-7/8 644.6 598.4 552.2 506.1 459.9 368.5 10.28 4.64819-1/4 747.5 694.0 640.5 586.9 533.4 427.3 11.07 5.00520-5/8 858.2 796.7 735.2 673.7 612.3 490.5 11.86 5.36322 976.4 906.5 836.5 766.6 696.6 558.1 12.65 5.72023-3/8 1102 1023 944.3 865.4 786.4 630.1 13.44 6.0783 in. Width5-1/2 73.23 67.98 62.74 57.49 52.25 41.86 3.795 1.7166-7/8 114.4 106.2 98.03 89.83 81.64 65.41 4.744 2.1458-1/4 164.8 153.0 141.2 129.4 117.6 94.18 5.693 2.5749-5/8 224.3 208.2 192.1 176.1 160.0 128.2 6.641 3.00311 292.9 271.9 251.0 230.0 209.0 167.4 7.590 3.43212-3/8 370.7 344.2 317.6 291.1 264.5 211.9 8.539 3.86113-3/4 457.7 424.9 392.1 359.3 326.5 261.6 9.488 4.29015-1/8 553.8 514.1 474.5 434.8 395.1 316.6 10.44 4.71916-1/2 659.1 611.9 564.6 517.4 470.2 376.7 11.39 5.14817-7/8 773.5 718.1 662.7 607.3 551.9 442.1 12.33 5.57719-1/4 897.1 832.8 768.5 704.3 640.0 512.8 13.28 6.00620-5/8 1030 956.0 882.3 808.5 734.7 588.7 14.23 6.43522 1172 1088 1004 919.9 836.0 669.8 15.18 6.86423-3/8 1323 1228 1133 1038 943.7 756.1 16.13 7.2933-1/8 in. Width5-1/2 76.28 70.82 65.35 59.89 54.42 43.60 3.953 1.7886-7/8 119.2 110.7 102.1 93.58 85.04 68.13 4.941 2.2348-1/4 171.6 159.3 147.0 134.7 122.5 98.11 5.930 2.6819-5/8 233.6 216.9 200.1 183.4 166.7 133.5 6.918 3.12811 305.1 283.3 261.4 239.6 217.7 174.4 7.906 3.57512-3/8 386.2 358.5 330.8 303.2 275.5 220.7 8.895 4.02213-3/4 476.8 442.6 408.5 374.3 340.2 272.5 9.883 4.46915-1/8 576.9 535.5 494.2 452.9 411.6 329.8 10.87 4.91616-1/2 686.5 637.3 588.2 539.0 489.8 392.4 11.86 5.36317-7/8 805.7 748.0 690.3 632.6 574.9 460.6 12.85 5.80919-1/4 934.4 867.5 800.6 733.6 666.7 534.2 13.84 6.25620-5/8 1073 995.9 919.0 842.2 765.3 613.2 14.82 6.70322 1220 1133 1046 958.2 870.8 697.7 15.81 7.15023-3/8 1378 1279 1180 1082 983.0 787.6 16.80 7.5975CAPACITY SELECTION TABLES(a)Applicable when loading condition coefficient, K L = 1.0. For other loading conditions, see Table 4.4.APA/EWS


46 CAPACITY SELECTION TABLESTable 5.2Factored Reference Resistance (a) (λ = 0.80, φ b = 0.85, φ v = 0.75) forBending about X-X Axis Southern Pine Glued Laminated Timber(Cont.)Depth λφ b M (kip-in.) when F bx (ksi) is λφ v V (kips) when F vx (ksi) isd (in.) 7.12 (28F) 6.61 (26F) 6.10 (24F) 5.59 (22F) 5.08 (20F) 4.07 (16F) 0.575 0.2605 in. Width6-7/8 190.7 177.0 163.4 149.7 136.1 109.0 7.906 3.5758-1/4 274.6 254.9 235.3 215.6 195.9 157.0 9.488 4.2909-5/8 373.8 347.0 320.2 293.5 266.7 213.7 11.07 5.00511 488.2 453.2 418.3 383.3 348.3 279.1 12.65 5.72012-3/8 617.9 573.6 529.4 485.1 440.8 353.2 14.23 6.43513-3/4 762.8 708.2 653.5 598.9 544.2 436.0 15.81 7.15015-1/8 923.0 856.9 790.8 724.7 658.5 527.6 17.39 7.86516-1/2 1098 1020 941.1 862.4 783.7 627.9 18.98 8.58017-7/8 1289 1197 1104 1012 919.8 736.9 20.56 9.29519-1/4 1495 1388 1281 1174 1067 854.6 22.14 10.0120-5/8 1716 1593 1470 1347 1225 981.1 23.72 10.7322 1953 1813 1673 1533 1393 1116 25.30 11.4423-3/8 2205 2047 1889 1731 1573 1260 26.88 12.1624-3/4 2471 2294 2117 1940 1763 1413 28.46 12.8726-1/8 2754 2556 2359 2162 1965 1574 30.04 13.5927-1/2 3051 2833 2614 2396 2177 1744 31.63 14.3028-7/8 3364 3123 2882 2641 2400 1923 33.21 15.0230-1/4 3692 3428 3163 2899 2634 2110 34.79 15.7331-5/8 4035 3746 3457 3168 2879 2307 36.37 16.4533 4394 4079 3764 3450 3135 2512 37.95 17.1634-3/8 4768 4426 4085 3743 3402 2725 39.53 17.8835-3/4 5157 4787 4418 4048 3679 2948 41.11 18.595-1/8 in. Width6-7/8 195.5 181.5 167.5 153.5 139.5 111.7 8.104 3.6648-1/4 281.5 261.3 241.2 221.0 200.8 160.9 9.725 4.3979-5/8 383.1 355.7 328.2 300.8 273.3 219.0 11.35 5.13011 500.4 464.6 428.7 392.9 357.0 286.0 12.97 5.86312-3/8 633.3 588.0 542.6 497.2 451.9 362.0 14.59 6.59613-3/4 781.9 725.9 669.9 613.9 557.9 446.9 16.21 7.32915-1/8 946.1 878.3 810.5 742.8 675.0 540.8 17.83 8.06216-1/2 1126 1045 964.6 884.0 803.3 643.6 19.45 8.79517-7/8 1321 1227 1132 1037 942.8 755.3 21.07 9.52719-1/4 1532 1423 1313 1203 1093 876.0 22.69 10.2620-5/8 1759 1633 1507 1381 1255 1006 24.31 10.9922 2002 1858 1715 1571 1428 1144 25.93 11.7323-3/8 2260 2098 1936 1774 1612 1292 27.55 12.4624-3/4 2533 2352 2170 1989 1807 1448 29.17 13.1926-1/8 2823 2620 2418 2216 2014 1613 30.79 13.9227-1/2 3127 2903 2679 2455 2231 1788 32.42 14.6628-7/8 3448 3201 2954 2707 2460 1971 34.04 15.3930-1/4 3784 3513 3242 2971 2700 2163 35.66 16.1231-5/8 4136 3840 3544 3247 2951 2364 37.28 16.8633 4504 4181 3858 3536 3213 2574 38.90 17.5934-3/8 4887 4537 4187 3837 3487 2793 40.52 18.3235-3/4 5285 4907 4528 4150 3771 3021 42.14 19.05(a)Applicable when loading condition coefficient, K L = 1.0. For other loading conditions, see Table 4.4.APA/EWS


<strong>LRFD</strong>GUIDELINESTRUCTURALTO <strong>LRFD</strong>GLUEDFOR STRUCTURALLAMINATED TIMBERCOMPOSITESUPPLEMENTLUMBER4747Table 5.2Factored Reference Resistance (a) (λ = 0.80, φ b = 0.85, φ v = 0.75) forBending about X-X Axis Southern Pine Glued Laminated Timber(Cont.)Depth λφ b M (kip-in.) when F bx (ksi) is λφ v V (kips) when F vx (ksi) isd (in.) 7.12 (28F) 6.61 (26F) 6.10 (24F) 5.59 (22F) 5.08 (20F) 4.07 (16F) 0.575 0.2606-3/4 in. Width6-7/8 257.4 239.0 220.6 202.1 183.7 147.2 10.67 4.8268-1/4 370.7 344.2 317.6 291.1 264.5 211.9 12.81 5.7929-5/8 504.6 468.5 432.3 396.2 360.0 288.4 14.94 6.75711 659.1 611.9 564.6 517.4 470.2 376.7 17.08 7.72212-3/8 834.1 774.4 714.6 654.9 595.1 476.8 19.21 8.68713-3/4 1030 956.0 882.3 808.5 734.7 588.7 21.35 9.65315-1/8 1246 1157 1068 978.3 889.0 712.3 23.48 10.6216-1/2 1483 1377 1270 1164 1058 847.7 25.62 11.5817-7/8 1740 1616 1491 1366 1242 994.8 27.75 12.5519-1/4 2018 1874 1729 1585 1440 1154 29.89 13.5120-5/8 2317 2151 1985 1819 1653 1324 32.02 14.4822 2636 2447 2259 2070 1881 1507 34.16 15.4423-3/8 2976 2763 2550 2337 2123 1701 36.29 16.4124-3/4 3337 3098 2859 2620 2381 1907 38.42 17.3726-1/8 3718 3451 3185 2919 2652 2125 40.56 18.3427-1/2 4119 3824 3529 3234 2939 2355 42.69 19.3128-7/8 4541 4216 3891 3565 3240 2596 44.83 20.2730-1/4 4984 4627 4270 3913 3556 2849 46.96 21.2431-5/8 5448 5057 4667 4277 3887 3114 49.10 22.2033 5932 5507 5082 4657 4232 3391 51.23 23.1734-3/8 6436 5975 5514 5053 4592 3679 53.37 24.1335-3/4 6961 6463 5964 5465 4967 3979 55.50 25.1037-1/8 7507 6969 6432 5894 5356 4291 57.64 26.0638-1/2 8074 7495 6917 6339 5760 4615 59.77 27.0339-7/8 8660 8040 7420 6799 6179 4951 61.91 27.9941-1/4 9268 8604 7940 7276 6613 5298 64.04 28.9642-5/8 9896 9187 8479 7770 7061 5657 66.18 29.9244 10550 9790 9034 8279 7524 6028 68.31 30.8945-3/8 11210 10410 9608 8805 8001 6410 70.44 31.8546-3/4 11900 11050 10200 9346 8494 6805 72.58 32.8248-1/8 12610 11710 10810 9904 9000 7211 74.71 33.7849-1/2 13350 12390 11430 10480 9522 7629 76.85 34.7550-7/8 14100 13090 12080 11070 10060 8059 78.98 35.7152-1/4 14870 13800 12740 11670 10610 8500 81.12 36.6853-5/8 15660 14540 13420 12300 11180 8953 83.25 37.6455 16480 15300 14120 12940 11760 9418 85.39 38.6156-3/8 17310 16070 14830 13590 12350 9895 87.52 39.5857-3/4 18170 16860 15560 14260 12960 10380 89.66 40.5459-1/8 19040 17680 16310 14950 13590 10880 91.79 41.5160-1/2 19940 18510 17080 15650 14220 11400 93.93 42.475CAPACITY SELECTION TABLES(a)Applicable when loading condition coefficient, K L = 1.0. For other loading conditions, see Table 4.4.APA/EWS


48 CAPACITY SELECTION TABLESTable 5.2Factored Reference Resistance (a) (λ = 0.80, φ b = 0.85, φ v = 0.75) forBending about X-X Axis Southern Pine Glued Laminated Timber(Cont.)Depth λφ b M (kip-in.) when F bx (ksi) is λφ v V (kips) when F vx (ksi) isd (in.) 7.12 (28F) 6.61 (26F) 6.10 (24F) 5.59 (22F) 5.08 (20F) 4.07 (16F) 0.575 0.2608-1/2 in. Width9-5/8 635.4 589.9 544.4 498.9 453.4 363.2 18.82 8.50911 829.9 770.5 711.0 651.6 592.1 474.4 21.51 9.72412-3/8 1050 975.1 899.9 824.7 749.4 600.4 24.19 10.9413-3/4 1297 1204 1111 1018 925.2 741.3 26.88 12.1615-1/8 1569 1457 1344 1232 1120 896.9 29.57 13.3716-1/2 1867 1734 1600 1466 1332 1067 32.26 14.5917-7/8 2192 2035 1878 1721 1564 1253 34.95 15.8019-1/4 2542 2360 2178 1995 1813 1453 37.63 17.0220-5/8 2918 2709 2500 2291 2082 1668 40.32 18.2322 3320 3082 2844 2606 2369 1898 43.01 19.4523-3/8 3748 3479 3211 2942 2674 2142 45.70 20.6624-3/4 4202 3901 3600 3299 2998 2402 48.39 21.8826-1/8 4681 4346 4011 3675 3340 2676 51.07 23.0927-1/2 5187 4816 4444 4072 3701 2965 53.76 24.3128-7/8 5719 5309 4899 4490 4080 3269 56.45 25.5330-1/4 6276 5827 5377 4928 4478 3588 59.14 26.7431-5/8 6860 6369 5877 5386 4894 3921 61.83 27.9633 7469 6934 6399 5864 5329 4270 64.52 29.1734-3/8 8105 7524 6944 6363 5783 4633 67.20 30.3935-3/4 8766 8138 7510 6882 6254 5011 69.89 31.6037-1/8 9453 8776 8099 7422 6745 5404 72.58 32.8238-1/2 10170 9438 8710 7982 7254 5812 75.27 34.0339-7/8 10910 10120 9343 8562 7781 6234 77.96 35.2541-1/4 11670 10830 9999 9163 8327 6671 80.64 36.4742-5/8 12460 11570 10680 9784 8891 7124 83.33 37.6844 13280 12330 11380 10430 9474 7591 86.02 38.9045-3/8 14120 13110 12100 11090 10080 8072 88.71 40.1146-3/4 14990 13920 12840 11770 10700 8569 91.40 41.3348-1/8 15890 14750 13610 12470 11330 9081 94.08 42.5449-1/2 16810 15600 14400 13190 11990 9607 96.77 43.7650-7/8 17750 16480 15210 13940 12670 10150 99.46 44.9752-1/4 18730 17380 16040 14700 13360 10700 102.1 46.1953-5/8 19720 18310 16900 15490 14070 11270 104.8 47.4055 20750 19260 17780 16290 14800 11860 107.5 48.6256-3/8 21800 20240 18680 17110 15550 12460 110.2 49.8457-3/4 22870 21240 19600 17960 16320 13080 112.9 51.0559-1/8 23980 22260 20540 18820 17110 13710 115.6 52.2760-1/2 25110 23310 21510 19710 17910 14350 118.3 53.48(a)Applicable when loading condition coefficient, K L = 1.0. For other loading conditions, see Table 4.4.APA/EWS


<strong>LRFD</strong>GUIDELINESTRUCTURALTO <strong>LRFD</strong>GLUEDFOR STRUCTURALLAMINATED TIMBERCOMPOSITESUPPLEMENTLUMBER 4949Table 5.2Factored Reference Resistance (a) (λ = 0.80, φ b = 0.85, φ v = 0.75) forBending about X-X Axis Southern Pine Glued Laminated Timber(Cont.)Depth λφ b M (kip-in.) when F bx (ksi) is λφ v V (kips) when F vx (ksi) isd (in.) 7.12 (28F) 6.61 (26F) 6.10 (24F) 5.59 (22F) 5.08 (20F) 4.07 (16F) 0.575 0.26010-1/2 in. Width11 1025 951.8 878.3 804.9 731.5 586.0 26.57 12.0112-3/8 1298 1205 1112 1019 925.8 741.7 29.89 13.5113-3/4 1602 1487 1372 1258 1143 915.7 33.21 15.0215-1/8 1938 1799 1661 1522 1383 1108 36.53 16.5216-1/2 2307 2141 1976 1811 1646 1319 39.85 18.0217-7/8 2707 2513 2319 2125 1932 1548 43.17 19.5219-1/4 3140 2915 2690 2465 2240 1795 46.49 21.0220-5/8 3604 3346 3088 2830 2572 2060 49.81 22.5222 4101 3807 3513 3220 2926 2344 53.13 24.0223-3/8 4629 4298 3966 3635 3303 2646 56.45 25.5324-3/4 5190 4818 4447 4075 3703 2967 59.77 27.0326-1/8 5783 5369 4954 4540 4126 3306 63.09 28.5327-1/2 6408 5949 5490 5031 4572 3663 66.41 30.0328-7/8 7064 6558 6052 5546 5040 4038 69.73 31.5330-1/4 7753 7198 6642 6087 5532 4432 73.05 33.0331-5/8 8474 7867 7260 6653 6046 4844 76.37 34.5333 9227 8566 7905 7244 6583 5274 79.70 36.0434-3/8 10010 9295 8578 7860 7143 5723 83.02 37.5435-3/4 10830 10050 9277 8502 7726 6190 86.34 39.0437-1/8 11680 10840 10000 9168 8332 6675 89.66 40.5438-1/2 12560 11660 10760 9860 8960 7179 92.98 42.0439-7/8 13470 12510 11540 10580 9612 7701 96.30 43.5441-1/4 14420 13380 12350 11320 10290 8241 99.62 45.0542-5/8 15390 14290 13190 12090 10980 8800 102.9 46.5544 16400 15230 14050 12880 11700 9377 106.3 48.0545-3/8 17440 16200 14950 13700 12450 9972 109.6 49.5546-3/4 18520 17190 15860 14540 13210 10590 112.9 51.0548-1/8 19620 18220 16810 15410 14000 11220 116.2 52.5549-1/2 20760 19270 17790 16300 14810 11870 119.5 54.0550-7/8 21930 20360 18790 17220 15650 12540 122.9 55.5652-1/4 23130 21470 19820 18160 16500 13220 126.2 57.0653-5/8 24360 22620 20870 19130 17380 13930 129.5 58.5655 25630 23790 21960 20120 18290 14650 132.8 60.0656-3/8 26930 25000 23070 21140 19210 15390 136.1 61.5657-3/4 28260 26230 24210 22190 20160 16150 139.5 63.0659-1/8 29620 27500 25380 23250 21130 16930 142.8 64.5660-1/2 31010 28790 26570 24350 22130 17730 146.1 66.075CAPACITY SELECTION TABLES(a)Applicable when loading condition coefficient, K L = 1.0. For other loading conditions, see Table 4.4.APA/EWS


50 CAPACITY SELECTION TABLESTable 5.3Reference Stiffness for Bending about X-X Axis Western SpeciesGlued Laminated TimberDepthEI (10 3 kip-in 2 ) when E (ksi) isd (in.) 2000 1900 1800 1700 1600 1500 1400 1300 1200 11002-1/2 in. Width6 90.00 85.50 81.00 76.50 72.00 67.50 63.00 58.50 54.00 49.507-1/2 175.8 167.0 158.2 149.4 140.6 131.8 123.0 114.3 105.5 96.689 303.8 288.6 273.4 258.2 243.0 227.8 212.6 197.4 182.3 167.110-1/2 482.3 458.2 434.1 410.0 385.9 361.8 337.6 313.5 289.4 265.312 720.0 684.0 648.0 612.0 576.0 540.0 504.0 468.0 432.0 396.013-1/2 1025 973.9 922.6 871.4 820.1 768.9 717.6 666.4 615.1 563.815 1406 1336 1266 1195 1125 1055 984.4 914.1 843.8 773.416-1/2 1872 1778 1685 1591 1497 1404 1310 1217 1123 102918 2430 2309 2187 2066 1944 1823 1701 1580 1458 133719-1/2 3090 2935 2781 2626 2472 2317 2163 2008 1854 169921 3859 3666 3473 3280 3087 2894 2701 2508 2315 21223 in. Width6 108.0 102.6 97.20 91.80 86.40 81.00 75.60 70.20 64.80 59.407-1/2 210.9 200.4 189.8 179.3 168.8 158.2 147.7 137.1 126.6 116.09 364.5 346.3 328.1 309.8 291.6 273.4 255.2 236.9 218.7 200.510-1/2 578.8 549.9 520.9 492.0 463.1 434.1 405.2 376.2 347.3 318.312 864.0 820.8 777.6 734.4 691.2 648.0 604.8 561.6 518.4 475.213-1/2 1230 1169 1107 1046 984.2 922.6 861.1 799.6 738.1 676.615 1688 1603 1519 1434 1350 1266 1181 1097 1013 928.116-1/2 2246 2134 2021 1909 1797 1685 1572 1460 1348 123518 2916 2770 2624 2479 2333 2187 2041 1895 1750 160419-1/2 3707 3522 3337 3151 2966 2781 2595 2410 2224 203921 4631 4399 4167 3936 3704 3473 3241 3010 2778 254722-1/2 5695 5411 5126 4841 4556 4271 3987 3702 3417 313224 6912 6566 6221 5875 5530 5184 4838 4493 4147 38023-1/8 in. Width6 112.5 106.9 101.3 95.63 90.00 84.38 78.75 73.13 67.50 61.887-1/2 219.7 208.7 197.8 186.8 175.8 164.8 153.8 142.8 131.8 120.89 379.7 360.7 341.7 322.7 303.8 284.8 265.8 246.8 227.8 208.810-1/2 602.9 572.8 542.6 512.5 482.3 452.2 422.1 391.9 361.8 331.612 900.0 855.0 810.0 765.0 720.0 675.0 630.0 585.0 540.0 495.013-1/2 1281 1217 1153 1089 1025 961.1 897.0 832.9 768.9 704.815 1758 1670 1582 1494 1406 1318 1230 1143 1055 966.816-1/2 2340 2223 2106 1989 1872 1755 1638 1521 1404 128718 3038 2886 2734 2582 2430 2278 2126 1974 1823 167119-1/2 3862 3669 3476 3283 3090 2896 2703 2510 2317 212421 4823 4582 4341 4100 3859 3618 3376 3135 2894 265322-1/2 5933 5636 5339 5043 4746 4449 4153 3856 3560 326324 7200 6840 6480 6120 5760 5400 5040 4680 4320 3960APA/EWS


<strong>LRFD</strong>GUIDELINESTRUCTURALTO <strong>LRFD</strong>GLUEDFOR STRUCTURALLAMINATED TIMBERCOMPOSITESUPPLEMENTLUMBER5151Table 5.3Reference Stiffness for Bending about X-X Axis Western SpeciesGlued Laminated Timber (Cont.)DepthEI (10 3 kip-in 2 ) when E (ksi) isd (in.) 2000 1900 1800 1700 1600 1500 1400 1300 1200 11005 in. Width6 180.0 171.0 162.0 153.0 144.0 135.0 126.0 117.0 108.0 99.007-1/2 351.6 334.0 316.4 298.8 281.3 263.7 246.1 228.5 210.9 193.49 607.5 577.1 546.8 516.4 486.0 455.6 425.3 394.9 364.5 334.110-1/2 964.7 916.5 868.2 820.0 771.8 723.5 675.3 627.0 578.8 530.612 1440 1368 1296 1224 1152 1080 1008 936.0 864.0 792.013-1/2 2050 1948 1845 1743 1640 1538 1435 1333 1230 112815 2813 2672 2531 2391 2250 2109 1969 1828 1688 154716-1/2 3743 3556 3369 3182 2995 2808 2620 2433 2246 205918 4860 4617 4374 4131 3888 3645 3402 3159 2916 267319-1/2 6179 5870 5561 5252 4943 4634 4325 4016 3707 339821 7718 7332 6946 6560 6174 5788 5402 5016 4631 424522-1/2 9492 9018 8543 8068 7594 7119 6645 6170 5695 522124 11520 10940 10370 9792 9216 8640 8064 7488 6912 633625-1/2 13820 13130 12440 11750 11050 10360 9672 8982 8291 760027 16400 15580 14760 13940 13120 12300 11480 10660 9842 902128-1/2 19290 18330 17360 16400 15430 14470 13500 12540 11570 1061030 22500 21380 20250 19130 18000 16880 15750 14630 13500 1238031-1/2 26050 24740 23440 22140 20840 19530 18230 16930 15630 1433033 29950 28450 26950 25460 23960 22460 20960 19470 17970 1647034-1/2 34220 32510 30800 29090 27380 25660 23950 22240 20530 1882036 38880 36940 34990 33050 31100 29160 27220 25270 23330 213805-1/8 in. Width6 184.5 175.3 166.1 156.8 147.6 138.4 129.2 119.9 110.7 101.57-1/2 360.4 342.3 324.3 306.3 288.3 270.3 252.2 234.2 216.2 198.29 622.7 591.6 560.4 529.3 498.2 467.0 435.9 404.7 373.6 342.510-1/2 988.8 939.4 889.9 840.5 791.0 741.6 692.2 642.7 593.3 543.812 1476 1402 1328 1255 1181 1107 1033 959.4 885.6 811.813-1/2 2102 <strong>1996</strong> 1891 1786 1681 1576 1471 1366 1261 115615 2883 2739 2595 2450 2306 2162 2018 1874 1730 158616-1/2 3837 3645 3453 3261 3070 2878 2686 2494 2302 211018 4982 4732 4483 4234 3985 3736 3487 3238 2989 274019-1/2 6334 6017 5700 5384 5067 4750 4433 4117 3800 348321 7910 7515 7119 6724 6328 5933 5537 5142 4746 435122-1/2 9729 9243 8757 8270 7784 7297 6811 6324 5838 535124 11810 11220 10630 10040 9446 8856 8266 7675 7085 649425-1/2 14160 13460 12750 12040 11330 10620 9914 9206 8498 779027 16810 15970 15130 14290 13450 12610 11770 10930 10090 924728-1/2 19770 18780 17800 16810 15820 14830 13840 12850 11860 1088030 23060 21910 20760 19600 18450 17300 16140 14990 13840 1268031-1/2 26700 25360 24030 22690 21360 20020 18690 17350 16020 1468033 30700 29160 27630 26090 24560 23020 21490 19950 18420 1688034-1/2 35080 33320 31570 29810 28060 26310 24550 22800 21050 1929036 39850 37860 35870 33870 31880 29890 27900 25900 23910 219205CAPACITY SELECTION TABLESAPA/EWS


52 CAPACITY SELECTION TABLESTable 5.3Reference Stiffness for Bending about X-X Axis Western SpeciesGlued Laminated Timber (Cont.)DepthEI (10 3 kip-in 2 ) when E (ksi) isd (in.) 2000 1900 1800 1700 1600 1500 1400 1300 1200 11006-3/4 in. Width7-1/2 474.6 450.9 427.1 403.4 379.7 356.0 332.2 308.5 284.8 261.09 820.1 779.1 738.1 697.1 656.1 615.1 574.1 533.1 492.1 451.110-1/2 1302 1237 1172 1107 1042 976.7 911.6 846.5 781.4 716.312 1944 1847 1750 1652 1555 1458 1361 1264 1166 106913-1/2 2768 2630 2491 2353 2214 2076 1938 1799 1661 152215 3797 3607 3417 3227 3038 2848 2658 2468 2278 208816-1/2 5054 4801 4548 4296 4043 3790 3538 3285 3032 278018 6561 6233 5905 5577 5249 4921 4593 4265 3937 360919-1/2 8342 7925 7508 7090 6673 6256 5839 5422 5005 458821 10420 9898 9377 8856 8335 7814 7293 6772 6251 573022-1/2 12810 12170 11530 10890 10250 9611 8970 8329 7689 704824 15550 14770 14000 13220 12440 11660 10890 10110 9331 855425-1/2 18650 17720 16790 15860 14920 13990 13060 12130 11190 1026027 22140 21040 19930 18820 17710 16610 15500 14390 13290 1218028-1/2 26040 24740 23440 22140 20830 19530 18230 16930 15630 1432030 30380 28860 27340 25820 24300 22780 21260 19740 18230 1671031-1/2 35160 33400 31650 29890 28130 26370 24610 22860 21100 1934033 40430 38410 36390 34360 32340 30320 28300 26280 24260 2224034-1/2 46200 43890 41580 39270 36960 34650 32340 30030 27720 2541036 52490 49860 47240 44610 41990 39370 36740 34120 31490 2887037-1/2 59330 56360 53390 50430 47460 44490 41530 38560 35600 3263039 66730 63400 60060 56720 53390 50050 46710 43380 40040 3670040-1/2 74730 71000 67260 63520 59790 56050 52310 48580 44840 4110042 83350 79180 75010 70850 66680 62510 58340 54180 50010 4584043-1/2 92600 87970 83340 78710 74080 69450 64820 60190 55560 5093045 102500 97390 92260 87140 82010 76890 71760 66640 61510 5638046-1/2 113100 107500 101800 96150 90490 84830 79180 73520 67870 6221048 124400 118200 112000 105800 99530 93310 87090 80870 74650 6843049-1/2 136400 129600 122800 116000 109200 102300 95510 88690 81870 7505051 149200 141800 134300 126800 119400 111900 104500 97000 89540 8208052-1/2 162800 154700 146500 138400 130200 122100 114000 105800 97670 8954054 177100 168300 159400 150600 141700 132900 124000 115100 106300 9743055-1/2 192300 182700 173100 163500 153900 144200 134600 125000 115400 10580057 208300 197900 187500 177100 166700 156300 145800 135400 125000 11460058-1/2 225200 214000 202700 191400 180200 168900 157700 146400 135100 12390060 243000 230900 218700 206600 194400 182300 170100 158000 145800 133700APA/EWS


<strong>LRFD</strong>GUIDELINESTRUCTURALTO <strong>LRFD</strong>GLUEDFOR STRUCTURALLAMINATED TIMBERCOMPOSITESUPPLEMENTLUMBER5353Table 5.3Reference Stiffness for Bending about X-X Axis Western SpeciesGlued Laminated Timber (Cont.)DepthEI (10 3 kip-in 2 ) when E (ksi) isd (in.) 2000 1900 1800 1700 1600 1500 1400 1300 1200 11008-3/4 in. Width9 1063 1010 956.8 903.7 850.5 797.3 744.2 691.0 637.9 584.710-1/2 1688 1604 1519 1435 1351 1266 1182 1097 1013 928.512 2520 2394 2268 2142 2016 1890 1764 1638 1512 138613-1/2 3588 3409 3229 3050 2870 2691 2512 2332 2153 197315 4922 4676 4430 4184 3938 3691 3445 3199 2953 270716-1/2 6551 6223 5896 5568 5241 4913 4586 4258 3931 360318 8505 8080 7655 7229 6804 6379 5954 5528 5103 467819-1/2 10810 10270 9732 9191 8651 8110 7569 7029 6488 594721 13510 12830 12160 11480 10800 10130 9454 8779 8103 742822-1/2 16610 15780 14950 14120 13290 12460 11630 10800 9967 913624 20160 19150 18140 17140 16130 15120 14110 13100 12100 1109025-1/2 24180 22970 21760 20550 19340 18140 16930 15720 14510 1330027 28700 27270 25830 24400 22960 21530 20090 18660 17220 1579028-1/2 33760 32070 30380 28700 27010 25320 23630 21940 20260 1857030 39380 37410 35440 33470 31500 29530 27560 25590 23630 2166031-1/2 45580 43300 41020 38740 36470 34190 31910 29630 27350 2507033 52410 49790 47170 44550 41930 39310 36690 34070 31440 2882034-1/2 59880 56890 53900 50900 47910 44910 41920 38920 35930 3294036 68040 64640 61240 57830 54430 51030 47630 44230 40820 3742037-1/2 76900 73060 69210 65370 61520 57680 53830 49990 46140 4230039 86510 82180 77860 73530 69210 64880 60550 56230 51900 4758040-1/2 96880 92030 87190 82350 77500 72660 67810 62970 58130 5328042 108000 102600 97240 91840 86440 81030 75630 70230 64830 5942043-1/2 120000 114000 108000 102000 96030 90030 84030 78030 72020 6602045 132900 126200 119600 113000 106300 99670 93020 86380 79730 7309046-1/2 146600 139300 132000 124600 117300 110000 102600 95310 87980 8065048 161300 153200 145200 137100 129000 121000 112900 104800 96770 8870049-1/2 176900 168000 159200 150300 141500 132700 123800 115000 106100 9728051 193400 183800 174100 164400 154800 145100 135400 125700 116100 10640052-1/2 211000 200500 189900 179400 168800 158300 147700 137200 126600 11610054 229600 218200 206700 195200 183700 172200 160700 149300 137800 12630055-1/2 249300 236800 224400 211900 199400 187000 174500 162100 149600 13710057 270100 256600 243100 229600 216100 202600 189100 175500 162000 14850058-1/2 292000 277400 262800 248200 233600 219000 204400 189800 175200 16060060 315000 299300 283500 267800 252000 236300 220500 204800 189000 1733005CAPACITY SELECTION TABLESAPA/EWS


54 CAPACITY SELECTION TABLESTable 5.3Reference Stiffness for Bending about X-X Axis Western SpeciesGlued Laminated Timber (Cont.)DepthEI (10 3 kip-in 2 ) when E (ksi) isd (in.) 2000 1900 1800 1700 1600 1500 1400 1300 1200 110010-3/4 in. Width12 3096 2941 2786 2632 2477 2322 2167 2012 1858 170313-1/2 4408 4188 3967 3747 3527 3306 3086 2865 2645 242415 6047 5745 5442 5140 4838 4535 4233 3930 3628 332616-1/2 8048 7646 7244 6841 6439 6036 5634 5231 4829 442718 10450 9927 9404 8882 8359 7837 7314 6792 6269 574719-1/2 13280 12620 11960 11290 10630 9964 9299 8635 7971 730721 16590 15760 14930 14100 13270 12440 11610 10790 9956 912622-1/2 20410 19390 18370 17350 16330 15310 14290 13270 12240 1122024 24770 23530 22290 21050 19810 18580 17340 16100 14860 1362025-1/2 29710 28220 26740 25250 23770 22280 20800 19310 17820 1634027 35270 33500 31740 29980 28210 26450 24690 22920 21160 1940028-1/2 41480 39400 37330 35250 33180 31110 29030 26960 24890 2281030 48380 45960 43540 41120 38700 36280 33860 31440 29030 2661031-1/2 56000 53200 50400 47600 44800 42000 39200 36400 33600 3080033 64390 61170 57950 54730 51510 48290 45070 41850 38630 3541034-1/2 73570 69890 66220 62540 58860 55180 51500 47820 44140 4046036 83590 79410 75230 71050 66870 62690 58510 54330 50160 4598037-1/2 94480 89760 85030 80310 75590 70860 66140 61410 56690 5197039 106300 101000 95650 90340 85020 79710 74400 69080 63770 5845040-1/2 119000 113100 107100 101200 95220 89270 83310 77360 71410 6546042 132700 126100 119500 112800 106200 99560 92920 86280 79640 7301043-1/2 147500 140100 132700 125400 118000 110600 103200 95860 88490 8111045 163300 155100 146900 138800 130600 122400 114300 106100 97960 8980046-1/2 180100 171100 162100 153100 144100 135100 126100 117100 108100 9908048 198100 188200 178300 168400 158500 148600 138700 128800 118900 10900049-1/2 217300 206400 195600 184700 173800 163000 152100 141200 130400 11950051 237700 225800 213900 202000 190100 178200 166400 154500 142600 13070052-1/2 259300 246300 233300 220400 207400 194400 181500 168500 155600 14260054 282100 268000 253900 239800 225700 211600 197500 183400 169300 15520055-1/2 306300 291000 275700 260300 245000 229700 214400 199100 183800 16850057 331800 315200 298600 282000 265400 248900 232300 215700 199100 18250058-1/2 358700 340800 322800 304900 287000 269000 251100 233200 215200 19730060 387000 367700 348300 329000 309600 290300 270900 251600 232200 212900APA/EWS


<strong>LRFD</strong>GUIDELINESTRUCTURALTO <strong>LRFD</strong>GLUEDFOR STRUCTURALLAMINATED TIMBERCOMPOSITESUPPLEMENTLUMBER5555Table 5.3Reference Stiffness for Bending about X-X Axis Western SpeciesGlued Laminated Timber (Cont.)DepthEI (10 3 kip-in 2 ) when E (ksi) isd (in.) 2000 1900 1800 1700 1600 1500 1400 1300 1200 110012-1/4 in. Width13-1/2 5023 4772 4521 4270 4019 3767 3516 3265 3014 276315 6891 6546 6202 5857 5513 5168 4823 4479 4134 379016-1/2 9171 8713 8254 7796 7337 6879 6420 5961 5503 504418 11910 11310 10720 10120 9526 8930 8335 7740 7144 654919-1/2 15140 14380 13620 12870 12110 11350 10600 9840 9083 832621 18910 17960 17020 16070 15130 14180 13240 12290 11340 1040022-1/2 23260 22090 20930 19770 18600 17440 16280 15120 13950 1279024 28220 26810 25400 23990 22580 21170 19760 18350 16930 1552025-1/2 33850 32160 30470 28780 27080 25390 23700 22000 20310 1862027 40190 38180 36170 34160 32150 30140 28130 26120 24110 2210028-1/2 47260 44900 42540 40170 37810 35450 33080 30720 28360 2599030 55130 52370 49610 46860 44100 41340 38590 35830 33080 3032031-1/2 63810 60620 57430 54240 51050 47860 44670 41480 38290 3510033 73370 69700 66030 62370 58700 55030 51360 47690 44020 4035034-1/2 83840 79650 75450 71260 67070 62880 58690 54490 50300 4611036 95260 90490 85730 80970 76200 71440 66680 61920 57150 5239037-1/2 107700 102300 96900 91520 86130 80750 75370 69980 64600 5922039 121100 115100 109000 102900 96890 90830 84780 78720 72670 6661040-1/2 135600 128800 122100 115300 108500 101700 94940 88160 81380 7460042 151300 143700 136100 128600 121000 113400 105900 98320 90760 8319043-1/2 168100 159700 151200 142800 134400 126000 117600 109200 100800 9243045 186000 176700 167400 158100 148800 139500 130200 120900 111600 10230046-1/2 205300 195000 184800 174500 164200 154000 143700 133400 123200 11290048 225800 214500 203200 191900 180600 169300 158100 146800 135500 12420049-1/2 247600 235200 222900 210500 198100 185700 173300 161000 148600 13620051 270800 257300 243700 230200 216700 203100 189600 176000 162500 14900052-1/2 295400 280700 265900 251100 236300 221600 206800 192000 177300 16250054 321500 305400 289300 273300 257200 241100 225000 209000 192900 17680055-1/2 349000 331600 314100 296700 279200 261800 244300 226900 209400 19200057 378100 359200 340300 321400 302500 283600 264700 245800 226900 20800058-1/2 408700 388300 367900 347400 327000 306600 286100 265700 245200 22480060 441000 419000 396900 374900 352800 330800 308700 286700 264600 2426005CAPACITY SELECTION TABLESAPA/EWS


56 CAPACITY SELECTION TABLESTable 5.4Reference Stiffness for Bending about X-X Axis Southern PineGlued Laminated TimberDepthEI (10 3 kip-in 2 ) when E (ksi) isd (in.) 2000 1900 1800 1700 1600 1500 1400 1300 1200 11002-1/2 in. Width5-1/2 69.32 65.86 62.39 58.92 55.46 51.99 48.53 45.06 41.59 38.136-7/8 135.4 128.6 121.9 115.1 108.3 101.5 94.78 88.01 81.24 74.478-1/4 234.0 222.3 210.6 198.9 187.2 175.5 163.8 152.1 140.4 128.79-5/8 371.5 353.0 334.4 315.8 297.2 278.6 260.1 241.5 222.9 204.311 554.6 526.9 499.1 471.4 443.7 415.9 388.2 360.5 332.8 305.012-3/8 789.6 750.1 710.7 671.2 631.7 592.2 552.7 513.3 473.8 434.313-3/4 1083 1029 974.9 920.7 866.5 812.4 758.2 704.1 649.9 595.715-1/8 1442 1370 1298 1225 1153 1081 1009 937.1 865.0 792.916-1/2 1872 1778 1685 1591 1497 1404 1310 1217 1123 102917-7/8 2380 2261 2142 2023 1904 1785 1666 1547 1428 130919-1/4 2972 2824 2675 2526 2378 2229 2081 1932 1783 163520-5/8 3656 3473 3290 3107 2925 2742 2559 2376 2193 201122 4437 4215 3993 3771 3549 3328 3106 2884 2662 244023-3/8 5322 5056 4789 4523 4257 3991 3725 3459 3193 29273 in. Width5-1/2 83.19 79.03 74.87 70.71 66.55 62.39 58.23 54.07 49.91 45.756-7/8 162.5 154.4 146.2 138.1 130.0 121.9 113.7 105.6 97.49 89.368-1/4 280.8 266.7 252.7 238.6 224.6 210.6 196.5 182.5 168.5 154.49-5/8 445.8 423.5 401.2 379.0 356.7 334.4 312.1 289.8 267.5 245.211 665.5 632.2 599.0 565.7 532.4 499.1 465.9 432.6 399.3 366.012-3/8 947.6 900.2 852.8 805.4 758.0 710.7 663.3 615.9 568.5 521.213-3/4 1300 1235 1170 1105 1040 974.9 909.9 844.9 779.9 714.915-1/8 1730 1644 1557 1471 1384 1298 1211 1125 1038 951.516-1/2 2246 2134 2021 1909 1797 1685 1572 1460 1348 123517-7/8 2856 2713 2570 2427 2285 2142 1999 1856 1713 157119-1/4 3567 3388 3210 3032 2853 2675 2497 2318 2140 196220-5/8 4387 4167 3948 3729 3509 3290 3071 2851 2632 241322 5324 5058 4792 4525 4259 3993 3727 3461 3194 292823-3/8 6386 6067 5747 5428 5109 4789 4470 4151 3832 35123-1/8 in. Width5-1/2 86.65 82.32 77.99 73.66 69.32 64.99 60.66 56.32 51.99 47.666-7/8 169.2 160.8 152.3 143.9 135.4 126.9 118.5 110.0 101.5 93.088-1/4 292.5 277.8 263.2 248.6 234.0 219.3 204.7 190.1 175.5 160.99-5/8 464.4 441.2 418.0 394.7 371.5 348.3 325.1 301.9 278.6 255.411 693.2 658.6 623.9 589.2 554.6 519.9 485.3 450.6 415.9 381.312-3/8 987.0 937.7 888.3 839.0 789.6 740.3 690.9 641.6 592.2 542.913-3/4 1354 1286 1219 1151 1083 1015 947.8 880.1 812.4 744.715-1/8 1802 1712 1622 1532 1442 1352 1261 1171 1081 991.216-1/2 2340 2223 2106 1989 1872 1755 1638 1521 1404 128717-7/8 2975 2826 2677 2528 2380 2231 2082 1934 1785 163619-1/4 3715 3530 3344 3158 2972 2786 2601 2415 2229 204320-5/8 4570 4341 4113 3884 3656 3427 3199 2970 2742 251322 5546 5269 4991 4714 4437 4159 3882 3605 3328 305023-3/8 6652 6319 5987 5654 5322 4989 4656 4324 3991 3659APA/EWS


<strong>LRFD</strong>GUIDELINESTRUCTURALTO <strong>LRFD</strong>GLUEDFOR STRUCTURALLAMINATED TIMBERCOMPOSITESUPPLEMENTLUMBER5757Table 5.4Reference Stiffness for Bending about X-X Axis Southern PineGlued Laminated Timber (Cont.)DepthEI (10 3 kip-in 2 ) when E (ksi) isd (in.) 2000 1900 1800 1700 1600 1500 1400 1300 1200 11005 in. Width6-7/8 270.8 257.3 243.7 230.2 216.6 203.1 189.6 176.0 162.5 148.98-1/4 467.9 444.5 421.1 397.7 374.3 350.9 327.6 304.2 280.8 257.49-5/8 743.1 705.9 668.7 631.6 594.4 557.3 520.1 483.0 445.8 408.711 1109 1054 998.3 942.8 887.3 831.9 776.4 721.0 665.5 610.012-3/8 1579 1500 1421 1342 1263 1184 1105 1027 947.6 868.613-3/4 2166 2058 1950 1841 1733 1625 1516 1408 1300 119115-1/8 2883 2739 2595 2451 2307 2163 2018 1874 1730 158616-1/2 3743 3556 3369 3182 2995 2808 2620 2433 2246 205917-7/8 4759 4521 4284 4046 3808 3570 3332 3094 2856 261819-1/4 5944 5647 5350 5053 4756 4458 4161 3864 3567 326920-5/8 7311 6946 6580 6215 5849 5484 5118 4752 4387 402122 8873 8430 7986 7542 7099 6655 6211 5768 5324 488023-3/8 10640 10110 9579 9047 8515 7982 7450 6918 6386 585424-3/4 12630 12000 11370 10740 10110 9476 8844 8212 7580 694926-1/8 14860 14120 13370 12630 11890 11140 10400 9658 8915 817227-1/2 17330 16460 15600 14730 13860 13000 12130 11260 10400 953228-7/8 20060 19060 18060 17050 16050 15050 14040 13040 12040 1103030-1/4 23070 21910 20760 19610 18450 17300 16150 14990 13840 1269031-5/8 26360 25040 23720 22400 21090 19770 18450 17130 15810 1450033 29950 28450 26950 25460 23960 22460 20960 19470 17970 1647034-3/8 33850 32160 30460 28770 27080 25390 23690 22000 20310 1862035-3/4 38080 36170 34270 32360 30460 28560 26650 24750 22850 209405-1/8 in. Width6-7/8 277.6 263.7 249.8 235.9 222.0 208.2 194.3 180.4 166.5 152.78-1/4 479.6 455.6 431.7 407.7 383.7 359.7 335.7 311.8 287.8 263.89-5/8 761.6 723.5 685.5 647.4 609.3 571.2 533.1 495.1 457.0 418.911 1137 1080 1023 966.4 909.5 852.7 795.8 739.0 682.1 625.312-3/8 1619 1538 1457 1376 1295 1214 1133 1052 971.2 890.313-3/4 2220 2109 1998 1887 1776 1665 1554 1443 1332 122115-1/8 2955 2808 2660 2512 2364 2217 2069 1921 1773 162616-1/2 3837 3645 3453 3261 3070 2878 2686 2494 2302 211017-7/8 4878 4635 4391 4147 3903 3659 3415 3171 2927 268319-1/4 6093 5788 5484 5179 4874 4570 4265 3960 3656 335120-5/8 7494 7119 6745 6370 5995 5621 5246 4871 4497 412222 9095 8640 8186 7731 7276 6821 6367 5912 5457 500223-3/8 10910 10360 9818 9273 8727 8182 7637 7091 6546 600024-3/4 12950 12300 11650 11010 10360 9712 9065 8417 7770 712226-1/8 15230 14470 13710 12950 12180 11420 10660 9900 9138 837727-1/2 17760 16880 15990 15100 14210 13320 12430 11550 10660 977028-7/8 20560 19540 18510 17480 16450 15420 14390 13370 12340 1131030-1/4 23640 22460 21280 20100 18920 17730 16550 15370 14190 1300031-5/8 27020 25670 24320 22960 21610 20260 18910 17560 16210 1486033 30700 29160 27630 26090 24560 23020 21490 19950 18420 1688034-3/8 34700 32960 31230 29490 27760 26020 24290 22550 20820 1908035-3/4 39030 37080 35120 33170 31220 29270 27320 25370 23420 214705CAPACITY SELECTION TABLESAPA/EWS


58 CAPACITY SELECTION TABLESTable 5.4Reference Stiffness for Bending about X-X Axis Southern PineGlued Laminated Timber (Cont.)DepthEI (10 3 kip-in 2 ) when E (ksi) isd (in.) 2000 1900 1800 1700 1600 1500 1400 1300 1200 11006-3/4 in. Width6-7/8 365.6 347.3 329.0 310.7 292.5 274.2 255.9 237.6 219.3 201.18-1/4 631.7 600.1 568.5 536.9 505.4 473.8 442.2 410.6 379.0 347.49-5/8 1003 953.0 902.8 852.7 802.5 752.3 702.2 652.0 601.9 551.711 1497 1423 1348 1273 1198 1123 1048 973.3 898.4 823.612-3/8 2132 2025 1919 1812 1706 1599 1492 1386 1279 117313-3/4 2925 2778 2632 2486 2340 2193 2047 1901 1755 160915-1/8 3893 3698 3503 3309 3114 2919 2725 2530 2336 214116-1/2 5054 4801 4548 4296 4043 3790 3538 3285 3032 278017-7/8 6425 6104 5783 5461 5140 4819 4498 4176 3855 353419-1/4 8025 7624 7222 6821 6420 6019 5617 5216 4815 441420-5/8 9870 9377 8883 8390 7896 7403 6909 6416 5922 542922 11980 11380 10780 10180 9583 8984 8385 7786 7187 658823-3/8 14370 13650 12930 12210 11490 10780 10060 9339 8621 790324-3/4 17060 16200 15350 14500 13640 12790 11940 11090 10230 938126-1/8 20060 19060 18050 17050 16050 15040 14040 13040 12040 1103027-1/2 23400 22230 21060 19890 18720 17550 16380 15210 14040 1287028-7/8 27080 25730 24380 23020 21670 20310 18960 17600 16250 1490030-1/4 31140 29580 28030 26470 24910 23360 21800 20240 18680 1713031-5/8 35580 33800 32020 30250 28470 26690 24910 23130 21350 1957033 40430 38410 36390 34360 32340 30320 28300 26280 24260 2224034-3/8 45700 43410 41130 38840 36560 34270 31990 29700 27420 2513035-3/4 51400 48830 46260 43690 41120 38550 35980 33410 30840 2827037-1/8 57560 54690 51810 48930 46050 43170 40290 37420 34540 3166038-1/2 64200 60990 57780 54570 51360 48150 44940 41730 38520 3531039-7/8 71330 67760 64190 60630 57060 53500 49930 46360 42800 3923041-1/4 78960 75010 71070 67120 63170 59220 55270 51330 47380 4343042-5/8 87130 82770 78410 74060 69700 65340 60990 56630 52280 4792044 95830 91040 86250 81460 76670 71870 67080 62290 57500 5271045-3/8 105100 99840 94590 89330 84080 78820 73570 68310 63060 5780046-3/4 114900 109200 103500 97700 91960 86210 80460 74720 68970 6322048-1/8 125400 119100 112900 106600 100300 94040 87770 81500 75230 6896049-1/2 136400 129600 122800 116000 109200 102300 95510 88690 81870 7505050-7/8 148100 140700 133300 125900 118500 111100 103700 96290 88880 8148052-1/4 160500 152500 144400 136400 128400 120400 112300 104300 96290 8826053-5/8 173500 164800 156100 147500 138800 130100 121400 112800 104100 9542055 187200 177800 168500 159100 149700 140400 131000 121700 112300 10290056-3/8 201600 191500 181400 171300 161300 151200 141100 131000 120900 11090057-3/4 216700 205800 195000 184200 173300 162500 151700 140800 130000 11920059-1/8 232500 220900 209300 197600 186000 174400 162800 151100 139500 12790060-1/2 249100 236700 224200 211800 199300 186800 174400 161900 149500 137000APA/EWS


<strong>LRFD</strong>GUIDELINESTRUCTURALTO <strong>LRFD</strong>GLUEDFOR STRUCTURALLAMINATED TIMBERCOMPOSITESUPPLEMENTLUMBER 5959Table 5.4Reference Stiffness for Bending about X-X Axis Southern PineGlued Laminated Timber (Cont.)DepthEI (10 3 kip-in 2 ) when E (ksi) isd (in.) 2000 1900 1800 1700 1600 1500 1400 1300 1200 11008-1/2 in. Width9-5/8 1263 1200 1137 1074 1011 947.4 884.2 821.1 757.9 694.811 1886 1791 1697 1603 1508 1414 1320 1226 1131 103712-3/8 2685 2551 2416 2282 2148 2014 1879 1745 1611 147713-3/4 3683 3499 3315 3130 2946 2762 2578 2394 2210 202615-1/8 4902 4657 4412 4167 3921 3676 3431 3186 2941 269616-1/2 6364 6046 5727 5409 5091 4773 4455 4136 3818 350017-7/8 8091 7687 7282 6877 6473 6068 5664 5259 4855 445019-1/4 10110 9600 9095 8590 8084 7579 7074 6569 6063 555820-5/8 12430 11810 11190 10560 9944 9322 8701 8079 7458 683622 15080 14330 13580 12820 12070 11310 10560 9805 9051 829723-3/8 18090 17190 16280 15380 14470 13570 12670 11760 10860 995124-3/4 21480 20400 19330 18260 17180 16110 15030 13960 12890 1181026-1/8 25260 24000 22730 21470 20210 18950 17680 16420 15160 1389027-1/2 29460 27990 26520 25040 23570 22100 20620 19150 17680 1620028-7/8 34110 32400 30700 28990 27280 25580 23870 22170 20460 1876030-1/4 39210 37250 35290 33330 31370 29410 27450 25490 23530 2157031-5/8 44810 42570 40330 38090 35850 33610 31370 29130 26890 2464033 50910 48370 45820 43270 40730 38180 35640 33090 30550 2800034-3/8 57540 54670 51790 48910 46030 43160 40280 37400 34530 3165035-3/4 64730 61490 58260 55020 51780 48550 45310 42070 38840 3560037-1/8 72490 68860 65240 61610 57990 54370 50740 47120 43490 3987038-1/2 80840 76800 72760 68720 64680 60630 56590 52550 48510 4446039-7/8 89820 85330 80840 76350 71860 67360 62870 58380 53890 4940041-1/4 99440 94460 89490 84520 79550 74580 69600 64630 59660 5469042-5/8 109700 104200 98740 93260 87770 82290 76800 71310 65830 6034044 120700 114600 108600 102600 96540 90510 84470 78440 72410 6637045-3/8 132300 125700 119100 112500 105900 99260 92640 86030 79410 7279046-3/4 144700 137500 130300 123000 115800 108600 101300 94090 86850 7961048-1/8 157900 150000 142100 134200 126300 118400 110500 102600 94740 8684049-1/2 171800 163200 154600 146100 137500 128900 120300 111700 103100 9450050-7/8 186500 177200 167900 158600 149200 139900 130600 121300 111900 10260052-1/4 202100 192000 181900 171800 161700 151600 141500 131400 121200 11110053-5/8 218500 207500 196600 185700 174800 163800 152900 142000 131100 12020055 235700 223900 212100 200300 188600 176800 165000 153200 141400 12960056-3/8 253800 241100 228400 215700 203100 190400 177700 165000 152300 13960057-3/4 272800 259200 245600 231900 218300 204600 191000 177400 163700 15010059-1/8 292800 278200 263500 248900 234200 219600 205000 190300 175700 16100060-1/2 313700 298000 282300 266700 251000 235300 219600 203900 188200 1725005CAPACITY SELECTION TABLESAPA/EWS


60 CAPACITY SELECTION TABLESTable 5.4Reference Stiffness for Bending about X-X Axis Southern PineGlued Laminated Timber (Cont.)DepthEI (10 3 kip-in 2 ) when E (ksi) isd (in.) 2000 1900 1800 1700 1600 1500 1400 1300 1200 110010-1/2 in. Width11 2329 2213 2096 1980 1863 1747 1630 1514 1398 128112-3/8 3316 3151 2985 2819 2653 2487 2322 2156 1990 182413-3/4 4549 4322 4094 3867 3639 3412 3185 2957 2730 250215-1/8 6055 5752 5450 5147 4844 4541 4239 3936 3633 333016-1/2 7861 7468 7075 6682 6289 5896 5503 5110 4717 432417-7/8 9995 9495 8995 8496 7996 7496 6996 6497 5997 549719-1/4 12480 11860 11230 10610 9987 9362 8738 8114 7490 686620-5/8 15350 14590 13820 13050 12280 11520 10750 9980 9212 844522 18630 17700 16770 15840 14910 13980 13040 12110 11180 1025023-3/8 22350 21230 20120 19000 17880 16760 15650 14530 13410 1229024-3/4 26530 25210 23880 22550 21230 19900 18570 17250 15920 1459026-1/8 31200 29640 28080 26520 24960 23400 21840 20280 18720 1716027-1/2 36390 34570 32760 30940 29120 27300 25480 23660 21840 2002028-7/8 42130 40020 37920 35810 33700 31600 29490 27390 25280 2317030-1/4 48440 46020 43600 41170 38750 36330 33910 31490 29060 2664031-5/8 55350 52580 49820 47050 44280 41510 38750 35980 33210 3044033 62890 59750 56600 53460 50310 47170 44020 40880 37730 3459034-3/8 71080 67530 63970 60420 56870 53310 49760 46200 42650 3910035-3/4 79960 75960 71960 67960 63970 59970 55970 51970 47980 4398037-1/8 89540 85070 80590 76110 71640 67160 62680 58200 53730 4925038-1/2 99870 94870 89880 84890 79890 74900 69910 64910 59920 5493039-7/8 111000 105400 99860 94310 88760 83210 77670 72120 66570 6102041-1/4 122800 116700 110500 104400 98270 92120 85980 79840 73700 6756042-5/8 135500 128800 122000 115200 108400 101600 94870 88090 81320 7454044 149100 141600 134200 126700 119300 111800 104400 96900 89440 8199045-3/8 163500 155300 147100 139000 130800 122600 114400 106300 98090 8992046-3/4 178800 169900 160900 152000 143000 134100 125200 116200 107300 9834048-1/8 195100 185300 175500 165800 156000 146300 136500 126800 117000 10730049-1/2 212300 201600 191000 180400 169800 159200 148600 138000 127400 11670050-7/8 230400 218900 207400 195900 184300 172800 161300 149800 138300 12670052-1/4 249600 237100 224700 212200 199700 187200 174700 162300 149800 13730053-5/8 269900 256400 242900 229400 215900 202400 188900 175400 161900 14840055 291200 276600 262000 247500 232900 218400 203800 189300 174700 16010056-3/8 313500 297900 282200 266500 250800 235200 219500 203800 188100 17240057-3/4 337000 320200 303300 286500 269600 252800 235900 219100 202200 18540059-1/8 361700 343600 325500 307400 289400 271300 253200 235100 217000 19890060-1/2 387500 368200 348800 329400 310000 290600 271300 251900 232500 213100APA/EWS


<strong>LRFD</strong> STRUCTURAL GLUED LAMINATED TIMBER SUPPLEMENT61OTHERCONSIDERATIONS6.1 General 626.2 Specific Gravity 626.3 Moisture Expansion 626.4 Thermal Expansion 636.5 Fire Considerations 646Table 6.1 Average Specific Gravity and Weight Factor ..... 62Table 6.2 Coefficient of Moisture Expansion, e ME , andFiber Saturation Point, FSP, for Solid <strong>Wood</strong>s .... 63Table 6.3 Coefficient of Thermal Expansion, e TE , forSolid <strong>Wood</strong>s ............................................................ 64Table 6.4 Minimum Depths at Which Selected Beam SizesCan Be Adopted for One-Hour Fire Ratings ...... 65APA/EWS


62 OTHER CONSIDERATIONS6.1 GeneralThe section contains information concerning physicalproperties of glued laminated timber members. Otherdesign considerations, such as fire protection, are alsogiven.6.2 Specific GravityTable 6.1 provides specific gravity values for somemost common wood species used for glued laminated timber.These values are used in determining various physicaland connection properties. Further, weight factors are providedat four moisture contents. When the cross-sectionalarea (in. 2 ) is multiplied by the appropriate weight factor,it provides the weight of the glued laminated timber memberper linear foot of length. For other moisture contents,the tabulated weight factors can be interpolated or extrapolated.Glued laminated timber members often are manufacturedusing different species at different portions of thecross section. In this case the weight of the glued laminatedtimber may be computed by the sum of the productsof the cross-sectional area and the weight factor for eachspecies.Table 6.1Average Specific Gravity and Weight FactorWeight Factor (b)Species Combination Specific Gravity (a) 12% 15% 19% 25%California Redwood (Close Grain) 0.44 0.195 0.198 0.202 0.208Douglas Fir-Larch 0.50 0.235 0.238 0.242 0.248Douglas Fir (South) 0.46 0.221 0.225 0.229 0.235Eastern Spruce 0.41 0.191 0.194 0.198 0.203Hem-Fir 0.43 0.195 0.198 0.202 0.208Red Maple 0.58 0.261 0.264 0.268 0.274Red Oak 0.67 0.307 0.310 0.314 0.319Southern Pine 0.55 0.252 0.255 0.259 0.265Spruce-Pine-Fir (North) 0.42 0.195 0.198 0.202 0.208Yellow Poplar 0.43 0.213 0.216 0.220 0.226(a)Specific gravity is based on weight and volume when oven-dry.(b)Weight factor shall be multiplied by cross-sectional area in in. 2 to obtain weight in pounds per lineal foot.6.3 Moisture ExpansionDue to the hygroscopic nature of wood, it changesdimensions as its moisture content is altered below thefiber saturation point. For most species the longitudinalshrinkage of normal wood drying from fiber saturationpoint to oven-dry condition is approximately 0.1 to 0.2percent. However, certain atypical types of wood mayexhibit excessive longitudinal shrinkage and these typesshould be avoided in use where longitudinal stability isimportant.The change in radial (R), tangential (T) and volumetric(V) dimensions are computed as:where:X= X o( ∆MC)e ME[6.1]X oe ME= initial dimension or volume,X = new dimension or volume,= coefficient of moisture expansion (in./in./%MCfor linear expansion, in. 3 /in. 3 /%MC forvolumetric expansion), as given in Table 6.2, and∆MC = moisture content change (%), as defined asfollows:APA/EWS


<strong>LRFD</strong>GUIDELINESTRUCTURALTO <strong>LRFD</strong>GLUEDFOR STRUCTURALLAMINATED TIMBERCOMPOSITESUPPLEMENTLUMBER 6363∆MCwhere:= M - M o[6.2]M o= initial moisture content % (M o≤ FSP),M = new moisture content % (M ≤ FSP), andFSP = fiber saturation point, as given in Table 6.2 forselected species.Table 6.2Coefficient of Moisture Expansion, e ME, and Fiber Saturation Point,FSP, for Solid <strong>Wood</strong>sSpeciesRadial(in./in./%)Tangential(in./in./%)Volumetric(in. 3 /in. 3 /%)FSP(%)Alaska Cedar 0.0010 0.0021 0.0033 28Douglas Fir-Larch 0.0018 0.0033 0.0050 28Englemann Spruce 0.0013 0.0024 0.0037 30Redwood 0.0012 0.0022 0.0032 22Red Oak 0.0017 0.0038 0.0063 30Southern Pine 0.0020 0.0030 0.0047 26Western Hemlock 0.0015 0.0028 0.0044 28Yellow Poplar 0.0015 0.0026 0.0041 31e ME66.4 Thermal ExpansionThe thermal expansion of solid wood, including gluedlaminated timber, is computed by the relationship:X = X ( ∆ T)e[6.3]where:oTEX o= reference dimension at T o,These coefficients are about 5 to 10 times greater than theparallel-to-grain coefficients. The radial and tangentialthermal expansion coefficients for oven-dry wood in theoven-dry specific gravity (SG) range of about 0.1 to 0.8can be approximated by the following equations.Radial:OTHER CONSIDERATIONSe TEX = computed dimension at T,= coefficient of thermal expansion (in./in./°F), seeTable 6.3, and∆T = temperature change (°F), as defined as follows:e TE[ 18( SG) 5. 5] −( 10 6 in./ in./ F)[6.5]Tangential:e TE[ 18( SG) 10. 2] −( 10 6 in./ in./ F)[6.6]∆Twhere:= T -T o[6.4]T o= reference temperature (°F), -60°F ≤ T o≤ 130°F,andT = new temperature (°F), -60°F ≤ T o≤ 130°F.The coefficient of thermal expansion of oven-drywood parallel to grain appears to be independent of specificgravity and species. In tests of both hardwoods andsoftwoods, the parallel-to-grain values have ranged fromabout 1.7x10 -6 to 2.5x10 -6 per °F.The linear expansion coefficients across the grain (radialand tangential) are proportional to the density of wood.where:SG = specific gravity provided in Table 6.1.Table 6.3 provides the numerical values for e TE forthe most commonly used commercial species or speciesgroups.<strong>Wood</strong> that contains moisture reacts to varying temperaturedifferently than does dry wood. When moist woodis heated, it tends to expand because of normal thermalexpansion and to shrink because of loss in moisture content.Unless the wood is very dry initially (perhaps 3 or 4percent MC or less), the shrinkage due to moisture losson heating will be greater than the thermal expansion, sothe net dimensional change on heating will be negative.APA/EWS


64 OTHER CONSIDERATIONS<strong>Wood</strong> at intermediate moisture levels (about 8 to 20percent) will expand when first heated, then graduallyshrink to a volume smaller than the initial volume, as thewood gradually loses water while in the heated condition.Even in the longitudinal (grain) direction, where dimensionalchange due to moisture change is very small,such changes will still predominate over correspondingdimensional changes due to thermal expansion unless thewood is very dry initially. For wood at usual moisturelevels, net dimensional changes will generally be negativeafter prolonged heating.Computation of actual changes in dimensions can beaccomplished by determining the equilibrium moisturecontent of wood at the temperature value and relative humidityof interest. Then the relative dimensional changesdue to temperature change alone and moisture contentchange alone are computed. By combining these twochanges the final dimension of lumber and timber can beestablished.Table 6.3Coefficient of Thermal Expansion, e TE, for Solid <strong>Wood</strong>s(a)e TESpecies Radial (10 -6 in./in./°F) Tangential (10 -6 in./in./°F)California Redwood 13 18Douglas Fir-Larch (a) 15 19Douglas Fir, South 14 19Eastern Spruce 13 18Hem-Fir (a) 13 18Red Oak 18 22Southern Pine 15 20Spruce-Pine-Fir 13 18Yellow Poplar 14 18Also applies when species name includes the designation “North.”6.5 Fire ConsiderationsFires do not normally start in structural framing, butrather in the building’s contents. These fires generallyreach temperatures of between 1290°F and 1650°F. Gluedlaminated timber members perform very well under theseconditions. Unprotected steel members typically suffersevere buckling and twisting during fires, often collapsingcatastrophically.<strong>Wood</strong> ignites at about 480°F, but charring may beginas low as 300°F. <strong>Wood</strong> typically chars at 1/40 in. perminute. Thus, after half an hour’s fire exposure, only theouter 3/4 in. of the glued laminated timber will be damaged.Char insulates a wood member and hence raises thetemperature it can withstand. Most of the cross sectionwill remain intact, and the member will continue supportingits service load.It is important to note that neither building materialsalone, nor building features alone, nor detection and fireextinguishing equipment alone can provide adequate safetyfrom fire in buildings. To ensure a safe structure in theevent of fire, authorities base fire and building code requirementson research and testing, as well as fire histories.The model building codes classify Heavy Timber as a specifictype of construction and give minimum sizes for roofand floor beams.The requirements set out for Heavy Timber constructionin model building codes do not constitute one-hourfire resistance. However, procedures are available to estimatethe glued laminated timber size required for projectsin which one-hour fire resistance is required (see 1994Uniform Building Code Volume 3, Uniform Building CodeStandard 7-7, Part VI). The minimum depths for selectedglued laminated timber sizes that can be adopted for onehourfire ratings are given in Table 6.4 for glued laminatedtimber beams.To adopt beams whose dimensions qualify them forone-hour fire rating, the basic layup must be modified -one core lamination must be removed from the center andthe tension face augmented with the addition of a tensionlamination.APA/EWS


<strong>LRFD</strong>GUIDELINESTRUCTURALTO <strong>LRFD</strong>GLUEDFOR STRUCTURALLAMINATED TIMBERCOMPOSITESUPPLEMENTLUMBER 6565Table 6.4Minimum Depths at Which Selected Beam Sizes Can Be Adopted for(a, b)One-Hour Fire RatingsBeam WidthBeam Depth (in.)(in.) 3 Sides Exposed 4 Sides Exposed6-3/4 13-1/2 or 13-3/4 27 or 27-1/28-1/2 7-1/2 or 8-1/4 15 or 15-1/88-3/4 6-7/8 or 7-1/2 13-1/2 or 13-3/410-1/2 6 or 6-7/8 12 or 12-3/810-3/4 6 or 6-7/8 12 or 12-3/8(a)Assuming a load factor of 1.0 (design loads are equal to the resistance of the member). The minimum depths maybe reduced when the design loads are less than the member resistance.(b)One-Hour fire rated glued laminated timbers must have an additional tension lamination installed at time ofmanufacture.6OTHER CONSIDERATIONSAPA/EWS


66OTHER CONSIDERATIONSAPA/EWS


<strong>LRFD</strong> STRUCTURAL GLUED LAMINATED TIMBER SUPPLEMENT67LOAD AND SPANTABLES7.1 General 687.2 Load and Span Tables for SelectedBending Members 68Table 7.1 Design Loads for Simple Span Douglas Fir-Larch Glued Laminated Timber Beams ........... 68Table 7.2 Design Loads for Simple Span Southern PineGlued Laminated Timber Beams ........................ 727APA/EWS


68 LOAD AND SPAN TABLES7.1 GeneralThe section contains load-span tables for selectedglued laminated timber bending members made of Douglasfir-Larch (24F-V4/WS) or Southern Pine (24F-V3/SP) when subjected to uniform loads in simple-span applications.These tables can be used to size such membersfor preliminary design. Final design should includea complete analysis, including bearing stresses, lateralstability, and other applicable design considerations.7.2 Load and Span Tables for Selected MembersTable 7.1Design Loads for Simple Span Douglas Fir-Larch Glued LaminatedTimber BeamsMaximum Factored Total Loads (lbf/ft) -- Strength Consideration (λ = 0.80)F b = 6.10 ksi; F v = 0.545 ksiBeam Width = 3-1/8 inchesDepth Beam Span (ft)(in.) wt. (plf) 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 486 4.6 810 519 360 265 203 160 --- --- --- --- --- --- --- --- --- --- --- --- --- --- ---7-1/2 5.7 1266 810 563 413 316 250 203 167 --- --- --- --- --- --- --- --- --- --- --- --- ---9 6.8 1823 1167 810 595 456 360 292 241 203 173 --- --- --- --- --- --- --- --- --- --- ---10-1/2 8.0 2289 1588 1103 810 620 490 397 328 276 235 203 176 --- --- --- --- --- --- --- --- ---12 9.1 2725 2044 1440 1058 810 640 519 429 360 307 265 230 203 179 159 --- --- --- --- --- ---13-1/2 10.3 3199 2373 1823 1339 1025 810 656 542 456 388 335 292 255 225 199 178 160 --- --- --- ---15 11.4 3716 2725 2151 1653 1266 1000 810 670 563 479 413 357 312 274 243 217 195 176 160 --- ---16-1/2 12.5 4282 3101 2430 1998 1532 1210 980 810 681 578 495 428 374 329 292 260 234 211 191 174 15918 13.7 4905 3504 2725 2230 1823 1440 1167 964 807 682 584 505 441 388 344 307 276 249 226 206 18819-1/2 14.8 5593 3936 3036 2472 2084 1690 1369 1127 939 794 679 588 513 452 401 358 321 290 263 240 21921 16.0 6358 4402 3366 2725 2289 1960 1585 1298 1081 914 782 677 591 520 461 412 370 334 303 276 25222-1/2 17.1 7213 4905 3716 2991 2503 2151 1807 1480 1232 1042 892 771 674 593 526 470 422 381 345 314 28724 18.2 8175 5450 4088 3270 2725 2336 2043 1673 1393 1178 1008 872 761 670 595 531 477 430 390 355 325Notes:(1) This table does NOT consider serviceability and shall be used in combination with (4) Uniform load = total factored load including beam weight.the Serviceability Consideration table given below.(5) Volume factor is included.(2) Span = simply supported beam. (6) Maximum beam shear is located at a distance from the support equal to the beam depth.(3) Service conditions = dry. (7) Upper right area limited by bending strength and lower left area limited by shear strength.Maximum Unfactored Loads (lbf/ft) -- Serviceability Consideration (Deflection Limit = Span/360)E x = 1800 ksiBeam Width = 3-1/8 inchesDepth Beam Span (ft)(in.) wt. (plf) 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 486 4.6 293 150 87 55 37 26 --- --- --- --- --- --- --- --- --- --- --- --- --- --- ---7-1/2 5.7 572 293 170 107 72 50 37 28 --- --- --- --- --- --- --- --- --- --- --- --- ---9 6.8 989 506 293 184 124 87 63 48 37 29 --- --- --- --- --- --- --- --- --- --- ---10-1/2 8.0 1570 804 465 293 196 138 100 75 58 46 37 30 --- --- --- --- --- --- --- --- ---12 9.1 2344 1200 694 437 293 206 150 113 87 68 55 44 37 31 26 --- --- --- --- --- ---13-1/2 10.3 3337 1709 989 623 417 293 214 160 124 97 78 63 52 43 37 31 27 --- --- --- ---15 11.4 4578 2344 1356 854 572 402 293 220 170 133 107 87 72 60 50 43 37 32 28 --- ---16-1/2 12.5 6093 3120 1805 1137 762 535 390 293 226 177 142 116 95 79 67 57 49 42 37 32 2818 13.7 7910 4050 2344 1476 989 694 506 380 293 230 184 150 124 103 87 74 63 55 48 42 3719-1/2 14.8 10057 5149 2980 1877 1257 883 644 484 372 293 235 191 157 131 110 94 80 70 60 53 4721 16.0 12561 6431 3722 2344 1570 1103 804 604 465 366 293 238 196 164 138 117 100 87 75 66 5822-1/2 17.1 15450 7910 4578 2883 1931 1356 989 743 572 450 360 293 241 201 170 144 124 107 93 81 7224 18.2 18750 9600 5556 3499 2344 1646 1200 902 694 546 437 356 293 244 206 175 150 130 113 99 87Notes:(1) This table does NOT consider strength and shall be used in combination with (5) Multiply the tabulated value by a factor given below for other selected deflection limits:the Strength Consideration table given above. Deflection Limit Multiply the tabulated value by(2) Span = simply supported beam. Span/240 360/240 or 1.5(3) Service conditions = dry. Span/180 360/180 or 2.0(4) Uniform load = total unfactored load including beam weight.APA/EWS


<strong>LRFD</strong>GUIDELINESTRUCTURALTO <strong>LRFD</strong>GLUEDFOR STRUCTURALLAMINATED TIMBERCOMPOSITESUPPLEMENTLUMBER6969Table 7.1Design Loads for Simple Span Douglas Fir-Larch Glued LaminatedTimber Beams (Cont.)Maximum Factored Total Loads (lbf/ft) -- Strength Consideration (λ = 0.80)F b = 6.10 ksi; F v = 0.545 ksiBeam Width = 5-1/8 inchesDepth Beam Span (ft)(in.) wt. (plf) 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 486 7.5 1329 850 591 434 332 262 213 --- --- --- --- --- --- --- --- --- --- --- --- --- ---7-1/2 9.3 2076 1329 923 678 519 410 332 275 231 197 --- --- --- --- --- --- --- --- --- --- ---9 11.2 2989 1913 1329 976 747 591 478 395 332 283 244 211 184 --- --- --- --- --- --- --- ---10-1/2 13.1 3754 2604 1808 1329 1017 804 651 538 452 382 327 283 247 218 193 --- --- --- --- --- ---12 14.9 4469 3352 2362 1735 1329 1050 850 699 583 493 422 365 318 280 249 222 199 180 --- --- ---13-1/2 16.8 5246 3892 2989 2196 1682 1329 1069 875 729 616 527 456 398 351 311 278 249 225 204 186 17015 18.7 6094 4469 3528 2712 2076 1629 1306 1069 890 753 644 557 487 428 380 339 305 275 249 227 20816-1/2 20.6 7023 5085 3986 3277 2500 1952 1565 1281 1067 902 772 668 583 514 455 407 365 329 299 272 24918 22.4 8044 5746 4469 3656 2950 2303 1846 1511 1259 1064 911 788 688 606 537 480 431 389 353 321 29419-1/2 24.3 9173 6455 4980 4053 3417 2682 2149 1760 1466 1239 1060 917 801 705 626 558 501 453 410 374 34221 26.2 10428 7219 5521 4469 3754 3087 2474 2026 1687 1426 1221 1056 922 812 720 643 577 521 472 430 39422-1/2 28.0 11830 8044 6094 4905 4104 3520 2821 2309 1924 1626 1392 1204 1051 926 821 733 658 594 539 491 44924 29.9 13407 8938 6704 5363 4469 3831 3189 2611 2175 1838 1573 1361 1189 1046 928 828 744 671 609 555 50725-1/2 31.8 15195 9910 7352 5844 4849 4144 3578 2929 2440 2063 1765 1527 1334 1174 1041 930 835 753 683 622 56927 33.6 17238 10969 8044 6351 5246 4469 3892 3265 2720 2299 1968 1702 1487 1309 1161 1036 930 840 762 694 63428-1/2 35.5 19595 12130 8784 6885 5661 4806 4176 3619 3014 2548 2181 1887 1647 1451 1286 1148 1031 931 844 769 70330 37.4 22345 13407 9576 7448 6094 5157 4469 3943 3323 2809 2404 2080 1816 1599 1418 1266 1137 1026 930 848 77531-1/2 39.2 25595 14818 10428 8044 6548 5521 4772 4202 3646 3082 2637 2282 1993 1754 1556 1389 1247 1126 1021 930 85033 41.1 29495 16386 11344 8675 7023 5899 5085 4469 3983 3366 2881 2493 2177 1916 1700 1517 1362 1230 1115 1016 92934-1/2 43.0 34262 18139 12334 9344 7521 6293 5410 4744 4224 3663 3135 2712 2368 2085 1849 1651 1482 1338 1213 1105 101136 44.8 40221 20111 13407 10055 8044 6704 5746 5028 4469 3972 3399 2941 2568 2261 2005 1790 1607 1451 1316 1198 1096Notes:(1) This table does NOT consider serviceability and shall be used in combination with (4) Uniform load = total factored load including beam weight.the Serviceability Consideration table given below.(5) Volume factor is included.(2) Span = simply supported beam. (6) Maximum beam shear is located at a distance from the support equal to the beam depth.(3) Service conditions = dry. (7) Upper right area limited by bending strength and lower left area limited by shear strength.Maximum Unfactored Loads (lbf/ft) -- Serviceability Consideration (Deflection Limit = Span/360)E x = 1800 ksiBeam Width = 5-1/8 inchesDepth Beam Span (ft)(in.) wt. (plf) 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 486 7.5 480 246 142 90 60 42 31 --- --- --- --- --- --- --- --- --- --- --- --- --- ---7-1/2 9.3 938 480 278 175 117 82 60 45 35 27 --- --- --- --- --- --- --- --- --- --- ---9 11.2 1622 830 480 303 203 142 104 78 60 47 38 31 25 --- --- --- --- --- --- --- ---10-1/2 13.1 2575 1318 763 480 322 226 165 124 95 75 60 49 40 34 28 --- --- --- --- --- ---12 14.9 3844 1968 1139 717 480 337 246 185 142 112 90 73 60 50 42 36 31 27 --- --- ---13-1/2 16.8 5473 2802 1622 1021 684 480 350 263 203 159 128 104 86 71 60 51 44 38 33 29 2515 18.7 7507 3844 2224 1401 938 659 480 361 278 219 175 142 117 98 82 70 60 52 45 39 3516-1/2 20.6 9992 5116 2961 1864 1249 877 640 480 370 291 233 189 156 130 110 93 80 69 60 53 4618 22.4 12973 6642 3844 2421 1622 1139 830 624 480 378 303 246 203 169 142 121 104 90 78 68 6019-1/2 24.3 16494 8445 4887 3078 2062 1448 1056 793 611 480 385 313 258 215 181 154 132 114 99 87 7621 26.2 20600 10547 6104 3844 2575 1809 1318 991 763 600 480 391 322 268 226 192 165 142 124 108 9522-1/2 28.0 25337 12973 7507 4728 3167 2224 1622 1218 938 738 591 480 396 330 278 236 203 175 152 133 11724 29.9 30750 15744 9111 5738 3844 2700 1968 1479 1139 896 717 583 480 401 337 287 246 213 185 162 14225-1/2 31.8 36883 18884 10928 6882 4610 3238 2361 1774 1366 1074 860 699 576 480 405 344 295 255 222 194 17127 33.6 43783 22417 12973 8169 5473 3844 2802 2105 1622 1275 1021 830 684 570 480 409 350 303 263 230 20328-1/2 35.5 51493 26364 15257 9608 6437 4521 3296 2476 1907 1500 1201 976 805 671 565 480 412 356 309 271 23830 37.4 60059 30750 17795 11206 7507 5273 3844 2888 2224 1750 1401 1139 938 782 659 560 480 415 361 316 27831-1/2 39.2 69525 35597 20600 12973 8691 6104 4450 3343 2575 2025 1622 1318 1086 906 763 649 556 480 418 366 32233 41.1 79938 40928 23685 14916 9992 7018 5116 3844 2961 2329 1864 1516 1249 1041 877 746 640 552 480 420 37034-1/2 43.0 91342 46767 27064 17043 11418 8019 5846 4392 3383 2661 2130 1732 1427 1190 1002 852 731 631 549 480 42336 44.8 103781 53136 30750 19364 12973 9111 6642 4990 3844 3023 2421 1968 1622 1352 1139 968 830 717 624 546 480Notes:(1) This table does NOT consider strength and shall be used in combination with (5) Multiply the tabulated value by a factor given below for other selected deflection limits:the Strength Consideration table given above. Deflection Limit Multiply the tabulated value by(2) Span = simply supported beam. Span/240 360/240 or 1.5(3) Service conditions = dry. Span/180 360/180 or 2.0(4) Uniform load = total unfactored load including beam weight.7LOAD AND SPAN TABLESAPA/EWS


70 LOAD AND SPAN TABLESTable 7.1Design Loads for Simple Span Douglas Fir-Larch Glued LaminatedTimber Beams (Cont.)Maximum Factored Total Loads (lbf/ft) -- Strength Consideration (λ = 0.80)F b = 6.10 ksi; F v = 0.545 ksiBeam Width = 6-3/4 inchesDepth Beam Span (ft)(in.) wt. (plf) 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 509 14.8 2520 1750 1286 984 778 630 519 432 365 313 271 236 208 --- --- --- --- --- --- --- ---10-1/2 17.2 3430 2382 1750 1340 1059 850 695 579 490 419 363 317 279 247 221 198 --- --- --- --- ---12 19.7 4415 3111 2286 1749 1366 1095 896 747 631 540 467 408 359 319 284 255 231 209 190 --- ---13-1/2 22.1 5127 3937 2893 2188 1709 1369 1121 934 789 676 584 510 449 399 356 319 288 261 238 218 20015 24.6 5886 4647 3538 2673 2087 1673 1370 1141 964 825 714 624 549 487 435 390 352 319 291 266 24416-1/2 27.1 6698 5250 4241 3204 2502 2005 1641 1367 1156 989 856 747 658 584 521 468 422 383 349 319 29318 29.5 7568 5886 4816 3780 2951 2366 1936 1613 1363 1167 1010 882 776 688 615 552 498 452 411 376 34519-1/2 32.0 8502 6559 5338 4400 3436 2754 2255 1878 1587 1359 1175 1026 904 802 715 642 580 526 479 438 40221 34.5 9508 7271 5886 4944 3956 3171 2595 2162 1827 1564 1353 1182 1040 923 824 740 668 605 551 504 46322-1/2 36.9 10595 8026 6460 5406 4510 3615 2959 2465 2083 1783 1543 1347 1186 1052 939 843 761 690 629 575 52824 39.4 11772 8829 7063 5886 5045 4086 3345 2786 2355 2016 1744 1523 1341 1189 1062 953 860 780 711 650 59725-1/2 41.8 13052 9683 7697 6387 5458 4585 3753 3127 2643 2262 1957 1709 1505 1334 1191 1069 965 875 797 729 66927 44.3 14447 10595 8364 6910 5886 5111 4184 3485 2946 2521 2181 1905 1677 1487 1328 1192 1076 976 889 813 74628-1/2 46.8 15976 11569 9068 7456 6330 5500 4637 3862 3265 2794 2417 2111 1859 1648 1471 1321 1193 1082 985 901 82730 49.2 17658 12613 9810 8026 6792 5886 5111 4258 3599 3080 2665 2327 2049 1817 1622 1456 1315 1192 1086 993 91231-1/2 51.7 19517 13734 10595 8624 7271 6285 5535 4671 3948 3379 2924 2553 2248 1994 1780 1598 1442 1308 1191 1090 100033 54.1 21582 14941 11426 9249 7770 6698 5886 5103 4313 3692 3194 2789 2456 2178 1944 1746 1576 1429 1302 1190 109234-1/2 56.6 23890 16245 12307 9906 8288 7125 6248 5553 4693 4017 3475 3035 2672 2370 2115 1899 1714 1555 1416 1295 118936 59.1 26487 17658 13244 10595 8829 7568 6622 5886 5089 4355 3768 3290 2897 2569 2294 2059 1859 1686 1536 1404 128937-1/2 61.5 29430 19193 14240 11319 9393 8026 7007 6218 5499 4707 4072 3556 3131 2777 2479 2225 2009 1822 1659 1518 139339 64.0 32793 20869 15304 12082 9981 8502 7405 6559 5886 5071 4387 3831 3373 2991 2670 2398 2164 1963 1788 1635 150140-1/2 66.4 36674 22703 16440 12886 10595 8996 7816 6910 6192 5448 4713 4116 3624 3214 2869 2576 2325 2109 1921 1756 161242 68.9 41202 24721 17658 13734 11237 9508 8240 7271 6506 5837 5050 4410 3883 3444 3074 2760 2491 2259 2058 1882 1727Notes:(1) This table does NOT consider serviceability and shall be used in combination with (4) Uniform load = total factored load including beam weight.the Serviceability Consideration table given below.(5) Volume factor is included.(2) Span = simply supported beam. (6) Maximum beam shear is located at a distance from the support equal to the beam depth.(3) Service conditions = dry. (7) Upper right area limited by bending strength and lower left area limited by shear strength.Maximum Unfactored Loads (lbf/ft) -- Serviceability Consideration (Deflection Limit = Span/360)E x = 1800 ksiBeam Width = 6-3/4 inchesDepth Beam Span (ft)(in.) wt. (plf) 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 509 14.8 1094 633 399 267 188 137 103 79 62 50 41 33 28 --- --- --- --- --- --- --- ---10-1/2 17.2 1736 1005 633 424 298 217 163 126 99 79 64 53 44 37 32 27 --- --- --- --- ---12 19.7 2592 1500 945 633 444 324 243 188 147 118 96 79 66 56 47 41 35 30 27 --- ---13-1/2 22.1 3691 2136 1345 901 633 461 347 267 210 168 137 113 94 79 67 58 50 43 38 33 3015 24.6 5063 2930 1845 1236 868 633 475 366 288 231 188 154 129 109 92 79 68 59 52 46 4116-1/2 27.1 6738 3899 2456 1645 1155 842 633 487 383 307 250 206 171 144 123 105 91 79 69 61 5418 29.5 8748 5063 3188 2136 1500 1094 822 633 498 399 324 267 223 188 159 137 118 103 90 79 7019-1/2 32.0 11122 6437 4053 2715 1907 1390 1045 805 633 507 412 339 283 238 203 174 150 131 114 101 8921 34.5 13892 8039 5063 3391 2382 1736 1305 1005 790 633 515 424 353 298 253 217 188 163 143 126 11122-1/2 36.9 17086 9888 6227 4171 2930 2136 1605 1236 972 778 633 521 435 366 311 267 231 201 176 154 13724 39.4 20736 12000 7557 5063 3556 2592 1947 1500 1180 945 768 633 528 444 378 324 280 243 213 188 16625-1/2 41.8 24872 14394 9064 6072 4265 3109 2336 1799 1415 1133 921 759 633 533 453 389 336 292 256 225 19927 44.3 29525 17086 10760 7208 5063 3691 2773 2136 1680 1345 1094 901 751 633 538 461 399 347 303 267 23628-1/2 46.8 34724 20095 12654 8477 5954 4340 3261 2512 1976 1582 1286 1060 883 744 633 543 469 408 357 314 27830 49.2 40500 23438 14759 9888 6944 5063 3804 2930 2304 1845 1500 1236 1030 868 738 633 547 475 416 366 32431-1/2 51.7 46884 27132 17086 11446 8039 5860 4403 3391 2667 2136 1736 1431 1193 1005 854 733 633 550 482 424 37533 54.1 53906 31195 19645 13161 9243 6738 5063 3899 3067 2456 1997 1645 1372 1155 982 842 728 633 554 487 43134-1/2 56.6 61595 35646 22447 15038 10562 7699 5785 4456 3505 2806 2281 1880 1567 1320 1123 962 831 723 633 557 49336 59.1 69984 40500 25504 17086 12000 8748 6573 5063 3982 3188 2592 2136 1781 1500 1275 1094 945 822 719 633 56037-1/2 61.5 79102 45776 28827 19312 13563 9888 7429 5722 4501 3603 2930 2414 2013 1695 1442 1236 1068 929 813 715 63339 64.0 88979 51492 32427 21723 15257 11122 8356 6437 5063 4053 3296 2715 2264 1907 1622 1390 1201 1045 914 805 71240-1/2 66.4 99645 57665 36314 24327 17086 12456 9358 7208 5669 4539 3691 3041 2535 2136 1816 1557 1345 1170 1024 901 79742 68.9 111132 64313 40500 27132 19056 13892 10437 8039 6323 5063 4116 3391 2827 2382 2025 1736 1500 1305 1142 1005 889Notes:(1) This table does NOT consider strength and shall be used in combination with (5) Multiply the tabulated value by a factor given below for other selected deflection limits:the Strength Consideration table given above. Deflection Limit Multiply the tabulated value by(2) Span = simply supported beam. Span/240 360/240 or 1.5(3) Service conditions = dry. Span/180 360/180 or 2.0(4) Uniform load = total unfactored load including beam weight.APA/EWS


<strong>LRFD</strong>GUIDELINESTRUCTURALTO <strong>LRFD</strong>GLUEDFOR STRUCTURALLAMINATED TIMBERCOMPOSITESUPPLEMENTLUMBER 7171Table 7.1Design Loads for Simple Span Douglas Fir-Larch Glued LaminatedTimber Beams (Cont.)Maximum Factored Total Loads (lbf/ft) -- Strength Consideration (λ = 0.80)F b = 6.10 ksi; F v = 0.545 ksiBeam Width = 8-3/4 inchesDepth Beam Span (ft)(in.) wt. (plf) 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 5012 25.5 5723 4033 2925 2210 1725 1383 1132 943 797 682 590 515 454 402 359 323 291 264 241 220 20213-1/2 28.7 6645 5057 3658 2764 2158 1730 1416 1180 997 853 738 645 568 503 449 403 364 330 301 275 25315 31.9 7630 6024 4469 3376 2636 2113 1730 1441 1218 1042 902 788 693 615 549 493 445 403 368 336 30816-1/2 35.1 8682 6805 5356 4047 3160 2533 2073 1727 1460 1249 1081 944 831 737 658 591 533 484 440 403 37018 38.3 9810 7630 6243 4774 3728 2988 2446 2037 1722 1474 1275 1114 980 870 776 697 629 571 520 475 43619-1/2 41.5 11021 8502 6920 5558 4340 3479 2848 2372 2005 1716 1485 1296 1141 1012 904 811 732 664 605 553 50821 44.7 12325 9425 7630 6398 4996 4005 3278 2731 2308 1976 1709 1493 1314 1165 1040 934 843 765 697 637 58522-1/2 47.9 13734 10405 8374 7007 5696 4566 3737 3113 2632 2252 1949 1702 1498 1329 1186 1065 961 872 794 726 66724 51.0 15260 11445 9156 7630 6439 5161 4225 3519 2975 2546 2203 1924 1694 1502 1341 1204 1087 986 898 821 75325-1/2 54.2 16919 12553 9978 8279 7075 5791 4741 3949 3338 2857 2472 2158 1900 1685 1505 1351 1219 1106 1007 921 84527 57.4 18728 13734 10843 8957 7630 6456 5285 4402 3721 3185 2755 2406 2118 1879 1677 1506 1359 1233 1123 1027 94228-1/2 60.6 20710 14997 11754 9665 8206 7130 5856 4878 4124 3529 3053 2666 2348 2082 1859 1669 1506 1366 1244 1138 104430 63.8 22890 16350 12717 10405 8804 7630 6456 5378 4546 3891 3366 2939 2588 2295 2049 1840 1660 1506 1372 1254 115131-1/2 67.0 25299 17803 13734 11179 9425 8147 7083 5900 4987 4268 3693 3225 2839 2518 2248 2018 1822 1652 1505 1376 126333 70.2 27977 19368 14811 11990 10072 8682 7630 6445 5448 4663 4034 3523 3102 2751 2456 2205 1990 1805 1644 1503 138034-1/2 73.4 30969 21059 15954 12841 10744 9236 8100 7013 5928 5074 4389 3833 3375 2993 2672 2399 2165 1964 1789 1636 150236 76.6 34335 22890 17168 13734 11445 9810 8584 7604 6428 5501 4759 4156 3659 3245 2897 2601 2348 2129 1940 1774 162837-1/2 79.8 38150 24880 18460 14673 12176 10405 9083 8060 6946 5945 5143 4491 3954 3507 3131 2811 2537 2301 2096 1917 175939 82.9 42510 27052 19838 15662 12938 11021 9599 8502 7483 6405 5541 4839 4260 3778 3373 3028 2733 2479 2258 2065 189540-1/2 86.1 47541 29430 21311 16704 13734 11661 10132 8957 8026 6881 5953 5198 4577 4059 3624 3254 2937 2663 2426 2219 203642 89.3 53410 32046 22890 17803 14566 12325 10682 9425 8433 7373 6379 5570 4904 4350 3883 3486 3147 2854 2600 2377 218243-1/2 92.5 60346 34937 24586 18966 15437 13016 11251 9908 8851 7882 6818 5954 5242 4650 4150 3727 3364 3051 2779 2541 233245 95.7 68670 38150 26412 20197 16350 13734 11840 10405 9280 8374 7272 6350 5591 4959 4427 3975 3588 3254 2964 2710 2488Notes:(1) This table does NOT consider serviceability and shall be used in combination with (4) Uniform load = total factored load including beam weight.the Serviceability Consideration table given below.(5) Volume factor is included.(2) Span = simply supported beam. (6) Maximum beam shear is located at a distance from the support equal to the beam depth.(3) Service conditions = dry. (7) Upper right area limited by bending strength and lower left area limited by shear strength.Maximum Unfactored Loads (lbf/ft) -- Serviceability Consideration (Deflection Limit = Span/360)E x = 1800 ksiBeam Width = 8-3/4 inchesDepth Beam Span (ft)(in.) wt. (plf) 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 5012 25.5 3360 1944 1224 820 576 420 316 243 191 153 124 103 85 72 61 53 45 39 35 30 2713-1/2 28.7 4784 2769 1743 1168 820 598 449 346 272 218 177 146 122 103 87 75 65 56 49 43 3815 31.9 6563 3798 2392 1602 1125 820 616 475 373 299 243 200 167 141 120 103 89 77 67 59 5316-1/2 35.1 8735 5055 3183 2132 1498 1092 820 632 497 398 324 267 222 187 159 136 118 103 90 79 7018 38.3 11340 6563 4133 2769 1944 1418 1065 820 645 517 420 346 289 243 207 177 153 133 117 103 9119-1/2 41.5 14418 8344 5254 3520 2472 1802 1354 1043 820 657 534 440 367 309 263 225 195 169 148 130 11521 44.7 18008 10421 6563 4396 3088 2251 1691 1303 1025 820 667 550 458 386 328 281 243 211 185 163 14422-1/2 47.9 22148 12817 8072 5407 3798 2769 2080 1602 1260 1009 820 676 564 475 404 346 299 260 228 200 17724 51.0 26880 15556 9796 6563 4609 3360 2524 1944 1529 1224 996 820 684 576 490 420 363 316 276 243 21525-1/2 54.2 32242 18658 11750 7871 5528 4030 3028 2332 1834 1469 1194 984 820 691 588 504 435 378 331 292 25827 57.4 38273 22148 13948 9344 6563 4784 3594 2769 2178 1743 1418 1168 974 820 697 598 517 449 393 346 30628-1/2 60.6 45012 26049 16404 10989 7718 5627 4227 3256 2561 2050 1667 1374 1145 965 820 703 608 528 462 407 36030 63.8 52500 30382 19133 12817 9002 6563 4931 3798 2987 2392 1944 1602 1336 1125 957 820 709 616 539 475 42031-1/2 67.0 60775 35171 22148 14838 10421 7597 5708 4396 3458 2769 2251 1855 1546 1303 1108 950 820 713 624 550 48633 70.2 69878 40438 25466 17060 11982 8735 6563 5055 3976 3183 2588 2132 1778 1498 1273 1092 943 820 718 632 55934-1/2 73.4 79846 46207 29098 19494 13691 9981 7499 5776 4543 3637 2957 2437 2031 1711 1455 1248 1078 937 820 722 63936 76.6 90720 52500 33061 22148 15556 11340 8520 6563 5162 4133 3360 2769 2308 1944 1653 1418 1224 1065 932 820 72637-1/2 79.8 102539 59340 37368 25034 17582 12817 9630 7417 5834 4671 3798 3129 2609 2198 1869 1602 1384 1204 1053 927 82039 82.9 115343 66749 42034 28160 19778 14418 10832 8344 6563 5254 4272 3520 2935 2472 2102 1802 1557 1354 1185 1043 92340-1/2 86.1 129170 74751 47074 31536 22148 16146 12131 9344 7349 5884 4784 3942 3286 2769 2354 2018 1743 1516 1327 1168 103342 89.3 144060 83368 52500 35171 24702 18008 13529 10421 8196 6563 5336 4396 3665 3088 2625 2251 1944 1691 1480 1303 115243-1/2 92.5 160053 92623 58328 39075 27444 20007 15031 11578 9106 7291 5928 4884 4072 3430 2917 2501 2160 1879 1644 1447 128045 95.7 177188 102539 64573 43259 30382 22148 16640 12817 10081 8072 6563 5407 4508 3798 3229 2769 2392 2080 1820 1602 1418Notes:(1) This table does NOT consider strength and shall be used in combination with (5) Multiply the tabulated value by a factor given below for other selected deflection limits:the Strength Consideration table given above. Deflection Limit Multiply the tabulated value by(2) Span = simply supported beam. Span/240 360/240 or 1.5(3) Service conditions = dry. Span/180 360/180 or 2.0(4) Uniform load = total unfactored load including beam weight.7LOAD AND SPAN TABLESAPA/EWS


72 LOAD AND SPAN TABLESTable 7.2Design Loads for Simple Span Southern Pine Glued LaminatedTimber BeamsMaximum Factored Total Loads (lbf/ft) -- Strength Consideration (λ = 0.80)F b = 6.10 ksi; F v = 0.575 ksiBeam Width = 3 inchesDepth Beam Span (ft)(in.) wt. (plf) 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 485-1/2 4.1 654 418 290 213 163 --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- ---6-7/8 5.2 1021 654 454 333 255 202 163 --- --- --- --- --- --- --- --- --- --- --- --- --- ---8-1/4 6.2 1470 941 654 480 368 290 235 194 163 --- --- --- --- --- --- --- --- --- --- --- ---9-5/8 7.2 2001 1281 890 654 500 395 320 265 222 189 163 --- --- --- --- --- --- --- --- --- ---11 8.3 2462 1673 1162 854 654 516 418 346 290 247 213 186 163 --- --- --- --- --- --- --- ---12-3/8 9.3 2876 2117 1470 1080 827 654 529 437 368 313 270 235 207 183 163 --- --- --- --- --- ---13-3/4 10.3 3324 2462 1815 1334 1021 807 654 540 454 387 333 290 255 225 200 179 161 --- --- --- ---15-1/8 11.3 3809 2791 2197 1614 1236 976 791 654 549 468 403 351 307 271 241 216 194 176 160 --- ---16-1/2 12.4 4337 3141 2462 1921 1470 1162 941 778 654 557 478 415 364 321 286 256 230 208 189 173 15817-7/8 13.4 4913 3513 2735 2238 1726 1364 1104 913 767 651 559 486 425 376 334 299 269 244 221 202 18519-1/4 14.4 5544 3911 3022 2462 2001 1581 1281 1059 886 752 646 561 491 434 386 346 311 281 256 234 21420-5/8 15.5 6238 4337 3324 2695 2266 1815 1470 1212 1014 861 739 642 562 497 442 395 356 322 293 267 24522 16.5 7006 4794 3643 2938 2462 2065 1671 1375 1150 976 838 728 638 563 501 448 404 365 332 303 27823-3/8 17.5 7860 5285 3980 3192 2665 2287 1881 1547 1294 1098 944 819 718 634 564 505 454 411 374 341 313Notes:(1) This table does NOT consider serviceability and shall be used in combination with (4) Uniform load = total factored load including beam weight.the Serviceability Consideration table given below.(5) Volume factor is included.(2) Span = simply supported beam. (6) Maximum beam shear is located at a distance from the support equal to the beam depth.(3) Service conditions = dry. (7) Upper right area limited by bending strength and lower left area limited by shear strength.Maximum Unfactored Loads (lbf/ft) -- Serviceability Consideration (Deflection Limit = Span/360)E x = 1800 ksiBeam Width = 3 inchesDepth Beam Span (ft)(in.) wt. (plf) 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 485-1/2 4.1 217 111 64 40 27 --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- ---6-7/8 5.2 423 217 125 79 53 37 27 --- --- --- --- --- --- --- --- --- --- --- --- --- ---8-1/4 6.2 731 374 217 136 91 64 47 35 27 --- --- --- --- --- --- --- --- --- --- --- ---9-5/8 7.2 1161 594 344 217 145 102 74 56 43 34 27 --- --- --- --- --- --- --- --- --- ---11 8.3 1733 887 514 323 217 152 111 83 64 50 40 33 27 --- --- --- --- --- --- --- ---12-3/8 9.3 2468 1263 731 460 308 217 158 119 91 72 58 47 39 32 27 --- --- --- --- --- ---13-3/4 10.3 3385 1733 1003 632 423 297 217 163 125 99 79 64 53 44 37 32 27 --- --- --- ---15-1/8 11.3 4505 2307 1335 841 563 396 288 217 167 131 105 85 70 59 49 42 36 31 27 --- ---16-1/2 12.4 5849 2995 1733 1091 731 514 374 281 217 170 136 111 91 76 64 55 47 40 35 31 2717-7/8 13.4 7437 3808 2203 1388 930 653 476 358 275 217 173 141 116 97 82 69 59 51 45 39 3419-1/4 14.4 9288 4756 2752 1733 1161 815 594 447 344 271 217 176 145 121 102 87 74 64 56 49 4320-5/8 15.5 11424 5849 3385 2132 1428 1003 731 549 423 333 266 217 179 149 125 107 91 79 69 60 5322 16.5 13865 7099 4108 2587 1733 1217 887 667 514 404 323 263 217 181 152 129 111 96 83 73 6423-3/8 17.5 16630 8515 4927 3103 2079 1460 1064 800 616 484 388 315 260 217 182 155 133 115 100 87 77Notes:(1) This table does NOT consider strength and shall be used in combination with (5) Multiply the tabulated value by a factor given below for other selected deflection limits:the Strength Consideration table given above. Deflection Limit Multiply the tabulated value by(2) Span = simply supported beam. Span/240 360/240 or 1.5(3) Service conditions = dry. Span/180 360/180 or 2.0(4) Uniform load = total unfactored load including beam weight.APA/EWS


<strong>LRFD</strong>GUIDELINESTRUCTURALTO <strong>LRFD</strong>GLUEDFOR STRUCTURALLAMINATED TIMBERCOMPOSITESUPPLEMENTLUMBER 7373Table 7.2Design Loads for Simple Span Southern Pine Glued LaminatedTimber Beams (Cont.)Maximum Factored Total Loads (lbf/ft) -- Strength Consideration (λ = 0.80)F b = 6.10 ksi; F v = 0.575 ksiBeam Width = 5 inchesDepth Beam Span (ft)(in.) wt. (plf) 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 486-7/8 8.6 1702 1089 756 556 425 336 272 225 189 --- --- --- --- --- --- --- --- --- --- --- ---8-1/4 10.3 2451 1568 1089 800 613 484 392 324 272 232 200 --- --- --- --- --- --- --- --- --- ---9-5/8 12.0 3336 2135 1483 1089 834 659 534 441 371 316 272 236 207 183 --- --- --- --- --- --- ---11 13.8 4103 2788 1936 1423 1089 861 697 576 484 410 353 306 268 237 211 189 --- --- --- --- ---12-3/8 15.5 4794 3529 2451 1801 1379 1089 882 727 608 516 444 385 337 298 265 237 214 193 --- --- ---13-3/4 17.2 5540 4103 3026 2223 1702 1345 1086 893 747 634 545 473 414 366 325 291 262 237 216 197 18015-1/8 18.9 6349 4651 3661 2690 2059 1623 1308 1076 900 764 656 569 499 441 392 351 316 286 260 237 21716-1/2 20.6 7229 5234 4103 3201 2448 1923 1549 1274 1066 905 777 675 591 522 464 416 374 339 308 281 25717-7/8 22.3 8188 5856 4558 3730 2862 2248 1811 1490 1246 1058 909 789 691 610 543 486 437 396 360 328 30119-1/4 24.1 9240 6519 5036 4103 3306 2597 2093 1721 1440 1222 1050 911 798 705 627 561 505 457 416 379 34820-5/8 25.8 10397 7229 5540 4491 3776 2971 2394 1969 1647 1398 1201 1043 913 807 717 642 578 523 476 434 39822 27.5 11677 7989 6072 4897 4103 3370 2715 2233 1868 1586 1362 1182 1036 915 814 728 656 593 539 492 45123-3/8 29.2 13099 8808 6634 5321 4442 3793 3056 2513 2103 1785 1533 1331 1166 1030 916 820 738 668 607 554 50824-3/4 30.9 14690 9689 7229 5765 4794 4103 3416 2810 2351 1995 1714 1488 1303 1151 1024 916 825 746 679 619 56826-1/8 32.7 16481 10643 7859 6229 5160 4403 3796 3122 2612 2217 1904 1653 1448 1279 1138 1018 917 829 754 688 63127-1/2 34.4 18512 11677 8528 6717 5540 4714 4103 3451 2887 2450 2105 1827 1601 1414 1257 1125 1013 917 833 761 69728-7/8 36.1 20835 12802 9240 7229 5936 5036 4373 3795 3175 2695 2315 2010 1760 1555 1383 1238 1114 1008 916 837 76730-1/4 37.8 23518 14032 9999 7767 6349 5369 4651 4103 3477 2950 2535 2200 1928 1702 1514 1355 1220 1104 1003 916 84031-5/8 39.5 26652 15381 10809 8333 6779 5714 4938 4348 3791 3218 2764 2400 2102 1857 1651 1478 1330 1204 1094 999 91633 41.3 30360 16867 11677 8929 7229 6072 5234 4600 4103 3496 3003 2607 2284 2017 1794 1606 1446 1308 1189 1085 99534-3/8 43.0 34817 18512 12608 9559 7698 6443 5540 4859 4327 3786 3252 2823 2473 2184 1943 1739 1565 1416 1288 1175 107735-3/4 44.7 40273 20344 13610 10225 8188 6828 5856 5126 4558 4087 3511 3048 2670 2358 2097 1877 1690 1529 1390 1269 1163Notes:(1) This table does NOT consider serviceability and shall be used in combination with (4) Uniform load = total factored load including beam weight.the Serviceability Consideration table given below.(5) Volume factor is included.(2) Span = simply supported beam. (6) Maximum beam shear is located at a distance from the support equal to the beam depth.(3) Service conditions = dry. (7) Upper right area limited by bending strength and lower left area limited by shear strength.Maximum Unfactored Loads (lbf/ft) -- Serviceability Consideration (Deflection Limit = Span/360)E x = 1800 ksiBeam Width = 5 inchesDepth Beam Span (ft)(in.) wt. (plf) 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 486-7/8 8.6 705 361 209 132 88 62 45 34 26 --- --- --- --- --- --- --- --- --- --- --- ---8-1/4 10.3 1219 624 361 227 152 107 78 59 45 35 28 --- --- --- --- --- --- --- --- --- ---9-5/8 12.0 1935 991 573 361 242 170 124 93 72 56 45 37 30 25 --- --- --- --- --- --- ---11 13.8 2888 1479 856 539 361 254 185 139 107 84 67 55 45 38 32 27 --- --- --- --- ---12-3/8 15.5 4113 2106 1219 767 514 361 263 198 152 120 96 78 64 54 45 38 33 28 --- --- ---13-3/4 17.2 5642 2888 1672 1053 705 495 361 271 209 164 132 107 88 73 62 53 45 39 34 30 2615-1/8 18.9 7509 3845 2225 1401 939 659 481 361 278 219 175 142 117 98 82 70 60 52 45 39 3516-1/2 20.6 9749 4991 2888 1819 1219 856 624 469 361 284 227 185 152 127 107 91 78 67 59 51 4517-7/8 22.3 12394 6346 3672 2313 1549 1088 793 596 459 361 289 235 194 161 136 116 99 86 74 65 5719-1/4 24.1 15480 7926 4587 2888 1935 1359 991 744 573 451 361 294 242 202 170 144 124 107 93 81 7220-5/8 25.8 19040 9749 5642 3553 2380 1672 1219 916 705 555 444 361 298 248 209 178 152 132 114 100 8822 27.5 23108 11831 6847 4312 2888 2029 1479 1111 856 673 539 438 361 301 254 216 185 160 139 122 10723-3/8 29.2 27717 14191 8212 5172 3465 2433 1774 1333 1027 807 646 526 433 361 304 259 222 192 167 146 12824-3/4 30.9 32901 16845 9749 6139 4113 2888 2106 1582 1219 958 767 624 514 429 361 307 263 227 198 173 15226-1/8 32.7 38695 19812 11465 7220 4837 3397 2476 1861 1433 1127 903 734 605 504 425 361 310 267 233 204 17927-1/2 34.4 45132 23108 13372 8421 5642 3962 2888 2170 1672 1315 1053 856 705 588 495 421 361 312 271 237 20928-7/8 36.1 52246 26750 15480 9749 6531 4587 3344 2512 1935 1522 1219 991 816 681 573 487 418 361 314 275 24230-1/4 37.8 60071 30756 17799 11209 7509 5274 3845 2888 2225 1750 1401 1139 939 783 659 561 481 415 361 316 27831-5/8 39.5 68640 35144 20338 12808 8580 6026 4393 3301 2542 2000 1601 1302 1073 894 753 640 549 474 413 361 31833 41.3 77988 39930 23108 14552 9749 6847 4991 3750 2888 2272 1819 1479 1219 1016 856 728 624 539 469 410 36134-3/8 43.0 88149 45132 26118 16448 11019 7739 5642 4239 3265 2568 2056 1672 1377 1148 967 822 705 609 530 464 40835-3/4 44.7 99155 50767 29379 18501 12394 8705 6346 4768 3672 2888 2313 1880 1549 1292 1088 925 793 685 596 522 459Notes:(1) This table does NOT consider strength and shall be used in combination with (5) Multiply the tabulated value by a factor given below for other selected deflection limits:the Strength Consideration table given above. Deflection Limit Multiply the tabulated value by(2) Span = simply supported beam. Span/240 360/240 or 1.5(3) Service conditions = dry. Span/180 360/180 or 2.0(4) Uniform load = total unfactored load including beam weight.7LOAD AND SPAN TABLESAPA/EWS


74 LOAD AND SPAN TABLESTable 7.2Design Loads for Simple Span Southern Pine Glued LaminatedTimber Beams (Cont.)Maximum Factored Total Loads (lbf/ft) -- Strength Consideration (λ = 0.80)F b = 6.10 ksi; F v = 0.575 ksiBeam Width = 6-3/4 inchesDepth Beam Span (ft)(in.) wt. (plf) 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 509-5/8 16.2 2882 2001 1470 1126 890 720 592 496 421 361 314 275 243 216 --- --- --- --- --- --- ---11 18.6 3764 2614 1921 1470 1160 935 769 643 546 469 407 357 315 280 251 226 204 --- --- --- ---12-3/8 20.9 4764 3308 2431 1858 1459 1176 967 809 687 590 512 449 396 352 315 284 257 234 213 195 ---13-3/4 23.2 5539 4085 3000 2282 1792 1444 1188 994 843 724 629 551 487 433 387 349 316 287 262 240 22115-1/8 25.5 6279 4942 3613 2748 2158 1739 1430 1197 1016 872 757 663 586 521 466 420 380 345 315 289 26616-1/2 27.8 7067 5539 4281 3256 2557 2060 1695 1418 1203 1034 897 786 694 618 553 498 450 409 374 342 31517-7/8 30.2 7905 6153 5004 3806 2989 2409 1981 1657 1407 1208 1049 919 812 722 646 582 526 478 437 400 36819-1/4 32.5 8801 6799 5539 4397 3454 2783 2289 1915 1625 1396 1212 1062 938 834 747 672 608 553 505 462 42520-5/8 34.8 9759 7479 6063 5031 3951 3184 2619 2191 1859 1597 1387 1215 1073 954 854 769 696 632 577 529 48722 37.1 10786 8197 6611 5539 4481 3611 2970 2485 2109 1812 1573 1378 1217 1082 969 872 789 717 655 600 55223-3/8 39.4 11890 8956 7183 5996 5044 4064 3343 2797 2373 2039 1770 1551 1369 1218 1090 981 888 807 737 675 62124-3/4 41.8 13081 9759 7782 6471 5539 4543 3737 3126 2653 2279 1979 1733 1531 1362 1219 1097 993 902 824 755 69426-1/8 44.1 14368 10609 8410 6965 5945 5048 4152 3474 2948 2533 2199 1926 1701 1513 1354 1219 1103 1003 915 839 77227-1/2 46.4 15764 11513 9068 7479 6364 5539 4589 3839 3258 2799 2430 2129 1880 1672 1497 1347 1219 1108 1012 927 85328-7/8 48.7 17283 12474 9759 8014 6799 5903 5047 4223 3584 3078 2672 2341 2068 1839 1646 1482 1341 1219 1113 1020 93830-1/4 51.0 18943 13498 10485 8571 7248 6279 5526 4624 3924 3371 2926 2564 2264 2014 1802 1622 1468 1335 1218 1117 102731-5/8 53.4 20764 14593 11249 9152 7714 6667 5870 5042 4279 3676 3191 2796 2469 2196 1966 1769 1601 1455 1329 1218 112033 55.7 22770 15764 12055 9759 8197 7067 6210 5478 4649 3994 3467 3038 2683 2386 2136 1923 1740 1581 1444 1323 121734-3/8 58.0 24991 17021 12905 10392 8698 7479 6560 5842 5035 4325 3755 3289 2905 2584 2313 2082 1884 1712 1563 1433 131835-3/4 60.3 27465 18373 13804 11054 9218 7905 6920 6153 5435 4669 4053 3551 3136 2789 2496 2247 2033 1848 1687 1546 142237-1/8 62.6 30236 19832 14755 11748 9759 8346 7290 6471 5818 5025 4363 3822 3375 3002 2687 2419 2189 1990 1816 1665 153138-1/2 65.0 33361 21411 15764 12474 10320 8801 7671 6799 6104 5395 4683 4103 3623 3223 2885 2597 2350 2136 1950 1787 164339-7/8 67.3 36913 23124 16836 13236 10905 9271 8064 7134 6397 5777 5015 4393 3880 3451 3089 2781 2516 2287 2088 1913 1760Notes:(1) This table does NOT consider serviceability and shall be used in combination with (4) Uniform load = total factored load including beam weight.the Serviceability Consideration table given below.(5) Volume factor is included.(2) Span = simply supported beam. (6) Maximum beam shear is located at a distance from the support equal to the beam depth.(3) Service conditions = dry. (7) Upper right area limited by bending strength and lower left area limited by shear strength.Maximum Unfactored Loads (lbf/ft) -- Serviceability Consideration (Deflection Limit = Span/360)E x = 1800 ksiBeam Width = 6-3/4 inchesDepth Beam Span (ft)(in.) wt. (plf) 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 509-5/8 16.2 1337 774 487 327 229 167 126 97 76 61 50 41 34 29 --- --- --- --- --- --- ---11 18.6 1997 1155 728 487 342 250 188 144 114 91 74 61 51 43 36 31 27 --- --- --- ---12-3/8 20.9 2843 1645 1036 694 487 355 267 206 162 129 105 87 72 61 52 44 38 33 29 26 ---13-3/4 23.2 3899 2257 1421 952 669 487 366 282 222 178 144 119 99 84 71 61 53 46 40 35 3115-1/8 25.5 5190 3004 1891 1267 890 649 487 375 295 236 192 158 132 111 95 81 70 61 53 47 4216-1/2 27.8 6738 3899 2456 1645 1155 842 633 487 383 307 250 206 171 144 123 105 91 79 69 61 5417-7/8 30.2 8567 4958 3122 2092 1469 1071 805 620 487 390 317 261 218 184 156 134 116 101 88 77 6919-1/4 32.5 10700 6192 3899 2612 1835 1337 1005 774 609 487 396 327 272 229 195 167 144 126 110 97 8620-5/8 34.8 13161 7616 4796 3213 2257 1645 1236 952 749 600 487 402 335 282 240 206 178 154 135 119 10522 37.1 15972 9243 5821 3899 2739 1997 1500 1155 909 728 592 487 406 342 291 250 216 188 164 144 12823-3/8 39.4 19158 11087 6982 4677 3285 2395 1799 1386 1090 873 710 585 487 411 349 299 259 225 197 173 15324-3/4 41.8 22741 13161 8288 5552 3899 2843 2136 1645 1294 1036 842 694 579 487 414 355 307 267 234 206 18226-1/8 44.1 26746 15478 9747 6530 4586 3343 2512 1935 1522 1218 991 816 680 573 487 418 361 314 275 242 21427-1/2 46.4 31195 18053 11369 7616 5349 3899 2930 2257 1775 1421 1155 952 794 669 569 487 421 366 320 282 25028-7/8 48.7 36112 20898 13161 8817 6192 4514 3391 2612 2055 1645 1337 1102 919 774 658 564 487 424 371 327 28930-1/4 51.0 41521 24028 15132 10137 7120 5190 3899 3004 2362 1891 1538 1267 1056 890 757 649 560 487 427 375 33231-5/8 53.4 47444 27456 17290 11583 8135 5931 4456 3432 2699 2161 1757 1448 1207 1017 865 741 640 557 487 429 38033 55.7 53906 31195 19645 13161 9243 6738 5063 3899 3067 2456 1997 1645 1372 1155 982 842 728 633 554 487 43134-3/8 58.0 60928 35259 22204 14875 10447 7616 5722 4407 3467 2776 2257 1859 1550 1306 1110 952 822 715 626 551 48735-3/4 60.3 68536 39662 24977 16732 11752 8567 6437 4958 3899 3122 2538 2092 1744 1469 1249 1071 925 805 704 620 54837-1/8 62.6 76752 44417 27971 18738 13161 9594 7208 5552 4367 3496 2843 2342 1953 1645 1399 1199 1036 901 789 694 61438-1/2 65.0 85600 49537 31195 20898 14678 10700 8039 6192 4870 3899 3170 2612 2178 1835 1560 1337 1155 1005 879 774 68539-7/8 67.3 95103 55036 34658 23218 16307 11888 8932 6880 5411 4332 3522 2902 2420 2038 1733 1486 1284 1116 977 860 761Notes:(1) This table does NOT consider strength and shall be used in combination with (5) Multiply the tabulated value by a factor given below for other selected deflection limits:the Strength Consideration table given above. Deflection Limit Multiply the tabulated value by(2) Span = simply supported beam. Span/240 360/240 or 1.5(3) Service conditions = dry. Span/180 360/180 or 2.0(4) Uniform load = total unfactored load including beam weight.APA/EWS


<strong>LRFD</strong>GUIDELINESTRUCTURALTO <strong>LRFD</strong>GLUEDFOR STRUCTURALLAMINATED TIMBERCOMPOSITESUPPLEMENTLUMBER7575Table 7.2Design Loads for Simple Span Southern Pine Glued LaminatedTimber Beams (Cont.)Maximum Factored Total Loads (lbf/ft) -- Strength Consideration (λ = 0.80)F b = 6.10 ksi; F v = 0.545 ksiBeam Width = 8-1/2 inchesDepth Beam Span (ft)(in.) wt. (plf) 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 5011 23.4 4740 3292 2417 1838 1444 1163 957 801 679 584 507 444 392 349 312 281 254 231 211 --- ---12-3/8 26.3 5999 4166 3041 2313 1817 1464 1204 1007 855 734 637 558 493 439 393 353 320 291 265 243 22413-3/4 29.2 6975 5122 3734 2840 2231 1798 1479 1237 1050 902 783 686 606 539 482 434 393 357 326 299 27515-1/8 32.1 7907 6169 4497 3420 2687 2165 1780 1490 1264 1086 943 826 729 649 581 523 473 430 393 360 33116-1/2 35.1 8899 6975 5329 4053 3183 2565 2110 1765 1498 1287 1117 979 864 769 688 619 560 509 465 426 39217-7/8 38.0 9955 7748 6229 4737 3721 2998 2466 2063 1751 1504 1306 1144 1010 899 804 724 655 596 544 498 45819-1/4 40.9 11082 8561 6975 5474 4300 3464 2850 2384 2023 1738 1509 1322 1167 1038 929 837 757 688 628 576 52920-5/8 43.8 12289 9418 7635 6262 4919 3963 3260 2727 2315 1988 1726 1512 1335 1188 1063 957 866 787 719 659 60622 46.8 13582 10322 8325 6975 5578 4495 3697 3093 2625 2255 1958 1715 1515 1347 1206 1085 982 893 815 747 68723-3/8 49.7 14973 11278 9045 7551 6279 5059 4161 3481 2954 2538 2203 1930 1705 1516 1357 1222 1105 1005 917 841 77324-3/4 52.6 16472 12289 9800 8149 6975 5655 4652 3892 3303 2837 2463 2158 1906 1695 1517 1366 1236 1123 1025 940 86426-1/8 55.5 18093 13360 10590 8771 7486 6284 5169 4324 3670 3153 2737 2398 2118 1883 1686 1518 1373 1248 1139 1044 96027-1/2 58.4 19851 14498 11419 9418 8014 6945 5713 4779 4056 3484 3025 2650 2340 2082 1863 1677 1518 1379 1259 1154 106128-7/8 61.4 21764 15708 12289 10092 8561 7434 6283 5256 4461 3832 3327 2914 2574 2289 2049 1845 1669 1517 1385 1269 116730-1/4 64.3 23854 16998 13203 10793 9128 7907 6879 5755 4884 4196 3643 3191 2818 2507 2244 2020 1827 1661 1517 1390 127831-5/8 67.2 26147 18376 14166 11525 9714 8395 7392 6277 5327 4576 3972 3480 3073 2734 2447 2203 1993 1812 1654 1516 139433 70.1 28673 19851 15180 12289 10322 8899 7820 6820 5788 4972 4316 3781 3339 2970 2659 2393 2165 1968 1797 1647 151534-3/8 73.0 31471 21434 16251 13086 10953 9418 8261 7356 6267 5384 4674 4095 3616 3216 2879 2591 2345 2132 1946 1783 164035-3/4 76.0 34585 23136 17382 13920 11608 9955 8714 7748 6765 5812 5045 4420 3904 3472 3108 2797 2531 2301 2101 1925 177137-1/8 78.9 38074 24974 18580 14793 12289 10509 9180 8149 7282 6256 5431 4758 4202 3737 3345 3011 2725 2477 2261 2072 190638-1/2 81.8 42010 26961 19851 15708 12996 11082 9660 8561 7687 6715 5830 5107 4510 4012 3591 3232 2925 2659 2427 2224 204639-7/8 84.7 46483 29120 21200 16668 13732 11675 10154 8984 8056 7191 6243 5469 4830 4296 3845 3461 3132 2847 2599 2382 219141-1/4 87.7 51612 31471 22637 17675 14498 12289 10664 9418 8433 7635 6669 5843 5160 4589 4108 3698 3346 3042 2777 2545 2340Notes:(1) This table does NOT consider serviceability and shall be used in combination with (4) Uniform load = total factored load including beam weight.the Serviceability Consideration table given below.(5) Volume factor is included.(2) Span = simply supported beam. (6) Maximum beam shear is located at a distance from the support equal to the beam depth.(3) Service conditions = dry. (7) Upper right area limited by bending strength and lower left area limited by shear strength.Maximum Unfactored Loads (lbf/ft) -- Serviceability Consideration (Deflection Limit = Span/360)E x = 1800 ksiBeam Width = 8-1/2 inchesDepth Beam Span (ft)(in.) wt. (plf) 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 5011 23.4 2514 1455 916 614 431 314 236 182 143 115 93 77 64 54 46 39 34 30 26 --- ---12-3/8 26.3 3580 2072 1305 874 614 447 336 259 204 163 133 109 91 77 65 56 48 42 37 32 2913-3/4 29.2 4910 2842 1789 1199 842 614 461 355 279 224 182 150 125 105 89 77 66 58 50 44 3915-1/8 32.1 6536 3782 2382 1596 1121 817 614 473 372 298 242 199 166 140 119 102 88 77 67 59 5216-1/2 35.1 8485 4910 3092 2072 1455 1061 797 614 483 387 314 259 216 182 155 133 115 100 87 77 6817-7/8 38.0 10788 6243 3932 2634 1850 1349 1013 780 614 491 400 329 274 231 197 169 146 127 111 98 8619-1/4 40.9 13474 7797 4910 3290 2310 1684 1265 975 767 614 499 411 343 289 246 211 182 158 138 122 10820-5/8 43.8 16573 9591 6040 4046 2842 2072 1556 1199 943 755 614 506 422 355 302 259 224 195 170 150 13322 46.8 20113 11639 7330 4910 3449 2514 1889 1455 1144 916 745 614 512 431 367 314 271 236 207 182 16123-3/8 49.7 24125 13961 8792 5890 4137 3016 2266 1745 1373 1099 894 736 614 517 440 377 326 283 248 218 19324-3/4 52.6 28637 16573 10436 6992 4910 3580 2689 2072 1629 1305 1061 874 729 614 522 447 387 336 294 259 22926-1/8 55.5 33680 19491 12274 8223 5775 4210 3163 2436 1916 1534 1247 1028 857 722 614 526 455 395 346 305 26927-1/2 58.4 39283 22733 14316 9591 6736 4910 3689 2842 2235 1789 1455 1199 999 842 716 614 530 461 404 355 31428-7/8 61.4 45475 26317 16573 11102 7797 5684 4271 3290 2587 2072 1684 1388 1157 975 829 711 614 534 467 411 36430-1/4 64.3 52286 30258 19055 12765 8965 6536 4910 3782 2975 2382 1937 1596 1330 1121 953 817 706 614 537 473 41831-5/8 67.2 59745 34574 21773 14586 10244 7468 5611 4322 3399 2722 2213 1823 1520 1281 1089 934 806 701 614 540 47833 70.1 67881 39283 24738 16573 11639 8485 6375 4910 3862 3092 2514 2072 1727 1455 1237 1061 916 797 697 614 54334-3/8 73.0 76725 44401 27961 18732 13156 9591 7206 5550 4365 3495 2842 2341 1952 1644 1398 1199 1036 901 788 694 61435-3/4 76.0 86305 49945 31452 21070 14798 10788 8105 6243 4910 3932 3196 2634 2196 1850 1573 1349 1165 1013 887 780 69037-1/8 78.9 96651 55932 35223 23596 16573 12081 9077 6992 5499 4403 3580 2950 2459 2072 1761 1510 1305 1135 993 874 77338-1/2 81.8 107793 62380 39283 26317 18483 13474 10123 7797 6133 4910 3992 3290 2743 2310 1964 1684 1455 1265 1107 975 86239-7/8 84.7 119759 69305 43644 29238 20535 14970 11247 8663 6814 5455 4436 3655 3047 2567 2183 1871 1616 1406 1230 1083 95841-1/4 87.7 132580 76725 48316 32368 22733 16573 12451 9591 7543 6040 4910 4046 3373 2842 2416 2072 1789 1556 1362 1199 1061Notes:(1) This table does NOT consider strength and shall be used in combination with (5) Multiply the tabulated value by a factor given below for other selected deflection limits:the Strength Consideration table given above. Deflection Limit Multiply the tabulated value by(2) Span = simply supported beam. Span/240 360/240 or 1.5(3) Service conditions = dry. Span/180 360/180 or 2.0(4) Uniform load = total unfactored load including beam weight.7LOAD AND SPAN TABLESAPA/EWS


76LOAD AND SPAN TABLESAPA/EWS


<strong>LRFD</strong> STRUCTURAL GLUED LAMINATED TIMBER SUPPLEMENT77DESIGNEXAMPLES8.1 General 788APA/EWS


78 GENERAL8.1 GeneralGeneral design examples for tension members, compressionmembers, and bending members are available inthe <strong>LRFD</strong> Manual of <strong>Wood</strong> Construction. The followingassociations are available for technical assistance:APA - The Engineered <strong>Wood</strong> AssociationEngineered <strong>Wood</strong> Systems7011 South 19th StreetTacoma, WA 98466Phone: (206) 565-6600Fax: (206) 565-7265<strong>American</strong> Institute of Timber Construction7012 South Revere Parkway, Suite 140Englewood, CO 80112Phone: (303) 792-9559Fax: (303) 792-0669APA/EWS


<strong>LRFD</strong> STRUCTURAL GLUED LAMINATED TIMBER SUPPLEMENT79SECTIONPROPERTIES9.1 Cross-Sectional Properties 80Table 9.1 Section Properties Western Species GluedLaminated Timber................................................. 81Table 9.2 Section Properties Southern Pine GluedLaminated Timber................................................. 879APA/EWS


80 SECTION PROPERTIES9.1 Cross-Sectional PropertiesCross-sectional properties are provided for glued laminatedtimber manufactured from Western species in Table9.1 and from Southern Pine in Table 9.2. These tables listthe beam depths; the reference and actual beam widths,the cross-sectional areas, moments of inertia, sectionmoduli and radii of gyration. Note that the plane of theglueline is in the X-X direction. Further, the width ofglued laminated timber is in the X-X direction and its depthis in the Y-Y direction. The thickness of each laminationprovided here for Western species and Southern Pine gluedlaminated timber members is 1-1/2 and 1-3/8 inches, respectively.However, other lamination thicknesses maybe used in glued laminated timber manufacturing and theavailability shall be verified prior to design.APA/EWS


<strong>LRFD</strong>GUIDELINESTRUCTURALTO <strong>LRFD</strong>GLUEDFOR STRUCTURALLAMINATED TIMBERCOMPOSITESUPPLEMENTLUMBER 8181Table 9.1Section Properties Western Species Glued Laminated TimberDepth Area X-X Axis Y-Y Axisd (in.) A (in. 2 ) I x (in. 4 ) S x (in. 3 ) r x (in.) I y (in. 4 ) S y (in. 3 )2-1/2 in. Width (r y = 0.722 in.)6 15.00 45.00 15.00 1.732 7.813 6.2507-1/2 18.75 87.89 23.44 2.165 9.766 7.8139 22.50 151.9 33.75 2.598 11.72 9.37510-1/2 26.25 241.2 45.94 3.031 13.67 10.9412 30.00 360.0 60.00 3.464 15.63 12.5013-1/2 33.75 512.6 75.94 3.897 17.58 14.0615 37.50 703.1 93.75 4.330 19.53 15.6316-1/2 41.25 935.9 113.4 4.763 21.48 17.1918 45.00 1215 135.0 5.196 23.44 18.7519-1/2 48.75 1545 158.4 5.629 25.39 20.3121 52.50 1929 183.8 6.062 27.34 21.883 in. Width (r y = 0.866 in.)6 18.00 54.00 18.00 1.732 13.50 9.0007-1/2 22.50 105.5 28.13 2.165 16.88 11.259 27.00 182.3 40.50 2.598 20.25 13.5010-1/2 31.50 289.4 55.13 3.031 23.63 15.7512 36.00 432.0 72.00 3.464 27.00 18.0013-1/2 40.50 615.1 91.13 3.897 30.38 20.2515 45.00 843.8 112.5 4.330 33.75 22.5016-1/2 49.50 1123 136.1 4.763 37.13 24.7518 54.00 1458 162.0 5.196 40.50 27.0019-1/2 58.50 1854 190.1 5.629 43.88 29.2521 63.00 2315 220.5 6.062 47.25 31.5022-1/2 67.50 2848 253.1 6.495 50.63 33.7524 72.00 3456 288.0 6.928 54.00 36.003-1/8 in. Width (r y = 0.902 in.)6 18.75 56.25 18.75 1.732 15.26 9.7667-1/2 23.44 109.9 29.30 2.165 19.07 12.219 28.13 189.8 42.19 2.598 22.89 14.6510-1/2 32.81 301.5 57.42 3.031 26.70 17.0912 37.50 450.0 75.00 3.464 30.52 19.5313-1/2 42.19 640.7 94.92 3.897 34.33 21.9715 46.88 878.9 117.2 4.330 38.15 24.4116-1/2 51.56 1170 141.8 4.763 41.96 26.8618 56.25 1519 168.8 5.196 45.78 29.3019-1/2 60.94 1931 198.0 5.629 49.59 31.7421 65.63 2412 229.7 6.062 53.41 34.1822-1/2 70.31 2966 263.7 6.495 57.22 36.6224 75.00 3600 300.0 6.928 61.04 39.069SECTION PROPERTIESAPA/EWS


82 SECTION PROPERTIESTable 9.1Section Properties Western Species Glued Laminated Timber (Cont.)Depth Area X-X Axis Y-Y Axisd (in.) A (in. 2 ) I x (in. 4 ) S x (in. 3 ) r x (in.) I y (in. 4 ) S y (in. 3 )5 in. Width (r y = 1.443 in.)6 30.00 90.00 30.00 1.732 62.50 25.007-1/2 37.50 175.8 46.88 2.165 78.13 31.259 45.00 303.8 67.50 2.598 93.75 37.5010-1/2 52.50 482.3 91.88 3.031 109.4 43.7512 60.00 720.0 120.0 3.464 125.0 50.0013-1/2 67.50 1025 151.9 3.897 140.6 56.2515 75.00 1406 187.5 4.330 156.3 62.5016-1/2 82.50 1872 226.9 4.763 171.9 68.7518 90.00 2430 270.0 5.196 187.5 75.0019-1/2 97.50 3090 316.9 5.629 203.1 81.2521 105.0 3859 367.5 6.062 218.8 87.5022-1/2 112.5 4746 421.9 6.495 234.4 93.7524 120.0 5760 480.0 6.928 250.0 100.025-1/2 127.5 6909 541.9 7.361 265.6 106.327 135.0 8201 607.5 7.794 281.3 112.528-1/2 142.5 9645 676.9 8.227 296.9 118.830 150.0 11250 750.0 8.660 312.5 125.031-1/2 157.5 13020 826.9 9.093 328.1 131.333 165.0 14970 907.5 9.526 343.8 137.534-1/2 172.5 17110 991.9 9.959 359.4 143.836 180.0 19440 1080 10.39 375.0 150.05-1/8 in. Width (r y = 1.479 in.)6 30.75 92.25 30.75 1.732 67.31 26.277-1/2 38.44 180.2 48.05 2.165 84.13 32.839 46.13 311.3 69.19 2.598 101.0 39.4010-1/2 53.81 494.4 94.17 3.031 117.8 45.9612 61.50 738.0 123.0 3.464 134.6 52.5313-1/2 69.19 1051 155.7 3.897 151.4 59.1015 76.88 1441 192.2 4.330 168.3 65.6616-1/2 84.56 1919 232.5 4.763 185.1 72.2318 92.25 2491 276.8 5.196 201.9 78.8019-1/2 99.94 3167 324.8 5.629 218.7 85.3621 107.6 3955 376.7 6.062 235.6 91.9322-1/2 115.3 4865 432.4 6.495 252.4 98.5024 123.0 5904 492.0 6.928 269.2 105.125-1/2 130.7 7082 555.4 7.361 286.0 111.627 138.4 8406 622.7 7.794 302.9 118.228-1/2 146.1 9887 693.8 8.227 319.7 124.830 153.8 11530 768.8 8.660 336.5 131.331-1/2 161.4 13350 847.5 9.093 353.4 137.933 169.1 15350 930.2 9.526 370.2 144.534-1/2 176.8 17540 1017 9.959 387.0 151.036 184.5 19930 1107 10.39 403.8 157.6APA/EWS


<strong>LRFD</strong>GUIDELINESTRUCTURALTO <strong>LRFD</strong>GLUEDFOR STRUCTURALLAMINATED TIMBERCOMPOSITESUPPLEMENTLUMBER 8383Table 9.1 Section Properties Western Species Glued Laminated Timber (Cont.)Depth Area X-X Axis Y-Y Axisd (in.) A (in. 2 ) I x (in. 4 ) S x (in. 3 ) r x (in.) I y (in. 4 ) S y (in. 3 )6-3/4 in. Width (r y = 1.949 in.)7-1/2 50.63 237.3 63.28 2.165 192.2 56.959 60.75 410.1 91.13 2.598 230.7 68.3410-1/2 70.88 651.2 124.0 3.031 269.1 79.7312 81.00 972.0 162.0 3.464 307.5 91.1313-1/2 91.13 1384 205.0 3.897 346.0 102.515 101.3 1898 253.1 4.330 384.4 113.916-1/2 111.4 2527 306.3 4.763 422.9 125.318 121.5 3281 364.5 5.196 461.3 136.719-1/2 131.6 4171 427.8 5.629 499.8 148.121 141.8 5209 496.1 6.062 538.2 159.522-1/2 151.9 6407 569.5 6.495 576.7 170.924 162.0 7776 648.0 6.928 615.1 182.325-1/2 172.1 9327 731.5 7.361 653.5 193.627 182.3 11070 820.1 7.794 692.0 205.028-1/2 192.4 13020 913.8 8.227 730.4 216.430 202.5 15190 1013 8.660 768.9 227.831-1/2 212.6 17580 1116 9.093 807.3 239.233 222.8 20210 1225 9.526 845.8 250.634-1/2 232.9 23100 1339 9.959 884.2 262.036 243.0 26240 1458 10.39 922.6 273.437-1/2 253.1 29660 1582 10.83 961.1 284.839 263.3 33370 1711 11.26 999.5 296.240-1/2 273.4 37370 1845 11.69 1038 307.542 283.5 41670 1985 12.12 1076 318.943-1/2 293.6 46300 2129 12.56 1115 330.345 303.8 51260 2278 12.99 1153 341.746-1/2 313.9 56560 2433 13.42 1192 353.148 324.0 62210 2592 13.86 1230 364.549-1/2 334.1 68220 2757 14.29 1269 375.951 344.3 74620 2926 14.72 1307 387.352-1/2 354.4 81400 3101 15.16 1346 398.754 364.5 88570 3281 15.59 1384 410.155-1/2 374.6 96160 3465 16.02 1422 421.557 384.8 104200 3655 16.45 1461 432.858-1/2 394.9 112600 3850 16.89 1499 444.260 405.0 121500 4050 17.32 1538 455.69SECTION PROPERTIESAPA/EWS


84 SECTION PROPERTIESTable 9.1Section Properties Western Species Glued Laminated Timber (Cont.)Depth Area X-X Axis Y-Y Axisd (in.) A (in. 2 ) I x (in. 4 ) S x (in. 3 ) r x (in.) I y (in. 4 ) S y (in. 3 )8-3/4 in. Width (r y = 1.949 in.)9 78.75 531.6 118.1 2.598 502.4 114.810-1/2 91.88 844.1 160.8 3.031 586.2 134.012 105.0 1260 210.0 3.464 669.9 153.113-1/2 118.1 1794 265.8 3.897 753.7 172.315 131.3 2461 328.1 4.330 837.4 191.416-1/2 144.4 3276 397.0 4.763 921.1 210.518 157.5 4253 472.5 5.196 1005 229.719-1/2 170.6 5407 554.5 5.629 1089 248.821 183.8 6753 643.1 6.062 1172 268.022-1/2 196.9 8306 738.3 6.495 1256 287.124 210.0 10080 840.0 6.928 1340 306.325-1/2 223.1 12090 948.3 7.361 1424 325.427 236.3 14350 1063 7.794 1507 344.528-1/2 249.4 16880 1185 8.227 1591 363.730 262.5 19690 1313 8.660 1675 382.831-1/2 275.6 22790 1447 9.093 1759 402.033 288.8 26200 1588 9.526 1842 421.134-1/2 301.9 29940 1736 9.959 1926 440.236 315.0 34020 1890 10.39 2010 459.437-1/2 328.1 38450 2051 10.83 2094 478.539 341.3 43250 2218 11.26 2177 497.740-1/2 354.4 48440 2392 11.69 2261 516.842 367.5 54020 2573 12.12 2345 535.943-1/2 380.6 60020 2760 12.56 2428 555.145 393.8 66450 2953 12.99 2512 574.246-1/2 406.9 73310 3153 13.42 2596 593.448 420.0 80640 3360 13.86 2680 612.549-1/2 433.1 88440 3573 14.29 2763 631.651 446.3 96720 3793 14.72 2847 650.852-1/2 459.4 105500 4020 15.16 2931 669.954 472.5 114800 4253 15.59 3015 689.155-1/2 485.6 124700 4492 16.02 3098 708.257 498.8 135000 4738 16.45 3182 727.358-1/2 511.9 146000 4991 16.89 3266 746.560 525.0 157500 5250 17.32 3350 765.6APA/EWS


<strong>LRFD</strong>GUIDELINESTRUCTURALTO <strong>LRFD</strong>GLUEDFOR STRUCTURALLAMINATED TIMBERCOMPOSITESUPPLEMENTLUMBER 8585Table 9.1 Section Properties Western Species Glued Laminated Timber (Cont.)Depth Area X-X Axis Y-Y Axisd (in.) A (in. 2 ) I x (in. 4 ) S x (in. 3 ) r x (in.) I y (in. 4 ) S y (in. 3 )10-3/4 in. Width (r y = 3.103 in.)12 129.0 1548 258.0 3.464 1242 231.113-1/2 145.1 2204 326.5 3.897 1398 260.015 161.3 3023 403.1 4.330 1553 288.916-1/2 177.4 4024 487.8 4.763 1708 317.818 193.5 5225 580.5 5.196 1863 346.719-1/2 209.6 6642 681.3 5.629 2019 375.621 225.8 8296 790.1 6.062 2174 404.522-1/2 241.9 10200 907.0 6.495 2329 433.424 258.0 12380 1032 6.928 2485 462.325-1/2 274.1 14850 1165 7.361 2640 491.127 290.3 17630 1306 7.794 2795 520.028-1/2 306.4 20740 1455 8.227 2950 548.930 322.5 24190 1613 8.660 3106 577.831-1/2 338.6 28000 1778 9.093 3261 606.733 354.8 32190 1951 9.526 3416 635.634-1/2 370.9 36790 2133 9.959 3572 664.536 387.0 41800 2322 10.39 3727 693.437-1/2 403.1 47240 2520 10.83 3882 722.339 419.3 53140 2725 11.26 4037 751.240-1/2 435.4 59510 2939 11.69 4193 780.042 451.5 66370 3161 12.12 4348 808.943-1/2 467.6 73740 3390 12.56 4503 837.845 483.8 81630 3628 12.99 4659 866.746-1/2 499.9 90070 3874 13.42 4814 895.648 516.0 99070 4128 13.86 4969 924.549-1/2 532.1 108700 4390 14.29 5124 953.451 548.3 118800 4660 14.72 5280 982.352-1/2 564.4 129600 4938 15.16 5435 101154 580.5 141100 5225 15.59 5590 104055-1/2 596.6 153100 5519 16.02 5746 106957 612.8 165900 5821 16.45 5901 109858-1/2 628.9 179300 6132 16.89 6056 112760 645.0 193500 6450 17.32 6211 11569SECTION PROPERTIESAPA/EWS


86 SECTION PROPERTIESTable 9.1Section Properties Western Species Glued Laminated Timber (Cont.)Depth Area X-X Axis Y-Y Axisd (in.) A (in. 2 ) I x (in. 4 ) S x (in. 3 ) r x (in.) I y (in. 4 ) S y (in. 3 )12-1/4 in. Width (r y = 3.536 in.)13-1/2 165.4 2512 372.1 3.897 2068 337.615 183.8 3445 459.4 4.330 2298 375.216-1/2 202.1 4586 555.8 4.763 2528 412.718 220.5 5954 661.5 5.196 2757 450.219-1/2 238.9 7569 776.3 5.629 2987 487.721 257.3 9454 900.4 6.062 3217 525.222-1/2 275.6 11630 1034 6.495 3447 562.724 294.0 14110 1176 6.928 3677 600.325-1/2 312.4 16930 1328 7.361 3906 637.827 330.8 20090 1488 7.794 4136 675.328-1/2 349.1 23630 1658 8.227 4366 712.830 367.5 27560 1838 8.660 4596 750.331-1/2 385.9 31910 2026 9.093 4825 787.833 404.3 36690 2223 9.526 5055 825.334-1/2 422.6 41920 2430 9.959 5285 862.936 441.0 47630 2646 10.39 5515 900.437-1/2 459.4 53830 2871 10.83 5745 937.939 477.8 60550 3105 11.26 5974 975.440-1/2 496.1 67810 3349 11.69 6204 101342 514.5 75630 3602 12.12 6434 105043-1/2 532.9 84030 3863 12.56 6664 108845 551.3 93020 4134 12.99 6893 112546-1/2 569.6 102600 4415 13.42 7123 116348 588.0 112900 4704 13.86 7353 120149-1/2 606.4 123800 5003 14.29 7583 123851 624.8 135400 5310 14.72 7813 127652-1/2 643.1 147700 5627 15.16 8042 131354 661.5 160700 5954 15.59 8272 135155-1/2 679.9 174500 6289 16.02 8502 138857 698.3 189100 6633 16.45 8732 142658-1/2 716.6 204400 6987 16.89 8962 146360 735.0 220500 7350 17.32 9191 1501APA/EWS


<strong>LRFD</strong>GUIDELINESTRUCTURALTO <strong>LRFD</strong>GLUEDFOR STRUCTURALLAMINATED TIMBERCOMPOSITESUPPLEMENTLUMBER 8787Table 9.2Section Properties Southern Pine Glued Laminated TimberDepth Area X-X Axis Y-Y Axisd (in.) A (in. 2 ) I x (in. 4 ) S x (in. 3 ) r x (in.) I y (in. 4 ) S y (in. 3 )2-1/2 in. Width (r y = 0.722 in.)5-1/2 13.75 34.66 12.60 1.588 7.161 5.7296-7/8 17.19 67.70 19.69 1.985 8.952 7.1618-1/4 20.63 117.0 28.36 2.382 10.74 8.5949-5/8 24.06 185.8 38.60 2.778 12.53 10.0311 27.50 277.3 50.42 3.175 14.32 11.4612-3/8 30.94 394.8 63.81 3.572 16.11 12.8913-3/4 34.38 541.6 78.78 3.969 17.90 14.3215-1/8 37.81 720.9 95.32 4.366 19.69 15.7616-1/2 41.25 935.9 113.4 4.763 21.48 17.1917-7/8 44.69 1190 133.1 5.160 23.27 18.6219-1/4 48.13 1486 154.4 5.557 25.07 20.0520-5/8 51.56 1828 177.2 5.954 26.86 21.4822 55.00 2218 201.7 6.351 28.65 22.9223-3/8 58.44 2661 227.7 6.748 30.44 24.353 in. Width (r y = 0.866 in.)5-1/2 16.50 41.59 15.13 1.588 12.38 8.2506-7/8 20.63 81.24 23.63 1.985 15.47 10.318-1/4 24.75 140.4 34.03 2.382 18.56 12.389-5/8 28.88 222.9 46.32 2.778 21.66 14.4411 33.00 332.8 60.50 3.175 24.75 16.5012-3/8 37.13 473.8 76.57 3.572 27.84 18.5613-3/4 41.25 649.9 94.53 3.969 30.94 20.6315-1/8 45.38 865.0 114.4 4.366 34.03 22.6916-1/2 49.50 1123 136.1 4.763 37.13 24.7517-7/8 53.63 1428 159.8 5.160 40.22 26.8119-1/4 57.75 1783 185.3 5.557 43.31 28.8820-5/8 61.88 2193 212.7 5.954 46.41 30.9422 66.00 2662 242.0 6.351 49.50 33.0023-3/8 70.13 3193 273.2 6.748 52.59 35.063-1/8 in. Width (r y = 0.902 in.)5-1/2 17.19 43.33 15.76 1.588 13.99 8.9526-7/8 21.48 84.62 24.62 1.985 17.48 11.198-1/4 25.78 146.2 35.45 2.382 20.98 13.439-5/8 30.08 232.2 48.25 2.778 24.48 15.6711 34.38 346.6 63.02 3.175 27.97 17.9012-3/8 38.67 493.5 79.76 3.572 31.47 20.1413-3/4 42.97 677.0 98.47 3.969 34.97 22.3815-1/8 47.27 901.1 119.1 4.366 38.46 24.6216-1/2 51.56 1170 141.8 4.763 41.96 26.8617-7/8 55.86 1487 166.4 5.160 45.46 29.0919-1/4 60.16 1858 193.0 5.557 48.96 31.3320-5/8 64.45 2285 221.6 5.954 52.45 33.5722 68.75 2773 252.1 6.351 55.95 35.8123-3/8 73.05 3326 284.6 6.748 59.45 38.059SECTION PROPERTIESAPA/EWS


88 SECTION PROPERTIESTable 9.2Section Properties Southern Pine Glued Laminated Timber (Cont.)Depth Area X-X Axis Y-Y Axisd (in.) A (in. 2 ) I x (in. 4 ) S x (in. 3 ) r x (in.) I y (in. 4 ) S y (in. 3 )5 in. Width (r y = 1.443 in.)6-7/8 34.38 135.4 39.39 1.985 71.61 28.658-1/4 41.25 234.0 56.72 2.382 85.94 34.389-5/8 48.13 371.5 77.20 2.778 100.3 40.1011 55.00 554.6 100.8 3.175 114.6 45.8312-3/8 61.88 789.6 127.6 3.572 128.9 51.5613-3/4 68.75 1083 157.6 3.969 143.2 57.2915-1/8 75.63 1442 190.6 4.366 157.6 63.0216-1/2 82.50 1872 226.9 4.763 171.9 68.7517-7/8 89.38 2380 266.3 5.160 186.2 74.4819-1/4 96.25 2972 308.8 5.557 200.5 80.2120-5/8 103.1 3656 354.5 5.954 214.8 85.9422 110.0 4437 403.3 6.351 229.2 91.6723-3/8 116.9 5322 455.3 6.748 243.5 97.4024-3/4 123.8 6317 510.5 7.145 257.8 103.126-1/8 130.6 7429 568.8 7.542 272.1 108.927-1/2 137.5 8665 630.2 7.939 286.5 114.628-7/8 144.4 10030 694.8 8.335 300.8 120.330-1/4 151.3 11530 762.6 8.732 315.1 126.031-5/8 158.1 13180 833.5 9.129 329.4 131.833 165.0 14970 907.5 9.526 343.8 137.534-3/8 171.9 16920 984.7 9.923 358.1 143.235-3/4 178.8 19040 1065 10.32 372.4 149.05-1/8 in. Width (r y = 1.479 in.)6-7/8 35.23 138.8 40.37 1.985 77.12 30.108-1/4 42.28 239.8 58.14 2.382 92.55 36.129-5/8 49.33 380.8 79.13 2.778 108.0 42.1311 56.38 568.4 103.4 3.175 123.4 48.1512-3/8 63.42 809.4 130.8 3.572 138.8 54.1713-3/4 70.47 1110 161.5 3.969 154.2 60.1915-1/8 77.52 1478 195.4 4.366 169.7 66.2116-1/2 84.56 1919 232.5 4.763 185.1 72.2317-7/8 91.61 2439 272.9 5.160 200.5 78.2519-1/4 98.66 3047 316.5 5.557 215.9 84.2720-5/8 105.7 3747 363.4 5.954 231.4 90.2922 112.8 4548 413.4 6.351 246.8 96.3123-3/8 119.8 5455 466.7 6.748 262.2 102.324-3/4 126.8 6475 523.2 7.145 277.6 108.326-1/8 133.9 7615 583.0 7.542 293.1 114.427-1/2 140.9 8882 646.0 7.939 308.5 120.428-7/8 148.0 10280 712.2 8.335 323.9 126.430-1/4 155.0 11820 781.6 8.732 339.3 132.431-5/8 162.1 13510 854.3 9.129 354.8 138.433 169.1 15350 930.2 9.526 370.2 144.534-3/8 176.2 17350 1009 9.923 385.6 150.535-3/4 183.2 19510 1092 10.32 401.0 156.5APA/EWS


<strong>LRFD</strong>GUIDELINESTRUCTURALTO <strong>LRFD</strong>GLUEDFOR STRUCTURALLAMINATED TIMBERCOMPOSITESUPPLEMENTLUMBER 8989Table 9.2Section Properties Southern Pine Glued Laminated Timber (Cont.)Depth Area X-X Axis Y-Y Axisd (in.) A (in. 2 ) I x (in. 4 ) S x (in. 3 ) r x (in.) I y (in. 4 ) S y (in. 3 )6-3/4 in. Width (r y = 1.949 in.)6-7/8 46.41 182.8 53.17 1.985 176.2 52.218-1/4 55.69 315.9 76.57 2.382 211.4 62.659-5/8 64.97 501.6 104.2 2.778 246.7 73.0911 74.25 748.7 136.1 3.175 281.9 83.5312-3/8 83.53 1066 172.3 3.572 317.2 93.9713-3/4 92.81 1462 212.7 3.969 352.4 104.415-1/8 102.1 1946 257.4 4.366 387.6 114.916-1/2 111.4 2527 306.3 4.763 422.9 125.317-7/8 120.7 3213 359.5 5.160 458.1 135.719-1/4 129.9 4012 416.9 5.557 493.4 146.220-5/8 139.2 4935 478.6 5.954 528.6 156.622 148.5 5990 544.5 6.351 563.8 167.123-3/8 157.8 7184 614.7 6.748 599.1 177.524-3/4 167.1 8528 689.1 7.145 634.3 187.926-1/8 176.3 10030 767.8 7.542 669.6 198.427-1/2 185.6 11700 850.8 7.939 704.8 208.828-7/8 194.9 13540 938.0 8.335 740.0 219.330-1/4 204.2 15570 1029 8.732 775.3 229.731-5/8 213.5 17790 1125 9.129 810.5 240.233 222.8 20210 1225 9.526 845.8 250.634-3/8 232.0 22850 1329 9.923 881.0 261.035-3/4 241.3 25700 1438 10.32 916.2 271.537-1/8 250.6 28780 1551 10.72 951.5 281.938-1/2 259.9 32100 1668 11.11 986.7 292.439-7/8 269.2 35660 1789 11.51 1022 302.841-1/4 278.4 39480 1914 11.91 1057 313.242-5/8 287.7 43560 2044 12.30 1092 323.744 297.0 47920 2178 12.70 1128 334.145-3/8 306.3 52550 2316 13.10 1163 344.646-3/4 315.6 57470 2459 13.50 1198 355.048-1/8 324.8 62700 2606 13.89 1233 365.449-1/2 334.1 68220 2757 14.29 1269 375.950-7/8 343.4 74070 2912 14.69 1304 386.352-1/4 352.7 80240 3071 15.08 1339 396.853-5/8 362.0 86740 3235 15.48 1374 407.255 371.3 93590 3403 15.88 1410 417.756-3/8 380.5 100800 3575 16.27 1445 428.157-3/4 389.8 108300 3752 16.67 1480 438.559-1/8 399.1 116300 3933 17.07 1515 449.060-1/2 408.4 124600 4118 17.46 1551 459.49SECTION PROPERTIESAPA/EWS


90 SECTION PROPERTIESTable 9.2Section Properties Southern Pine Glued Laminated Timber (Cont.)Depth Area X-X Axis Y-Y Axisd (in.) A (in. 2 ) I x (in. 4 ) S x (in. 3 ) r x (in.) I y (in. 4 ) S y (in. 3 )8-1/2 in. Width (r y = 2.454 in.)9-5/8 81.81 631.6 131.2 2.778 492.6 115.911 93.50 942.8 171.4 3.175 562.9 132.512-3/8 105.2 1342 216.9 3.572 633.3 149.013-3/4 116.9 1841 267.8 3.969 703.7 165.615-1/8 128.6 2451 324.1 4.366 774.1 182.116-1/2 140.3 3182 385.7 4.763 844.4 198.717-7/8 151.9 4046 452.6 5.160 914.8 215.219-1/4 163.6 5053 525.0 5.557 985.2 231.820-5/8 175.3 6215 602.6 5.954 1056 248.422 187.0 7542 685.7 6.351 1126 264.923-3/8 198.7 9047 774.1 6.748 1196 281.524-3/4 210.4 10740 867.8 7.145 1267 298.026-1/8 222.1 12630 966.9 7.542 1337 314.627-1/2 233.8 14730 1071 7.939 1407 331.128-7/8 245.4 17050 1181 8.335 1478 347.730-1/4 257.1 19610 1296 8.732 1548 364.331-5/8 268.8 22400 1417 9.129 1618 380.833 280.5 25460 1543 9.526 1689 397.434-3/8 292.2 28770 1674 9.923 1759 413.935-3/4 303.9 32360 1811 10.32 1830 430.537-1/8 315.6 36240 1953 10.72 1900 447.038-1/2 327.3 40420 2100 11.11 1970 463.639-7/8 338.9 44910 2253 11.51 2041 480.241-1/4 350.6 49720 2411 11.91 2111 496.742-5/8 362.3 54860 2574 12.30 2181 513.344 374.0 60340 2743 12.70 2252 529.845-3/8 385.7 66170 2917 13.10 2322 546.446-3/4 397.4 72370 3096 13.50 2393 562.948-1/8 409.1 78950 3281 13.89 2463 579.549-1/2 420.8 85910 3471 14.29 2533 596.150-7/8 432.4 93270 3667 14.69 2604 612.652-1/4 444.1 101000 3868 15.08 2674 629.253-5/8 455.8 109200 4074 15.48 2744 645.755 467.5 117800 4285 15.88 2815 662.356-3/8 479.2 126900 4502 16.27 2885 678.857-3/4 490.9 136400 4725 16.67 2955 695.459-1/8 502.6 146400 4952 17.07 3026 712.060-1/2 514.3 156900 5185 17.46 3096 728.5APA/EWS


<strong>LRFD</strong>GUIDELINESTRUCTURALTO <strong>LRFD</strong>GLUEDFOR STRUCTURALLAMINATED TIMBERCOMPOSITESUPPLEMENTLUMBER 9191Table 9.2Section Properties Southern Pine Glued Laminated Timber (Cont.)Depth Area X-X Axis Y-Y Axisd (in.) A (in. 2 ) I x (in. 4 ) S x (in. 3 ) r x (in.) I y (in. 4 ) S y (in. 3 )10-1/2 in. Width (r y = 3.031 in.)11 115.5 1165 211.8 3.175 1061 202.112-3/8 129.9 1658 268.0 3.572 1194 227.413-3/4 144.4 2275 330.9 3.969 1326 252.715-1/8 158.8 3028 400.3 4.366 1459 277.916-1/2 173.3 3931 476.4 4.763 1592 303.217-7/8 187.7 4997 559.2 5.160 1724 328.519-1/4 202.1 6242 648.5 5.557 1857 353.720-5/8 216.6 7677 744.4 5.954 1990 379.022 231.0 9317 847.0 6.351 2122 404.323-3/8 245.4 11180 956.2 6.748 2255 429.524-3/4 259.9 13270 1072 7.145 2388 454.826-1/8 274.3 15600 1194 7.542 2520 480.027-1/2 288.8 18200 1323 7.939 2653 505.328-7/8 303.2 21070 1459 8.335 2786 530.630-1/4 317.6 24220 1601 8.732 2918 555.831-5/8 332.1 27680 1750 9.129 3051 581.133 346.5 31440 1906 9.526 3183 606.434-3/8 360.9 35540 2068 9.923 3316 631.635-3/4 375.4 39980 2237 10.32 3449 656.937-1/8 389.8 44770 2412 10.72 3581 682.238-1/2 404.3 49930 2594 11.11 3714 707.439-7/8 418.7 55480 2783 11.51 3847 732.741-1/4 433.1 61420 2978 11.91 3979 758.042-5/8 447.6 67760 3180 12.30 4112 783.244 462.0 74540 3388 12.70 4245 808.545-3/8 476.4 81740 3603 13.10 4377 833.846-3/4 490.9 89400 3825 13.50 4510 859.048-1/8 505.3 97530 4053 13.89 4643 884.349-1/2 519.8 106100 4288 14.29 4775 909.650-7/8 534.2 115200 4529 14.69 4908 934.852-1/4 548.6 124800 4778 15.08 5040 960.153-5/8 563.1 134900 5032 15.48 5173 985.455 577.5 145600 5294 15.88 5306 101156-3/8 591.9 156800 5562 16.27 5438 103657-3/4 606.4 168500 5836 16.67 5571 106159-1/8 620.8 180900 6118 17.07 5704 108660-1/2 635.3 193800 6405 17.46 5836 11129SECTION PROPERTIESAPA/EWS


92SECTION PROPERTIESAPA/EWS


SUPPLEMENTTimber Polesand Piles<strong>LRFD</strong>LOAD AND RESISTANCE FACTOR DESIGNMANUAL FOR ENGINEEREDWOOD CONSTRUCTION<strong>American</strong>Forest &PaperAssociation<strong>American</strong> <strong>Wood</strong> <strong>Council</strong>


SUPPLEMENTTimber Polesand Piles<strong>LRFD</strong>LOAD AND RESISTANCE FACTOR DESIGNMANUAL FOR ENGINEEREDWOOD CONSTRUCTIONCopyright © <strong>1996</strong><strong>American</strong> Forest & Paper Association


AMERICAN WOOD COUNCIL


PrefaceThis supplement contains adjustment factors, dimensions,factored resistance, reference strengths and otherproperties required to design timber poles and piles in the<strong>LRFD</strong> format. In this format, the term “resistance” is usedto refer to member capacities (i.e., moment resistance,compression resistance, etc.). This is distinct from theterm “strength” which refers to limit state material properties— conceptually a “factored allowable stress.”The member resistance values tabulated in thissupplement are to be used in conjunction with thedesign methodologies provided in AF&PA/ASCE 16-95, Standardfor Load and Resistance Factor Design (<strong>LRFD</strong>) forEngineered <strong>Wood</strong> Construction.The reference strengths were derived according to theprinciples of ASTM D5457-93, Standard Specification forComputing the Reference Resistance of <strong>Wood</strong>-based Materialsand Structural Connections for Load andResistance Factor Design.The tabulated reference strength values are to be usedwithin the reference end-use conditions defined therein.When the end-use conditions fall outside the range of thereference conditions, the reference values shall be adjustedby the product of applicable adjustment factors as definedin AF&PA/ASCE 16-95 and also provided in this supplement.For unusual end-use conditions, the designer shouldconsult additional literature for possible further adjustments.AMERICAN FOREST & PAPER ASSOCIATION


AMERICAN WOOD COUNCIL


TABLE OF CONTENTSChapter/TitlePageChapter/TitlePage1 Designer Flowchart .............................................. 11.1 Flowchart2 Introduction to Poles andPiles ................................................................................................................... 32.1 Product Information2.2 Common Uses2.3 Availability3. Design Adjustment Factors ............ 53.1 General3.2 Use of Adjustment Factors4. Reference Strengths ....................................... 94.1 General4.2 Tables of Reference Strengths5. Timber Pole and PileSelection Tables .........................................................135.1 General5.2 Selection Table Checklists6. Other Considerations .................................. 216.1 General6.2 Dimensional Changes6.3 Durability6.4 Fire Performance7. Section Properties ..............................................257.1 Section PropertiesLIST OF TABLES3.1 Temperature Effect Factor, C t , for Poles and PilesExposed to Sustained Elevated Temperatures .............73.2 Untreated Factor, C u , for Poles and Piles thatare Either Air-Dried Before Treating or arenot Treated at All ..............................................................................................73.3 Single Pile Factors, C sp , for Round Timber Piles .....83.4 Compression Parallel to Grain Critical SectionModification Factor, C cs , for Poles and Piles ................84.1 Reference Strengths for Poles Graded inAccordance with ASTM D3200 ................................................ 114.2 Reference Strengths for Treated PilesGraded in Accordance with ASTM D25 ........................ 115.1 Pole Selection Table - Pacific CoastDouglas-Fir .......................................................................................................... 165.2 Pole Selection Table - Jack Pine ............................................... 165.3 Pole Selection Table - Lodgepole Pine ............................. 165.4 Pole Selection Table - Northern White Cedar .......... 175.5 Pole Selection Table - Ponderosa Pine .............................. 175.6 Pole Selection Table - Red Pine ................................................. 175.7 Pole Selection Table - Southern Pine .................................. 185.8 Pole Selection Table - Western Hemlock ....................... 185.9 Pole Selection Table - Western Larch ................................ 185.10 Pole Selection Table - Western Red Cedar .................. 195.11 Pile Selection Table - Factored ReferenceCompression Parallel to Grain Resistance ................... 197.1 Timber Poles (ASTM D3200) ...................................................... 267.2 Minimum Butt Circumferences –Southern Pine Piles (ASTM D25) ........................................... 277.3 Minimum Tip Circumferences –Southern Pine Piles (ASTM D25) ........................................... 277.4 Minimum Butt Circumferences –Other Species Piles (ASTM D25) ........................................... 287.5 Minimum Tip Circumferences –Other Species Piles (ASTM D25) ........................................... 297.6 Class A and Class BDouglas-Fir Piles (ASTM D25) ................................................. 29AMERICAN FOREST & PAPER ASSOCIATION


AMERICAN WOOD COUNCIL


<strong>LRFD</strong> TIMBER POLES AND PILES SUPPLEMENT11DESIGNERFLOWCHART1.1 Flowchart 2AMERICAN FOREST & PAPER ASSOCIATION


2 DESIGNER FLOWCHART1.1 FlowchartTimber Poles and PilesSupplementNoEnd-UseConditionsConsistent WithReference Conditions(Section 3)YesSelect Adjustment FactorsSelect A Trial Size(a)Determine FactoredReference Resistances(Section 5)NoFactoredReference Resistances ≥Factored Load Effects?YesAccept The Size(a)Tables 4.1 and 4.2 provide reference strengths and MOE for various poles and pilecould be used in conjunction with Tables 5.1 through 5.11 to determine the trial sAMERICAN WOOD COUNCIL


<strong>LRFD</strong> TIMBER POLES AND PILES SUPPLEMENT3INTRODUCTIONTO TIMBERPOLES ANDPILES22.1 Product Information 42.2 Common Uses 42.3 Availability 4AMERICAN FOREST & PAPER ASSOCIATION


4 INTRODUCTION TO TIMBER POLES AND PILES2.1 Product InformationA pole is a round, tapered timber with its larger (butt)end embedded in the ground. A pile is a round, taperedtimber with its small (tip) end embedded in the ground.The tabulated values and adjustment factors shall be usedaccording to these definitions.This supplement provides reference strength, F, referencemodulus of elasticity, E, and factored referenceresistance, λφR, values for poles graded according toASTM D3200 and for piles graded according to ASTMD25 specifications.2.2 Common UsesTimber poles are used extensively in Pole-Frame constructionand are also used architecturally. This supplementis not for use with poles used in the support of utilitylines. Timber piles are generally used as part of foundationsystems.Timber poles and piles offer many advantages relativeto competing materials. As with other wood products,timber poles and piles offer the unique advantage ofbeing the only major construction material that is a renewableresource. Additional information regarding theenvironmental advantages of wood is provided on the insidecover of this supplement.2.3 AvailabilityTimber piles are typically available in four species:Pacific Coast Douglas-Fir, Southern Pine, Red Oak, andRed Pine. However, local pile suppliers should be contactedbecause availability is dependent upon geographiclocations.Timber poles are supplied to the utility industry in avariety of grades and species. Because these poles aregraded according to ANSI 05.1, they must be regradedaccording to ASTM D3200 if they are to be used with thissupplement.The organizations listed below can provide additionalinformation regarding pole and pile availability:Western <strong>Wood</strong> Preservers Institute(206) 693-9958Southern Pressure Treaters Association(205) 968-5726National Timber Piling <strong>Council</strong>(914) 835-0006AMERICAN WOOD COUNCIL


<strong>LRFD</strong> TIMBER PILES AND POLES SUPPLEMENT5DESIGNADJUSTMENTFACTORS33.1 General 63.2 Use of Adjustment Factors 63.2.1 Bending (moment and shear) 63.2.2 Compression 63.2.3 Bearing 73.2.4 Temperature Factor, C t73.2.5 Untreated Factor, C u73.2.6 Single Pile Factor, C sp73.2.7 Critical Section Factor, C cs7Table 3.1 Temperature Effect Factor, C t , for Poles and PilesExposed to Sustained Elevated Temperatures ...... 7Table 3.2 Untreated Factor, C u , for Poles and Piles that areEither Air-Dried Before Treating or are notTreated at All ............................................................ 7Table 3.3 Single Pile Factors, C sp , for Round Timber Piles .. 8Table 3.4 Compression Parallel to Grain Critical SectionModification Factor, C cs , for Poles and Piles ......... 8AMERICAN FOREST & PAPER ASSOCIATION


6 DESIGN ADJUSTMENT FACTORS3.1 GeneralTwo alternative approaches may be used to generatemember design resistance — the calculation method, inwhich reference strengths are multiplied by adjustmentfactors and section properties to obtain member resistanceand the tabulation method, in which tabulated values arefully factored and adjusted for a given set of conditions.The selection tables in chapter 5 include pre-calculated<strong>LRFD</strong> factored resistance values for members under“standard” (reference) conditions of use. Forconditions that fall outside the reference conditions, analternative approach permits the use of reference strengthvalues (from chapter 4), modified appropriately by the adjustmentfactors included in this chapter.The adjustment factors provided in this chapter arefor applications outside the reference end-use conditionsand for member configuration effects (i.e., size, lateralsupport conditions, etc). When one or more of the specificend-use or member configuration conditions fall outsidethe range of the reference conditions defined inSection 2.6 of AF&PA/ASCE 16-95, these adjustment factorsshall be used to modify the appropriate properties.Adjustment factors for the effects of moisture, temperature,preservative treatment and member configuration andsize are provided in this supplement.3.2 Use of Adjustment Factors3.2.1 Bending (moment and shear)Adjusted moment and shear resistance is based uponthe following equations:C sp is 1.0for piles used in a load sharing system suchas a pile cluster and as shown in Table 3.3 fora pile supporting its own load individually.See 3.2.6.For moment:For shear:whereM ′ = F b′ S′V ′ = F bQv IF b′ = F b(C tC uC sp)3.2.2 CompressionThe adjusted compression strength is computed bymultiplying the reference strength by a series of adjustmentfactors.whereF c′ = F c(C tC uC spC pC cs)C p is 1.0for fully supported or “zero length” columnsand as given in AF&PA/ASCE 16-95 section4.3.2 otherwiseF v′ = F v(C tC u)and whereC t is 1.0up to 100 o F and otherwise as shown in Table3.1. See 3.2.4.C cs is 1.0for compression parallel to grain strength atthe tip of a pole or pile and increased as shownin Table 3.4 to account for strength increasesas the critical section becomes further fromthe tip. See 3.2.7.C u is 1.0for piles treated in conjunction with a steamconditioning or Boultonizing and as shownin Table 3.2 otherwise. See 3.2.5.AMERICAN WOOD COUNCIL


GUIDELINE<strong>LRFD</strong>TOTIMBER<strong>LRFD</strong>POLESFOR STRUCTURALAND PILES SUPPLEMENTCOMPOSITE LUMBER 7 3.2.3 BearingAdjusted bearing resistance for timber poles are computedbased upon the following equations:For end bearing:whereF g′ = F g(C tC uC sp)3.2.6 Single Pile Factor, C spReference compression parallel to grain strengths fortimber piles assume use of piles in clusters. The correspondingsingle pile (load sharing) factor is 1.0. For designof single piles, reduction factors provided in Table3.3 shall be applied.3.2.7 Critical Section Factor, C cs33.2.4 Temperature Effect Factor, C tEnd-use temperature conditions, other than those definedin Section 2.6 of the <strong>LRFD</strong> Standard, require use ofthe temperature effect factor, C t . Temperature effect factorsfor poles and piles exposed to sustained temperaturesbetween the range of 100° F to 150° F are provided inTable 3.1.3.2.5 Untreated Factor, C uIf preservative treatment is necessary, poles and pilesshall be treated in accordance with standards approved bythe <strong>American</strong> <strong>Wood</strong> Preservers Association. The UntreatedFactors provided in Table 3.2 apply for poles andpiles that are either air-dried prior to treatment or are nottreated.Tabulated compression parallel to grain strength atthe tip of a pole or pile shall be permitted to be increasedas shown in Table 3.4 to account for strength increases asthe critical section becomes further from the tip. Criticalsection factors, C cs , are independent of tapered columnprovisions in Section 4.3.4 of the <strong>LRFD</strong> Standard and bothshall be permitted to be used in design calculations.DESIGN ADJUSTMENT FACTORSTable 3.1Temperature Effect Factor, C t, for Poles and Piles Exposed toSustained Elevated TemperaturesResistanceIn ServiceMoisture Condition100


8 DESIGN ADJUSTMENT FACTORSTable 3.3Single Pile Factors, C sp, for Round Timber PilesC spReference Resistance Pile Cluster Single PileF b1.0 0.77F c 1.0 0.80Table 3.4Compression Parallel to Grain Critical Section Modification Factor,C cs, for Poles and PilesSpeciesPile ClusterPacific Coast Douglas-Fir,Southern Pine1 + 0.002L, where L = length from tip to critical section.Note C cs shall not exceed 1.10.Other Species 1.0C csAMERICAN WOOD COUNCIL


<strong>LRFD</strong> TIMBER POLES AND PILES SUPPLEMENT9REFERENCESTRENGTHS44.1 General 104.2 Tables of Reference Strengths 104.2.1 Pole Reference Strengths 104.2.2 Pile Reference Strengths 10Table 4.1 Reference Strengths for Poles Graded inAccordance with ASTM D3200 ............................ 11Table 4.2 Reference Strengths for Treated PilesGraded in Accordance with ASTM D25 .............. 11AMERICAN FOREST & PAPER ASSOCIATION


10 REFERENCE STRENGTHS4.1 GeneralThe tables in this chapter provide <strong>LRFD</strong> referencestrengths for design of timber pole and pile members.These stresses are used when manual calculation of memberstrength is required, and shall be used in conjunctionwith the adjustment factors specified in chapter 3.4.2 Tables of Reference Strengths4.2.1 Pole Reference StrengthsReference strength and stiffness values for poles areprovided in Table 4.1. These values, with the exceptionof F c , are applicable for all locations in the pole. The F cvalues are for the tip of the pole and can be increased forDouglas-Fir and Southern Pine poles in accordance withTable 3.4.Reference strength and modulus of elasticity valuesare applicable for wet exposure and for poles treated witha steam conditioning or Boultonizing process. For polesthat are not treated, or are air-dried or kiln-dried prior totreating, the factors in Table 3.2 shall be applied.4.2.2 Pile Reference StrengthsReference strength values for piles are provided inTable 4.2. These values, with the exception of F c , areapplicable at any location along the length of the pile.The tabulated F c values for Pacific Coast Douglas-Fir andSouthern Pine may be increased for locations other thanthe tip as provided by Table 3.4.Reference strength and modulus of elasticity valuesin Table 4.2 are applicable for wet exposures. These tabulatedvalues are given for air-dried piles treated with apreservative using steam conditioning or Boultonizingprocesses. For piles that are not treated, or are air-driedor kiln-dried prior to treating, the factors in Table 3.2 shallbe applied.AMERICAN WOOD COUNCIL


GUIDELINE<strong>LRFD</strong>TOTIMBER<strong>LRFD</strong>POLESFOR STRUCTURALAND PILES SUPPLEMENTCOMPOSITE LUMBER1111Table 4.1Reference Strengths for Poles Graded in Accordance withASTM D3200.Design values in kips per square inch (ksi)Compression Compressionperpendicular parallel Modulus ofBending Shear to grain to grain Bearing ElasticitySpecies F b F v Fc ⊥ F c P g MOEPacific Coast Douglas-Fir 4.70 0.33 0.78 2.40 2.88 1500Jack Pine 3.81 0.27 0.58 1.92 2.10 1070Lodgepole Pine 3.43 0.24 0.50 1.68 2.10 1080Northern White Cedar 2.67 0.23 0.47 1.26 1.62 640Ponderosa Pine 3.30 0.26 0.67 1.56 1.98 1000Red Pine 3.68 0.24 0.55 1.74 1.92 1280Southern Pine 4.32 0.30 0.67 2.16 2.70 1400Western Hemlock 4.19 0.33 0.51 2.16 2.28 1310Western Larch 5.21 0.35 0.78 2.58 2.70 1460Western Red Cedar 3.43 0.27 0.53 1.80 2.88 940Table 4.2Reference Strengths for Treated Piles Graded in Accordance withASTM D25.4REFERENCE STRENGTHSDesign values in kips per square inch (ksi)CompressionCompressionparallel perpendicular Modulus ofto grain Bending Shear to grain ElasticitySpecies F c F b F v Fc ⊥ MOEPacific Coast Douglas-Fir 1 3.00 6.22 0.33 0.48 1500Red Oak 2 2.64 6.22 0.39 0.73 1250Red Pine 3 2.22 4.83 0.24 0.32 1280Southern Pine 4 2.70 5.59 0.30 0.52 14001. Pacific Coast Douglas Fir reference strengths apply to this species as defined in ASTM Standard D1760-86.For connection design use Douglas Fir-Larch reference strengths.2. Red Oak reference strengths apply to Northern and Southern Red Oak.3. Red Pine reference strengths apply to Red Pine grown in the United States. For connection design use Northern Pine reference strengths.4. Southern Pine reference strengths apply to Loblolly, Longleaf, Shortleaf, and Slash Pine.AMERICAN FOREST & PAPER ASSOCIATION


12REFERENCE STRENGTHSAMERICAN WOOD COUNCIL


<strong>LRFD</strong> TIMBER POLES AND PILES SUPPLEMENT13POLE AND PILESELECTIONTABLES55.1 General 145.1.1 Selection Tables for Poles5.1.2 Selection Tables for Piles5.2 Selection Table Checklists 15Table 5.1 Pole Selection Table - Pacific Coast Douglas-Fir 16Table 5.2 Pole Selection Table - Jack Pine ........................... 16Table 5.3 Pole Selection Table - Lodgepole Pine ................. 16Table 5.4 Pole Selection Table - Northern White Cedar ..... 17Table 5.5 Pole Selection Table - Ponderosa Pine ................. 17Table 5.6 Pole Selection Table - Red Pine ............................ 17Table 5.7 Pole Selection Table - Southern Pine ................... 18Table 5.8 Pole Selection Table - Western Hemlock ............. 18Table 5.9 Pole Selection Table - Western Larch .................. 18Table 5.10 Pole Selection Table - Western Red Cedar .......... 19Table 5.11 Pile Selection Table - Factored ReferenceCompression Parallel to Grain Resistance .......... 19AMERICAN FOREST & PAPER ASSOCIATION


14 POLE AND PILE SELECTION TABLES5.1 GeneralPole and pile selection tables provide factored resistancevalues that include all factors needed for many commondesigns. Before using the selection tables, pleaserefer to the checklists to be certain that the tabulated valuesare appropriate for your application.Refer to the selection table checklist to see whetheryour design condition meets the assumptions built intothe tabulated values. Note that the tabulated values arefully factored (i.e., include both λ and φ) for the assumeddesign conditions. Thus, the factored force or moment onthe member can be used directly to select a member thatmeets the design requirement.5.1.1 Selection Tables for PolesTables 5.1 through 5.10 provide factored referencebending resistance, λφM, for poles at the groundline locationpreservatively treated according to AWPA specifications.These values apply for wet exposures. However,for poles that are not treated or are air-dried or kiln-driedprior to treatment, the appropriate adjustment factors givenin Table 3.2 shall be used. The tabulated λφM values areapplicable only for poles graded in accordance withASTM D3200. Additionally, the λφM values apply 3-ft.from the butt of the pole. When the location of maximumstress is not 3-ft. from the butt, λφM values shall be adjustedby assuming a linear taper along the pole. The tablesin this chapter provide factored reference resistance valuesfor poles and piles.5.1.2 Selection Tables for PilesTable 5.11 provides factored reference compressionparallel-to-grain resistance, λφP, as a function of ASTMD25 specified pile tip circumference and species. Thetabulated λφP values are applicable only when the pile tipcircumference is specified according to Tables 7.2 through7.6, and the piles are graded according to ASTM D25specifications. These values do not consider the bucklingcapacity of piles.As the tip represents the smallest circumference andthe lowest strength section of a pile, the λφP values areapplicable at any other location in the pile. Additionalcapacity may be computed at other locations by consideringthe increased cross-sectional area away from the tipusing linear taper and specified butt circumference. Further,for Pacific Coast Douglas-Fir and Southern Pine piles,an additional increase in λφP may be obtained by the applicationof the critical section modification factor providedin Table 3.4.AMERICAN WOOD COUNCIL


GUIDELINE<strong>LRFD</strong>TOTIMBER<strong>LRFD</strong>POLESFOR STRUCTURALAND PILES SUPPLEMENTCOMPOSITE LUMBER15155.2 Selection Table ChecklistsChecklist for Poles and Piles:The selection tables provide values for factored resistance for common species, grades and sizes. The tabulatedvalues apply to members that satisfy the following conditions:√ “normal” temperature range (C t =1.0)√ material treated in an approved process (C u = 1.0)√ time effect factor based on “live” (L or L r ) or “snow” (S) combination (λ=0.80) 1√ compression members fully laterally supported (C P = 1.0)√ wet use conditions√ piles in a cluster√ critical location for compression parallel to grain is the tip for Pacific Coast Douglas-Fir and Southern Pinepiles and polesIf the answer to any of these questions is NO, the selection tables should NOT be used directly. For thesecases the designer should refer to the flowchart (Chapter 1) and follow the procedures for manual calculation oftimber pole or pile strength.For manual calculation, two approaches are possible— review the governing design equations and modifythe tabulated values as necessary or compute factoredresistance directly from the reference strength values andadjustment factors.To compute the factored resistance for a specific condition,apply the design equations directly. Design adjustmentfactors and reference strength values are providedin Chapters 3 and 4 of this supplement, respectively.5POLE AND PILE SELECTION TABLESAMERICAN FOREST & PAPER ASSOCIATION


16 POLE AND PILE SELECTION TABLESTable 5.1Pole Selection Table - Pacific Coast Douglas-FirGraded to ASTM D3200, λ = 0.8, φ b= 0.85Factored Reference Bending Resistance 1 , λφb M' (inch-kips)PoleMinimum Tip Circumference (in.)Length (ft) 16 19 22 25 28 31 35 3810 64.07 100.57 148.82 210.45 287.12 380.44 533.64 672.2415 78.55 119.94 173.79 241.73 325.42 426.48 591.09 739.0720 107.75 139.89 199.18 273.23 363.66 472.13 647.65 804.5725 110.72 161.94 226.94 307.34 404.80 520.94 707.70 873.8230 131.33 188.32 259.79 347.38 452.73 577.48 776.83 953.2235 154.35 217.42 295.67 390.76 504.31 637.98 850.31 1037.2840 177.86 246.80 331.59 433.87 555.27 697.44 922.14 1119.131 Factored reference bending resistance three feet from butt with minimum circumferencesas specified in Table 7.1.Table 5.2Pole Selection Table - Jack PineGraded to ASTM D3200, λ = 0.8, φ b= 0.85Factored Reference Bending Resistance 1 , λφb M' (inch-kips)PoleMinimum Tip Circumference (in.)Length (ft) 16 19 22 25 28 31 35 3810 51.94 81.53 120.64 170.60 232.75 308.40 432.59 544.9415 63.68 97.23 140.88 195.96 263.79 345.72 479.16 599.1220 87.35 113.40 161.46 221.49 294.80 382.73 525.01 652.2125 89.75 131.28 183.96 249.14 328.14 422.29 573.69 708.3630 106.46 152.66 210.60 281.60 367.00 468.13 629.73 772.7135 125.12 176.25 239.68 316.76 408.82 517.17 689.30 840.8640 144.18 200.07 268.80 351.71 450.13 565.37 747.52 907.211 Factored reference bending resistance three feet from butt with minimum circumferencesas specified in Table 7.1.Table 5.3Pole Selection Table - Lodgepole PineGraded to ASTM D3200, λ = 0.8, φ b= 0.85Factored Reference Bending Resistance 1 , λφb M' (inch-kips)PoleMinimum Tip Circumference (in.)Length (ft) 16 19 22 25 28 31 35 3810 46.76 73.40 108.61 153.59 209.53 277.64 389.45 490.5915 57.33 87.53 126.83 176.41 237.48 311.24 431.37 539.3620 78.64 102.09 145.36 199.40 265.40 344.56 472.64 587.1625 80.80 118.18 165.62 224.29 295.41 380.17 516.47 637.7130 95.84 137.43 189.59 253.51 330.40 421.44 566.92 695.6435 112.64 158.67 215.78 285.17 368.04 465.59 620.55 756.9940 129.80 180.11 241.99 316.63 405.23 508.98 672.96 816.731 Factored reference bending resistance three feet from butt with minimum circumferencesas specified in Table 7.1.AMERICAN WOOD COUNCIL


GUIDELINE<strong>LRFD</strong>TOTIMBER<strong>LRFD</strong>POLESFOR STRUCTURALAND PILES SUPPLEMENTCOMPOSITE LUMBER 1717Table 5.4Pole Selection Table - Northern White CedarGraded to ASTM D3200, λ = 0.8, φ b= 0.85Factored Reference Bending Resistance 1 , λφb M' (inch-kips)PoleMinimum Tip Circumference (in.)Length (ft) 16 19 22 25 28 31 35 3810 36.40 57.13 84.54 119.56 163.11 216.12 303.15 381.8915 44.62 68.14 98.73 137.32 184.86 242.27 335.79 419.8520 61.21 79.47 113.15 155.22 206.59 268.21 367.92 457.0625 62.90 92.00 128.92 174.60 229.96 295.94 402.03 496.4130 74.61 106.98 147.58 197.34 257.19 328.06 441.30 541.5135 87.69 123.51 167.97 221.98 286.49 362.43 483.05 589.2640 101.04 140.21 188.37 246.48 315.44 396.21 523.85 635.761 Factored reference bending resistance three feet from butt with minimum circumferencesas specified in Table 7.1.5Table 5.5Pole Selection Table - Ponderosa PineGraded to ASTM D3200, λ = 0.8, φ b= 0.85Factored Reference Bending Resistance 1 , λφb M' (inch-kips)PoleMinimum Tip Circumference (in.)Length (ft) 16 19 22 25 28 31 35 3810 44.99 70.61 104.49 147.76 201.59 267.12 374.69 472.0015 55.15 84.21 122.02 169.73 228.48 299.44 415.02 518.9220 75.66 98.22 139.85 191.84 255.34 331.50 454.73 564.9125 77.74 113.70 159.34 215.79 284.22 365.76 496.90 613.5430 92.21 132.22 182.41 243.91 317.88 405.47 545.43 669.2835 108.37 152.65 207.60 274.36 354.09 447.94 597.03 728.3040 124.88 173.29 232.82 304.63 389.87 489.69 647.46 785.771 Factored reference bending resistance three feet from butt with minimum circumferencesPOLE AND PILE SELECTION TABLESas specified in Table 7.1.Table 5.6Pole Selection Table - Red PineGraded to ASTM D3200, λ = 0.8, φ b= 0.85Factored Reference Bending Resistance 1 , λφb M' (inch-kips)PoleMinimum Tip Circumference (in.)Length (ft) 16 19 22 25 28 31 35 3810 50.17 78.74 116.52 164.78 224.81 297.88 417.83 526.3515 61.50 93.91 136.07 189.27 254.79 333.92 462.81 578.6820 84.37 109.53 155.95 213.93 284.74 369.67 507.09 629.9625 86.69 126.80 177.69 240.64 316.95 407.88 554.11 684.1930 102.83 147.45 203.41 271.99 354.48 452.16 608.24 746.3535 120.85 170.23 231.50 305.95 394.87 499.52 665.78 812.1740 139.26 193.24 259.63 339.71 434.77 546.08 722.01 876.261 Factored reference bending resistance three feet from butt with minimum circumferencesas specified in Table 7.1.AMERICAN FOREST & PAPER ASSOCIATION


18 POLE AND PILE SELECTION TABLESTable 5.7Pole Selection Table - Southern PineGraded to ASTM D3200, λ = 0.8, φ b= 0.85Factored Reference Bending Resistance 1 , λφb M' (inch-kips)PoleMinimum Tip Circumference (in.)Length (ft) 16 19 22 25 28 31 35 3810 58.89 92.44 136.79 193.44 263.90 349.69 490.50 617.8915 72.20 110.24 159.74 222.19 299.11 392.00 543.30 679.3220 99.04 128.58 183.08 251.13 334.26 433.96 595.28 739.5225 101.77 148.85 208.59 282.49 372.07 478.82 650.48 803.1730 120.71 173.09 238.79 319.30 416.13 530.79 714.02 876.1535 141.87 199.84 271.77 359.16 463.54 586.40 781.57 953.4140 163.48 226.85 304.78 398.79 510.38 641.05 847.58 1028.651 Factored reference bending resistance three feet from butt with minimum circumferencesas specified in Table 7.1.Table 5.8Pole Selection Table - Western HemlockGraded to ASTM D3200, λ = 0.8, φ b= 0.85Factored Reference Bending Resistance 1 , λφb M' (inch-kips)PoleMinimum Tip Circumference (in.)Length (ft) 16 19 22 25 28 31 35 3810 57.12 89.66 132.67 187.62 255.96 339.16 475.74 599.2915 70.03 106.92 154.93 215.50 290.10 380.20 526.95 658.8720 96.06 124.71 177.57 243.58 324.20 420.90 577.37 717.2625 98.70 144.37 202.31 273.99 360.87 464.41 630.91 779.0030 117.08 167.88 231.60 309.69 403.61 514.82 692.53 849.7835 137.60 193.82 263.59 348.36 449.59 568.75 758.05 924.7240 158.56 220.02 295.61 386.79 495.02 621.76 822.07 997.691 Factored reference bending resistance three feet from butt with minimum circumferencesas specified in Table 7.1.Table 5.9Pole Selection Table - Western LarchGraded to ASTM D3200, λ = 0.8, φ b= 0.85Factored Reference Bending Resistance 1 , λφb M' (inch-kips)PoleMinimum Tip Circumference (in.)Length (ft) 16 19 22 25 28 31 35 3810 71.03 111.48 164.97 233.29 318.27 421.73 591.55 745.1815 87.07 132.95 192.64 267.96 360.73 472.75 655.23 819.2720 119.44 155.07 220.79 302.87 403.12 523.36 717.92 891.8725 122.73 179.51 251.56 340.69 448.72 577.47 784.49 968.6430 145.58 208.75 287.98 385.08 501.86 640.15 861.12 1056.6535 171.10 241.01 327.75 433.16 559.04 707.21 942.58 1149.8340 197.16 273.58 367.58 480.95 615.53 773.12 1022.20 1240.571 Factored reference bending resistance three feet from butt with minimum circumferencesas specified in Table 7.1.AMERICAN WOOD COUNCIL


GUIDELINE<strong>LRFD</strong>TOTIMBER<strong>LRFD</strong>POLESFOR STRUCTURALAND PILES SUPPLEMENTCOMPOSITE LUMBER 1919Table 5.10Pole Selection Table - Western Red CedarGraded to ASTM D3200, λ = 0.8, φ b= 0.85Factored Reference Bending Resistance 1 , λφ b M' (inch-kips)PoleMinimum Tip Circumference (in.)Length (ft) 16 19 22 25 28 31 35 3810 46.76 73.40 108.61 153.59 209.53 277.64 389.45 490.5915 57.33 87.53 126.83 176.41 237.48 311.24 431.37 539.3620 78.64 102.09 145.36 199.40 265.40 344.56 472.64 587.1625 80.80 118.18 165.62 224.29 295.41 380.17 516.47 637.7130 95.84 137.43 189.59 253.51 330.40 421.44 566.92 695.6435 112.64 158.67 215.78 285.17 368.04 465.59 620.55 756.9940 129.80 180.11 241.99 316.63 405.23 508.98 672.96 816.731 Factored reference bending resistance three feet from butt with minimum circumferencesas specified in Table 7.1.5Table 5.11Pile Selection Table - Factored Reference Compression Parallel toGrain ResistanceGraded to ASTM D25, λ = 0.8, φ c= 0.9Factored Reference Compression Parallel to Grain Resistance 1 , λφ c P' (inch-kips)Minimum Tip Circumference (in.)Species 16 19 22 25 28 31 35 38Pacific Coast Douglas-Fir 44.00 62.05 83.19 107.43 134.76 165.18 210.56 248.21Red Oak 38.72 54.61 73.21 94.54 118.59 145.36 185.29 218.42Red Pine 32.56 45.92 61.56 79.50 99.72 122.24 155.82 183.67Southern Pine 39.60 55.85 74.87 96.69 121.28 148.67 189.51 223.381 Tabulated resistances do not consider the buckling capacities of piles.POLE AND PILE SELECTION TABLESAMERICAN FOREST & PAPER ASSOCIATION


20POLE AND PILE SELECTION TABLESAMERICAN WOOD COUNCIL


<strong>LRFD</strong> TIMBER POLES AND PILES SUPPLEMENT21OTHERCONSIDERATIONS6.1 General 226.2 Dimensional Changes 226.2.1 Approximate Moisture andThermal Dimensional Changes 226.2.2 Equations for ComputingMoisture and ThermalShrinkage/Expansion 226.3 Durability 236.4 Fire Performance 236AMERICAN FOREST & PAPER ASSOCIATION


22 OTHER CONSIDERATIONS6.1 GeneralWith proper detailing and protection, timber poles andpiles can perform well in a variety of environments. Onekey to proper detailing is planning for the natural shrinkageand swelling of wood products as they are subjectedto various drying and wetting cycles. While moisturechanges have the largest impact on product dimensions,some designs must also check the effects of temperatureas well.In addition to designing to accommodate dimensionalchanges and detailing for durability, another significantissue in the planning of wood structures is that of fire performance.Several facets of this issue are discussed inthis chapter.6.2 Dimensional Changes6.2.1 Approximate Moisture and Thermal Dimensional ChangestDescriptionDimensional change due to moisture content change 1Dimension change due to temperature change 2Radial or Tangential Direction1% change in dimension per 4% change in MC≈ 20 x 10 -6 in/in per degree F1Corresponding longitudinal direction shrinkage/expansion is about 0.1 to 0.2 percent.2Corresponding longitudinal direction coefficient is about one-tenth as large as radial and tangential.6.2.2 Equations for ComputingMoisture and ThermalShrinkage/ExpansionDue to Moisture ChangesFor more precise computation of dimensional changesdue to changes in moisture, the change in radial (R), tangential(T) and volumetric (V) dimensions due to changesin moisture content can be computed as:whereandwhereX = X ( ∆MC)eoX oME= initial dimension or volumeX = new dimension or volume∆MC = moisture content change (%)e ME∆MC = M - M o= coefficient of moisture expansion linear(in/in/%MC), or volumetric (in 3 /in 3 /%MC)M o= initial moisture content % (M o≤FSP)M = new moisture content % (M≤FSP)FSP = fiber saturation pointValues for e ME and FSP are tabulated in many woodmaterials textbooks and other handbooks.Due to Temperature ChangesFor more precise computation of dimensional changesdue to changes in temperature, the shrinkage/expansionof solid wood including lumber and timber can be computedas:whereX = X o( ∆Te ) TEX o= reference dimension at T oX = computed dimension at TT oe TE= reference temperature (°F)T = temperature at which the new dimension iscomputed (°F)= coefficient of thermal expansion (in/in/°F)AMERICAN WOOD COUNCIL


GUIDELINE<strong>LRFD</strong>TOTIMBER<strong>LRFD</strong>POLESFOR STRUCTURALAND PILES SUPPLEMENTCOMPOSITE LUMBER2323andwhere∆T = T -T o-60°F ≤ T o≤ 130°FThe coefficient of thermal expansion of oven dry woodparallel to grain ranges from about 1.7x10 -6 to 2.5x10 -6per °F.The linear expansion coefficients across the grain (radialand tangential) are proportional to wood density.These coefficients are about five to ten times greater thanthe parallel-to-the-grain coefficients and are given as:Radial:-6[ ] ( / ° )eTE= 18(SG)+ 5.5 10 in in/FTangential:-6[ ] ( ° )eTE= 18(SG) +10.2 10 in / in/FwhereSG is the tabulated specific gravity for the species.6.3 Durability6Designing for durability is a key part of the architecturaland engineering design of the building. This issueis particularly important in the design of buildings thatuse poles and piles. Many design conditions can be detailedto minimize the potential for decay; for other problemconditions, preservatively treated wood or naturallydurable species should be specified.This supplement does not cover the topic of designingfor durability in detail. There are many excellent textsthat devote entire chapters on the topic, and designers areadvised to use this information to assist in designing “difficult”design areas, such as:• in moist or humid structures• where wood comes in contact with concrete or masonry• where wood members are supported in steel hangers orconnectors in which condensation could collect• anywhere that wood is directly or indirectly exposed tothe elements• where wood, if it should ever become wet, could notnaturally dry out.This list is not intended to be all-inclusive — it ismerely an attempt to alert designers to special conditionsthat have been found to cause problems when not designedwith durability in mind.Durability issues related to piles are generally bothmore critical and more easily accommodated. Since pilesare in constant ground contact, they cannot be “insulated”from contact with moisture — thus, the standard referencecondition for piles is to be preservatively treated.The importance of proper treatment processing of pilescannot be overemphasized.OTHER CONSIDERATIONS6.4 Fire PerformanceVery few elements of modern structures can be called“fire-proof.” Even in buildings where the major structuralmembers are noncombustible, most of the furnishingsare flammable. It is for this reason that much of theattention in modern building codes addresses issues relatedto containing and limiting fires, rather than simplycalling materials combustible and noncombustible.While this topic is fairly complex for other types ofproducts, fire performance is relatively straightforwardfor poles and piles. Poles are generally used in crosssectionalsizes that qualify as heavy timber constructionin the model codes. On this basis, timber poles comparefavorably with other construction materials in their performanceunder fire conditions. Piles are generally notexposed to fire conditions unless they extend substantiallyabove the groundline.To reiterate previous discussion, this manual does notaddress fire performance in an all-inclusive manner — itis merely an attempt to alert designers to the need to addressfire performance issues in the design of their structures.AMERICAN FOREST & PAPER ASSOCIATION


24OTHER CONSIDERATIONSAMERICAN WOOD COUNCIL


<strong>LRFD</strong> TIMBER POLES AND PILES SUPPLEMENT25SECTIONPROPERTIES7.1 Section Properties 267.1.1 Pole Dimensions 267.1.2 Pile Dimensions 267Table 7.1 Timber Poles (ASTM D3200) ............................... 26Table 7.2 Minimum Butt Circumferences –Southern Pine Piles (ASTM D25) ......................... 27Table 7.3 Minimum Tip Circumferences –Southern Pine Piles (ASTM D25) ......................... 27Table 7.4 Minimum Butt Circumferences –Other Species Piles (ASTM D25) ......................... 28Table 7.5 Minimum Tip Circumferences –Other Species Piles (ASTM D25) ......................... 29Table 7.6 Class A and Class B Douglas-FirPiles (ASTM D25) .................................................. 29AMERICAN FOREST & PAPER ASSOCIATION


26 SECTION PROPERTIES7.1 SECTION PROPERTIES7.1.1 Pole DimensionsPole sizes are standardized by ASTM D3200. Standardizedsizes are independent of species. For a givenpole, minimum circumference at the tip is specified alongwith minimum circumference 3-ft. from the butt, the latterbeing a function of pole length. These specified dimensions(Table 7.1) with assumed linear taper shall beused in design computations associated with AF&PA/ASCE 16-95.7.1.2 Pile DimensionsPile dimensions are specified either by minimum tipcircumference or by minimum butt circumference. Thesedimensions are specified by ASTM D25 as a function ofpile length, species, and class. These dimensions (Tables7.2 through 7.6) with assumed linear taper or the actualmeasured dimensions shall be used in computations associatedwith AF&PA/ASCE 16-95.Table 7.2 provides the specified tip circumferenceswith corresponding minimum butt circumferences andTable 7.3 gives the specified butt circumferences withcorresponding minimum tip circumferences for SouthernPine piles. Tables 7.4 and 7.5 provide similar minimumcircumferences for piles of Pacific Coast Douglas-Fir andother species, except Southern Pine. Note that the buttcircumference is specified at three feet from the butt.Pacific Coast Douglas-Fir piles may be specified intoClass A and Class B. This classification depends on theminimum pile circumferences given in Table 7.6. Thedesigner should inquire as to the availability of Class Aand B sizes, which generally represent larger circumferencesthan the minimums specified in Table 7.6.Table 7.1Specified Tip Circumferences with Corresponding Minimum ButtCircumferences for Poles Graded to (ASTM D3200)Minimum Tip Circumference (in.)16 19 22 25 28 31 35 38Length (ft)Minimum Circumference three feet from butt (in.)10 18.5 21.5 24.5 27.5 30.5 33.5 37.5 40.515 19.8 22.8 25.8 28.8 31.8 34.8 38.8 41.820 22.0 24.0 27.0 30.0 33.0 36.0 40.0 43.025 22.2 25.2 28.2 31.2 34.2 37.2 41.2 44.230 23.5 26.5 29.5 32.5 35.5 38.5 42.5 45.535 24.8 27.8 30.8 33.8 36.8 39.8 43.8 46.840 26.0 29.0 32.0 35.0 38.0 41.0 45.0 48.0AMERICAN WOOD COUNCIL


GUIDELINE<strong>LRFD</strong>TOTIMBER<strong>LRFD</strong>POLESFOR STRUCTURALAND PILES SUPPLEMENTCOMPOSITE LUMBER2727Table 7.2Specified Tip Circumferences with Corresponding Minimum ButtCircumferences for Southern Pine Piles 1 (ASTM D25)Minimum Tip Circumference (in.)16 19 22 25 28 31 35 38Length (ft)Minimum Circumference three feet from butt (in.)20 19 22 25 28 31 34 38 4125 20 23 26 29 32 35 39 4230 21 24 27 30 33 36 40 4335 22 25 28 31 34 37 41 4440 26 29 32 35 38 42 4545 27 30 33 36 39 43 4650 31 34 37 40 44 4755 32 35 38 41 45 4860 33 36 39 42 46 4965 34 37 40 43 47 5070 35 38 41 44 48 5175 36 39 42 45 49 5280 37 40 43 46 50 5385 38 41 44 47 51 5490 39 42 45 48 52 551 Piles purchased as "8-in. and natural taper" have a required minimum tip circumference of 25 in. and are available in lengths of 20 to 45 ft.7Table 7.3Specified Butt Circumferences with Corresponding Minimum TipCircumferences for Southern Pine Piles 1,2,3 (ASTM D25)Minimum Circumference three feet from butt (in.)22 25 28 31 35 38 41 44 47 50 57Length (ft)Minimum Tip Circumference (in.)20 16 16 18 21 25 28 31 34 37 40 4725 16 16 17 20 24 27 30 33 36 39 4630 16 16 16 19 23 26 29 32 35 38 4535 18 22 25 28 31 34 37 4440 17 21 24 27 30 33 36 4345 20 23 26 29 32 35 4250 19 22 25 28 31 34 4155 21 24 27 30 33 4060 20 23 26 29 32 3965 19 22 25 28 31 3870 18 21 24 27 30 3775 23 26 29 3680 22 25 28 3585 21 24 27 341 Where the taper applied to the butt circumference calculates to a tip circumference of less than 16 in., corresponding values have been increasedSECTION PROPERTIES23to 16 in. to assure a minimum 5 in. diameter tip for purposes of driving.Class A piles are all those listed with a specified required minimum circumference of 44 in. at 3 ft. from butt.Class B piles are those listed with a specified required minimum circumference at 3 ft. from butt of 35 in. and lengths of 20 to 25 ft. minimum circumferenceat 3 ft. from butt of 38 in. and lengths of 20 to 50 ft. and minimum circumference at 3 ft. from butt of 41 in. and lengths of 55 to 80 ft.AMERICAN FOREST & PAPER ASSOCIATION


28 SECTION PROPERTIESTable 7.4Specified Tip Circumferences with Corresponding Minimum ButtCircumferences for Piles of Pacific Coast Douglas-Fir and OtherSpecies Except Southern Pine 1 (ASTM D25)Minimum Tip Circumference (in.)16 19 22 25 28 31 35 38Length (ft)Minimum Circumference three feet from butt (in.)20 21.0 24.0 27.0 30.0 33.0 36.0 40.0 43.025 22.8 25.3 28.3 31.3 34.3 37.3 41.3 44.330 23.5 26.5 29.5 32.5 35.5 38.5 42.5 45.535 24.8 27.8 30.8 33.8 36.8 39.8 43.8 46.840 26.0 29.0 32.0 35.0 38.0 41.0 45.0 48.045 27.3 30.3 33.3 36.3 39.3 42.3 46.3 49.350 28.5 31.5 34.5 37.5 40.5 43.5 47.5 50.555 29.8 32.8 35.8 38.8 41.8 44.8 48.8 51.860 31.0 34.0 37.0 40.0 43.0 46.0 50.0 53.065 32.3 35.3 38.3 41.3 44.3 47.3 51.3 54.370 33.5 36.5 39.5 42.5 45.5 48.5 52.5 55.575 34.8 37.8 40.8 43.8 46.8 49.8 53.8 56.880 36.0 39.0 42.0 45.0 48.0 51.0 55.0 58.085 37.3 40.3 43.3 46.3 49.3 52.3 56.3 59.390 38.5 41.5 44.5 47.5 50.5 53.5 57.5 60.595 39.8 42.8 45.8 48.8 51.8 54.8 58.8 61.8100 41.0 44.0 47.0 50.0 53.0 56.0 60.0105 42.3 45.3 48.3 51.3 54.3 57.3110 43.5 46.5 49.5 52.5 55.5 58.5115 44.8 47.8 50.8 53.8 56.8120 46.0 49.0 52.0 55.0 58.01 Piles purchased as "8 in. and natural taper" have a required minimum tip circumference of 25 in.and are available in lengths of 20 to 45 ft.AMERICAN WOOD COUNCIL


GUIDELINE<strong>LRFD</strong>TOTIMBER<strong>LRFD</strong>POLESFOR STRUCTURALAND PILES SUPPLEMENTCOMPOSITE LUMBER2929Table 7.5Specified Butt Circumferences with Corresponding Minimum TipCircumferences for Piles of Pacific Coast Douglas-Fir and OtherSpecies Except Southern Pine 1 (ASTM D25)Minimum Circumference three feet from butt (in.)22 25 28 31 35 38 41 44 47 50 57Length (ft)Minimum Tip Circumference (in.)20 16 16 16 18 22 25 2825 16 16 16 17 20.5 23.5 26.5 29.530 16 16 16 16 19 22 25 2835 16 18 21 24 27 3040 16 17 20 23 26 2945 16.5 18.5 21 24 27 3050 16 17 19 22 25 2855 16.5 17.5 20.3 23.3 26.3 31.360 16 16 18.6 21.6 24.6 31.665 16 16 17.3 18.9 21.9 28.970 16 16 16 16.2 19.2 26.275 16 16 16.1 17.6 2480 16 16 16 16 21.885 16 16 16 16 20.690 16 16 16 16 19.595 16 16 16 16 18.8100 16 16 16 16 18105 16 17110 16 16115 16120 161 Where the taper applied to the butt circumference calculates to a tip circumference of less than 16 in., correspondingvalues have been increased to 16 in. to assure a minimum 5 in. diameter tip for purposes of driving.7SECTION PROPERTIESTABLE 7.6Minimum Circumferences (in.) of Class A and Class B Pacific CoastDouglas-Fir Piles (ASTM D25)3 feet from butt minimum Tip minimumLength (ft.) Class A Class B Class A Class B20 to 25 -- 34 (optional) -- 2520 to 40 44 38 28 2540 to 50 44 38 28 2255 to 70 44 41 25 2275 to 90 44 41 22 1990 to 120 44 41 19 16AMERICAN FOREST & PAPER ASSOCIATION


30 SECTION PROPERTIESAMERICAN WOOD COUNCIL


SUPPLEMENTStructural-UsePanels<strong>LRFD</strong>LOAD AND RESISTANCE FACTOR DESIGNMANUAL FOR ENGINEEREDWOOD CONSTRUCTION


SUPPLEMENTStructural-UsePanels<strong>LRFD</strong>LOAD AND RESISTANCE FACTOR DESIGNMANUAL FOR ENGINEEREDWOOD CONSTRUCTIONCopyright © <strong>1996</strong>APA – The Engineered <strong>Wood</strong> Association


PrefaceThis supplement contains adjustment factors, dimensions,factored resistance, reference strengths and otherproperties required to design structural-use panels in the<strong>LRFD</strong> format. In this format, the term “resistance” isused to refer to member capacities (i.e., moment resistance,compression resistance, etc.). This is distinct fromthe term “strength” which refers to limit state materialproperties — conceptually a “factored allowable stress.”The member resistance values tabulated in thissupplement are to be used in conjunction with thedesign methodologies provided in AF&PA/ASCE 16-95, Standardfor Load and Resistance Factor Design (<strong>LRFD</strong>)for Engineered <strong>Wood</strong> Construction.The reference strengths were derived according tothe principles of ASTM D5457-93, Standard Specificationfor Computing the Reference Resistance of<strong>Wood</strong>-based Materials and Structural Connections forLoad and Resistance Factor Design.The tabulated reference strength values are to be usedwithin the reference end-use conditions defined therein.When the end-use conditions fall outside the range of thereference conditions, the reference values shall be adjustedby the product of applicable adjustment factors as definedin AF&PA/ASCE 16-95 and also provided in this supplement.For unusual end-use conditions, the designer shouldconsult additional literature for possible further adjustments.APA/EWS


TABLE OF CONTENTSChapter/TitlePage4.7 Fire Retardant Treatment Factor, C rt 8.1 GeneralChapter/Title Page1. Designer Flowchart ..................................................1 5. Factored Reference1.1 FlowchartResistance ...................................................................................152. Introduction ................................................................................... 35.1 General5.2 Capacity Selection Tables2.1 Products Description5.3 Factored Reference Shear Resistances2.2 Typical Applicationsfor Shear Walls and Diaphragms2.3 Availability6. Other Considerations .................................. 213. Reference Strength and6.1 Fastening (Nailing) SchedulesStiffness .................................................................................................76.2 Panel Spacing3.1 Derivation of Reference Values6.3 Panel Edge Support3.2 Example Derivation6.4 Panel Specification4. Design Adjustment Factors ....... 11 7. Supplemental Design4.1 GeneralAssistance ...................................................................................254.2 Grade and Construction Factor, C G7.1 General4.3 Width Factor, C w7.2 Load-Span Tables4.4 Moisture Effect Factor, C M7.3 Design Example4.5 Temperature Factor, C t4.6 Preservative Treatment Factor, C pt 8. Section Properties .............................................. 398.2 Section and Weight PropertiesLIST OF TABLES2.1 Typical Panel Constructions ............................................................... 64.1 Moisture Effect Factor, C M ............................................................. 124.2 Grade and Construction Factors, C G ................................... 145.1 Baseline Flexural Capacities .......................................................... 165.2 Baseline Shear Capacities ................................................................ 175.3 Baseline Axial Capacities .................................................................. 175.4 Factored Shear Resistance (kip/ft) forStructural-Use Panel Shear Walls with Framingof Douglas-fir, Larch, or Southern Pine forWind or Seismic Loading .................................................................... 185.5 Factored Shear Resistance (kip/ft) forStructural-Use Panel Horizontal Diaphragmswith Framing of Douglas-fir, Larch, orSouthern Pine for Wind or Seismic Loading .............. 196.1 Minimum Nailing Recommendations for Structural-Use Panel Applications ........................................................................ 226.2 Panel Edge Support ................................................................................... 237.1 Baseline Uniform Load Capacities (psf) ........................ 277.2 OSB Uniform Load Capacities (psf) .................................. 297.3 5-Ply Plywood Uniform Load Capacities (psf) ...... 327.4 4-Ply Plywood Uniform Load Capacities (psf) ...... 347.5 3-Ply Plywood Uniform Load Capacities (psf) ...... 357.6 COM-PLY Uniform Load Capacities (psf) ................ 368.1 Panel Section and Weight Properties .................................. 408.2 Relationship Between Span Rating andNominal Thickness ..................................................................................... 40APA/EWS


APA/EWS


<strong>LRFD</strong> STRUCTURAL-USE PANELS SUPPLEMENT11DESIGNERFLOWCHART1.1 Flowchart 2APA/EWS


2 DESIGNER FLOWCHART1.1 FlowchartStructural-Use PanelSupplementNoEnd-UseConditionsConsistent WithReferenceConditions (a) ?YesSelect Trial Panel (b)NoLoad-SpanCriteria Satisfied ?(Section 7.2)Determine BaselineCapacities (Section 5.2)YesUse Load-Span Tables(Section 7.2)Determine DesignCapacities (c)Factored Strengths >Factored Load Effects ?NoNoFactored Strengths >Factored Load Effects ?YesYesNoDesign Stiffness >Unfactored Load Effects ?Design Stiffness >Unfactored Load Effects ?NoYesAccept Trial PanelYes(a)See Section 4.(b)As a starting point, it is suggested to satisfy stiffness requirements first using load-span tables.(c)Apply end-use and grade-construction factors given in Section 4.APA/EWS


<strong>LRFD</strong> STRUCTURAL-USE PANELS SUPPLEMENT3INTRODUCTION22.1 Products Description 42.2 Typical Applications 52.3 Availability 5Table 2.1 Typical Panel Constructions .................................. 6APA/EWS


4 INTRODUCTION2.1 Products DescriptionStructural-Use PanelsStructural-use panels are wood-based panel products thathave been rated for use in structural applications. Commonapplications for structural-use panels include roofsheathing, wall sheathing, subflooring, and single-layerflooring (combination subfloor-underlayment).Structural-use panels are classified by span ratings.Panel span ratings identify the maximum recommendedsupport spacings for specific end uses. Design capacitiesare provided on the basis of span ratings.Structural-use panel recommendations provided in thissupplement are applicable to panels manufactured in accordancewith the provisions of PS1 and / or PS2.Designer must specify structural-use panels by thespan ratings, nominal thickness, grade and constructionassociated with tabulated design recommendations. Exposuredurability classification must also be identified.Panel GradesBased on PS2 (see Section 6.4), structural-use panelgrade names include Sheathing, Single Floor, and StructuralI Sheathing Corresponding grade names in PS1 areC-D, Underlayment, and Structural I C-D.• Sheathing grade panels are rated for use in subfloor,roof, and wall applications.• Single Floor panels are rated for use as combinationsubfloor-underlayment and are usually manufacturedwith tongue and groove (T&G) edge profiles.• Single Floor panels are typically sanded or touch-sandedwhile Sheathing panels are usually unsanded.• Structural I Sheathing panels meet the requirements ofthe sheathing grade as well as additional requirementsassociated with use in panelized roof systems, diaphragms,and shear walls.Span RatingsSpan ratings indicate the maximum recommendedsupport spacing, in inches, for specific applications. Thespan rating system applies when the panel is applied withthe reference axis across two or more supports. The referenceaxis is usually the primary axis of the panel.• Sheathing: Sheathing panels rated for use in roof orsubfloor applications are identified with a dual spanindex — two numbers separated by a slash. The numberpreceding the slash is the maximum recommendedsupport spacing for roof applications. The number followingthe slash is the maximum recommended supportspacing for subfloor applications. For example, a panelrated as 24/16 may be applied as roof sheathing oversupports spaced 24 inches o.c. or as subfloor over supportsspaced 16 inches o.c. Recommendations for useof sheathing panels also include wall applications.Certain of the roof sheathing spans are dependent uponpanel edge support (see Section 6.3).Sheathing panels rated for use only as wall sheathingare usually identified as either Wall-24 or Wall-16. Thenumerical index (24 or 16) corresponds to the maximumwall stud spacing. Wall sheathing panels areperformance tested with the secondary axis spanningacross supports. For this reason, wall sheathing panelsmay be applied with either the primary or secondaryaxis across supports.• Single Floor: The Single Floor span rating is an indexnumber that provides the maximum recommended supportspacing with the primary axis across two or moresupports. Typical Single Floor span ratings are 20 ocand 24 oc, although 16 oc, 32 oc, and 48 oc Single Floorpanels are also available.Single Floor panels may also carry a dual trademark,for which the second span index covers applicationswith the secondary axis across supports. Such panelsare typically used in flooring systems of manufacturedhousing.Panel Constructions• Plywood: Plywood is comprised of alternating layersof veneer (plies). Each layer consists of one or moreplies. Structural-use plywood panels are assembled withwaterproof adhesive applied between plies. The adhesivecures upon application of heat and pressure.Plywood has been manufactured since the early 1930’sand was the original structural-use panel. Plywood panelswere originally manufactured from Douglas-fir logs.Presently a variety of domestic species are used in plywoodmanufacture. Due to continued strong demandfor forest products, along with artificial constraints onwood supply, imported species are becoming a factorin domestic plywood production.APA/EWS


GUIDELINE<strong>LRFD</strong> STRUCTURAL-USETO <strong>LRFD</strong> FOR STRUCTURALPANELS SUPPLEMENTCOMPOSITE LUMBER 5• Oriented Strand Board: Oriented strand board (OSB)is comprised of thin rectangular wood strands arrangedin a minimum of three cross-aligned layers and bondedunder heat and pressure with a waterproof and boilproofadhesive. OSB’s predecessor product waswaferboard, a wood panel product that was first commerciallyproduced in the mid-1960’s. Waferboardmanufacture involved a mat-formed panel product withrandom distribution of rectangular wafers. Orientedstrand board, a significantly improved structural panelcompared to waferboard, was first produced in the early1980’s.Oriented strand board is manufactured from hardwoodspecies, softwood species, and mixed species. The hardwoodspecies used are selectively harvested from foreststhat naturally regenerate. The softwood resource is derivedfrom fast-maturing species from managed forests.Much of the softwood resource represents selectiveharvesting from these managed forests.• COM-PLY ®: COM-PLY panels are composite panelsof wood veneer and other wood-based material. COM-PLYpanels are typically manufactured with five layers. Theouter layers and the center layer are wood veneer, andthe two remaining core layers are comprised of woodfiber sandwiched between the veneer layers. COM-PLYpanels are manufactured with waterproof adhesives.COM-PLY was developed as a cooperative effort ofthe U.S. Forest Service and APA to more efficientlyutilize the wood resource.Exposure DurabilityThe following exposure durability classifications arebased on product composition and adhesive bond durability.• Exterior: Exterior panels may be used in applicationsthat are permanently exposed to the weather or to moisture.• Exposure 1: Exposure 1 panels may be used in applicationsthat are not permanently exposed to weather ormoisture, but where resistance to moisture effects dueto high humidity, water leakage, exposure during constructiondelays, or similar exposure conditions, isrequired.• Exposure 2: Exposure 2 panels may be used for interiorapplications requiring resistance to effects of highhumidity and water leakage.2INTRODUCTION2.2 Typical ApplicationsPanel ApplicationsIn addition to roof, subfloor, wall, and single-layerfloor applications, structural-use panels are used in otherapplications. Such applications include structural-insulatedpanels, I-joist webs, materials handling systems (pallets,bins, crating), transportation equipment, and concreteforming.Shear Walls and DiaphragmsStructural-use panels are used as components of wall,floor, and roof systems to resist and transfer in-plane forcesas may be imposed by wind or seismic loading. Shear wallsand diaphragms represent an important application forstructural-use panels.2.3 AvailabilityAlthough other panel constructions may be available,Table 2.1 shows constructions most typically manufactured.Check with suppliers concerning availability.APA/EWS


6 INTRODUCTIONTable 2.1 Typical Panel Constructions (a)PlywoodSpan Rating 3-ply 4-ply 5-ply (b) COM-PLY OSBSHEATHING24/0 ✔ ✔24/16 ✔32/16 ✔ ✔ ✔ ✔40/20 ✔ ✔ ✔ ✔48/24 ✔ ✔ ✔SINGLE FLOOR16 oc ✔20 oc ✔ ✔ ✔ ✔24 oc ✔ ✔ ✔ ✔32 oc ✔ ✔ ✔48 oc ✔ ✔ ✔(a)Constructions listed may not be available in every area. Check with suppliers concerning availability.(b)Applies to plywood with 5 or more layers.APA/EWS


<strong>LRFD</strong> STRUCTURAL-USE PANELS SUPPLEMENT7REFERENCESTRENGTH ANDSTIFFNESS33.1 Derivation of Reference Values 83.2 Example Derivation 8APA/EWS


8 REFERENCE STRENGTH AND STIFFNESS3.1 Derivation of Reference ValuesReference resistance values (load capacities), such asthose provided in Tables 5.1, 5.2, and 5.3, will serve themajority of panel design requirements. When necessary,design strength and stiffness (elastic modulus) may bederived from tabulated resistance on the basis of the sectionproperties provided in Table 8.1. For this purpose,the appropriate section properties for each span rating areidentified in Table 8.1.Note that tabulated reference resistance values givenin Tables 5.1 through 5.5 are factored.3.2 Example DerivationExample StatementDerive reference strength and stiffness (elastic modulus)for 15/32-inch 5-ply Structural I Sheathing 32/16applied with the primary axis across supports. Designconditions correspond with reference end-use conditionsgiven in Section 2.5 of AF&PA/ASCE 16-95, Standardfor Load and Resistance Factor Design (<strong>LRFD</strong>) for Engineered<strong>Wood</strong> Construction.Reference PropertiesThe reference property is derived by dividing thebaseline capacity by the appropriate section property, andapplicable time effect and resistance factors.Reference Bending Strength, F bAsF b= (λφ bM) ÷ (λφ bS)λφ bM = 0.639 kip-in./ft (Table 5.1)λ = 0.8, φ b= 0.85 (Table 5.1)S = 0.440 in. 3 /ft (Table 8.1)∴ F b= 0.639 ÷ [(0.8) (0.85) (0.440)] = 2.14 ksiReference Planar Shear Strength, F sAsF s= (λφ vV s) ÷ [λφ v(Ib / Q)]λφ vV s= 0.363 kip/ft (Table 5.2)λ = 0.8, φ v= 0.75 (Table 5.2)Ib/Q = 3.75 in. 2 /ft (Table 8.1)∴ F s= 0.363 ÷ [(0.8) (0.75) (3.75)] = 0.161 ksiReference Modulus of Elasticity, EAs∴E = (EI) ÷ IEI = 115 kip-in. 2 /ft (Table 5.1)I = 0.103 in. 4 /ft (Table 8.1)E = 115 ÷ 0.103 = 1117 ksiDesign Strength and StiffnessIn general, design strength and stiffness are determinedby adjusting reference properties with grade-constructionfactors and end-use adjustment factors.where:FN = F (C G) (C)FN = Design StrengthF = Reference StrengthC G= Grade-Construction Factor (Table 4.2)C = Product of End-Use Adjustment FactorsFor this example, design conditions correspond withreference end-use conditions, so that the product of enduseadjustment factors, C, is unity. The grade-constructionfactors for 5-ply Structural I Sheathing 32/16 are takenfrom Table 4.2. The capacity factor applies to the derivedstrength. For example, C G for moment capacity (M) appliesfor reference bending strength (F b ).Design Bending Strength, F b NF bN = (F b) (C G) (C)= (2.14) (1.2) (1.0)= 2.57 ksiAPA/EWS


GUIDELINE<strong>LRFD</strong> STRUCTURAL-USETO <strong>LRFD</strong> FOR STRUCTURALPANELS SUPPLEMENTCOMPOSITE LUMBER 9 Design Planar Shear Strength, F s NDesign Modulus of Elasticity, ENF sN = (F s) (C G) (C)= (0.161) (1.6) (1.0)= 0.258 ksiEN = (E) (C G) (C)= (1117) (1.1) (1.0)= 1229 ksi3REFERENCE STRENGTH AND STIFFNESSAPA/EWS


10REFERENCE STRENGTH AND STIFFNESSAPA/EWS


<strong>LRFD</strong> STRUCTURAL-USE PANELS SUPPLEMENT11DESIGNADJUSTMENTFACTORS44.1 General 124.2 Grade and Construction Factor, C G 124.3 Width Factor, C w 124.4 Moisture Effect Factor, C M 124.5 Temperature Factor, C t 134.6 Preservative Treatment Factor, C pt 134.7 Fire Retardant Treatment Factor, C rt 13Table 4.1 Moisture Effect Factor, C M .................................. 12Table 4.2 Grade and Construction Factors, C G ................... 14APA/EWS


12 DESIGN ADJUSTMENT FACTORS4.1 GeneralPanel design capacities are determined by multiplyingbaseline capacities, as given in Tables 5.1, 5.2, and5.3, by the grade-construction factor, C G , appropriate foreach specific product. Baseline capacities represent theminimum of each capacity (moment, shear, stiffness,...)for each grade and span rating. Grade-construction factorsare provided in Section 4.2.Tabulated capacities provided in this document aresuitable for reference end-use conditions (see Section 2.5of AF&PA/ASCE 16-95). Reference end-use conditionsare consistent with conditions typically associated withlight-frame construction. For structural-use panels, thesetypical conditions involve the use of full-size untreatedpanels in moderate temperature and moisture exposures.Appropriate adjustment factors are provided for applicationsin which the conditions of use are inconsistentwith reference conditions. In addition to temperature andmoisture, this includes consideration of panel treatmentand size effects. Reference conditions and adjustmentfactors are provided in Sections 4.3 through 4.7.The tabulated adjustment factors are based on datafrom tests of panels bearing the APA trademark.4.2 Grade and Construction Factor, C GReference capacities presented in Tables 5.1, 5.2, and5.3 of this document represent minimum values for eachlisted grade and construction. Table 4.2 provides adjustmentsto the minimum capacities as appropriate for specificconstructions and grades.Note that the capacities given in Tables 5.4 and 5.5 ofthis document for shear walls and diaphragms have takenthe effect of grade and construction into account. Thus,the grade and construction factor shall be taken as unity(C G = 1.0).4.3 Width Factor, C wReference capacities given in Tables 5.1, and 5.3 ofthis document for bending and tension are applicable forpanels 24 inches or greater in width. For panel widths, b,greater than or equal to 8 inches and less than 24 inches,the following width effect factor, C w , shall be applied toreference capacities for bending and tension:For 8 in. ≤ b < 24 in., C w= (8 + b) / 32Note that this factor is not applicable to the capacitiesgiven in Tables 5.4 and 5.5 of this document for shearwalls and diaphragms. Narrow-width shear walls requirespecial design considerations which are beyond the scopeof this document.4.4 Moisture Effect Factor, C MWhen the equilibrium moisture content of structuralusepanels is expected to be 16% or greater in service, themoisture effect factor, C M , shall be applied to referencecapacities given in Tables 5.1 through 5.5 of this document.Table 4.1 Moisture Effect Factor, C MReference CapacityC MStrength 0.75Stiffness 0.85APA/EWS


<strong>LRFD</strong> STRUCTURAL-USE PANELS SUPPLEMENT134.5 Temperature Factor, C tThe temperature effect factor, C t, shall be applied whenstructural-use panels are exposed to in-service sustainedtemperatures. In the range of 100 to 200ºF, the temperatureeffect factor is applicable only when moisture contentof structural-use panels at the elevated temperature canbe expected to remain at 16% or greater for wet-use (moisturecontent 16% or greater) conditions, or at 12% or abovefor dry-use conditions (moisture content below 16%). Thetemperature effect factor shall be computed according tothe following equation:where:C t= 1.0 - α t(T - 100)α t= Temperature effect coefficient = 0.005 forstructural-use panelsT = Temperature (°F)This factor is applicable to the capacities given inTables 5.1 through 5.5 of this document.44.6 Preservative Treatment Factor, C pt4.7 Fire Retardant Treatment Factor, C rtThe information provided in this document does notapply to fire-retardant-treated panels. All capacities andend-use conditions for fire-retardant-treated panels shallbe in accordance with the recommendations of the companyproviding the treating and redrying service.Capacities given in Tables 5.1 through 5.5 apply withoutadjustment (C pt = 1.0) to plywood pressureimpregnated with preservative chemicals and redried inaccordance with <strong>American</strong> <strong>Wood</strong> Preservers Association(AWPA) Specification C-9 or Specification C-22. However,due to the absence of applicable treating industrystandards, OSB and COM-PLY panels are not currentlyrecommended for applications requiring pressure-preservativetreating.DESIGN ADJUSTMENT FACTORSAPA/EWS


14 DESIGN ADJUSTMENT FACTORSTable 4.2 Grade and Construction Factors (a) , C GStrength Axis Grade M EI V s V v G v t T P EA3-Ply PlywoodPrimary Structural I 1.0 1.1 1.4 1.3 1.3 1.0 1.0 1.0Other (b) 1.0 1.1 1.0 1.0 1.0 1.0 1.0 1.0Secondary Structural I 1.3 1.5 5.2 1.3 1.3 1.0 1.0 1.0Other (b) 1.0 1.0 2.8 1.0 1.0 1.0 1.0 1.04-Ply Plywood (c)Primary Structural I 1.1 1.1 1.4 1.7 1.7 1.0 1.5 1.0Other (b) 1.1 1.1 1.0 1.3 1.3 1.0 1.5 1.0Secondary Structural I 1.7 3.3 7.9 1.7 1.7 1.0 1.5 1.0Other (b) 1.2 2.2 3.9 1.3 1.3 1.0 1.5 1.05-Ply Plywood (d)Primary Structural I 1.2 1.1 1.6 2.0 1.7 1.3 1.5 1.0Other (b) 1.2 1.1 1.1 1.5 1.5 1.3 1.5 1.0Secondary Structural I 2.8 5.2 1.4 2.0 1.7 1.3 1.5 1.0Other (b) 1.8 3.1 1.0 1.5 1.5 1.3 1.5 1.0OSBPrimary Structural I 1.2 1.0 1.0 2.9 3.1 1.0 1.0 1.0Other (b) 1.2 1.0 1.0 2.9 3.1 1.0 1.0 1.0Secondary Structural I 2.8 5.2 1.0 2.9 3.1 1.3 1.0 1.0Other (b) 1.8 3.1 1.0 2.9 3.1 1.3 1.0 1.0COM-PLYPrimary Structural I 1.2 1.1 1.0 1.7 1.7 1.0 1.0 1.0Other (b) 1.2 1.1 1.0 1.3 1.3 1.0 1.0 1.0Secondary Structural I 1.7 3.3 1.0 1.7 1.7 1.0 1.0 1.0Other (b) 1.2 2.2 1.0 1.3 1.3 1.0 1.0 1.0(a)M = Moment resistance, EI = Flexural stiffness, V s = Planar (Rolling) shear resistance, V v = Through-thickness shear resistance, G v t = Shear rigidity, T = Tensionresistance, P = Compression resistance, and EA = Axial stiffness.(b)Sheathing and Single Floor.(c)Factors for 4-ply also apply to plywood with 5 plys/3 layers.(d)Factors apply to plywood with 5 or more layers.APA/EWS


<strong>LRFD</strong> STRUCTURAL-USE PANELS SUPPLEMENT15FACTOREDREFERENCERESISTANCE55.1 General 165.2 Capacity Selection Tables 165.3 Factored Reference Shear Resistancesfor Shear Walls and Diaphragms 18Table 5.1 Baseline Flexural Capacities ................................ 16Table 5.2 Baseline Shear Capacities ..................................... 17Table 5.3 Baseline Axial Capacities ..................................... 17Table 5.4 Factored Shear Resistance (kip/ft) forStructural-Use Panel Shear WallswithFraming of Douglas-fir, Larch, or SouthernPine for Wind or Seismic Loading ...................... 18Table 5.5 Factored Shear Resistance (kip/ft) forStructural-Use Panel Horizontal Diaphragmswith Framing of Douglas-fir, Larch, orSouthern Pine for Wind or Seismic Loading ...... 19APA/EWS


16 FACTORED REFERENCE RESISTANCE5.1 GeneralThe capacities provided in Tables 5.1 through 5.5 arebased on data from tests of panels bearing the APA trademark.Factored baseline capacities are provided in Table 5.1through Table 5.3. Factored reference shear resistancesfor structural-use panel shear walls (vertical diaphragms)and horizontal diaphragms are given in Tables 5.4 and5.5, respectively, for wind and seismic loading.5.2 Capacity Selection TablesFactored capacities are provided in Table 5.1 throughTable 5.3. The tabulated capacities represent baselinecapacities. The minimum of each specific capacity (moment,shear, stiffness,...) from the various grades and spanratings was used to establish the capacity baseline. Allstructural-use panels referenced in this Supplement meetor exceed the baseline. For design, factored baseline capacitiesshall be adjusted by appropriate grade-constructionfactors and end-use adjustment factors (see Section 4 ofthis Supplement) to provide factored design capacities.Table 5.1 Baseline Flexural Capacities (a,b)Span RatingFactored Moment Resistanceλφ b M (kip-in./ft)Unfactored Flexural StiffnessEI (kip-in. 2 /ft)Axis Primary Secondary Primary SecondarySHEATHING24/0 0.432 0.093 60.00 3.60024/16 0.553 0.111 78.00 5.20032/16 0.639 0.159 115.0 8.10040/20 1.080 0.259 225.0 18.0048/24 1.460 0.389 400.0 29.50SINGLE FLOOR16 oc 0.717 0.173 150.0 11.0020 oc 0.829 0.242 210.0 13.0024 oc 1.106 0.372 300.0 26.0032 oc 1.503 0.657 650.0 75.0048 oc 2.765 1.175 1150 160.0(a)λ = 0.80 and φ b = 0.85. For λ other than 0.80, the tabulated value should be divided by 0.80 and then multiplied by the appropriate λ.(b)For design purposes, the tabulated value shall be multiplied by a grade-construction factor (C G ) given in Section 4.2 and other applicable adjustment factors givenin Section 4.APA/EWS


GUIDELINE<strong>LRFD</strong> STRUCTURAL-USETO <strong>LRFD</strong> FOR STRUCTURALPANELS SUPPLEMENTCOMPOSITE LUMBER 1717Table 5.2 Baseline Shear Capacities (a,b)Span RatingFactored Planar (Rolling)Shear Resistanceλφ v V s (kip/ft)Factored Through-ThicknessShear Resistanceλφ v V v (kip/ft)Unfactored Shear RigidityG v t v (kip/in.)Axis Primary Secondary Primary Secondary Primary SecondarySHEATHING24/0 0.285 0.181 0.092 0.092 25.00 25.0024/16 0.328 0.181 0.098 0.098 27.00 27.0032/16 0.363 0.225 0.107 0.107 27.00 27.0040/20 0.458 0.285 0.118 0.118 28.50 28.5048/24 0.588 0.328 0.130 0.130 31.00 31.00SINGLE FLOOR16 oc 0.389 0.251 0.100 0.100 27.00 27.0020 oc 0.458 0.294 0.116 0.116 28.00 28.0024 oc 0.588 0.337 0.128 0.128 30.00 30.0032 oc 0.691 0.484 0.145 0.145 36.00 36.0048 oc 1.037 0.778 0.181 0.181 50.50 50.50(a)λ = 0.80 and φ v = 0.75. For λ other than 0.80, the tabulated value should be divided by 0.80 and then multiplied by the appropriate λ.(b)For design purposes, the tabulated value shall be multiplied by a grade-construction factor (C G ) given in Section 4.2 and other applicable adjustment factors givenin Section 4.Table 5.3 Baseline Axial Capacities (a,b)Span RatingFactored Tension Resistanceλφ t T (kip/ft)Factored CompressionResistanceλφ c P (kip/ft)Unfactored Axial StiffnessEA (kip/ft)Axis Primary Secondary Primary Secondary Primary SecondarySHEATHING24/0 3.974 1.037 4.925 4.320 3350 290024/16 4.493 1.711 5.616 4.320 3800 290032/16 4.838 2.160 6.134 5.357 4150 360040/20 5.011 2.765 7.258 6.912 5000 460048/24 6.912 3.370 8.640 8.294 5850 5000SINGLE FLOOR16 oc 4.493 2.506 6.912 6.221 4500 420020 oc 5.011 2.765 7.258 6.912 5000 460024 oc 5.789 3.370 8.640 8.294 5850 500032 oc 6.912 4.320 10.886 10.714 7500 730048 oc 9.677 8.640 22.464 21.600 15000 14600(a)λ = 0.80, φ t = 0.80, and φ c = 0.90. For λ other than 0.80, the tabulated value should be divided by 0.80 and then multiplied by the appropriate λ.(b)For design purposes, the tabulated value shall be multiplied by a grade-construction factor (C G ) given in Section 4.2 and other applicable adjustment factorsgiven in Section 4.5FACTORED REFERENCE RESISTANCEAPA/EWS


18 FACTORED REFERENCE RESISTANCE5.3 Factored Reference Shear Resistances for ShearWalls and DiaphragmsTables 5.4 and 5.5 give factored reference shear resistancesfor structural-use panel shear walls (verticaldiaphragms) and horizontal diaphragms for wind and seismicloading. These resistances were developed throughformat conversion from Allowable Stress Design (ASD)to Load and Resistance Factor Design (<strong>LRFD</strong>).A factor of 1.3 was used to convert the allowable shearforces for shear walls and diaphragms to the <strong>LRFD</strong> factoredreference shear resistances. This factor is the sameas the load factor specified for wind design cases inAF&PA/ASCE 16-95. Note that the ASD shear capacitiesfor shear walls and diaphragms were based on shorttermloading (i.e., no adjustments for load duration arenecessary when using the ASD tables for shear walls anddiaphragms), which is consistent with the referenced timeeffect in the <strong>LRFD</strong>.Given the fact that panel shear walls and diaphragmshave performed well under seismic loading in the pastwhen designed in accordance with ASCE 7-88, and thedifference in the load effect for seismic loading betweenASCE 7-88 and ASCE 7-93 is limited, Tables 5.4 and 5.5are considered applicable to seismic loading as well.Table 5.4Factored (a) Shear Resistance (kip/ft) for Structural-Use Panel ShearWalls with Framing of Douglas-fir, Larch, or Southern Pine (b) for Windor Seismic Loading (c)Minimum Minimum Nail Panels Applied Direct to Framing Panels Applied Over 1/2" or 5/8" Gypsum SheathingNominal PanelThicknessPenetration inFramingNail Size(Common or Nail spacing at panel edges (in.)Nail Size(Common or Nail spacing at panel edges (in.)Panel Grade (in.) (in.) Galv. Box) 6 4 3 2 (e) Galv. Box) 6 4 3 2 (e)STRUCTURAL I 5/16 1-1/4 6d 0.26 0.39 0.51 0.66 8d 0.26 0.39 0.51 0.66SHEATHING 3/8 0.30 (d) 0.47 (d) 0.60 (d) 0.79 (d) 0.36 0.56 0.72 0.957/16 1-1/2 8d 0.33 (d) 0.51 (d) 0.66 (d) 0.87 (d) 10d 0.36 0.56 0.72 0.9515/32 0.36 0.56 0.72 0.95 0.36 0.56 0.72 0.9515/32 1-5/8 10d (f) 0.44 0.66 0.86 1.13 -- -- -- -- --SHEATHING 5/16 or 1/4 1-1/4 6d 0.23 0.35 0.46 0.59 8d 0.23 0.35 0.46 0.593/8 0.26 0.39 0.51 0.66 0.26 0.39 0.51 0.663/8 0.29 (d) 0.42 (d) 0.53 (d) 0.69 (d) 0.34 0.49 0.64 0.837/16 1-1/2 8d 0.31 (d) 0.46 (d) 0.59 (d) 0.76 (d) 10d (f) 0.34 0.49 0.64 0.8315/32 0.34 0.49 0.64 0.83 0.34 0.49 0.64 0.8315/32 1-5/8 10d (d) 0.40 0.60 0.78 1.00 -- -- -- -- --19/32 0.44 0.66 0.86 1.13 -- -- -- -- --(a)λ = 1.0, φ z = 0.65(b)For framing of other species: (1) Find specific gravity for species of lumberin the AF&PA National Design Specification, (2) for common or galvanizedbox nails, find shear value from table for nail size for STRUCTURAL Ipanels (regardless of actual grade); for galvanized casing nails, take shearvalue directly from table, (3) multiply this value by 0.82 for species withspecific gravity greater than or equal to 0.42 but less than 0.49, or multiplyby 0.65 for species with specific gravity less than 0.42.(c)All panel edges backed with 2-in. nominal or wider framing. Install panelseither horizontally or vertically. Space nails 6 in. o.c. along intermediateframing members for 3/8-in. and 7/16-in. panels installed on studs spaced24 in. o.c. For other conditions and panel thicknesses, space nails 12 in.o.c. on intermediate supports.(d)Shears are permitted to be increased to values shown for 15/32-in. sheathingwith same nailing, provided (1) studs are spaced a maximum of 16 in.o.c. or (2) if panels are applied with long dimension across studs.(e)Framing at adjoining panel edges shall be 3-in. nominal or wider, and nailsshall be staggered where nails are spaced 2 in. o.c.(f)Framing at adjoining panel edges shall be 3-in. nominal or wider, and nailsshall be staggered where 10d nails having penetration into framing of morethan 1-5/8 in. are spaced 3 in. o.c.APA/EWS


GUIDELINE<strong>LRFD</strong> STRUCTURAL-USETO <strong>LRFD</strong> FOR STRUCTURALPANELS SUPPLEMENTCOMPOSITE LUMBER 1919Table 5.5Factored (a) Shear Resistance (kip/ft) for Structural-Use PanelHorizontal Diaphragms with Framing of Douglas-fir, Larch, orSouthern Pine (b) for Wind or Seismic LoadingBlocked Diaphragms (c)Unblocked DiaphragmsMinimum MinimumMinimumNominalNail Spacing (in.) at Diaphragm Boundaries (allcases), at Continuous Panel Edges Parallel to Load(Cases 3 & 4), and at All Panel Edges (Cases 5 & 6)Nail Spaced 6 in. Maximum at SupportedEdges (c)Nail Nominal Width of 6 4 2-1/2 (d) 2 (d) Case 1 All otherCommonNailPenetrationin FramingPanelThicknessFramingMemberNail spacing (in.) at other panel edges(Cases 1, 2, 3 & 4)(No unblocked edges orcontinuous joints parallelconfigurations(Cases 2, 3, 4,Panel Grade Size (in.) (in.) (in.) 6 6 4 3 to load) 5 & 6)STRUCTURAL I 6d (f) 1-1/4 5/16 2 0.24 0.33 0.49 0.55 0.21 0.16SHEATHING 3 0.27 0.36 0.55 0.62 0.24 0.188d 1-1/2 3/8 2 0.35 0.47 0.69 0.78 0.31 0.233 0.39 0.52 0.78 0.88 0.34 0.2610d (e) 1-5/8 15/32 2 0.42 0.55 0.83 0.95 0.37 0.283 0.47 0.62 0.94 1.07 0.42 0.31SHEATHING 5/16 2 0.22 0.29 0.44 0.49 0.20 0.14AND 6d (f) 1-1/4 3 0.25 0.33 0.49 0.56 0.22 0.16SINGLE FLOOR 3/8 2 0.24 0.33 0.49 0.55 0.21 0.163 0.27 0.36 0.55 0.62 0.24 0.183/8 2 0.31 0.42 0.62 0.71 0.28 0.213 0.35 0.47 0.70 0.79 0.31 0.238d 1-1/2 7/16 2 0.33 0.44 0.66 0.75 0.30 0.223 0.37 0.49 0.74 0.84 0.33 0.2515/32 2 0.35 0.47 0.69 0.78 0.31 0.233 0.39 0.52 0.78 0.88 0.34 0.2615/32 2 0.38 0.50 0.75 0.85 0.33 0.2510d (e) 1-5/8 3 0.42 0.56 0.85 0.96 0.38 0.2819/32 2 0.42 0.55 0.83 0.95 0.37 0.283 0.47 0.62 0.94 1.07 0.42 0.31a)λ = 1.0, φ z = 0.65(b)For framing of other species: (1) Find specific gravity for species of lumberin the AF&PA National Design Specification, (2) for common or galvanizedbox nails, find shear value from table for nail size for STRUCTURAL Ipanels (regardless of actual grade); for galvanized casing nails, take shearvalue directly from table, (3) multiply this value by 0.82 for species withspecific gravity greater than or equal to 0.42 but less than 0.49, or multiplyby 0.65 for species with specific gravity less than 0.42.(c)Space nails maximum 12 in. o.c. along intermediate framing members (6in. o.c. when supports are spaced 48 in. o.c.).(d)Framing at adjoining panel edges shall be 3-in. nominal or wider, and nailsshall be staggered where nails are spaced 2 or 2-1/2 in. o.c.(e)Framing at adjoining panel edges shall be 3-in. nominal or wider, and nailsshall be staggered where 10d nails having penetration into framing of morethan 1-5/8 in. are spaced 3 in. o.c.(f)8d is recommended minimum for roofs due to negative pressures of highwinds.Notes: Design for diaphragm stresses depends on direction of continuous paneljoints with reference to load, not on direction of long dimension of sheet.Continuous framing may be in either direction for blocked diaphragms.5FACTORED REFERENCE RESISTANCEAPA/EWS


20FACTORED REFERENCE RESISTANCEAPA/EWS


<strong>LRFD</strong> STRUCTURAL-USE PANELS SUPPLEMENT21OTHERCONSIDERATIONS6.1 Fastening (Nailing) Schedules 226.2 Panel Spacing 226.3 Panel Edge Support 226.4 Panel Specification 236Table 6.1 Minimum Nailing Recommendations forStructural-Use Panel Applications....................... 22Table 6.2 Panel Edge Support ............................................... 23APA/EWS


22 OTHER CONSIDERATIONS6.1 Fastening (Nailing) SchedulesTable 6.1Minimum Nailing Recommendations for Structural-Use PanelApplicationsNail Spacing (in.)Recommended Panel IntermediateApplication Nail Size & Type Edges SupportsSINGLE FLOOR--Glue-nailed installationRing- or screw-shank16, 20, 24 oc, 3/4-in. thick or less 6d (a) 12 1224 oc, 7/8-in. or 1-in. thick 8d (a) 6 1232, 48 oc, 32-in. span (c-c) 8d (a) 6 1248 oc, 48-in. span (c-c) 8d (b) 6 6SINGLE FLOOR--Nailed-only installationRing- or screw-shank16, 20, 24 oc, 3/4-in. thick or less 6d 6 1224 oc, 7/8-in. or 1-in. thick 8d 6 1232, 48 oc, 32-in. span 8d (b) 6 1248 oc, 48-in. span 8d (b) 6 6SHEATHING--SubflooringCommon smooth, ring- or screw-shank (c)7/16-in. to 1/2-in. thick 6d 6 127/8-in. thick or less 8d 6 12Thicker panels 10d 6 6SHEATHING--Wall sheathingCommon smooth, ring- or screw-shank orgalvanized box (c)1/2-in. thick or less 6d 6 12Over 1/2-in. thick 8d 6 12SHEATHING--Roof sheathingCommon smooth, ring- or screw-shank (c)5/16-in. to 1-in. thick 8d 6 12 (d)Thicker panels8d ring- or screw-shankor 10d common smooth6 12 (d)(a)8d common nails may be substituted if ring- or screw-shank nails are not available.(b)10d ring-shank, screw-shank, or common nails may be substituted if supports are well seasoned.(c)Other code-approved fasteners may be used.(d)For spans 48 in. or greater, space nails 6 in. at all supports.6.2 Panel Spacing<strong>Wood</strong>-based panel products expand and contractslightly as a natural response to changes in panel moisturecontent. To provide for in-plane dimensional changes,panels should be installed with a 1/8-inch spacing at allpanel end and edge joints. A standard 10d box nail maybe used to check panel edge and panel end spacing.6.3 Panel Edge SupportFor certain span ratings, the maximum recommendedroof span for sheathing panels is dependent upon paneledge support. Although edge support may be providedby lumber blocking, panel clips are typically used whenedge support is required. Table 6.2 summarizes the relationshipbetween panel edge support and maximumrecommended spans.APA/EWS


GUIDELINE<strong>LRFD</strong> STRUCTURAL-USETO <strong>LRFD</strong> FOR STRUCTURALPANELS SUPPLEMENTCOMPOSITE LUMBER 2323Table 6.2Panel Edge SupportSheathingMaximum Recommended Span (in.)Span rating With Edge Support Without Edge Support24/0 24 20 (a)24/16 24 2432/16 32 2840/20 40 3248/24 48 36(a)20 in. for 3/8-in., 24 in. for 15/32-in. and 1/2-in. panels.6.4 Panel SpecificationGeneralAPA - The Engineered <strong>Wood</strong> Association7011 South 19th StreetTacoma, Washington 98466-5399U.S.A.Phone: (206) 565-6600Fax: (206) 565-7265Structural-use panel recommendations provided in thisdesign supplement are applicable to PS1 and PS2 panels.Design recommendations are based on structural capacitiesassociated with specific panel classifications.Structural-use panels are classified by span ratings.Designers must specify structural-use panels by thespan ratings, nominal thicknesses, grades, and constructionsassociated with tabulated design recommendations.Exposure durability classification must also be identified.Single Floor panels may have tongue-and-groove orsquare edges. If square edge Single Floor panels are specified,the specification shall require lumber blocking betweensupports.Further information regarding specification of structural-usepanels is provided in the following references.References — Structural-UsePanelsA partial listing of references for further informationon structural-use panels and panel applications follows.Additional information is available from organizationsproviding trademarking and quality assurance services.Structural Board Association45 Sheppard Avenue East, Suite 412,Willowdale, Ontario M2N 5W9CANADAPhone: (416) 730-9090Fax: (416) 730-90136OTHER CONSIDERATIONSPublications• U.S. Product Standard PS1 — Construction and IndustrialPlywood• U.S. Product Standard PS2 — Performance Standardfor <strong>Wood</strong>-Based Structural-Use Panels• Grades & Specifications• Panel Handbook & Grade Glossary• Residential & Commercial Design/Construction Guide• Diaphragms Design/Construction Guide• Fire Rated Systems Design/Construction GuidePublication• OSB in <strong>Wood</strong> Frame Construction — U.S. Edition• Design Rated OSB Design Manual — Canadian CodesAPA/EWS


24OTHER CONSIDERATIONSAPA/EWS


<strong>LRFD</strong> STRUCTURAL-USE PANELS SUPPLEMENT25SUPPLEMENTALDESIGNASSISTANCE7.1 General 267.2 Load-Span Tables 267.3 Design Example 387Table 7.1 Baseline Uniform Load Capacities (psf) ............ 27Table 7.2 OSB Uniform Load Capacities (psf) ................... 29Table 7.3 5-Ply Plywood Uniform Load Capacities (psf) ... 32Table 7.4 4-Ply Plywood Uniform Load Capacities (psf) ... 34Table 7.5 3-Ply Plywood Uniform Load Capacities (psf) ... 35Table 7.6 COM-PLY Uniform Load Capacities (psf) ......... 36APA/EWS


26 SUPPLEMENTAL DESIGN ASSISTANCE7.1 GeneralThis section provides maximum load-span tables forstructural-use panels under uniform loading. Baselineload-span tables are provided prior to the constructionspecific(OSB, plywood, COM-PLY) load-span tables.The construction-specific load-span tables provide uniformload capacities for panel constructions that aregenerally available.The “baseline” load-span tables will allow designersto quickly identify potential span rating(s) that may satisfydesign requirements. The baseline load-span tableswere determined on the basis of baseline capacities (Section5) which are based on testing of APA trademarkedstructural-use panels.When structural-use panels are applied with the primaryaxis across supports, three spans are assumed ifsupports are spaced 32 inches o.c. or less. Two spans areassumed when support spacing is greater than 32 incheso.c.When structural-use panels are applied with the secondaryaxis across supports, three spans are assumed forsupport spacings of 16 inches o.c. or less. Two spans areassumed if support spacings are greater than 16 incheso.c. and less than or equal to 24 inches o.c.One-span applications are not covered in the load-spantables. Nominal 2-inch supports were assumed for spansless than 48 inches, and nominal 4-inch supports wereassumed for 48-inch spans.7.2 Load-Span TablesLoad-span tables provided in this section are suitablefor use when the design end-use conditions are consistentwith reference end-use conditions (see Section 4.1). Thefollowing load-span tables were generated with an assumeddead load of 10 psf for shear and moment limitstates. Deflection-limited uniform loads apply in general,as loads are not factored in deflection design.Uniform loads limited by strength capacities (moment,shear) satisfy the following expression:λφRN ≥ 1.2D + 1.6LWhere:λ = Time Effect Factorφ = Resistance FactorRN = Design ResistanceD = Dead Load EffectL = Live Load Effect (roof live, floor live, or snow)Design resistances, time effect factor, and resistancefactors were taken from Section 5.2 of this Supplement.The tabulated uniform loads are not rounded.APA/EWS


GUIDELINE<strong>LRFD</strong> STRUCTURAL-USETO <strong>LRFD</strong> FOR STRUCTURALPANELS SUPPLEMENTCOMPOSITE LUMBER2727Table 7.1Baseline Uniform Load Capacities (a,b,c) (psf)Primary Axis Across SupportsSecondary Axis Across SupportsSpan Limit Span (in., center-to-center) Span (in., center-to-center)Rating State 12 16 19.2 24 32 40 48 12 16 19.2 24SHEATHING24/0 L/360 234 91 50 25 10 14L/240 351 136 75 37 15 10 21L/180 468 181 100 49 20 13 28M 228 129 90 59 34 19 51V s 342 248 204 161 119 91 21924/16 L/360 304 118 65 32 13 20L/240 456 177 98 48 19 12 30 12L/180 608 235 131 64 26 17 41 16M 291 165 115 75 43 23 60 35V s 393 286 234 185 137 105 219 15932/16 L/360 448 174 96 47 19 12 32 12L/240 672 260 144 71 29 18 12 47 18 13L/180 896 347 193 95 38 24 15 63 24 17M 336 190 133 86 49 26 19 85 49 28V s 435 315 259 204 151 116 100 270 196 15540/20 L/360 877 339 188 93 37 24 15 70 27 19L/240 1315 509 283 139 56 36 23 105 41 29 14L/180 1754 679 377 185 75 48 30 140 54 38 19M 565 319 222 143 82 43 31 138 78 45 30V s 548 397 326 257 190 145 126 342 248 196 15548/24 L/360 1559 604 335 164 67 42 27 115 45 31 15L/240 2338 905 502 247 100 64 40 172 67 47 23L/180 3118 1207 670 329 133 85 54 230 89 63 31M 763 430 300 193 109 57 41 205 116 66 43V s 702 509 417 329 243 186 161 393 286 225 1787SUPPLEMENTAL DESIGN ASSISTANCEAPA/EWS


28 SUPPLEMENTAL DESIGN ASSISTANCETable 7.1(Continued) Baseline Uniform Load Capacities (a,b,c) (psf)Primary Axis Across SupportsSecondary Axis Across SupportsSpan Limit Span (in., center-to-center) Span (in., center-to-center)Rating State 12 16 19.2 24 32 40 48 12 16 19.2 24SINGLE FLOOR16 oc L/360 585 226 126 62 25 16 10 43 17 12L/240 877 339 188 93 37 24 15 64 25 18L/180 1169 453 251 123 50 32 20 86 33 23M 376 213 148 96 55 29 21 93 53 31V s 465 338 277 219 162 124 107 301 219 17220 oc L/360 818 317 176 86 35 22 14 51 20 14L/240 1228 475 264 130 52 33 21 76 29 21 10L/180 1637 634 352 173 70 45 28 101 39 28 14M 435 246 171 111 63 34 24 129 73 42 28V s 548 397 326 257 190 145 126 352 256 202 15924 oc L/360 1169 453 251 123 50 32 20 101 39 28 14L/240 1754 679 377 185 75 48 30 152 59 42 20L/180 2338 905 502 247 100 64 40 203 78 55 27M 579 327 228 147 84 44 31 196 111 63 41V s 702 509 417 329 243 186 161 404 293 231 18232 oc L/360 2533 981 544 267 108 69 44 292 113 80 39L/240 3800 1471 816 401 162 103 65 438 170 120 59L/180 5067 1961 1088 535 216 138 87 585 226 160 79M 786 443 308 198 113 59 42 345 195 109 71V s 825 598 491 387 286 218 189 579 420 331 26148 oc L/360 4482 1735 963 473 191 122 77 624 241 171 84L/240 6723 2603 1444 709 287 183 116 935 362 256 126L/180 8964 3470 1925 946 383 244 154 1247 483 341 168M 1443 813 565 363 205 106 75 615 347 194 125V s 1237 896 735 579 427 326 282 928 673 530 417(a)Values represent unfactored total load (= D + L) and are applicable when λ = 0.8 and dead load (D) = 10 psf.(b)Applicable when nominal 2-in. framing members are used for supports less than 48 in. o.c., and nominal 4-in. framing members are used for supports at 48 in. o.c.(c)Tabulated values are based on the following loading configurations:Primary Axis Across SupportsSecondary Axis Across SupportsSupport Spacing (s) No. of Spans Support Spacing (s) No. of Spanss ≤ 32 in. o.c. 3 s ≤ 16 in. o.c. 3s > 32 in. o.c. 2 24 in. ≥ s > 16 in. 2APA/EWS


GUIDELINE<strong>LRFD</strong> STRUCTURAL-USETO <strong>LRFD</strong> FOR STRUCTURALPANELS SUPPLEMENTCOMPOSITE LUMBER 2929Table 7.2OSB Uniform Load Capacities (a,b,c) (psf)Primary Axis Across SupportsSecondary Axis Across SupportsSpan Limit Span (in., center-to-center) Span (in., center-to-center)Rating State 12 16 19.2 24 32 40 48 12 16 19.2 24SHEATHING24/0 L/360 234 91 50 25 10 43 17 12L/240 351 136 75 37 15 10 65 25 18L/180 468 181 100 49 20 13 87 34 24M 273 154 108 70 40 22 90 52 30V s 342 248 204 161 119 91 219 159 12624/16 L/360 304 118 65 32 13 63 24 17L/240 456 177 98 48 19 12 94 36 26 13L/180 608 235 131 64 26 17 126 49 34 17M 348 197 138 89 51 27 106 61 35 23V s 393 286 234 185 137 105 219 159 126 9932/16 L/360 448 174 96 47 19 12 98 38 27 13L/240 672 260 144 71 29 18 12 147 57 40 20L/180 896 347 193 95 38 24 15 196 76 54 26M 402 227 159 102 59 31 22 152 86 49 32V s 435 315 259 204 151 116 100 270 196 155 12240/20 L/360 877 339 188 93 37 24 15 217 84 59 29L/240 1315 509 283 139 56 36 23 326 126 89 44L/180 1754 679 377 185 75 48 30 435 168 119 58M 678 382 266 171 97 51 36 246 139 78 51V s 548 397 326 257 190 145 126 342 248 196 15548/24 L/360 1559 604 335 164 67 42 27 356 138 98 48L/240 2338 905 502 247 100 64 40 535 207 146 72L/180 3118 1207 670 329 133 85 54 713 276 195 96M 915 516 359 231 131 68 48 367 208 116 75V s 702 509 417 329 243 186 161 393 286 225 1787SUPPLEMENTAL DESIGN ASSISTANCEAPA/EWS


30 SUPPLEMENTAL DESIGN ASSISTANCETable 7.2(Continued) OSB Uniform Load Capacities (a,b,c) (psf)Primary Axis Across SupportsSecondary Axis Across SupportsSpan Limit Span (in., center-to-center) Span (in., center-to-center)Rating State 12 16 19.2 24 32 40 48 12 16 19.2 24STRUCTURAL I SHEATHING24/0 L/360 234 91 50 25 10 73 28 20 10L/240 351 136 75 37 15 10 109 42 30 15L/180 468 181 100 49 20 13 146 56 40 20M 273 154 108 70 40 22 139 79 45 30V s 342 248 204 161 119 91 219 159 126 9924/16 L/360 304 118 65 32 13 105 41 29 14L/240 456 177 98 48 19 12 158 61 43 21L/180 608 235 131 64 26 17 211 82 58 28M 348 197 138 89 51 27 164 93 53 35V s 393 286 234 185 137 105 219 159 126 9932/16 L/360 448 174 96 47 19 12 164 64 45 22L/240 672 260 144 71 29 18 12 246 95 67 33L/180 896 347 193 95 38 24 15 328 127 90 44M 402 227 159 102 59 31 22 234 133 75 49V s 435 315 259 204 151 116 100 270 196 155 12240/20 L/360 877 339 188 93 37 24 15 365 141 100 49L/240 1315 509 283 139 56 36 23 547 212 150 74L/180 1754 679 377 185 75 48 30 730 282 200 98M 678 382 266 171 97 51 36 381 215 121 78V s 548 397 326 257 190 145 126 342 248 196 15548/24 L/360 1559 604 335 164 67 42 27 598 231 164 80L/240 2338 905 502 247 100 64 40 897 347 245 121L/180 3118 1207 670 329 133 85 54 1196 463 327 161M 915 516 359 231 131 68 48 570 321 180 116V s 702 509 417 329 243 186 161 393 286 225 178APA/EWS


GUIDELINE<strong>LRFD</strong> STRUCTURAL-USETO <strong>LRFD</strong> FOR STRUCTURALPANELS SUPPLEMENTCOMPOSITE LUMBER3131Table 7.2(Continued) OSB Uniform Load Capacities (a,b,c) (psf)Primary Axis Across SupportsSecondary Axis Across SupportsSpan Limit Span (in., center-to-center) Span (in., center-to-center)Rating State 12 16 19.2 24 32 40 48 12 16 19.2 24SINGLE FLOOR16 oc L/360 585 226 126 62 25 16 10 133 51 36 18L/240 877 339 188 93 37 24 15 199 77 55 27L/180 1169 453 251 123 50 32 20 266 103 73 36M 451 255 178 115 66 35 25 165 94 53 35V s 465 338 277 219 162 124 107 301 219 172 13620 oc L/360 818 317 176 86 35 22 14 157 61 43 21L/240 1228 475 264 130 52 33 21 236 91 64 32L/180 1637 634 352 173 70 45 28 314 122 86 42M 521 294 205 132 75 40 28 229 130 73 48V s 548 397 326 257 190 145 126 352 256 202 15924 oc L/360 1169 453 251 123 50 32 20 314 122 86 42L/240 1754 679 377 185 75 48 30 471 182 129 63L/180 2338 905 502 247 100 64 40 628 243 172 84M 694 391 273 175 100 52 37 351 198 111 72V s 702 509 417 329 243 186 161 404 293 231 18232 oc L/360 2533 981 544 267 108 69 44 906 351 248 122L/240 3800 1471 816 401 162 103 65 1359 526 372 183L/180 5067 1961 1088 535 216 138 87 1812 702 496 244M 942 531 370 237 135 70 49 618 349 195 126V s 825 598 491 387 286 218 189 579 420 331 26148 oc L/360 4482 1735 963 473 191 122 77 1933 748 529 260L/240 6723 2603 1444 709 287 183 116 2900 1123 793 390L/180 8964 3470 1925 946 383 244 154 3866 1497 1058 520M 1731 975 678 435 246 127 89 1104 622 347 223V s 1237 896 735 579 427 326 282 928 673 530 417(a)Values represent unfactored total load (= D + L) and are applicable when λ = 0.8 and dead load (D) = 10 psf.(b)Applicable when nominal 2-in. framing members are used for supports less than 48 in. o.c., and nominal 4-in. framing members are used for supports at 48 in. o.c.(c)Tabulated values are based on the following loading configurations:Primary Axis Across SupportsSecondary Axis Across SupportsSupport Spacing (s) No. of Spans Support Spacing (s) No. of Spanss ≤ 32 in. o.c. 3 s ≤ 16 in. o.c. 3s > 32 in. o.c. 2 24 in. ≥ s > 16 in. 27SUPPLEMENTAL DESIGN ASSISTANCEAPA/EWS


32 SUPPLEMENTAL DESIGN ASSISTANCETable 7.35-Ply Plywood Uniform Load Capacities (a,b,c) (psf)Primary Axis Across SupportsSecondary Axis Across SupportsSpan Limit Span (in., center-to-center) Span (in., center-to-center)Rating State 12 16 19.2 24 32 40 48 12 16 19.2 24SHEATHING32/16 L/360 493 191 106 52 21 13 98 38 27 13L/240 740 286 159 78 32 20 13 147 57 40 20L/180 986 382 212 104 42 27 17 196 76 54 26M 402 227 159 102 59 31 22 152 86 49 32V s 478 347 284 224 166 127 110 270 196 155 12240/20 L/360 965 373 207 102 41 26 17 217 84 59 29L/240 1447 560 311 153 62 39 25 326 126 89 44L/180 1929 747 414 204 82 52 33 435 168 119 58M 678 382 266 171 97 51 36 246 139 78 51V s 602 437 358 282 209 160 138 342 248 196 15548/24 L/360 1715 664 368 181 73 47 30 356 138 98 48L/240 2572 996 553 271 110 70 44 535 207 146 72L/180 3430 1328 737 362 147 93 59 713 276 195 96M 915 516 359 231 131 68 48 367 208 116 75V s 772 560 459 362 267 204 177 393 286 225 178STRUCTURAL I SHEATHING32/16 L/360 493 191 106 52 21 13 164 64 45 22L/240 740 286 159 78 32 20 13 246 95 67 33L/180 986 382 212 104 42 27 17 328 127 90 44M 402 227 159 102 59 31 22 234 133 75 49V s 694 503 413 325 240 183 159 377 274 216 17040/20 L/360 965 373 207 102 41 26 17 365 141 100 49L/240 1447 560 311 153 62 39 25 547 212 150 74L/180 1929 747 414 204 82 52 33 730 282 200 98M 678 382 266 171 97 51 36 381 215 121 78V s 875 634 520 410 303 231 200 478 347 273 21548/24 L/360 1715 664 368 181 73 47 30 598 231 164 80L/240 2572 996 553 271 110 70 44 897 347 245 121L/180 3430 1328 737 362 147 93 59 1196 463 327 161M 915 516 359 231 131 68 48 570 321 180 116V s 1122 813 666 525 388 295 256 550 399 314 248APA/EWS


GUIDELINE<strong>LRFD</strong> STRUCTURAL-USETO <strong>LRFD</strong> FOR STRUCTURALPANELS SUPPLEMENTCOMPOSITE LUMBER3333Table 7.3(Continued) 5-Ply Plywood Uniform Load Capacities (a,b,c) (psf)Primary Axis Across SupportsSecondary Axis Across SupportsSpan Limit Span (in., center-to-center) Span (in., center-to-center)Rating State 12 16 19.2 24 32 40 48 12 16 19.2 24SINGLE FLOOR20 oc L/360 900 349 193 95 38 24 16 157 61 43 21L/240 1350 523 290 142 58 37 23 236 91 64 32L/180 1801 697 387 190 77 49 31 314 122 86 42M 521 294 205 132 75 40 28 229 130 73 48V s 602 437 358 282 209 160 138 352 256 202 15924 oc L/360 1286 498 276 136 55 35 22 314 122 86 42L/240 1929 747 414 204 82 52 33 471 182 129 63L/180 2572 996 553 271 110 70 44 628 243 172 84M 694 391 273 175 100 52 37 351 198 111 72V s 772 560 459 362 267 204 177 404 293 231 18232 oc L/360 2787 1079 599 294 119 76 48 906 351 248 122L/240 4180 1618 898 441 179 114 72 1359 526 372 183L/180 5573 2158 1197 588 238 152 96 1812 702 496 244M 942 531 370 237 135 70 49 618 349 195 126V s 908 658 539 425 314 239 208 579 420 331 26148 oc L/360 4930 1909 1059 520 211 134 85 1933 748 529 260L/240 7395 2863 1588 780 316 201 127 2900 1123 793 390L/180 9860 3817 2118 1040 421 268 170 3866 1497 1058 520M 1731 975 678 435 246 127 89 1104 622 347 223V s 1360 986 808 636 470 358 310 928 673 530 417(a)Values represent unfactored total load (= D + L) and are applicable when λ = 0.8 and dead load (D) = 10 psf.(b)Applicable when nominal 2-in. framing members are used for supports less than 48 in. o.c., and nominal 4-in. framing members are used for supports at 48 in. o.c.(c)Tabulated values are based on the following loading configurations:Primary Axis Across SupportsSecondary Axis Across SupportsSupport Spacing (s) No. of Spans Support Spacing (s) No. of Spanss ≤ 32 in. o.c. 3 s ≤ 16 in. o.c. 3s > 32 in. o.c. 2 24 in. ≥ s > 16 in. 27SUPPLEMENTAL DESIGN ASSISTANCEAPA/EWS


34 SUPPLEMENTAL DESIGN ASSISTANCETable 7.44-Ply Plywood Uniform Load Capacities (a,b,c) (psf)Primary Axis Across SupportsSecondary Axis Across SupportsSpan Limit Span (in., center-to-center) Span (in., center-to-center)Rating State 12 16 19.2 24 32 40 48 12 16 19.2 24SHEATHING32/16 L/360 493 191 106 52 21 13 69 27 19L/240 740 286 159 78 32 20 13 104 40 29 14L/180 986 382 212 104 42 27 17 139 54 38 19M 369 209 146 94 54 29 21 102 58 34 22V s 435 315 259 204 151 116 100 1045 758 596 47040/20 L/360 965 373 207 102 41 26 17 154 60 42 21L/240 1447 560 311 153 62 39 25 232 90 63 31L/180 1929 747 414 204 82 52 33 309 119 84 41M 621 351 244 157 90 47 33 165 94 53 35V s 548 397 326 257 190 145 126 1326 961 756 59648/24 L/360 1715 664 368 181 73 47 30 253 98 69 34L/240 2572 996 553 271 110 70 44 379 147 104 51L/180 3430 1328 737 362 147 93 59 506 196 138 68M 839 473 329 212 120 63 44 246 139 78 51V s 702 509 417 329 243 186 161 1527 1106 871 685STRUCTURAL I SHEATHING32/16 L/360 493 191 106 52 21 13 104 40 29 14L/240 740 286 159 78 32 20 13 156 60 43 21L/180 986 382 212 104 42 27 17 208 81 57 28M 369 209 146 94 54 29 21 143 82 46 31V s 607 440 361 285 211 161 139 2115 1532 1206 949SINGLE FLOOR20 oc L/360 900 349 193 95 38 24 16 111 43 30 15L/240 1350 523 290 142 58 37 23 167 65 46 22L/180 1801 697 387 190 77 49 31 223 86 61 30M 478 270 188 121 69 37 26 154 88 50 33V s 548 397 326 257 190 145 126 1366 990 779 61424 oc L/360 1286 498 276 136 55 35 22 223 86 61 30L/240 1929 747 414 204 82 52 33 334 129 91 45L/180 2572 996 553 271 110 70 44 446 173 122 60M 636 359 250 161 92 48 34 235 133 75 49V s 702 509 417 329 243 186 161 1567 1135 893 703(a)Values represent unfactored total load (= D + L) and are applicable when λ = 0.8 and dead load (D) = 10 psf.(b)Applicable when nominal 2-in. framing members are used for supports less than 48 in. o.c., and nominal 4-in. framing members are used for supports at 48 in. o.c.(c)Tabulated values are based on the following loading configurations:Primary Axis Across SupportsSecondary Axis Across SupportsSupport Spacing (s) No. of Spans Support Spacing (s) No. of Spanss ≤ 32 in. o.c. 3 s ≤ 16 in. o.c. 3s > 32 in. o.c. 2 24 in. ≥ s > 16 in. 2APA/EWS


GUIDELINE<strong>LRFD</strong> STRUCTURAL-USETO <strong>LRFD</strong> FOR STRUCTURALPANELS SUPPLEMENTCOMPOSITE LUMBER3535Table 7.53-Ply Plywood Uniform Load Capacities (a,b,c) (psf)Primary Axis Across SupportsSecondary Axis Across SupportsSpan Limit Span (in., center-to-center) Span (in., center-to-center)Rating State 12 16 19.2 24 32 40 48 12 16 19.2 24SHEATHING24/0 L/360 257 100 55 27 11 14L/240 386 149 83 41 16 10 21L/180 514 199 111 54 22 14 28M 228 129 90 59 34 19 51V s 342 248 204 161 119 91 60732/16 L/360 493 191 106 52 21 13 32 12L/240 740 286 159 78 32 20 13 47 18 13L/180 986 382 212 104 42 27 17 63 24 17M 336 190 133 86 49 26 19 85 49 28V s 435 315 259 204 151 116 100 751 545 42940/20 L/360 965 373 207 102 41 26 17 70 27 19L/240 1447 560 311 153 62 39 25 105 41 29 14L/180 1929 747 414 204 82 52 33 140 54 38 19M 565 319 222 143 82 43 31 138 78 45 30V s 548 397 326 257 190 145 126 953 691 544 428(a)Values represent unfactored total load (= D + L) and are applicable when λ = 0.8 and dead load (D) = 10 psf.(b)Applicable when nominal 2-in. framing members are used for supports less than 48 in. o.c., and nominal 4-in. framing members are used for supports at 48 in. o.c.(c)Tabulated values are based on the following loading configurations:7Primary Axis Across SupportsSecondary Axis Across SupportsSupport Spacing (s) No. of Spans Support Spacing (s) No. of Spanss ≤ 32 in. o.c. 3 s ≤ 16 in. o.c. 3s > 32 in. o.c. 2 24 in. ≥ s > 16 in. 2SUPPLEMENTAL DESIGN ASSISTANCEAPA/EWS


36 SUPPLEMENTAL DESIGN ASSISTANCETable 7.6COM-PLY Uniform Load Capacities (a,b,c) (psf)Primary Axis Across SupportsSecondary Axis Across SupportsSpan Limit Span (in., center-to-center) Span (in., center-to-center)Rating State 12 16 19.2 24 32 40 48 12 16 19.2 24SHEATHING32/16 L/360 493 191 106 52 21 13 69 27 19L/240 740 286 159 78 32 20 13 104 40 29 14L/180 986 382 212 104 42 27 17 139 54 38 19M 402 227 159 102 59 31 22 102 58 34 22V s 435 315 259 204 151 116 100 270 196 155 12240/20 L/360 965 373 207 102 41 26 17 154 60 42 21L/240 1447 560 311 153 62 39 25 232 90 63 31L/180 1929 747 414 204 82 52 33 309 119 84 41M 678 382 266 171 97 51 36 165 94 53 35V s 548 397 326 257 190 145 126 342 248 196 15548/24 L/360 1715 664 368 181 73 47 30 253 98 69 34L/240 2572 996 553 271 110 70 44 379 147 104 51L/180 3430 1328 737 362 147 93 59 506 196 138 68M 915 516 359 231 131 68 48 246 139 78 51V s 702 509 417 329 243 186 161 393 286 225 178SINGLE FLOOR20 oc L/360 900 349 193 95 38 24 16 111 43 30 15L/240 1350 523 290 142 58 37 23 167 65 46 22L/180 1801 697 387 190 77 49 31 223 86 61 30M 521 294 205 132 75 40 28 154 88 50 33V s 548 397 326 257 190 145 126 352 256 202 15924 oc L/360 1286 498 276 136 55 35 22 223 86 61 30L/240 1929 747 414 204 82 52 33 334 129 91 45L/180 2572 996 553 271 110 70 44 446 173 122 60M 694 391 273 175 100 52 37 235 133 75 49V s 702 509 417 329 243 186 161 404 293 231 18232 oc L/360 2787 1079 599 294 119 76 48 643 249 176 86L/240 4180 1618 898 441 179 114 72 965 373 264 130L/180 5573 2158 1197 588 238 152 96 1286 498 352 173M 942 531 370 237 135 70 49 413 233 131 85V s 825 598 491 387 286 218 189 579 420 331 26148 oc L/360 4930 1909 1059 520 211 134 85 1372 531 375 184L/240 7395 2863 1588 780 316 201 127 2058 797 563 277L/180 9860 3817 2118 1040 421 268 170 2744 1062 751 369M 1731 975 678 435 246 127 89 737 416 232 149V s 1237 896 735 579 427 326 282 928 673 530 417(a)Values represent unfactored total load (= D + L) and are applicable when λ = 0.8 and dead load (D) = 10 psf.(b)Applicable when nominal 2-in. framing members are used for supports less than 48 in. o.c., and nominal 4-in. framing members are used for supports at 48 in. o.c.(c)Tabulated values are based on the following loading configurations:Primary Axis Across SupportsSecondary Axis Across SupportsSupport Spacing (s) No. of Spans Support Spacing (s) No. of Spanss ≤ 32 in. o.c. 3 s ≤ 16 in. o.c. 3s > 32 in. o.c. 2 24 in. ≥ s > 16 in. 2APA/EWS


GUIDELINE<strong>LRFD</strong> STRUCTURAL-USETO <strong>LRFD</strong> FOR STRUCTURALPANELS SUPPLEMENTCOMPOSITE LUMBER 37377.3 Design ExampleThe following example provides an overview of thegeneral procedure for structural-use panel design underuniform loads. This example helps to clarify the modificationsnecessary to design for applications that are notrepresented in the load-span tables.Example - Roof ApplicationPanel: 1/2-inch nominal OSB Sheathing with a 32/16span rating.Application: Roof - primary axis spanning across supportsspaced 24 inches o.c.Solving for W L in our example:W LW T= [767 (120/24 2 ) - 1.2 (10)] / 1.6 = 92.4 psf= W D+ W L= 102 psfThe calculated uniform load controlled by panel designmoment capacity is 102 psf (see Table 7.2).Load Capacity - Planar (Rolling)ShearCalculate uniform load capacity and check resultsusing load-span tables. Assume a 10 psf dead load andthat design end-use conditions are consistent with referenceend-use conditions.Load Capacity - MomentFrom Table 5.1, the baseline factored moment capacityfor Sheathing 32/16 is 0.639 kip-in./ft. From Table4.2, the grade-construction factor for OSB moment capacityis 1.2 when the primary axis is across supports.The end-use adjustment factor is 1.0. Design momentcapacity for this application is:Whereλφ bMN = (0.639) (1.2) (1.0)= 0.767 kip-in./ftThe design equation is:λφ bMN = 1.2 (W DL 2 /K) + 1.6 (W LL 2 /K)L = 24 inches (span between centerline ofsupports)From Table 5.2, the baseline factored planar shearcapacity for Sheathing 32/16 is 0.363 kip/ft. From Table4.2, the grade-construction factor for OSB planar shearcapacity is 1.0. The end-use adjustment factor is also 1.0.The design planar shear capacity for this application is:Whereλφ vV sN = 0.363 (1.0) (1.0)= 0.363 kip/ftThe design equation is:λφ vV sN = 1.2 (W DL /K) + 1.6 (W LL /K)W DW LL = 22.5 inches (clear span)= Dead load = 10 psf= Live loadK = 20 for three or more spans, 19.2 for two spans,and 24 for single span applicationsThis design equation simplifies to:W L= [λφ vV sN (K/L) - 1.2 W D] / 1.67SUPPLEMENTAL DESIGN ASSISTANCEW DW L= Dead load = 10 psf= Live loadSolving for W L in our example:K = 120 for three or more spans, 96 for single andtwo-span applicationsW LW T= [363 (20/22.5) - 1.2 (10)] / 1.6 = 194 psf= W D+ W L= 204 psfThis design equation simplifies to:W L= [λφ bMN (K/L 2 ) - 1.2 W D] / 1.6The calculated uniform load controlled by panel designplanar shear capacity is 204 psf (see Table 7.2).APA/EWS


38 SUPPLEMENTAL DESIGN ASSISTANCELoad Capacity - DeflectionFrom Table 5.1, the baseline stiffness for Sheathing32/16 is 115 kip-in. 2 /ft. From Table 4.2, the grade-constructionfactor for OSB sheathing stiffness is 1.0. Theend-use adjustment factor is also 1.0. The design stiffnessis:Where(EI)N = (115) (1.0) (1.0)= 115 kip-in. 2 /ftThe design equation is:δ = W L 4 / [K 1(EΙ)N]δ = Deflection criterionL = Clear span plus support-width factor that isequal to 0.25 inch for two-inch-nominal lumberframing and 0.625 inch for four-inch-nominallumber framing.For the example application, K 1 = 1743, K 2 (live load)= 240, K 2 (total load) = 180, and L = 24 - 1.5 + 0.25 =22.75 inches.For uniform roof live load:W L= [115000/(22.75 3 )] (1743/240) = 71 psfTotal uniform load for roof applications:W T= [115000/(22.75 3 )] (1743/180) = 95 psfThe total uniform load limited by the L/180 deflectioncriterion is 95 psf. The uniform roof live load limitedby the L/240 deflection criterion is 71 psf (see Table 7.2).Example SummaryPanel: 1/2-inch nominal OSB Sheathing with a32/16 span rating.Application: Roof - primary axis spanning across supportsspaced 24 inches o.c.K 1= 1743 for three spans, 2220 for two spans, and921.6 for single span applicationsThe deflection criterion term may be expressed as:Limit StateMomentPlanar ShearStiffness, L/240Stiffness, L/180Uniform Load Capacity102 psf204 psf71 psf (live)95 psf (total)δ = L/K 2Where K 2 is a constant (180, 240, or 360).Substituting the deflection criterion term into the designequation and rearranging yields:These values check with capacities provided in thetable of OSB uniform load capacities (Table 7.2) for thecorresponding application. The uniform load capacity forthis design is 71 psf, as governed by the live load deflection.W = [(EΙ)N/L 3 ] (K 1/K 2)APA/EWS


<strong>LRFD</strong> STRUCTURAL-USE PANELS SUPPLEMENT39SECTIONPROPERTIES8.1 General 408.2 Section and Weight Properties 40Table 8.1 Panel Section and Weight Properties................... 40Table 8.2 Relationship Between Span Rating andNominal Thickness ................................................ 40 8APA/EWS


40 SECTION PROPERTIES8.1 GeneralSection and weight properties are provided in Section8.2. Nominal panel thicknesses tabulated in Table8.1 were used to calculate section properties. The tabulatedsection properties were calculated assuminghomogeneous rectangular cross sections of one-foot width.Relationships between nominal thickness and spanrating are provided in Table 8.2. The predominant nominalthickness available for each span rating is designatedby the letter “P”. The predominant nominal thickness isalso the appropriate thickness for establishing section propertiesfor design.Reference strength and stiffness may be calculatedusing applicable section properties from Table 8.1 anddesign capacities given in Table 5.1, Table 5.2, or Table5.3. An example derivation is provided in Section 3.2.8.2 Section and Weight PropertiesTable 8.1Panel Section and Weight Properties (a)Moment of Section Statical ShearNominal Approximate Thickness Area Inertia Modulus Moment ConstantThickness Weight (b) t A I S Q Ib/Q(in.) (psf) (in.) (in. 2 /ft) (in. 4 /ft) (in. 3 /ft) (in. 3 /ft) (in. 2 /ft)3/8 1.1 0.375 4.500 0.053 0.281 0.211 3.007/16 1.3 0.437 5.250 0.084 0.383 0.287 3.5015/32 1.4 0.469 5.625 0.103 0.440 0.330 3.751/2 1.5 0.500 6.000 0.125 0.500 0.375 4.0019/32 1.8 0.594 7.125 0.209 0.705 0.529 4.755/8 1.9 0.625 7.500 0.244 0.781 0.586 5.0023/32 2.2 0.719 8.625 0.371 1.033 0.775 5.753/4 2.3 0.750 9.000 0.422 1.125 0.844 6.007/8 2.6 0.875 10.500 0.670 1.531 1.148 7.001 3.0 1.000 12.000 1.000 2.000 1.500 8.001-1/8 3.3 1.125 13.500 1.424 2.531 1.898 9.00(a)Properties based on rectangular cross section of 1-foot width.(b)Approximate plywood weight for calculating actual dead loads. For OSB and COM-PLY panels, increase tabulated weights by 10%.Table 8.2Relationship Between Span Rating and Nominal ThicknessSpan RatingNominal Thickness (in.)3/8 7/16 15/32 1/2 19/32 5/8 23/32 3/4 7/8 1 1-1/8SHEATHING24/0 P A A A24/16 P A A32/16 P A A A40/20 P A A A48/24 P A ASINGLE FLOOR16 oc P A20 oc P A24 oc P A32 oc P A48 oc PP = Predominant nominal thickness for each span rating.A = Alternative nominal thickness that may be available for each span rating. Check with suppliers regarding availability.APA/EWS


SUPPLEMENTStructuralConnections<strong>LRFD</strong>LOAD AND RESISTANCE FACTOR DESIGNMANUAL FOR ENGINEEREDWOOD CONSTRUCTION<strong>American</strong>Forest &PaperAssociation<strong>American</strong> <strong>Wood</strong> <strong>Council</strong>


SUPPLEMENTStructuralConnections<strong>LRFD</strong>LOAD AND RESISTANCE FACTOR DESIGNMANUAL FOR ENGINEEREDWOOD CONSTRUCTIONCopyright © <strong>1996</strong><strong>American</strong> Forest & Paper Association


AMERICAN WOOD COUNCIL


PrefaceThis supplement contains adjustment factors, dimensions,factored resistance, and other properties requiredto design structural connections in the <strong>LRFD</strong> format. Inthis format, the term “resistance” is used to refer to connectioncapacities.The connection resistance values tabulated in thissupplement are to be used in conjunction with thedesign methodologies provided in AF&PA/ASCE 16-95, Standardfor Load and Resistance Factor Design (<strong>LRFD</strong>) forEngineered <strong>Wood</strong> Construction.The reference resistances were derived according tothe principles of ASTM D5457-93, Standard Specificationfor Computing the Reference Resistance of <strong>Wood</strong>basedMaterials and Structural Connections for Load andResistance Factor Design.The tabulated resistance values are to be used withinthe reference end-use conditions defined therein. Whenthe end-use conditions fall outside the range of the referenceconditions, the reference values shall be adjusted bythe product of applicable adjustment factors as defined inAF&PA/ASCE 16-95 and also provided in this supplement.For unusual end-use conditions, the designer shouldconsult additional literature for possible further adjustments.AMERICAN FOREST & PAPER ASSOCIATION


AMERICAN WOOD COUNCIL


TABLE OF CONTENTSChapter/TitlePageChapter/TitlePage1. Design Flowchart ..............................................................11.1 Design Flowchart2. Introduction to StructuralConnections .................................................................................... 32.1 Product Information3. Design Adjustment Factors .............. 53.1 General3.2 Use of Adjustment Factors4. Factored Resistance Values ....134.1 General4.2 Tables of Factored Resistance ValuesList of TablesLIST OF TABLES3.1 Wet Service Factor, C M .........................................................................83.2 Temperature Factor, C t ...........................................................................83.3 Penetration Depth Factor, C d .........................................................83.4 End Grain Factor, C eg and Toe Nail Factor, C tn ......93.5 Species Groups for Split Ring and ShearPlate Connectors ............................................................................................93.6A Group Action Factors, C g , for Bolt or LagScrew Connections with <strong>Wood</strong> SideMembers .............................................................................................................. 103.6B Group Action Factors, C g , for 4" Split Ringor Shear Plate Connections with <strong>Wood</strong> SideMembers .............................................................................................................. 103.6C Group Action Factors, C g , for Bolt or LagScrew Connections with Steel Side Plates ............... 113.6D Group Action Factors, C g , for 4" Shear PlateConnectors with Steel Side Plates ....................................... 128ADowel Bearing Strength for BoltedConnections ..................................................................................................... 178.2A Factored Resistance Values (φλZ') for SingleShear (Two Member) Bolted ConnectionsBetween Sawn Lumber Members of theSame Species ................................................................................................. 185. Other Considerations ................................... 635.1 General5.2 Dimensional Changes5.3 Fire Performance6. Fastener Dimensions ..................................... 656.1 Typical Dimensions for Standard LagScrewsAppendix .............................................................................................................67Simplified Design Equations - LaterallyLoaded ConnectionsBolted ConnectionsLag Screw Connections<strong>Wood</strong> Screw ConnectionsNail and Spike Connections8.2B Factored Resistance Values (φλZ') for SingleShear (Two Member) Bolted ConnectionsBetween Sawn Lumber and a 1/4" ASTMA36 Steel Side Plate ............................................................................. 208.2C Factored Resistance Values (φλZ') for SingleShear (Two Member) Bolted ConnectionsBetween Glued Laminated Timber and SawnLumber of the Same Species ...................................................... 228.2D Factored Resistance Values (φλZ') for SingleShear (Two Member) Bolted ConnectionsBetween Glued Laminated Timber and a 1/4"ASTM A36 Steel Side Plate ....................................................... 238.3A Factored Resistance Values (φλZ') for DoubleShear (Three Member) Bolted ConnectionsBetween Sawn Lumber Members of theSame Species ................................................................................................. 248.3B Factored Resistance Values (φλZ') for DoubleShear (Three Member) Bolted ConnectionsBetween Sawn Lumber and 1/4" ASTM A36Steel Side Plates ......................................................................................... 268.3C Factored Resistance Values (φλZ') for DoubleShear (Three Member) Bolted ConnectionsBetween Glued Laminated Timber Membersof the Same Species ............................................................................... 28AMERICAN FOREST & PAPER ASSOCIATION


8.3D Factored Resistance Values (φλZ') for DoubleShear (Three Member) Bolted ConnectionsBetween Glued Laminated Timber and 1/4"ASTM A36 Steel Side Plates .............................................. 299ADowel Bearing Strength for Lag ScrewConnections ............................................................................................... 309.2A Factored Resistance Values for Lag ScrewShank Withdrawal ............................................................................. 319.3A Factored Resistance Values (φλZ') for SingleShear (Two Member) Lag Screw ConnectionsBetween Sawn Lumber Members of the SameSpecies ............................................................................................................. 329.3B Factored Resistance Values (φλZ') for SingleShear (Two Member) Lag Screw ConnectionsBetween Sawn Lumber and a 1/4" ASTM A36Steel Side Plate, or an ASTM A446 Grade ASteel Side Plate (for ts


<strong>LRFD</strong> STRUCTURAL CONNECTIONS SUPPLEMENT11DESIGNERFLOWCHART1.1 Flowchart 2AMERICAN FOREST & PAPER ASSOCIATION


2 DESIGNER FLOWCHART1.1 FlowchartStructural ConnectionsSupplementNoEnd-UseConditionsConsistent WithReference Conditions(Section 3)YesSelect Adjustment FactorsSelect A Trial Size(Section 4)Determine FactoredReference ResistancesNoFactoredReference Resistances ≥Factored Load Effects?YesAccept The SizeAMERICAN WOOD COUNCIL


<strong>LRFD</strong> STRUCTURAL CONNECTIONS SUPPLEMENT3INTRODUCTIONTO STRUCTURALCONNECTIONS22.1 Product Information 42.1.1 Dowel-type (nails, bolts, screws,pins) 42.1.2 Shear Plates and Split Rings 42.1.3 Metal Connector Plates 42.1.4 Pre-Engineered MetalConnectors 42.1.5 Other Connectors 4AMERICAN FOREST & PAPER ASSOCIATION


4 INTRODUCTION TO STRUCTURAL CONNECTIONS2.1 Product Information2.1.1 Dowel-type (nails, bolts,screws, pins)These connectors rely on metal-to-wood bearing fortransfer of lateral loads and on friction or mechanical interfacesfor transfer of axial (withdrawal) loads. They arecommonly available in a wide range of diameters andlengths.2.1.2 Shear Plates and Split RingsThese connectors rely on their geometry to providelarger metal-to-wood bearing areas per connector. Bothare installed into precut grooves or daps in the members.2.1.3 Metal Connector PlatesThese connectors provide dual functions in whichprotruding teeth are the connecting elements while theunpunched portions of the plates act as splice members.2.1.4 Pre-Engineered MetalConnectorsThese connectors provide a single-piece connectionbetween two framing members. They generally consistof bent or welded steel, carrying load from the supportedmember (through direct bearing) into the supporting member(by hanger flange bearing, fastener shear, or acombination of the two).2.1.5 Other ConnectorsJust as the number of possible building geometries ispotentially limitless, so too are the number of possibleconnection geometries. In addition to providing customfabrication of connectors to meet virtually any geometrythat can be designed, metal connector manufacturers haveseveral categories of connectors that do not fit the categoriesabove, including:• framing anchors• hold-down devices, and• straps and tiesNote that, of all these types of fasteners, only thedowel-type and shear plates/split rings are covered in thisSupplement. Issues relating to designs using metal connectorplates and pre-engineered metal connectors arediscussed in the Guideline for Metal Plate Connected<strong>Wood</strong> Trusses and the Guideline for Pre-Engineered MetalConnectors, respectively.AMERICAN WOOD COUNCIL


<strong>LRFD</strong> STRUCTURAL CONNECTIONS SUPPLEMENT5DESIGNADJUSTMENTFACTORS33.1 General 63.2 Use of Adjustment Factors 63.2.1 Lateral 63.2.2 Axial 7Table 3.1 Wet Service Factor, C M ........................................ 8Table 3.2 Temperature Factor, C t ........................................ 8Table 3.3 Penetration Depth Factor, C d .............................. 8Table 3.4 End Grain Factor, C eg and Toe Nail Factor, C tn 9Table 3.5 Species Groups for Split Ring and Shear PlateConnectors ............................................................. 9Table 3.6A Group Action Factors, C g , for Bolt or LagScrew Connections with <strong>Wood</strong> Side Members 10Table 3.6B Group Action Factors, C g , for 4" Split Ring orShear Plate Connections with <strong>Wood</strong> SideMembers ............................................................. 10Table 3.6C Group Action Factors, C g , for Bolt or LagScrew Connections with Steel Side Plates ........ 11Table 3.6D Group Action Factors, C g , for 4" Shear PlateConnectors with Steel Side Plates ..................... 12AMERICAN FOREST & PAPER ASSOCIATION


6 DESIGN ADJUSTMENT FACTORS3.1 GeneralWhile this Supplement follows the common formatof product supplements that are part of the <strong>LRFD</strong> package,the alternative approaches of selection tables versusreference strength tables is not as useful as for memberdesign. Chapter 4 includes pre-calculated <strong>LRFD</strong> factoredresistance values. However, in this supplement, no selectiontables are provided.Tabulated values are presented for “standard” conditionsof use. These values must be modified appropriatelyby the adjustment factors included in this chapter.Adjustment factors provided in this section are usedfor applications outside reference end-use conditions andfor member configuration effects. When one or morespecific end-use or member configuration conditions falloutside the range of reference conditions defined in Section2.5 of AF&PA/ASCE 16-95, these adjustment factorsshall be used to modify appropriate properties. Adjustmentfactors for effects of moisture, temperature,preservative treatment and member configuration are providedin this supplement.3.2 Use of Adjustment Factors3.2.1 LateralLateral resistance can be computed by the followingequation:ZN= Z (C MC tC ptC rtC gC ∆C dC egC diC stC tn)where ZN is the adjusted lateral resistance (unfactored), Zis the reference lateral resistance and C i are the adjustmentfactors. (Note that, for untreated members used in adry condition, many adjustment factors are equal to unity.)C ∆ is 1.0C d is 1.0for nails, spikes and wood screwsand for connections of other fastener typesthat meet the minimum requirements of spacingor edge/end distance. For definition ofthese distances and for corresponding valuesof C ∆ , see AF&PA/ASCE 16-95 Table 7.5-1,7.6-1, or 7.6-2for full penetration connectors and as shownin Table 3.3 otherwise.C M is 1.0C t is 1.0C pt is 1.0C rt is 1.0C g is 1.0for connections fabricated dry and remainingdry in-service and as shown in Table 3.1 otherwisefor connections used in temperature conditionsup to 100 o F and as shown in Table 3.2otherwisefor members that are untreated or arepreservatively treated in accordance with approvedstandardsfor members that are not fire-retardant treatedor as given by the company providing thetreatment and redrying service otherwisefor nails, spikes and wood screwsC eg is 1.0C di is 1.1unless the fastener is installed into end grainof the member. For connectors driven intoend grain of the main member, multiply bythe value of C eg given in Table 3.4.for nails used in diaphragms (see Structural-Use Panel Design Supplement for further information).C st is 1.0 for 4" shear plates with metal side platesloaded parallel to grain in group D species.Corresponding values for other species groupingsare:- group C: 1.05- group B: 1.11- group A: 1.18(See Table 3.5 for definition of species groupings.)and for single fastener connections with otherfastener typesand as computed in AF&PA/ASCE 16-95 section7.3.6 otherwiseC tn is 0.83for nails driven at angle to grain (toe nailed)and loaded laterally (see Table 3.4)AMERICAN WOOD COUNCIL


GUIDELINE<strong>LRFD</strong> STRUCTURALTO <strong>LRFD</strong> FORCONNECTIONSSTRUCTURAL COMPOSITESUPPLEMENTLUMBER 7 3.2.2 AxialAxial (withdrawal) resistance can be computed by thefollowing equation:C rt is 1.0C ∆ is 1.0for members that are not fire-retardant treatedor as given by the company providing thetreatment and redrying service otherwisefor nails, spikes and wood screwsZ WN =Z W(C MC tC ptC rtC ∆C egC tn)where Z W N is the adjusted axial resistance (unfactored),Z W is the reference axial resistance and C i are the adjustmentfactors. (Note that, for untreated members used in adry condition, many of the adjustment factors are equal tounity.)C M is 1.0C t is 1.0C pt is 1.0for connections fabricated dry and remainingdry in-service and as shown in Table 3.1 otherwisefor connections used in temprature conditionsup to 100 o F and as shown in Table 3.2 otherwisefor members that are untreated or arepreservatively treated in accordance with approvedstandardsC eg is 1.0C tn is 0.67and for connections of other fastener typesthat meet the minimum requirements of spacingor edge/end distance. For definition ofthese distances and for corresponding valuesof C ∆ , see AF&PA/ASCE 16-95 Table 7.5-1,7.6-1, or 7.6-2unless the fastener is installed into the endgrain of the member. For connectors driveninto the end grain of the member, multiply bythe value of C eg given in Table 3.4for nails driven at angle to the grain (toenailed) and loaded axially in withdrawal (seeTable 3.4)3DESIGN ADJUSTMENT FACTORSAMERICAN FOREST & PAPER ASSOCIATION


8 DESIGN ADJUSTMENT FACTORSTable 3.1 Wet Service Factor, C MMoisture ContentLoadFastener Typeat time of fabrication in-service Lateral Withdrawal#19%Shear Plates & Split Rings 1 >19%any#19%#19%>19%1.00.80.7-#19%Metal Connector Plates 2 >19%any#19%#19%>19%1.00.80.8-Bolts & Drift Pins & DriftBoltsanyany#19%>19%1.0 30.7 -Lag Screws & <strong>Wood</strong> Screwsanyany#19%>19%1.0 30.71.00.7Nails &Spikes#19%>19%#19%>19%#19%#19%>19%>19%1.00.70.70.71.00.250.251.0Threaded Hardened Nails any any 1.0 1.01For split ring or shear plate connectors, moisture content limitations apply to a depth of 3/4" below the surface of the wood.2For more information on metal connector plates see 14.3.3For two or more rows of bolts or lag screws with a single side plate installed in wood with moisture content >19% at time of fabrication and#19% in service, C M = 0.4.Table 3.2 Temperature Factor, C tPropertyConnectionsEnd-UseMoisture ConditionDryWetPermanent Temperature EF100


GUIDELINE<strong>LRFD</strong> STRUCTURALTO <strong>LRFD</strong> FORCONNECTIONSSTRUCTURAL COMPOSITESUPPLEMENTLUMBER 9 Table 3.4 End Grain Factor, C egand Toe Nail Factor, C tnType of fastenerEnd grain factor, C egToe nail factor, C tnlateralaxial(withdrawal)lateralaxial(withdrawal)Nails, spikes 0.67 not permitted 0.83 0.673<strong>Wood</strong> screws 0.67 not permitted n/a n/aLag screws 0.67 0.75 n/a n/aTable 3.5 Species Groups for Split Ring and Shear Plate ConnectorsGroup A Group B Group C Group DBeech-Birch-Hickory Douglas Fir-Larch Douglas Fir-South AspenDouglas Fir-Larch(dense)Douglas Fir-Larch(North)Eastern Hemlock -Tamarack (North)Balsam FirMixed Oak Mixed Maple Hem-Fir Coast Sitka SpruceDESIGN ADJUSTMENT FACTORSNorthern Red Oak Mixed Southern Pine Hem-Fir (North) CottonwoodRed Oak Red Maple Mountain Hemlock Eastern HemlockSouthern Pine (dense) Southern Pine 1 Northern Pine Eastern Hemlock -TamarackWhite Oak Ponderosa Pine Eastern SoftwoodsRed PineRedwood (close grain)Sitka SpruceSpruce-Pine-FirWestern HemlockWestern Hemlock(North)Yellow PoplarEastern SpruceEastern White PineNorthern SpeciesNorthern White CedarRedwood (open grain)Spruce-Pine-Fir (South)Western CedarsWestern Cedars(North)Western White PineWestern <strong>Wood</strong>s1Coarse grain Southern Pine, as used in some glued laminated timber combinations, is in Group CAMERICAN FOREST & PAPER ASSOCIATION


10 DESIGN ADJUSTMENT FACTORSTable 3.6A Group Action Factors, C g, for Bolt or Lag Screw Connections with<strong>Wood</strong> Side Members 2For D = 1", s = 4", E = 1,400 ksiA s /A m1 A s1Number of fasteners in a rowin 2 2 3 4 5 6 7 8 9 10 11 1215 0.98 0.92 0.84 0.75 0.68 0.61 0.55 0.50 0.45 0.41 0.3812 0.99 0.96 0.92 0.87 0.81 0.76 0.70 0.65 0.61 0.57 0.530.5 20 0.99 0.98 0.95 0.91 0.87 0.83 0.78 0.74 0.70 0.66 0.6228 1.00 0.98 0.96 0.93 0.90 0.87 0.83 0.79 0.76 0.72 0.6940 1.00 0.99 0.97 0.95 0.93 0.90 0.87 0.84 0.81 0.78 0.7564 1.00 0.99 0.98 0.97 0.95 0.93 0.91 0.89 0.87 0.84 0.821 5 1.00 0.97 0.91 0.85 0.78 0.71 0.64 0.59 0.54 0.49 0.4512 1.00 0.99 0.96 0.93 0.88 0.84 0.79 0.74 0.70 0.65 0.611 20 1.00 0.99 0.98 0.95 0.92 0.89 0.86 0.82 0.78 0.75 0.7128 1.00 0.99 0.98 0.97 0.94 0.92 0.89 0.86 0.83 0.80 0.7740 1.00 1.00 0.99 0.98 0.96 0.94 0.92 0.90 0.87 0.85 0.8264 1.00 1.00 0.99 0.98 0.97 0.96 0.95 0.93 0.91 0.90 0.881When A s /A m > 1.0, use A m /A s and use A m instead of A s .2Tabulated group action factors (C g ) are conservative for D < 1", s < 4" or E > 1,400 ksi.Table 3.6B Group Action Factors, C g, for 4" Split Ring or Shear PlateConnections with <strong>Wood</strong> Side Members 2For s = 9", E = 1,400 ksiA s /A m1 A s1Number of fasteners in a rowin 2 2 3 4 5 6 7 8 9 10 11 1215 0.90 0.73 0.59 0.48 0.41 0.35 0.31 0.27 0.25 0.22 0.2012 0.95 0.83 0.71 0.60 0.52 0.45 0.40 0.36 0.32 0.29 0.270.5 20 0.97 0.88 0.78 0.69 0.60 0.53 0.47 0.43 0.39 0.35 0.3228 0.97 0.91 0.82 0.74 0.66 0.59 0.53 0.48 0.44 0.40 0.3740 0.98 0.93 0.86 0.79 0.72 0.65 0.59 0.54 0.49 0.45 0.4264 0.99 0.95 0.91 0.85 0.79 0.73 0.67 0.62 0.58 0.54 0.5015 1.00 0.87 0.72 0.59 0.50 0.43 0.38 0.34 0.30 0.28 0.2512 1.00 0.93 0.83 0.72 0.63 0.55 0.48 0.43 0.39 0.36 0.331 20 1.00 0.95 0.88 0.79 0.71 0.63 0.57 0.51 0.46 0.42 0.3928 1.00 0.97 0.91 0.83 0.76 0.69 0.62 0.57 0.52 0.47 0.4440 1.00 0.98 0.93 0.87 0.81 0.75 0.69 0.63 0.58 0.54 0.5064 1.00 0.98 0.95 0.91 0.87 0.82 0.77 0.72 0.67 0.62 0.581When A s /A m > 1.0, use A m /A s and use A m instead of A s .2Tabulated group action factors (C g ) are conservative for 2-1/2" split ring connectors, 2-5/8" shear plate connectors, s < 9" or E > 1,400 ksi.AMERICAN WOOD COUNCIL


GUIDELINE<strong>LRFD</strong> STRUCTURALTO <strong>LRFD</strong> FORCONNECTIONSSTRUCTURAL COMPOSITESUPPLEMENTLUMBER 1111Table 3.6C Group Action Factors, C g, for Bolt or Lag Screw Connections withSteel Side Plates 1For D = 1", s = 4", E wood= 1,400 ksi, E steel= 30,000 ksiNumber of fasteners in a rowA m /A sA min 2 2 3 4 5 6 7 8 9 10 11 125 0.97 0.89 0.80 0.70 0.62 0.55 0.49 0.44 0.40 0.37 0.348 0.98 0.93 0.85 0.77 0.70 0.63 0.57 0.52 0.47 0.43 0.4016 0.99 0.96 0.92 0.86 0.80 0.75 0.69 0.64 0.60 0.55 0.5212 24 0.99 0.97 0.94 0.90 0.85 0.81 0.76 0.71 0.67 0.63 0.5940 1.00 0.98 0.96 0.94 0.90 0.87 0.83 0.79 0.76 0.72 0.6964 1.00 0.99 0.98 0.96 0.94 0.91 0.88 0.86 0.83 0.80 0.77120 1.00 0.99 0.99 0.98 0.96 0.95 0.93 0.91 0.90 0.87 0.85200 1.00 1.00 0.99 0.99 0.98 0.97 0.96 0.95 0.93 0.92 0.905 0.99 0.93 0.85 0.76 0.68 0.61 0.54 0.49 0.44 0.41 0.378 0.99 0.95 0.90 0.83 0.75 0.69 0.62 0.57 0.52 0.48 0.4416 1.00 0.98 0.94 0.90 0.85 0.79 0.74 0.69 0.65 0.60 0.5618 24 1.00 0.98 0.96 0.93 0.89 0.85 0.80 0.76 0.72 0.68 0.6440 1.00 0.99 0.97 0.95 0.93 0.90 0.87 0.83 0.80 0.77 0.7364 1.00 0.99 0.98 0.97 0.95 0.93 0.91 0.89 0.86 0.83 0.81120 1.00 1.00 0.99 0.98 0.97 0.96 0.95 0.93 0.92 0.90 0.88200 1.00 1.00 0.99 0.99 0.98 0.98 0.97 0.96 0.95 0.94 0.9240 1.00 0.99 0.97 0.95 0.93 0.89 0.86 0.83 0.79 0.76 0.7224 64 1.00 0.99 0.98 0.97 0.95 0.93 0.91 0.88 0.85 0.83 0.80120 1.00 1.00 0.99 0.98 0.97 0.96 0.95 0.93 0.91 0.90 0.88200 1.00 1.00 0.99 0.99 0.98 0.98 0.97 0.96 0.95 0.93 0.9240 1.00 0.98 0.96 0.93 0.89 0.85 0.81 0.77 0.73 0.69 0.6530 64 1.00 0.99 0.97 0.95 0.93 0.90 0.87 0.83 0.80 0.77 0.73120 1.00 0.99 0.99 0.97 0.96 0.94 0.92 0.90 0.88 0.85 0.83200 1.00 1.00 0.99 0.98 0.97 0.96 0.95 0.94 0.92 0.90 0.8940 0.99 0.97 0.94 0.91 0.86 0.82 0.77 0.73 0.68 0.64 0.6035 64 1.00 0.98 0.96 0.94 0.91 0.87 0.84 0.80 0.76 0.73 0.69120 1.00 0.99 0.98 0.97 0.95 0.92 0.90 0.88 0.85 0.82 0.79200 1.00 0.99 0.99 0.98 0.97 0.95 0.94 0.92 0.90 0.88 0.8640 0.99 0.97 0.93 0.88 0.83 0.78 0.73 0.68 0.63 0.59 0.5542 64 0.99 0.98 0.95 0.92 0.88 0.84 0.80 0.76 0.72 0.68 0.64120 1.00 0.99 0.97 0.95 0.93 0.90 0.88 0.85 0.81 0.78 0.75200 1.00 0.99 0.98 0.97 0.96 0.94 0.92 0.90 0.88 0.85 0.8340 0.99 0.96 0.91 0.85 0.79 0.74 0.68 0.63 0.58 0.54 0.5150 64 0.99 0.97 0.94 0.90 0.85 0.81 0.76 0.72 0.67 0.63 0.59120 1.00 0.98 0.97 0.94 0.91 0.88 0.85 0.81 0.78 0.74 0.71200 1.00 0.99 0.98 0.96 0.95 0.92 0.90 0.87 0.85 0.82 0.793DESIGN ADJUSTMENT FACTORS1Tabulated group action factors (C g ) are conservative for D < 1" or s < 4".AMERICAN FOREST & PAPER ASSOCIATION


12 DESIGN ADJUSTMENT FACTORSTable 3.6D Group Action Factors, C g, for 4" Shear Plate Connectors with SteelSide Plates 1For s = 9", E wood= 1,400 ksi, E steel= 30,000 ksiNumber of fasteners in a rowA m /A sA min 2 2 3 4 5 6 7 8 9 10 11 125 0.91 0.75 0.60 0.50 0.42 0.36 0.31 0.28 0.25 0.23 0.218 0.94 0.80 0.67 0.56 0.47 0.41 0.36 0.32 0.29 0.26 0.2416 0.96 0.87 0.76 0.66 0.58 0.51 0.45 0.40 0.37 0.33 0.3112 24 0.97 0.90 0.82 0.73 0.64 0.57 0.51 0.46 0.42 0.39 0.3540 0.98 0.94 0.87 0.80 0.73 0.66 0.60 0.55 0.50 0.46 0.4364 0.99 0.96 0.91 0.86 0.80 0.74 0.69 0.63 0.59 0.55 0.51120 0.99 0.98 0.95 0.91 0.87 0.83 0.79 0.74 0.70 0.66 0.63200 1.00 0.99 0.97 0.95 0.92 0.89 0.85 0.82 0.79 0.75 0.725 0.97 0.83 0.68 0.56 0.47 0.41 0.36 0.32 0.28 0.26 0.248 0.98 0.87 0.74 0.62 0.53 0.46 0.40 0.36 0.32 0.30 0.2716 0.99 0.92 0.82 0.73 0.64 0.56 0.50 0.45 0.41 0.37 0.3418 24 0.99 0.94 0.87 0.78 0.70 0.63 0.57 0.51 0.47 0.43 0.3940 0.99 0.96 0.91 0.85 0.78 0.72 0.66 0.60 0.55 0.51 0.4764 1.00 0.97 0.94 0.89 0.84 0.79 0.74 0.69 0.64 0.60 0.56120 1.00 0.99 0.97 0.94 0.90 0.87 0.83 0.79 0.75 0.71 0.67200 1.00 0.99 0.98 0.96 0.94 0.91 0.89 0.86 0.82 0.79 0.7640 1.00 0.96 0.91 0.84 0.77 0.71 0.65 0.59 0.54 0.50 0.4624 64 1.00 0.98 0.94 0.89 0.84 0.78 0.73 0.68 0.63 0.58 0.54120 1.00 0.99 0.96 0.94 0.90 0.86 0.82 0.78 0.74 0.70 0.66200 1.00 0.99 0.98 0.96 0.94 0.91 0.88 0.85 0.82 0.78 0.7540 0.99 0.93 0.86 0.78 0.70 0.63 0.57 0.52 0.47 0.43 0.4030 64 0.99 0.96 0.90 0.84 0.78 0.71 0.66 0.60 0.56 0.51 0.48120 0.99 0.98 0.94 0.90 0.86 0.81 0.76 0.71 0.67 0.63 0.59200 1.00 0.98 0.96 0.94 0.91 0.87 0.83 0.79 0.76 0.72 0.6840 0.98 0.91 0.83 0.74 0.66 0.59 0.53 0.48 0.43 0.40 0.3635 64 0.99 0.94 0.88 0.81 0.73 0.67 0.61 0.56 0.51 0.47 0.43120 0.99 0.97 0.93 0.88 0.82 0.77 0.72 0.67 0.62 0.58 0.54200 1.00 0.98 0.95 0.92 0.88 0.84 0.80 0.76 0.71 0.68 0.6440 0.97 0.88 0.79 0.69 0.61 0.54 0.48 0.43 0.39 0.36 0.3342 64 0.98 0.92 0.84 0.76 0.69 0.62 0.56 0.51 0.46 0.42 0.39120 0.99 0.95 0.90 0.85 0.78 0.72 0.67 0.62 0.57 0.53 0.49200 0.99 0.97 0.94 0.90 0.85 0.80 0.76 0.71 0.67 0.62 0.5940 0.95 0.86 0.75 0.65 0.56 0.49 0.44 0.39 0.35 0.32 0.3050 64 0.97 0.90 0.81 0.72 0.64 0.57 0.51 0.46 0.42 0.38 0.35120 0.98 0.94 0.88 0.81 0.74 0.68 0.62 0.57 0.52 0.48 0.45200 0.99 0.96 0.92 0.87 0.82 0.77 0.71 0.66 0.62 0.58 0.541Tabulated group action factors (C g ) are conservative for 2-5/8" shear plate connectors or s < 9".AMERICAN WOOD COUNCIL


<strong>LRFD</strong> STRUCTURAL CONNECTIONS SUPPLEMENT13FACTOREDRESISTANCEVALUES44.1 General 144.2 Tables of Factored Resistance Values 14List of Tables 14AMERICAN FOREST & PAPER ASSOCIATION


14 FACTORED RESISTANCE VALUES4.1 GeneralTables in this chapter provide <strong>LRFD</strong> factored resistancevalues for structural connections. The tables followthe same format as the allowable stress design NationalDesign Specification for <strong>Wood</strong> Construction (NDS, 1991).Table numbering for this Supplement was chosen tomatch that of the NDS.4.2 Tables of Factored Resistance ValuesTables of factored resistance values parallel tables inthe 1991 NDS. Tabulated values are soft converted fromtables in the 1991 NDS. Use of Chapter 7 equations withappropriate adjustments in AF&PA/ASCE 16-95 may resultin different resistance values due to rounding. Basicmaterial property data, such as specific gravity and dowelbearing strength, are duplicated from the NDS for computingfactored resistance values as provided in thisSupplement.List of Tables8ADowel Bearing Strength for BoltedConnections...................................................... 178.2A Factored Resistance Values (φλZ') for SingleShear (Two Member) Bolted ConnectionsBetween Sawn Lumber Members of theSame Species.................................................... 188.2B Factored Resistance Values (φλZ') for SingleShear (Two Member) Bolted ConnectionsBetween Sawn Lumber and a 1/4" ASTMA36 Steel Side Plate......................................... 208.2C Factored Resistance Values (φλZ') for SingleShear (Two Member) Bolted ConnectionsBetween Glued Laminated Timber and SawnLumber of the Same Species ............................ 228.2D Factored Resistance Values (φλZ') for SingleShear (Two Member) Bolted ConnectionsBetween Glued Laminated Timber and a 1/4"ASTM A36 Steel Side Plate ............................ 238.3A Factored Resistance Values (φλZ') for DoubleShear (Three Member) Bolted ConnectionsBetween Sawn Lumber Members of theSame Species.................................................... 248.3B Factored Resistance Values (φλZ') for DoubleShear (Three Member) Bolted ConnectionsBetween Sawn Lumber and 1/4" ASTM A36Steel Side Plates ............................................... 268.3C Factored Resistance Values (φλZ') for DoubleShear (Three Member) Bolted ConnectionsBetween Glued Laminated Timber Membersof the Same Species ......................................... 288.3D Factored Resistance Values (φλZ') for DoubleShear (Three Member) Bolted ConnectionsBetween Glued Laminated Timber and 1/4"ASTM A36 Steel Side Plates ........................... 299ADowel Bearing Strength for Lag ScrewConnections ...................................................... 309.2A Factored Resistance Values for Lag ScrewShank Withdrawal ............................................ 319.3A Factored Resistance Values (φλZ') for SingleShear (Two Member) Lag Screw ConnectionsBetween Sawn Lumber Members of the SameSpecies ............................................................. 329.3B Factored Resistance Values (φλZ') for SingleShear (Two Member) Lag Screw ConnectionsBetween Sawn Lumber and a 1/4" ASTM A36Steel Side Plate, or an ASTM A446 Grade ASteel Side Plate (for ts


<strong>LRFD</strong> STRUCTURAL CONNECTIONS SUPPLEMENT1511.2A Factored Resistance Values (φλZ') for Cut orRolled Thread <strong>Wood</strong> Screw ShankWithdrawal ....................................................... 3911.3A Factored Resistance Values (φλZ') for SingleShear (Two Member) Cut Thread <strong>Wood</strong>Screw Connections Between Sawn LumberMembers of the Same Species ......................... 4011.3B Factored Resistance Values (φλZ') for SingleShear (Two Member) Cut Thread <strong>Wood</strong>Screw Connections Between A Solid SawnLumber Member and an ASTM A446Grade A Steel Side Plate .................................. 4212ADowel Bearing Strength for Nail or SpikeConnections ...................................................... 4412.2A Factored Resistance Values (φλZ') for NailShank Withdrawal ............................................ 4512.3A Factored Resistance Values (φλZ') for SingleShear (Two Member) Box Nail ConnectionsBetween Sawn Lumber Members of theSame Species.................................................... 4612.3B Factored Resistance Values (φλZ') for SingleShear (Two Member) Common Wire NailConnections Between Sawn LumberMembers of the Same Species ......................... 4812.3C Factored Resistance Values (φλZ') for SingleShear (Two Member) ThreadedHardened-Steel Nail Connections BetweenSawn Lumber Members of the Same Species .. 5012.3D Factored Resistance Value for Single Shear(Two Member) Common Wire SpikeConnections Between Sawn LumberMembers of the Same Species ......................... 5212.3E Factored Resistance Values (φλZ') for SingleShear (Two Member) Box Nail ConnectionsBetween Sawn Lumber and an ASTM A446Grade A Steel Side Plate .................................. 5412.3F Factored Resistance Values (φλZ') for SingleShear (Two Member) Common Wire NailConnections Between Sawn Lumber and anASTM A446 Grade A Steel Side Plate ............ 5612.3G Factored Resistance Values (φλZ') for SingleShear (Two Member) Threaded HardenedSteel Nail Connections Between SawnLumber and an ASTM A446 Grade A SteelSide Plate......................................................... 5812.3H Factored Resistance Values (φλZ') for SingleShear (Two Member) Common Wire SpikeConnections Between Sawn Lumber and anASTM A446 Grade A Steel Side Plate ............ 604FACTORED RESISTANCE VALUESAMERICAN FOREST & PAPER ASSOCIATION


16 FACTORED RESISTANCE VALUESAMERICAN WOOD COUNCIL


<strong>LRFD</strong> STRUCTURAL CONNECTIONS SUPPLEMENT17Table 8ADowel Bearing Strength for Bolted ConnectionsSpecific 1GravityDowel bearing strength in kipsper square inch (ksi)Species Combination G F eX F ez F ez F ez F ez F ezD=1/2" D=5/8" D=3/4" D=7/8" D=1"Aspen 0.39 4.35 2.20 1.95 1.80 1.65 1.55Balsam Fir 0.36 4.05 1.95 1.75 1.60 1.50 1.40Beech-Birch-Hickory 0.71 7.95 5.25 4.70 4.30 3.95 3.70Coast Sitka Spruce 0.39 4.35 2.20 1.95 1.80 1.65 1.55Cottonwood 0.41 4.60 2.35 2.10 1.95 1.80 1.65Douglas Fir-Larch 0.50 5.60 3.15 2.80 2.60 2.40 2.25Douglas Fir-Larch (North) 0.49 5.50 3.05 2.75 2.50 2.30 2.15Douglas Fir-South 0.46 5.15 2.80 2.50 2.30 2.10 2.00Eastern Hemlock 0.41 4.60 2.35 2.10 1.95 1.80 1.65Eastern Hemlock-Tamarack 0.41 4.60 2.35 2.10 1.95 1.80 1.65Eastern Hemlock-Tamarack (North) 0.47 5.25 2.90 2.60 2.35 2.20 2.05Eastern Softwoods 0.36 4.05 1.95 1.75 1.60 1.50 1.40Eastern Spruce 0.41 4.60 2.35 2.10 1.95 1.80 1.65Eastern White Pine 0.36 4.05 1.95 1.75 1.60 1.50 1.40Engelmann Spruce-Lodgepole Pine 2 0.46 5.15 2.80 2.50 2.30 2.10 2.00(MSR 1650f and higher grades)Englemann Spruce-Lodgepole Pine 2 0.38 4.25 2.10 1.90 1.75 1.60 1.50(MSR 1500f and lower grades)Hem-Fir 0.43 4.80 2.55 2.25 2.05 1.90 1.80Hem-Fir (North) 0.46 5.15 2.80 2.50 2.30 2.10 2.00Mixed Maple 0.55 6.15 3.65 3.25 2.95 2.75 2.55Mixed Oak 0.68 7.60 4.95 4.40 4.05 3.75 3.50Mixed Southern Pine 0.51 5.70 3.25 2.90 2.65 2.45 2.30Mountain Hemlock 0.47 5.25 2.90 2.60 2.35 2.20 2.05Northern Pine 0.42 4.70 2.45 2.20 2.00 1.85 1.75Northern Red Oak 0.68 7.60 4.95 4.40 4.05 3.75 3.50Northern Species 0.35 3.90 1.90 1.70 1.55 1.40 1.35Northern White Cedar 0.31 3.45 1.60 1.40 1.30 1.20 1.10Ponderosa Pine 0.43 4.80 2.55 2.25 2.05 1.90 1.80Red Maple 0.58 6.50 3.90 3.50 3.20 2.95 2.75Red Oak 0.67 7.50 4.85 4.30 3.95 3.65 3.40Red Pine 0.44 4.95 2.60 2.35 2.15 2.00 1.85Redwood, close grain 0.44 4.95 2.60 2.35 2.15 2.00 1.85Redwood, open grain 0.37 4.15 2.05 1.85 1.65 1.55 1.45Sitka Spruce 0.43 4.80 2.55 2.25 2.05 1.90 1.80Southern Pine 0.55 6.15 3.65 3.25 2.95 2.75 2.55Spruce-Pine-Fir 0.42 4.70 2.45 2.20 2.00 1.85 1.75Spruce-Pine-Fir (South) 0.36 4.05 1.95 1.75 1.60 1.50 1.40Western Cedars 0.36 4.05 1.95 1.75 1.60 1.50 1.40Western Cedars (North) 0.35 3.90 1.90 1.70 1.55 1.40 1.35Western Hemlock 0.47 5.25 2.90 2.60 2.35 2.20 2.05Western Hemlock (North) 0.46 5.15 2.80 2.50 2.30 2.10 2.00Western White Pine 0.40 4.50 2.30 2.05 1.85 1.75 1.60Western <strong>Wood</strong>s 0.36 4.05 1.95 1.75 1.60 1.50 1.40White Oak 0.73 8.20 5.45 4.90 4.45 4.15 3.85Yellow Poplar 0.43 4.80 2.55 2.25 2.05 1.90 1.804FACTORED RESISTANCE VALUES1. Specific gravity based on weight and volume when oven-dry.2. Applies only to Englemann Spruce-Lodgepole Pine machine stress rated (MSR) structural lumber.AMERICAN FOREST & PAPER ASSOCIATION


18 FACTORED RESISTANCE VALUESTable 8.2A Factored Resistance Values (φλZ') for Single Shear (Two Member)Bolted Connections 1,2 Between Sawn Lumber Members of the SameSpeciesResistance Factor (φ) = 0.65, Time Effect Factor (λ) = 0.8Thickness G=0.67 G=0.55 G=0.50 G=0.49 G=0.46Red Oak Mixed Maple Douglas fir- Douglas fir- Douglas fir (S)Main Side Bolt Southern Pine Larch Larch (N) Hem-Fir (N)Member Member Diametert m t s D φλZ'X φλZ' sz φλZ' mz φλZ'X φλZ' sz φλZ' mz φλZ'X φλZ' sz φλZ' mz φλZ'X φλZ' sz φλZ' mz φλZ'X φλZ' sz φλZ' mzin. in. in. kips kips kips kips kips kips kips kips kips kips kips kips kips kips kips0.5 1.12 0.73 0.73 0.92 0.58 0.58 0.84 0.51 0.51 0.82 0.50 0.50 0.77 0.47 0.471.5 1.50.625 1.40 0.87 0.87 1.14 0.69 0.69 1.05 0.61 0.61 1.02 0.60 0.60 0.96 0.56 0.560.75 1.68 1.01 1.01 1.38 0.80 0.80 1.25 0.72 0.72 1.23 0.70 0.70 1.15 0.65 0.650.875 1.96 1.14 1.14 1.61 0.90 0.90 1.46 0.81 0.81 1.44 0.79 0.79 1.34 0.73 0.731 2.24 1.27 1.27 1.84 1.01 1.01 1.67 0.91 0.91 1.64 0.88 0.88 1.53 0.83 0.830.5 1.33 0.83 0.94 1.14 0.69 0.73 1.06 0.63 0.64 1.05 0.62 0.62 1.00 0.59 0.582.5 1.50.625 1.86 1.13 1.09 1.61 0.97 0.85 1.47 0.90 0.75 1.44 0.89 0.73 1.35 0.81 0.680.75 2.36 1.53 1.24 1.93 1.15 0.96 1.76 1.01 0.86 1.73 0.97 0.83 1.62 0.89 0.770.875 2.75 1.65 1.38 2.25 1.25 1.08 2.05 1.09 0.96 2.01 1.05 0.93 1.89 0.95 0.861 3.14 1.76 1.51 2.57 1.32 1.18 2.35 1.16 1.06 2.30 1.11 1.02 2.16 1.03 0.950.5 1.33 0.83 0.97 1.14 0.69 0.81 1.06 0.63 0.72 1.05 0.62 0.70 1.00 0.59 0.653 1.50.625 1.86 1.13 1.23 1.62 0.97 0.95 1.52 0.90 0.84 1.50 0.89 0.82 1.44 0.81 0.750.75 2.50 1.53 1.39 2.20 1.15 1.07 2.05 1.01 0.95 2.02 0.97 0.93 1.89 0.89 0.860.875 3.21 1.65 1.54 2.63 1.25 1.19 2.40 1.09 1.06 2.36 1.05 1.02 2.20 0.95 0.941 3.67 1.76 1.68 3.01 1.32 1.30 2.74 1.16 1.16 2.69 1.11 1.12 2.52 1.03 1.050.5 1.33 0.83 0.97 1.14 0.69 0.81 1.06 0.63 0.75 1.05 0.62 0.73 1.00 0.59 0.703.5 1.50.625 1.86 1.13 1.31 1.62 0.97 1.07 1.52 0.90 0.93 1.50 0.89 0.92 1.44 0.81 0.840.75 2.50 1.53 1.55 2.20 1.15 1.19 2.07 1.01 1.06 2.05 0.97 1.02 1.98 0.89 0.950.875 3.27 1.65 1.72 2.90 1.25 1.32 2.75 1.09 1.17 2.71 1.05 1.13 2.54 0.95 1.041 4.16 1.76 1.86 3.47 1.32 1.44 3.16 1.16 1.28 3.10 1.11 1.23 2.90 1.03 1.150.5 1.43 1.01 1.01 1.29 0.89 0.89 1.24 0.84 0.84 1.23 0.83 0.83 1.19 0.80 0.803.5 3.50.625 2.24 1.53 1.53 2.03 1.35 1.35 1.93 1.22 1.22 1.91 1.20 1.20 1.86 1.11 1.110.75 3.22 2.05 2.05 2.92 1.65 1.65 2.78 1.51 1.51 2.76 1.47 1.47 2.67 1.39 1.390.875 4.38 2.44 2.44 3.74 2.01 2.01 3.41 1.84 1.84 3.35 1.79 1.79 3.14 1.70 1.701 5.22 2.88 2.88 4.28 2.35 2.35 3.89 2.12 2.12 3.83 2.06 2.06 3.58 1.92 1.920.5 1.33 0.83 0.97 1.14 0.69 0.81 1.06 0.63 0.75 1.05 0.62 0.73 1.00 0.59 0.704.5 1.50.625 1.86 1.13 1.31 1.62 0.97 1.11 1.52 0.90 1.02 1.50 0.89 1.01 1.44 0.81 0.960.75 2.50 1.53 1.71 2.20 1.15 1.46 2.07 1.01 1.29 2.05 0.97 1.25 1.98 0.89 1.150.875 3.27 1.65 2.10 2.90 1.25 1.61 2.75 1.09 1.42 2.72 1.05 1.37 2.62 0.95 1.251 4.16 1.76 2.27 3.72 1.32 1.73 3.54 1.16 1.54 3.50 1.11 1.48 3.34 1.03 1.380.5 1.43 1.01 1.01 1.29 0.89 0.89 1.24 0.84 0.84 1.23 0.83 0.83 1.19 0.80 0.804.5 3.50.625 2.24 1.53 1.53 2.03 1.35 1.35 1.93 1.22 1.26 1.91 1.20 1.25 1.86 1.11 1.200.75 3.22 2.05 2.14 2.92 1.65 1.88 2.78 1.51 1.74 2.76 1.47 1.68 2.67 1.39 1.580.875 4.38 2.44 2.81 3.97 2.01 2.25 3.79 1.84 2.01 3.75 1.79 1.96 3.57 1.70 1.811 5.73 2.88 3.16 4.96 2.41 2.49 4.51 2.23 2.24 4.43 2.18 2.17 4.15 2.09 2.020.5 1.33 0.83 0.97 1.14 0.69 0.81 1.06 0.63 0.75 1.05 0.62 0.73 1.00 0.59 0.705.5 1.50.625 1.86 1.13 1.31 1.62 0.97 1.11 1.52 0.90 1.02 1.50 0.89 1.01 1.44 0.81 0.960.75 2.50 1.53 1.71 2.20 1.15 1.47 2.07 1.01 1.37 2.05 0.97 1.34 1.98 0.89 1.280.875 3.27 1.65 2.17 2.90 1.25 1.88 2.75 1.09 1.68 2.72 1.05 1.62 2.62 0.95 1.491 4.16 1.76 2.70 3.72 1.32 2.06 3.54 1.16 1.83 3.50 1.11 1.75 3.34 1.03 1.630.5 1.43 1.01 1.01 1.29 0.89 0.89 1.24 0.84 0.84 1.23 0.83 0.83 1.19 0.80 0.805.5 3.50.625 2.24 1.53 1.53 2.03 1.35 1.35 1.93 1.22 1.26 1.91 1.20 1.25 1.86 1.11 1.200.75 3.22 2.05 2.14 2.92 1.65 1.88 2.78 1.51 1.77 2.76 1.47 1.75 2.67 1.39 1.680.875 4.38 2.44 2.84 3.97 2.01 2.44 3.79 1.84 2.17 3.75 1.79 2.11 3.57 1.70 1.941 5.73 2.88 3.43 4.96 2.41 2.68 4.60 2.23 2.40 4.54 2.18 2.32 4.32 2.09 2.160.5 1.33 0.83 0.97 1.14 0.69 0.81 1.06 0.63 0.75 1.05 0.62 0.73 1.00 0.59 0.707.5 1.50.625 1.86 1.13 1.31 1.62 0.97 1.11 1.52 0.90 1.02 1.50 0.89 1.01 1.44 0.81 0.960.75 2.50 1.53 1.71 2.20 1.15 1.47 2.07 1.01 1.37 2.05 0.97 1.34 1.98 0.89 1.280.875 3.27 1.65 2.17 2.90 1.25 1.88 2.75 1.09 1.75 2.72 1.05 1.72 2.62 0.95 1.641 4.16 1.76 2.70 3.72 1.32 2.33 3.54 1.16 2.19 3.50 1.11 2.15 3.34 1.03 2.060.5 1.43 1.01 1.01 1.29 0.89 0.89 1.24 0.84 0.84 1.23 0.83 0.83 1.19 0.80 0.807.5 3.50.625 2.24 1.53 1.53 2.03 1.35 1.35 1.93 1.22 1.26 1.91 1.20 1.25 1.86 1.11 1.200.75 3.22 2.05 2.14 2.92 1.65 1.88 2.78 1.51 1.77 2.76 1.47 1.75 2.67 1.39 1.680.875 4.38 2.44 2.84 3.97 2.01 2.50 3.79 1.84 2.35 3.75 1.79 2.31 3.57 1.70 2.221 5.73 2.88 3.62 4.96 2.41 3.16 4.60 2.23 2.82 4.54 2.18 2.72 4.32 2.09 2.541. Tabulated factored resistance values (φλZ' ) shall be multiplied by applicable adjustment factors (see Table 7.1-1).2. Tabulated factored resistance values are for "full diameter" bolts (see ANSI/ASME Standard B18.2.1-1981) with a bending yieldstrength (F yb ) of 45 ksi.AMERICAN WOOD COUNCIL


<strong>LRFD</strong> STRUCTURAL CONNECTIONS SUPPLEMENT19Table 8.2A Factored Resistance Values (φλZ') for Single Shear (Two Member)Bolted Connections 1,2 Between Sawn Lumber Members of the SameSpeciesResistance Factor (φ) = 0.65, Time Effect Factor (λ) = 0.8Thickness G=0.43 G=0.42 G=0.37 G=0.36 G=0.35Hem-Fir Spruce-Pine-Fir Redwood Eastern Softwoods NorthernMain Side Bolt (open grain) Spruce-Pine-Fir(s) SpeciesMember Member DiameterWestern CedarsWestern <strong>Wood</strong>st m t s D φλZ'X φλZ' sz φλZ' mz φλZ'X φλZ' sz φλZ' mz φλZ'X φλZ' sz φλZ' mz φλZ'X φλZ' sz φλZ' mz φλZ'X φλZ' sz φλZ' mzin. in. in. kips kips kips kips kips kips kips kips kips kips kips kips kips kips kips0.5 0.72 0.43 0.43 0.70 0.42 0.42 0.62 0.36 0.36 0.60 0.35 0.35 0.58 0.34 0.341.5 1.50.625 0.89 0.51 0.51 0.87 0.50 0.50 0.77 0.44 0.44 0.75 0.42 0.42 0.73 0.41 0.410.75 1.07 0.60 0.60 1.05 0.58 0.58 0.93 0.50 0.50 0.90 0.49 0.49 0.87 0.47 0.470.875 1.25 0.68 0.68 1.23 0.66 0.66 1.08 0.57 0.57 1.06 0.56 0.56 1.02 0.53 0.531 1.43 0.76 0.76 1.40 0.74 0.74 1.24 0.64 0.64 1.21 0.62 0.62 1.16 0.60 0.600.5 0.95 0.56 0.53 0.94 0.55 0.51 0.86 0.50 0.44 0.84 0.49 0.42 0.82 0.48 0.412.5 1.50.625 1.26 0.73 0.62 1.23 0.71 0.60 1.09 0.60 0.52 1.06 0.57 0.49 1.02 0.55 0.480.75 1.51 0.80 0.70 1.48 0.78 0.69 1.31 0.64 0.58 1.27 0.62 0.57 1.23 0.60 0.550.875 1.76 0.86 0.79 1.72 0.84 0.76 1.52 0.70 0.66 1.48 0.68 0.64 1.43 0.63 0.601 2.01 0.93 0.87 1.97 0.90 0.85 1.74 0.75 0.72 1.70 0.73 0.70 1.63 0.70 0.680.5 0.95 0.56 0.60 0.94 0.55 0.58 0.86 0.50 0.49 0.84 0.49 0.47 0.82 0.48 0.463 1.50.625 1.37 0.73 0.69 1.35 0.71 0.67 1.25 0.60 0.57 1.23 0.57 0.55 1.19 0.55 0.530.75 1.76 0.80 0.77 1.73 0.78 0.76 1.52 0.64 0.64 1.49 0.62 0.62 1.43 0.60 0.600.875 2.05 0.86 0.86 2.01 0.84 0.84 1.78 0.70 0.72 1.73 0.68 0.70 1.67 0.63 0.661 2.35 0.93 0.95 2.30 0.90 0.93 2.03 0.75 0.79 1.98 0.73 0.76 1.91 0.70 0.740.5 0.95 0.56 0.66 0.94 0.55 0.64 0.86 0.50 0.55 0.84 0.49 0.53 0.82 0.48 0.513.5 1.50.625 1.37 0.73 0.76 1.35 0.71 0.74 1.25 0.60 0.63 1.23 0.57 0.61 1.21 0.55 0.590.75 1.89 0.80 0.86 1.87 0.78 0.84 1.74 0.64 0.71 1.71 0.62 0.69 1.65 0.60 0.660.875 2.37 0.86 0.95 2.32 0.84 0.93 2.05 0.70 0.79 2.00 0.68 0.76 1.92 0.63 0.721 2.70 0.93 1.05 2.65 0.90 1.02 2.34 0.75 0.86 2.28 0.73 0.83 2.20 0.70 0.810.5 1.14 0.76 0.76 1.13 0.75 0.75 1.07 0.69 0.69 1.05 0.67 0.67 1.03 0.66 0.663.5 3.50.625 1.79 1.03 1.03 1.77 1.01 1.01 1.66 0.89 0.89 1.64 0.86 0.86 1.61 0.84 0.840.75 2.51 1.28 1.28 2.45 1.26 1.26 2.17 1.12 1.12 2.11 1.10 1.10 2.03 1.07 1.070.875 2.92 1.58 1.58 2.86 1.54 1.54 2.53 1.34 1.34 2.46 1.30 1.30 2.38 1.24 1.241 3.34 1.77 1.77 3.27 1.73 1.73 2.89 1.49 1.49 2.82 1.46 1.46 2.71 1.40 1.400.5 0.95 0.56 0.66 0.94 0.55 0.64 0.86 0.50 0.58 0.84 0.49 0.57 0.82 0.48 0.554.5 1.50.625 1.37 0.73 0.91 1.35 0.71 0.89 1.25 0.60 0.77 1.23 0.57 0.74 1.21 0.55 0.710.75 1.89 0.80 1.04 1.87 0.78 1.01 1.74 0.64 0.85 1.72 0.62 0.83 1.68 0.60 0.800.875 2.52 0.86 1.14 2.49 0.84 1.11 2.32 0.70 0.95 2.30 0.68 0.92 2.21 0.63 0.861 3.11 0.93 1.25 3.05 0.90 1.22 2.69 0.75 1.02 2.63 0.73 0.99 2.53 0.70 0.960.5 1.14 0.76 0.76 1.13 0.75 0.75 1.07 0.69 0.69 1.05 0.67 0.68 1.03 0.66 0.674.5 3.50.625 1.79 1.03 1.14 1.77 1.01 1.13 1.66 0.89 1.03 1.64 0.86 0.99 1.61 0.84 0.960.75 2.58 1.28 1.45 2.55 1.26 1.42 2.40 1.12 1.24 2.37 1.10 1.20 2.30 1.07 1.160.875 3.37 1.59 1.66 3.31 1.57 1.63 2.93 1.41 1.40 2.85 1.39 1.36 2.75 1.34 1.291 3.87 1.97 1.86 3.79 1.94 1.81 3.34 1.75 1.56 3.27 1.70 1.51 3.14 1.63 1.460.5 0.95 0.56 0.66 0.94 0.55 0.64 0.86 0.50 0.58 0.84 0.49 0.57 0.82 0.48 0.555.5 1.50.625 1.37 0.73 0.91 1.35 0.71 0.89 1.25 0.60 0.82 1.23 0.57 0.80 1.21 0.55 0.770.75 1.89 0.80 1.21 1.87 0.78 1.19 1.74 0.64 1.00 1.72 0.62 0.98 1.68 0.60 0.950.875 2.52 0.86 1.35 2.49 0.84 1.32 2.32 0.70 1.11 2.30 0.68 1.08 2.21 0.63 1.011 3.11 0.93 1.48 3.05 0.90 1.44 2.69 0.75 1.21 2.63 0.73 1.17 2.53 0.70 1.120.5 1.14 0.76 0.76 1.13 0.75 0.75 1.07 0.69 0.69 1.05 0.67 0.68 1.03 0.66 0.675.5 3.50.625 1.79 1.03 1.14 1.77 1.01 1.13 1.66 0.89 1.05 1.64 0.86 1.02 1.61 0.84 1.000.75 2.58 1.28 1.59 2.55 1.26 1.55 2.40 1.12 1.33 2.37 1.10 1.29 2.30 1.07 1.240.875 3.37 1.59 1.78 3.32 1.57 1.74 3.01 1.41 1.50 2.95 1.39 1.46 2.87 1.34 1.381 4.09 1.97 1.98 4.02 1.94 1.93 3.67 1.75 1.65 3.60 1.70 1.60 3.50 1.63 1.540.5 0.95 0.56 0.66 0.94 0.55 0.64 0.86 0.50 0.58 0.84 0.49 0.57 0.82 0.48 0.557.5 1.50.625 1.37 0.73 0.91 1.35 0.71 0.89 1.25 0.60 0.82 1.23 0.57 0.80 1.21 0.55 0.770.75 1.89 0.80 1.21 1.87 0.78 1.19 1.74 0.64 1.08 1.72 0.62 1.07 1.68 0.60 1.040.875 2.52 0.86 1.56 2.49 0.84 1.53 2.32 0.70 1.40 2.30 0.68 1.38 2.21 0.63 1.341 3.11 0.93 1.96 3.05 0.90 1.91 2.69 0.75 1.60 2.63 0.73 1.54 2.53 0.70 1.490.5 1.14 0.76 0.76 1.13 0.75 0.75 1.07 0.69 0.69 1.05 0.67 0.68 1.03 0.66 0.677.5 3.50.625 1.79 1.03 1.14 1.77 1.01 1.13 1.66 0.89 1.05 1.64 0.86 1.02 1.61 0.84 1.000.75 2.58 1.28 1.60 2.55 1.26 1.58 2.40 1.12 1.45 2.37 1.10 1.42 2.30 1.07 1.400.875 3.37 1.59 2.10 3.32 1.57 2.04 3.01 1.41 1.74 2.95 1.39 1.69 2.87 1.34 1.601 4.09 1.97 2.31 4.02 1.94 2.25 3.67 1.75 1.91 3.60 1.70 1.85 3.50 1.63 1.784FACTORED RESISTANCE VALUES1. Tabulated factored resistance values (φλZ' ) shall be multiplied by applicable adjustment factors (see Table 7.1-1).2. Tabulated factored resistance values are for "full diameter" bolts (see ANSI/ASME Standard B18.2.1-1981) with a bending yieldstrength (F yb ) of 45 ksi.AMERICAN FOREST & PAPER ASSOCIATION


20 FACTORED RESISTANCE VALUESTable 8.2B Factored Resistance Values (φλZ') for Single Shear (Two Member)Bolted Connections 1,2,3 Between Sawn Lumber and a 1/4" ASTM A36Steel Side PlateResistance Factor (φ) = 0.65, Time Effect Factor (λ) = 0.8.Thickness G=0.67 G=0.55 G=0.50 G=0.49 G=0.46Steel Red Oak Mixed Maple Douglas fir- Douglas fir- Douglas fir (S)Main Side Bolt Southern Pine Larch Larch (N) Hem-Fir (N)Member Plate Diametert m t s D φλZ'X φλZ' z φλZ'X φλZ' z φλZ'X φλZ' z φλZ'X φλZ' z φλZ'X φλZ' zin. in. in. kips kips kips kips kips kips kips kips kips kips0.5 1.16 0.66 0.99 0.53 0.92 0.47 0.90 0.46 0.86 0.440.625 1.46 0.75 1.24 0.61 1.14 0.55 1.13 0.54 1.07 0.501.5 0.25 0.75 1.75 0.84 1.48 0.68 1.37 0.62 1.36 0.61 1.28 0.580.875 2.03 0.93 1.73 0.75 1.61 0.69 1.58 0.67 1.50 0.631 2.32 1.00 1.98 0.82 1.84 0.75 1.81 0.73 1.72 0.700.5 1.47 0.98 1.35 0.76 1.30 0.67 1.29 0.66 1.26 0.610.625 2.20 1.10 1.90 0.86 1.75 0.76 1.72 0.75 1.62 0.692.5 0.25 0.75 2.74 1.23 2.28 0.95 2.10 0.85 2.06 0.83 1.94 0.770.875 3.19 1.34 2.66 1.05 2.44 0.93 2.40 0.90 2.27 0.841 3.65 1.44 3.04 1.12 2.79 1.01 2.75 0.97 2.59 0.920.5 1.47 0.98 1.35 0.87 1.30 0.78 1.29 0.76 1.26 0.700.625 2.20 1.29 2.03 1.00 1.94 0.88 1.93 0.86 1.88 0.803 0.25 0.75 3.10 1.44 2.70 1.10 2.48 0.99 2.44 0.96 2.29 0.890.875 3.80 1.56 3.16 1.21 2.89 1.08 2.84 1.03 2.67 0.961 4.34 1.67 3.60 1.29 3.30 1.16 3.25 1.12 3.06 1.050.5 1.47 0.98 1.35 0.87 1.30 0.81 1.29 0.80 1.26 0.770.625 2.20 1.39 2.03 1.15 1.94 1.00 1.93 0.99 1.88 0.903.5 0.25 0.75 3.10 1.65 2.85 1.26 2.74 1.13 2.72 1.09 2.64 1.010.875 4.18 1.79 3.66 1.38 3.35 1.22 3.29 1.18 3.09 1.091 5.05 1.92 4.18 1.48 3.83 1.32 3.76 1.26 3.54 1.190.625 2.20 1.39 2.03 1.23 1.94 1.15 1.93 1.14 1.88 1.094.5 0.25 0.75 3.10 1.88 2.85 1.59 2.74 1.41 2.72 1.36 2.64 1.260.875 4.18 2.27 3.83 1.74 3.68 1.53 3.65 1.47 3.55 1.351 5.42 2.43 4.97 1.85 4.77 1.64 4.73 1.58 4.51 1.480.625 2.20 1.39 2.03 1.23 1.94 1.15 1.93 1.14 1.88 1.095.5 0.25 0.75 3.10 1.88 2.85 1.65 2.74 1.55 2.72 1.53 2.64 1.470.875 4.18 2.43 3.83 2.10 3.68 1.85 3.65 1.77 3.55 1.621 5.42 2.94 4.97 2.24 4.77 1.98 4.73 1.90 4.60 1.770.625 2.20 1.39 2.03 1.23 1.94 1.15 1.93 1.14 1.88 1.097.5 0.25 0.75 3.10 1.88 2.85 1.65 2.74 1.55 2.72 1.53 2.64 1.470.875 4.18 2.43 3.83 2.14 3.68 2.01 3.65 1.97 3.55 1.881 5.42 3.05 4.97 2.67 4.77 2.52 4.73 2.46 4.60 2.380.75 3.10 1.88 2.85 1.65 2.74 1.55 2.72 1.53 2.64 1.479.5 0.25 0.875 4.18 2.43 3.83 2.14 3.68 2.01 3.65 1.97 3.55 1.881 5.42 3.05 4.97 2.67 4.77 2.52 4.73 2.46 4.60 2.380.75 3.10 1.88 2.85 1.65 2.74 1.55 2.72 1.53 2.64 1.4711.5 0.25 0.875 4.18 2.43 3.83 2.14 3.68 2.01 3.65 1.97 3.55 1.881 5.42 3.05 4.97 2.67 4.77 2.52 4.73 2.46 4.60 2.380.75 3.10 1.88 2.85 1.65 2.74 1.55 2.72 1.53 2.64 1.4713.5 0.25 0.875 4.18 2.43 3.83 2.14 3.68 2.01 3.65 1.97 3.55 1.881 5.42 3.05 4.97 2.67 4.77 2.52 4.73 2.46 4.60 2.381. Tabulated factored resistance values (φλZ') for bolted connections shall be multiplied by all applicable adjustment factors(see Table 7.1-1).2. Tabulated factored resistance values (φλZ') are for "full diameter" bolts (see ANSI/ASME Standard B18.2.1-1981) with abending yield strength (F yb ) of 45 ksi.3. Tabulated factored resistance values (φλZ') are based on a dowel bearing strength (F e ) of 58 ksi for ASTM A36 steel.AMERICAN WOOD COUNCIL


<strong>LRFD</strong> STRUCTURAL CONNECTIONS SUPPLEMENT21Table 8.2B Factored Resistance Values (φλZ') for Single Shear (Two Member)Bolted Connections 1,2,3 Between Sawn Lumber and a 1/4" ASTM A36Steel Side PlateResistance Factor (φ) = 0.65, Time Effect Factor (λ) = 0.8.Thickness G=0.43 G=0.42 G=0.37 G=0.36 G=0.35Steel Hem-Fir Spruce-Pine-Fir Redwood Eastern Softwoods NorthernMain Side Bolt (open grain) Spruce-Pine-Fir(s) SpeciesMember Plate Diameter Western CedarsWestern <strong>Wood</strong>s4t m t s D φλZ'X φλZ' z φλZ'X φλZ' z φλZ'X φλZ' z φλZ'X φλZ' z φλZ'X φλZ' zin. in. in. kips kips kips kips kips kips kips kips kips kips0.5 0.81 0.41 0.80 0.40 0.73 0.36 0.71 0.34 0.69 0.340.625 1.01 0.47 1.00 0.47 0.91 0.42 0.89 0.41 0.87 0.401.5 0.25 0.75 1.22 0.54 1.20 0.53 1.09 0.47 1.07 0.46 1.04 0.450.875 1.42 0.59 1.40 0.59 1.27 0.53 1.25 0.51 1.21 0.501 1.62 0.66 1.60 0.64 1.45 0.58 1.42 0.57 1.39 0.560.5 1.22 0.56 1.19 0.54 1.07 0.47 1.05 0.45 1.01 0.440.625 1.52 0.63 1.49 0.62 1.34 0.54 1.31 0.51 1.26 0.502.5 0.25 0.75 1.82 0.70 1.79 0.69 1.60 0.59 1.57 0.58 1.51 0.560.875 2.13 0.77 2.09 0.75 1.87 0.66 1.83 0.64 1.77 0.611 2.43 0.84 2.39 0.83 2.13 0.71 2.09 0.70 2.02 0.680.5 1.22 0.65 1.21 0.62 1.14 0.54 1.13 0.51 1.12 0.500.625 1.79 0.73 1.76 0.71 1.57 0.61 1.53 0.59 1.48 0.573 0.25 0.75 2.15 0.81 2.11 0.79 1.88 0.67 1.84 0.65 1.78 0.630.875 2.51 0.88 2.46 0.86 2.19 0.74 2.14 0.72 2.07 0.681 2.87 0.96 2.81 0.94 2.51 0.80 2.45 0.78 2.37 0.760.5 1.22 0.74 1.21 0.71 1.14 0.61 1.13 0.58 1.12 0.570.625 1.82 0.82 1.80 0.81 1.71 0.69 1.69 0.66 1.66 0.643.5 0.25 0.75 2.48 0.91 2.43 0.89 2.16 0.75 2.12 0.73 2.04 0.710.875 2.90 0.99 2.84 0.97 2.53 0.83 2.47 0.81 2.39 0.761 3.31 1.08 3.24 1.06 2.89 0.90 2.82 0.87 2.72 0.840.625 1.82 1.03 1.80 1.01 1.71 0.86 1.69 0.82 1.66 0.804.5 0.25 0.75 2.56 1.13 2.54 1.11 2.40 0.93 2.38 0.90 2.33 0.870.875 3.44 1.23 3.41 1.20 3.21 1.02 3.14 0.99 3.03 0.931 4.22 1.34 4.13 1.31 3.67 1.10 3.58 1.07 3.46 1.030.625 1.82 1.04 1.80 1.03 1.71 0.95 1.69 0.93 1.66 0.925.5 0.25 0.75 2.56 1.36 2.54 1.33 2.40 1.11 2.38 1.08 2.33 1.050.875 3.44 1.48 3.41 1.44 3.22 1.22 3.19 1.19 3.13 1.111 4.45 1.61 4.41 1.57 4.17 1.31 4.12 1.27 4.06 1.230.625 1.82 1.04 1.80 1.03 1.71 0.95 1.69 0.93 1.66 0.927.5 0.25 0.75 2.56 1.39 2.54 1.38 2.40 1.26 2.38 1.24 2.33 1.220.875 3.44 1.80 3.41 1.78 3.22 1.63 3.19 1.58 3.13 1.481 4.45 2.15 4.41 2.10 4.17 1.75 4.12 1.69 4.06 1.630.75 2.56 1.39 2.54 1.38 2.40 1.26 2.38 1.24 2.33 1.229.5 0.25 0.875 3.44 1.80 3.41 1.78 3.22 1.63 3.19 1.61 3.13 1.551 4.45 2.26 4.41 2.24 4.17 2.04 4.12 2.01 4.06 1.980.75 2.56 1.39 2.54 1.38 2.40 1.26 2.38 1.24 2.33 1.2211.5 0.25 0.875 3.44 1.80 3.41 1.78 3.22 1.63 3.19 1.61 3.13 1.551 4.45 2.26 4.41 2.24 4.17 2.04 4.12 2.01 4.06 1.980.75 2.56 1.39 2.54 1.38 2.40 1.26 2.38 1.24 2.33 1.2213.5 0.25 0.875 3.44 1.80 3.41 1.78 3.22 1.63 3.19 1.61 3.13 1.551 4.45 2.26 4.41 2.24 4.17 2.04 4.12 2.01 4.06 1.98FACTORED RESISTANCE VALUES1. Tabulated factored resistance values (φλZ') for bolted connections shall be multiplied by all applicable adjustment factors(see Table 7.1-1).2. Tabulated factored resistance values (φλZ') are for "full diameter" bolts (see ANSI/ASME Standard B18.2.1-1981) with abending yield strength (F yb ) of 45 ksi.3. Tabulated factored resistance values (φλZ') are based on a dowel bearing strength (F e ) of 58 ksi for ASTM A36 steel.AMERICAN FOREST & PAPER ASSOCIATION


22 FACTORED RESISTANCE VALUESTable 8.2C Factored Resistance Values (φλZ') for Single Shear (Two Member) Bolted Connections 1,2,3Between Glued Laminated Timber and Sawn Lumber of the Same SpeciesResistance Factor (φ) = 0.65, Time Effect Factor (λ) = 0.8Thickness G=0.55 G=0.50 G=0.46 G=0.43 G=0.42Main Side Bolt Southern Pine Douglas fir- Douglas fir (S) Hem-fir Spruce-Pine-FirMember Member Diameter LarchG=0.36Spruce-Pine-Fir (S)Western <strong>Wood</strong>st m t s D φλZ'X φλZ' sz φλZ' mz φλZ'X φλZ' sz φλZ' mz φλZ'X φλZ' sz φλZ' mz φλZ'X φλZ' sz φλZ' mz φλZ'X φλZ' sz φλZ' mzin. in. in. kips kips kips kips kips kips kips kips kips kips kips kips kips kips kips0.5 - - - 1.06 0.63 0.64 1.00 0.59 0.58 0.95 0.56 0.53 0.94 0.55 0.510.625 - - - 1.47 0.90 0.75 1.35 0.81 0.68 1.26 0.73 0.62 1.23 0.71 0.602.5 1.5 0.75 - - - 1.76 1.01 0.86 1.62 0.89 0.77 1.51 0.80 0.70 1.48 0.78 0.690.875 - - - 2.05 1.09 0.96 1.89 0.95 0.86 1.76 0.86 0.79 1.72 0.84 0.761 - - - 2.35 1.16 1.06 2.16 1.03 0.95 2.01 0.93 0.87 1.97 0.90 0.850.5 1.14 0.69 0.81 - - - - - - - - - - - -0.625 1.62 0.97 0.95 - - - - - - - - - - - -3 1.5 0.75 2.20 1.15 1.07 - - - - - - - - - - - -0.875 2.63 1.25 1.19 - - - - - - - - - - - -1 3.01 1.32 1.30 - - - - - - - - - - - -0.5 - - - 1.06 0.63 0.74 1.00 0.59 0.67 0.95 0.56 0.61 0.94 0.55 0.590.625 - - - 1.52 0.90 0.86 1.44 0.81 0.77 1.37 0.73 0.70 1.35 0.71 0.693.125 1.5 0.75 - - - 2.07 1.01 0.98 1.96 0.89 0.88 1.83 0.80 0.80 1.79 0.78 0.770.875 - - - 2.49 1.09 1.08 2.29 0.95 0.97 2.13 0.86 0.88 2.09 0.84 0.861 - - - 2.84 1.16 1.19 2.62 1.03 1.07 2.43 0.93 0.97 2.39 0.90 0.950.625 1.62 0.97 1.11 - - - - - - - - - - - -5 1.5 0.75 2.20 1.15 1.47 - - - - - - - - - - - -0.875 2.90 1.25 1.76 - - - - - - - - - - - -1 3.72 1.32 1.89 - - - - - - - - - - - -0.625 - - - 1.52 0.90 1.02 1.44 0.81 0.96 1.37 0.73 0.91 1.35 0.71 0.895.125 1.5 0.75 - - - 2.07 1.01 1.37 1.98 0.89 1.28 1.89 0.80 1.16 1.87 0.78 1.130.875 - - - 2.75 1.09 1.58 2.62 0.95 1.40 2.52 0.86 1.27 2.49 0.84 1.241 - - - 3.54 1.16 1.72 3.34 1.03 1.53 3.11 0.93 1.39 3.05 0.90 1.360.625 1.62 0.97 1.11 1.52 0.90 1.02 1.44 0.81 0.96 1.37 0.73 0.91 1.35 0.71 0.896.75 1.5 0.75 2.20 1.15 1.47 2.07 1.01 1.37 1.98 0.89 1.28 1.89 0.80 1.21 1.87 0.78 1.190.875 2.90 1.25 1.88 2.75 1.09 1.75 2.62 0.95 1.64 2.52 0.86 1.56 2.49 0.84 1.531 3.72 1.32 2.33 3.54 1.16 2.19 3.34 1.03 1.97 3.11 0.93 1.78 3.05 0.90 1.73φλZ'X φλZ' sz φλZ' mzkips kips kips0.84 0.49 0.421.06 0.57 0.491.27 0.62 0.571.48 0.68 0.641.70 0.73 0.70- - -- - -- - -- - -- - -0.84 0.49 0.481.23 0.57 0.561.54 0.62 0.641.80 0.68 0.712.05 0.73 0.78- - -- - -- - -- - -1.23 0.57 0.801.72 0.62 0.922.30 0.68 1.022.63 0.73 1.101.23 0.57 0.801.72 0.62 1.072.30 0.68 1.302.63 0.73 1.401. Tabulated factored resistance values (φλZ') for bolted connections shall be multiplied by all applicable adjustment factors (see Table 7.1-1).2. Tabulated factored resistance values (φλZ') are for "full diameter" bolts (see ANSI/ASME Standard B18.2.1-1981) with a bending yield strength (F yb ) of 45 ksi.AMERICAN WOOD COUNCIL


<strong>LRFD</strong> STRUCTURAL CONNECTIONS SUPPLEMENT23Table 8.2D Factored Resistance Values (φλZ') for Single Shear (Two Member) Bolted Connections 1,2,3Between Glued Laminated Timber and a 1/4" ASTM A36 Steel Side PlateResistance Factor (φ) = 0.65, Time Effect Factor (λ) = 0.8.G=0.36Spruce-Pine-Fir (S)Western <strong>Wood</strong>sThickness G=0.55 G=0.50 G=0.46 G=0.43 G=0.42Southern Pine Douglas fir- Douglas fir (S) Hem-fir Spruce-Pine-FirSteel LarchMain Side BoltMember Plate DiameterφλZ'X φλZ' zt m t s D φλZ'X φλZ' z φλZ'X φλZ' z φλZ'X φλZ' z φλZ'X φλZ' z φλZ'X φλZ' zkips kips1.05 0.451.31 0.511.57 0.581.83 0.642.09 0.70- -- -- -- -- -1.13 0.531.59 0.601.91 0.672.23 0.742.54 0.80- -- -- -- -1.69 0.922.38 1.013.19 1.114.07 1.191.69 0.932.38 1.243.19 1.434.12 1.53- -- -- -2.38 1.243.19 1.614.12 1.96- -- -- -3.19 1.614.12 2.013.19 1.614.12 2.014.12 2.01in. in. in. kips kips kips kips kips kips kips kips kips kips0.5 - - 1.30 0.67 1.26 0.61 1.22 0.56 1.19 0.540.625 - - 1.75 0.76 1.62 0.69 1.52 0.63 1.49 0.622.5 0.25 0.75 - - 2.10 0.85 1.94 0.77 1.82 0.70 1.79 0.690.875 - - 2.44 0.93 2.27 0.84 2.13 0.77 2.09 0.751 - - 2.79 1.01 2.59 0.92 2.43 0.84 2.39 0.830.5 1.35 0.87 - - - - - - - -0.625 2.03 1.00 - - - - - - - -3 0.25 0.75 2.70 1.10 - - - - - - - -0.875 3.16 1.21 - - - - - - - -1 3.60 1.29 - - - - - - - -0.5 - - 1.30 0.81 1.26 0.73 1.22 0.67 1.21 0.640.625 - - 1.94 0.91 1.88 0.82 1.82 0.75 1.80 0.733.125 0.25 0.75 - - 2.57 1.02 2.38 0.92 2.23 0.83 2.19 0.810.875 - - 3.01 1.11 2.78 0.99 2.61 0.90 2.55 0.881 - - 3.43 1.20 3.18 1.08 2.97 0.99 2.92 0.970.625 2.03 1.23 - - - - - - - -5 0.25 0.75 2.85 1.65 - - - - - - - -0.875 3.83 1.92 - - - - - - - -1 4.97 2.04 - - - - - - - -0.625 - - 1.94 1.15 1.88 1.09 1.82 1.04 1.80 1.035.125 0.25 0.75 - - 2.74 1.55 2.64 1.42 2.56 1.27 2.54 1.240.875 - - 3.68 1.73 3.55 1.52 3.44 1.38 3.41 1.351 - - 4.77 1.86 4.60 1.66 4.45 1.50 4.41 1.470.625 2.03 1.23 1.94 1.15 1.88 1.09 1.82 1.04 1.80 1.036.75 0.25 0.75 2.85 1.65 2.74 1.55 2.64 1.47 2.56 1.39 2.54 1.380.875 3.83 2.14 3.68 2.01 3.55 1.88 3.44 1.79 3.41 1.751 4.97 2.67 4.77 2.41 4.60 2.15 4.45 1.94 4.41 1.890.75 2.85 1.65 - - - - - - - -8.5 0.25 0.875 3.83 2.14 - - - - - - - -1 4.97 2.67 - - - - - - - -0.75 - - 2.74 1.55 2.64 1.47 2.56 1.39 2.54 1.388.75 0.25 0.875 - - 3.68 2.01 3.55 1.88 3.44 1.80 3.41 1.781 - - 4.77 2.52 4.60 2.38 4.45 2.26 4.41 2.240.75 2.85 1.65 - - - - - - - -10.5 0.25 0.875 3.83 2.14 - - - - - - - -1 4.97 2.67 - - - - - - - -10.75 0.25 0.875 - - 3.68 2.01 3.55 1.88 3.44 1.80 3.41 1.781 - - 4.77 2.52 4.60 2.38 4.45 2.26 4.41 2.2412.25 0.25 0.875 - - 3.68 2.01 3.55 1.88 3.44 1.80 3.41 1.781 - - 4.77 2.52 4.60 2.38 4.45 2.26 4.41 2.2414.25 0.25 1 - - 4.77 2.52 4.60 2.38 4.45 2.26 4.41 2.241. Tabulated factored resistance values (φλZ') for bolted connections shall be multiplied by all applicable adjustment factors (see Table 7.1-1).2. Tabulated factored resistance values (φλZ') are for "full diameter" bolts (see ANSI/ASME Standard B18.2.1-1981) with a bending yield strength (F yb ) of 45 ksi.3. Tabulated factored resistance values (φλZ') are based on a dowel bearing strength (F e ) of 58 ksi for ASTM A36 steel.4FACTORED RESISTANCE VALUESAMERICAN FOREST & PAPER ASSOCIATION


24 FACTORED RESISTANCE VALUESTable 8.3A Factored Resistance Values (φλZ') for Double Shear (Three Member)Bolted Connections 1,2 Between Sawn Lumber Members of the SameSpeciesResistance Factor (φ) = 0.65, Time Effect Factor (λ) = 0.8Thickness G=0.67 G=0.55 G=0.50 G=0.49 G=0.46Red Oak Mixed Maple Douglas fir- Douglas fir- Douglas fir (S)Main Side Bolt Southern Pine Larch Larch (N) Hem-Fir (N)Member Member Diametert m t s D φλZ'X φλZ' sz φλZ' mz φλZ'X φλZ' sz φλZ' mz φλZ'X φλZ' sz φλZ' mz φλZ'X φλZ' sz φλZ' mz φλZ'X φλZ' sz φλZ' mzin. in. in. kips kips kips kips kips kips kips kips kips kips kips kips kips kips kips0.5 2.43 1.65 1.26 1.99 1.38 0.95 1.81 1.26 0.82 1.78 1.24 0.79 1.67 1.18 0.730.625 3.04 2.27 1.39 2.49 1.94 1.06 2.27 1.80 0.90 2.23 1.78 0.89 2.09 1.62 0.811.5 1.5 0.75 3.65 2.92 1.53 2.99 2.29 1.15 2.72 2.02 1.01 2.67 1.94 0.97 2.50 1.79 0.890.875 4.25 3.31 1.65 3.49 2.50 1.25 3.18 2.18 1.09 3.12 2.09 1.05 2.92 1.90 0.951 4.86 3.53 1.76 3.98 2.64 1.32 3.63 2.33 1.16 3.56 2.23 1.11 3.34 2.07 1.030.5 2.65 1.65 1.93 2.28 1.38 1.58 2.13 1.26 1.36 2.10 1.24 1.32 2.00 1.18 1.210.625 3.71 2.27 2.32 3.23 1.94 1.76 3.04 1.80 1.51 3.00 1.78 1.49 2.87 1.62 1.352.5 1.5 0.75 5.00 3.06 2.56 4.40 2.29 1.91 4.15 2.02 1.68 4.11 1.94 1.62 3.95 1.79 1.490.875 6.53 3.31 2.76 5.80 2.50 2.08 5.29 2.18 1.81 5.20 2.09 1.74 4.87 1.90 1.591 8.10 3.53 2.94 6.64 2.64 2.20 6.05 2.33 1.94 5.94 2.23 1.86 5.56 2.07 1.730.5 2.65 1.65 1.93 2.28 1.38 1.62 2.13 1.26 1.49 2.10 1.24 1.47 2.00 1.18 1.390.625 3.71 2.27 2.62 3.23 1.94 2.11 3.04 1.80 1.81 3.00 1.78 1.78 2.87 1.62 1.623 1.5 0.75 5.00 3.06 3.07 4.40 2.29 2.29 4.15 2.02 2.02 4.11 1.94 1.94 3.95 1.79 1.790.875 6.53 3.31 3.31 5.80 2.50 2.50 5.50 2.18 2.18 5.44 2.09 2.09 5.24 1.90 1.901 8.33 3.53 3.53 7.44 2.64 2.64 7.07 2.33 2.33 7.00 2.23 2.23 6.68 2.07 2.070.5 2.65 1.65 1.93 2.28 1.38 1.62 2.13 1.26 1.49 2.10 1.24 1.47 2.00 1.18 1.390.625 3.71 2.27 2.62 3.23 1.94 2.23 3.04 1.80 2.05 3.00 1.78 2.03 2.87 1.62 1.893.5 1.5 0.75 5.00 3.06 3.43 4.40 2.29 2.68 4.15 2.02 2.36 4.11 1.94 2.27 3.95 1.79 2.090.875 6.53 3.31 3.86 5.80 2.50 2.91 5.50 2.18 2.54 5.44 2.09 2.43 5.24 1.90 2.221 8.33 3.53 4.11 7.44 2.64 3.08 7.07 2.33 2.72 7.00 2.23 2.60 6.68 2.07 2.420.5 2.87 2.03 2.03 2.59 1.79 1.79 2.48 1.68 1.68 2.45 1.66 1.66 2.37 1.59 1.590.625 4.48 3.06 3.06 4.05 2.69 2.46 3.87 2.43 2.12 3.83 2.40 2.08 3.71 2.23 1.893.5 3.5 0.75 6.44 4.11 3.58 5.83 3.31 2.68 5.57 3.02 2.36 5.52 2.94 2.27 5.34 2.77 2.090.875 8.77 4.88 3.86 7.94 4.02 2.91 7.41 3.68 2.54 7.27 3.58 2.43 6.81 3.39 2.221 11.34 5.76 4.11 9.30 4.81 3.08 8.47 4.46 2.72 8.31 4.35 2.60 7.78 4.17 2.420.625 3.71 2.27 2.62 3.23 1.94 2.23 3.04 1.80 2.05 3.00 1.78 2.03 2.87 1.62 1.924.5 1.5 0.75 5.00 3.06 3.43 4.40 2.29 2.93 4.15 2.02 2.73 4.11 1.94 2.68 3.95 1.79 2.560.875 6.53 3.31 4.35 5.80 2.50 3.74 5.50 2.18 3.27 5.44 2.09 3.13 5.24 1.90 2.861 8.33 3.53 5.29 7.44 2.64 3.97 7.07 2.33 3.50 7.00 2.23 3.34 6.68 2.07 3.110.625 4.48 3.06 3.06 4.05 2.69 2.69 3.87 2.43 2.53 3.83 2.40 2.50 3.71 2.23 2.404.5 3.5 0.75 6.44 4.11 4.28 5.83 3.31 3.44 5.57 3.02 3.03 5.52 2.94 2.92 5.34 2.77 2.680.875 8.77 4.88 4.97 7.94 4.02 3.74 7.58 3.68 3.27 7.51 3.58 3.13 7.13 3.39 2.861 11.46 5.76 5.29 9.91 4.81 3.97 9.20 4.46 3.50 9.08 4.35 3.34 8.63 4.17 3.110.625 3.71 2.27 2.62 3.23 1.94 2.23 3.04 1.80 2.05 3.00 1.78 2.03 2.87 1.62 1.925.5 1.5 0.75 5.00 3.06 3.43 4.40 2.29 2.93 4.15 2.02 2.73 4.11 1.94 2.68 3.95 1.79 2.560.875 6.53 3.31 4.35 5.80 2.50 3.75 5.50 2.18 3.50 5.44 2.09 3.44 5.24 1.90 3.281 8.33 3.53 5.40 7.44 2.64 4.67 7.07 2.33 4.27 7.00 2.23 4.09 6.68 2.07 3.800.625 4.48 3.06 3.06 4.05 2.69 2.69 3.87 2.43 2.53 3.83 2.40 2.50 3.71 2.23 2.405.5 3.5 0.75 6.44 4.11 4.28 5.83 3.31 3.76 5.57 3.02 3.55 5.52 2.94 3.49 5.34 2.77 3.280.875 8.77 4.88 5.68 7.94 4.02 4.58 7.58 3.68 3.99 7.51 3.58 3.83 7.13 3.39 3.491 11.46 5.76 6.46 9.91 4.81 4.85 9.20 4.46 4.27 9.08 4.35 4.09 8.63 4.17 3.800.625 3.71 2.27 2.62 3.23 1.94 2.23 3.04 1.80 2.05 3.00 1.78 2.03 2.87 1.62 1.927.5 1.5 0.75 5.00 3.06 3.43 4.40 2.29 2.93 4.15 2.02 2.73 4.11 1.94 2.68 3.95 1.79 2.560.875 6.53 3.31 4.35 5.80 2.50 3.75 5.50 2.18 3.50 5.44 2.09 3.44 5.24 1.90 3.281 8.33 3.53 5.40 7.44 2.64 4.67 7.07 2.33 4.38 7.00 2.23 4.30 6.68 2.07 4.130.625 4.48 3.06 3.06 4.05 2.69 2.69 3.87 2.43 2.53 3.83 2.40 2.50 3.71 2.23 2.407.5 3.5 0.75 6.44 4.11 4.28 5.83 3.31 3.76 5.57 3.02 3.55 5.52 2.94 3.49 5.34 2.77 3.350.875 8.77 4.88 5.68 7.94 4.02 4.99 7.58 3.68 4.70 7.51 3.58 4.61 7.13 3.39 4.431 11.46 5.76 7.24 9.91 4.81 6.35 9.20 4.46 5.83 9.08 4.35 5.57 8.63 4.17 5.181. Tabulated factored lateral design values (φλZ' ) shall be multiplied by applicable adjustment factors (see Table 7.1-1).2. Tabulated factored lateral design values are for "full diameter" bolts (see ANSI/ASME Standard B18.2.1-1981) with a bending yieldstrength (F yb ) of 45 ksi.AMERICAN WOOD COUNCIL


<strong>LRFD</strong> STRUCTURAL CONNECTIONS SUPPLEMENT25Table 8.3A Factored Resistance Values (φλZ') for Double Shear (Three Member)Bolted Connections 1,2 Between Sawn Lumber Members of the SameSpeciesResistance Factor (φ) = 0.65, Time Effect Factor (λ) = 0.8Thickness G=0.43 G=0.42 G=0.37 G=0.36 G=0.35Hem-Fir Spruce-Pine-Fir Redwood Eastern Softwoods NorthernMain Side Bolt (open grain) Spruce-Pine-Fir (S) SpeciesMember Member DiameterWestern CedarsWestern <strong>Wood</strong>st m t s D φλZ'X φλZ' sz φλZ' mz φλZ'X φλZ' sz φλZ' mz φλZ'X φλZ' sz φλZ' mz φλZ'X φλZ' sz φλZ' mz φλZ'X φλZ' sz φλZ' mzin. in. in. kips kips kips kips kips kips kips kips kips kips kips kips kips kips kips0.5 1.55 1.12 0.66 1.52 1.10 0.63 1.35 1.00 0.53 1.31 0.97 0.50 1.26 0.96 0.490.625 1.94 1.46 0.73 1.90 1.42 0.71 1.68 1.20 0.60 1.64 1.13 0.57 1.58 1.10 0.551.5 1.5 0.75 2.33 1.60 0.80 2.28 1.55 0.78 2.02 1.28 0.64 1.97 1.24 0.62 1.90 1.21 0.600.875 2.72 1.72 0.86 2.66 1.68 0.84 2.36 1.40 0.70 2.30 1.36 0.68 2.21 1.27 0.631 3.11 1.87 0.93 3.05 1.81 0.90 2.69 1.50 0.75 2.63 1.45 0.73 2.53 1.40 0.700.5 1.90 1.12 1.10 1.87 1.10 1.06 1.72 1.00 0.88 1.69 0.97 0.84 1.64 0.96 0.820.625 2.75 1.46 1.22 2.71 1.42 1.19 2.50 1.20 1.00 2.46 1.13 0.95 2.41 1.10 0.922.5 1.5 0.75 3.79 1.60 1.33 3.74 1.55 1.29 3.36 1.28 1.07 3.28 1.24 1.03 3.16 1.21 1.000.875 4.53 1.72 1.44 4.44 1.68 1.40 3.92 1.40 1.17 3.83 1.36 1.13 3.69 1.27 1.061 5.18 1.87 1.55 5.08 1.81 1.51 4.48 1.50 1.25 4.37 1.45 1.21 4.21 1.40 1.160.5 1.90 1.12 1.32 1.87 1.10 1.27 1.72 1.00 1.06 1.69 0.97 1.01 1.64 0.96 0.980.625 2.75 1.46 1.46 2.71 1.42 1.42 2.50 1.20 1.20 2.46 1.13 1.13 2.41 1.10 1.103 1.5 0.75 3.79 1.60 1.60 3.74 1.55 1.55 3.48 1.28 1.28 3.43 1.24 1.24 3.36 1.21 1.210.875 5.04 1.72 1.72 4.98 1.68 1.68 4.65 1.40 1.40 4.59 1.36 1.36 4.43 1.27 1.271 6.22 1.87 1.87 6.09 1.81 1.81 5.38 1.50 1.50 5.25 1.45 1.45 5.05 1.40 1.400.5 1.90 1.12 1.32 1.87 1.10 1.29 1.72 1.00 1.16 1.69 0.97 1.13 1.64 0.96 1.110.625 2.75 1.46 1.70 2.71 1.42 1.66 2.50 1.20 1.40 2.46 1.13 1.32 2.41 1.10 1.283.5 1.5 0.75 3.79 1.60 1.86 3.74 1.55 1.81 3.48 1.28 1.50 3.43 1.24 1.45 3.36 1.21 1.400.875 5.04 1.72 2.01 4.98 1.68 1.96 4.65 1.40 1.64 4.59 1.36 1.59 4.43 1.27 1.481 6.22 1.87 2.18 6.09 1.81 2.12 5.38 1.50 1.75 5.25 1.45 1.70 5.05 1.40 1.630.5 2.29 1.53 1.53 2.27 1.50 1.48 2.13 1.39 1.24 2.11 1.34 1.18 2.06 1.31 1.150.625 3.58 2.06 1.70 3.54 2.03 1.66 3.33 1.79 1.40 3.29 1.72 1.32 3.23 1.68 1.283.5 3.5 0.75 5.15 2.57 1.86 5.10 2.53 1.81 4.71 2.24 1.50 4.59 2.19 1.45 4.43 2.15 1.400.875 6.35 3.19 2.01 6.22 3.14 1.96 5.49 2.83 1.64 5.36 2.78 1.59 5.16 2.67 1.481 7.26 3.94 2.18 7.11 3.87 2.12 6.28 3.51 1.75 6.13 3.39 1.70 5.90 3.27 1.630.625 2.75 1.46 1.81 2.71 1.42 1.79 2.50 1.20 1.63 2.46 1.13 1.59 2.41 1.10 1.554.5 1.5 0.75 3.79 1.60 2.39 3.74 1.55 2.33 3.48 1.28 1.92 3.43 1.24 1.87 3.36 1.21 1.810.875 5.04 1.72 2.58 4.98 1.68 2.52 4.65 1.40 2.11 4.59 1.36 2.04 4.43 1.27 1.901 6.22 1.87 2.80 6.09 1.81 2.72 5.38 1.50 2.26 5.25 1.45 2.18 5.05 1.40 2.100.625 3.58 2.06 2.19 3.54 2.03 2.14 3.33 1.79 1.80 3.29 1.72 1.70 3.23 1.68 1.654.5 3.5 0.75 5.15 2.57 2.39 5.10 2.53 2.33 4.79 2.24 1.92 4.74 2.19 1.87 4.60 2.15 1.810.875 6.74 3.19 2.58 6.63 3.14 2.52 6.01 2.83 2.11 5.90 2.78 2.04 5.73 2.67 1.901 8.17 3.94 2.80 8.04 3.87 2.72 7.33 3.51 2.26 7.20 3.39 2.18 7.00 3.27 2.100.625 2.75 1.46 1.81 2.71 1.42 1.79 2.50 1.20 1.63 2.46 1.13 1.59 2.41 1.10 1.555.5 1.5 0.75 3.79 1.60 2.42 3.74 1.55 2.38 3.48 1.28 2.16 3.43 1.24 2.13 3.36 1.21 2.090.875 5.04 1.72 3.11 4.98 1.68 3.07 4.65 1.40 2.58 4.59 1.36 2.50 4.43 1.27 2.331 6.22 1.87 3.42 6.09 1.81 3.33 5.38 1.50 2.76 5.25 1.45 2.66 5.05 1.40 2.560.625 3.58 2.06 2.29 3.54 2.03 2.26 3.33 1.79 2.09 3.29 1.72 2.04 3.23 1.68 2.015.5 3.5 0.75 5.15 2.57 2.92 5.10 2.53 2.85 4.79 2.24 2.35 4.74 2.19 2.28 4.60 2.15 2.210.875 6.74 3.19 3.16 6.63 3.14 3.08 6.01 2.83 2.58 5.90 2.78 2.50 5.73 2.67 2.331 8.17 3.94 3.42 8.04 3.87 3.33 7.33 3.51 2.76 7.20 3.39 2.66 7.00 3.27 2.560.625 2.75 1.46 1.81 2.71 1.42 1.79 2.50 1.20 1.63 2.46 1.13 1.59 2.41 1.10 1.557.5 1.5 0.75 3.79 1.60 2.42 3.74 1.55 2.38 3.48 1.28 2.16 3.43 1.24 2.13 3.36 1.21 2.090.875 5.04 1.72 3.11 4.98 1.68 3.07 4.65 1.40 2.81 4.59 1.36 2.76 4.43 1.27 2.681 6.22 1.87 3.92 6.09 1.81 3.87 5.38 1.50 3.53 5.25 1.45 3.47 5.05 1.40 3.400.625 3.58 2.06 2.29 3.54 2.03 2.26 3.33 1.79 2.09 3.29 1.72 2.04 3.23 1.68 2.017.5 3.5 0.75 5.15 2.57 3.19 5.10 2.53 3.15 4.79 2.24 2.89 4.74 2.19 2.85 4.60 2.15 2.800.875 6.74 3.19 4.23 6.63 3.14 4.18 6.01 2.83 3.52 5.90 2.78 3.40 5.73 2.67 3.181 8.17 3.94 4.66 8.04 3.87 4.53 7.33 3.51 3.76 7.20 3.39 3.63 7.00 3.27 3.504FACTORED RESISTANCE VALUES1. Tabulated factored resistance values (φλZ' ) shall be multiplied by applicable adjustment factors (see Table 7.1-1).2. Tabulated factored resistance values are for "full diameter" bolts (see ANSI/ASME Standard B18.2.1-1981) with a bending yieldstrength (F yb ) of 45 ksi.AMERICAN FOREST & PAPER ASSOCIATION


26 FACTORED RESISTANCE VALUESTable 8.3B Factored Resistance Values (φλZ') for Double Shear (Three Member)Bolted Connections 1,2,3 Between Sawn Lumber and 1/4" ASTM A36Steel Side PlatesResistance Factor (φ) = 0.65, Time Effect Factor (λ) = 0.8.Thickness G=0.67 G=0.55 G=0.50 G=0.49 G=0.46Steel Red Oak Mixed Maple Douglas fir- Douglas fir- Douglas fir (S)Main Side Bolt Southern Pine Larch Larch (N) Hem-Fir (N)Member Plate Diametert m t s D φλZ'X φλZ' z φλZ'X φλZ' z φλZ'X φλZ' z φλZ'X φλZ' z φλZ'X φλZ' zin. in. in. kips kips kips kips kips kips kips kips kips kips0.5 2.43 1.26 1.99 0.95 1.81 0.82 1.78 0.79 1.67 0.730.625 3.04 1.39 2.49 1.06 2.27 0.90 2.23 0.89 2.09 0.811.5 0.25 0.75 3.65 1.53 2.99 1.15 2.72 1.01 2.67 0.97 2.50 0.890.875 4.25 1.65 3.49 1.25 3.18 1.09 3.12 1.05 2.92 0.951 4.86 1.76 3.98 1.32 3.63 1.16 3.56 1.11 3.34 1.030.5 2.94 1.96 2.71 1.58 2.61 1.36 2.58 1.32 2.52 1.210.625 4.40 2.32 4.05 1.76 3.78 1.51 3.71 1.49 3.48 1.352.5 0.25 0.75 6.07 2.56 4.98 1.91 4.53 1.68 4.46 1.62 4.17 1.490.875 7.09 2.76 5.81 2.08 5.29 1.81 5.20 1.74 4.87 1.591 8.10 2.94 6.64 2.20 6.05 1.94 5.94 1.86 5.56 1.730.5 2.94 1.96 2.71 1.74 2.61 1.63 2.58 1.58 2.52 1.450.625 4.40 2.78 4.05 2.11 3.89 1.81 3.86 1.78 3.75 1.623 0.25 0.75 6.21 3.07 5.70 2.29 5.44 2.02 5.35 1.94 5.01 1.790.875 8.35 3.31 6.97 2.50 6.35 2.18 6.23 2.09 5.84 1.901 9.72 3.53 7.97 2.64 7.26 2.33 7.13 2.23 6.68 2.070.5 2.94 1.96 2.71 1.74 2.61 1.63 2.58 1.60 2.52 1.540.625 4.40 2.78 4.05 2.45 3.89 2.12 3.86 2.08 3.75 1.893.5 0.25 0.75 6.21 3.58 5.70 2.68 5.48 2.36 5.43 2.27 5.28 2.090.875 8.35 3.86 7.66 2.91 7.36 2.54 7.27 2.43 6.81 2.221 10.84 4.11 9.30 3.08 8.47 2.72 8.31 2.60 7.78 2.420.625 4.40 2.78 4.05 2.45 3.89 2.29 3.86 2.28 3.75 2.184.5 0.25 0.75 6.21 3.76 5.70 3.29 5.48 3.03 5.43 2.92 5.28 2.680.875 8.35 4.86 7.66 3.74 7.36 3.27 7.30 3.13 7.09 2.861 10.84 5.29 9.94 3.97 9.54 3.50 9.46 3.34 9.19 3.110.625 4.40 2.78 4.05 2.45 3.89 2.29 3.86 2.28 3.75 2.185.5 0.25 0.75 6.21 3.76 5.70 3.29 5.48 3.11 5.43 3.05 5.28 2.940.875 8.35 4.86 7.66 4.27 7.36 3.99 7.30 3.83 7.09 3.491 10.84 6.09 9.94 4.85 9.54 4.27 9.46 4.09 9.19 3.800.625 4.40 2.78 4.05 2.45 3.89 2.29 3.86 2.28 3.75 2.187.5 0.25 0.75 6.21 3.76 5.70 3.29 5.48 3.11 5.43 3.05 5.28 2.940.875 8.35 4.86 7.66 4.27 7.36 4.01 7.30 3.93 7.09 3.771 10.84 6.09 9.94 5.34 9.54 5.03 9.46 4.92 9.19 4.760.75 6.21 3.76 5.70 3.29 5.48 3.11 5.43 3.05 5.28 2.949.5 0.25 0.875 8.35 4.86 7.66 4.27 7.36 4.01 7.30 3.93 7.09 3.771 10.84 6.09 9.94 5.34 9.54 5.03 9.46 4.92 9.19 4.7611.5 0.25 0.875 8.35 4.86 7.66 4.27 7.36 4.01 7.30 3.93 7.09 3.771 10.84 6.09 9.94 5.34 9.54 5.03 9.46 4.92 9.19 4.7613.5 0.25 1 10.84 6.09 9.94 5.34 9.54 5.03 9.46 4.92 9.19 4.761. Tabulated factored resistance values (φλZ') for bolted connections shall be multiplied by all applicable adjustment factors(see Table 7.1-1).2. Tabulated factored resistance values (φλZ') are for "full diameter" bolts (see ANSI/ASME Standard B18.2.1-1981) with abending yield strength (F yb ) of 45 ksi.3. Tabulated factored resistance values (φλZ') are based on a dowel bearing strength (F e ) of 58 ksi for ASTM A36 steel.AMERICAN WOOD COUNCIL


<strong>LRFD</strong> STRUCTURAL CONNECTIONS SUPPLEMENT27Table 8.3B Factored Resistance Values (φλZ') for Double Shear (Three Member)Bolted Connections 1,2,3 Between Sawn Lumber and 1/4" ASTM A36Steel Side PlatesResistance Factor (φ) = 0.65, Time Effect Factor (λ) = 0.8.Thickness G=0.43 G=0.42 G=0.37 G=0.36 G=0.35Steel Hem-Fir Spruce-Pine-Fir Redwood Eastern Softwoods SouthernMain Side Bolt (open grain) Spruce-Pine-Fir (S) SpeciesMember Plate Diameter Western CedarsWestern <strong>Wood</strong>s4t m t s D φλZ'X φλZ' z φλZ'X φλZ' z φλZ'X φλZ' z φλZ'X φλZ' z φλZ'X φλZ' zin. in. in. kips kips kips kips kips kips kips kips kips kips0.5 1.55 0.66 1.52 0.63 1.35 0.53 1.31 0.50 1.26 0.490.625 1.94 0.73 1.90 0.71 1.68 0.60 1.64 0.57 1.58 0.551.5 0.25 0.75 2.33 0.80 2.28 0.78 2.02 0.64 1.97 0.62 1.90 0.600.875 2.72 0.86 2.66 0.84 2.36 0.70 2.30 0.68 2.21 0.631 3.11 0.93 3.05 0.90 2.69 0.75 2.63 0.73 2.53 0.700.5 2.44 1.10 2.42 1.06 2.24 0.88 2.19 0.84 2.11 0.820.625 3.24 1.22 3.17 1.19 2.80 1.00 2.74 0.95 2.63 0.922.5 0.25 0.75 3.89 1.33 3.81 1.29 3.36 1.07 3.28 1.03 3.16 1.000.875 4.53 1.44 4.44 1.40 3.92 1.17 3.83 1.13 3.69 1.061 5.18 1.55 5.08 1.51 4.48 1.25 4.37 1.21 4.21 1.160.5 2.44 1.32 2.42 1.27 2.29 1.06 2.27 1.01 2.23 0.980.625 3.65 1.46 3.61 1.42 3.36 1.20 3.28 1.13 3.16 1.103 0.25 0.75 4.66 1.60 4.57 1.55 4.04 1.28 3.94 1.24 3.79 1.210.875 5.44 1.72 5.33 1.68 4.71 1.40 4.59 1.36 4.43 1.271 6.22 1.87 6.09 1.81 5.38 1.50 5.25 1.45 5.05 1.400.5 2.44 1.48 2.42 1.46 2.29 1.24 2.27 1.18 2.23 1.150.625 3.65 1.70 3.61 1.66 3.42 1.40 3.39 1.32 3.33 1.283.5 0.25 0.75 5.12 1.86 5.08 1.81 4.71 1.50 4.59 1.45 4.43 1.400.875 6.35 2.01 6.22 1.96 5.49 1.64 5.36 1.59 5.16 1.481 7.26 2.18 7.11 2.12 6.28 1.75 6.13 1.70 5.90 1.630.625 3.65 2.08 3.61 2.06 3.42 1.80 3.39 1.70 3.33 1.654.5 0.25 0.75 5.12 2.39 5.08 2.33 4.80 1.92 4.75 1.87 4.67 1.810.875 6.87 2.58 6.81 2.52 6.44 2.11 6.37 2.04 6.26 1.901 8.91 2.80 8.82 2.72 8.07 2.26 7.87 2.18 7.58 2.100.625 3.65 2.08 3.61 2.06 3.42 1.90 3.39 1.85 3.33 1.835.5 0.25 0.75 5.12 2.79 5.08 2.76 4.80 2.35 4.75 2.28 4.67 2.210.875 6.87 3.16 6.81 3.08 6.44 2.58 6.37 2.50 6.26 2.331 8.91 3.42 8.82 3.33 8.34 2.76 8.25 2.66 8.11 2.560.625 3.65 2.08 3.61 2.06 3.42 1.90 3.39 1.85 3.33 1.837.5 0.25 0.75 5.12 2.79 5.08 2.76 4.80 2.52 4.75 2.48 4.67 2.440.875 6.87 3.60 6.81 3.55 6.44 3.27 6.37 3.22 6.26 3.111 8.91 4.53 8.82 4.47 8.34 3.76 8.25 3.63 8.11 3.500.75 5.12 2.79 5.08 2.76 4.80 2.52 4.75 2.48 4.67 2.449.5 0.25 0.875 6.87 3.60 6.81 3.55 6.44 3.27 6.37 3.22 6.26 3.111 8.91 4.53 8.82 4.47 8.34 4.09 8.25 4.02 8.11 3.9511.5 0.25 0.875 6.87 3.60 6.81 3.55 6.44 3.27 6.37 3.22 6.26 3.111 8.91 4.53 8.82 4.47 8.34 4.09 8.25 4.02 8.11 3.9513.5 0.25 1 8.91 4.53 8.82 4.47 8.34 4.09 8.25 4.02 8.11 3.95FACTORED RESISTANCE VALUES1. Tabulated factored resistance values (φλZ') for bolted connections shall be multiplied by all applicable adjustment factors(see Table 7.1-1).2. Tabulated factored resistance values (φλZ') are for "full diameter" bolts (see ANSI/ASME Standard B18.2.1-1981) with abending yield strength (F yb ) of 45 ksi.3. Tabulated factored resistance values (φλZ') are based on a dowel bearing strength (F e ) of 58 ksi for ASTM A36 steel.AMERICAN FOREST & PAPER ASSOCIATION


28 FACTORED RESISTANCE VALUESTable 8.3C Factored Resistance Values (φλZ') for Double Shear (Three Member) Bolted Connections 1,2Between Glued Laminated Timber Members of the Same SpeciesResistance Factor (φ) = 0.65, Time Effect Factor (λ) = 0.8Thickness G=0.55 G=0.50 G=0.46 G=0.43Main Side Bolt Southern Pine Douglas fir- Douglas fir (S) Hem-firMember Member Diameter LarchG=0.42 G=0.36Spruce-Pine-Fir Spruce-Pine-Fir (s)Western <strong>Wood</strong>st m t s D φλZ'X φλZ' s z φλZ' m z φλZ'X φλZ' s z φλZ' m z φλZ'X φλZ' s z φλZ' m z φλZ'X φλZ' s z φλZ' m zin. in. in. kips kips kips kips kips kips kips kips kips kips kips kips0.5 - - - 2.13 1.26 1.36 2.00 1.18 1.21 1.90 1.12 1.100.625 - - - 3.04 1.80 1.51 2.87 1.62 1.35 2.75 1.46 1.222.5 1.5 0.75 - - - 4.15 2.02 1.68 3.95 1.79 1.49 3.79 1.60 1.330.875 - - - 5.29 2.18 1.81 4.87 1.90 1.59 4.53 1.72 1.441 - - - 6.05 2.33 1.94 5.56 2.07 1.73 5.18 1.87 1.550.5 2.28 1.38 1.62 - - - - - - - - -0.625 3.23 1.94 2.11 - - - - - - - - -3 1.5 0.75 4.40 2.29 2.29 - - - - - - - - -0.875 5.80 2.50 2.50 - - - - - - - - -1 7.44 2.64 2.64 - - - - - - - - -0.5 - - - 2.13 1.26 1.49 2.00 1.18 1.39 1.90 1.12 1.320.625 - - - 3.04 1.80 1.89 2.87 1.62 1.69 2.75 1.46 1.523.125 1.5 0.75 - - - 4.15 2.02 2.11 3.95 1.79 1.86 3.79 1.60 1.660.875 - - - 5.50 2.18 2.27 5.24 1.90 1.99 5.04 1.72 1.791 - - - 7.07 2.33 2.43 6.68 2.07 2.16 6.22 1.87 1.940.625 3.23 1.94 2.23 - - - - - - - - -5 1.5 0.75 4.40 2.29 2.93 - - - - - - - - -0.875 5.80 2.50 3.75 - - - - - - - - -1 7.44 2.64 4.40 - - - - - - - - -0.625 - - - 3.04 1.80 2.05 2.87 1.62 1.92 2.75 1.46 1.815.125 1.5 0.75 - - - 4.15 2.02 2.73 3.95 1.79 2.56 3.79 1.60 2.420.875 - - - 5.50 2.18 3.50 5.24 1.90 3.26 5.04 1.72 2.941 - - - 7.07 2.33 3.98 6.68 2.07 3.54 6.22 1.87 3.190.625 3.23 1.94 2.23 3.04 1.80 2.05 2.87 1.62 1.92 2.75 1.46 1.816.75 1.5 0.75 4.40 2.29 2.93 4.15 2.02 2.73 3.95 1.79 2.56 3.79 1.60 2.420.875 5.80 2.50 3.75 5.50 2.18 3.50 5.24 1.90 3.28 5.04 1.72 3.111 7.44 2.64 4.67 7.07 2.33 4.38 6.68 2.07 4.13 6.22 1.87 3.921. Tabulated factored resistance values (φλZ') for bolted connections shall be multiplied by all applicable adjustment factors (see Table 7.1-1).2. Tabulated factored resistance values (φλZ') are for "full diameter" bolts (see ANSI/ASME Standard B18.2.1-1981) with a bending yield strength (F yb ) of 45 ksi.φλZ'X φλZ' s z φλZ' m z φλZ'X φλZ' s z φλZ' m zkips kips kips kips kips kips1.87 1.10 1.06 1.69 0.97 0.842.71 1.42 1.19 2.46 1.13 0.953.74 1.55 1.29 3.28 1.24 1.034.44 1.68 1.40 3.83 1.36 1.135.08 1.81 1.51 4.37 1.45 1.21- - - - - -- - - - - -- - - - - -- - - - - -- - - - - -1.87 1.10 1.29 1.69 0.97 1.062.71 1.42 1.49 2.46 1.13 1.183.74 1.55 1.62 3.43 1.24 1.294.98 1.68 1.75 4.59 1.36 1.426.09 1.81 1.89 5.25 1.45 1.51- - - - - -- - - - - -- - - - - -- - - - - -2.71 1.42 1.79 2.46 1.13 1.593.74 1.55 2.38 3.43 1.24 2.134.98 1.68 2.87 4.59 1.36 2.326.09 1.81 3.10 5.25 1.45 2.482.71 1.42 1.79 2.46 1.13 1.593.74 1.55 2.38 3.43 1.24 2.134.98 1.68 3.07 4.59 1.36 2.766.09 1.81 3.87 5.25 1.45 3.27AMERICAN WOOD COUNCIL


<strong>LRFD</strong> STRUCTURAL CONNECTIONS SUPPLEMENT29Table 8.3D Factored Resistance Values (φλZ') for Double Shear (Three Member) Bolted Connections 1,2,3Between Glued Laminated Timber and 1/4" ASTM A36 Steel Side PlatesResistance Factor (φ) = 0.65, Time Effect Factor (λ) = 0.8.G=0.42 G=0.36Spruce-Pine-Fir Spruce-Pine-Fir(s)Western <strong>Wood</strong>sThickness G=0.55 G=0.50 G=0.46 G=0.43Southern Pine Douglas fir- Douglas fir (S) Hem-firSteel LarchMain Side BoltMember Plate DiameterφλZ'X φλZ' z φλZ'X φλZ' zkips kips kips kips2.42 1.06 2.19 0.843.17 1.19 2.74 0.953.81 1.29 3.28 1.034.44 1.40 3.83 1.135.08 1.51 4.37 1.21- - - -- - - -- - - -- - - -- - - -2.42 1.32 2.27 1.063.61 1.49 3.39 1.184.76 1.62 4.10 1.295.55 1.75 4.78 1.426.34 1.89 5.47 1.51- - - -- - - -- - - -- - - -3.61 2.06 3.39 1.855.08 2.66 4.75 2.136.81 2.87 6.37 2.328.82 3.10 8.25 2.483.61 2.06 3.39 1.855.08 2.76 4.75 2.486.81 3.55 6.37 3.068.82 4.08 8.25 3.27- - - -- - - -- - - -5.08 2.76 4.75 2.486.81 3.55 6.37 3.228.82 4.47 8.25 4.02- - - -- - - -6.81 3.55 6.37 3.228.82 4.47 8.25 4.026.81 3.55 6.37 3.228.82 4.47 8.25 4.028.82 4.47 8.25 4.02t m t s D φλZ'X φλZ' z φλZ'X φλZ' z φλZ'X φλZ' z φλZ'X φλZ' zin. in. in. kips kips kips kips kips kips kips kips0.5 - - 2.61 1.36 2.52 1.21 2.44 1.100.625 - - 3.78 1.51 3.48 1.35 3.24 1.222.5 0.25 0.75 - - 4.53 1.68 4.17 1.49 3.89 1.330.875 - - 5.29 1.81 4.87 1.59 4.53 1.441 - - 6.05 1.94 5.56 1.73 5.18 1.550.5 2.71 1.74 - - - - - -0.625 4.05 2.11 - - - - - -3 0.25 0.75 5.70 2.29 - - - - - -0.875 6.97 2.50 - - - - - -1 7.97 2.64 - - - - - -0.5 - - 2.61 1.63 2.52 1.51 2.44 1.380.625 - - 3.89 1.89 3.75 1.69 3.65 1.523.125 0.25 0.75 - - 5.48 2.11 5.22 1.86 4.86 1.660.875 - - 6.61 2.27 6.08 1.99 5.67 1.791 - - 7.56 2.43 6.95 2.16 6.48 1.940.625 4.05 2.45 - - - - - -5 0.25 0.75 5.70 3.29 - - - - - -0.875 7.66 4.16 - - - - - -1 9.94 4.40 - - - - - -0.625 - - 3.89 2.29 3.75 2.18 3.65 2.080.75 - - 5.48 3.11 5.28 2.94 5.12 2.725.125 0.25 0.875 - - 7.36 3.72 7.09 3.26 6.87 2.941 - - 9.54 3.98 9.19 3.54 8.91 3.190.625 4.05 2.45 3.89 2.29 3.75 2.18 3.65 2.080.75 5.70 3.29 5.48 3.11 5.28 2.94 5.12 2.796.75 0.25 0.875 7.66 4.27 7.36 4.01 7.09 3.77 6.87 3.601 9.94 5.34 9.54 5.03 9.19 4.66 8.91 4.200.75 5.70 3.29 - - - - - -8.5 0.25 0.875 7.66 4.27 - - - - - -1 9.94 5.34 - - - - - -0.75 - - 5.48 3.11 5.28 2.94 5.12 2.798.75 0.25 0.875 - - 7.36 4.01 7.09 3.77 6.87 3.601 - - 9.54 5.03 9.19 4.76 8.91 4.5310.5 0.25 0.875 7.66 4.27 - - - - - -1 9.94 5.34 - - - - - -10.75 0.25 0.875 - - 7.36 4.01 7.09 3.77 6.87 3.601 - - 9.54 5.03 9.19 4.76 8.91 4.5312.25 0.25 0.875 - - 7.36 4.01 7.09 3.77 6.87 3.601 - - 9.54 5.03 9.19 4.76 8.91 4.5314.25 0.25 1 - - 9.54 5.03 9.19 4.76 8.91 4.531. Tabulated factored resistance values (φλZ') for bolted connections shall be multiplied by all applicable adjustment factors (see Table 7.1-1).2. Tabulated factored resistance values (φλZ') are for "full diameter" bolts (see ANSI/ASME Standard B18.2.1-1981) with a bending yield strength (F yb ) of 45 ksi.3. Tabulated factored resistance values (φλZ') are based on a dowel bearing strength (F e ) of 58 ksi for ASTM A36 steel.4FACTORED RESISTANCE VALUESAMERICAN FOREST & PAPER ASSOCIATION


30 FACTORED RESISTANCE VALUESTable 9A Dowel Bearing Strength for Lag Screw ConnectionsSpecific 1Species Combination Gravity F eX F ez F ezG D=1/4" D=5/16"Aspen 0.39 4.35 3.10 2.80Balsam Fir 0.36 4.05 2.75 2.50Beech-Birch-Hickory 0.71 7.95 7.40 6.65Coast Sitka Spruce 0.39 4.35 3.10 2.80Cottonwood 0.41 4.60 3.35 3.00Douglas Fir-Larch 0.50 5.60 4.45 4.00Douglas Fir-Larch (North) 0.49 5.50 4.35 3.90Douglas Fir-South 0.46 5.15 3.95 3.55Eastern Hemlock 0.41 4.60 3.35 3.00Eastern Hemlock-Tamarack 0.41 4.60 3.35 3.00Eastern Hemlock-Tamarack (North) 0.47 5.25 4.10 3.65Eastern Softwoods 0.36 4.05 2.75 2.50Eastern Spruce 0.41 4.60 3.35 3.00Eastern White Pine 0.36 4.05 2.75 2.50Engelmann Spruce-Lodgepole Pine 2 0.46 5.15 3.95 3.55(MSR 1650f and higher grades)Englemann Spruce-Lodgepole Pine 2 0.38 4.25 3.00 2.70(MSR 1500f and lower grades)Hem-Fir 0.43 4.80 3.60 3.20Hem-Fir (North) 0.46 5.15 3.95 3.55Mixed Maple 0.55 6.15 5.15 4.60Mixed Oak 0.68 7.60 6.95 6.25Mixed Southern Pine 0.51 5.70 4.60 4.10Mountain Hemlock 0.47 5.25 4.10 3.65Northern Pine 0.42 4.70 3.45 3.10Northern Red Oak 0.68 7.60 6.95 6.25Northern Species 0.35 3.90 2.65 2.40Northern White Cedar 0.31 3.45 2.25 2.00Ponderosa Pine 0.43 4.80 3.60 3.20Red Maple 0.58 6.50 5.55 4.95Red Oak 0.67 7.50 6.85 6.10Red Pine 0.44 4.95 3.70 3.30Redwood, close grain 0.44 4.95 3.70 3.30Redwood, open grain 0.37 4.15 2.90 2.60Sitka Spruce 0.43 4.80 3.60 3.20Southern Pine 0.55 6.15 5.15 4.60Spruce-Pine-Fir 0.42 4.70 3.45 3.10Spruce-Pine-Fir (South) 0.36 4.05 2.75 2.50Western Cedars 0.36 4.05 2.75 2.50Western Cedars (North) 0.35 3.90 2.65 2.40Western Hemlock 0.47 5.25 4.10 3.65Western Hemlock (North) 0.46 5.15 3.95 3.55Western White Pine 0.40 4.50 3.25 2.90Western <strong>Wood</strong>s 0.36 4.05 2.75 2.50White Oak 0.73 8.20 7.75 6.90Yellow Poplar 0.43 4.80 3.60 3.20Dowel bearing strength in kips per square inch (ksi)F ez F ez F ez F ez F ez F ez F ezD=3/8" D=7/16" D=1/2" D=5/8" D=3/4" D=7/8" D=1"2.55 2.35 2.20 1.95 1.80 1.65 1.552.25 2.10 1.95 1.75 1.60 1.50 1.406.05 5.60 5.25 4.70 4.30 3.95 3.702.55 2.35 2.20 1.95 1.80 1.65 1.552.75 2.55 2.35 2.10 1.95 1.80 1.653.65 3.40 3.15 2.80 2.60 2.40 2.253.55 3.30 3.05 2.75 2.50 2.30 2.153.25 3.00 2.80 2.50 2.30 2.10 2.002.75 2.55 2.35 2.10 1.95 1.80 1.652.75 2.55 2.35 2.10 1.95 1.80 1.653.35 3.10 2.90 2.60 2.35 2.20 2.052.25 2.10 1.95 1.75 1.60 1.50 1.402.75 2.55 2.35 2.10 1.95 1.80 1.652.25 2.10 1.95 1.75 1.60 1.50 1.403.25 3.00 2.80 2.50 2.30 2.10 2.002.45 2.25 2.10 1.90 1.75 1.60 1.502.95 2.70 2.55 2.25 2.05 1.90 1.803.25 3.00 2.80 2.50 2.30 2.10 2.004.20 3.90 3.65 3.25 2.95 2.75 2.555.70 5.25 4.95 4.40 4.05 3.75 3.503.75 3.45 3.25 2.90 2.65 2.45 2.303.35 3.10 2.90 2.60 2.35 2.20 2.052.85 2.60 2.45 2.20 2.00 1.85 1.755.70 5.25 4.95 4.40 4.05 3.75 3.502.15 2.00 1.90 1.70 1.55 1.40 1.351.80 1.70 1.60 1.40 1.30 1.20 1.102.95 2.70 2.55 2.25 2.05 1.90 1.804.50 4.20 3.90 3.50 3.20 2.95 2.755.55 5.15 4.85 4.30 3.95 3.65 3.403.05 2.80 2.60 2.35 2.15 2.00 1.853.05 2.80 2.60 2.35 2.15 2.00 1.852.35 2.20 2.05 1.85 1.65 1.55 1.452.95 2.70 2.55 2.25 2.05 1.90 1.804.20 3.90 3.65 3.25 2.95 2.75 2.552.85 2.60 2.45 2.20 2.00 1.85 1.752.25 2.10 1.95 1.75 1.60 1.50 1.402.25 2.10 1.95 1.75 1.60 1.50 1.402.15 2.00 1.90 1.70 1.55 1.40 1.353.35 3.10 2.90 2.60 2.35 2.20 2.053.25 3.00 2.80 2.50 2.30 2.10 2.002.65 2.45 2.30 2.05 1.85 1.75 1.602.25 2.10 1.95 1.75 1.60 1.50 1.406.30 5.85 5.45 4.90 4.45 4.15 3.852.95 2.70 2.55 2.25 2.05 1.90 1.801. Specific gravity based on weight and volume when oven-dry.2. Applies only to Englemann Spruce-Lodgepole Pine Machine Stress Rated (MSR) structural lumber.AMERICAN WOOD COUNCIL


<strong>LRFD</strong> STRUCTURAL CONNECTIONS SUPPLEMENT31Table 9.2A Factored Resistance Values (φλZ') 1 for Lag Screw Shank WithdrawalTabulated factored resistance values (φλZ') are in kips per inch of thread penetration into side grain of main member.Length of thread penetration in main member shall not include the length of the tapered tip (see ANSI/ASMEStandard B18.2.1-1981).Resistance Factor (φ) = 0.65, Time Effect Factor (λ) = 0.8SpecificGravityLag Screw Unthreaded Shank Diameter, DG 1/4" 5/16" 3/8" 7/16" 1/2" 5/8" 3/4" 7/8" 1"0.73 0.686 0.810 0.930 1.044 1.154 1.363 1.564 1.756 1.9410.71 0.658 0.778 0.892 1.001 1.106 1.308 1.500 1.683 1.8610.68 0.617 0.729 0.836 0.938 1.037 1.225 1.405 1.578 1.7440.67 0.603 0.714 0.817 0.918 1.014 1.199 1.375 1.543 1.7060.58 0.486 0.574 0.658 0.740 0.817 0.966 1.108 1.242 1.3740.55 0.449 0.530 0.608 0.683 0.755 0.892 1.023 1.147 1.2680.51 0.401 0.473 0.543 0.610 0.674 0.797 0.912 1.025 1.1340.50 0.389 0.460 0.527 0.591 0.653 0.772 0.886 0.995 1.0990.49 0.377 0.446 0.511 0.574 0.634 0.750 0.861 0.966 1.0660.47 0.354 0.418 0.480 0.539 0.596 0.705 0.807 0.907 1.0020.46 0.344 0.406 0.465 0.522 0.577 0.683 0.783 0.878 0.9710.44 0.321 0.380 0.435 0.489 0.539 0.638 0.731 0.821 0.9070.43 0.309 0.366 0.420 0.472 0.522 0.617 0.707 0.793 0.8780.42 0.299 0.354 0.406 0.456 0.503 0.594 0.683 0.766 0.8470.41 0.289 0.342 0.391 0.439 0.486 0.574 0.658 0.740 0.8170.40 0.278 0.328 0.377 0.423 0.468 0.553 0.634 0.712 0.7860.39 0.268 0.316 0.363 0.408 0.451 0.532 0.610 0.686 0.7570.38 0.257 0.304 0.349 0.392 0.434 0.511 0.588 0.658 0.7290.37 0.247 0.292 0.335 0.377 0.416 0.492 0.563 0.634 0.7000.36 0.237 0.282 0.321 0.361 0.399 0.472 0.541 0.608 0.6720.35 0.228 0.270 0.309 0.346 0.384 0.453 0.518 0.582 0.6450.31 0.190 0.225 0.257 0.289 0.320 0.377 0.432 0.486 0.5374FACTORED RESISTANCE VALUES1. Tabulated factored resistance values (φλZ') for lag screw connections shall be multiplied by all applicable adjustmentfactors (see Table 7.1-1).AMERICAN FOREST & PAPER ASSOCIATION


32 FACTORED RESISTANCE VALUESTable 9.3A Factored Resistance Values (φλZ') for Single Shear (Two Member)Lag Screw Connections 1,2 Between Sawn Lumber Members of theSame SpeciesResistance Factor (φ) = 0.65, Time Effect Factor (λ) = 0.8Side Lag G=0.67 G=0.55 G=0.50 G=0.49 G=0.46Member Screw Red Oak Mixed Maple Douglas fir- Douglas fir- Douglas fir (S)Thickness Diameter Southern Pine Larch Larch (N) Hem-Fir (N)t s D φλZ' X φλZ' sz φλZ' mz φλZ' X φλZ' sz φλZ' mz φλZ' X φλZ' sz φλZ' mz φλZ' X φλZ' sz φλZ' mz φλZ' X φλZ' sz φλZ' mzin. in. kips kips kips kips kips kips kips kips kips kips kips kips kips kips kips0.25 0.33 0.26 0.27 0.30 0.22 0.23 0.28 0.19 0.21 0.28 0.19 0.21 0.27 0.17 0.200.5 0.3125 0.47 0.33 0.36 0.42 0.25 0.31 0.38 0.22 0.29 0.37 0.21 0.29 0.35 0.19 0.280.375 0.58 0.36 0.43 0.50 0.27 0.38 0.45 0.23 0.35 0.45 0.23 0.35 0.42 0.21 0.330.25 0.36 0.28 0.29 0.32 0.23 0.24 0.30 0.21 0.22 0.29 0.21 0.22 0.28 0.20 0.210.625 0.3125 0.49 0.36 0.38 0.44 0.31 0.33 0.41 0.27 0.31 0.41 0.27 0.30 0.39 0.24 0.290.375 0.61 0.43 0.46 0.54 0.34 0.40 0.51 0.30 0.37 0.50 0.29 0.36 0.48 0.27 0.350.25 0.39 0.30 0.31 0.34 0.25 0.26 0.32 0.22 0.24 0.31 0.22 0.24 0.30 0.21 0.220.75 0.3125 0.53 0.38 0.41 0.46 0.32 0.35 0.43 0.30 0.32 0.43 0.30 0.32 0.41 0.28 0.300.375 0.65 0.45 0.49 0.57 0.38 0.42 0.54 0.35 0.38 0.53 0.34 0.38 0.50 0.32 0.360.25 0.45 0.35 0.35 0.40 0.29 0.31 0.37 0.25 0.28 0.36 0.25 0.28 0.34 0.23 0.261 0.3125 0.61 0.43 0.47 0.53 0.36 0.40 0.49 0.33 0.36 0.48 0.32 0.36 0.46 0.30 0.340.375 0.75 0.50 0.56 0.64 0.42 0.47 0.60 0.38 0.44 0.59 0.37 0.43 0.56 0.35 0.410.25 0.45 0.35 0.35 0.41 0.31 0.31 0.38 0.29 0.29 0.38 0.29 0.29 0.37 0.27 0.281.25 0.3125 0.64 0.49 0.49 0.58 0.40 0.43 0.56 0.36 0.41 0.55 0.35 0.40 0.52 0.33 0.380.375 0.81 0.57 0.59 0.73 0.46 0.53 0.68 0.42 0.49 0.67 0.41 0.49 0.63 0.38 0.460.25 0.45 0.35 0.35 0.41 0.31 0.31 0.38 0.29 0.29 0.38 0.29 0.29 0.37 0.28 0.280.3125 0.64 0.49 0.49 0.58 0.43 0.43 0.56 0.40 0.41 0.55 0.40 0.40 0.54 0.37 0.380.375 0.81 0.59 0.59 0.73 0.51 0.53 0.70 0.46 0.49 0.69 0.45 0.49 0.67 0.42 0.470.4375 1.09 0.75 0.79 0.99 0.61 0.70 0.94 0.55 0.66 0.93 0.54 0.65 0.88 0.51 0.620.50 1.43 0.87 1.01 1.22 0.72 0.87 1.13 0.66 0.80 1.12 0.64 0.79 1.06 0.61 0.741.5 0.625 1.97 1.16 1.39 1.70 0.99 1.17 1.59 0.90 1.08 1.57 0.89 1.07 1.49 0.81 1.010.75 2.61 1.53 1.79 2.27 1.15 1.52 2.14 1.01 1.41 2.11 0.97 1.39 2.02 0.89 1.320.875 3.35 1.65 2.25 2.96 1.25 1.92 2.79 1.09 1.79 2.76 1.05 1.76 2.65 0.95 1.671.00 4.23 1.76 2.76 3.75 1.32 2.38 3.56 1.16 2.22 3.52 1.11 2.18 3.34 1.03 2.090.25 0.45 0.35 0.35 0.41 0.31 0.31 0.38 0.29 0.29 0.38 0.29 0.29 0.37 0.28 0.280.3125 0.64 0.49 0.49 0.58 0.43 0.43 0.56 0.41 0.41 0.55 0.40 0.40 0.54 0.38 0.380.375 0.81 0.59 0.59 0.73 0.53 0.53 0.70 0.49 0.49 0.69 0.49 0.49 0.67 0.47 0.470.4375 1.09 0.79 0.79 0.99 0.70 0.70 0.95 0.66 0.66 0.94 0.65 0.65 0.90 0.62 0.620.50 1.43 1.01 1.01 1.29 0.89 0.89 1.23 0.84 0.84 1.22 0.83 0.83 1.19 0.77 0.802.5 0.625 2.23 1.49 1.52 2.02 1.20 1.35 1.93 1.08 1.26 1.91 1.07 1.25 1.85 1.00 1.200.75 3.21 1.83 2.14 2.91 1.50 1.88 2.71 1.38 1.77 2.67 1.35 1.74 2.53 1.28 1.670.875 4.25 2.22 2.83 3.63 1.87 2.41 3.37 1.72 2.22 3.33 1.68 2.17 3.17 1.59 2.051.00 5.14 2.68 3.42 4.43 2.20 2.87 4.13 1.94 2.65 4.08 1.86 2.59 3.89 1.73 2.461. Tabulated factored resistance values (φλZ' ) for lag screw connections shall be multipled by all applicable adjustment factors(see Table 7.1-1).2. Tabulated factored resistance values (φλZ') are for "full diameter" lag screws (ANSI/ASME Standard 18.2.1 - 1981) insertedin side grain with lag screw axis perpendicular to wood fibers, and with the following lag screw bending yield strengths (F yb ):F yb = 70 ksi for D = 1/4"F yb = 60 ksi for D = 1/4"F yb = 45 ksi for D $ 3/8"AMERICAN WOOD COUNCIL


<strong>LRFD</strong> STRUCTURAL CONNECTIONS SUPPLEMENT33Table 9.3A Factored Resistance Values (φλZ') for Single Shear (Two Member)Lag Screw Connections 1,2 Between Sawn Lumber Members of theSame SpeciesResistance Factor (φ) = 0.65, Time Effect Factor (λ) = 0.8Side Lag G=0.43 G=0.42 G=0.37 G=0.36 G=0.35Member Screw Hem-Fir Spruce-Pine-Fir Redwood Eastern Softwoods NorthernThickness Diameter (open grain) Spruce-Pine-Fir (S) SpeciesWestern CedarsWestern <strong>Wood</strong>st s D φλZ' X φλZ' sz φλZ' mz φλZ' X φλZ' sz φλZ' mz φλZ' X φλZ' sz φλZ' mz φλZ' X φλZ' sz φλZ' mz φλZ' X φλZ' sz φλZ' mzin. in. kips kips kips kips kips kips kips kips kips kips kips kips kips kips kips0.25 0.25 0.16 0.19 0.25 0.15 0.19 0.22 0.12 0.17 0.22 0.12 0.17 0.21 0.11 0.170.5 0.3125 0.32 0.17 0.26 0.32 0.17 0.25 0.28 0.14 0.22 0.28 0.14 0.22 0.27 0.13 0.210.375 0.39 0.19 0.31 0.38 0.19 0.31 0.34 0.15 0.27 0.33 0.15 0.26 0.32 0.14 0.250.25 0.27 0.19 0.20 0.27 0.19 0.20 0.24 0.16 0.18 0.24 0.15 0.18 0.23 0.15 0.170.625 0.3125 0.37 0.22 0.27 0.37 0.21 0.27 0.34 0.18 0.24 0.34 0.17 0.24 0.33 0.16 0.230.375 0.46 0.24 0.33 0.46 0.23 0.32 0.42 0.19 0.30 0.41 0.18 0.29 0.40 0.17 0.280.25 0.29 0.20 0.21 0.28 0.19 0.21 0.26 0.18 0.19 0.25 0.17 0.19 0.25 0.17 0.180.75 0.3125 0.39 0.26 0.29 0.38 0.25 0.28 0.36 0.21 0.25 0.35 0.20 0.25 0.34 0.19 0.240.375 0.48 0.29 0.34 0.48 0.28 0.34 0.44 0.23 0.31 0.44 0.22 0.30 0.43 0.21 0.290.25 0.33 0.22 0.24 0.32 0.21 0.24 0.29 0.19 0.21 0.29 0.19 0.21 0.28 0.18 0.201 0.3125 0.44 0.28 0.32 0.43 0.28 0.31 0.40 0.25 0.28 0.38 0.24 0.28 0.37 0.24 0.270.375 0.54 0.34 0.38 0.53 0.33 0.37 0.48 0.30 0.34 0.47 0.29 0.33 0.46 0.28 0.320.25 0.36 0.25 0.27 0.35 0.24 0.26 0.33 0.21 0.24 0.32 0.20 0.23 0.31 0.20 0.231.25 0.3125 0.49 0.31 0.36 0.48 0.30 0.35 0.44 0.27 0.32 0.43 0.26 0.31 0.42 0.25 0.300.375 0.60 0.36 0.43 0.59 0.35 0.42 0.54 0.31 0.38 0.53 0.31 0.37 0.51 0.30 0.360.25 0.36 0.27 0.27 0.35 0.26 0.26 0.33 0.23 0.24 0.33 0.22 0.23 0.32 0.22 0.230.3125 0.51 0.34 0.37 0.51 0.33 0.36 0.48 0.29 0.34 0.47 0.29 0.33 0.46 0.28 0.320.375 0.64 0.40 0.45 0.63 0.38 0.44 0.59 0.34 0.41 0.58 0.33 0.40 0.57 0.32 0.390.4375 0.83 0.47 0.59 0.82 0.46 0.57 0.74 0.42 0.51 0.73 0.41 0.50 0.71 0.40 0.480.50 1.00 0.57 0.70 0.99 0.56 0.68 0.90 0.50 0.61 0.89 0.49 0.60 0.86 0.48 0.581.5 0.625 1.42 0.73 0.95 1.40 0.71 0.94 1.29 0.60 0.84 1.27 0.57 0.82 1.24 0.55 0.810.75 1.93 0.80 1.24 1.91 0.78 1.23 1.77 0.64 1.11 1.74 0.62 1.09 1.70 0.60 1.070.875 2.54 0.86 1.59 2.51 0.84 1.57 2.34 0.70 1.42 2.30 0.68 1.40 2.21 0.63 1.361.00 3.11 0.93 1.98 3.05 0.90 1.96 2.69 0.75 1.78 2.63 0.73 1.75 2.53 0.70 1.710.25 0.36 0.27 0.27 0.35 0.26 0.26 0.33 0.24 0.24 0.33 0.23 0.23 0.32 0.23 0.230.3125 0.51 0.37 0.37 0.51 0.36 0.36 0.48 0.34 0.34 0.47 0.33 0.33 0.46 0.32 0.320.375 0.64 0.45 0.45 0.63 0.44 0.44 0.60 0.41 0.41 0.59 0.40 0.40 0.58 0.39 0.390.4375 0.87 0.59 0.59 0.87 0.58 0.58 0.81 0.54 0.54 0.81 0.51 0.53 0.79 0.49 0.520.50 1.14 0.72 0.76 1.13 0.70 0.75 1.06 0.61 0.69 1.05 0.59 0.68 1.03 0.58 0.672.5 0.625 1.78 0.93 1.14 1.77 0.92 1.13 1.65 0.82 1.05 1.62 0.79 1.02 1.57 0.77 1.000.75 2.40 1.19 1.58 2.36 1.18 1.54 2.14 1.05 1.37 2.10 1.03 1.35 2.04 1.00 1.310.875 3.01 1.44 1.92 2.96 1.40 1.89 2.70 1.17 1.70 2.66 1.13 1.66 2.58 1.06 1.601.00 3.70 1.55 2.31 3.65 1.51 2.28 3.35 1.25 2.04 3.30 1.21 2.00 3.21 1.16 1.954FACTORED RESISTANCE VALUES1. Tabulated factored resistance values (φλZ' ) for lag screw connections shall be multipled by all applicable adjustment factors(see Table 7.1-1).2. Tabulated factored resistance values (φλZ') are for "full diameter" lag screws (ANSI/ASME Standard 18.2.1 - 1981) insertedin side grain with lag screw axis perpendicular to wood fibers, and with the following lag screw bending yield strengths (F yb ):F yb = 70 ksi for D = 1/4"F yb = 60 ksi for D = 1/4"F yb = 45 ksi for D $ 3/8"AMERICAN FOREST & PAPER ASSOCIATION


34 FACTORED RESISTANCE VALUESTable 9.3B Factored Resistance Values (φλZ') for Single Shear (Two Member)Lag Screw Connections 1,2,3 Between Sawn Lumber and a 1/4" ASTMA36 Steel Side Plate, or an ASTM A446 Grade A Steel Side Plate (fort s


<strong>LRFD</strong> STRUCTURAL CONNECTIONS SUPPLEMENT35Table 9.3B Factored Resistance Values (φλZ') for Single Shear (Two Member)Lag Screw Connections 1,2,3 Between Sawn Lumber and a 1/4" ASTMA36 Steel Side Plate, or an ASTM A446 Grade A Steel Side Plate (fort s


36 FACTORED RESISTANCE VALUESTable 10.2A Factored Resistance Values (φλZ') for Shear Plate Connections 1 Between Sawn LumberMembers of the Same SpeciesTabulated factored resistance values apply to one shear plate and bolt in single shearResistance factor (φ) = 0.65, Time Effect Factor (λ) = 0.8Split Bolt Number of Net Loaded parallel to grain (0 o ) Loaded perpendicular to grain (90 o )ring diameter faces of thicknessdiameter member of member Factored resistance value(φλZ'X) Factored resistance value(φλZ'z)with per connector unit and bolt, kips per connector unit and bolt, kipsconnectorson same Group Group Group Group Group Group Group Groupbolt A B C D A B C Dinches inches inches species species species species species species species species2-1/2 1/2121" 4.55 3.92 3.28 2.83 3.28 2.80 2.33 2.00minimum1-1/2" or 5.46 4.72 3.96 3.39 3.94 3.35 2.80 2.40thicker1-1/2" 4.20 3.63 3.04 2.61 3.02 2.60 2.16 1.85minimum2" or 5.46 4.72 3.96 3.39 3.94 3.35 2.80 2.40thicker1" 7.07 6.07 5.05 4.36 4.91 4.22 3.53 3.04minimum1 1-1/2" 10.40 8.92 7.40 6.41 7.22 6.20 5.17 4.461-5/8" or 10.61 9.09 7.57 6.55 7.38 6.32 5.27 4.55thicker4 3/4 1-1/2" 7.10 6.08 5.08 4.39 5.15 4.23 3.53 3.04minimum22" 8.55 7.34 6.12 5.27 5.94 5.12 4.25 3.662-1/2" 10.07 8.64 7.19 6.22 7.00 6.01 4.99 4.323" or 10.61 9.09 7.57 6.55 7.38 6.32 5.27 4.55thicker1. Tabulated factored resistance values (φλZ') for split ring connector units shall be multiplied to all applicable adjustment factors (see Table 7.1.1).AMERICAN WOOD COUNCIL


<strong>LRFD</strong> STRUCTURAL CONNECTIONS SUPPLEMENT37Table 10.2B Factored Resistance Values (φλZ') for Shear Plate Connections 1,2 Between Sawn LumberMembers of the Same SpeciesTabulated factored resistance values apply to one shear plate and bolt in single shearResistance factor (φ) = 0.65, Time Effect Factor (λ) = 0.8Shear Bolt Number of Net Loaded parallel to grain (0 o ) Loaded perpendicular to grain (90 o )plate diameter faces of thicknessdiameter member of member Factored resistance value(φλZ'X) Factored resistance value(φλZ'z)with per connector and bolt, kips per connector and bolt, kipsconnectorson same Group Group Group Group Group Group Group Groupbolt A B C D A B C Dinches inches inches species species species species species species species species1 1-1/2" 5.37 4.61 3.84 3.47 3.75 3.21 2.68 2.30minimum1-1/2" 4.18 3.59 2.99 2.59 2.92 2.51 2.09 1.802-5-8 3/4 minimum2 2" 5.51 4.72 3.92 3.39 3.84 3.30 2.73 2.372-1/2" or 5.75 4.94 4.11 3.56 4.01 3.44 2.85 2.49thicker1-1/2" 7.55 6.48 5.41 4.67 5.25 4.53 3.75 3.21minimum11-3/4" or 8.80 7.53 6.29 5.43 6.12 5.25 4.37 3.803/4 thicker1-3/4" 5.86 5.03 4.18 3.61 4.08 3.49 2.90 2.444 or minimum2" 6.55 5.60 4.67 4.03 4.56 3.91 3.25 2.827/8 2 2-1/2" 7.45 6.38 5.32 4.60 5.18 4.41 3.70 3.203" 8.35 7.15 5.96 5.15 5.81 4.98 4.15 3.563-1/2" or 8.69 7.47 6.22 5.37 6.05 5.18 4.34 3.73thicker1. Tabulated factored resistance values (φλZ') for shear plate connector units shall be multiplied to all applicable adjustment factors (see Table 7.1.1).2. Allowable design values for shear plate connector units shall not exceed the following:(a) 2-5/8" shear plate with 3/4" bolt .............................6.99 kips(b) 4" shear plate with 3/4" bolt ................................... 7.16 kips(c) 4" shear plate with 7/8" bolt ................................... 9.74 kips4FACTORED RESISTANCE VALUESAMERICAN FOREST & PAPER ASSOCIATION


38 FACTORED RESISTANCE VALUESTable 11ADowel Bearing Strength for <strong>Wood</strong> Screw ConnectionsSpecific 1GravityDowel bearing strength inkips per square inch (ksi)Species Combination G F eAspen 0.39 2.95Balsam Fir 0.36 2.55Beech-Birch-Hickory 0.71 8.85Coast Sitka Spruce 0.39 2.95Cottonwood 0.41 3.20Douglas Fir-Larch 0.50 4.65Douglas Fir-Larch (North) 0.49 4.45Douglas Fir-South 0.46 4.00Eastern Hemlock 0.41 3.20Eastern Hemlock-Tamarack 0.41 3.20Eastern Hemlock-Tamarack (North) 0.47 4.15Eastern Softwoods 0.36 2.55Eastern Spruce 0.41 3.20Eastern White Pine 0.36 2.55Engelmann Spruce-Lodgepole Pine(2) 0.46 4.00(MSR 1650f and higher grades)Englemann Spruce-Lodgepole Pine(2) 0.38 2.80(MSR 1500f and lower grades)Hem-Fir 0.43 3.50Hem-Fir (North) 0.46 4.00Mixed Maple 0.55 5.55Mixed Oak 0.68 8.15Mixed Southern Pine 0.51 4.80Mountain Hemlock 0.47 4.15Northern Pine 0.42 3.35Northern Red Oak 0.68 8.15Northern Species 0.35 2.40Northern White Cedar 0.31 1.90Ponderosa Pine 0.43 3.50Red Maple 0.58 6.10Red Oak 0.67 7.95Red Pine 0.44 3.65Redwood, close grain 0.44 3.65Redwood, open grain 0.37 2.65Sitka Spruce 0.43 3.50Southern Pine 0.55 5.55Spruce-Pine-Fir 0.42 3.35Spruce-Pine-Fir (South) 0.36 2.55Western Cedars 0.36 2.55Western Cedars (North) 0.35 2.40Western Hemlock 0.47 4.15Western Hemlock (North) 0.46 4.00Western White Pine 0.40 3.10Western <strong>Wood</strong>s 0.36 2.55White Oak 0.73 9.30Yellow Poplar 0.43 3.501. Specific gravity based on weight and volume when oven-dry.2. Applies only to Englemann Spruce-Lodgepole Pine machine stress rated (MSR) structural lumber.AMERICAN WOOD COUNCIL


<strong>LRFD</strong> STRUCTURAL CONNECTIONS SUPPLEMENT39Table 11.2A Factored Resistance Values for Cut or Rolled Thread <strong>Wood</strong> Screw Shank Withdrawal (φλZ') 1Tabulated factored resistance values (φλZ') are in kips per inch of threaded penetration into side grain of main member.Thread length is approximately 2/3 the total wood screw length (see ANSI/ASME Standard B18.6.1-1981).Resistance Factor (φ) = 0.65, Time Effect Factor (λ) = 0.820g 24g0.839 0.9760.794 0.9220.728 0.8460.708 0.8220.529 0.6160.476 0.5540.410 0.4760.394 0.4570.379 0.4390.348 0.4050.334 0.3880.304 0.3550.291 0.3390.279 0.3240.265 0.3080.253 0.2920.239 0.2790.227 0.2650.216 0.2510.204 0.2370.192 0.2250.151 0.176SpecificGravity <strong>Wood</strong> Screw GageG 6g 7g 8g 9g 10g 12g 14g 16g 18g0.73 0.362 0.396 0.431 0.464 0.498 0.566 0.635 0.702 0.7720.71 0.343 0.374 0.407 0.439 0.471 0.536 0.600 0.664 0.7280.68 0.313 0.344 0.374 0.403 0.433 0.491 0.550 0.609 0.6700.67 0.304 0.334 0.362 0.391 0.420 0.477 0.535 0.592 0.6490.58 0.228 0.249 0.272 0.292 0.315 0.358 0.401 0.443 0.4860.55 0.206 0.225 0.244 0.263 0.282 0.322 0.360 0.400 0.4380.51 0.176 0.194 0.209 0.227 0.244 0.277 0.310 0.343 0.3750.50 0.170 0.185 0.202 0.218 0.234 0.266 0.298 0.330 0.3620.49 0.163 0.178 0.194 0.209 0.225 0.254 0.285 0.317 0.3480.47 0.151 0.164 0.178 0.192 0.206 0.235 0.263 0.291 0.3200.46 0.144 0.157 0.171 0.185 0.197 0.225 0.253 0.279 0.3060.44 0.131 0.144 0.156 0.168 0.182 0.206 0.230 0.256 0.2800.43 0.126 0.137 0.149 0.161 0.173 0.197 0.220 0.244 0.2680.42 0.119 0.131 0.142 0.154 0.164 0.187 0.209 0.232 0.2540.41 0.114 0.125 0.135 0.147 0.157 0.178 0.201 0.221 0.2440.40 0.109 0.119 0.130 0.140 0.149 0.170 0.190 0.211 0.2320.39 0.104 0.112 0.123 0.133 0.142 0.161 0.182 0.201 0.2200.38 0.099 0.107 0.116 0.126 0.135 0.154 0.171 0.190 0.2090.37 0.093 0.102 0.111 0.119 0.128 0.145 0.163 0.180 0.1970.36 0.088 0.097 0.104 0.112 0.121 0.138 0.154 0.171 0.1870.35 0.083 0.092 0.099 0.107 0.114 0.130 0.145 0.161 0.1760.31 0.066 0.071 0.078 0.083 0.090 0.102 0.114 0.126 0.1381. Tabulated factored resistance values (φλZ') for wood screw connections shall be multiplied by all applicable adjustment factors (see Table 7.1-1).4FACTORED RESISTANCE VALUESAMERICAN FOREST & PAPER ASSOCIATION


40 FACTORED RESISTANCE VALUESTable 11.3A Factored Resistance Values (φλZ') for Single Shear (Two Member)Cut Thread <strong>Wood</strong> Screw Connections 1,2 Between Sawn LumberMembers of the Same SpeciesResistance Factor (φ) = 0.65, Time Effect Factor (λ) = 0.8Side <strong>Wood</strong> <strong>Wood</strong> G=0.67 G=0.55 G=0.50 G=0.49 G=0.46Member Screw Screw Red Oak Mixed Maple Douglas fir- Douglas fir- Douglas fir (S)Thickness Diameter Gage Southern Pine Larch Larch (N) Hem-fir (N)t s D φλZ' φλZ' φλZ' φλZ' φλZ'inches inches kips kips kips kips kips0.138 6g 0.191 0.147 0.129 0.126 0.1170.151 7g 0.213 0.164 0.145 0.141 0.1310.164 8g 0.241 0.187 0.166 0.162 0.1510.177 9g 0.264 0.206 0.184 0.179 0.1680.5 0.190 10g 0.269 0.211 0.189 0.184 0.1720.216 12g 0.300 0.238 0.214 0.209 0.1960.242 14g 0.316 0.252 0.227 0.222 0.2090.268 16g 0.367 0.296 0.268 0.262 0.2460.294 18g 0.407 0.329 0.298 0.291 0.2750.138 6g 0.219 0.164 0.143 0.138 0.1280.151 7g 0.242 0.182 0.159 0.154 0.1420.164 8g 0.272 0.206 0.181 0.175 0.1630.177 9g 0.294 0.224 0.198 0.192 0.1780.625 0.190 10g 0.300 0.229 0.202 0.197 0.1830.216 12g 0.328 0.254 0.226 0.219 0.2050.242 14g 0.343 0.267 0.238 0.232 0.2170.268 16g 0.393 0.309 0.278 0.270 0.2540.294 18g 0.435 0.344 0.308 0.300 0.2820.138 6g 0.228 0.183 0.158 0.153 0.1400.151 7g 0.259 0.203 0.176 0.170 0.1560.164 8g 0.305 0.227 0.198 0.191 0.1760.177 9g 0.328 0.245 0.215 0.207 0.1920.75 0.190 10g 0.334 0.251 0.219 0.212 0.1960.216 12g 0.360 0.274 0.241 0.234 0.2170.242 14g 0.375 0.287 0.253 0.245 0.2280.268 16g 0.425 0.328 0.291 0.283 0.2640.294 18g 0.470 0.363 0.323 0.314 0.2930.320 20g 0.536 0.419 0.373 0.363 0.3400.372 24g 0.625 0.489 0.436 0.424 0.3970.138 6g 0.228 0.190 0.174 0.171 0.1620.151 7g 0.259 0.216 0.198 0.193 0.1840.164 8g 0.305 0.255 0.233 0.228 0.2090.177 9g 0.345 0.288 0.254 0.245 0.2241 0.190 10g 0.354 0.296 0.259 0.250 0.2290.216 12g 0.413 0.321 0.279 0.269 0.2480.242 14g 0.441 0.334 0.290 0.280 0.2580.268 16g 0.501 0.375 0.328 0.317 0.2930.294 18g 0.553 0.415 0.362 0.351 0.3240.320 20g 0.621 0.470 0.413 0.400 0.3710.372 24g 0.724 0.549 0.482 0.467 0.4330.138 6g 0.228 0.190 0.174 0.171 0.1620.151 7g 0.259 0.216 0.198 0.193 0.1840.164 8g 0.305 0.255 0.233 0.228 0.2160.177 9g 0.345 0.288 0.264 0.258 0.2441.25 0.190 10g 0.354 0.296 0.271 0.265 0.2510.216 12g 0.413 0.345 0.316 0.309 0.2830.242 14g 0.441 0.369 0.333 0.321 0.2940.268 16g 0.527 0.431 0.372 0.359 0.3300.294 18g 0.587 0.475 0.411 0.396 0.3640.320 20g 0.696 0.533 0.463 0.447 0.4110.372 24g 0.814 0.621 0.539 0.521 0.4800.138 6g 0.228 0.190 0.174 0.171 0.1620.151 7g 0.259 0.216 0.198 0.193 0.1840.164 8g 0.305 0.255 0.233 0.228 0.2160.177 9g 0.345 0.288 0.264 0.258 0.2441.5 0.190 10g 0.354 0.296 0.271 0.265 0.2510.216 12g 0.413 0.345 0.316 0.309 0.2930.242 14g 0.441 0.369 0.337 0.330 0.3130.268 16g 0.527 0.440 0.403 0.394 0.3700.294 18g 0.587 0.491 0.449 0.439 0.4080.320 20g 0.696 0.581 0.518 0.500 0.4580.372 24g 0.814 0.680 0.604 0.582 0.5341. Tabulated factored resistance values (φλZ') for wood screw connections shall be multiplied by all applicable adjustmentfactors (see Table 7.1-1).2. Tabulated factored resistance values (φλZ') are for cut thread wood screws inserted in side grain with wood screw axisperpendicular to wood fibers, and with the following wood screw bending yield strength (F yb ):F yb = 100 ksi for 6g wood screwsF yb = 90 ksi for 7g, 8g and 9g wood screwsF yb = 80 ksi for 10g and 12g wood screwsF yb = 70 ksi for 14g and 16g wood screwsF yb = 60 ksi for 18g and 20g wood screwsF yb = 45 ksi for 24g wood screws.AMERICAN WOOD COUNCIL


<strong>LRFD</strong> STRUCTURAL CONNECTIONS SUPPLEMENT41Table 11.3A Factored Resistance Values (φλZ') for Single Shear (Two Member)Cut Thread <strong>Wood</strong> Screw Connections 1,2 Between Sawn LumberMembers of the Same SpeciesResistance Factor (φ) = 0.65, Time Effect Factor (λ) = 0.8Side <strong>Wood</strong> <strong>Wood</strong> G=0.43 G=0.42 G=0.37 G=0.36 G=0.35Member Screw Screw Hem-fir Spruce-Pine-Fir Redwood Eastern Softwoods NorthernThickness Diameter Gage (open grain) Spruce-Pine-Fir (S) SpeciesWestern CedarsWestern <strong>Wood</strong>st s D φλZ' φλZ' φλZ' φλZ' φλZ'inches inches kips kips kips kips kips0.138 6g 0.107 0.104 0.090 0.088 0.0850.151 7g 0.121 0.117 0.101 0.099 0.0960.164 8g 0.139 0.136 0.118 0.116 0.1120.177 9g 0.155 0.151 0.132 0.129 0.1250.5 0.190 10g 0.159 0.155 0.136 0.133 0.1280.216 12g 0.182 0.178 0.157 0.153 0.1490.242 14g 0.194 0.189 0.167 0.164 0.1590.268 16g 0.230 0.225 0.199 0.196 0.1850.294 18g 0.256 0.250 0.222 0.216 0.2030.138 6g 0.116 0.112 0.096 0.093 0.0890.151 7g 0.130 0.126 0.108 0.105 0.1010.164 8g 0.148 0.144 0.124 0.121 0.1160.177 9g 0.163 0.159 0.137 0.134 0.1290.625 0.190 10g 0.167 0.163 0.140 0.137 0.1330.216 12g 0.189 0.184 0.160 0.157 0.1510.242 14g 0.200 0.195 0.170 0.166 0.1610.268 16g 0.235 0.229 0.201 0.197 0.1910.294 18g 0.261 0.254 0.224 0.219 0.2120.138 6g 0.126 0.122 0.103 0.100 0.0960.151 7g 0.141 0.136 0.115 0.112 0.1070.164 8g 0.160 0.155 0.131 0.128 0.1230.177 9g 0.174 0.169 0.144 0.140 0.1350.75 0.190 10g 0.178 0.173 0.148 0.144 0.1380.216 12g 0.199 0.193 0.166 0.162 0.1560.242 14g 0.209 0.203 0.176 0.172 0.1650.268 16g 0.243 0.237 0.205 0.201 0.1940.294 18g 0.270 0.263 0.228 0.224 0.2160.320 20g 0.314 0.306 0.268 0.262 0.2530.372 24g 0.367 0.358 0.313 0.306 0.2960.138 6g 0.151 0.146 0.120 0.116 0.1110.151 7g 0.167 0.161 0.133 0.129 0.1230.164 8g 0.187 0.180 0.150 0.146 0.1390.177 9g 0.202 0.194 0.163 0.158 0.1511 0.190 10g 0.206 0.199 0.166 0.161 0.1540.216 12g 0.224 0.216 0.183 0.178 0.1700.242 14g 0.234 0.226 0.191 0.187 0.1790.268 16g 0.267 0.258 0.220 0.215 0.2060.294 18g 0.295 0.287 0.244 0.238 0.2290.320 20g 0.339 0.329 0.282 0.276 0.2650.372 24g 0.396 0.384 0.330 0.322 0.3100.138 6g 0.151 0.148 0.132 0.129 0.1250.151 7g 0.172 0.168 0.149 0.147 0.1420.164 8g 0.202 0.198 0.172 0.166 0.1580.177 9g 0.229 0.224 0.185 0.179 0.1711.25 0.190 10g 0.235 0.229 0.188 0.183 0.1740.216 12g 0.254 0.245 0.203 0.198 0.1890.242 14g 0.264 0.255 0.212 0.206 0.1970.268 16g 0.297 0.287 0.241 0.234 0.2240.294 18g 0.328 0.317 0.266 0.259 0.2480.320 20g 0.372 0.360 0.304 0.296 0.2840.372 24g 0.434 0.420 0.355 0.346 0.3320.138 6g 0.151 0.148 0.132 0.129 0.1250.151 7g 0.172 0.168 0.149 0.147 0.1420.164 8g 0.202 0.198 0.176 0.173 0.1670.177 9g 0.229 0.224 0.199 0.195 0.1891.5 0.190 10g 0.235 0.230 0.204 0.201 0.1940.216 12g 0.274 0.268 0.227 0.220 0.2100.242 14g 0.293 0.287 0.236 0.229 0.2180.268 16g 0.331 0.320 0.265 0.257 0.2450.294 18g 0.366 0.353 0.292 0.284 0.2710.320 20g 0.411 0.397 0.331 0.321 0.3070.372 24g 0.479 0.463 0.386 0.375 0.3584FACTORED RESISTANCE VALUES1. Tabulated factored resistance values (φλZ') for wood screw connections shall be multiplied by all applicable adjustmentfactors (see Table 7.1-1).2. Tabulated factored resistance values (φλZ') are for cut thread wood screws inserted in side grain with wood screw axisperpendicular to wood fibers, and with the following wood screw bending yield strength (F yb ):F yb = 100 ksi for 6g wood screwsF yb = 90 ksi for 7g, 8g and 9g wood screwsF yb = 80 ksi for 10g and 12g wood screwsF yb = 70 ksi for 14g and 16g wood screwsF yb = 60 ksi for 18g and 20g wood screwsF yb = 45 ksi for 24g wood screws.AMERICAN FOREST & PAPER ASSOCIATION


42 FACTORED RESISTANCE VALUESTable 11.3B Factored Resistance Values (φλZ') for Single Shear (Two Member)Cut Thread <strong>Wood</strong> Screw Connections 1,2,3 Between a Solid SawnLumber Member and an ASTM A446 Grade A Steel Side PlateResistance Factor (φ) = 0.65, Time Effect Factor (λ) = 0.8Steel <strong>Wood</strong> <strong>Wood</strong> G=0.67 G=0.55 G=0.50 G=0.49 G=0.46Side Screw Screw Red Oak Mixed Maple Douglas fir- Douglas fir- Douglas fir (S)Plate Diameter Gage Southern Pine Larch Larch (N) Hem-fir (N)D φλZ' φλZ' φλZ' φλZ' φλZ'inches kips kips kips kips kips0.242 14g 0.476 0.416 0.388 0.382 0.3663 gage 0.268 16g 0.544 0.475 0.443 0.435 0.416t s = 0.239" 0.294 18g 0.602 0.525 0.490 0.481 0.4610.320 20g 0.691 0.602 0.561 0.551 0.5270.372 24g 0.807 0.703 0.655 0.643 0.6160.190 10g 0.363 0.317 0.295 0.291 0.2780.216 12g 0.405 0.352 0.328 0.322 0.3087 gage 0.242 14g 0.426 0.371 0.345 0.339 0.324t s = 0.179" 0.268 16g 0.495 0.430 0.399 0.392 0.3750.294 18g 0.549 0.476 0.443 0.435 0.4160.320 20g 0.638 0.553 0.514 0.504 0.4830.372 24g 0.745 0.646 0.601 0.590 0.5640.138 6g 0.227 0.198 0.184 0.181 0.1730.151 7g 0.254 0.222 0.206 0.203 0.1940.164 8g 0.292 0.254 0.237 0.232 0.2230.177 9g 0.323 0.281 0.261 0.256 0.24510 gage 0.190 10g 0.331 0.288 0.267 0.263 0.251t s = 0.134" 0.216 12g 0.375 0.325 0.302 0.296 0.2830.242 14g 0.398 0.344 0.320 0.314 0.3000.268 16g 0.467 0.404 0.375 0.368 0.3520.294 18g 0.519 0.449 0.417 0.409 0.3910.320 20g 0.609 0.526 0.488 0.479 0.4570.372 24g 0.713 0.615 0.570 0.560 0.5350.138 6g 0.219 0.190 0.177 0.174 0.1660.151 7g 0.246 0.214 0.199 0.196 0.1870.164 8g 0.284 0.246 0.229 0.225 0.2150.177 9g 0.315 0.273 0.254 0.249 0.23811 gage 0.190 10g 0.323 0.280 0.260 0.255 0.244t s = 0.120" 0.216 12g 0.368 0.318 0.296 0.290 0.2770.242 14g 0.391 0.338 0.314 0.308 0.2940.268 16g 0.461 0.398 0.369 0.362 0.3460.294 18g 0.513 0.443 0.411 0.403 0.3850.320 20g 0.603 0.520 0.482 0.473 0.4510.372 24g 0.706 0.608 0.564 0.553 0.5280.138 6g 0.211 0.183 0.171 0.167 0.1600.151 7g 0.238 0.206 0.192 0.188 0.1800.164 8g 0.276 0.239 0.222 0.218 0.2090.177 9g 0.307 0.266 0.247 0.242 0.23212 gage 0.190 10g 0.316 0.273 0.253 0.249 0.238t s = 0.105" 0.216 12g 0.362 0.313 0.290 0.284 0.2710.242 14g 0.385 0.332 0.308 0.302 0.2890.268 16g 0.456 0.393 0.364 0.357 0.3410.294 18g 0.508 0.437 0.405 0.397 0.3790.320 20g 0.599 0.515 0.477 0.467 0.4460.372 24g 0.700 0.602 0.557 0.547 0.5220.138 6g 0.200 0.172 0.160 0.157 0.1500.151 7g 0.226 0.195 0.181 0.177 0.1700.164 8g 0.265 0.228 0.211 0.207 0.19814 gage 0.177 9g 0.297 0.256 0.237 0.232 0.222t s = 0.075" 0.190 10g 0.305 0.263 0.243 0.239 0.2280.216 12g 0.354 0.304 0.281 0.276 0.2630.242 14g 0.378 0.324 0.300 0.294 0.2810.268 16g 0.450 0.386 0.357 0.350 0.3340.294 18g 0.502 0.430 0.398 0.390 0.3720.138 6g 0.196 0.169 0.157 0.153 0.14616 gage 0.151 7g 0.223 0.191 0.177 0.174 0.166t s = 0.060" 0.164 8g 0.262 0.225 0.208 0.204 0.1940.177 9g 0.295 0.253 0.234 0.229 0.2190.190 10g 0.303 0.259 0.240 0.236 0.2250.138 6g 0.194 0.167 0.154 0.151 0.14518 gage 0.151 7g 0.221 0.189 0.175 0.172 0.164t s = 0.048" 0.164 8g 0.261 0.223 0.206 0.202 0.1931. Tabulated factored resistance values (φλZ') for wood screw connections shall be multiplied by all applicable adjustmentfactors (see Table 7.1-1).2. Tabulated factored resistance values (φλZ') are for cut thread wood screws inserted in side grain with wood screw axisperpendicular to wood fibers, and with the following wood screw bending yield strength (F yb ):F yb = 100 ksi for 6g wood screws F yb = 70 ksi for 14g and 16g wood screwsF yb = 90 ksi for 7g, 8g and 9g wood screws F yb = 60 ksi for 18g and 20g wood screwsF yb = 80 ksi for 10g and 12g wood screws F yb = 45 ksi for 24g wood screws.3. Tabulated factored resistance values (φλZ') are based on a dowel bearing strength (F e ) of 45 ksi forASTM A446, Grade A steel.AMERICAN WOOD COUNCIL


<strong>LRFD</strong> STRUCTURAL CONNECTIONS SUPPLEMENT43Table 11.3B Factored Resistance Values (φλZ') for Single Shear (Two Member)Cut Thread <strong>Wood</strong> Screw Connections 1,2,3 Between a Solid SawnLumber Member and an ASTM A446 Grade A Steel Side PlateResistance Factor (φ) = 0.65, Time Effect Factor (λ) = 0.8G=0.43 G=0.42 G=0.37 G=0.36 G=0.35Hem-fir Spruce-Pine-Fir Redwood Eastern Softwoods NorthernSteel <strong>Wood</strong> <strong>Wood</strong> (open grain) Spruce-Pine-Fir (S) SpeciesSide Screw Screw Western CedarsPlate Diameter Gage Western <strong>Wood</strong>sD φλZ' φλZ' φλZ' φλZ' φλZ'inches kips kips kips kips kips0.242 14g 0.346 0.340 0.308 0.303 0.2953 gage 0.268 16g 0.394 0.387 0.350 0.345 0.335t s = 0.239" 0.294 18g 0.436 0.428 0.387 0.381 0.3710.320 20g 0.499 0.490 0.443 0.436 0.4250.372 24g 0.582 0.571 0.517 0.509 0.4960.190 10g 0.263 0.258 0.234 0.230 0.2240.216 12g 0.292 0.287 0.259 0.255 0.2487 gage 0.242 14g 0.307 0.301 0.272 0.268 0.261t s = 0.179" 0.268 16g 0.355 0.348 0.315 0.309 0.3010.294 18g 0.393 0.386 0.349 0.343 0.3340.320 20g 0.456 0.447 0.404 0.397 0.3860.372 24g 0.532 0.523 0.472 0.464 0.4520.138 6g 0.164 0.161 0.146 0.143 0.1390.151 7g 0.184 0.180 0.163 0.160 0.1560.164 8g 0.210 0.206 0.187 0.184 0.1790.177 9g 0.232 0.227 0.205 0.202 0.19710 gage 0.190 10g 0.237 0.233 0.211 0.207 0.202t s = 0.134" 0.216 12g 0.268 0.263 0.237 0.233 0.2270.242 14g 0.283 0.278 0.251 0.247 0.2400.268 16g 0.332 0.326 0.294 0.289 0.2810.294 18g 0.369 0.362 0.327 0.321 0.3120.320 20g 0.432 0.423 0.381 0.375 0.3650.372 24g 0.504 0.495 0.446 0.438 0.4260.138 6g 0.158 0.154 0.140 0.137 0.1340.151 7g 0.177 0.173 0.157 0.154 0.1500.164 8g 0.203 0.200 0.180 0.177 0.1730.177 9g 0.225 0.221 0.200 0.196 0.19111 gage 0.190 10g 0.231 0.226 0.204 0.201 0.196t s = 0.120" 0.216 12g 0.262 0.257 0.232 0.228 0.2220.242 14g 0.278 0.272 0.245 0.241 0.2350.268 16g 0.327 0.320 0.289 0.283 0.2760.294 18g 0.363 0.356 0.321 0.315 0.3070.320 20g 0.426 0.418 0.376 0.369 0.3590.372 24g 0.498 0.488 0.439 0.432 0.4200.138 6g 0.151 0.148 0.134 0.132 0.1280.151 7g 0.170 0.167 0.151 0.148 0.1450.164 8g 0.197 0.193 0.174 0.172 0.1670.177 9g 0.219 0.215 0.193 0.190 0.18512 gage 0.190 10g 0.224 0.220 0.199 0.195 0.190t s = 0.105" 0.216 12g 0.256 0.251 0.226 0.223 0.2170.242 14g 0.272 0.267 0.241 0.237 0.2300.268 16g 0.321 0.315 0.284 0.279 0.2710.294 18g 0.358 0.350 0.316 0.310 0.3020.320 20g 0.421 0.412 0.371 0.365 0.3550.372 24g 0.492 0.482 0.434 0.426 0.4140.138 6g 0.141 0.139 0.125 0.123 0.1200.151 7g 0.160 0.157 0.141 0.139 0.1350.164 8g 0.187 0.183 0.165 0.162 0.15814 gage 0.177 9g 0.209 0.205 0.185 0.181 0.176t s = 0.075" 0.190 10g 0.215 0.211 0.189 0.186 0.1810.216 12g 0.248 0.243 0.218 0.215 0.2090.242 14g 0.265 0.259 0.233 0.229 0.2230.268 16g 0.314 0.308 0.277 0.272 0.2640.294 18g 0.350 0.343 0.308 0.303 0.2940.138 6g 0.138 0.135 0.122 0.120 0.11616 gage 0.151 7g 0.156 0.153 0.138 0.135 0.132t s = 0.060" 0.164 8g 0.183 0.180 0.162 0.159 0.1540.177 9g 0.206 0.202 0.181 0.178 0.1740.190 10g 0.212 0.207 0.186 0.183 0.1780.138 6g 0.136 0.134 0.120 0.118 0.11418 gage 0.151 7g 0.154 0.151 0.136 0.134 0.130t s = 0.048" 0.164 8g 0.181 0.178 0.160 0.157 0.1524FACTORED RESISTANCE VALUES1. Tabulated factored lateral design values (φλZ') for wood screw connections shall be multiplied by all applicable adjustmentfactors (see Table 7.1-1).2. Tabulated factored lateral design values (φλZ') are for cut thread wood screws inserted in side grain with wood screw axisperpendicular to wood fibers, and with the following wood screw bending yield strength (F yb ):F yb = 100 ksi for 6g wood screws F yb = 70 ksi for 14g and 16g wood screwsF yb = 90 ksi for 7g, 8g and 9g wood screws F yb = 60 ksi for 18g and 20g wood screwsF yb = 80 ksi for 10g and 12g wood screws F yb = 45 ksi for 24g wood screws.3. Tabulated factored lateral design values (φλZ') are based on a dowel bearing strength (F e ) of 45 ksi forASTM A446, Grade A steel.AMERICAN FOREST & PAPER ASSOCIATION


44 FACTORED RESISTANCE VALUESTable 12ADowel Bearing Strength for Nail or Spike ConnectionsSpecific 1GravityDowel bearing strength inkips per square inch (ksi)Species Combination G F eAspen 0.39 2.95Balsam Fir 0.36 2.55Beech-Birch-Hickory 0.71 8.85Coast Sitka Spruce 0.39 2.95Cottonwood 0.41 3.20Douglas Fir-Larch 0.50 4.65Douglas Fir-Larch (North) 0.49 4.45Douglas Fir-South 0.46 4.00Eastern Hemlock 0.41 3.20Eastern Hemlock-Tamarack 0.41 3.20Eastern Hemlock-Tamarack (North) 0.47 4.15Eastern Softwoods 0.36 2.55Eastern Spruce 0.41 3.20Eastern White Pine 0.36 2.55Engelmann Spruce-Lodgepole Pine(2) 0.46 4.00(MSR 1650f and higher grades)Englemann Spruce-Lodgepole Pine(2) 0.38 2.80(MSR 1500f and lower grades)Hem-Fir 0.43 3.50Hem-Fir (North) 0.46 4.00Mixed Maple 0.55 5.55Mixed Oak 0.68 8.15Mixed Southern Pine 0.51 4.80Mountain Hemlock 0.47 4.15Northern Pine 0.42 3.35Northern Red Oak 0.68 8.15Northern Species 0.35 2.40Northern White Cedar 0.31 1.90Ponderosa Pine 0.43 3.50Red Maple 0.58 6.10Red Oak 0.67 7.95Red Pine 0.44 3.65Redwood, close grain 0.44 3.65Redwood, open grain 0.37 2.65Sitka Spruce 0.43 3.50Southern Pine 0.55 5.55Spruce-Pine-Fir 0.42 3.35Spruce-Pine-Fir (South) 0.36 2.55Western Cedars 0.36 2.55Western Cedars (North) 0.35 2.40Western Hemlock 0.47 4.15Western Hemlock (North) 0.46 4.00Western White Pine 0.40 3.10Western <strong>Wood</strong>s 0.36 2.55White Oak 0.73 9.30Yellow Poplar 0.43 3.501. Specific gravity based on weight and volume when oven-dry.2. Applies only to Englemann Spruce-Lodgepole Pine machine stress rated (MSR)structural lumber.AMERICAN WOOD COUNCIL


<strong>LRFD</strong> STRUCTURAL CONNECTIONS SUPPLEMENT45Table 12.2A Factored Resistance Values (φλZ') 1 for Nail Shank WithdrawalTabulated factored resistance values (φλZ') are in kips per inch of penetration into side grain of main member.Resistance Factor (φ) = 0.65, Time Effect Factor (λ)= 0.8THREADED NAILSWire Diameter, D0.120" 0.135" 0.148" 0.177" 0.207"0.130 0.147 0.161 0.192 0.2250.122 0.137 0.151 0.179 0.2090.109 0.123 0.135 0.161 0.1890.105 0.118 0.130 0.155 0.1820.073 0.083 0.090 0.108 0.1260.064 0.073 0.080 0.095 0.1110.053 0.061 0.066 0.078 0.0920.051 0.057 0.062 0.075 0.0870.048 0.054 0.059 0.071 0.0830.043 0.048 0.054 0.064 0.0740.041 0.047 0.050 0.061 0.0710.037 0.042 0.045 0.054 0.0640.035 0.040 0.043 0.051 0.0610.033 0.036 0.040 0.048 0.0570.031 0.035 0.038 0.045 0.0540.029 0.033 0.036 0.043 0.0500.027 0.031 0.033 0.040 0.0470.025 0.029 0.031 0.038 0.0430.024 0.028 0.029 0.035 0.0420.022 0.024 0.028 0.033 0.0380.021 0.024 0.026 0.031 0.0360.0153 0.017 0.019 0.023 0.026Specific COMMON WIRE NAILS, BOX NAILS, AND COMMON WIRE SPIKESGravity Diameter, DG 0.099" 0.113" 0.128" 0.131" 0.135" 0.148" 0.162" 0.192" 0.207" 0.225" 0.244" 0.263" 0.283" 0.312" 0.375"0.73 0.107 0.123 0.138 0.142 0.147 0.161 0.176 0.209 0.225 0.244 0.265 0.285 0.308 0.339 0.4080.71 0.100 0.114 0.130 0.133 0.137 0.151 0.164 0.195 0.209 0.228 0.247 0.266 0.287 0.317 0.3810.68 0.090 0.102 0.116 0.119 0.123 0.135 0.147 0.175 0.189 0.204 0.221 0.239 0.258 0.284 0.3410.67 0.087 0.099 0.112 0.114 0.118 0.130 0.142 0.168 0.182 0.197 0.215 0.230 0.249 0.273 0.3290.58 0.061 0.069 0.078 0.080 0.083 0.090 0.099 0.118 0.126 0.138 0.149 0.161 0.173 0.190 0.2300.55 0.054 0.061 0.069 0.071 0.073 0.080 0.087 0.102 0.111 0.121 0.131 0.140 0.152 0.168 0.2010.51 0.043 0.050 0.057 0.059 0.061 0.066 0.073 0.085 0.092 0.100 0.109 0.116 0.126 0.138 0.1660.50 0.042 0.048 0.054 0.055 0.057 0.062 0.069 0.081 0.087 0.095 0.104 0.111 0.119 0.131 0.1570.49 0.040 0.045 0.052 0.052 0.054 0.059 0.066 0.078 0.083 0.090 0.099 0.106 0.114 0.125 0.1510.47 0.036 0.042 0.047 0.047 0.048 0.054 0.059 0.069 0.074 0.081 0.088 0.095 0.102 0.112 0.1350.46 0.035 0.038 0.043 0.045 0.047 0.050 0.055 0.066 0.071 0.078 0.083 0.090 0.097 0.107 0.1280.44 0.031 0.035 0.040 0.040 0.042 0.045 0.050 0.059 0.064 0.069 0.074 0.081 0.087 0.095 0.1140.43 0.029 0.033 0.036 0.038 0.040 0.043 0.047 0.055 0.061 0.066 0.071 0.076 0.081 0.090 0.1090.42 0.028 0.031 0.035 0.036 0.036 0.040 0.045 0.052 0.057 0.061 0.066 0.071 0.078 0.085 0.1020.41 0.026 0.029 0.033 0.033 0.035 0.038 0.042 0.050 0.054 0.057 0.062 0.067 0.073 0.080 0.0970.40 0.024 0.028 0.031 0.031 0.033 0.036 0.040 0.047 0.050 0.054 0.059 0.064 0.069 0.076 0.0900.39 0.022 0.026 0.029 0.029 0.031 0.033 0.036 0.043 0.047 0.050 0.055 0.059 0.064 0.071 0.0850.38 0.021 0.024 0.028 0.028 0.029 0.031 0.035 0.042 0.043 0.048 0.052 0.055 0.061 0.066 0.0800.37 0.019 0.022 0.026 0.026 0.028 0.029 0.033 0.038 0.042 0.045 0.048 0.052 0.057 0.062 0.0740.36 0.019 0.021 0.024 0.024 0.024 0.028 0.029 0.036 0.038 0.042 0.045 0.048 0.052 0.057 0.0690.35 0.017 0.019 0.022 0.022 0.024 0.026 0.028 0.033 0.036 0.040 0.042 0.045 0.048 0.054 0.0660.31 0.012 0.014 0.016 0.017 0.017 0.019 0.021 0.024 0.026 0.029 0.031 0.033 0.036 0.040 0.0481. Tabulated factored resistance values (φλZ') for nail and spike connections shall be multiplied by all applicable adjustment factors (see Table 7.1-1).4FACTORED RESISTANCE VALUESAMERICAN FOREST & PAPER ASSOCIATION


46 FACTORED RESISTANCE VALUESTable 12.3A Factored Resistance Values (φλZ') for Single Shear (Two Member)Box Nail Connections 1,2 Between Sawn Lumber Members of theSame SpeciesResistance Factor (φ) = 0.65, Time Effect Factor (λ) = 0.8Side Nail Nail Penny- G=0.67 G=0.55 G=0.50 G=0.49 G=0.46Member Length Diameter Weight Red Oak Mixed Maple Douglas-fir Douglas-fir Douglas-fir(S)Thickness Southern Pine Larch Larch (N) Hem-Fir (N)t s L D φλZ' φλZ' φλZ' φλZ' φλZ'in. in. in. kips kips kips kips kips2 0.099 6d 0.125 0.095 0.083 0.081 0.0752.5 0.113 8d 0.153 0.116 0.102 0.099 0.0933 0.128 10d 0.184 0.141 0.125 0.122 0.1143.25 0.128 12d 0.184 0.141 0.125 0.122 0.1140.5 3.5 0.135 16d 0.199 0.154 0.137 0.134 0.1254 0.148 20d 0.223 0.174 0.155 0.151 0.1414.5 0.148 30d 0.223 0.174 0.155 0.151 0.1415 0.162 40d 0.257 0.203 0.181 0.177 0.1662 0.099 6d 0.125 0.105 0.095 0.091 0.0842.5 0.113 8d 0.163 0.131 0.114 0.110 0.1013 0.128 10d 0.208 0.157 0.137 0.133 0.1233.25 0.128 12d 0.208 0.157 0.137 0.133 0.1230.625 3.5 0.135 16d 0.224 0.170 0.149 0.145 0.1344 0.148 20d 0.250 0.190 0.167 0.162 0.1514.5 0.148 30d 0.250 0.190 0.167 0.162 0.1515 0.162 40d 0.284 0.218 0.193 0.188 0.1752 0.099 6d 0.125 0.105 0.096 0.094 0.0892.5 0.113 8d 0.163 0.136 0.125 0.122 0.1123 0.128 10d 0.210 0.174 0.151 0.146 0.1343.25 0.128 12d 0.210 0.174 0.151 0.146 0.1340.75 3.5 0.135 16d 0.233 0.187 0.163 0.158 0.1454 0.148 20d 0.266 0.209 0.182 0.176 0.1634.5 0.148 30d 0.266 0.209 0.182 0.176 0.1635 0.162 40d 0.316 0.238 0.209 0.202 0.1872.5 0.113 8d 0.163 0.136 0.125 0.122 0.1163 0.128 10d 0.210 0.175 0.160 0.157 0.1493.25 0.128 12d 0.210 0.175 0.160 0.157 0.1491 3.5 0.135 16d 0.233 0.194 0.178 0.174 0.1654 0.148 20d 0.266 0.222 0.203 0.199 0.1884.5 0.148 30d 0.266 0.222 0.203 0.199 0.1885 0.162 40d 0.318 0.266 0.243 0.236 0.2163 0.128 10d 0.210 0.175 0.160 0.157 0.1493.25 0.128 12d 0.210 0.175 0.160 0.157 0.1491.25 3.5 0.135 16d 0.233 0.194 0.178 0.174 0.1654 0.148 20d 0.266 0.222 0.203 0.199 0.1884.5 0.148 30d 0.266 0.222 0.203 0.199 0.1885 0.162 40d 0.318 0.266 0.243 0.238 0.2263.25 0.128 12d 0.210 0.175 0.160 0.157 0.1493.5 0.135 16d 0.233 0.194 0.178 0.174 0.1651.5 4 0.148 20d 0.266 0.222 0.203 0.199 0.1884.5 0.148 30d 0.266 0.222 0.203 0.199 0.1885 0.162 40d 0.318 0.266 0.243 0.238 0.2261. Tabulated factored resistance values (φλZ') for box nailed connections shall be multiplied by all applicable adjustment factors(see Table 7.1-1).2. Tabulated factored resistance values (φλZ') are for box nails inserted in side grain with nail axis perpendicular to woodfibers, and with the following nail bending yield strengths (F yb ):F yb = 100 ksi for 0.099",0.113",0.128" and 0.135" diameter box nailsF yb = 90 ksi for 0.148" and 0.162" diameter box nailsAMERICAN WOOD COUNCIL


<strong>LRFD</strong> STRUCTURAL CONNECTIONS SUPPLEMENT47Table 12.3A Factored Resistance Values (φλZ') for Single Shear (Two Member)Box Nail Connections 1,2 Between Sawn Lumber Members of theSame SpeciesResistance Factor (φ) = 0.65, Time Effect Factor (λ) = 0.8Side Nail Nail Penny- G=0.43 G=0.42 G=0.37 G=0.36 G=0.35Member Length Diameter Weight Hem-Fir Spruce-Pine- Redwood Eastern Softwoods NorthernThickness Fir (open grain) Spruce-Pine-Fir (S) SpeciesWestern CedarsWestern <strong>Wood</strong>s4t s L D φλZ' φλZ' φλZ' φλZ' φλZ'in. in. in. kips kips kips kips kips2 0.099 6d 0.068 0.066 0.056 0.055 0.0532.5 0.113 8d 0.084 0.082 0.071 0.069 0.0673 0.128 10d 0.105 0.102 0.088 0.086 0.0843.25 0.128 12d 0.105 0.102 0.088 0.086 0.0840.5 3.5 0.135 16d 0.115 0.112 0.098 0.095 0.0924 0.148 20d 0.130 0.127 0.111 0.108 0.1054.5 0.148 30d 0.130 0.127 0.111 0.108 0.1055 0.162 40d 0.153 0.150 0.131 0.128 0.1242 0.099 6d 0.075 0.073 0.061 0.060 0.0572.5 0.113 8d 0.092 0.089 0.075 0.074 0.0713 0.128 10d 0.112 0.109 0.093 0.091 0.0873.25 0.128 12d 0.112 0.109 0.093 0.091 0.0870.625 3.5 0.135 16d 0.122 0.119 0.102 0.099 0.0964 0.148 20d 0.138 0.134 0.115 0.112 0.1084.5 0.148 30d 0.138 0.134 0.115 0.112 0.1085 0.162 40d 0.161 0.156 0.135 0.132 0.1272 0.099 6d 0.083 0.081 0.067 0.066 0.0622.5 0.113 8d 0.101 0.098 0.082 0.080 0.0763 0.128 10d 0.121 0.118 0.099 0.097 0.0933.25 0.128 12d 0.121 0.118 0.099 0.097 0.0930.75 3.5 0.135 16d 0.132 0.127 0.108 0.105 0.1014 0.148 20d 0.148 0.143 0.122 0.119 0.1144.5 0.148 30d 0.148 0.143 0.122 0.119 0.1145 0.162 40d 0.171 0.165 0.141 0.138 0.1332.5 0.113 8d 0.108 0.106 0.094 0.093 0.0893 0.128 10d 0.139 0.136 0.114 0.111 0.1063.25 0.128 12d 0.139 0.136 0.114 0.111 0.1061 3.5 0.135 16d 0.154 0.149 0.123 0.120 0.1144 0.148 20d 0.172 0.165 0.138 0.134 0.1284.5 0.148 30d 0.172 0.165 0.138 0.134 0.1285 0.162 40d 0.195 0.188 0.158 0.153 0.1473 0.128 10d 0.139 0.136 0.121 0.119 0.1153.25 0.128 12d 0.139 0.136 0.121 0.119 0.1151.25 3.5 0.135 16d 0.154 0.151 0.135 0.132 0.1284 0.148 20d 0.176 0.173 0.153 0.150 0.1454.5 0.148 30d 0.176 0.173 0.153 0.150 0.1455 0.162 40d 0.211 0.206 0.178 0.173 0.1643.25 0.128 12d 0.139 0.136 0.121 0.119 0.1153.5 0.135 16d 0.154 0.151 0.135 0.132 0.1281.5 4 0.148 20d 0.176 0.173 0.153 0.150 0.1464.5 0.148 30d 0.176 0.173 0.153 0.150 0.1465 0.162 40d 0.211 0.206 0.184 0.180 0.175FACTORED RESISTANCE VALUES1. Tabulated factored resistance values (φλZ') for box nailed connections shall be multiplied by all applicable adjustment factors(see Table 7.1-1).2. Tabulated factored resistance values (φλZ') are for box nails inserted in side grain with nail axis perpendicular to woodfibers, and with the following nail bending yield strengths (F yb ):F yb = 100 ksi for 0.099",0.113",0.128" and 0.135" diameter box nailsF yb = 90 ksi for 0.148" and 0.162" diameter box nailsAMERICAN FOREST & PAPER ASSOCIATION


48 FACTORED RESISTANCE VALUESTable 12.3B Factored Resistance Values (φλZ') for Single Shear (Two Member)Common Wire Nail Connections 1,2 Between Sawn Lumber Membersof the Same SpeciesResistance Factor (φ) = 0.65, Time Effect Factor (λ) = 0.8Side Nail Nail Penny- G=0.67 G=0.55 G=0.50 G=0.49 G=0.46Member Length Diameter Weight Red Oak Mixed Maple Douglas-fir Douglas-fir Douglas-fir(S)Thickness Southern Pine Larch Larch (N) Hem-Fir (N)t s L D φλZ' φλZ' φλZ' φλZ' φλZ'in. in. in. kips kips kips kips kips2 0.113 6d 0.153 0.116 0.102 0.099 0.0932.5 0.131 8d 0.190 0.147 0.131 0.127 0.1193 0.148 10d 0.223 0.174 0.155 0.151 0.1413.25 0.148 12d 0.223 0.174 0.155 0.151 0.1413.5 0.162 16d 0.257 0.203 0.181 0.177 0.1660.5 4 0.192 20d 0.298 0.238 0.214 0.209 0.1964.5 0.207 30d 0.319 0.256 0.231 0.226 0.2135 0.225 40d 0.345 0.279 0.253 0.248 0.2335.5 0.244 50d 0.354 0.287 0.261 0.254 0.2406 0.263 60d 0.397 0.324 0.295 0.288 0.2722 0.113 6d 0.163 0.131 0.114 0.110 0.1012.5 0.131 8d 0.215 0.162 0.142 0.138 0.1283 0.148 10d 0.250 0.190 0.167 0.162 0.1513.25 0.148 12d 0.250 0.190 0.167 0.162 0.1513.5 0.162 16d 0.284 0.218 0.193 0.188 0.1750.625 4 0.192 20d 0.324 0.252 0.225 0.218 0.2044.5 0.207 30d 0.344 0.270 0.241 0.235 0.2205 0.225 40d 0.368 0.291 0.262 0.255 0.2395.5 0.244 50d 0.376 0.298 0.268 0.262 0.2456 0.263 60d 0.419 0.334 0.302 0.294 0.2772.5 0.131 8d 0.219 0.179 0.156 0.151 0.1393 0.148 10d 0.266 0.209 0.182 0.176 0.1633.25 0.148 12d 0.266 0.209 0.182 0.176 0.1633.5 0.162 16d 0.316 0.238 0.209 0.202 0.1870.75 4 0.192 20d 0.356 0.271 0.239 0.232 0.2164.5 0.207 30d 0.374 0.288 0.254 0.247 0.2305 0.225 40d 0.396 0.308 0.274 0.266 0.2495.5 0.244 50d 0.405 0.315 0.280 0.272 0.2556 0.263 60d 0.447 0.350 0.313 0.304 0.2853 0.148 10d 0.266 0.222 0.203 0.199 0.1883.25 0.148 12d 0.266 0.222 0.203 0.199 0.1883.5 0.162 16d 0.318 0.266 0.243 0.236 0.2161 4 0.192 20d 0.383 0.317 0.275 0.266 0.2454.5 0.207 30d 0.420 0.332 0.289 0.280 0.2585 0.225 40d 0.463 0.349 0.306 0.296 0.2745.5 0.244 50d 0.474 0.357 0.313 0.303 0.2806 0.263 60d 0.515 0.392 0.344 0.334 0.3103.25 0.148 12d 0.266 0.222 0.203 0.199 0.1883.5 0.162 16d 0.318 0.266 0.243 0.238 0.2264 0.192 20d 0.383 0.320 0.293 0.287 0.2721.25 4.5 0.207 30d 0.420 0.350 0.321 0.314 0.2925 0.225 40d 0.463 0.387 0.346 0.334 0.3075.5 0.244 50d 0.477 0.398 0.353 0.341 0.3136 0.263 60d 0.543 0.442 0.384 0.371 0.3423.5 0.162 16d 0.318 0.266 0.243 0.238 0.2264 0.192 20d 0.383 0.320 0.293 0.287 0.2721.5 4.5 0.207 30d 0.420 0.350 0.321 0.314 0.2975 0.225 40d 0.463 0.387 0.354 0.346 0.3295.5 0.244 50d 0.477 0.398 0.365 0.357 0.3386 0.263 60d 0.543 0.453 0.415 0.406 0.3801. Tabulated factored resistance values (φλZ') for nailed connections shall be multiplied by all applicable adjustment factors(see Table 7.1-1).2. Tabulated factored resistance values (φλZ') are for common wire nails inserted in side grain with nail axis perpendicularto wood fibers, and with the following nail bending yield strengths (F yb ):F yb = 100 ksi for 0.113" and 0.131" diameter common wire nailsF yb = 90 ksi for 0.148" and 0.162" diameter common wire nailsF yb = 80 ksi for 0.192", 0.207" and 0.225" diameter common wire nailsF yb = 70 ksi for 0.244" and 0.263" diameter common wire nailsAMERICAN WOOD COUNCIL


<strong>LRFD</strong> STRUCTURAL CONNECTIONS SUPPLEMENT49Table 12.3B Factored Resistance Values (φλZ') for Single Shear (Two Member)Common Wire Nail Connections 1,2 Between Sawn Lumber Membersof the Same SpeciesResistance Factor (φ) = 0.65, Time Effect Factor (λ) = 0.8Side Nail Nail Penny- G=0.43 G=0.42 G=0.37 G=0.36 G=0.35Member Length Diameter Weight Hem-Fir Spruce-Pine- Redwood Eastern Softwoods NorthernThickness Fir (open grain) Spruce-Pine-Fir (S) SpeciesWestern CedarsWestern <strong>Wood</strong>st s L D φλZ' φλZ' φλZ' φλZ' φλZ'in. in. in. kips kips kips kips kips2 0.113 6d 0.084 0.082 0.071 0.069 0.0672.5 0.131 8d 0.109 0.106 0.092 0.090 0.0873 0.148 10d 0.130 0.127 0.111 0.108 0.1053.25 0.148 12d 0.130 0.127 0.111 0.108 0.1050.5 3.5 0.162 16d 0.153 0.150 0.131 0.128 0.1244 0.192 20d 0.182 0.178 0.157 0.154 0.1494.5 0.207 30d 0.198 0.193 0.172 0.168 0.1635 0.225 40d 0.218 0.213 0.187 0.180 0.1705.5 0.244 50d 0.224 0.219 0.190 0.183 0.1726 0.263 60d 0.255 0.249 0.201 0.193 0.1822 0.113 6d 0.092 0.089 0.075 0.074 0.0712.5 0.131 8d 0.116 0.113 0.097 0.095 0.0913 0.148 10d 0.138 0.134 0.115 0.112 0.1083.25 0.148 12d 0.138 0.134 0.115 0.112 0.1080.625 3.5 0.162 16d 0.161 0.156 0.135 0.132 0.1274 0.192 20d 0.188 0.184 0.160 0.157 0.1514.5 0.207 30d 0.203 0.198 0.174 0.170 0.1645 0.225 40d 0.222 0.216 0.190 0.187 0.1805.5 0.244 50d 0.228 0.222 0.196 0.192 0.1866 0.263 60d 0.257 0.251 0.222 0.218 0.2112.5 0.131 8d 0.126 0.122 0.103 0.100 0.0963 0.148 10d 0.148 0.143 0.122 0.119 0.1143.25 0.148 12d 0.148 0.143 0.122 0.119 0.1143.5 0.162 16d 0.171 0.165 0.141 0.138 0.1330.75 4 0.192 20d 0.197 0.192 0.165 0.162 0.1554.5 0.207 30d 0.211 0.205 0.178 0.174 0.1685 0.225 40d 0.229 0.223 0.194 0.190 0.1845.5 0.244 50d 0.235 0.228 0.199 0.195 0.1886 0.263 60d 0.263 0.257 0.225 0.220 0.2133 0.148 10d 0.172 0.165 0.138 0.134 0.1283.25 0.148 12d 0.172 0.165 0.138 0.134 0.1283.5 0.162 16d 0.195 0.188 0.158 0.153 0.1471 4 0.192 20d 0.222 0.214 0.181 0.176 0.1694.5 0.207 30d 0.234 0.227 0.192 0.188 0.1805 0.225 40d 0.250 0.242 0.207 0.202 0.1945.5 0.244 50d 0.255 0.248 0.212 0.207 0.<strong>1996</strong> 0.263 60d 0.283 0.275 0.237 0.231 0.2233.25 0.148 12d 0.176 0.173 0.153 0.150 0.1453.5 0.162 16d 0.211 0.206 0.178 0.173 0.1644 0.192 20d 0.251 0.242 0.201 0.196 0.1871.25 4.5 0.207 30d 0.262 0.253 0.212 0.206 0.1975 0.225 40d 0.277 0.267 0.225 0.219 0.2105.5 0.244 50d 0.282 0.273 0.230 0.224 0.2146 0.263 60d 0.310 0.300 0.254 0.247 0.2373.5 0.162 16d 0.211 0.206 0.184 0.180 0.1754 0.192 20d 0.254 0.249 0.222 0.217 0.2071.5 4.5 0.207 30d 0.278 0.272 0.234 0.227 0.2165 0.225 40d 0.307 0.296 0.246 0.239 0.2285.5 0.244 50d 0.314 0.303 0.252 0.244 0.2336 0.263 60d 0.341 0.330 0.275 0.267 0.2564FACTORED RESISTANCE VALUES1. Tabulated factored resistance values (φλZ') for nailed connections shall be multiplied by all applicable adjustment factors(see Table 7.1-1).2. Tabulated factored resistance values (φλZ') are for common wire nails inserted in side grain with nail axis perpendicularto wood fibers, and with the following nail bending yield strengths (F yb ):F yb = 100 ksi for 0.113" and 0.131" diameter common wire nailsF yb = 90 ksi for 0.148" and 0.162" diameter common wire nailsF yb = 80 ksi for 0.192", 0.207" and 0.225" diameter common wire nailsF yb = 70 ksi for 0.244" and 0.263" diameter common wire nailsAMERICAN FOREST & PAPER ASSOCIATION


50 FACTORED RESISTANCE VALUESTable 12.3C Factored Resistance Values (φλZ') for Single Shear (Two Member)Threaded Hardened-Steel Nail Connections 1,2,3 Between SawnLumber Members of the Same SpeciesResistance Factor (φ) = 0.65, Time Effect Factor (λ) = 0.8Side Nail Wire Penny- G=0.67 G=0.55 G=0.50 G=0.49 G=0.46Member Length Diameter Weight Red Oak Mixed Maple Douglas-fir Douglas-fir Douglas-fir(S)Thickness Southern Pine Larch Larch (N) Hem-Fir (N)t s L D φλZ' φλZ' φλZ' φλZ' φλZ'in. in. in. kips kips kips kips kips2 0.120 6d 0.178 0.138 0.123 0.120 0.1122.5 0.120 8d 0.178 0.138 0.123 0.120 0.1123 0.135 10d 0.214 0.169 0.151 0.147 0.1383.25 0.135 12d 0.214 0.169 0.151 0.147 0.1383.5 0.148 16d 0.240 0.189 0.170 0.165 0.1550.5 4 0.177 20d 0.315 0.253 0.229 0.224 0.2114.5 0.177 30d 0.315 0.253 0.229 0.224 0.2115 0.177 40d 0.315 0.253 0.229 0.224 0.2115.5 0.177 50d 0.315 0.253 0.229 0.224 0.2116 0.177 60d 0.315 0.253 0.229 0.224 0.2112.5 0.120 8d 0.200 0.152 0.134 0.129 0.1203 0.135 10d 0.237 0.183 0.161 0.157 0.1463.25 0.135 12d 0.237 0.183 0.161 0.157 0.1463.5 0.148 16d 0.264 0.204 0.180 0.175 0.1630.625 4 0.177 20d 0.338 0.266 0.238 0.231 0.2174.5 0.177 30d 0.338 0.266 0.238 0.231 0.2175 0.177 40d 0.338 0.266 0.238 0.231 0.2175.5 0.177 50d 0.338 0.266 0.238 0.231 0.2176 0.177 60d 0.338 0.266 0.238 0.231 0.2172.5 0.120 8d 0.210 0.167 0.146 0.141 0.1303 0.135 10d 0.263 0.199 0.174 0.168 0.1563.25 0.135 12d 0.263 0.199 0.174 0.168 0.1563.5 0.148 16d 0.292 0.221 0.194 0.188 0.1740.75 4 0.177 20d 0.367 0.282 0.251 0.243 0.2274.5 0.177 30d 0.367 0.282 0.251 0.243 0.2275 0.177 40d 0.367 0.282 0.251 0.243 0.2275.5 0.177 50d 0.367 0.282 0.251 0.243 0.2276 0.177 60d 0.367 0.282 0.251 0.243 0.2277 0.207 70d 0.396 0.308 0.275 0.267 0.2508 0.207 80d 0.396 0.308 0.275 0.267 0.2509 0.207 90d 0.396 0.308 0.275 0.267 0.2502.5 0.120 8d 0.210 0.175 0.161 0.157 0.1493 0.135 10d 0.266 0.222 0.203 0.197 0.1803.25 0.135 12d 0.266 0.222 0.203 0.197 0.1803.5 0.148 16d 0.301 0.251 0.226 0.218 0.2011 4 0.177 20d 0.417 0.324 0.283 0.274 0.2534.5 0.177 30d 0.417 0.324 0.283 0.274 0.2535 0.177 40d 0.417 0.324 0.283 0.274 0.2535.5 0.177 50d 0.417 0.324 0.283 0.274 0.2536 0.177 60d 0.417 0.324 0.283 0.274 0.2537 0.207 70d 0.462 0.349 0.306 0.296 0.2758 0.207 80d 0.462 0.349 0.306 0.296 0.2759 0.207 90d 0.462 0.349 0.306 0.296 0.2753 0.135 10d 0.266 0.222 0.203 0.199 0.1883.25 0.135 12d 0.266 0.222 0.203 0.199 0.1883.5 0.148 16d 0.301 0.251 0.230 0.225 0.2131.25 4 0.177 20d 0.417 0.348 0.318 0.311 0.2854.5 0.177 30d 0.417 0.348 0.318 0.311 0.2855 0.177 40d 0.417 0.348 0.318 0.311 0.2855.5 0.177 50d 0.417 0.348 0.318 0.311 0.2856 0.177 60d 0.417 0.348 0.318 0.311 0.2857 0.207 70d 0.469 0.392 0.344 0.332 0.3068 0.207 80d 0.469 0.392 0.344 0.332 0.3069 0.207 90d 0.469 0.392 0.344 0.332 0.3063.25 0.135 12d 0.266 0.222 0.203 0.199 0.1883.5 0.148 16d 0.301 0.251 0.230 0.225 0.2131.5 4 0.177 20d 0.417 0.348 0.318 0.311 0.2954.5 0.177 30d 0.417 0.348 0.318 0.311 0.2955 0.177 40d 0.417 0.348 0.318 0.311 0.2955.5 0.177 50d 0.417 0.348 0.318 0.311 0.2956 0.177 60d 0.417 0.348 0.318 0.311 0.2957 0.207 70d 0.469 0.392 0.359 0.351 0.3338 0.207 80d 0.469 0.392 0.359 0.351 0.3339 0.207 90d 0.469 0.392 0.359 0.351 0.3331. Tabulated factored resistance values (φλZ') for nailed connections shall be multiplied by all applicable adjustment factors (see Table 7.1-1).2. Tabulated factored resistance values (φλZ') are for threaded hardened-steel nails inserted in side grain with nail axis perpendicular to wood fibers,and with the following nail bending yield strengths (F yb ): F yb = 130 ksi for 0.120" and 0.135" diameter threaded hardened-steel nailsF yb = 115 ksi for 0.148" and 0.177" diameter threaded hardened-steel nailsF yb = 100 ksi for 0.207" diameter threaded hardened-steel nails.3. Tabulated factored resistance values (φλZ') shall not apply for annularly threaded nails when threads occur at the shear plane (see 7.4.3).AMERICAN WOOD COUNCIL


<strong>LRFD</strong> STRUCTURAL CONNECTIONS SUPPLEMENT51Table 12.3C Factored Resistance Values (φλZ') for Single Shear (Two Member)Threaded Hardened-Steel Nail Connections 1,2,3 Between SawnLumber Members of the Same SpeciesResistance Factor (φ) = 0.65, Time Effect Factor (λ) = 0.8Side Nail Wire Penny- G=0.43 G=0.42 G=0.37 G=0.36 G=0.35Member Length Diameter Weight Hem-fir Spruce-Pine- Redwood Eastern Softwoods NorthernThickness Fir (open grain) Spruce-Pine-Fir (S) SpeciesWestern CedarsWestern <strong>Wood</strong>st s L D φλZ' φλZ' φλZ' φλZ' φλZ'in. in. in. kips kips kips kips kips2 0.120 6d 0.103 0.100 0.088 0.086 0.0832.5 0.120 8d 0.103 0.100 0.088 0.086 0.0833 0.135 10d 0.128 0.125 0.110 0.107 0.1043.25 0.135 12d 0.128 0.125 0.110 0.107 0.1043.5 0.148 16d 0.144 0.140 0.124 0.121 0.1170.5 4 0.177 20d 0.197 0.192 0.170 0.167 0.1624.5 0.177 30d 0.197 0.192 0.170 0.167 0.1625 0.177 40d 0.197 0.192 0.170 0.167 0.1625.5 0.177 50d 0.197 0.192 0.170 0.167 0.1626 0.177 60d 0.197 0.192 0.170 0.167 0.1622.5 0.120 8d 0.110 0.107 0.092 0.089 0.0863 0.135 10d 0.134 0.131 0.113 0.110 0.1073.25 0.135 12d 0.134 0.131 0.113 0.110 0.1073.5 0.148 16d 0.150 0.146 0.127 0.124 0.1200.625 4 0.177 20d 0.201 0.196 0.172 0.168 0.1634.5 0.177 30d 0.201 0.196 0.172 0.168 0.1635 0.177 40d 0.201 0.196 0.172 0.168 0.1635.5 0.177 50d 0.201 0.196 0.172 0.168 0.1636 0.177 60d 0.201 0.196 0.172 0.168 0.1632.5 0.120 8d 0.118 0.114 0.097 0.095 0.0903 0.135 10d 0.142 0.138 0.118 0.115 0.1113.25 0.135 12d 0.142 0.138 0.118 0.115 0.1113.5 0.148 16d 0.159 0.154 0.132 0.129 0.1240.75 4 0.177 20d 0.209 0.203 0.176 0.172 0.1664.5 0.177 30d 0.209 0.203 0.176 0.172 0.1665 0.177 40d 0.209 0.203 0.176 0.172 0.1665.5 0.177 50d 0.209 0.203 0.176 0.172 0.1666 0.177 60d 0.209 0.203 0.176 0.172 0.1667 0.207 70d 0.230 0.224 0.196 0.191 0.1858 0.207 80d 0.230 0.224 0.196 0.191 0.1859 0.207 90d 0.230 0.224 0.196 0.191 0.1852.5 0.120 8d 0.138 0.133 0.110 0.107 0.1023 0.135 10d 0.163 0.157 0.132 0.128 0.1233.25 0.135 12d 0.163 0.157 0.132 0.128 0.1233.5 0.148 16d 0.180 0.175 0.147 0.142 0.1371 4 0.177 20d 0.230 0.223 0.189 0.185 0.1774.5 0.177 30d 0.230 0.223 0.189 0.185 0.1775 0.177 40d 0.230 0.223 0.189 0.185 0.1775.5 0.177 50d 0.230 0.223 0.189 0.185 0.1776 0.177 60d 0.230 0.223 0.189 0.185 0.1777 0.207 70d 0.250 0.243 0.207 0.203 0.1958 0.207 80d 0.250 0.243 0.207 0.203 0.1959 0.207 90d 0.250 0.243 0.207 0.203 0.1953 0.135 10d 0.176 0.173 0.149 0.144 0.1373.25 0.135 12d 0.176 0.173 0.149 0.144 0.1373.5 0.148 16d 0.199 0.195 0.165 0.160 0.1521.25 4 0.177 20d 0.256 0.248 0.207 0.202 0.1934.5 0.177 30d 0.256 0.248 0.207 0.202 0.1935 0.177 40d 0.256 0.248 0.207 0.202 0.1935.5 0.177 50d 0.256 0.248 0.207 0.202 0.1936 0.177 60d 0.256 0.248 0.207 0.202 0.1937 0.207 70d 0.276 0.267 0.225 0.219 0.2108 0.207 80d 0.276 0.267 0.225 0.219 0.2109 0.207 90d 0.276 0.267 0.225 0.219 0.2103.25 0.135 12d 0.176 0.173 0.153 0.150 0.1463.5 0.148 16d 0.199 0.195 0.173 0.170 0.1651.5 4 0.177 20d 0.276 0.270 0.229 0.222 0.2124.5 0.177 30d 0.276 0.270 0.229 0.222 0.2125 0.177 40d 0.276 0.270 0.229 0.222 0.2125.5 0.177 50d 0.276 0.270 0.229 0.222 0.2126 0.177 60d 0.276 0.270 0.229 0.222 0.2127 0.207 70d 0.306 0.295 0.245 0.239 0.2288 0.207 80d 0.306 0.295 0.245 0.239 0.2289 0.207 90d 0.306 0.295 0.245 0.239 0.2281. Tabulated factored resistance values (φλZ') for nailed connections shall be multiplied by all applicable adjustment factors (see Table 7.1-1).2. Tabulated factored resistance values (φλZ') are for threaded hardened-steel nails inserted in side grain with nail axis perpendicular to wood fibers,and with the following nail bending yield strengths (Fyb): F yb = 130 ksi for 0.120" and 0.135" diameter threaded hardened-steel nailsF yb = 115 ksi for 0.148" and 0.177" diameter threaded hardened-steel nailsF yb = 100 ksi for 0.207" diameter threaded hardened-steel nails.3. Tabulated factored resistance values (φλZ') shall not apply for annularly threaded nails when threads occur at the shear plane (see 7.4.3).4FACTORED RESISTANCE VALUESAMERICAN FOREST & PAPER ASSOCIATION


52 FACTORED RESISTANCE VALUESTable 12.3D Factored Resistance Values (φλZ') for Single Shear (Two Member)Common Wire Spike Connections 1,2 Between Sawn Lumber Membersof the Same SpeciesResistance Factor (φ) = 0.65, Time Effect Factor (λ) = 0.8Side Spike Spike Penny- G=0.67 G=0.55 G=0.50 G=0.49 G=0.46Member Length Diameter Weight Red Oak Mixed Maple Douglas fir - Douglas fir - Douglas-fir (S)Thickness Southern Pine Larch Larch (N) Hem-Fir (N)t s L D φλZ' φλZ' φλZ' φλZ' φλZ'in. in. in. kips kips kips kips kips3 0.192 10d 0.298 0.238 0.214 0.209 0.1963.25 0.192 12d 0.298 0.238 0.214 0.209 0.1963.5 0.207 16d 0.319 0.256 0.231 0.226 0.2134 0.225 20d 0.345 0.279 0.253 0.248 0.2330.5 4.5 0.244 30d 0.354 0.287 0.261 0.254 0.2405 0.263 40d 0.397 0.324 0.295 0.288 0.2725.5 0.283 50d 0.426 0.348 0.316 0.309 0.2926 0.283 60d 0.426 0.348 0.316 0.309 0.2923 0.192 10d 0.324 0.252 0.225 0.218 0.2043.25 0.192 12d 0.324 0.252 0.225 0.218 0.2043.5 0.207 16d 0.344 0.270 0.241 0.235 0.2204 0.225 20d 0.368 0.291 0.262 0.255 0.2390.625 4.5 0.244 30d 0.376 0.298 0.268 0.262 0.2455 0.263 40d 0.419 0.334 0.302 0.294 0.2775.5 0.283 50d 0.449 0.359 0.323 0.315 0.2976 0.283 60d 0.449 0.359 0.323 0.315 0.2973.25 0.192 12d 0.356 0.271 0.239 0.232 0.2163.5 0.207 16d 0.374 0.288 0.254 0.247 0.2304 0.225 20d 0.396 0.308 0.274 0.266 0.2494.5 0.244 30d 0.405 0.315 0.280 0.272 0.2550.75 5 0.263 40d 0.447 0.350 0.313 0.304 0.2855.5 0.283 50d 0.479 0.375 0.335 0.327 0.3066 0.283 60d 0.479 0.375 0.335 0.327 0.3067 0.312 5/16 0.561 0.445 0.399 0.388 0.3658.5 0.375 3/8 0.693 0.551 0.496 0.483 0.4543.5 0.207 16d 0.420 0.332 0.289 0.280 0.2584 0.225 20d 0.463 0.349 0.306 0.296 0.2744.5 0.244 30d 0.474 0.357 0.313 0.303 0.2801 5 0.263 40d 0.515 0.392 0.344 0.334 0.3105.5 0.283 50d 0.554 0.420 0.370 0.358 0.3336 0.283 60d 0.554 0.420 0.370 0.358 0.3337 0.312 5/16 0.638 0.489 0.432 0.420 0.3918.5 0.375 3/8 0.781 0.602 0.533 0.518 0.4834 0.225 20d 0.463 0.387 0.346 0.334 0.3074.5 0.244 30d 0.477 0.398 0.353 0.341 0.3135 0.263 40d 0.543 0.442 0.384 0.371 0.3421.25 5.5 0.283 50d 0.582 0.475 0.413 0.399 0.3686 0.283 60d 0.582 0.475 0.413 0.399 0.3687 0.312 5/16 0.707 0.545 0.476 0.461 0.4268.5 0.375 3/8 0.885 0.668 0.584 0.566 0.5244.5 0.244 30d 0.477 0.398 0.365 0.357 0.3385 0.263 40d 0.543 0.453 0.415 0.406 0.3801.5 5.5 0.283 50d 0.582 0.486 0.445 0.435 0.4086 0.283 60d 0.582 0.486 0.445 0.435 0.4087 0.312 5/16 0.707 0.591 0.527 0.509 0.4688.5 0.375 3/8 0.885 0.739 0.644 0.622 0.5736 0.283 60d 0.582 0.486 0.445 0.435 0.4122.5 7 0.312 5/16 0.707 0.591 0.541 0.529 0.5018.5 0.375 3/8 0.885 0.739 0.677 0.662 0.6283.5 8.5 0.375 5/16 0.885 0.739 0.677 0.662 0.6281. Tabulated factored resistance values (φλZ') for spike connections shall be multiplied by all applicable adjustment factors (see Table 7.1-1).2. Tabulated factored resistance values (φλZ') are for common wire spikes inserted in side grain with spike axis perpendicular to wood fibers, and withthe following spike bending yield strengths (F yb ):F yb = 80 ksi for 0.192", 0.207" and 0.225" diameter common wire spikesF yb = 70 ksi for 0.244" and 0.263" diameter common wire spikesF yb = 60 ksi for 0.283" and 5/16" diameter common wire spikesF yb = 45 ksi for 3/8" diameter common wire spikesAMERICAN WOOD COUNCIL


<strong>LRFD</strong> STRUCTURAL CONNECTIONS SUPPLEMENT53Table 12.3D Factored Resistance Values (φλZ') for Single Shear (Two Member)Common Wire Spike Connections 1,2 Between Sawn Lumber Membersof the Same SpeciesResistance Factor (φ) = 0.65, Time Effect Factor (λ) = 0.8Side Spike Spike Penny- G=0.43 G=0.42 G=0.37 G=0.36 G=0.35Member Length Diameter Weight Hem-Fir Spruce-Pine- Redwood Eastern Softwoods NorthernThickness Fir (open grain) Spruce-Pine-Fir (S) SpeciesWestern CedarsWestern <strong>Wood</strong>st s L D φλZ' φλZ' φλZ' φλZ' φλZ'in. in. in. kips kips kips kips kips3 0.192 10d 0.182 0.178 0.157 0.154 0.1493.25 0.192 12d 0.182 0.178 0.157 0.154 0.1493.5 0.207 16d 0.198 0.193 0.172 0.168 0.1634 0.225 20d 0.218 0.213 0.187 0.180 0.1700.5 4.5 0.244 30d 0.224 0.219 0.190 0.183 0.1725 0.263 40d 0.255 0.249 0.201 0.193 0.1825.5 0.283 50d 0.273 0.267 0.216 0.208 0.1966 0.283 60d 0.273 0.267 0.216 0.208 0.1963 0.192 10d 0.188 0.184 0.160 0.157 0.1513.25 0.192 12d 0.188 0.184 0.160 0.157 0.1513.5 0.207 16d 0.203 0.198 0.174 0.170 0.1644 0.225 20d 0.222 0.216 0.190 0.187 0.1800.625 4.5 0.244 30d 0.228 0.222 0.196 0.192 0.1865 0.263 40d 0.257 0.251 0.222 0.218 0.2115.5 0.283 50d 0.276 0.269 0.238 0.233 0.2266 0.283 60d 0.276 0.269 0.238 0.233 0.2263.25 0.192 12d 0.197 0.192 0.165 0.162 0.1553.5 0.207 16d 0.211 0.205 0.178 0.174 0.1684 0.225 20d 0.229 0.223 0.194 0.190 0.1844.5 0.244 30d 0.235 0.228 0.199 0.195 0.1880.75 5 0.263 40d 0.263 0.257 0.225 0.220 0.2135.5 0.283 50d 0.282 0.275 0.241 0.236 0.2286 0.283 60d 0.282 0.275 0.241 0.236 0.2287 0.312 5d 0.339 0.330 0.291 0.284 0.2768.5 0.375 3d 0.421 0.411 0.362 0.355 0.3443.5 0.207 16d 0.234 0.227 0.192 0.188 0.1804 0.225 20d 0.250 0.242 0.207 0.202 0.1944.5 0.244 30d 0.255 0.248 0.212 0.207 0.1991 5 0.263 40d 0.283 0.275 0.237 0.231 0.2235.5 0.283 50d 0.304 0.295 0.254 0.248 0.2396 0.283 60d 0.304 0.295 0.254 0.248 0.2397 0.312 5/16 0.358 0.348 0.302 0.295 0.2848.5 0.375 3/8 0.444 0.432 0.374 0.366 0.3544 0.225 20d 0.277 0.267 0.225 0.219 0.2104.5 0.244 30d 0.282 0.273 0.230 0.224 0.2145 0.263 40d 0.310 0.300 0.254 0.247 0.2371.25 5.5 0.283 50d 0.333 0.322 0.272 0.265 0.2556 0.283 60d 0.333 0.322 0.272 0.265 0.2557 0.312 5/16 0.387 0.375 0.320 0.312 0.3008.5 0.375 3/8 0.476 0.462 0.395 0.385 0.3714.5 0.244 30d 0.314 0.303 0.252 0.244 0.2335 0.263 40d 0.341 0.330 0.275 0.267 0.2561.5 5.5 0.283 50d 0.367 0.354 0.296 0.287 0.2756 0.283 60d 0.367 0.354 0.296 0.287 0.2757 0.312 5/16 0.422 0.408 0.343 0.334 0.3208.5 0.375 3/8 0.517 0.500 0.422 0.411 0.3946 0.283 60d 0.386 0.378 0.336 0.330 0.3202.5 7 0.312 5/16 0.469 0.459 0.408 0.400 0.3888.5 0.375 3/8 0.587 0.574 0.511 0.501 0.4863.5 8.5 0.375 3/8 0.587 0.574 0.511 0.501 0.4864FACTORED RESISTANCE VALUES1. Tabulated factored resistance values (φλZ') for spike connections shall be multiplied by all applicable adjustment factors (see Table 7.1-1).2. Tabulated factored resistance values (φλZ') are for common wire spikes inserted in side grain with spike axis perpendicular to wood fibers, and withthe following spike bending yield strengths (F yb ):F yb = 80 ksi for 0.192", 0.207" and 0.225" diameter common wire spikesF yb = 70 ksi for 0.244" and 0.263" diameter common wire spikesF yb = 60 ksi for 0.283" and 5/16" diameter common wire spikesF yb = 45 ksi for 3/8" diameter common wire spikesAMERICAN FOREST & PAPER ASSOCIATION


54 FACTORED RESISTANCE VALUESTable 12.3E Factored Resistance Values (φλZ') for Single Shear (Two Member)Box Nail Connections 1,2,3 Between Sawn Lumber and an ASTM A446Grade A Steel Side PlateResistance Factor (φ) = 0.65, Time Effect Factor (λ) = 0.8Steel Nail Nail Penny- G=0.67 G=0.55 G=0.50 G=0.49 G=0.46Side Length Diameter Weight Red Oak Mixed Maple Douglas fir - Douglas fir - Douglas-fir (S)Plate Southern Larch Larch (N) Hem-Fir (N)PineL D φλZ' φλZ' φλZ' φλZ' φλZ'in. in. kips kips kips kips kips2 0.099 6d 0.146 0.127 0.119 0.116 0.1122.5 0.113 8d 0.179 0.157 0.146 0.143 0.1373 0.128 10d 0.220 0.191 0.178 0.175 0.16810 gage 3.25 0.128 12d 0.220 0.191 0.178 0.175 0.168ts = 0.134" 3.5 0.135 16d 0.241 0.210 0.195 0.191 0.1834 0.148 20d 0.272 0.236 0.220 0.216 0.2064.5 0.148 30d 0.272 0.236 0.220 0.216 0.2065 0.162 40d 0.318 0.276 0.257 0.252 0.2412 0.099 6d 0.139 0.121 0.113 0.111 0.1062.5 0.113 8d 0.173 0.150 0.140 0.137 0.1323 0.128 10d 0.213 0.185 0.172 0.169 0.16211 gage 3.25 0.128 12d 0.213 0.185 0.172 0.169 0.162ts = 0.120" 3.5 0.135 16d 0.234 0.203 0.189 0.186 0.1774 0.148 20d 0.264 0.229 0.213 0.210 0.2004.5 0.148 30d 0.264 0.229 0.213 0.210 0.2005 0.162 40d 0.311 0.269 0.250 0.246 0.2352 0.099 6d 0.132 0.115 0.107 0.106 0.1012.5 0.113 8d 0.166 0.144 0.134 0.132 0.1263 0.128 10d 0.206 0.179 0.166 0.163 0.15712 gage 3.25 0.128 12d 0.206 0.179 0.166 0.163 0.157ts = 0.105" 3.5 0.135 16d 0.228 0.197 0.183 0.180 0.1724 0.148 20d 0.257 0.223 0.207 0.203 0.1944.5 0.148 30d 0.257 0.223 0.207 0.203 0.1945 0.162 40d 0.305 0.263 0.244 0.240 0.2292 0.099 6d 0.122 0.106 0.098 0.096 0.0922.5 0.113 8d 0.155 0.134 0.125 0.122 0.1173 0.128 10d 0.197 0.170 0.158 0.154 0.1483.25 0.128 12d 0.197 0.170 0.158 0.154 0.14814 gage 3.5 0.135 16d 0.218 0.188 0.174 0.171 0.163ts = 0.075" 4 0.148 20d 0.248 0.214 0.198 0.194 0.1864.5 0.148 30d 0.248 0.214 0.198 0.194 0.1865 0.162 40d 0.296 0.254 0.236 0.231 0.2202 0.099 6d 0.118 0.102 0.095 0.093 0.0882.5 0.113 8d 0.152 0.131 0.122 0.119 0.1143 0.128 10d 0.194 0.167 0.154 0.152 0.14516 gage 3.25 0.128 12d 0.194 0.167 0.154 0.152 0.145ts = 0.06" 3.5 0.135 16d 0.216 0.185 0.172 0.168 0.1614 0.148 20d 0.245 0.211 0.195 0.191 0.1834.5 0.148 30d 0.245 0.211 0.195 0.191 0.1835 0.162 40d 0.294 0.252 0.233 0.228 0.2182 0.099 6d 0.116 0.100 0.093 0.091 0.0872.5 0.113 8d 0.151 0.129 0.120 0.118 0.11218 gage 3 0.128 10d 0.193 0.165 0.153 0.150 0.143ts = 0.048" 3.25 0.128 12d 0.193 0.165 0.153 0.150 0.1433.5 0.135 16d 0.215 0.184 0.170 0.167 0.1594 0.148 20d 0.245 0.210 0.194 0.190 0.1814.5 0.148 30d 0.245 0.210 0.194 0.190 0.1815 0.162 40d 0.293 0.251 0.232 0.227 0.2172 0.099 6d 0.115 0.099 0.092 0.090 0.08620 gage 2.5 0.113 8d 0.150 0.129 0.119 0.116 0.111ts = 0.036" 3 0.128 10d 0.193 0.165 0.152 0.150 0.1423.25 0.128 12d 0.193 0.165 0.152 0.150 0.1423.5 0.135 16d 0.215 0.184 0.170 0.166 0.1591. Tabulated factored resistance values (φλZ') for box nailed connections shall be multiplied by all applicable adjustment factors (see Table 7.1-1).2. Tabulated factored resistance values (φλZ') are for box nails in side grain with nail axis perpendicular to wood fibers, and with the following nailbending yield strengths (F yb ):F yb = 100 ksi for 0.099", 0.113", 0.128" and 0.135" diameter box nailsF yb = 90 ksi for 0.148" and 0.162" diameter box nails.3. Tabulated factored resistance values (φλZ') are based on a dowel bearing strength (F e ) of 45 ksi for ASTM A446, Grade A steel.AMERICAN WOOD COUNCIL


<strong>LRFD</strong> STRUCTURAL CONNECTIONS SUPPLEMENT55Table 12.3E Factored Resistance Values (φλZ') for Single Shear (Two Member)Box Nail Connections 1,2,3 Between Sawn Lumber and an ASTM A446Grade A Steel Side PlateResistance Factor (φ) = 0.65, Time Effect Factor (λ) = 0.8Side Nail Nail Penny- G=0.43 G=0.42 G=0.37 G=0.36 G=0.35Member Length Diameter Weight Hem-Fir Spruce-Pine- Redwood Eastern Softwoods NorthernThickness Fir (open grain) Spruce-Pine-Fir (S) SpeciesWestern CedarsWestern <strong>Wood</strong>sL D φλZ' φλZ' φλZ' φλZ' φλZ'in. in. kips kips kips kips kips2 0.099 6d 0.106 0.104 0.094 0.093 0.0902.5 0.113 8d 0.129 0.127 0.115 0.113 0.1103 0.128 10d 0.159 0.155 0.141 0.138 0.13510 gage 3.25 0.128 12d 0.159 0.155 0.141 0.138 0.135ts = 0.134" 3.5 0.135 16d 0.173 0.170 0.154 0.151 0.1474 0.148 20d 0.195 0.191 0.173 0.170 0.1664.5 0.148 30d 0.195 0.191 0.173 0.170 0.1665 0.162 40d 0.228 0.224 0.202 0.199 0.1932 0.099 6d 0.100 0.099 0.089 0.088 0.0862.5 0.113 8d 0.124 0.122 0.110 0.109 0.1063 0.128 10d 0.153 0.150 0.136 0.134 0.13011 gage 3.25 0.128 12d 0.153 0.150 0.136 0.134 0.130ts = 0.120" 3.5 0.135 16d 0.167 0.164 0.149 0.146 0.1424 0.148 20d 0.189 0.186 0.167 0.165 0.1614.5 0.148 30d 0.189 0.186 0.167 0.165 0.1615 0.162 40d 0.222 0.218 0.197 0.193 0.1882 0.099 6d 0.095 0.094 0.085 0.083 0.0812.5 0.113 8d 0.119 0.116 0.106 0.104 0.1013 0.128 10d 0.148 0.145 0.131 0.128 0.12512 gage 3.25 0.128 12d 0.148 0.145 0.131 0.128 0.125ts = 0.105" 3.5 0.135 16d 0.162 0.159 0.144 0.141 0.1374 0.148 20d 0.184 0.180 0.162 0.160 0.1554.5 0.148 30d 0.184 0.180 0.162 0.160 0.1555 0.162 40d 0.216 0.212 0.191 0.188 0.1832 0.099 6d 0.087 0.085 0.077 0.075 0.0732.5 0.113 8d 0.110 0.108 0.098 0.096 0.0943 0.128 10d 0.139 0.137 0.123 0.121 0.1183.25 0.128 12d 0.139 0.137 0.123 0.121 0.11814 gage 3.5 0.135 16d 0.154 0.151 0.136 0.134 0.130ts = 0.075" 4 0.148 20d 0.175 0.172 0.154 0.152 0.1484.5 0.148 30d 0.175 0.172 0.154 0.152 0.1485 0.162 40d 0.208 0.204 0.183 0.180 0.1752 0.099 6d 0.084 0.082 0.074 0.073 0.0712.5 0.113 8d 0.107 0.105 0.095 0.093 0.0903 0.128 10d 0.136 0.134 0.120 0.118 0.11516 gage 3.25 0.128 12d 0.136 0.134 0.120 0.118 0.115ts = 0.06" 3.5 0.135 16d 0.151 0.148 0.133 0.131 0.1274 0.148 20d 0.172 0.168 0.151 0.149 0.1454.5 0.148 30d 0.172 0.168 0.151 0.149 0.1455 0.162 40d 0.205 0.201 0.180 0.177 0.1732 0.099 6d 0.082 0.080 0.072 0.071 0.0692.5 0.113 8d 0.106 0.103 0.093 0.092 0.08918 gage 3 0.128 10d 0.135 0.132 0.119 0.116 0.113ts = 0.048" 3.25 0.128 12d 0.135 0.132 0.119 0.116 0.1133.5 0.135 16d 0.150 0.147 0.132 0.129 0.1264 0.148 20d 0.171 0.167 0.150 0.147 0.1444.5 0.148 30d 0.171 0.167 0.150 0.147 0.1445 0.162 40d 0.204 0.200 0.179 0.176 0.1712 0.099 6d 0.081 0.079 0.071 0.070 0.06820 gage 2.5 0.113 8d 0.105 0.102 0.092 0.090 0.088ts = 0.036" 3 0.128 10d 0.134 0.132 0.118 0.115 0.1123.25 0.128 12d 0.134 0.132 0.118 0.115 0.1123.5 0.135 16d 0.149 0.146 0.131 0.128 0.1254FACTORED RESISTANCE VALUES1. Tabulated factored resistance values (φλZ') for box nailed connections shall be multiplied by all applicable adjustment factors (see Table 7.1-1).2. Tabulated factored resistance values (φλZ') are for box nails in side grain with nail axis perpendicular to wood fibers, and with the following nailbending yield strengths (F yb ):F yb = 100 ksi for 0.099", 0.113", 0.128" and 0.135" diameter box nailsF yb = 90 ksi for 0.148" and 0.162" diameter box nails.3. Tabulated factored resistance values (φλZ') are based on a dowel bearing strength (F e ) of 45 ksi for ASTM A446, Grade A steel.AMERICAN FOREST & PAPER ASSOCIATION


56 FACTORED RESISTANCE VALUESTable 12.3F Factored Resistance Values (φλZ') for Single Shear (Two Member)Common Wire Nail Connections 1,2,3 Between Sawn Lumber and anASTM A446 Grade A Steel Side PlateResistance Factor (φ) = 0.65, Time Effect Factor (λ) = 0.8Steel Nail Nail Penny- G=0.67 G=0.55 G=0.50 G=0.49 G=0.46Side Length Diameter Weight Red Oak Mixed Maple Douglas fir - Douglas fir - Douglas-fir (S)Plate Southern Larch Larch (N) Hem-Fir (N)PineL D φλZ' φλZ' φλZ' φλZ' φλZ'in. in. kips kips kips kips kips3 gage 5.5 0.244 50d 0.521 0.454 0.423 0.415 0.398ts = 0.239" 6 0.263 60d 0.577 0.503 0.468 0.460 0.4404 0.192 20d 0.402 0.350 0.326 0.320 0.3067 gage 4.5 0.207 30d 0.431 0.374 0.348 0.342 0.327ts = 0.179" 5 0.225 40d 0.465 0.404 0.375 0.369 0.3535.5 0.244 50d 0.477 0.414 0.385 0.378 0.3616 0.263 60d 0.535 0.463 0.431 0.423 0.4042 0.113 6d 0.179 0.157 0.146 0.143 0.1372.5 0.131 8d 0.229 0.199 0.186 0.182 0.1743 0.148 10d 0.272 0.236 0.220 0.216 0.2063.25 0.148 12d 0.272 0.236 0.220 0.216 0.20610 gage 3.5 0.162 16d 0.318 0.276 0.257 0.252 0.241ts = 0.134" 4 0.192 20d 0.374 0.324 0.301 0.296 0.2834.5 0.207 30d 0.405 0.350 0.325 0.319 0.3055 0.225 40d 0.441 0.382 0.354 0.347 0.3325.5 0.244 50d 0.453 0.392 0.363 0.357 0.3416 0.263 60d 0.512 0.442 0.410 0.402 0.3842 0.113 6d 0.173 0.150 0.140 0.137 0.1322.5 0.131 8d 0.222 0.193 0.179 0.176 0.1683 0.148 10d 0.264 0.229 0.213 0.210 0.2003.25 0.148 12d 0.264 0.229 0.213 0.210 0.20011 gage 3.5 0.162 16d 0.311 0.269 0.250 0.246 0.235ts = 0.120" 4 0.192 20d 0.368 0.318 0.295 0.290 0.2774.5 0.207 30d 0.399 0.344 0.319 0.314 0.3005 0.225 40d 0.436 0.376 0.349 0.343 0.3275.5 0.244 50d 0.448 0.386 0.358 0.352 0.3366 0.263 60d 0.508 0.437 0.405 0.397 0.3802 0.113 6d 0.166 0.144 0.134 0.132 0.1262.5 0.131 8d 0.215 0.187 0.174 0.171 0.1633 0.148 10d 0.257 0.223 0.207 0.203 0.1943.25 0.148 12d 0.257 0.223 0.207 0.203 0.19412 gage 3.5 0.162 16d 0.305 0.263 0.244 0.240 0.229ts = 0.105" 4 0.192 20d 0.362 0.312 0.290 0.284 0.2714.5 0.207 30d 0.394 0.339 0.314 0.308 0.2945 0.225 40d 0.432 0.372 0.344 0.338 0.3225.5 0.244 50d 0.444 0.382 0.354 0.347 0.3316 0.263 60d 0.503 0.433 0.401 0.393 0.3752 0.113 6d 0.155 0.134 0.125 0.122 0.1172.5 0.131 8d 0.206 0.177 0.165 0.162 0.1543 0.148 10d 0.248 0.214 0.198 0.194 0.1863.25 0.148 12d 0.248 0.214 0.198 0.194 0.18614 gage 3.5 0.162 16d 0.296 0.254 0.236 0.231 0.220ts = 0.075" 4 0.192 20d 0.355 0.304 0.282 0.276 0.2644.5 0.207 30d 0.387 0.332 0.307 0.302 0.2885 0.225 40d 0.427 0.366 0.339 0.332 0.3175.5 0.244 50d 0.439 0.376 0.348 0.342 0.3266 0.263 60d 0.500 0.428 0.396 0.388 0.3702 0.113 6d 0.152 0.131 0.122 0.119 0.1142.5 0.131 8d 0.203 0.175 0.162 0.159 0.15116 gage 3 0.148 10d 0.245 0.211 0.195 0.191 0.183ts = 0.060" 3.25 0.148 12d 0.245 0.211 0.195 0.191 0.1833.5 0.162 16d 0.294 0.252 0.233 0.228 0.2184 0.192 20d 0.354 0.303 0.280 0.274 0.2624.5 0.207 30d 0.387 0.331 0.306 0.300 0.2852 0.113 6d 0.151 0.129 0.120 0.118 0.11218 gage 2.5 0.131 8d 0.202 0.173 0.160 0.157 0.150ts = 0.048" 3 0.148 10d 0.245 0.210 0.194 0.190 0.1813.25 0.148 12d 0.245 0.210 0.194 0.190 0.1813.5 0.162 16d 0.293 0.251 0.232 0.227 0.21720 gage 2 0.113 6d 0.150 0.129 0.119 0.116 0.111ts = 0.036" 2.5 0.131 8d 0.202 0.173 0.160 0.157 0.1493 0.148 10d 0.245 0.210 0.193 0.190 0.1801. Tabulated factored resistance values (φλz') for nailed connections shall be multiplied by all applicable adjustment factors (see Table 7.1-1).2. Tabulated factored resistance values (φλZ') are for common wire nails inserted in side grain with nail axis perpendicularto wood fibers, and with the following nail bending yield strengths (F yb ):F yb = 100 ksi for 0.113" and 0.131" diameter common wire nailsF yb = 80 ksi for 0.192", 0.207" and 0.225" diameter common wire nailsF yb = 90 ksi for 0.148" and 0.162" diameter common wire nailsF yb = 70 ksi for 0.244" and 0.263" diameter common wire nails3. Tabulated factored resistance values (φλZ') are based on a dowel bearing strength (F e ) of 45 ksi for ASTM A446, Grade A steel.AMERICAN WOOD COUNCIL


<strong>LRFD</strong> STRUCTURAL CONNECTIONS SUPPLEMENT57Table 12.3F Factored Resistance Values (φλZ') for Single Shear (Two Member)Common Wire Nail Connections 1,2,3 Between Sawn Lumber and anASTM A446 Grade A Steel Side PlateResistance Factor (φ) = 0.65, Time Effect Factor (λ) = 0.8Steel Nail Nail Penny- G=0.43 G=0.42 G=0.37 G=0.36 G=0.35Side Length Diameter Weight Hem-Fir Spruce-Pine- Redwood Eastern Softwoods NorthernPlate Fir (open grain) Spruce-Pine-Fir (S) SpeciesWestern CedarsWestern <strong>Wood</strong>sL D φλZ' φλZ' φλZ' φλZ' φλZ'in. in. kips kips kips kips kips3 gage 5.5 0.244 50d 0.376 0.370 0.335 0.329 0.321ts = 0.239" 6 0.263 60d 0.417 0.409 0.370 0.364 0.3544 0.192 20d 0.290 0.284 0.257 0.253 0.2467 gage 4.5 0.207 30d 0.309 0.304 0.275 0.270 0.263ts = 0.179" 5 0.225 40d 0.333 0.327 0.295 0.291 0.2835.5 0.244 50d 0.342 0.335 0.303 0.298 0.2906 0.263 60d 0.382 0.374 0.338 0.332 0.3232 0.113 6d 0.129 0.127 0.115 0.113 0.1102.5 0.131 8d 0.165 0.162 0.146 0.144 0.1403 0.148 10d 0.195 0.191 0.173 0.170 0.1663.25 0.148 12d 0.195 0.191 0.173 0.170 0.16610 gage 3.5 0.162 16d 0.228 0.224 0.202 0.199 0.193ts = 0.134" 4 0.192 20d 0.267 0.262 0.237 0.232 0.2264.5 0.207 30d 0.288 0.282 0.255 0.251 0.2445 0.225 40d 0.313 0.307 0.277 0.272 0.2655.5 0.244 50d 0.321 0.316 0.284 0.280 0.2726 0.263 60d 0.362 0.355 0.320 0.315 0.3062 0.113 6d 0.124 0.122 0.110 0.109 0.1062.5 0.131 8d 0.159 0.156 0.141 0.139 0.1353 0.148 10d 0.189 0.186 0.167 0.165 0.1613.25 0.148 12d 0.189 0.186 0.167 0.165 0.16111 gage 3.5 0.162 16d 0.222 0.218 0.197 0.193 0.188ts= 0.120" 4 0.192 20d 0.262 0.256 0.231 0.227 0.2214.5 0.207 30d 0.282 0.277 0.250 0.245 0.2395 0.225 40d 0.308 0.303 0.272 0.268 0.2615.5 0.244 50d 0.317 0.310 0.280 0.275 0.2686 0.263 60d 0.358 0.351 0.316 0.310 0.3022 0.113 6d 0.119 0.116 0.106 0.104 0.1012.5 0.131 8d 0.154 0.151 0.136 0.134 0.1313 0.148 10d 0.184 0.180 0.162 0.160 0.1553.25 0.148 12d 0.184 0.180 0.162 0.160 0.15512 gage 3.5 0.162 16d 0.216 0.212 0.191 0.188 0.183ts = 0.105" 4 0.192 20d 0.256 0.251 0.226 0.223 0.2164.5 0.207 30d 0.278 0.272 0.245 0.241 0.2355 0.225 40d 0.304 0.298 0.268 0.264 0.2565.5 0.244 50d 0.313 0.306 0.276 0.271 0.2646 0.263 60d 0.354 0.347 0.312 0.306 0.2982 0.113 6d 0.110 0.108 0.098 0.096 0.0942.5 0.131 8d 0.146 0.142 0.128 0.126 0.1233 0.148 10d 0.175 0.172 0.154 0.152 0.1483.25 0.148 12d 0.175 0.172 0.154 0.152 0.14814 gage 3.5 0.162 16d 0.208 0.204 0.183 0.180 0.175ts = 0.075" 4 0.192 20d 0.249 0.243 0.219 0.215 0.2094.5 0.207 30d 0.271 0.265 0.239 0.235 0.2285 0.225 40d 0.298 0.292 0.262 0.258 0.2515.5 0.244 50d 0.306 0.301 0.270 0.265 0.2586 0.263 60d 0.348 0.341 0.306 0.301 0.2932 0.113 6d 0.107 0.105 0.095 0.093 0.0902.5 0.131 8d 0.142 0.140 0.126 0.124 0.12016 gage 3 0.148 10d 0.172 0.168 0.151 0.149 0.145ts = 0.060" 3.25 0.148 12d 0.172 0.168 0.151 0.149 0.1453.5 0.162 16d 0.205 0.201 0.180 0.177 0.1734 0.192 20d 0.246 0.241 0.216 0.213 0.2074.5 0.207 30d 0.269 0.264 0.237 0.232 0.2262 0.113 6d 0.106 0.103 0.093 0.092 0.08918 gage 2.5 0.131 8d 0.141 0.138 0.124 0.122 0.119ts = 0.048" 3 0.148 10d 0.171 0.167 0.150 0.147 0.1443.25 0.148 12d 0.171 0.167 0.150 0.147 0.1443.5 0.162 16d 0.204 0.200 0.179 0.176 0.17120 gage 2 0.113 6d 0.105 0.102 0.092 0.090 0.088ts = 0.036" 2.5 0.131 8d 0.140 0.137 0.123 0.121 0.1183 0.148 10d 0.170 0.166 0.149 0.147 0.1421. Tabulated factored resistance values (φλz') for nailed connections shall be multiplied by all applicable adjustment factors (see Table 7.1-1).2. Tabulated factored resistance values (φλZ') are for common wire nails inserted in side grain with nail axis perpendicularto wood fibers, and with the following nail bending yield strengths (F yb ):F yb = 100 ksi for 0.113" and 0.131" diameter common wire nailsF yb = 80 ksi for 0.192", 0.207" and 0.225" diameter common wire nailsF yb = 90 ksi for 0.148" and 0.162" diameter common wire nailsF yb = 70 ksi for 0.244" and 0.263" diameter common wire nails3. Tabulated factored resistance values (φλZ') are based on a dowel bearing strength (F e ) of 45 ksi for ASTM A446, Grade A steel.4FACTORED RESISTANCE VALUESAMERICAN FOREST & PAPER ASSOCIATION


58 FACTORED RESISTANCE VALUESTable 12.3G Factored Resistance Values (φλZ') for Single Shear (Two Member)Threaded Hardened-Steel Nail Connections 1,2,3 Between SawnLumber and an ASTM A446 Grade A Steel Side PlateResistance Factor (φ) = 0.65, Time Effect Factor (λ) = 0.8Steel Nail Wire Penny- G=0.67 G=0.55 G=0.50 G=0.49 G=0.46Side Length Diameter Weight Red Oak Mixed Maple Douglas fir - Douglas fir - Douglas-fir (S)Plate Southern Larch Larch (N) Hem-Fir (N)PineL D φλZ' φλZ' φλZ' φλZ' φλZ'in. in. kips kips kips kips kips7 gage 7 0.207 70d 0.468 0.406 0.378 0.371 0.355ts = 0.179" 8 0.207 80d 0.468 0.406 0.378 0.371 0.3559 0.207 90d 0.468 0.406 0.378 0.371 0.3552 0.120 6d 0.216 0.188 0.175 0.172 0.1642.5 0.120 8d 0.216 0.188 0.175 0.172 0.1643 0.135 10d 0.266 0.230 0.214 0.210 0.2013.25 0.135 12d 0.266 0.230 0.214 0.210 0.2013.5 0.148 16d 0.298 0.258 0.240 0.236 0.22610 gage 4 0.177 20d 0.400 0.346 0.321 0.315 0.301ts = 0.134" 4.5 0.177 30d 0.400 0.346 0.321 0.315 0.3015 0.177 40d 0.400 0.346 0.321 0.315 0.3015.5 0.177 50d 0.400 0.346 0.321 0.315 0.3016 0.177 60d 0.400 0.346 0.321 0.315 0.3017 0.207 70d 0.446 0.385 0.357 0.350 0.3358 0.207 80d 0.446 0.385 0.357 0.350 0.3359 0.207 90d 0.446 0.385 0.357 0.350 0.3352 0.120 6d 0.210 0.183 0.170 0.166 0.1592.5 0.120 8d 0.210 0.183 0.170 0.166 0.1593 0.135 10d 0.259 0.225 0.209 0.205 0.1963.25 0.135 12d 0.259 0.225 0.209 0.205 0.19611 gage 3.5 0.148 16d 0.292 0.253 0.235 0.230 0.220ts = 0.120" 4 0.177 20d 0.395 0.341 0.316 0.310 0.2964.5 0.177 30d 0.395 0.341 0.316 0.310 0.2965 0.177 40d 0.395 0.341 0.316 0.310 0.2965.5 0.177 50d 0.395 0.341 0.316 0.310 0.2966 0.177 60d 0.395 0.341 0.316 0.310 0.2962 0.120 6d 0.204 0.177 0.164 0.162 0.1542.5 0.120 8d 0.204 0.177 0.164 0.162 0.1543 0.135 10d 0.254 0.219 0.204 0.200 0.1913.25 0.135 12d 0.254 0.219 0.204 0.200 0.19112 gage 3.5 0.148 16d 0.286 0.247 0.229 0.225 0.215ts = 0.105" 4 0.177 20d 0.389 0.336 0.311 0.305 0.2924.5 0.177 30d 0.389 0.336 0.311 0.305 0.2925 0.177 40d 0.389 0.336 0.311 0.305 0.2925.5 0.177 50d 0.389 0.336 0.311 0.305 0.2926 0.177 60d 0.389 0.336 0.311 0.305 0.2922 0.120 6d 0.197 0.169 0.157 0.154 0.1472.5 0.120 8d 0.197 0.169 0.157 0.154 0.1473 0.135 10d 0.247 0.212 0.197 0.193 0.1843.25 0.135 12d 0.247 0.212 0.197 0.193 0.18414 gage 3.5 0.148 16d 0.279 0.240 0.222 0.217 0.207ts = 0.075" 4 0.177 20d 0.384 0.330 0.305 0.299 0.2854.5 0.177 30d 0.384 0.330 0.305 0.299 0.2855 0.177 40d 0.384 0.330 0.305 0.299 0.2855.5 0.177 50d 0.384 0.330 0.305 0.299 0.2856 0.177 60d 0.384 0.330 0.305 0.299 0.2852 0.120 6d 0.194 0.167 0.154 0.151 0.1452.5 0.120 8d 0.194 0.167 0.154 0.151 0.1453 0.135 10d 0.245 0.210 0.194 0.191 0.1823.25 0.135 12d 0.245 0.210 0.194 0.191 0.18216 gage 3.5 0.148 16d 0.277 0.238 0.219 0.215 0.205ts = 0.060" 4 0.177 20d 0.384 0.328 0.303 0.297 0.2834.5 0.177 30d 0.384 0.328 0.303 0.297 0.2835 0.177 40d 0.384 0.328 0.303 0.297 0.2835.5 0.177 50d 0.384 0.328 0.303 0.297 0.2836 0.177 60d 0.384 0.328 0.303 0.297 0.2832 0.120 6d 0.193 0.166 0.153 0.150 0.14318 gage 2.5 0.120 8d 0.193 0.166 0.153 0.150 0.143ts = 0.048" 3 0.135 10d 0.245 0.210 0.193 0.190 0.1813.25 0.135 12d 0.245 0.210 0.193 0.190 0.1813.5 0.148 16d 0.277 0.237 0.219 0.214 0.2042 0.120 6d 0.194 0.165 0.153 0.150 0.14220 gage 2.5 0.120 8d 0.194 0.165 0.153 0.150 0.142ts = 0.036" 3 0.135 10d 0.246 0.210 0.193 0.190 0.1801. Tabulated factored resistance values (φλZ') for nailed connections shall be multiplied by all applicable adjustment factors (see Table 7.1-1).2. Tabulated factored resistance values (φλZ') are for threaded hardened-steel nails inserted in side grain with nail axis perpendicular to woodfibers, and with the following nail bending yield strengths (F yb ):F yb = 130 ksi for 0.120" and 0.135" diameter threaded hardened-steel nailsF yb = 115 ksi for 0.148" and 0.177" diameter threaded hardened-steel nailsF yb = 100 ksi for 0.207" diameter threaded hardened-steel nails3. Tabulated factored resistance values (φλZ') are based on a dowel bearing strength (F e ) of 45 ksi for ASTM A446, Grade A steel.AMERICAN WOOD COUNCIL


<strong>LRFD</strong> STRUCTURAL CONNECTIONS SUPPLEMENT59Table 12.3G Factored Resistance Values (φλZ') for Single Shear (Two Member)Threaded Hardened-Steel Nail Connections 1,2,3 Between SawnLumber and an ASTM A446 Grade A Steel Side PlateResistance Factor (φ) = 0.65, Time Effect Factor (λ) = 0.8Steel Nail Wire Penny- G=0.43 G=0.42 G=0.37 G=0.36 G=0.35Side Length Diameter Weight Hem-Fir Spruce-Pine- Redwood Eastern Softwoods NorthernPlate Fir (open grain) Spruce-Pine-Fir (S) SpeciesWestern CedarsWestern <strong>Wood</strong>sL D φλZ' φλZ' φλZ' φλZ' φλZ'in. in. kips kips kips kips kips7 gage 7 0.207 70d 0.335 0.329 0.297 0.292 0.284ts = 0.179" 8 0.207 80d 0.335 0.329 0.297 0.292 0.2849 0.207 90d 0.335 0.329 0.297 0.292 0.2842 0.120 6d 0.155 0.152 0.138 0.136 0.1322.5 0.120 8d 0.155 0.152 0.138 0.136 0.1323 0.135 10d 0.190 0.187 0.168 0.166 0.1613.25 0.135 12d 0.190 0.187 0.168 0.166 0.1613.5 0.148 16d 0.213 0.209 0.189 0.186 0.18110 gage 4 0.177 20d 0.284 0.279 0.252 0.248 0.241ts = 0.134" 4.5 0.177 30d 0.284 0.279 0.252 0.248 0.2415 0.177 40d 0.284 0.279 0.252 0.248 0.2415.5 0.177 50d 0.284 0.279 0.252 0.248 0.2416 0.177 60d 0.284 0.279 0.252 0.248 0.2417 0.207 70d 0.316 0.310 0.279 0.275 0.2678 0.207 80d 0.316 0.310 0.279 0.275 0.2679 0.207 90d 0.316 0.310 0.279 0.275 0.2672 0.120 6d 0.150 0.148 0.134 0.131 0.1282.5 0.120 8d 0.150 0.148 0.134 0.131 0.1283 0.135 10d 0.185 0.181 0.164 0.161 0.1573.25 0.135 12d 0.185 0.181 0.164 0.161 0.15711 gage 3.5 0.148 16d 0.208 0.204 0.184 0.181 0.176ts = 0.120" 4 0.177 20d 0.279 0.274 0.247 0.243 0.2364.5 0.177 30d 0.279 0.274 0.247 0.243 0.2365 0.177 40d 0.279 0.274 0.247 0.243 0.2365.5 0.177 50d 0.279 0.274 0.247 0.243 0.2366 0.177 60d 0.279 0.274 0.247 0.243 0.2362 0.120 6d 0.146 0.143 0.129 0.127 0.1242.5 0.120 8d 0.146 0.143 0.129 0.127 0.1243 0.135 10d 0.180 0.177 0.160 0.157 0.1533.25 0.135 12d 0.180 0.177 0.160 0.157 0.15312 gage 3.5 0.148 16d 0.203 0.199 0.179 0.176 0.172ts = 0.105" 4 0.177 20d 0.275 0.269 0.243 0.239 0.2324.5 0.177 30d 0.275 0.269 0.243 0.239 0.2325 0.177 40d 0.275 0.269 0.243 0.239 0.2325.5 0.177 50d 0.275 0.269 0.243 0.239 0.2326 0.177 60d 0.275 0.269 0.243 0.239 0.2322 0.120 6d 0.138 0.136 0.122 0.120 0.1172.5 0.120 8d 0.138 0.136 0.122 0.120 0.1173 0.135 10d 0.173 0.170 0.153 0.150 0.1463.25 0.135 12d 0.173 0.170 0.153 0.150 0.14614 gage 3.5 0.148 16d 0.196 0.192 0.173 0.170 0.165ts = 0.075" 4 0.177 20d 0.268 0.263 0.237 0.232 0.2264.5 0.177 30d 0.268 0.263 0.237 0.232 0.2265 0.177 40d 0.268 0.263 0.237 0.232 0.2265.5 0.177 50d 0.268 0.263 0.237 0.232 0.2266 0.177 60d 0.268 0.263 0.237 0.232 0.2262 0.120 6d 0.136 0.134 0.120 0.118 0.1142.5 0.120 8d 0.136 0.134 0.120 0.118 0.1143 0.135 10d 0.171 0.168 0.151 0.148 0.1443.25 0.135 12d 0.171 0.168 0.151 0.148 0.14416 gage 3.5 0.148 16d 0.193 0.189 0.170 0.167 0.163ts = 0.060" 4 0.177 20d 0.267 0.262 0.235 0.230 0.2244.5 0.177 30d 0.267 0.262 0.235 0.230 0.2245 0.177 40d 0.267 0.262 0.235 0.230 0.2245.5 0.177 50d 0.267 0.262 0.235 0.230 0.2246 0.177 60d 0.267 0.262 0.235 0.230 0.2242 0.120 6d 0.135 0.132 0.119 0.116 0.11318 gage 2.5 0.120 8d 0.135 0.132 0.119 0.116 0.113ts = 0.048" 3 0.135 10d 0.170 0.167 0.150 0.147 0.1433.25 0.135 12d 0.170 0.167 0.150 0.147 0.1433.5 0.148 16d 0.192 0.188 0.169 0.166 0.1612 0.120 6d 0.134 0.132 0.118 0.116 0.11220 gage 2.5 0.120 8d 0.134 0.132 0.118 0.116 0.112ts = 0.036" 3 0.135 10d 0.170 0.166 0.149 0.147 0.1421. Tabulated factored resistance values (φλZ') for nailed connections shall be multiplied by all applicable adjustment factors (see Table 7.1-1).2. Tabulated factored resistance values (φλZ') are for threaded hardened-steel nails inserted in side grain with nail axis perpendicular to woodfibers, and with the following nailbending yield strengths (F yb ):F yb = 130 ksi for 0.120" and 0.135" diameter threaded hardened-steel nailsF yb = 115 ksi for 0.148" and 0.177" diameter threaded hardened-steel nailsF yb = 100 ksi for 0.207" diameter threaded hardened-steel nails3. Tabulated factored resistance values (φλZ') are based on a dowel bearing strength (F e ) of 45 ksi for ASTM A446, Grade A steel.4FACTORED RESISTANCE VALUESAMERICAN FOREST & PAPER ASSOCIATION


60 FACTORED RESISTANCE VALUESTable 12.3H Factored Resistance Values (φλZ') for Single Shear (Two Member)Common Wire Spike Connections 1,2,3 Between Sawn Lumber and anASTM A446 Grade A Steel Side PlateResistance Factor (φ) = 0.65, Time Effect Factor (λ) = 0.8Steel Spike Spike Penny- G=0.67 G=0.55 G=0.50 G=0.49 G=0.46Side Length Diameter Weight Red Oak Mixed Maple Douglas fir - Douglas fir - Douglas-fir (S)Plate Southern Pine Larch Larch (N) Hem-Fir (N)L D φλZ' φλZ' φλZ' φλZ' φλZ'in. in. kips kips kips kips kips4.5 0.244 30d 0.521 0.454 0.423 0.415 0.3985 0.263 40d 0.577 0.503 0.468 0.460 0.4403 gage 5.5 0.283 50d 0.620 0.540 0.503 0.493 0.473ts = 0.239" 6 0.283 60d 0.620 0.540 0.503 0.493 0.4737 0.312 5/16 0.730 0.635 0.591 0.580 0.5558.5 0.375 3/8 0.903 0.785 0.731 0.717 0.6863 0.192 10d 0.402 0.350 0.326 0.320 0.3063.25 0.192 12d 0.402 0.350 0.326 0.320 0.3063.5 0.207 16d 0.431 0.374 0.348 0.342 0.3274 0.225 20d 0.465 0.404 0.375 0.369 0.3537 gage 4.5 0.244 30d 0.477 0.414 0.385 0.378 0.361ts = 0.179" 5 0.263 40d 0.535 0.463 0.431 0.423 0.4045.5 0.283 50d 0.573 0.497 0.462 0.453 0.4346 0.283 60d 0.573 0.497 0.462 0.453 0.4347 0.312 5/16 0.684 0.592 0.550 0.540 0.5168.5 0.375 3/8 0.851 0.736 0.683 0.671 0.6413 0.192 10d 0.374 0.324 0.301 0.296 0.2833.25 0.192 12d 0.374 0.324 0.301 0.296 0.2833.5 0.207 16d 0.405 0.350 0.325 0.319 0.3054 0.225 20d 0.441 0.382 0.354 0.347 0.33210 gage 4.5 0.244 30d 0.453 0.392 0.363 0.357 0.341ts = 0.134" 5 0.263 40d 0.512 0.442 0.410 0.402 0.3845.5 0.283 50d 0.549 0.474 0.439 0.431 0.4126 0.283 60d 0.549 0.474 0.439 0.431 0.4127 0.312 5/16 0.662 0.570 0.529 0.518 0.4958.5 0.375 3/8 0.826 0.711 0.659 0.646 0.6173 0.192 10d 0.368 0.318 0.295 0.290 0.2773.25 0.192 12d 0.368 0.318 0.295 0.290 0.2773.5 0.207 16d 0.399 0.344 0.319 0.314 0.3004 0.225 20d 0.436 0.376 0.349 0.343 0.32711 gage 4.5 0.244 30d 0.448 0.386 0.358 0.352 0.336ts = 0.120" 5 0.263 40d 0.508 0.437 0.405 0.397 0.3805.5 0.283 50d 0.544 0.469 0.434 0.426 0.4076 0.283 60d 0.544 0.469 0.434 0.426 0.4077 0.312 5/16 0.657 0.565 0.524 0.514 0.4908.5 0.375 3/8 0.821 0.706 0.654 0.641 0.6123 0.192 10d 0.362 0.312 0.290 0.284 0.2713.25 0.192 12d 0.362 0.312 0.290 0.284 0.2713.5 0.207 16d 0.394 0.339 0.314 0.308 0.2944 0.225 20d 0.432 0.372 0.344 0.338 0.32212 gage 4.5 0.244 30d 0.444 0.382 0.354 0.347 0.331ts = 0.105" 5 0.263 40d 0.503 0.433 0.401 0.393 0.3755.5 0.283 50d 0.540 0.464 0.430 0.422 0.4026 0.283 60d 0.540 0.464 0.430 0.422 0.4027 0.312 5/16 0.654 0.562 0.519 0.510 0.4868.5 0.375 3/8 0.817 0.701 0.649 0.636 0.6073 0.192 10d 0.355 0.304 0.282 0.276 0.2643.25 0.192 12d 0.355 0.304 0.282 0.276 0.2643.5 0.207 16d 0.387 0.332 0.307 0.302 0.2884 0.225 20d 0.427 0.366 0.339 0.332 0.31714 gage 4.5 0.244 30d 0.439 0.376 0.348 0.342 0.326ts = 0.075" 5 0.263 40d 0.500 0.428 0.396 0.388 0.3705.5 0.283 50d 0.536 0.459 0.424 0.416 0.3976 0.283 60d 0.536 0.459 0.424 0.416 0.3977 0.312 5/16 0.652 0.557 0.515 0.505 0.4828.5 0.375 3/8 0.816 0.697 0.644 0.632 0.60216 gage 3 0.192 10d 0.354 0.303 0.280 0.274 0.262ts = 0.060" 3.25 0.192 12d 0.354 0.303 0.280 0.274 0.2623.5 0.207 16d 0.387 0.331 0.306 0.300 0.2851. Tabulated factored resistance values (φλZ') for spiked connections shall be multiplied by all applicable adjustment factors (see Table 7.1-1).2. Tabulated factored resistance values (φλZ') are for common wire spikes inserted in side grain with spike axis perpendicular to wood fibers,and with the following spikebending yield strengths (F yb ):F yb = 80 ksi for 0.192", 0.207" and 0.225" diameter common wire spikes F yb = 60 ksi for 0.283" and 5/16" diameter common wire spikesF yb = 70 ksi for 0.244" and 0.236" diameter common wire spikes F yb = 45 ksi for 3/8" diameter common wire spikes.3. Tabulated factored resistance values (φλZ') are based on a dowel bearing strength (F e ) of 45 ksi for ASTM A446 Grade A steel.AMERICAN WOOD COUNCIL


<strong>LRFD</strong> STRUCTURAL CONNECTIONS SUPPLEMENT61Table 12.3H Factored Resistance Values (φλZ') for Single Shear (Two Member)Common Wire Spike Connections 1,2,3 Between Sawn Lumber and anASTM A446 Grade A Steel Side PlateResistance Factor (φ) = 0.65, Time Effect Factor (λ) = 0.8Steel Nail Nail Penny- G=0.43 G=0.42 G=0.37 G=0.36 G=0.35Side Length Diameter Weight Hem-Fir Spruce-Pine- Redwood Eastern Softwoods NorthernPlate Fir (open grain) Spruce-Pine-Fir (S) SpeciesWestern CedarsWestern <strong>Wood</strong>sL D φλZ' φλZ' φλZ' φλZ' φλZ'in. in. kips kips kips kips kips4.5 0.244 30d 0.376 0.370 0.335 0.329 0.3215 0.263 40d 0.417 0.409 0.370 0.364 0.3543 gage 5.5 0.283 50d 0.447 0.439 0.397 0.391 0.380ts = 0.239" 6 0.283 60d 0.447 0.439 0.397 0.391 0.3807 0.312 5/16 0.525 0.515 0.466 0.458 0.4468.5 0.375 3/8 0.648 0.636 0.576 0.566 0.5513 0.192 10d 0.290 0.284 0.257 0.253 0.2463.25 0.192 12d 0.290 0.284 0.257 0.253 0.2463.5 0.207 16d 0.309 0.304 0.275 0.270 0.2634 0.225 20d 0.333 0.327 0.295 0.291 0.2837 gage 4.5 0.244 30d 0.342 0.335 0.303 0.298 0.290ts = 0.179" 5 0.263 40d 0.382 0.374 0.338 0.332 0.3235.5 0.283 50d 0.409 0.402 0.363 0.357 0.3476 0.283 60d 0.409 0.402 0.363 0.357 0.3477 0.312 5/16 0.487 0.478 0.432 0.424 0.4138.5 0.375 3/8 0.605 0.594 0.536 0.526 0.5123 0.192 10d 0.267 0.262 0.237 0.232 0.2263.25 0.192 12d 0.267 0.262 0.237 0.232 0.2263.5 0.207 16d 0.288 0.282 0.255 0.251 0.2444 0.225 20d 0.313 0.307 0.277 0.272 0.26510 gage 4.5 0.244 30d 0.321 0.316 0.284 0.280 0.272ts = 0.134" 5 0.263 40d 0.362 0.355 0.320 0.315 0.3065.5 0.283 50d 0.388 0.381 0.343 0.337 0.3286 0.283 60d 0.388 0.381 0.343 0.337 0.3287 0.312 5/16 0.467 0.458 0.412 0.405 0.3948.5 0.375 3/8 0.582 0.570 0.513 0.504 0.4913 0.192 10d 0.262 0.256 0.231 0.227 0.2213.25 0.192 12d 0.262 0.256 0.231 0.227 0.2213.5 0.207 16d 0.282 0.277 0.250 0.245 0.2394 0.225 20d 0.308 0.303 0.272 0.268 0.26111 gage 4.5 0.244 30d 0.317 0.310 0.280 0.275 0.268ts = 0.120" 5 0.263 40d 0.358 0.351 0.316 0.310 0.3025.5 0.283 50d 0.384 0.376 0.339 0.333 0.3246 0.283 60d 0.384 0.376 0.339 0.333 0.3247 0.312 5/16 0.462 0.453 0.408 0.400 0.3898.5 0.375 3/8 0.576 0.565 0.508 0.499 0.4863 0.192 10d 0.256 0.251 0.226 0.223 0.2163.25 0.192 12d 0.256 0.251 0.226 0.223 0.2163.5 0.207 16d 0.278 0.272 0.245 0.241 0.2354 0.225 20d 0.304 0.298 0.268 0.264 0.25612 gage 4.5 0.244 30d 0.313 0.306 0.276 0.271 0.264ts = 0.105" 5 0.263 40d 0.354 0.347 0.312 0.306 0.2985.5 0.283 50d 0.379 0.372 0.334 0.329 0.3206 0.283 60d 0.379 0.372 0.334 0.329 0.3207 0.312 5/16 0.458 0.449 0.404 0.397 0.3868.5 0.375 3/8 0.571 0.561 0.504 0.495 0.4813 0.192 10d 0.249 0.243 0.219 0.215 0.2093.25 0.192 12d 0.249 0.243 0.219 0.215 0.2093.5 0.207 16d 0.271 0.265 0.239 0.235 0.2284 0.225 20d 0.298 0.292 0.262 0.258 0.25114 gage 4.5 0.244 30d 0.306 0.301 0.270 0.265 0.258ts = 0.075" 5 0.263 40d 0.348 0.341 0.306 0.301 0.2935.5 0.283 50d 0.373 0.366 0.329 0.322 0.3146 0.283 60d 0.373 0.366 0.329 0.322 0.3147 0.312 5/16 0.453 0.444 0.398 0.391 0.3808.5 0.375 3/8 0.566 0.555 0.498 0.489 0.47516 gage 3 0.192 10d 0.246 0.241 0.216 0.213 0.207ts = 0.060" 3.25 0.192 12d 0.246 0.241 0.216 0.213 0.2073.5 0.207 16d 0.269 0.264 0.237 0.232 0.2261. Tabulated factored resistance values (φλZ') for spiked connections shall be multiplied by all applicable adjustment factors (see Table 7.1-1).2. Tabulated factored resistance values (φλZ') are for common wire spikes inserted in side grain with spike axis perpendicular to wood fibers,and with the following spikebending yield strengths (F yb ):F yb = 80 ksi for 0.192", 0.207" and 0.225" diameter common wire spikes F yb = 60 ksi for 0.283" and 5/16" diameter common wire spikesF yb = 70 ksi for 0.244" and 0.236" diameter common wire spikes F yb = 45 ksi for 3/8" diameter common wire spikes.3. Tabulated factored resistance values (φλZ') are based on a dowel bearing strength (F e ) of 45 ksi for ASTM A446 Grade A steel.4FACTORED RESISTANCE VALUESAMERICAN FOREST & PAPER ASSOCIATION


62FACTORED RESISTANCE VALUESAMERICAN WOOD COUNCIL


<strong>LRFD</strong> STRUCTURAL CONNECTIONS SUPPLEMENT63OTHERCONSIDERATIONS55.1 General 645.2 Dimensional Changes 645.3 Fire Performance 64AMERICAN FOREST & PAPER ASSOCIATION


64 OTHER CONSIDERATIONS5.1 GeneralWith proper detailing and protection, structural connectionsin wood products can perform well in a varietyof environments. One key to proper detailing is planningfor the natural shrinkage and swelling of wood membersas they are subjected to various drying and wetting cycles.While moisture changes have the largest impact on lumberdimensions, some designs must also check the effectsof temperature as well.In addition to designing to accommodate dimensionalchanges and detailing for durability, another significantissue in the planning of wood structures is that of fire performance.5.2 Dimensional ChangesDimensional changes result from changes in moisturecontent causing members to shrink or swell. Care shouldbe taken to allow for dimensional changes in connectiondetails. In drying members containing larger dowel typefasteners, connections should allow for shrinkage to preventhorizontal splitting.Chapter 7 of the <strong>LRFD</strong> Manual provides examples ofcommon connection details where shrinkage should beconsidered.5.3 Fire PerformanceThe superior fire endurance demonstrated by largeexposed wood beams and columns in actual fires is recognizedby designers, regulatory authorities, and fireofficials throughout the country.Design procedures to determine the size of woodbeams and columns to achieve safe load carrying perfor-mance over a specific time period under fire exposureconditions are available in AF&PA’s Design for CodeAcceptance, No. 2, Design of Fire-Resistive Exposed <strong>Wood</strong>Members. This document also provides typical details forcommonly used fasteners and connectors in timber framing,where one-hour fire endurance is required.AMERICAN WOOD COUNCIL


<strong>LRFD</strong> STRUCTURAL CONNECTIONS SUPPLEMENT65FASTENERDIMENSIONS6.1 Typical Dimensions for StandardLag Screws 666AMERICAN FOREST & PAPER ASSOCIATION


66 FASTENER DIMENSIONS6.1 Typical Dimensions for Standard Lag ScrewsD = unthreaded shank diameterS = unthreaded shank lengthD r = root diameter of threaded portion T = thread length 1W = width of head across flatsE = length of tapered tipH = height of headN = number of threads/inchNominalUnthreaded shank diameter, DLengthL 1/4" 5/16" 3/8" 7/16" 1/2" 5/8" 3/4" 7/8" 1" 1-1/8" 1-1/4"D r 0.173" 0.227" 0.265" 0.328" 0.371" 0.471" 0.579" 0.683" 0.780" 0.887" 1.012"E 5/32" 3/16" 7/32" 9/32" 5/16" 13/32" 1/2" 19/32" 11/16" 25/32" 7/8"H 11/64" 7/32" 1/4" 19/64" 11/32" 27/64" 1/2" 37/64" 43/64" 3/4" 27/32"W 7/16" 1/2" 9/16" 5/8" 3/4" 15/16" 1-1/8" 1-5/16" 1-1/2" 1-11/16" 1-7/8"N 10 9 7 7 6 5 4-1/2 4 3-1/2 3-1/4 3-1/4S 1/4" 1/4" 1/4" 1/4" 1/4"1" T 3/4" 3/4" 3/4" 3/4" 3/4"T-E 19/32" 9/16" 17/32" 15/32" 7/16"S 1/4" 1/4" 1/4" 1/4" 1/4"1-1/2" T 1-1/4" 1-1/4" 1-1/4" 1-1/4" 1-1/4"T-E 1-3/32" 1-1/16" 1-1/32" 31/32" 15/16"S 1/2" 1/2" 1/2" 1/2" 1/2" 1/2"2" T 1-1/2" 1-1/2" 1-1/2" 1-1/2" 1-1/2" 1-1/2"T-E 1-11/32" 1-5/16" 1-9/32" 1-7/32" 1-3/16" 1-3/32"S 3/4" 3/4" 3/4" 3/4" 3/4" 3/4"2-1/2" T 1-3/4" 1-3/4" 1-3/4" 1-3/4" 1-3/4" 1-3/4"T-E 1-19/32" 1-9/16" 1-17/32" 1-15/32" 1-7/16" 1-11/32"S 1" 1" 1" 1" 1" 1" 1" 1" 1"3" T 2" 2" 2" 2" 2" 2" 2" 2" 2"T-E 1-27/32" 1-13/16" 1-25/32" 1-23/32" 1-11/16" 1-19/32" 1-1/2" 1-13/32" 1-5/16"S 1-1/2" 1-1/2" 1-1/2" 1-1/2" 1-1/2" 1-1/2" 1-1/2" 1-1/2" 1-1/2" 1-1/2" 1-1/2"4" T 2-1/2" 2-1/2" 2-1/2" 2-1/2" 2-1/2" 2-1/2" 2-1/2" 2-1/2" 2-1/2" 2-1/2" 2-1/2"T-E 2-11/32" 2-5/16" 2-9/32" 2-7/32" 2-3/16" 2-3/32" 2" 1-29/32" 1-13/16" 1-23/32" 1-5/8"S 2" 2" 2" 2" 2" 2" 2" 2" 2" 2" 2"5" T 3" 3" 3" 3" 3" 3" 3" 3" 3" 3" 3"T-E 2-27/32" 2-13/16" 2-25/32" 2-23/32" 2-11/16" 2-19/32" 2-1/2" 2-13/32" 2-5/16" 2-7/32" 2-1/8"S 2-1/2" 2-1/2" 2-1/2" 2-1/2" 2-1/2" 2-1/2" 2-1/2" 2-1/2" 2-1/2" 2-1/2" 2-1/2"6" T 3-1/2" 3-1/2" 3-1/2" 3-1/2" 3-1/2" 3-1/2" 3-1/2" 3-1/2" 3-1/2" 3-1/2" 3-1/2"T-E 3-11/32" 3-5/16" 3-9/32" 3-7/32" 3-3/16" 3-3/32" 3" 2-29/32" 2-13/16" 2-23/32" 2-5/8"S 3" 3" 3" 3" 3" 3" 3" 3" 3" 3" 3"7" T 4" 4" 4" 4" 4" 4" 4" 4" 4" 4" 4"T-E 3-27/32" 3-13/16" 3-25/32" 3-23/32" 3-11/16" 3-19/32" 3-1/2" 3-13/32" 3-5/16" 3-7/32" 3-1/8"S 3-1/2" 3-1/2" 3-1/2" 3-1/2" 3-1/2" 3-1/2" 3-1/2" 3-1/2" 3-1/2" 3-1/2" 3-1/2"8" T 4-1/2" 4-1/2" 4-1/2" 4-1/2" 4-1/2" 4-1/2" 4-1/2" 4-1/2" 4-1/2" 4-1/2" 4-1/2"T-E 4-11/32" 4-5/16" 4-9/32" 4-7/32" 4-3/16" 4-3/32" 4" 3-29/32" 3-13/16" 3-23/32" 3-5/8"S 4" 4" 4" 4" 4" 4" 4" 4" 4" 4" 4"9" T 5" 5" 5" 5" 5" 5" 5" 5" 5" 5" 5"T-E 4-27/32" 4-13/16" 4-25/32" 4-23/32" 4-11/16" 4-19/32" 4-1/2" 4-13/32" 4-5/16" 4-7/32" 4-1/8"S 4-1/2" 4-1/2" 4-1/2" 4-1/2" 4-1/2" 4-1/2" 4-1/2" 4-1/2" 4-1/2" 4-1/2" 4-1/2"10" T 5-1/2" 5-1/2" 5-1/2" 5-1/2" 5-1/2" 5-1/2" 5-1/2" 5-1/2" 5-1/2" 5-1/2" 5-1/2"T-E 5-11/32" 5-5/16" 5-9/32" 5-7/32" 5-3/16" 5-3/32" 5" 4-29/32" 4-13/16" 4-23/32" 4-5/8"S 5" 5" 5" 5" 5" 5" 5" 5" 5" 5" 5"11" T 6" 6" 6" 6" 6" 6" 6" 6" 6" 6" 6"T-E 5-27/32" 5-13/16" 5-25/32" 5-23/32" 5-11/16" 5-19/32" 5-1/2" 5-13/32" 5-5/16" 5-7/32" 5-1/8"S 6" 6" 6" 6" 6" 6" 6" 6" 6" 6" 6"12" T 6" 6" 6" 6" 6" 6" 6" 6" 6" 6" 6"T-E 5-27/32" 5-13/16" 5-25/32" 5-23/32" 5-11/16" 5-19/32" 5-1/2" 5-13/32" 5-5/16" 5-7/32" 5-1/8"1. Thread length (T) for intermediate nominal lag screw lengths (L) is 6", or 1/2 the nominal lag screw length plus 0.5", whicheveris less.AMERICAN WOOD COUNCIL


<strong>LRFD</strong> STRUCTURAL CONNECTIONS SUPPLEMENT67APPENDIXSimplified Design Equations - LaterallyLoaded Connections 68Bolted Connections 68Lag Screw Connections 71<strong>Wood</strong> Screw Connections 72Nail and Spike Connections 72AAMERICAN FOREST & PAPER ASSOCIATION


68 APPENDIXSimplified Design Equations - Laterally LoadedConnectionsThe yield equations provided in Chapter 7 of the <strong>LRFD</strong>Standard for Engineered Construction represent a uniformbasis for development of design capacities. These equationsare particularly beneficial for engineers that usecomputers for calculation of design capacities. However,the same equations are complex which inhibits assessmentof computational results and precludes hand calculationon a routine basis. Fortunately, these equations can besimplified for conditions commonly encountered in design.Such conditions include the use of common species(members with identical dowel bearing strengths) andcommon thickness for main and side members.This appendix provides simplified design equationsfor specific conditions. These conditions are presentedprior to each set of design equations. Assumptions regardingjoint components are presented as limits ofapplicability for the simplified design equations. In addition,nomographs are provided as design aids.Bolted ConnectionsLimitations for Simplified Equations - Bolted ConnectionsThickness:Dowel bearing strength (ksi):Dowel bearing strength, F e:Bolt diameter, D:Bending yield strength:t s= t m= t (all members of equal thickness, in.)F es= F em= F e(all members of the same species)1.1 ksi # F e# 8.2 ksi0.5 in.# D # 1 in.F yb= 45 ksiAngle to grain factor, K 2: 1 # K 2# 1.25where: K 2= 1 + 2 Max/360Maximum angle of loadto grain for any member:0E # 2 Max# 90EDk =− + + ⎛ ⎝ ⎜ 90 ⎞⎟ ⎛ F ⎠⎝ ⎜ ⎞1 4⎟t ⎠e2Bolted Connections - Single ShearYield Mode Simplified Equation Controls WhenI m = I sIIIII m = III sIVZ = ⎛ KDtF e⎝ ⎜ 083 . ⎞⎟⎠θZ = ⎛ KDtF e⎝ ⎜ 038 . ⎞⎟⎠θZ = ⎛ KDtF e⎝ ⎜ 035 . ⎞⎟⎠KθZ = ⎛ ⎝ ⎜ 402 . ⎞ D2⎟ FeK ⎠θsee note belowtD10 52≤. (see Figure 1)F eSee note belowtD10 52≥. (see Figure 1)F eAMERICAN WOOD COUNCIL


GUIDELINE<strong>LRFD</strong> STRUCTURALTO <strong>LRFD</strong> FORCONNECTIONSSTRUCTURAL COMPOSITESUPPLEMENTLUMBER6969Note: Capacities of single shear bolted connections meeting the limitations presented above will be limited by eitherMode II or Mode IV.Figure 1: Bolted Connections Nomograph - Single ShearBolted Connections - Double ShearYield Mode Simplified Equation Controls WhenAI mI sZ = ⎛ KDtF e⎝ ⎜ 083 . ⎞⎟⎠θZ = ⎛ KDtF e⎝ ⎜ 166 . ⎞⎟⎠θtD≤ 968 . (see Figure 2)F esee note belowAPPENDIXIII sZ = ⎛ DtF e k⎝ ⎜ 069 . ⎞⎟K ⎠θsee note belowIVZ = ⎛ ⎝ ⎜ 804 . ⎞ D 2⎟ FeK ⎠θtD≥ 968 . F(see Figure 2)eNote: Double shear bolted connections meeting the limitations presented above will be limited by either Mode I m orMode IV.Figure 2: Bolted Connections Nomograph - Double ShearAMERICAN FOREST & PAPER ASSOCIATION


70 APPENDIXLimitations for Simplified Equations - Bolted Connections - Single Shearwith Metal Side PlateThe following assumptions are for bolted connections with a wood main member and steel side member:Main Member Thickness, t m:Side Plate Thickness:1.5 in. # t m# 14.25 in.t s= 0.25 in.a = t m/t sSide Plate:Plate Bearing Strength:Main Member Loaded parallel-to-grainDowel Bearing Strength, F em:ASTM A36 SteelF es= 58 ksi3.45 ksi # F em# 8.2 ksib = F em/F esBolt Diameter, D:Bending Yield Strength:0.5 in. # D # 1.0 in.F yb= 45 ksiAngle to grain factor, K 2: 1 # K 2# 1.25where: K 2= 1 + 2 Max/360Maximum angle of loadto grain for any member: 0E # 2 Max# 90°Yield Mode Design Equation Controls WhenIIZ = ⎛ ⎝ ⎜ 13.34⎞ ⎟ DkK ⎠θ1t m /D and F em # Isocurve, Figure 3where:k1=( ) ( )2 2 2 3b + 2b 1+ a+ a + a b − b 1+a( 1 + b)DF= ⎛ ⎝ ⎜ 026 . ⎞III sem 3Z ⎟Kθ⎠ ( 2 + b)kt m /D and F em $ Isocurve, Figure 3where:k3=− 1 +( + b) ( + )21 4802+bF embD2For the given assumptions, joint resistance is limited by either Mode II or Mode IIIs. Figure 3 serves as a design aidthat will often establish the governing yield mode. When it is unclear which yield mode controls design, based on thenomograph below, both Mode II and Mode IIIs shall be checked using the appropriate design equations.AMERICAN WOOD COUNCIL


GUIDELINE<strong>LRFD</strong> STRUCTURALTO <strong>LRFD</strong> FORCONNECTIONSSTRUCTURAL COMPOSITESUPPLEMENTLUMBER 7171Figure 3: Bolted Connections Nomograph - Single Shear with Metal Side PlateLag Screw ConnectionsLimitations for Simplified Equations - Lag Screw ConnectionsThickness:t = t s(side member thickness)Dowel bearing strength:F es= F em= F e(both members of the same species)ADowel bearing strength, F e:Lag Screw Diameter, D:Bending Yield Strength, F yb:Threaded shank penetrationinto main member:1.1 ksi # F e# 8.2 ksi0.25 in. # D # 1.0 in.45 ksi # F yb# 70 ksiR p$ 8D (full penetration)APPENDIXAngle to grain factor, K 2: 1 # K 2# 1.25where: K 2= 1 + 2 Max/360Maximum angle of loadto grain for any member:0E # 2 Max# 90EFk =− + + ⎛ ⎝ ⎜ 3 ⎞1 4 ⎟ ⎛ 2 ⎠⎝ ⎜ Fybe2⎞⎛D ⎞⎟⎜⎟⎠⎝t ⎠Note: Side member thickness, t s , represents the sole thickness term in yield equations for nails and spikes and is thereforepresented without the subscript in the following simplified equations.Lag Screw Connections - Single ShearYield ModeSimplified EquationI sIII sIVZ = ⎛ KDtF e⎝ ⎜ 083 . ⎞⎟⎠θZ = ⎛ KDtF e⎝ ⎜ 040 . ⎞⎟⎠KθZ = ⎛ ⎝ ⎜ 060 . ⎞⎟K ⎠D 2FFθe ybAMERICAN FOREST & PAPER ASSOCIATION


72 APPENDIX<strong>Wood</strong> Screw ConnectionsLimitations for Simplified Equations - <strong>Wood</strong> Screw Connections - SingleShearThickness:Dowel bearing strength:Dowel Bearing Strength, F e:Unthreaded Shank Diameter, D:Bending Yield Strength, F yb:K D= 2.2K D= 10D + 0.5K D= 3.0t = t s(side member thickness, in.)F es= F em= F e(both members of the same species)1.9 ksi #F e# 9.3 ksi0.138 in. # D # 0.372 in.45 ksi # F yb# 100 ksifor: D # 0.17 in.for: 0.17 in. # D # 0.25 in.for: D $ 0.25 in.Fk =− + + ⎛ ⎝ ⎜ 3 ⎞1 4 ⎟ ⎛ 2 ⎠⎝ ⎜ Fybe2⎞⎛D ⎞⎟⎜⎟⎠⎝t ⎠Note: Side member thickness, t s , represents the sole thickness term in yield equations for wood screws and is thereforepresented without the subscript in the following simplified equations.<strong>Wood</strong> Screws - Single ShearYield ModeSimplified EquationI sIII sZ = ⎛ DtF⎝ ⎜ 332 . ⎞⎟K ⎠DZ = ⎛ DtFek⎝ ⎜ 111 . ⎞⎟K ⎠DeIVZ = ⎛ D⎝ ⎜ 179 . ⎞2⎟K ⎠DF FeybNail and Spike ConnectionsLimitations for Simplified Equations - Nail and Spike ConnectionsThickness:Dowel bearing strength:Dowel Bearing Strength, F e:Nail Diameter, D:Bending Yield Strength, F yb:t = t s(side member thickness, in.)F es= F em= F e(both members of the same species)1.9 ksi #F e# 9.3 ksi0.099 in. # D # 0.375 in.45 ksi # F yb# 130 ksiAMERICAN WOOD COUNCIL


GUIDELINE<strong>LRFD</strong> STRUCTURALTO <strong>LRFD</strong> FORCONNECTIONSSTRUCTURAL COMPOSITESUPPLEMENTLUMBER 7373Shank penetration:K D= 2.2K D= 10D + 0.5K D= 3.0R p$ 12D (full penetration)for: D # 0.17 in.for: 0.17 in. # D # 0.25 in.for: D $ 0.25 in.Fybk1 =− 1+ 4+72 Fek2=− 1+ 4+2FFybe2⎛ D ⎞⎜ ⎟⎝ t ⎠Note: Side member thickness, t s , represents the sole thickness term in yield equations for nails and spikes and is thereforepresented without the subscript in the following simplified equations.Nail and Spike Connections - Single ShearYield ModeSimplified EquationAI sIII mZ = ⎛ DtF⎝ ⎜ 332 . ⎞⎟K ⎠DZ = ⎛ D Fek⎝ ⎜ 13.29 ⎞2⎟K ⎠De1APPENDIXIII sZ = ⎛ DtFek⎝ ⎜ 111 . ⎞⎟K ⎠D2IVZ = ⎛ D⎝ ⎜ 192 . ⎞2⎟K ⎠DF FeybAMERICAN FOREST & PAPER ASSOCIATION


74APPENDIXAMERICAN WOOD COUNCIL

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!